Nr kol. 1395

Józef PARCHAŃSKI Dwayne DAVID Politechnika Śląska

DOŚWIADCZALNA WERYFIKACJA WYNIKÓW SYMULACJI NAPRĘŻEŃ W OGNIWIE ŁAŃCUCHA TYPU F-100

Streszczenie. Na czterech powierzchniach dwustronnie sfrezowanego ogniwa typu F-100 naklejono cztery pary tensometrów rezystancyjnych, połączonych w cztery dzielniki napięcia zasilane napięciem stałym. Za pomocą maszyny wytrzymałościowej wytworzono siłę F i zmierzono wartości naprężenia σ na czterech powierzchniach ogniwa. Porównano wyniki pomiarów z wynikami symulacji opisanych w artykule [3].

EXPERIMENTAL VERIFICATION OF THE RESULTS OF STRESS SIMULATIONS CONDUCTED ON AN F-100 CHAIN LINK

Summary. Four pairs of resistance stress gauges were bonded onto four milled surfaces of an F-100 chain link. The stress gauges were connected up to form four voltage dividers, which were then powered by direct current. A pulling machine was then used to create a force F and stress values σ on the four surfaces of the chain link were measured. The results of these measurements were compared with those of the simulation described in detail in paper [3].

1. WSTĘP

W artykułach [1], [2] przedstawiono wyniki obliczeń metodą elementów skończonych (za pomocą programu PRO-MES4.4) wartości naprężeń rozciągających σ_x , σ_y , σ_z w osiach X, Y i Z oraz naprężenia redukowanego wg hipotezy Hubera w cyfrowym modelu oryginalnego ogniwa łańcucha typu F-100. Łańcuch pociągowy przenośnika samochodów jest wykonany z kilku tysięcy ogniw typu F-100. W celu doświadczalnej weryfikacji wyników badań symulacyjnych zaprojektowano i wykonano prototyp przetwornika naprężenia na bazie ogniwa F-100. W tym celu sfrezowano wewnętrzne i zewnętrzne warstwy materiału ogniwa o grubości około 0,65 mm na prostych odcinkach ogniwa wewnętrznego (rys. 1a). Po wyszlifowaniu powierzchni sfrezowanych warstw naklejono na nie tensometry pomiarowe T_p i kompensacyjne T_k (rys. 1b).

Rys. 1. Szkic prototypu przetwornika naprężenia: a) ogniwo typu F-100 dwustronnie sfrezowane, b) miejsca naklejenia tensometrów T_n i T_k. F — siła działająca na sworznie ogniwa

Tpu

Tky

Fig.1. A drawing of the stress transducer prototype: a) F-100 chain link milled on two sides,
b) the location of the stress gauges T_p and T_k. F — the force acting on the bolt of the chain link

Poszczególne pary tensometrów T_p i T_k włączono w oddzielne rezystancyjne dzielniki napięcia i zasilano napięciem stałym. Napięciowe sygnały z dzielników, poprzez układy elektroniczne UE, mierzono woltomierzami cyfrowymi VC (rys.2).

Ponieważ dwustronnie sfrezowane ogniwo F-100, zastosowane w prototypie przetwornika naprężenia, różni się od oryginalnego ogniwa (niefrezowanego), nie można porównywać wyników pomiarów ogniwa dwustronnie sfrezowanego (prototyp przetwornika naprężenia) z wynikami badań symulacyjnych modelu ogniwa oryginalnego, przedstawionymi w artykułach [1], [2].

- Rys.2. Idea układu pomiarowego do wyznaczania czułości, liniowości i powtarzalności wyników pomiarów poszczególnych przetworników tensometrycznych nr 1, nr 2, nr 3 i nr 4 oraz do pomiaru naprężenia w poprzecznym przekroju ogniwa typu F-100; WO wewnętrzne ogniwo F-100, F siła rozciągająca ogniwo, ZSNS zasilacz stabilizowany napięcia stałego ± U, UE1÷UE4 układy elektroniczne, VC1÷VC4, VC1+2, VC3+4 woltomierze cyfrowe
- Fig.2. The circuit used to determine the sensitivity, linearity and repeatability of the results of the various measurements conducted using the no. 1 4 stress gauge transducers as well as to measure the stress in the cross section of the F-100 chain link. WO the internal chain link, F longitudinal force applied to the chain link, ZSNS stabilised direct current supply unit (\pm U_z), UE1+UE4 electronic units, VC1+VC4, VC1+2, VC3+4 digital voltmeters

Aby bezpośrednio porównać wyniki pomiarów laboratoryjnych z wynikami badań symulacyjnych, opracowano model cyfrowy dwustronnie sfrezowanego ogniwa F-100 i metodą elementów skończonych, za pomocą programu PRO-MES4.4 (analogicznie jak w artykułach [1], [2]) obliczono naprężenie rozciągające i przemieszczenia w wybranych miejscach modelu ogniwa zmodyfikowanego. Wyniki badań symulacyjnych wraz z odpowiednimi wykresami przedstawiono w artykule [3].

2. POMIARY

Opracowano i wykonano elektroniczny układ pomiarowy do zasilania poszczególnych par tensometrów typu RL 120/6 o danych $R_t = 121.6 \Omega$, k = 2.15, taką samą wartością napięcia stałego U = 4,98 ± 0,01 mV. Opracowano i wykonano wzmacniacze pomiarowe o wzmocnieniu napięciowym $K_u = 1000 \pm 1$ do wzmacniania napięć pomiarowych na wyjściach poszczególnych dzielników napięcia (rys. 2). Z tego wynika, że czułość S układu do pomiaru naprężenia σ_1 , σ_2 , σ_3 i σ_4 za pomocą poszczególnych par tensometrów $T_{p1} - T_{k1}$, $T_{p2} - T_{k2}$, $T_{n3} - T_{k3}$ i $T_{n4} - T_{k4}$ ma jednakową wartość

$$S_1 = U_1 / \sigma_1 = S_2 = U_2 / \sigma_2 = S_3 = U_3 / \sigma_3 = S_4 = U_4 / \sigma_4 = S_4$$

Przed laboratoryjnymi pomiarami naprężenia wykonany przetwornik naprężenia, zbudowany na bazie dwustronnie sfrezowanego ogniwa typu F-100, trzy razy poddano rozciąganiu siłą o wartości od zera do 22 kN, tzw. trenowaniu. Następnie przetwornik rozciągano siłą F o dokładnie znanej wartości. Siłę F wytworzono za pomocą maszyny wytrzymałościowej typu ZD-10 produkcji niemieckiej. Równocześnie mierzono cztery wartości napięcia U wprost proporcjonalne do naprężenia σ (odkształcenia ϵ) na powierzchniach czterech prostych odcinków w środkowej części sfrezowanych warstw ogniwa.

Napięcie na wyjściu pomiarowym każdego mostka tensometrycznego jest wprost proporcjonalne do zmiany długości (odkształcenia jednostkowego ϵ) tensometru pomiarowego T_p . Ponieważ badania były przeprowadzone w zakresie sprężystości materiału (obowiązywania prawa Hooke'a), więc naprężenie

$$\sigma = E \epsilon$$
,

przy czym E jest modułem Younga na rozciąganie materiału. Ogniwa F-100 zostały wykonane ze stali 36HMN, dla której $E = 206.10^9$ Pa.

Wyniki pomiarów napięcia U_i i wartości bezwzględnych błędów nieliniowości ΔU_i obliczone metodą najmniejszej sumy kwadratów podano w tab. 1. Wykresy względnych błędów nieliniowości $\delta U_i = \Delta U_i / U_{1,2(18)}$ przedstawiono na rys.3a, przy czym $U_{1,2(18)}$ oznacza średnią wartość napięcia U_i przy sile F = 18 kN, I = 1, 2, 3, 4. Wartość naprężenia rozciągającego σ_x istniejącego w poprzecznych przekrojach na prostych odcinkach połówek ogniwa otrzymane z pomiarów przedstawiono na rys.3b, a otrzymane z obliczeń komputerowych przedstawiono na rys.3c.

Przeprowadzone pomiary laboratoryjne wykazały dobrą powtarzalność wyników (odchylenie średniokwadratowe z 5 pomiarów około 0,5% wartości średniej), zadowalającą czułość układu (około 17 mV / MPa) i niezauważalny wpływ zmian temperatury otoczenia na wyniki pomiarów w zakresie od 10°C do 30°C.

Lp.	F	U ₁	ΔU ₁	U ₂	ΔU_2	U ₃	ΔU ₃	U ₄	ΔU_4	
	kN	mV								
1	0	0	0	0	0	0	0	0	0	
2	1	108	2,29	114	1,35	34	-1,21	32	-1,72	
3	2	214	2,59	227	1,70	69	-1,42	64	-3,45	
4	4	426	3,18	453	2,39	139	-1,83	129	-5,90	
5	6	638	3,77	680	4,09	208	-3,25	194	-8,35	
6	8	850	4,36	905.	3,78	276	-3,66	260	-9,80	
7	10	1046	-11,06	1130	3,48	348	-4,08	328	-9,25	
8	12	1270	1,53	1354	2,18	419	-3,49	398	-6,70	
9	14	1481	1,12	1578	0,87	492	-0,91	472	-0,15	
10	16	1692	0,71	1800	-2,43	566	2,68	546	6,40	
11	18	1902	-0,70	2022	-5,74	640	6,26	620	12,95	

Wyniki pomiarów laboratoryjnych

Różnice między wartościami napięcia U_1 a U_2 oraz U_3 a U_4 są spowodowane nieco różnymi polami powierzchni przekroju poprzecznego prostych dwustronnie sfrezowanych odcinków poszczególnych połówek ogniwa, z którego wykonano prototyp przetwornika naprężenia. Stwierdzono, że wymiary ogniw oryginalnych różnią się między sobą o wartość 0,2 – 0,6 mm. Grubość sfrezowanych warstw materiału na obydwu połówkach ogniwa też różniła się o około 0,1 mm. Rozciągająca siła osiowa F nie działała idealnie w osi ogniwa. To spowodowało, że każda z połówek ogniwa inaczej odkształcała się podczas badań.

W badaniach symulacyjnych za pomocą programu PRO-MES4.4 analizowano model symetryczny (o jednakowych wymiarach), czyli o jednakowych poprzecznych przekrojach każdej z połówek cyfrowego modelu ogniwa. Na podstawie średniej wartości napięcia

$$U_{av} = \frac{U_1 + U_2 + U_3 + U_4}{4}$$

 $\sigma_{ev} = \frac{F}{4}$,

i średniej wartości naprężenia

w środkowej części dwustronnie sfrezowanych warstw ogniwa obliczono czułość

$$S = \frac{U_{av}}{\sigma_{av}}$$

Tabela 1

- Rys.3. Wartości względnych błędów nieliniowości δU₁, δU₂, δU₃, δU₄ w funkcji siły F (a). Wartości naprężenia rozciągającego w poprzecznym przekroju ogniwa otrzymane z pomiarów (b) oraz otrzymane z obliczeń symulacyjnych (c)
- Fig.3. Values of the relative non-linearity error δU_1 , δU_2 , δU_3 , δU_4 as a function of the force F (a). Values of the longitudinal stress in the cross section of the chain link, obtained from measurements (b) and computer simulations (c)

Zmierzony przekrój poprzeczny A ogniwa typu F-100 dwustronnie sfrezowanego wynosi 240 mm² w środkowej części prostych odcinków ogniwa. Do obliczenia naprężenia

$$\sigma_i = \frac{U_i}{S},$$

gdzie i = 1, 2, 3, 4

na powierzchniach dwustronnie strezowanych warstw na prostych odcinkach ogniwa typu F-100, przyjęto średnią czułość zmierzoną przy sile F = 6, 12 i 18 kN, czyli

$$S = S_{ev} = \frac{1}{3} (17,20 + 17,21 + 17,28) = 17,23 \frac{mV}{MPa}$$

Wybrane wartości siły osiowej F, średnie naprężenie rozciągające σ_{xav} , czułość S wykonanego przetwornika naprężenia i naprężenie rozciągające σ_x w kierunku osi X podano w tabeli 2.

Tabela 2

In	F	σαν	$U_1 + U_2 + U_3 + U_4$	S	σ _{x1}	σ_{x2}	σ _{x3}	σ _{x4}	σ_{x1}/σ_{x3}	σ_{x2}/σ_{x4}
Lp.	kN	MPa	mV	mV/MPa	MPa					
1	6	25,0	1720	17,20	37,0	39,4	12,1	11,3	3,06	3.50
2	12	50,0	3441	17,21	73,0	78,5	24,3	23,1	3,00	3,40
3	18	75,0	5185	17,28	110,2	117,3	37.1	36.0	3,00	3,26

Wybrane wartości siły, czułości i naprężenia

Z tabeli 2 wynika, że stosunek naprężenia σ_{x1} na wewnętrznej powierzchni do naprężenia σ_{x3} na zewnętrznej powierzchni jednej połówki ogniwa dwustronnie sfrezowanego wynosi 3,0 ÷ 3,06, natomiast w drugiej połóce ogniwa stosunek σ_{x2} na wewnętrznej powierzchni do naprężenia σ_{x4} na zewnętrznej powierzchni wynosi 3,26 ÷ 3,50. Ta różnica pomiędzy wartościami naprężenia w połówkach ogniwa jest spowodowana różnymi przekrojami poprzecznymi połówek ogniwa. Połówki ogniwa o różnych przekrojach odkształcają się inaczej, a to powoduje różne wartości naprężenia i różne rozkłady naprężenia w poszczególnych przekrojach ogniwa (rys. 3b). Dla porównania wyników pomiarów z wynikami symulacji wartości naprężenia wyznaczone metodą symulacyjną, a opisane w artykule [3], przedstawiono na rys.3c.

3. WNIOSKI

Porównanie wyników pomiarów laboratoryjnych (tab. 1 i 2 oraz rys.3b) z wynikami badań symulacyjnych przeprowadzonych za pomocą programu PRO-MES4.4 (rys.3c) wykazuje, iż poprawnie opracowano cyfrowy model ogniwa dwustronnie sfrezowanego, przyjęto poprawne wymiary modelu i poprawnie przeprowadzono badania symulacyjne oraz pomiary laboratoryjne. Z tabeli 1 i 2 oraz rys. 3b wynika, że przy osiowo przyłożonej sile rozciągającej F = 18 kN naprężenia na wewnętrznych powierzchniach ogniwa wynoszą $\sigma_{x1} = 110,2$ MPa, $\sigma_{x2} = 117,3$ MPa, a naprężenia na zewnętrznych powierzchniach ogniwa wynoszą $\sigma_{x3} = 37,1$ MPa, $\sigma_{x4} = 36,0$ MPa. Stosunek naprężenia $\sigma_{x1} / \sigma_{x3} = 2,97$ w jednej połówce ogniwa jest mniejszy niż stosunek $\sigma_{x2} / \sigma_{x4} = 3,26$ w drugiej połówce ogniwa. Stosunek wartości zmierzonego naprężenia rozciągającego $\sigma_{x1} + \sigma_{x2}$ na wewnętrznych powierzchniach ogniwa do naprężenia rozciągającego $\sigma_{x3} + \sigma_{x4}$ na zewnętrznych powierzchniach ogniwa wynosi

$$\frac{\sigma_{x1} + \sigma_{x2}}{\sigma_{x4} + \sigma_{x4}} = \frac{110.2 + 117.3}{37.1 + 36.0} = 3.11$$

i jest prawie równy stosunkowi obliczonego naprężenia $\sigma_{x1obl} = 115$ MPa na wewnętrznej powierzchni pierwszej warstwy (wg [3]) do naprężenia $\sigma_{x6obl} = 36,8$ MPa na zewnętrznej powierzchni szóstej warstwy wynoszącemu

$$\frac{\sigma_{x1obl.}}{\sigma_{xfobl}} = \frac{115}{36,8} = 3.13.$$

Wartości naprężenia σ_{x1obl} wyznaczono na podstawie rys.5a, a naprężenia σ_{x6obl} — na podstawie rys.9a artykułu [3], czyli wyznaczono je metodą symulacyjną dla siły F = 18 kN. Bezwzględna wartość naprężenia σ_{x1obl} = 115 MPa wyznaczona metodą symulacyjną mieści się w zakresie zmierzonych wartości σ_{x1} = 110,2 MPa i σ_{x2} = 117,3 MPa. Wartość σ_{x6obl} = 36,8 MPa wyznaczona metodą symulacyjną również mieści się w zakresie σ_{x3} = 37,1 MPa i σ_{x4} = 36,0 MPa zmierzonych podczas badań prototypu przetwornika naprężenia dwustronnie sfrezowanego.

Tak dobra zgodność badań symulacyjnych z wynikami pomiarów prototypu przetwornika naprężenia zachęca autorów do prowadzenia dalszych prac zmierzających do opracowania pomiarowego przetwornika naprężenia zbudowanego na bazie ogniwa typu F-100 sfrezowanego jednostronnie (tylko wewnętrzne warstwy ogniwa).

LITERATURA

- David D., Parchański J.: Wyznaczanie naprężenia rozciągającego wewnętrznego ogniwa łańcucha pociągowego typu F-100. ZN Pol. Śl., s. Elektryka, z. 158, Gliwice 1997.
- David D., Parchański J.: Wyznaczanie naprężenia ścinającego i zredukowanego oraz przemieszczenia określonych punktów wewnętrznego ogniwa łańcucha pociągowego typu F-100. ZN Pol. Śl., s. Elektryka, z. 158, Gliwice 1997.
- David D., Parchański J.: Wyznaczanie naprężenia rozciągającego i przemieszczenia dwustronnie sfrezowanego wewnętrznego ogniwa typu F-100. ZN Pol. Śl., s. Elektryka, z. 158, Gliwice 1997.

Recenzent: Prof. dr hab. inż. Stefan Kubisa

Wpłynęło do Redakcji dnia 10 kwietnia 1998 r.

Abstract

The aim of this paper is to verify experimentally the results of stress simulations conducted on an F-100 chain link, which forms part of a conveyor drive system. To do so, an F-100 internal chain link was milled on its inner and outer surfaces (Fig.1a), after which stress measuring and compensation gauges T_p and T_k were bonded to these surfaces, respectively. The various pairs of stress gauges were powered by direct current of corresponding voltage \pm Uz. The output signal from the stress gauge pairs was measured using digital voltmeters VC after being processed by electronic units UE (Fig.2). The results of these voltage measurements, U_1 , U_2 , U_3 and U_4 , proportional to the tensile stress σ_{x1} , σ_{x2} , σ_{x3} and σ_{x4} occurring on the milled surfaces of the chain link, are listed in Table 1 and displayed in Fig.3b. The measured tensile stress values ($\sigma_{x1} + \sigma_{x4}$) are listed in Table 2, while the deviation from linearity is displayed in Fig.3a. Fig.3c shows the stress values determined during earlier simulations conducted using the PRO-MES4.4 software and described in paper [3].

The results of the laboratory tensile stress measurements $\sigma_{x1} \div \sigma_{x4}$ are compliant with those obtained during earlier stress simulations.