ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ

Seria: Energetyka z. 43

Nr kol.333

JANUSZ WANDRASZ Instytut Techniki Cieplnej

MODELOWANIE JEDNO I DWUWYMIAROWEGO NIEUSTALONEGO POLA TEMPERATUR ZA POMOCĄ WANNY ELEKTROLITYCZNEJ

> Streszczenie. W artykule omówiono teorię modelowania jedno i dwuwymiarowego nieustalonego pola temperatur za pomocą wanny elektrolitycznej. Badania oparto o metodę Libmanna stosowaną w analogach typu R. W końcowej części przedstawiono wyniki modelowania jednowymiarowego nieustalonego pola temperatur dla nieograniczonej płyty płaskiej ogrzewanej dwustronnie.

1. Wstep

Nieustalone pole temperatur dla ciała znajdującego się w spoczynku przy założeniu jego izotropowej budowy oraz stałych własności materiałowych (λ idem, c_p = idem, g = idem) i przy nieobecności wewnętrznych źródeł ciepła można opisać równaniem Fouriera-Kirchhoffa

$$div(grad U) = \frac{1}{a} \frac{\partial U}{\partial T}$$
(1)

Rozwiązanie analityczne powyższego równania dla znanych przestrzennych i czasowych warunków brzegowych jest możliwe tylko w najprostszych przypadkach. Do jego rozwiązania stosowane są zwykle przyblżone metody różnicowe (metoda ilorazu różnicowego przedniego oraz ilorazu różnicowego wstecznego) lub metoda Monte-Carlo.

Rozwiązanie można również uzyskać w oparciu o analogie fizyczne, np. za pomocą wanny elektrolitycznej. Zagadnienie modelowania ustalonego pola temperatur w wannie przedstawiono w pracy [5]. Uwzględniono tam modelowanie warunków brzegowych oraz ogólne zasady doboru elektrolitu, elektrod i częstotliwości prądu.

Modelowanie nieustalonego pola temperatur jest problemem nieco bardziej złożonym opartym na metodzie ilorazu różnicowego wstecznego.

2. Modelowanie węzła wewnętrznego

Równanie róźnicowe węzła wewnętrznego w układzie dwuwymiarowym (rys.1 dla metody ilorazu róźnicowego wstecznego można przedstawić w postaci:

$$\sum_{i=1}^{4} \left[\frac{A \vartheta_i}{R_i} \right]_{\tau \neq \Delta \tau} = \frac{A \nabla c_p S}{A \tau} \frac{A \vartheta_{\alpha \tau}}{A \tau}, \qquad (2)$$

(3)

(4)

Rys. 1. Przepływ strumieni ciepła dla węzła wewnetrznego obszaru

gdzie:

- objętość rozpatrywanego elementu,
- 🕰 różnica temperatur węzła sąsiedniego i badanego w chwili $\tau + \Delta \tau$
 - opór przewodzenia ciepła od węzła "i" do węzła rozpatrywanego elementu.
- f. pole powierzchni bocznej rozpatrywane go elementu od strony węzła i,
- 14 - odległość między węzłem rozpatrywanego elementu a węzłem i,
- c., 9 ciepło właściwe oraz gęstość masy badanego materiału,
- AU przyrost temperatury rozpatrywanego węzła w przedziale czasu ATod chwili do chwili T do T+AT

Wykorzystując założenie izotropowości modelowanego ciała oraz stałość jego własności materiałowych można przekształcić równanie (2) do postaci:

 $\sum_{i=1}^{4} \left[\frac{\Delta v_i}{R_1} \right]_{T_1 + \Delta T} = \frac{\Delta v_{\Delta T}}{R_T},$

 $\mathbf{R}_{i} = \mathbf{\hat{l}}_{i} / \mathbf{f}_{i}$

Przy modelowaniu oporów równania (3) w wannie elektrolitycznej można je zastapić odpowiednio rezystancjami warstw elektrolitu o odpowiedniej długości L, i przekroju warstwy f. Schemat połączenia rezystorów przedstawiono na rys. 2. Opór czasowy modelowany rezystorem "czasowym" zgodnie z 3 włączono w węzeł rozpatrywanego elementu.

Rys. 2. Schemat blokowy rezystorów zastępujących rezystory warstw elektrolitu

Prawo Kirchhoffa dla ukłaju zastepczego przedstawionego na rys. 2 można zapisać równaniem:

 $\sum_{R_{e,1}}^{4} \frac{AU_{1}}{R_{e,1}} = \frac{AU_{T}}{R_{e,T}},$

gdzie:

 ΔU - spadki potencjałów na rezystorach R_{ei} ($\Delta U_i = U_i - U, \Delta U_i = U - U_i$) R_{ei} = $g_e \frac{L_i}{f_{ei}}$ - rezystancja warstwy elektrolitu, g_e - rezystywność elektrolitu, L_i - odległości między elektrodami modelu,

f_{ei} - przekrój poprzeczny warstwy elektrolitu.

Z równań (3) i (4) przy założeniu stałej rezystywności elektrolitu można określić odległości między elektrodami modelu

$$L_{i} = A l_{i} \frac{f_{e i}}{f_{i}}$$
(5)

oraz długcść rezystora czasowego dla przyjętego przekroju warstwy elektrolitu f_ar

$$L_{ti} = A f_{eT} R_{T}$$
(6)

W równaniach (5) i (6) A oznacza skalę geometryczną modelu.

3. Modelowanie warunków brzegowych

Rys. 3. Przepływ strumie ni ciepła dla węzła zewnętrznego Zagadnienie modelowania warunków brzegowych dla nieustalonego pola temperatur jest podobne jak dla przypadków pola ustalonego [5]. Zazwyczaj modelowany jest trzeci warunek brzegowy (znana temperatura ośrodka t oraz współczynnik wnikania ciepła CC). Dla węzła leżącego przy powierzchni obszaru (rys. 3) równanie (2) nie zmienia swojej ogólnej postaci. Występujący w tym równaniu opór R_i pomiędzy ośrodkiem o temperaturze t i rozpatrywanym węzłem należy wyrazić zależnością

$$R_{i} = \frac{1}{\alpha_{i} f_{i}} + \frac{I_{i}}{f_{i} \lambda_{i}}$$
(7)

Przekształcona wartość tego oporu do postaci z równania (3) wyraża się równaniem

R

$$I'_{i} = \frac{\lambda_{i}}{\alpha_{i}} \frac{1}{r_{i}} + \frac{1}{r_{i}}$$
(8)

Modelowana w wannie odległość między węzłem siatki i ośrodkiem będzie w tym przypadku sumą dwu odległości – odległości modelującej opór wnikania ciepła oraz przewodzenia od ścianki do węzła. Zagadnienie to szerzej omówiono w pracy [5].

4. Konstrukcja modelu oraz metoda pomiaru

Wykorzystanie w badaniach metody Libmanna wymaga włączenia w węzły modelowanej siatki dodatkowych "rezystorów czasowych". W układach jednowymiarowych, w których temperatura zmienia się tylko wzdłuż jednej współ-

Rys. 4. Modelowanie jednowymiarowego nieustalonego pola temperatur

Rys. 5. Modelowanie dwuwymiarowego hieustalonego pola temperatur

rzędnej, można zastosować wewnątrz modelowego obszaru elektrody przebiegające wzdłuż linii izotermicznych (rys. 4). Dla układów dwuwymiarowych w punkty węzłowe siatki wprowadzamy elektrody w postaci prętów (rys. 5).Podłączone do tych elektrod rezystory czasowe modeluje się dla obu przypadków w osobnej części wanny zawierającej ten sam elektrolit co badany obszar (rys. 6). Odpowiadający założonemu pierwotnie rozkładowi temperatur rozkład napięć zadaje się z dzielnika napięć na wejściowe elektrody rezystorów czasowych. Mierząc uzyskany rozkład napięć w węzłach badanego obszaru otrzymujemy rozkład odpowiadający chwili po kroku ΔU. Przeniesienie uzyskanego rozkładu na elektrody wejściowe rezystorów czasowych da w węzłach obszaru rozkład odpowiadający odstępowi czasowemu 2ΔU.

Zastosowanie w badaniach metody ilorazu różnicowego wstecznego nie narzuca ograniczeń w doborze kroku czasowego ΔT . Zmiana jego wartości wymaga jedynie zmiany odległości pomiędzy elektrodami rezystora czasowego.Można więc określić rozkład temperatur po dowolnym kroku czasowym ΔT (nawet zmiennym) i po interesującym nas odstępie czasu $T = n \Delta T$.

Przedstawiony schemat modelowanego dwuwymiarowego pola temperatur (rys 6) posiada dodatkową wannę służącą jako dzielnik napięcia. Granice modelowanego obszaru znajdują się wewnątrz bryły elektrolitu. W wannie głównej odległości między elektrodami a granicami obszaru przedstawiają zamodelowane warunki brzegowe.

Modelowanie jedno i dwuwymiarowego nieustalonego

53

5. Modelowanie płaskiej płyty - model jednowymiarowy

Celem skontrolowania poprawności przedstawionej teorii modelowania zamodelowano w wannie elektrolitycznej przypadek ogrzewania dwustronnego płyty stalowej ($\lambda = 40$ W/m deg; a = 9,48 m²/s) nieskończenie długiej o grubości $\sigma = 0,4$ m w ośrodku o temperaturze t = $500^{\circ}C$ [1]. Temperaturę początkową płyty przyjęto równą t_p = $0^{\circ}C$, a współczynniki wnikania ciepła równe z obu jej stron $\infty = 60$ W/m deg.

Modelowaną płytę podzielono na 11 elementów (rys. 7) uzyskując dla węzłów wewnętrznych jednakowy podział siatki $\Delta x = 0,04$ m. Węzły brzegowe umieszczono w odległości l_i = $\Delta x/4$ od powierzchni płyty.

Rys. Rys. 8. Schemat stanowiska badawczego z zamodelowaną płytą 1 - wanna, 2 - rezystory czasowe, 3 - dzielnik napięcia, 4 - generator,5 sonda główna, 6 - oscyloskop OK-15

Modelowanie jedno i dwuwymiarowego nieustalonego

Model wykonano w skali 1:2 ze szkła organicznego (rys. 8) umieszczając w węzłach modelowanej siatki płyty miedziane. Elektrody imitujące temperaturę ośrodka wykonano z tej samej blachy, miedzianej.W pomiarach elektrolitem był 0,01 n roztwór NaCl. Jako źródło zasilania zastosowano generator podający napięcie 2,5 V o częstotliwości 1000 Hz. Do pomiaru wartości napięć użyto oscyloskopu w układzie mostkowym (5).

W modelowanym przypadku wszystkie powierzchnie f_{i} są równe i dlatego przekrój warstwy elektrolitu w wannie jest stały (fe = idem). Wynikające z równań (3) i (4) odległości między węzłami modelowanej siatki oraz długości warstw elektrolitu modelującego opory czasowe moźna wyrazić zależnościami

$$L_1 = A l_1$$

oraz

Rys. 9. Rozkład temperatur w płycie dla 0≤℃ ≤3 h uzyskany w wyniku pomiarów

55

(9)

(10)

gdzie $\varDelta x_1$ oznacza szerokość siatki dla modelowanego węzła i. Badania wykonano dla czasu ogrzewania $\tau = 15$ h przyjmując krok czasowy $\varDelta \tau = 0,25$ h. Uzyskane wyniki dla zakresu $0 \le \tau \le 3$ h przedstawiono na rys. 9.

Celem porównania otrzymanych wyników w oparciu o równanie (17) wyznaczono, na drodze analitycznego jego rozwiązania, rozkłady temperatur dla modelowanych kroków czasowych. Dokładność uzyskiwanych wyników zależna jest od przyjętego kroku czasowego zmieniając się od $\sim 5 \deg$ [Srednie odchylenie wartości zmierzonej i obliczonej) przy trzech krokach czasowych do $\sim 0,1$ deg dla sześćdziesięciu kroków.

6. Wnioski

Przedstawiona metoda modelowania nieustalonego pola temperatur w wannie elektrolitycznej opracowana w Katedrze Podstaw Techniki Cieplnej.Pol. Šl. pod kierunkiem Prof. dr inż. Jana Szarguta odbiega od metod dotychczas stosowanych [2]. W badaniach nie jest wymagana znajomość konduktywności elektrolitu, a rodzaj jego zależy od stosowanych elektrod i częstotliwości prądu [5]. Otrzymane wyniki świadczą o możliwości uzyskania dużżej dokładności. Dokładność ta zależna jest od staranności wykonania modelu oraz właściwego doboru przekroju warstwy elektrolitu.

Błąd modelowanego oporu czasowego maleje ze wzrostem przekroju warstwy elektrolitu, a w szczególności zależy od jej wysokości (wpływ nierówności dna wanny).

Przedstawione czynniki wpływające na dokładność pomiaru nie są jedynymi i należy analizować je wraz z innymi [5]. Zastosowana metoda pomiaru przy użyciu oscyloskopu w układzie mostkowym pozwala na szybkie i zarazem dokładne określenie wartości badanego napięcia oraz przeniesienia go na elektrody wejściowe rezystorów czasowych.

LITERATURA

- 1; Balcarek A. Badania nieustalonego pola temperatur przy pomocy wanny elektrolitycznej - praca dyplomowa wykonana w Katedrze PTC Pol.51.1971
- Dieniskin Ju.D., Niekrasowa I.F. Promienienie mietoda modelirowania dlia rieszienia zadacz tiepłoprowodnosti w elektronnych priborach - E-NERGIA- Moskwa 1969.
- Libmann G. Solution of transient heat transfer problem by the resistance network analog method. Trans.ASME v. 78, Nr 6, 1956.
- Szargut J. Wykłady Procesy cieplne w piecach przemysłowych, Politechnika Śląska, 1970.
- 5. Wandrasz J. Modelowanie ustalonego pola temperatur za pomocą wanny elektrolitycznej. Zeszyty Nauk. Pol.Śl., Energetyka 34, 1970

МОДЕЛИ РОВАНИЕ ОДНО- И ДВУХМЕРНОГО НЕУСТАНОВИ ВЫ ЕГОСН ТЕМПЕРАТУРНОГО ПОЛН ПРИ ПОМОЩИ ЭЛЕНТРИЧЕСКОЙ ВАННЫ

Резрме

В статье представляется теория моделирования температурного поля при помощи электролитической ванны. Описывается постройка модели и метод изме рений. Исследования сделаны по методу Либмана, применяемому в аналогах типа Р- сетки.

В заключительной части статьи представлены результаты моделирования одномерного нестационарного температурного поля бесконечной плоской плиты при двужстороннем обсгревании.

MODELING ONE- AND TWO-DIMENSIONAL UNSTEADY TEMPERATURE FIELD BY MEANS OF THE ELECTROLYTIC TANK

Summary

Paper discusses the theory od modeling the one- and two-cimensional unsteady temperature field by means of the electrolytic tank. Examinations are based on the Libmann's method used in the analogues of R-type. The final part of paper presents the modeling results of one dimensional unsteady temperature field for boundless flat plate heated from both siedes.