ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ

Seria: Energetyka z. 53

Nr kol. 420

Bohdan Mochnacki Instytut Mechaniki Teoretycznej

BADANIA NAD STABILNOŚCIĄ I ZBIEŻNOŚCIA METODY WARSTWIJOWEJ MODELOWANIA POLA TEMPERATURY W CIAŁACH STAŁYCH

Streszczenie: W artykule omówiono problemy stabilności względem czasu oraz wyniki badań nad zbieżnością metody warstwicowej [1], [2] w odniesieniu do równań parabolicznych.

1. Wstep

W pracach [1] i [2] przedstawiono metodę numerycznego modelowania stacjonarnych i niestacjonarnych pół temperatury w obszarze ciała stałego.Istotą metody nazwanej metodą warstwicową jest opis funkcji U(P) spełniającej równanie różniczkowe i warunki graniczne zadania, rodzinami wielomianów algebraicznych funkcji jednej zmiennej, będących przybliżeniem przekrojów warstwicowych szukanego pola temperatur.

Warstwicą funkcji U nazwano linię krzywą o równaniu:

$$U(X_{m}) = U(X_{1}^{o}, X_{2}^{o} \dots X_{m-1}^{o}, X_{m}, X_{m+1}^{o} \dots X_{k}^{o})$$
(1)

gdzie X⁰₁, X⁰₂... X⁰_k - ustalone wartości k-1 z k argumentów funkcji U.

Współczynniki liczbowe wielomianów:

$$J(X_{m}) = \sum_{i=0}^{n-1} a_{i} X_{m}^{i}$$
(2)

dobiera się wykorzystując warunki ciągłości funkcji w węzłach siatki krzywoliniowej, warunki wynikające z równania różniczkowego i warunków brzegowych zadania. Problem sprowadza się do rozwiązania układu równań algebraicznych liniowych względem współczynników a_i, a w dalszej kolejności wyznaczeniu z wielomianów (2) wartości funkcji U w węzłach rozpatrywanego obszaru.

Do rozwiązywania problemów nieustalonego przewodzenia ciepła zaproponowano pewną odmianę ogólnej metody warstwicowej, polegającą na liniowej aproksymacji zmiany temperatury w węzłach P siatki przestrzennej w kierunku osi czasu, przy czym wyrazy wolne równań:

$$U_{p}(X_{1}^{0}, X_{2}^{0}, \ldots, \mathcal{E}) = U_{p}(X_{1}^{0}, X_{2}^{0}, \ldots, \mathcal{E} - \Delta \mathcal{E}) + \alpha_{p} \Delta \mathcal{E}$$
(3)

wynikają każdorazowo z rozkładu temperatur w chwili poprzedniej. Tematem niniejszego artykułu są problemy związane ze stabilnością i dokładnością

1975

metody warstwic. Obliczenia przedstawione w dalszej części pracy wykonano na maszynie cyfrowej ZAM 41.

2. Stabilność metody warstwicowej do zagadnień niestacjonarnych

Problem stabilności metody numerycznej w przypadku klasycznych metod siatkowych wiąże się z doborem pewnej siatki przestrzenno-czasowej zapewniającej korzystry schemat rozszerzania się błędu. W schematach jawnych dla równań parabolicznych operowanie dowolnym krokiem siatki czasowej prowadzi przy wartościach nadkrytycznych tego kroku do szybkiego rozprzestrzenienia się zaburzeń wywołanych błędami przypadkowymi i metoda okazuje się niezdatna (niestabilna). W niektórych pracach zwraca się również uwagę na fizyczną interpretację tego zjawiska.

Aby dowieść stabilności metody warstwicowej dla siatek przestrzenno-czasowych rozpatrzmy przypadek nieustalonego przewodzenia ciepła w nieskończonej płaskiej płycie. Dla takiego przypadku funkcja $U(X, \ell)$ spełnia wewnątrz obszar. równanie:

$$\frac{1}{a}\frac{\partial}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$
(4)

przy warunkach brzegowych typu:

$$A \frac{\partial U}{\partial X} + BU = C$$
 (5)

i warunku początkowym:

$$U(X,0) = f(X) \tag{6}$$

Jeżeli w obszarze płyty wyróżniono n węzłów przestrzennych (w tym dwa brzegowe oznaczone wskaźnikami m=1 i m=n), to funkcję opisującą rozkład temperatur w chwili $\mathcal{I} = \mathcal{I}_{p}$ przybliża się wielomianem w postaci:

$$U(\mathbf{X}, \mathbf{\xi}_{k}) = \sum_{i=0}^{n-1} a_{i} \mathbf{X}^{i} = a_{0} + a_{1} \mathbf{X} + \sum_{i=2}^{n-1} a_{i} \mathbf{X}^{i}$$
(7)

zaś zmianę temperatury w węzłach wewnętrznych w czasie ΔI aproksymuje się liniowo:

$$U(X_{m}, \mathcal{E}) = U(X_{m}, \mathcal{E} - \Delta \mathcal{E}) + \alpha_{m} \Delta \mathcal{E}; m=2,3,...(n-1)$$
(8)

Dla rozpatrywanego przypadku warunek ciągłości funkcji U w wewnętrznych węzłach siatki przyjmuje postać:

$$a_{o} + a_{1}X_{m} + \sum_{i=2}^{m-1} a_{i}X_{m}^{i} = U(X_{m}, \tilde{v}_{k} - \Delta \tilde{v}) + \alpha_{m}\Delta \tilde{v}; m=2,3...,(n-1)$$
 (9)

Dla tych samych węzłów wykorzystując równanie (4) dochodzimy do zależności:

$$a \sum_{i=2}^{n-1} i(i-1) a_i I_m^{1-2} = a_m m=2, 3...(n-1)$$
(10)

Podstawiając (10) do (9) otrzymuje się

$$a_{0} + a_{1}X_{m} + \sum_{i=2}^{n-1} a_{i}X_{m}^{i-2} \left[X_{m}^{2} - a_{i}(i-1)\Delta t \right] = U(X_{m}, t_{k} - \Delta t); m=2,3...(n-1)$$
(11)

Dwa ostatnie równania wynikają z warunków na brzegu obszaru:

$$A_{m} \frac{d}{dx} \left[\sum_{i=0}^{n-1} a_{i} X^{i} \right]_{X=X_{m}} + B_{m} \sum_{i=0}^{n-1} a_{i} X^{i} \Big|_{X=X_{m}} = C_{m}; \qquad (12)$$

m=1.n

$$B_{1}a_{0} + (A_{1}+B_{1}X_{1})a_{1} + \sum_{i=2}^{n-1} a_{1}X_{1}^{i-1}(A_{1}i + B_{1}X_{1}) = C_{1}$$
(13)

oraz

czyli:

$$B_{n}a_{0} + (A_{n}+B_{n}X_{n})a_{1} + \sum_{i=2}^{n-1} a_{i}X_{n}^{i-1}(A_{n}i + B_{n}X_{n}) = C_{n}$$
(14)

Do rozwiązania układu równań (10) (13) (14) zastosujemy wzory Gremera. Zauważny, że współczynniki licztowe liniowego względem a_i układu równań są począwszy od trzeciej kolumny (z wyjątkiem dwóch ostatnich wierszy(13) (14)) liniowymi funkcjami skoku siatki Δt . Wyznacznik główny układu będzie więc względem Δt wielomianem algebraicznym takiego rzędu, jak to wynika z iloczynu elementów na głównej przekątnej macierzy układu. Wprowadzenie w miejsce kolejnych kolumn wyznacznike głównego kolumny wyrazów wołnych prowadzi po rozwinięciu otrzymanych wyznaczników do wielomianów bądź tego samego stopnia względem Δt (kolumna I i II), bądź do wielomianów stopnia o jeden niższego (pczostałe kolumny).

Tak więc obliczone w oparciu o wzory Cramera wartości współczynników \mathbf{a}_i przy $\Delta \tilde{t} \rightarrow \infty$ będą zerami dla i ≥ 2 , zaś współczynniki \mathbf{a}_0 i \mathbf{a}_1 dążą do pewnych skończonych granicznych wartości. Rozkład temperatury dąży do rozkładu liniowego charakterystycznego dla stanu ustalonego przy $\lambda = idem, co$ świadczy o stabilności metody.

Jeżeli np. rozwiązujemy zadanie nieustalonego przewodzenia ciepła w płycie przy skokowej zmianie temperatury na brzegu, tzn.: U(X,0) = 0, $U(\frac{1}{2}L,0) = 1$, $(\frac{\partial U}{\partial X})_{X=0} = 0$, to równania warunkowe przyjmują postać:

$$a_1 = 0$$
 (15)

$$a_{o} + \sum_{i=2}^{n-1} a_{i} X_{m}^{i-2} \left[X_{m}^{2} - a i(i-1)\Delta \ell \right] = 0$$
 (16)

$$a_{0} + \sum_{i=2}^{n-1} a_{i} X_{n}^{i} = 1$$
 (17)

Ponieważ lim $a_i = 0$ dla $i \ge 2$, zaś $a_0 = 1$ więc $U(X, \infty) = 1$.

3. Analiza numerycznego rozwiązania problemu rozkładu temperatur w płycie przy skokowej zmianie temperatury na powierzchni

Tematem niniejszego rozdziału jest analiza wyników uzyskanych przy rozwiązaniu metodą warstwic zagadnienia typu "skok temperatury na powierzchni". Jest to zadanie szczególnie niekorzystne z punktu widzenia możliwości metody warstwicowej gdyż pola temperatury, głównie w interwałach czasu następujących bezpośrednio po zaburzeniu, mają przebiegi źle opisujące się wielomianami algebraicznymi - szczególnie niższych rzędów. Tak więc zbieżność i dokładność metody właśnie w tym przypadku może być najbardziej wątpliwa.

Obliczenia sprawdzające przeprowadzono dla przypadku jednowymiarowego nieustalonego przewodzenia w płaskiej płycie (posługując się wielościami zredukowanymi) przyjmując w kierunku zmiennej przestrzennej aproksymację wielomianem rzędu czwartego (w przypadku współrzędnych geometrycznych podwyższenia stopnia wielomianu jest oczywiście zawsze korzystne – pomijając problemy związane z uwarunkowaniem układu równań i ich realizacja na maszynie cyfrowej o danej dokładności), zaś zmienność temperatury w węzłach siatki w kierunku czasu przybliżono liniowo dla interwałów począwszy od Δ Fo = 0,01 do Δ Fo = 0,31, zwiększając każdorazowo interwał czasu o 0,02 (rys. 1).

Wyniki obliczeń porównywano z rozwiązaniem analitycznym, które dla rozpatrywanego przypadku posiada stosunkowo prostą postać. Rozwiązania niektórych wariantów zadania zebrano w tablicy 1. Wyniki obliczeń dla Δ Fo=0,01 (0,02) 0,07 skonfrontowano tu z rozwiązaniem analitycznym.

Na rysunku 2 przedstawiono w siatce semilogarytmicznej zmiany temperatury w osi płyty (największy błąd związany z najsłabszym uwarunkowaniem brzegu) dla interwałów czasu AFo = 0,01 ÷ 0,15. Jak widać z porównania wykresów zbieżność metody w tym przypadku nie budzi wątpliwości, zaś du-

Tablica 1

Rozwiązanie analityczne i numeryczne dla skokowej zmiany *emperatury na powierzchni płyty

.

100	$Rozw. z dokł. 10^{-2}$					$\Delta F_{0} = 0.01$					$\Delta F_{0} = 0.03$					△F ₀ ≈ 0.05					$\Delta F_0 = 0.07$				
	A	B	C	D	Е	A	В	C	D	Е	A	В	C	D	Е	A	B	C	D	Е	A	B.	C	D	E
1	0.00	0.00	0.00	0.10	1.00	-0.08	-0.01	0.01	0.12	1.00											-				
3	0.00	0.00	0.04	0.30	1.00	-0.04	-0.01	0.05	0.28	1.00	-0.04	0.00	0.06	0.25	1.00	-0.01	0.02	0.11	0.38	1.00					
5	0.00	0.01	0.10	0.41	1.00	-0.01	0.01	0.11	0.40	1.00											0.02	0.06	0.15	0.49	9 1.00
7	0.01	0.04	0.17	0.49	1.00	0.02	0.04	0.17	0.47	1.00	0.01	0.03	0.13	0.41	1.00	0.07	0.10	0.23	0.51	1.00					
9	0.03	0.07	0.23	0.55	1.00	0.05	0.08	0.22	0.53	1.00															
11	0.06	0.11	0.28	0.59	1.00	0.08	.0.12	0.27	0.57	1.00	0.05	80.0	0.21	0.50	1.00	0.15	0 10	0 33	0 62	1 00	0.13	0.17	0.30	0.5	7 1.00
13	0.09	0.15	0.32	0.62	1.00	0.12	0.16	0.32	0.61	1.00						0.15	0.15	(0.))	0.02	1.00					
17	0.13	0.19	0.30	0.07	1.00	0.12	0.20	0.30	0.64	1.00	0.10	0.14	0.28	0.58	1.00		0.00	0.40	0 67	1 00	0.00		0.40	0.50	
10	0.17	0.26	0.40	0.69	1.00	0.10	0.23	0.13	0.68	1 00					4 00	0.23	0.21	0.42	0.01	1.00	0.26	0.28	0.42	0.5	1.00
21	0.24	0.30	0.46	0.70	1.00	0.25	0.30	0.46	0.70	1.00	0.15	0.19	0.34	0.63	1.00										
23	0.27	0.33	0.48	0.72	1.00	0.28	0.33	0.48	0.72	1.00	0.20	0.24	0.40	0.66	1 00	0.31	0.35	0.49	0.72	1.00					
25	0.31	0.36	0.51	0.73	1.00	0.32	0.37	0.51	0.73	1.00	0.20	0.24	0.40	0.00	1.00						0.34	0.39	0.52	0.7	3 1.00
21	0.34	0.39	0.53	0.75	1.00	0.35	0.40	0.53	0.75	1.00	0.25	0.29	0.45	0.69	1.00	0.38	0.42	0.55	0.75	1.00					
29	0.37	0.42	0.56	0.76	1.00	0.38	0.42	0.56	0.76	1.00	0.30	0 34	0.49	0.72	1.00										
31	0.40	0.45	0.58	0.77	1.00	0.41	0.45	0.58	0.77	1.00	0. 50	0.54	0.47	0012						4 00	0.42	0.47	0 50	0.75	9 1 00
33	0.43	0,47	0.60	0.78	1.00	0.44	0.48	0.60	0.78	1.00	0.34	0.39	0.52	0.74	1.00	0.44	0.48	0.60	0.78	1.00	0.43	0.41	0.59	0.10	
35	0.46	0.50	0.62	0.79	1.00	0.46	0.50	0.62	0.79	1.00	0.38	0.43	0.56	0.76	1.00										
37	0.49	0.53	0.64	0.80	1.00	0.49	0.53	0.64	0.80	1.00	0.00	0.40	0.00	0.10	1.00	0.50	0.54	0.65	0.81	1.00					
39	0.51	0.55	0.65	0.81	1.00	0.51	0.55	0.65	0.81	1.00	0.43	0.47	0.59	0.78	1.00						0.52	0.55	0.65	0.8	1.1.00
41	0.53	0.57	0.67	0.82	1.00	0.53	0.57	0.67	0.82	1.00	0.46	0.50	0.62	0.79	1.00				0.00	4 00					
43	0.55	0.59	0.69	0.83	1.00	0.56	0.59	0.69	0.83	1.00	0.50	0.54	0 65	0.81	1.00	0.56	0.59	0.69	0.83	1.00					
45	0.58	0.61	0.70	0.84	1.00	0.58	0.61	0.70	0.84	1.00	0.50	0.74	0.0)	0.01	1.00										
47	0.60	0.63	0.72	0.85	1.00	0.60	0,63	0.72	0.85	1.00	0.53	0.57	0.67	0.82	1.00	0.60	0.63	3 0.72	0.85	1.00	0.59	0.62	0.72	0.84	4 1.00
49	0.62	0.65	0.73	0.85	1.00	0.62	0.65	0.73	0.85	1.00	0.57	0.60	0.69	0.83	1.00										
51	0.63	0.66	0.74	0.86	1.00	0.63	0.66	0.74	0.86	1.00	0.60	0.63	0.72	0.85	1.00					1 00					
23	0.67	0.68	0.17	0.81	1.00	0.67	0.68	0.12	0.01	1.00	0.00	0 45	0 72	0.00	1 00	0.65	0.68	3 0.76	0.00	5 1.00	0.65	0 67	0 75	0.8	7 1-00
57	0.61	0.09	0.78	0.88	1.00	0.68	0.09	0.78	0.88	1.00	0.62	0.05	0.15	0.00	1.00						0.05	0.01	0.15	0.01	1 1200
59	0.00	0.72	0.79	0.89	1.00	0.00	0.72	0.70	0.89	1.00	0.65	0.68	0.75	0.87	1.00	0.69	0.7	1 0.78	3 0.88	3 1.00					
61	0.71	0.74	0.80	0.89	1.00	0.71	0.74	0.80	0.89	1.00	0.67	0.70	0.77	0.88	1.00										
63	0.73	0.75	0.81	0.90	1.00	0.73	0.75	0.81	0.90	1.00	0.70	0.72	0.79	0.89	1.00				0.0.80	1.00	0.71	0.72	0.79	0.88	3 1.00
65	0.74	0.76	0.82	0.90	1.00	0.74	0.76	0.82	0.90	1.00	0.70	0.74	0.00	0.00	4.00	0.72	2 0.74	4 0.00	J U.O;	, 1.00					
67	0.75	0.77	0.83	0.91	1.00	0.75	0.77	0.82	0.90	1.00	0.72	0.74	0.80	0.89	1.00										
69	0.76	0.78	0.83	0.91	1.00	0.76	0.78	0.83	0.91	1.00	0.74	0.76	0.81	0.90	1.00	0.75	5 0.7	7 0.82	2 0.90	1.00					
71	0.78	0.79	0.84	0.91	1.00	0.77	0.79	0.84	0.91	1.00	0.75	0.77	0.83	0.91	1.00						0.74	0.76	0.82	0.90	1.00
73	0.79	0.81	0.85	0.92	1.00	0.79	0.80	0.85	0.92	1.00	0.77	0.79	0.84	0.91	1.00	0.77	0.00	0.0.8/	1 0 0	2 1.00					
75	0.80	0.81	0.86	0.92	1.00	0.80	0.81	0.86	0.92	1.00	0.70	0.90	0.05	0.00	1 00	0.78	5 0.0	0.00	+ 0.94	- 1.00					
77	0.81	0.82	0.86	0.93	1.00	0.81	0.82	0.86	0.93	1.00	0.79	0.80	0.85	0.92	1.00						0.78	0.80	0.84	0.9	2 1.00
79	0.82	0.83	0.87	0.93	1.00	0.81	0.83	0.87	0.93	1.00	0.80	0.82	0.86	0.93	1.00	0.80	0.8	2 0.86	5 0.92	2 1.00					
81	0.83	0.84	0.88	0.93	1.00	0.82	0.84	0.88	0.93	1.00	0.81	0.83	0.87	0.93	1.00	-									
83	0.83	0.85	0.88	0.94	1.00	0.83	0.84	0.88	0.94	1.00	0.83	0.84	. 0.88	0.94	1.00	0.0	200	4 0 0	0 0 0	2 1 00	0.81	0.83	0.87	0.93	1 1 00
85	0.84	0.85	0.89	0.94	1.00	0.84	0.85	0.89	0.94	1.00	0.0)			- 1		0.8	, 0.8	4 0.00	5 0.9.	5 1.00			- 1		1.00

Rys. 1. Rozmieszczenie węzłów i krzywe temperatury dla AFo = 0,05

żą dokładność uzyskuje się już dla ∆Fo < 0,07, nawet przy niskim stopniu interpolacji w kierunku przestrzennym, czyli przy małej liczbie węzłów siatki.

Interesujący jest też fakt, że znaczne, a wynikające z niskiego stopnia wielomianu U(X) błędy na brzegu $\frac{\partial U}{\partial X} = 0$ i w węzłach położonych w pobliżu osi płyty w dalszych interwałach czasu zanikają i krzywa rozkładu temperatur w czasie biegnie blisko krzywej analitycznej.

W przypadku zagadnień brzegowych III rodzaju, których przybliżone rozwiązania przedstawiono w [1] i [2] dużą dokładność uzyskiwano przy dużo większych (rzędu 0,25) interwałach \triangle Fo. Wynika to z większej regularności pól temperatury, które lepiej opisują się wielomianami algebraicznymi. Przedstawiony wyżej i w pracach [1] [2] materiał obliczeniowy pozwala stwierdzić, że metoda warstwic w klasycznych zagadnieniach przewodnictwa jest zbieżna i stabilna względem czasu.

Oczywiście sprawdzenie numeryczne zbieżności metody nie może w pełni zastąpić dowodu analitycznego tej zbieżności (choć taką procedurę stosuje się często w praktyce).

Wydaje się jednak, że zbieżność metody warstwic (przynajmniej w odniesieniu do siatek o stałym skoku) wynika bezpośrednio ze zbieżności metod różnicowych wielopunktowych. Istotą tych metod jest bowiem przybliżanie pochodnych w równaniach różniczkowych wyrażeniami różnicowymi, otrzymanymi

128

Badania nad stabilnością ...

przez różniczkowanie wzorów interpolacyjnych dla funkcji stabelaryzowanych przy stałym kroku tabeli. Jeżeli np. jako bazę przyjmiemy wzór interpolacyjny Newtona, pominiemy różnice rzędów wyższych niż Δ^2 U, to po dwukrotnym różniczkowaniu otrzymamy znane wyrażenie przybliżone:

$$\frac{\partial^2 U}{\partial x^2} \approx \frac{1}{h^2} (U_{i+1} + U_{i-1} - 2 U_i).$$

Tak więc przyjęcie takiego operatora różnicowego jest równoznaczne z założeniem, że między trzema kolejnymi węzłami funkcja U ma rozkład paraboliczny. Przyjęcie z kolei, że różnice rzędów wyższych są różne od zera, prowadzi do operatorów różnicowych wielopunktowych, czyli do opisu wielomianowego stopnia n dla zbioru n+1 węzłów. Postać tych operatorów podaje większość monografii z dziedziny przybliżonego rozwiązywania równań różnicowych. Wyrażenia różnicowe w metodach siatkowych są funkcjami wartości U, w węzłach obszaru siatkowego.

W metodzie warstwic pochodne wyraża się w sposób jawny przez współczynniki liczbowe wielomianów, przez co omija się poważne trudności związane z zapisem operatorów w siatkach o zmiennym skoku, a tym bardziej w siatkach krzywoliniowych. Z drugiej strony opis szukanego rozwiązania rodzinami funkcji k-parametrowych zbliża metodę warstwic do metod typu kollokacyjnego, lub szerzej metod minimalizacyjnych.

LITERATURA

- [1] Bohdan Mochnacki: Metoda warstwicowa numerycznego modelowania pola temperatur w ciałach stałych. Z.N.Pol.Śl. Energetyka 42.
- [2] Bohdan Mochnacki: Metoda warstwicowa numerycznego modelowania pola temperatur w ciałach stałych (uogólnienie metody) Z.N.Pol.Sl. Energetyka 42a.

ИССЛЕДОВАНИЯ СТАБИЛЬНОСТИ И СХОДИМОСТИ МЕТОДА СЕЧЕНИЙ ТЕМПЕ РАТУРНОГО ПОЛЯ В ТВЁРДЫХ ТЕЛАХ

Резрие

В статье доказана стабильность относительного времени и проводятся исследования численного метода, представленого в (I) и (2)-относительно уравнений параболического типа. INVESTIGATIONS OF STABILITY AND CONVERGENCE OF METHOD OF COUNTER LINES FOR MODELLING A TEMPERATURE FIELD IN SOLID BODIES

Summary

The paper discusses the problems of time stability and investigations, results concerning the convergence of the presented method in relation to the parabolic equations.