ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ

Seria: ENERGETYKA z. 28

Nr kol. 210

1968

JERZY TOMECZEK Katedra Teorii Maszyn Cieplnych

WPŁYW CIEPŁA GENEROWANEGO W CHŁODZIWIE NA DYNAMICZNE WŁASCIWOŚCI REAKTORÓW CHŁODZONYCH WODĄ POD CIŚNIENIEM

> <u>Streszczenie</u>. Przedmiotem pracy jest wyznaczenie czasowych zależności temperatury chłodziwa, temperatury elementu paliwowego oraz mocy reaktora po zakłóceniu spowodowanym zmianą reaktywności. W pracy rozwiązane zostały równania kinetyki neutronów z jedną grupą neutronów opóźnionych oraz równania bilansu energii.

1. Wstęp

Stany nieustalone w reaktorze jądrowym mogą być spowodowane: a) zmianą strumienia chłodziwa, b) zmianą reaktywności, c) zmianą temperatury chłodziwa na wlocie do reaktora. Znajomość zachowania się reaktora w tych stanach potrzebna jest nie tylko do celów doboru właściwego układu regulacji reaktora lecz również do ustalenia odpowiednich urządzeń zabezpieczających reaktor przed niebezpieczną awarią. Poznanie rozkładu temperatury w czasie zmiany mocy umożliwia obliczenie rozkładu naprężeń termicznych występujących w elemencie paliwowym.

Analiza stanu nieustalcnego w reaktorze wymaga rozwiązania równań kinetyki neutronów oraz bilansu energii w paliwie i chłodziwie. W pracy wykorzystany zostanie tzw. punktowy model kinetyki neutronów. Model ten może być zastosowany w przypadku reaktorów niezbyt dużych jak na przykład reaktory chłodzone i moderowane wodą pod ciśnieniem.

Proces opisany jest zatem przez układ równań: bilansu energii w paliwie

$$\varrho_{\mathbf{u}} c_{\mathbf{u}} = \frac{\partial \mathbf{t}_{\mathbf{u}}(\mathbf{r}, \mathbf{z}, \tau)}{\partial \tau} = \nabla \left[\lambda_{\mathbf{u}} \nabla \mathbf{t}_{\mathbf{u}} (\mathbf{r}, \mathbf{z}, \tau) \right] + q_{\mathbf{v}}(\mathbf{r}, \mathbf{z}, \tau)$$
(1)

bilansu energii w chłodziwie

$$\begin{aligned} \varrho_{c} c_{c} \mathcal{A}_{c} \left[\frac{\partial t_{c}(z,\tau)}{\partial \tau} + w \frac{\partial t_{c}(z,\tau)}{\partial z} \right] &= \alpha \cdot D \left[t_{u}(R,z,\tau) - t_{c}(z,\tau) \right] + \\ &+ (1 - \varphi) P(z,\tau) \end{aligned}$$
(2)

kinetyki neutronów

$$\frac{\mathrm{d}\mathbf{n}(\tau)}{\mathrm{d}\tau} = \frac{\partial \mathbf{k}(\tau) - \beta}{\Lambda} \mathbf{n}(\tau) + \lambda C(\tau)$$

$$\frac{\mathrm{d}\mathbf{c}(\tau)}{\mathrm{d}\tau} = \frac{\beta}{\Lambda} \mathbf{n}(\tau) - \lambda C(\tau) .$$
(3)

Równania te uzupełnione muszą być odpowiednimi warunkami początkowo-brzegowymi oraz równaniem opisującym zależność pomiędzy reaktywnością i temperaturą układu.

2. Rozwiązanie równań bilansu energii

Przeprowadzone poniżej rozwiązanie ważne będzie dla przypadku cienkich elementów paliwowych lub też elementów paliwowych chłodzonych przy małych współczynnikach przejmowania ciepła. Inaczej mówiąc rozwiązanie to będzie słuszne w przypadku, gdy liczba Biota (Bi) = $\frac{\alpha R}{\lambda_u}$ jest mała. Celem rozwiązania układu równań (1) i (2) poczynione zostaną następujące założenia upraszczające:

- a) przewodzenie ciepła w elemencie paliwowym odbywa się tylko w kierunku normalnym do jego osi [6],
- b) pojemności cieplne chłodziwa i paliwa są niezmienne,
- c) współczynnik a przejmowania ciepła jest niezmienny,

 d) rozkład temperatury w paliwie zachowuje niezmieniony profil w stanie nieustalonym równy profilowi w chwili początkowej

$$\frac{t_{u}(r,z,T) - t_{c}(z,T)}{t_{u}(R,z,T) - t_{c}(z,T)} = \frac{t_{u}(r,z,0) - t_{c}(z,0)}{t_{u}(R,z,0) - t_{c}(z,0)} = \chi(r,0)$$

e) temperature chłodziwa na dolocie do reaktora jest niezmienna $t_{c}(0,T) = t_{c0}$,

f) prędkość chłodziwa jest niezmienna.

Wielkość X (r,O) uzależniona jest od liczby Biota. W stanie ustalonym temperaturę paliwa opisać można zależnością

$$t_u(r,s,0) = t_c(z,0) + P_0(0) f(z) [C_1 + (Bi)C_2(R^2-r^2)]$$

Z powyższego równania wynika związek

$$\frac{t_u(r,z,0)-t_e(z,0)}{t_u(R,z,0)-t_e(z,0)} = 1 + (Bi) C (R^2-r^2) = \chi(r,0).$$

Dla bardzo małych liczb (Bi) wartość χ (r,0) zbliżona jest do jedności. Oznacza to, że w przypadkach takich rozkład temperatury w paliwie jest spłaszczony. W granicznym przypadku (Bi) -0, χ -1 temperatura paliwa jest niezmienna wzdłuż współrzędnej r.

Uwzględniając powyższe założenia można zapisać równania (1) i (2) w postaci następującej

$$A_{u}C_{u} \frac{\partial t_{u}(z,\tau)}{\partial \tau} = \P P(z,\tau) - \frac{dD}{\mathcal{X}_{m}} \left[t_{u}(z,\tau) - t_{c}(z,\tau) \right]$$
(4)

$$\mathbf{A}_{\mathbf{C}}\mathbf{C}_{\mathbf{C}}\left[\frac{\partial \mathbf{t}_{\mathbf{C}}(\mathbf{z},\tau)}{\partial \tau} + \mathbf{w} \frac{\partial \mathbf{t}_{\mathbf{C}}(\mathbf{z},\tau)}{\partial \mathbf{z}}\right] = \frac{\alpha \mathbf{D}}{\mathcal{X}_{\mathbf{m}}}\left[\mathbf{t}_{\mathbf{u}}(\mathbf{z},\tau) - \mathbf{t}_{\mathbf{C}}(\mathbf{z},\tau)\right] +$$

+
$$(1-\gamma) P(z,T)$$
, (5)

gdzie: t_u(z,T) oznacza uśrednioną wzdłuż współrzędnej r temperaturę paliwa.

Równania (4) i (5) należy rozwiązać przy następujących warunkach początkowo-brzegowych:

dla
$$\tau = 0$$
 $t_u(z,\tau) = t_u(z,0)$ oraz $t_c(z,\tau) = t_c(z,0)$
dla $z = 0$ $t_c(0,\tau) = 0$.

Celem rozwiązania układu równań (4) i (5) wykonane zostanie w równaniach tych obustronne przekształcenie Laplace'a

$$\tilde{f}(x,s) = \int_{0}^{\infty} e^{-ST} f(z,T) d\tau.$$
 (6)

Równania (4), (5) przyjmą zatem postać

$$s\bar{t}_{u}(z,s) - t_{u}(z,0) = \Gamma \bar{P}(z,s) - \Psi \left[\bar{t}_{u}(z,s) - \bar{t}_{o}(z,s) \right]$$
(7)

$$s\bar{t}_{d}(z,s) - t_{o}(z,0) + \Psi \frac{d\bar{t}_{o}(z,s)}{dz} = U \left[\bar{t}_{u}(z,s) - \bar{t}_{o}(z,s) \right] +$$

$$+ V \bar{P}(z,s) ,$$
(8)
gdzie:

$$\Gamma = \frac{q}{A_u C_u}, \quad \Psi = \frac{\alpha D}{\alpha_m A_u C_u}, \quad U = \frac{\alpha D}{A_c C_c \alpha_m}, \quad \Psi = \frac{1-q}{A_c C_c}$$

Podstawiając równanie (?) do równania (8) uzyskuje się wyrażenie

$$= \frac{d\overline{t}_{c}(\overline{x},s)}{d\overline{x}} + \overline{t}_{c}(\overline{x},s) \left[s + \overline{U} - \frac{\overline{\psi}\overline{U}}{\overline{s} + \overline{\psi}}\right] = t_{c}(\overline{x},0) +$$

$$+ \frac{\nabla t_{u}(z,0)}{z+\psi} + \overline{P}(z,z) \left(\frac{\Gamma}{z+\psi} + \overline{V}\right).$$
(9)

Rozwiązanie tego równania jest utrudnione przez obecność pochodnej $\frac{dt_c(z,s)}{dz}$. Ciechanowicz, [1] opracował jego rozwiązanie przy pominięciu wyrazu $\overline{P}(z,s)V$. Rozwiązanie to jest jednakże praktycznie bezużyteczne, gdyż obowiązuje dla czasów $\tau > \frac{H}{2}$. Temperatura i moc reaktora zmieniają się bardzo szybko tak,że dla czasów $\tau \approx \frac{H}{2}$ występuje maksimum mocy reaktora. W związku z tym nie wydaje się możliwe praktyczne wykorzystanie tego rozwiązania.

W celu rozwiązania równania (9) dokonany zostanie podział komórki reaktora na n części o wysokości $H_{\alpha}(\beta = 1 \dots n)$.

W obrębie jednej części założony zostanie liniowy przebieg temperatury chłodziwa. Oznaczają przez $t_{c\beta-1}(\tau)$ oraz $t_{c\beta m}(\tau)$ temperaturę na styku elementu β -1 i β oraz temperaturę średnią elementu β odpowiednio można zanotować

$$\frac{dt_{c}(z,\tau)}{dz}\Big|_{\beta} = 2 \frac{t_{c\beta,m}(\tau) - t_{c\beta,-1}(\tau)}{H_{\beta}} .$$
(10)

Mnożąc równanie (9) przez wyrażenie dz/H_{β} uzyskuje się, po wykonaniu całkowania w granicach od $z_{\beta-1}$ do z_{β} , następujący układ n równań

$$\frac{2\mathbf{w}}{\mathbf{H}_{\beta}} \left[\mathbf{\bar{t}}_{c\beta m}(s) - \mathbf{\bar{t}}_{c\beta -1}(s) \right] + \mathbf{\bar{t}}_{c\beta m}(s) \left[s + \mathbf{U} - \frac{\mathbf{\Psi}\mathbf{U}}{s + \mathbf{\Psi}} \right] =$$
$$= \mathbf{t}_{c\beta m}(0) + \frac{\mathbf{U} \mathbf{t}_{u\beta m}(0)}{s + \mathbf{\Psi}} + \mathbf{\bar{P}}_{\beta m}(s) \left\{ \frac{\Gamma}{s + \mathbf{\Psi}} + \mathbf{V} \right\}.$$
(11)

Rozwiązanie równania (9) zostało więc sprowadzone do rozwiązania układu n równań (11) oraz (n - 1) równań

$$\overline{t}_{c\beta}(s) = 2\overline{t}_{c\beta m}(s) - 2t_{c\beta-1m}(s) + \dots \pm \overline{t}_{c1m}(s).$$
(12)

W postaci macierzowej można przedstawić uzyskany układ równań następująco

$$|\mathbf{W}|||\mathbf{t}_{c}|| = |\mathbf{K}|, \qquad (13)$$

gdzie macierze

$$\|\mathbf{w}\| = \begin{bmatrix} \mathbf{F}_1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \mathbf{F}_2 & 0 & 0 & -\mathbf{B}_1 & 0 & 0 \\ 0 & 0 & \mathbf{F}_3 & 0 & 0 & -\mathbf{B}_2 & 0 \\ \hline 0 & 0 & 0 & \mathbf{F}_n & 0 & 0 & -\mathbf{B}_n \\ 2 & 0 & 0 & 0 & -1 & 0 & 0 \\ \hline -2 & 2 & 0 & 0 & 0 & -1 & 0 \\ \hline \mathbf{F}_2 & \pm 2 & 2 & 0 & 0 & 0 & -1 \end{bmatrix}$$

$$\|\mathbf{x}\| = \begin{bmatrix} \mathbf{t}_{c1m}(0)(s + \psi) + U\mathbf{t}_{u1m}(0) + \bar{\mathbf{P}}_{1m}(s)[\Gamma + \nabla(s + \psi)] \\ \mathbf{t}_{c2m}(0)(s + \psi) + U\mathbf{t}_{u2m}(0) + \bar{\mathbf{P}}_{2m}(s)[\Gamma + \nabla(s + \psi)] \\ \mathbf{t}_{cnm}(0)(s + \psi) + U\mathbf{t}_{unm}(0) + \bar{\mathbf{P}}_{nm}(s)[\Gamma + \nabla(s + \psi)] \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

....

(15)

(14)

(16)

$$\|\mathbf{t}_{0}\| = \begin{cases} \mathbf{\bar{t}}_{c1m}(s) \\ \mathbf{\bar{t}}_{c2m}(s) \\ \mathbf{\bar{t}}_{crm}(s) \\ \mathbf{\bar{t}}_{c1}(s) \\ \mathbf{\bar{t}}_{c1}(s) \\ \mathbf{\bar{t}}_{cn-1}(s) \end{cases}$$
oraz $B_{\beta} = \frac{2\pi}{H_{\beta}}(s+\psi)$.

Rozwiązanie równania (13) ma postać

$$\bar{\mathbf{t}}_{\alpha\beta\mathbf{m}}(\mathbf{s}) = \sum_{\gamma=1}^{n} \mathbf{K}_{\gamma} \frac{\mathbf{D}_{\gamma\beta}}{|\mathbf{w}|} , \qquad (17)$$

gdzie:

D_{fb} jest dopełnieniem algebraicznym wyrazu (η,β) wyznacznika |W|.

W celu wyznaczenia oryginału wyrażenia (17) należy znależć miejsca zerowe wyznacznika |W|. Jeżeli podział został dokonany na n równych części, wówczas

$$|\mathbf{W}| = \prod_{i=1}^{n} \mathbf{F}_{i} = \left[\mathbf{s}^{2} + \mathbf{s}(\mathbf{\Psi} + \mathbf{U} + \mathbf{B}) + \mathbf{B}\mathbf{\Psi} \right]^{n}.$$
(18)

Jeżeli $(\psi + U + B)^2 > 4B\psi$ to równanie |W| = 0 posiada 2 pierwiastki o krotności n

$$\mathbf{S}_{1,2} = \frac{1}{2} \left[- (\psi + \mathbf{U} + \mathbf{B}) \mp \sqrt{(\psi + \mathbf{U} + \mathbf{B})^2 - 4\mathbf{B}\psi} \right].$$

Wykonując odwrotne przekształcenie Laplace'a wyrażenia (17) uzyskuje się

$$\mathbf{t}_{c\beta m}(\tau) = \sum_{\gamma=1}^{m} \left\{ \sum_{i=1}^{2} \mathcal{B}_{\gamma\beta}(s_{i}) \left[\mathbf{t}_{c\gamma m}(0) \mathbf{e}^{s_{i}\tau} + \nabla \mathbf{x}_{\gamma m}(s_{i},\tau) \right] + \right\}$$

+
$$\sum_{i=1}^{2} R_{\eta\beta}(s_{i}) \left[Ut_{u\eta\eta}(0) e^{s_{i}^{T}} + \Gamma X_{\eta a}(s_{i}, T) \right] \right], \quad (19)$$

gdzie:
$$X_{\gamma \mathbf{E}}(s_{\mathbf{i}}, \tau) = \int_{0}^{\tau} P_{\gamma \mathbf{E}}(\tau') e^{s_{\mathbf{i}}(\tau - \tau')} d\tau'$$
 (20)

$$R_{\dagger\beta}(s_{i}) = e^{-s_{i}T} \left[\frac{1}{(n-1)T} \lim_{s+s_{i}} \frac{d^{(n-1)}}{ds^{(n-1)}} \frac{D_{\dagger\beta}(s)}{|W(s)|} (s-s_{i})e^{sT} \right]$$
(21)

$$\hat{B}_{\uparrow\beta}(s_{i}) = e^{-s_{i}T} \left[\frac{1}{(n-1)!} \lim_{s \to s_{i}} \frac{d^{(n-1)}}{ds^{(n-1)}} \frac{D_{\uparrow\beta}(s)(s+\psi)}{|W(s)|} (s-s_{i})e^{sT} \right].$$

Podstawiając równanie (19) do równania (7) i wykonując odwrotne przekształcenie Laplace'a otrzymuje się

$$\mathbf{t}_{\mathrm{u}\beta\mathrm{m}}(\tau) = \mathbf{t}_{\mathrm{u}\beta\mathrm{m}}(0)\mathbf{e}^{-\psi\tau} + \Gamma \mathbf{X}_{\beta\mathrm{m}}(-\psi,\tau) + \psi \mathbf{t}_{\mathrm{c}\beta\mathrm{m}}(\tau) \star \mathbf{e}^{-\psi\tau}, \qquad (22)$$

gdzie

$$\mathbf{t}_{c\beta\mathbf{m}}(\tau) \star \mathbf{e}^{-\psi\tau} = \int_{0}^{\tau} \mathbf{t}_{c\beta\mathbf{m}}(\tau') \mathbf{e}^{-\psi(\tau-\tau')} d\tau' .$$
 (23)

Jeżeli znana jest funkcja określająca przebieg strumienia ciepła $P_{\beta,m}(T)$ generowanego w paliwie wówczas na podstawie równań (19) i (22) można obliczyć średnią temperaturę ß elementu chłodziwa i paliwa w chwili T. Poza nielicznymi wypadkami (np. skokowa zmiana mocy) obliczenie tych funkcji jest bardzo kłopotliwe. Równania (19) i (22) zostały zatem zaprogramowane na maszynę cyfrową ODRA. Dla sprawdzenia poprawności programu wykonano obliczenia sprawdzające dla następującej zmiany strumienia ciepła

$$P_{\beta m}(\tau) = P_{\beta m}(0) [1 + 1(\tau)].$$
 (24)

Na rysunku 1 przedstawiono przebieg w czasie temperatury $t_c(H,T)$ na wylocie z reaktora po zakłóceniu spowodowanym przez strumień ciepła opisany równaniem (24). Asymptotyczna wartość tej temperatury obliczona jest z błędem 2,3%.

Rys. 1. Zmiana temperatury na wylocie z reaktora po skokowej zmianie strumienia olepła (n = 4)

3. Rozwiązanie równań kinetyki neutronów

Rozwiązanie układu równań (3) dla przypadku sześciu grup neutronów opóźnionych cpracowali Kespin i Coz [5]. Rozwiązanie to zostało wykorzystane w niniejszej pracy z tym, że przystosowano je do jednej grupy neutronów opóźnionych. Jeżeli założone zostanie, że gęstość neutronów jest proporcjonalna do strumienia generowanego w reaktorze ciepła, wówczas rozwiązanie równań (3) ma postać

$$P_{m}(\tau+h) = \frac{P_{e,m}(0) + I_{o}(\tau) + I_{1}(\tau) \exp\left[-(\lambda + -\frac{\beta}{\Lambda})h\right] + 1 - \frac{1}{2}h\frac{\delta k(\tau+h)}{\Lambda}$$

$$+\frac{1}{2}h\frac{\delta k(\tau) P_{\beta m}(\tau)}{\Lambda(\lambda + \frac{\beta}{\Lambda})}\left\{\lambda + \frac{\beta}{\Lambda}\exp\left[-(\lambda + \frac{\beta}{\Lambda})h\right]\right\}$$
(25)

gdzie:

$$I_{0}(\tau) = \frac{\lambda}{\Lambda(\lambda + \frac{\beta}{\Lambda})} \int_{0}^{0} \delta k(\tau') P_{\beta m}(\tau') d\tau' \qquad (26)$$

$$I_{1}(\tau) = \frac{\beta}{\Lambda(\Lambda\Lambda+\beta)} \int_{0}^{t} \exp\left[-(\Lambda+\frac{\beta}{\Lambda})(\tau-\tau)\right] \delta k(\tau') P_{\beta m}(\tau') d\tau'. \quad (27)$$

Z równania (25) wynika następujące ograniczenie odstępu h czasu

$$h < \frac{2\Lambda}{\delta k(\tau + h)} .$$
 (28)

Reaktywność $\delta k(\tau)$ układu złożona jest z reaktywności $\delta k_{ex}(\tau)$ wprowadzonej do układu z zewnątrz i reaktywności $\delta k_t(\tau)$ spowodowanej zmianą temperatury paliwa i moderatora

$$\delta \mathbf{k} (\tau) = \delta \mathbf{k}_{ex}(\tau) + \mathbf{r}_{u} [\mathbf{t}_{um}(\tau) - \mathbf{t}_{um}(0)] + \mathbf{r}_{c} [\mathbf{t}_{cm}(\tau) + \mathbf{t}_{cm}(0)]. (29)$$

Jeżeli do rdzenia zostanie wprowadzona reaktywność $\delta k_{ex}(T)$ (np. przez wysunięcie pręta sterowniczego), wówczas strumień P ciepła rośnie zgodnie z równaniem (25). Spowoduje to zmiaWpływ ciepła generowanego w chłodziwie na dynamiczne...

nę temperatury paliwa i moderatora zgodnie z równaniami (19) i (22), która to zmiana wpłynie następnie poprzez równanie (29) na reaktywność.

Rozwiązanie problemu dynamiki wymaga zatem równoczesnego rozwiązania równań (19), (22), (25) i (29).

Jedyną praktyczną metodą rozwiązania jest zaprogramowanie tych równań na maszynę cyfrową i wykorzystanie metody iteracji. Opracowany został program na maszynę cyfrową ODRA w języku MOST umożliwiający obserwowanie przebiegu temperatury chłodziwa i paliwa ofaz strumienia ciepła po zmianie reaktywności $\delta k_{ex}(T) = a + bT$.

4. Przykład obliczeń

Obliczenia zostały przeprowadzone dla rozkładu strumienia ciepła opisanego równaniem

$$P(z,\tau) = P_0(\tau) \sin \frac{\tau(z+\delta)}{H+2\delta}$$
. (30)

Wielkość $\chi(r,0)$ obliczono w wyniku rozwiązania równań (1) i (2) dla początkowego stanu ustalonego. W obliczeniach cyfrowych przyjęto następujące wartości:: H = 2,34 m, U = 0,335s⁻¹, V = 2,08.10⁻⁴ m deg J, $\Gamma = 7,54 \cdot 10^{-3}$ m deg J, $\psi = 0,788$ s⁻¹, $\chi(0,0) = 11,0$, $P_0(0) = 2.10^4$ W/m, W/H = 2,01 s⁻¹, $\delta = 0,3$ m, $r_c = -5.10^{-4}$ deg⁻¹, $r_f = 1.10^{-5}$ deg⁻¹, $\Lambda = 1.10^{-4}$ s, $\eta = 0,94$.

Na rysunku 2 przedstawiony został rozkład temperatury wzdłuż kanału chłodzącego dla skokowej zmiany reaktywności $\delta k_{ex} =$ = 0,015 oraz dla liniowej $\delta k_{ex} = 0,02$ T. Z rysunku tego wynika, że w przypadku dużego zakłócenia (skokowa zmiana reaktywności) ilość części, na które należy podzielić element paliwowy, aby dokładnie opisać proces, powinna być duża.

Rysunek 3 przedstawia przebieg strumienia ciepła i średniej temperatury w osi elementu paliwowego w przypadku uwzględnienia i pominięcia generacji ciepła w chłodziwie.

Eys. 2. Rozkład temperatury chłodziwa wzdłuż elementu paliwowego przy założeniu niezmiennego profilu temperatury paliwa ---- skokowa zmiana reaktywności ôk_{er} = 0,015 ---- liniowa zmiana reaktywności ôk_{er} = 0,02 T.

Z przeprowadzonych obliczeń wynika, że uwzględnienie generacji ciepła w chłodziwie powoduje obniżenie o około 50% maksymalnej wartości strumienia ciepła, Obniżeniu o kilkadziesiąt stopni ulegają także wartości średniej temperatury w osi elementu paliwowego.

W przypadku dużych zakłóceń konieczne jest zatem dokonanie podziału elementu paliwowego na kilka części. W przeciwnym wypadku temperatura chłodziwa na wylocie z reaktora może różni się znacznie od rzeczywistej wartości (różnice dochodzić mogą nawet do 20⁰C).

Rys. 3. Porównanie zmiany strumienia ciepła P (T) i średniej temperatury $t_{um}(0,T)$ w osi elementu paliwowego (niezmienny profil temperatury paliwa), dla liniowej zmiany $\partial k_{ex} = 0,02T$

Ważniejsze oznaczenia

- A pole powierzchni,
- c ciepło właściwe,
- D obwód elementu paliwowego,
- H wysokość rdzenia reaktora,
- n gęstość neutronów,

- P strumień ciepła generowanego w komórce na jednostkę długości komórki,
- 9. gęstość źródeł ciepła w paliwie,
- r współrzędna prostopadła do osi paliwa,
- R zewnętrzny promień paliwa,
- s operator Laplace'a,
- t nadwyżka temperatury ponad dolotową temperaturą chłodziwa,
- w prędkość chłodziwa,
- z współrzędna geometryczna wzdłuż osi paliwa,
- współczynnik przejmowania ciepła,
- β udział neutronów opóźnionych w całkowitej ilości neutronów rozszczepieniowych,
- q' część energii rozszczepieniowej generowana w paliwie,
- d ubytek efektywny,
- ôk reaktywność,
 - A czas sużycia neutronów
 - ę gęstość,
 -) dotyczy chłodziwa,
 -), dotyczy paliwa.

LITERATU.A

- [1] CIECHANOWICZ J.W.: Simulation of the Thermal Processes in the Reactor Core Based on an Exact Solution of the Thermal Diffusion and Heat Flow Equations. Nuclear Science and Engineering. Vol. 13, 1962.
- [2] CZERNILIN J.F. i in.: Niekotoryje woprosy awarijnowo ochłażdienija riesktora IRT. Inżynierno-Fiziczeskij Żurnal, tom X, 1966.
- [3] GOERTZEL G.: Reactor Handbook Physics. Vol. I. US Atomic Energy Commision, 1955.
- [4] GROMOW B.F., TROFIMOW A.S.: Tiepłopierenos w jadiernych rieaktorach. Inżynierno-Fiziczeskij Żurnal. tom VII, 1964.

Wpływ ciepła generowanego w chłodsiwie na dynamiczne...

- [5] KEEPIN G.R., COX C.W.: General Solution of the Reactor Kinetic Equations. Nuclear Science and Engineering. Vol. 8, 1960.
- [6] THORPE J.F.: Axial Heat Conduction in Reactor Fuel Elements. Nuclear Science and Engineering. Vol. 23, 1965.

ВЛИЯНИЕ ТЕПЛА ВЫДЕЛЯЮЩЕГОСЯ В ОХЛАДИТЕЛЕ НА ДИНАМИКУ ПВР РЕАКТОРА

Резрие

В работе получено временную функцию температуры охладителя, топлива и мощности реактора после изменения реактивности.

THE INFLUENCE OF THE HEAT GENERATED IN THE COOLANT ON THE DYNAMICS OF THE PWR REACTORS

Summary

The subject of this paper is the determination of the coolant tempetature, fuel temperature and the reactor power as a function of time after the reactivity change. The one-group point kinetic and the spatial energy balance equations are solved in this paper.