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EVOLUTIONARY ALGORITHM FOR THE CIM PRODUCTION SCHEDULING’

Summary. The paper presents the evolutionary algorithm, which realizes the original 
evolutionary search process, for optimization o f the NP-hard permutational scheduling 
problems. The investigated algorithm is a hybrid o f a modified genetic algorithm, 
simplified local optimization procedure, some ‘tabu mechanism’, as well as a simple 
self-adaptation algorithm parameters procedure. The computational results show, for 
the example o f  m-stages production flow line, that the proposed algorithm has a high 
potential as a optimization paradigm for the CIM production scheduling.

ALGORYTM  EW OLUCYJNY HARMONOGRAMÓW ANIA PROCESÓW
W YTW ARZANIA W SYSTEMACH KOMPUTEROWO ZINTEGROW ANYCH

Streszczenie. W pracy zaprezentowano oryginalny algorytm ewolucyjny 
przeznaczony do optymalizacji NP-trudnych zagadnień permutacyjnych. Badany 
algorytm jest hybrydą zmodyfikowanego algorytmu genetycznego, uproszczonej 
procedury optymalizacji lokalnej, pewnego ‘mechanizmu tabu’ oraz prostej procedury 
autoadaptacji niektórych parametrów algorytmu. Wyniki obliczeń komputerowych, 
wykonane dla m-stadialnej linii przepływowej wskazują, że proponowany algorytm z 
powodzeniem może być stosowany do optymalizacji harmonogramów wytwarzania w 
systemach komputerowo zintegrowanych.

1. Introduction

Com puter Integrated Manufacturing (CIM) has been attracting many researchers for 

the past 20 years where particularly the use o f  AI techniques for problem solution search 

have been actively studied. The aim o f the CIM is to make a computerized environment in 

which design, decision support for production management, manufacturing and marketing are 

integrated and this way to reduce the manufacturing costs and decrease the product design-to- 

market tim e in discrete parts manufacturing. In the field o f  CIM production, scheduling is 

intended to allocate the manufactory resources to the production orders to be processed. Due 

to the tim e complexity, exponentially increasing with the problem size, o f  the prevalent 

number o f  scheduling problems conventional optimization methods such as Branch & Bound
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can accurately solve usually very small scheduling problems. Approximate methods include 

priority rules, Monte Carlo methods and neighborhood search. The drawback o f these 

enumerative procedures is that each o f  the trial solution can only be examined as a whole in 

respect to their suitability. In case o f scheduling problems the search space is so big that 

during the time period relevant to the practical application only a small part o f the search 

space can be examined. Algorithms which combine elements o f the neighborhood search and 

M onte Carlo method are the genetic (GA) and evolutionary (EA) algorithm.

GA and EA algorithms, as one of the promising tools, have been applied for solution 

o f  the flow shop scheduling, job shop scheduling, packing, routing, etc. These algorithms are 

powerful search techniques taking inspiration from genetics and natural selection [2], They 

can effectively explore very large solutions spaces without being trapped by local optima, 

where particularly the EAs are the main representative o f  a class o f  algorithms based on the 

model o f  natural evolution. The one requirements for applying G/EAs to the problem are: 

solution representation o f  the problem to be solved, a set o f pseudo-genetic operators called 

briefly genetic operators and a evaluation function o f  the problem solutions called fitness 

function.

Numerous class o f scheduling problems, too the flow shop scheduling, can be 

formalized as permutation problems where the solution has form o f the tasks set permutation. 

Permutation problems are an important problem class in the combinatorial optimization 

domain. Standard instances o f  permutation problems, besides scheduling, include travelling 

salesman problem, quadratic assignment problem, graph coloring, as well as variety o f  design 

problems. NP-hard permutation problems even with modest number o f  tasks overwhelm the 

capabilities o f  algorithms that guarantee solutions optimum in reasonable amount o f  time. 

That is the reason why effective approximate algorithms producing good suboptimal solutions 

proved important.

There is an agreement in the combinatorial optimization community that the binary 

representation o f  the permutation will not provide any advantage because binary 

representation would require special repair algorithms, since a change o f a single bit may 

result in a illegal solution o f  the problem, i.e. a sequence which is not a permutation. Thus we 

apply in investigated EA permutation n  = (TI(1), n (2 )...,n (n )) o f the tasks set J  = {], 2,..., n} 

as the natural representation o f  the scheduling problem as well as objective function f(TI) as 

the fitness function.

Investigated evolutionary algorithm EVOL-1, adjusted for permutation problems, is a 

hybrid o f  an modified genetic algorithm, simplified local optimization procedure, some ‘tabu
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m echanism ’ as well as simple self-adaptation algorithm parameters procedure. The 

computation results have shown that the proposed evolutionary algorithm has a high potential 

for the CIM production scheduling.

2. The evolutionary search process

The knowledge, accumulated in the search process for the problem solution, is 

encoded as a set P o f  permutations called population, where M = | P | is the size o f the 

population P. The evolution process o f  the population P, modelled by EA,  realizes the search 

process by use o f  genetic operators. Every genetic operator generates new permutation(s) 

called offspring on the basis o f  old permutation(s) called parent(s).

EVOL-1 algorithm, described in [4, 5] where also the ‘philosophy’ o f  the search 

process is widely presented, carries into effect the evolutionary search process organized like 

in the class o f  Steady State GAs [2 ], where in course of one iteration initially one crossover 

operator is randomly chosen and then two permutations-parents are selected from the 

population P and processed. We assume that the population set P is linearly ordered in 

accordance with the solution’s fitness by means o f objective function f(IT): the best 

population permutation (FIb«t = arg min { f(TI): n  e  P}) has number 1, ..., the worst one 

(Efwoni -  arg max { J7 e  P}) has number M = IP I . Besides, to simplify genetic search 

process and save the computation time, the parents are selected from the population P by 

means o f  random_uniform sampling mechanism and generated offspring are inserted between 

other population P permutations in accordance with its fitness f(n).

Let us notice that the permutation If, as a solution o f the problem, presents by itself 

the ordering information only. Thus we need to use genetic operators which permit the 

ordering processing. As a crossover operators we use three classical called PM X (partially 

matched crossover operator), OX (order crossover operator), CX (cycle crossover operator); 

(for details see, [2].) We use also three unary operators: two mutations (M l, M2) and 

simplified local optimization procedure LO which has the status o f  genetic operator used for 

local tuning o f  the best population permutation, i.e. permutation from items [1, pi] o f  the 

ordered set P. The mutation operators M l and M2, as an insurance policy against the loss o f 

genetic material diversity, are used for mutation o f the permutations from items [pi +1, M] o f 

set P only. These operators do not change the values o f the permutation but the order o f 

elements only in this way.
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O p era to r  M l:  Two elements o f the permutation (n( 1), rT(i-l), n (i), .... IT 01), ri(j), 

II(n)) are picked at random along the permutation, say n (i)  and i lQ , and swapped resulting 

in another permutation ( 1 1 ( 1 ) , r i(i-l), 1 1 0 , n ( j- l) , 1 1 0 , Il(n)).

O perator M2: Two elements o f the permutation (11(1), ..., Il(i-l), 110, Il(i+1), ..., Il(j-1), 

nO ), • ■•> n (n ))  are picked at random along the permutation, say Il(i) and TT0, and element 

n ( i)  skips over to j-position o f  the permutation as well as I l( i+ 1 ),..., 1101), 11© elements are 

shifted to ¡-position resulting in permutation (11(1), ..., ll( i- l) , l!(i+ l), ..., Il(j-1), 110 , Il(i),

.... n (n)).

Simplified local optimization operator LO searches for better permutation than I! =
( n ( i ) , .... n ( i - i ) ,  n ( i )  n ( j- i ) ,  n © , ..., n (n )) in its neighborhood s ( n )  = { n \ -  r r =  (n ( i) ,
.... n o - i ) ,  n o ) , .... n o - i ) ,  n ® , .... n © ) ) } only.

Algorithm: EVOL-2
To determine the approximate solution n approx do the following.
Step 1. Initialization.

Generate randomly M permutations I I  as well as compute objective function f(IT) 
for each solution. Set up the initial population P ordering the generated permutations 
by function f(Il) value so that the first permutation, permutation No. 1, in population 
P is the best one (i.e., Flu,, -  arg min ff(I7): T ie  P}), .... and the last permutation, 
permutation No.M, is the worst one (i.e., f lWOnt -  arg max {f(TT): l i e  P}). Set k:= 1, 
i:= 1, where k is the number o f train iteration and i is the number o f  the train.

Step 2. Crossover
Choose randomly one crossover operator from the set {PMX, OX, CX}, where 
selection probabilities o f the operators are: pmx, pox, pcx -  1 - Ppmx - pox  as well as 
select randomly, with uniform distribution, and copy two permutation- parents from 
the population P . Using chosen crossover operator generate two offspring n 1, I f2 of 
the parents and insert them between other population P permutations in accordance 
with function f(IlJ) value, (j = 1, 2). Remove two worst (last) permutations from the 
population P.

Step 3. M utation and local optimization
Sample randomly number a , a  6 [0, 1). If  a  < pwi then chose one permutation from 
the items [p + 1, M] o f the population P, modify it by the use o f mutation operator 
M l and insert between other population solutions in accordance with the value of 
fitness function f ( I l) .  If a  < pM2 then chose one permutation from the items [p + 1, 
M] o f  the population P, modify it by the use o f mutation operator M2 and insert 
between other population solutions in accordance with the value o f  fitness function

fin).
I f  a  < plo then chose one permutation from the items [I, p] o f  the population P, 
improve it by the use o f  local optimization operator LO and insert between other 
population permutations in accordance with the value o f function f(.).

Step 4.The end of train?
Set k:= k+1 and if k £ K then go to Step 2.
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Step 5. The end of evolution search?
Set i:= i +1 and if one o f termination criterion is not satisfied, i.e. i < I and 
computation time < T, then go to Step 6, otherwise ‘STOP”: the approximate solution 
riapprox = n bcs, = arg min {f(I"I): l i e  P}.

Step 6. Algorithm parameters modification
Determine new values o f  genetic operator selection probabilities:
Pmi:= gi (i), Pm2-= gz (i), P lo ~  g3 (i), p/- = Pi ( 1 + Pe/ /d; )/y for / e  {PMX\ OX, CX}, 
where gi (i), g2 (i), g3 (i) ( 0 i  gi (i), g2 (i), gj (i) ^  1) are the given functions o f  train 
numbers, P ( PS 1) is the algorithm parameter determining the rate change o f 
crossover operator selection probabilities, e; is the number o f train iteration where 
application o f  /-crossover operator gives better offspring then the better o f parents, d; 
is the number o f  train iteration o f  /-crossover operator application and y = p/ ( 1 
+ Pe; /d; ) is the normalization coefficient o f the crossover operator selection 
probabilities.

Let us notice that the population size M, population split number p, maximum numbers o f 

train iteration K and o f  train I as well as the maximum computation time T, initial genetic 

operator selection probabilities ppmx, pox, pcx, coefficient P are EVOL-1 algorithm 

parameters. It is assumed that functions g/ have form g/ = a; + b; i ( / = 1, 2, 3), thus the 

numbers ai, a2, a2, bi, b2, bi are also EVOL-1 parameters.

3. Flow line scheduling problem

One o f the approaches, called classical permutation flow shop, consists in 

considering the total flow shop as a complex single machine for which only the sequence in 

which the tasks are loaded into the first machine is scheduled. Let us take into consideration 

the following extension o f the classical permutation flow shop problem to the case o f flow 

line scheduling. There is a set J = {1,..., j, ...,n} o f production tasks (jobs, parts) and m-stages 

flow line where each o f  i-stage, i = 1,2, ..., m, has a set o f m,, mi > 1, parallel identical 

machines (see, Fig. 1). A task is associated with a sequence o f  at most m operations processed 

at successive stages, and all parts flow through the stages in the same order, where py denotes 

processing time at i-stage for task j . We want to find a schedule that minimizes the makespan 

Cmax =  max {Cj: j e  J} or the sum ECj = EjejCj, where Cj is the completion time o f task j . 

It is assumed that the system buffers have enough large capacity and in case py = 0 the task j 

skip the stage i o f production line. This kind of flow line scheduling problem appears in 

many CIM manufacturing processes. Exact and approximate algorithms as well as industry 

applications o f  the flow line scheduling are reviewed in [1], An interested improvement 

algorithm o f  tabu search type for makespan minimization is presented in [3], Below, we
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present some computational results o f EVOL-1 algorithm application for illustrative 

example o f flow line scheduling problem where we assume that f(n )  = Cmax or ECj.

In case we assume that the tasks permutation n  determines the tasks assignment 

order to the earliest free machines then the schedule and objective function values Cmax 

and LCj are calculated by the following SCHEDULE, o f  time complexity 0(n m), 

procedure.

P rocedu re  SCH EDU LE:

Input: tasks permutation n  = (11(1), f l(2 ) , ..., II(j), ..., H(n));

STE P 1. Set T(i, k):= 0 for i = 1 to m and k = 1 to mi, where T(i, k) is the up-to- 

date completion time of tasks assigned to machine k o f stage i .

STEP 2. For j =1 to n do:

determine the earliest free machine of 1-stage

k = arg min { T (l, v): v e  {1, 2 ,..., mi} } and set 

T (l, k):= T (l, k) + p,no> C (l, UQ) ):= T (l, k); 

for i = 2 to m do:

determine the earliest free machine o f i-stage 

k = arg min { max{T(i, v), C(i-1, n (j)} : v e  {1, 2 ,..., mi) } 

and set T(i, k):= max{T(i, k), C(i-1, nffl} + pma). c ('. n (j)):= T(i. k) 

as well as if  i = m then set Cnq).- C(m, n(j)), 

where C(i, j), C(m, j) are, respectively, the completion times o f task j on i- 

stage and on the last stage m.

STEP 3. Set Cmax = max {Cj: j 6 J} or ECj = Zjej Cj.

Naturally, the objective function values calculated by the procedure SCHEDULE 

essentially depends on the permutation IT Thus one can state the problem o f permutation 

search which minimizes the selected objective function.

The quality o f  makespan Cmax o f approximate solutions can be estimated by lower bound 

LB, i.e. Cmax £  LB, determined on the ground o f problem relaxation, calculated by the 

following expression:

LB = max { LB1, LB2 } 

where LB 1 is the processing time o f the longest task, i.e.
m

LB 1 = max { £  py: j e  J }
i=l
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and LB2 is the tasks processing time on the“bottle-neck stage:

i - l  n  m

LB2 = max { ( minjeJ pkj + £  pi/m; + minjEj £  pkj ): i e  {1, 2, .... m) }
k=l i= k=i  + l

i = 1
1 il
1 2 |

i = 2
m
r a

i = m

CD
CD

1 mi| m2 m m

(direction o f production tasks flow)

F ig.l. Schematic diagram o f production flow line 
R ys.l. Schemat przepływowej linii produkcyjnej

4. Case study

The case study deals with a small production flow line consisted o f  m = 5 stages and 

production program o f  n = 10 tasks. Table 1 presents the stage machine numbers mi, and 

Table 2 summarizes data concerning tasks, i.e. processing times p y .

Table 1

Machine numbers o f the flow line

stage i = 1 2 3 4 5

machine number mi = 1 2 2 3 2
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and LB2 is the tasks processing time on the bottle-neck stage:

i - 1  n  m

LB2 = max { ( minjeJ Y  pkj + Y  P i/mi + minj eJ 2  Pki )■'' 6 { 2> m ) )
k = l  j * l  k = i + l

i = 1 i = 2 i = m

CD CD CD
d ] CD 4 - » E H

r a m2 1 mm 1

[direction o f production tasks flow)

Fig. 1. Schematic diagram o f production flow line 
R ys.l. Schemat przepływowej linii produkcyjnej

4. Case study

The case study deals with a small production flow line consisted o f  m =  5 stages and 

production program o f n = 10 tasks. Table 1 presents the stage machine numbers mj, and 

Table 2 summarizes data concerning tasks, i.e. processing times p ij.

Table 1
Machine numbers o f the flow line

stage i = 1 2 3 4 5

machine number mj = 1 2 2 3 2
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Table 2
Processing times-of the task operations

j Pij P2j P3j P4j P5j

1 5 21 52 52 0

2 4 12 43 44 11

3 2 13 24 25 9

4 1 14 15 16 8

5 4 15 26 7 3

6 5 31 52 53 1

7 1 42 43 44 12

8 2 26 24 25 24

9 3 16 15 16 0

10 4 15 16 17 7

The lower bound o f  makespan Cmax for the investigated problem is equal LB =  max{142, 

180}= 180 and the best solution obtained by EVOL-1, after 1 = 1 0  trains, is equal 196

E3M = 200

□  m = 20

■ M = 50

□  M = 20

□ M  = 10

Fig.2. Graph o f the function Cmax = Cmax(i) for population size M = 10, 20, 50, 100, 200 
Rys.2. W ykres funkcji Cmax = Cmax(i) dla rozmiaru populacji M = 10, 20, 50, 100, 200
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Fig.3. Illustration o f  self-adaptation o f the o f crossover operator’s selection probabilities 
Rys.3. Ilustracja autoadaptacji prawdopodobieństw wyboru operatorów krzyżowania

(see Fig.2). Figure 2 shows the influence o f  population size M ( M =  10, 20, 50, 100, 200) on 

evolutionary process where others algorithm’s parameters are constant.

In Figure 3 we display the variability o f  the crossover operators selection probabilities,

i.e. the self-adaptation o f these evolutionary algorithm parameters, during the evolution 

process, where start probabilities o f crossover operators are: ppmx = Pox =  Pcx = 1 /3 . Let us 

notice that at first probability pox grows lager and then, after some train numbers is on the 

wane as well as the pcx value is on the wane from start to end.

5. Conclusion

The paper describes computer investigations o f  approximate algorithm o f  EA type 

specially adopted for the permutation optimization problems through its genetics operators. 

All genetic operators are problem-independent thus it can be used for solving all kind o f  NP- 

hard permutation problems on IBM PC compatible computers successfully. The adaptively 

changing o f  crossover selection probabilities, Step 6 o f  the algorithm, introduce learning on 

two levels into the algorithm, on the usual level o f  solutions search and on the level o f  EA 

algorithm parameters. This is promising way to overcome the difficulty o f  determining 

appropriate parameter settings o f EA for each application task anew.
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Abstract

In the field o f CIM production, scheduling is intended to allocate the manufactory 

resources to the production orders to be processed. Due to the time complexity, exponentially 

increasing with the problem size, o f the prevalent number o f  scheduling problems 

conventional optimization methods such as Branch & Bound can accurately solve usually 

very small scheduling problems. Approximate methods include priority rules, M onte Carlo 

methods and neighborhood search. The drawback o f these enumerative procedures is that 

each o f  the trial solution can only be examined as a whole in respect to their suitability. In 

case o f  scheduling problems the search space is so big that during the time period relevant to 

the practical application only a small part o f the search space can be examined. Algorithms 

which com bine elements o f the neighborhood search and M onte Carlo method are the genetic 

and evolutionary algorithm. The paper presents the evolutionary algorithm, which realizes the 

original evolutionary search process, for optimization o f the NP-hard permutational 

scheduling problems. The investigated EVOL-1 algorithm, adjusted for permutation 

problems, is a hybrid o f a modified genetic algorithm, simplified local optimization 

procedure, some ‘tabu mechanism’, as well as a simple self-adaptation algorithm parameters 

procedure. The computational results show, for the example o f  m-stages production flow line, 

that the proposed algorithm has a high potential as a optimization paradigm for the CIM 

production scheduling.


