
ZESZYTY NAUKOW E POLITECHNIKI ŚLĄSKIEJ
Seria: AUTOM ATYKA z. 125

1998
Nr kol. 1391

Konrad W ALA
Akademia Górniczo-Hutnicza, Kraków

EVOLUTIONARY ALGORITHM FOR THE CIM PRODUCTION SCHEDULING’

Summary. The paper presents the evolutionary algorithm, which realizes the original
evolutionary search process, for optimization o f the NP-hard permutational scheduling
problems. The investigated algorithm is a hybrid o f a modified genetic algorithm,
simplified local optimization procedure, some ‘tabu mechanism’, as well as a simple
self-adaptation algorithm parameters procedure. The computational results show, for
the example o f m-stages production flow line, that the proposed algorithm has a high
potential as a optimization paradigm for the CIM production scheduling.

ALGORYTM EW OLUCYJNY HARMONOGRAMÓW ANIA PROCESÓW
W YTW ARZANIA W SYSTEMACH KOMPUTEROWO ZINTEGROW ANYCH

Streszczenie. W pracy zaprezentowano oryginalny algorytm ewolucyjny
przeznaczony do optymalizacji NP-trudnych zagadnień permutacyjnych. Badany
algorytm jest hybrydą zmodyfikowanego algorytmu genetycznego, uproszczonej
procedury optymalizacji lokalnej, pewnego ‘mechanizmu tabu’ oraz prostej procedury
autoadaptacji niektórych parametrów algorytmu. Wyniki obliczeń komputerowych,
wykonane dla m-stadialnej linii przepływowej wskazują, że proponowany algorytm z
powodzeniem może być stosowany do optymalizacji harmonogramów wytwarzania w
systemach komputerowo zintegrowanych.

1. Introduction

Com puter Integrated Manufacturing (CIM) has been attracting many researchers for

the past 20 years where particularly the use o f AI techniques for problem solution search

have been actively studied. The aim o f the CIM is to make a computerized environment in

which design, decision support for production management, manufacturing and marketing are

integrated and this way to reduce the manufacturing costs and decrease the product design-to-

market tim e in discrete parts manufacturing. In the field o f CIM production, scheduling is

intended to allocate the manufactory resources to the production orders to be processed. Due

to the tim e complexity, exponentially increasing with the problem size, o f the prevalent

number o f scheduling problems conventional optimization methods such as Branch & Bound

* Research supported by Polish Committee for Research, grant 11.120.227 (AGH, Kraków)

250 K Wala

can accurately solve usually very small scheduling problems. Approximate methods include

priority rules, Monte Carlo methods and neighborhood search. The drawback o f these

enumerative procedures is that each o f the trial solution can only be examined as a whole in

respect to their suitability. In case o f scheduling problems the search space is so big that

during the time period relevant to the practical application only a small part o f the search

space can be examined. Algorithms which combine elements o f the neighborhood search and

M onte Carlo method are the genetic (GA) and evolutionary (EA) algorithm.

GA and EA algorithms, as one of the promising tools, have been applied for solution

o f the flow shop scheduling, job shop scheduling, packing, routing, etc. These algorithms are

powerful search techniques taking inspiration from genetics and natural selection [2], They

can effectively explore very large solutions spaces without being trapped by local optima,

where particularly the EAs are the main representative o f a class o f algorithms based on the

model o f natural evolution. The one requirements for applying G/EAs to the problem are:

solution representation o f the problem to be solved, a set o f pseudo-genetic operators called

briefly genetic operators and a evaluation function o f the problem solutions called fitness

function.

Numerous class o f scheduling problems, too the flow shop scheduling, can be

formalized as permutation problems where the solution has form o f the tasks set permutation.

Permutation problems are an important problem class in the combinatorial optimization

domain. Standard instances o f permutation problems, besides scheduling, include travelling

salesman problem, quadratic assignment problem, graph coloring, as well as variety o f design

problems. NP-hard permutation problems even with modest number o f tasks overwhelm the

capabilities o f algorithms that guarantee solutions optimum in reasonable amount o f time.

That is the reason why effective approximate algorithms producing good suboptimal solutions

proved important.

There is an agreement in the combinatorial optimization community that the binary

representation o f the permutation will not provide any advantage because binary

representation would require special repair algorithms, since a change o f a single bit may

result in a illegal solution o f the problem, i.e. a sequence which is not a permutation. Thus we

apply in investigated EA permutation n = (TI(1), n (2)...,n (n)) o f the tasks set J = {], 2,..., n}

as the natural representation o f the scheduling problem as well as objective function f(TI) as

the fitness function.

Investigated evolutionary algorithm EVOL-1, adjusted for permutation problems, is a

hybrid o f an modified genetic algorithm, simplified local optimization procedure, some ‘tabu

A lgorytm ew o lu cv in v harm onoaram owania procesów 251

m echanism ’ as well as simple self-adaptation algorithm parameters procedure. The

computation results have shown that the proposed evolutionary algorithm has a high potential

for the CIM production scheduling.

2. The evolutionary search process

The knowledge, accumulated in the search process for the problem solution, is

encoded as a set P o f permutations called population, where M = | P | is the size o f the

population P. The evolution process o f the population P, modelled by EA, realizes the search

process by use o f genetic operators. Every genetic operator generates new permutation(s)

called offspring on the basis o f old permutation(s) called parent(s).

EVOL-1 algorithm, described in [4, 5] where also the ‘philosophy’ o f the search

process is widely presented, carries into effect the evolutionary search process organized like

in the class o f Steady State GAs [2], where in course of one iteration initially one crossover

operator is randomly chosen and then two permutations-parents are selected from the

population P and processed. We assume that the population set P is linearly ordered in

accordance with the solution’s fitness by means o f objective function f(IT): the best

population permutation (FIb«t = arg min { f(TI): n e P}) has number 1, ..., the worst one

(Efwoni - arg max { J7 e P}) has number M = IP I . Besides, to simplify genetic search

process and save the computation time, the parents are selected from the population P by

means o f random_uniform sampling mechanism and generated offspring are inserted between

other population P permutations in accordance with its fitness f(n).

Let us notice that the permutation If, as a solution o f the problem, presents by itself

the ordering information only. Thus we need to use genetic operators which permit the

ordering processing. As a crossover operators we use three classical called PM X (partially

matched crossover operator), OX (order crossover operator), CX (cycle crossover operator);

(for details see, [2].) We use also three unary operators: two mutations (M l, M2) and

simplified local optimization procedure LO which has the status o f genetic operator used for

local tuning o f the best population permutation, i.e. permutation from items [1, pi] o f the

ordered set P. The mutation operators M l and M2, as an insurance policy against the loss o f

genetic material diversity, are used for mutation o f the permutations from items [pi +1, M] o f

set P only. These operators do not change the values o f the permutation but the order o f

elements only in this way.

252 K .W ala

O p era to r M l: Two elements o f the permutation (n(1), rT(i-l), n (i), IT 01), ri(j),

II(n)) are picked at random along the permutation, say n (i) and i lQ , and swapped resulting

in another permutation (1 1 (1) , r i(i-l), 1 1 0 , n (j- l) , 1 1 0 , Il(n)).

O perator M2: Two elements o f the permutation (11(1), ..., Il(i-l), 110, Il(i+1), ..., Il(j-1),

nO), • ■•> n (n)) are picked at random along the permutation, say Il(i) and TT0, and element

n (i) skips over to j-position o f the permutation as well as I l(i+ 1),..., 1101), 11© elements are

shifted to ¡-position resulting in permutation (11(1), ..., ll(i- l) , l!(i+ l), ..., Il(j-1), 110 , Il(i),

.... n (n)).

Simplified local optimization operator LO searches for better permutation than I! =
(n (i) , n (i - i) , n (i) n (j- i) , n © , ..., n (n)) in its neighborhood s (n) = { n \ - r r = (n (i) ,
.... n o - i) , n o) , n o - i) , n ® , n ©)) } only.

Algorithm: EVOL-2
To determine the approximate solution n approx do the following.
Step 1. Initialization.

Generate randomly M permutations I I as well as compute objective function f(IT)
for each solution. Set up the initial population P ordering the generated permutations
by function f(Il) value so that the first permutation, permutation No. 1, in population
P is the best one (i.e., Flu,, - arg min ff(I7): T ie P}), and the last permutation,
permutation No.M, is the worst one (i.e., f lWOnt - arg max {f(TT): l i e P}). Set k:= 1,
i:= 1, where k is the number o f train iteration and i is the number o f the train.

Step 2. Crossover
Choose randomly one crossover operator from the set {PMX, OX, CX}, where
selection probabilities o f the operators are: pmx, pox, pcx - 1 - Ppmx - pox as well as
select randomly, with uniform distribution, and copy two permutation- parents from
the population P . Using chosen crossover operator generate two offspring n 1, I f2 of
the parents and insert them between other population P permutations in accordance
with function f(IlJ) value, (j = 1, 2). Remove two worst (last) permutations from the
population P.

Step 3. M utation and local optimization
Sample randomly number a , a 6 [0, 1). If a < pwi then chose one permutation from
the items [p + 1, M] o f the population P, modify it by the use o f mutation operator
M l and insert between other population solutions in accordance with the value of
fitness function f (I l) . If a < pM2 then chose one permutation from the items [p + 1,
M] o f the population P, modify it by the use o f mutation operator M2 and insert
between other population solutions in accordance with the value o f fitness function

fin).
I f a < plo then chose one permutation from the items [I, p] o f the population P,
improve it by the use o f local optimization operator LO and insert between other
population permutations in accordance with the value o f function f(.).

Step 4.The end of train?
Set k:= k+1 and if k £ K then go to Step 2.

A lgorytm ew olu cyjn y harm onoeram owania procesów. 253

Step 5. The end of evolution search?
Set i:= i +1 and if one o f termination criterion is not satisfied, i.e. i < I and
computation time < T, then go to Step 6, otherwise ‘STOP”: the approximate solution
riapprox = n bcs, = arg min {f(I"I): l i e P}.

Step 6. Algorithm parameters modification
Determine new values o f genetic operator selection probabilities:
Pmi:= gi (i), Pm2-= gz (i), P lo ~ g3 (i), p/- = Pi (1 + Pe/ /d;)/y for / e {PMX\ OX, CX},
where gi (i), g2 (i), g3 (i) (0 i gi (i), g2 (i), gj (i) ^ 1) are the given functions o f train
numbers, P (PS 1) is the algorithm parameter determining the rate change o f
crossover operator selection probabilities, e; is the number o f train iteration where
application o f /-crossover operator gives better offspring then the better o f parents, d;
is the number o f train iteration o f /-crossover operator application and y = p/ (1
+ Pe; /d;) is the normalization coefficient o f the crossover operator selection
probabilities.

Let us notice that the population size M, population split number p, maximum numbers o f

train iteration K and o f train I as well as the maximum computation time T, initial genetic

operator selection probabilities ppmx, pox, pcx, coefficient P are EVOL-1 algorithm

parameters. It is assumed that functions g/ have form g/ = a; + b; i (/ = 1, 2, 3), thus the

numbers ai, a2, a2, bi, b2, bi are also EVOL-1 parameters.

3. Flow line scheduling problem

One o f the approaches, called classical permutation flow shop, consists in

considering the total flow shop as a complex single machine for which only the sequence in

which the tasks are loaded into the first machine is scheduled. Let us take into consideration

the following extension o f the classical permutation flow shop problem to the case o f flow

line scheduling. There is a set J = {1,..., j, ...,n} o f production tasks (jobs, parts) and m-stages

flow line where each o f i-stage, i = 1,2, ..., m, has a set o f m,, mi > 1, parallel identical

machines (see, Fig. 1). A task is associated with a sequence o f at most m operations processed

at successive stages, and all parts flow through the stages in the same order, where py denotes

processing time at i-stage for task j . We want to find a schedule that minimizes the makespan

Cmax = max {Cj: j e J} or the sum ECj = EjejCj, where Cj is the completion time o f task j .

It is assumed that the system buffers have enough large capacity and in case py = 0 the task j

skip the stage i o f production line. This kind of flow line scheduling problem appears in

many CIM manufacturing processes. Exact and approximate algorithms as well as industry

applications o f the flow line scheduling are reviewed in [1], An interested improvement

algorithm o f tabu search type for makespan minimization is presented in [3], Below, we

K.W ala

present some computational results o f EVOL-1 algorithm application for illustrative

example o f flow line scheduling problem where we assume that f(n) = Cmax or ECj.

In case we assume that the tasks permutation n determines the tasks assignment

order to the earliest free machines then the schedule and objective function values Cmax

and LCj are calculated by the following SCHEDULE, o f time complexity 0(n m),

procedure.

P rocedu re SCH EDU LE:

Input: tasks permutation n = (11(1), f l(2) , ..., II(j), ..., H(n));

STE P 1. Set T(i, k):= 0 for i = 1 to m and k = 1 to mi, where T(i, k) is the up-to-

date completion time of tasks assigned to machine k o f stage i .

STEP 2. For j =1 to n do:

determine the earliest free machine of 1-stage

k = arg min { T (l, v): v e {1, 2 ,..., mi} } and set

T (l, k):= T (l, k) + p,no> C (l, UQ)):= T (l, k);

for i = 2 to m do:

determine the earliest free machine o f i-stage

k = arg min { max{T(i, v), C(i-1, n (j)} : v e {1, 2 ,..., mi) }

and set T(i, k):= max{T(i, k), C(i-1, nffl} + pma). c ('. n (j)):= T(i. k)

as well as if i = m then set Cnq).- C(m, n(j)),

where C(i, j), C(m, j) are, respectively, the completion times o f task j on i-

stage and on the last stage m.

STEP 3. Set Cmax = max {Cj: j 6 J} or ECj = Zjej Cj.

Naturally, the objective function values calculated by the procedure SCHEDULE

essentially depends on the permutation IT Thus one can state the problem o f permutation

search which minimizes the selected objective function.

The quality o f makespan Cmax o f approximate solutions can be estimated by lower bound

LB, i.e. Cmax £ LB, determined on the ground o f problem relaxation, calculated by the

following expression:

LB = max { LB1, LB2 }

where LB 1 is the processing time o f the longest task, i.e.
m

LB 1 = max { £ py: j e J }
i=l

A leorvtm ew olu cyjn y harm onogram owania procesów. 255

and LB2 is the tasks processing time on the“bottle-neck stage:

i - l n m

LB2 = max { (minjeJ pkj + £ pi/m; + minjEj £ pkj): i e {1, 2, m) }
k=l i= k=i + l

i = 1
1 il
1 2 |

i = 2
m
r a

i = m

CD
CD

1 mi| m2 m m

(direction o f production tasks flow)

F ig.l. Schematic diagram o f production flow line
R ys.l. Schemat przepływowej linii produkcyjnej

4. Case study

The case study deals with a small production flow line consisted o f m = 5 stages and

production program o f n = 10 tasks. Table 1 presents the stage machine numbers mi, and

Table 2 summarizes data concerning tasks, i.e. processing times p y .

Table 1

Machine numbers o f the flow line

stage i = 1 2 3 4 5

machine number mi = 1 2 2 3 2

256 K .W ala

and LB2 is the tasks processing time on the bottle-neck stage:

i - 1 n m

LB2 = max { (minjeJ Y pkj + Y P i/mi + minj eJ 2 Pki)■'' 6 { 2> m))
k = l j * l k = i + l

i = 1 i = 2 i = m

CD CD CD
d] CD 4 - » E H

r a m2 1 mm 1

[direction o f production tasks flow)

Fig. 1. Schematic diagram o f production flow line
R ys.l. Schemat przepływowej linii produkcyjnej

4. Case study

The case study deals with a small production flow line consisted o f m = 5 stages and

production program o f n = 10 tasks. Table 1 presents the stage machine numbers mj, and

Table 2 summarizes data concerning tasks, i.e. processing times p ij.

Table 1
Machine numbers o f the flow line

stage i = 1 2 3 4 5

machine number mj = 1 2 2 3 2

A lgorytm ew o lu cy jn y harm onogram owania procesów ... -25.7..

Table 2
Processing times-of the task operations

j Pij P2j P3j P4j P5j

1 5 21 52 52 0

2 4 12 43 44 11

3 2 13 24 25 9

4 1 14 15 16 8

5 4 15 26 7 3

6 5 31 52 53 1

7 1 42 43 44 12

8 2 26 24 25 24

9 3 16 15 16 0

10 4 15 16 17 7

The lower bound o f makespan Cmax for the investigated problem is equal LB = max{142,

180}= 180 and the best solution obtained by EVOL-1, after 1 = 1 0 trains, is equal 196

E3M = 200

□ m = 20

■ M = 50

□ M = 20

□ M = 10

Fig.2. Graph o f the function Cmax = Cmax(i) for population size M = 10, 20, 50, 100, 200
Rys.2. W ykres funkcji Cmax = Cmax(i) dla rozmiaru populacji M = 10, 20, 50, 100, 200

258 K. W ala

P r o b a b i l i t i e s o f c r o s s o v e r o p e r a t o r s
100% r i

| □ cx

0»

01

0 1

0 1

1 " ox
01

1 ¡2 P M X
0 4

01

0 J

ie 21 26 31 36 41 46 61 56 61 66 71 76 11 66 91 96 ,

T r a i n n u m b e r

Probabilities of crossover operators

z

£S

 PMX
— OX
— CX

< It 71 M H M 4« 41 Si H 11 H >• 1« l i N I I I

Train number

Fig.3. Illustration o f self-adaptation o f the o f crossover operator’s selection probabilities
Rys.3. Ilustracja autoadaptacji prawdopodobieństw wyboru operatorów krzyżowania

(see Fig.2). Figure 2 shows the influence o f population size M (M = 10, 20, 50, 100, 200) on

evolutionary process where others algorithm’s parameters are constant.

In Figure 3 we display the variability o f the crossover operators selection probabilities,

i.e. the self-adaptation o f these evolutionary algorithm parameters, during the evolution

process, where start probabilities o f crossover operators are: ppmx = Pox = Pcx = 1 /3 . Let us

notice that at first probability pox grows lager and then, after some train numbers is on the

wane as well as the pcx value is on the wane from start to end.

5. Conclusion

The paper describes computer investigations o f approximate algorithm o f EA type

specially adopted for the permutation optimization problems through its genetics operators.

All genetic operators are problem-independent thus it can be used for solving all kind o f NP-

hard permutation problems on IBM PC compatible computers successfully. The adaptively

changing o f crossover selection probabilities, Step 6 o f the algorithm, introduce learning on

two levels into the algorithm, on the usual level o f solutions search and on the level o f EA

algorithm parameters. This is promising way to overcome the difficulty o f determining

appropriate parameter settings o f EA for each application task anew.

BIBLIOGRAPHY

1. Hunsucker J.L., Shah J.R.: Comparative performance analysis o f priority rules in a
constrain flow shop with multiple processors environment, European J. Oper. Res. 72,
1994, 102-114.

2. M ichalewicz Z.: Genetic algorithms + data structures + evolution programs, Berlin,
Springer-Verlag 1992.

A lgorytm ew o lu cy jn y harm onoeram ow ania procesów. 259

3. Smutnicki Cz.: Scheduling o f flexible flow lines and work centers, Zeszyty Naukowe
Politechniki Śląskiej, Automatyka 118, 1996, 175-185.

4. W ala K., Chmiel W.: Evolution algorithm for quadratic assignment problem, Krakow,
University o f M ining and Metallurgy Press, Automatics, 1997, 1, 1, 409-414.

5. W ala K.: Evolutionary algorithm for optimization of the discrete problems (Polish), Prace z
Automatyki, W ydawnictwa AGH, Krakow 1997, 69-82.

Recenzent: Dr hab.inż. Jan Kałuski, prof.Pol.Śl.

Abstract

In the field o f CIM production, scheduling is intended to allocate the manufactory

resources to the production orders to be processed. Due to the time complexity, exponentially

increasing with the problem size, o f the prevalent number o f scheduling problems

conventional optimization methods such as Branch & Bound can accurately solve usually

very small scheduling problems. Approximate methods include priority rules, M onte Carlo

methods and neighborhood search. The drawback o f these enumerative procedures is that

each o f the trial solution can only be examined as a whole in respect to their suitability. In

case o f scheduling problems the search space is so big that during the time period relevant to

the practical application only a small part o f the search space can be examined. Algorithms

which com bine elements o f the neighborhood search and M onte Carlo method are the genetic

and evolutionary algorithm. The paper presents the evolutionary algorithm, which realizes the

original evolutionary search process, for optimization o f the NP-hard permutational

scheduling problems. The investigated EVOL-1 algorithm, adjusted for permutation

problems, is a hybrid o f a modified genetic algorithm, simplified local optimization

procedure, some ‘tabu mechanism’, as well as a simple self-adaptation algorithm parameters

procedure. The computational results show, for the example o f m-stages production flow line,

that the proposed algorithm has a high potential as a optimization paradigm for the CIM

production scheduling.

