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Abstract. Thrust bearing characteristics are examined in the mo
tion generated by the accelerating slider. The selected case is the 
situation where the fluid within the lubricating oil film initially 
is at rest and at time zero the infinitely-wide slider assumes a 
velocity which is a function of time. Numerical solut ion to the go
verning differential equations is obtained for the constant and ti
me dependent acceleration. The corresponding previously published 
analytical solutions are compared with those numerical results.

Introduction

In this paper it is of interest to examine the thrust bearing charac
teristics in the motion generated by the accelerating slider. The case at 
hand is the situation where the lubricating film initially is at rest and 
at time zero the infinitely-wide slider assumes a velocity which is some 
function of time. Subsequently, due to the viscous effects penetrating th
rough the oil film the velocity and pressure fields are generated yield
ing the lifting force. The time history of these quantities if obtained 
numerically and compared with the corresponding analytical results of 
Ladanyi Cl], and Lyman and Saibel C2]-

Ladanyi assumed in his analysis that the acceleration at any point 
within the film, due to the change of speed of the moving surface, is li
nearly proportional to the distance from the stationary surface. This as
sumption reduced the equation of motion to a form which could be integra
ted. Lyman and Saibel developed asymptotic solutions for small and large 
values of time. Those describe the transient pressure and yield, for the 
case of constant acceleration of the moving surface, expressions for pres
sure and load capacity in closed form.

Sasic equations

The governing equations for the two-dimensional thrust bearing, assum

ing incompressible fluid of constant properties, are
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3u 9v „ „ / 9u ,, 3u , w 3us So , ,, 3 'u /.+ _  * o, ç (^_ . u j- * v 4^) = - +/m  ^ - 5  (1.2/

where: the differentiation symbol S  indicates that the gauge pressure
p » p(x ,t ) : t is time: x and y are (see Fig, l) coordinates parallel

and perpendicular to the slider, respec
tively: u and v are velocities in x
and y direction, respectively: ç is
density and ju is dynamic viscosity.

On the grounds of references [~3, 4, 5 j 
it is now assumed that the cases under
consideration are such that the second
and third term of Eq, (2) can be neglect
ed. For such a situation Eq. (2) may be
written in a simplified dimeneionless form, 
namely:

3« = - SJ- + §!" (3)

where: u = u/V (v  = reference velocity); t « ^t/h^ (\> » kinematic visco
sity); p = P^q/ ( B̂ lV ) ; x ■ x / B , 0 «, x s; B ; y - y/hQ , 0 < y <  h. The asso
ciated boundary conditions become

u(x,0,t) * 0, u(x,R,t) <= u(x,y,0) « p(O.t) ■ p(i, t) - 0 (4)

with R = h/hQ , and with 0 = at, where the dimenaionless acceleration 
a (= ah^/(v’V)) is a constant or function of time. This implies that the 
velocity of the slider at zero time is zero. The case where the fluid 
within the lubricating film is initially also at rest, however, whereat 
time zero the infinitely-wide slider suddenly assumes a constant velocity 
was treated in Ref, Q6j. In addition the transient response of an infi- 
nitely-wide slider bearing subjected to tangential acceleration of the 
thrust ring has been investigated numerically by Kettleborough L?j.

In the boundary conditions (4) we require the quantity R(x) which de
scribes the shape of the stationary part of the thrust bearing with re
ference to the moving plane slider. The following two shapes are assumed

R « x + (l - x)H , R = exp pi-x) In Hj (5,6)

w here H « hj/hg. Equation (5) represents linear configuration used by 
Ladanyi and Eq. (6) gives the exponential shape treated by Lyman and Sei- 

hel.

Fig. 1, Coordinate system
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The solution will result in the time dependent distribution of velocity, 
pressure and in the dimensionless load capacity which is given by

1 x

w = j  ( y * 4 § d^ ) d* ( 7 )
'o 0 °x

The condition that space inertia terms are negligible have been used 
by Ladanyi [jQ for the case where the infinitely-wide slider is accelerat
ing at a uniform rate. Furthermore, in solving eq, (3) he assumed that
the variation of acceleration is linear across the film:

3u _ Fi - y dU
9t F dt

The same problem, but without making the above assumption, was treated by
Lyman and S,aibel. However, an interesting result is found for their bear
ing, as given by (6), when the load capacity is obtained with the assump
tion (8). It is given by

w =vv =
2(HlnH)

_[i - ■1D
L (h+i) (h3-i)-1

r(2-lnH) 1 1 dU , *
L W ~  -  <91

«he re W = Wh^/(B2^v) .

Numerical method

Numerical computations [e] with the selected time and space steps (At, 
Ax and Ay respectively) have been made beginning with the "first step" 
assumption of a quant ity for c, c = sSp/Sx, at x = 1. With this c fluid 
velocities were computed in the range 0 <  y <  F. Then the quantity (5 
(dimensionless rate of flow) associated with equation (l) was computed:

fi
Q - f  Dd9 (10)

0

This quantity, if correct, should be a function of t only. For each in
terval of time, t - nAt (n = 1,2,...) , marching was done from x = 1 to 

x = 0 in steps of Ax. At each step of x, such a new value of c would 
be taken which would preserve invariance of Q.
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After each sweep of the range 0 < x < l  the integral of c from x = 0 
to x - 1 was computed. In view of the conditions (4) it should be equal 
to zero. If not, the procedure would go to the "first step" and assume a 
new value of c at x = 1. This iteration was continued until some desi
red tolerance was reached. At this time W was computed. Then 0, p and ft 
were stored and the "first step" commenced again at the next time step.

Results and discussion

The results are presented in Fig, 2 through 6. The dimensionless acce
leration a was assumed constant or equal to t. In the case of constant 
acceleration the results, due to linearity of the posed problem, can be

2
expressed by one set of curves by letting V = ahQ/v>. The corresponding 
graphs are Fig. 2, 3 and 5.

X

• Ladanyi 

Present Work - Numericai 

H = 2.0

Fig. 2. Linear bearing pressure distribution at various times for I = const
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Fig. 3. Linear bearing load capacity vs time for a = const
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Fig. 4. Linear bearing load capacity vs time for I = t
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Fig. 5. Exponential bearing load capacity vs time for i « const
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Fig. 6 Exponential bearing load capacity vs time for a * t
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The quoted Lyman and Saibel closed form solution applies to the case 
of constant acceleration only.. Their solutions admitting other types of 
accelerations require, due to the complexity of mathematics , numerical pro
cedures. The question which arises is if it is not simpler to solve nume
rically the basic differential equations without having to go through the 
Laplace transforms as proposed by Lyman and Saibel.

Typical dependence of pressure on time, for the case of linear bearing, 
is shown in rig. 2. At small times Ladanyi's solution indicates negative 
pressures which yield negative load capacities as demonstrated in Fig. 3 
and Fig. 4. The negative pressures, negative load capacities, and dac'•ea
sing W with t (when I « t ) , for very small t , are the resu1t of 
application of Ladanyi's assumption that the acceleration at any point 
within the oil film, due to the change in velocity of moving slider, is 
assumed to Be linearly proportional to distance from the slider, as given 
by Eq. ( s ) .  This assumption is responsible for loss of the initial-value 
character which is reflected in negative W at small t. The advantage 
of Ladanyi’s assumption is in that there can be obtained rather simple 
closed form solution which, though in error at very small t compares fa
vorably with the numerical results at larger times.

The exponential bearing results are presented in Fig. 5 and Fig. 6. 
These include the numerical solutions, the Lyman and Saibel curves and t he 
graphical presentation of Eq. (9).

The Lyman and Saibel constant acceleration curves, shown in Fig. 5, 
very closely coincide with the numerically computed load capacity, except 
for the very small times. On the other hand the Ladanyi's method as ap
plied to the exponential bearing indicates, again here, the negative load 
capacities at the small times. However, with the increase in time; as 
before, the error decreases.

For the case of the non-constant acceleration Lyman and Saibel did not 
produce closed form solutions which requires going through the Laplace
transforms. At some stage the analytical method, in these cases, would
have to be supplemented by some numerical procedure) However, the appli
cation of the Ladanyi's method provides e closed form solut ion which shows, 
in general, gooc agreement with the corresponding numerical results. This 
can be seen in Fig. 6. One may note that at small times the discrepancies 
are still large but decreasing with the increase of time. For example at
t = 2,0 the error is approximately 2% for H = 2,0 and a = t.

It is interesting to note that at very small times generation of the 
load capacity is such that, for a given time interval, it is increasing 
with the decreasing H (see for example Fig. 3). However, subsequently 
more like a steady state situation is developing, where the maximum load 
capacity is at approximately H = 2,2. In Fig. 3 this transition takes 
place at approximately t = 0,8 (numerical results), i.e. the curve of 

H = 1,5 goes under the curve of H = 2,0. By investigating the developm-
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ent of the velocity profiles it is believed that this phenomenon is asso
ciated with the initial state of viscous effects penetrating into the oil 
film and eventually gaining full participation when reaching all of the 
stationary surface of the bearing.

Finally it is also interesting to note that at any given time the 
associated load capacity, prevailing at that time, is very small compared 
with the corresponding steady stqte lifting force. This indicates that 
the generation of the load capacity in considered motion is trailing beh
ind its steady state counterpart by a large margin. For example, in the 
case of constant acceleration with i = 1 and at the speed of U = 100
m/s, the load capacity can be found to be (using Fig. 5 and some typical
oil in a small thrust bearing) equal to approximately 41 N/m. The time in

•» 8which this was reached was approximately 2,0 x 10 s and the correspon
ding steady state load capacity was equal to approximately 4584 N/m. This 
was discussed in greater detail by l.adanyi [l] in 1948. He correctly noted 
that in some cases "the decrease in load capacity due to the temporal 
tangential acceleration is almost of the same magnitude as the steady- 
state load capacity. In such instances, the lubricating film may brake 
down and permit "metal-to-metal contact". He quoted the case of a reci
procating-engine piston ring, but concluded that this condition also 
exists for the general case of reciprocating bearings.

Conclusion

For the very small times neither Ladanyi’s nor Lyman and Saibel's so
lutions reflect the physical expectation. At larger times, and for the 
case of constant acceleration, the Lyman and Saibel solution well coin
cides with the numerical results while the Ladanyi's approach reflects er
rors. These errors decrease with time. When the acceleration is not con
stant the Lyman and Saibel procedure becomes involved. However, the Lada
nyi's method provides simple closed form solution. This solution when 
tested against the case of acceleration proportional to time, showed good 
agreement with the numerical results. Nevertheless, the negative load capa
cities at very small times can not be avoided.

In the cases where some errors can be tolerated the following, simple 
in use, load capacity formula, based on the Ladannyi's assumption, may be 
used

1 1 x
1 x

JL
2
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where 0 = u(t) and R = fi (x). However, it should be remembered that a 
reasonable answer will be obtained only at sufficiently high times. These 
times may be inferred from graphs of Fig. 3 through 6.
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0  CiiOiiO'i’BAX yilOPHHX IIO^JDilllKłiKOB 

C yCKOPHTEJIbHHM HAHPABHTJSJIEM

P e 3 »  m e

CBOiicTBa ynopHio: noflmHnHHicos Kcc.ieAOaajiKCh b ,hbh3C6Hhh, 3K3BaHH0M yctio- 
pKTejiŁHHM HanpaBHTejieM. Ehji B u d p a H  ojiyaaii, ¡cor.ua s c h ^ k o c t b  BHyTpa M a c j i o t J i M b -  

Ma Hax.ojiiiTCH cnepsa 3 Eeno^BKJKHCM c o c t o h h h h  h 3 HyjieBOM noiiojiceHHii ósckohce- 
k o  mnpoKHS HanpaBHieJiŁ npjiyijaei ejcopocTb, KOTopaa HEjineTca $yHKhhsK BpetieHH 

HiiejieHuoe pemeane CHCTeaa 3H$pepeHunajibHHx ypaBHeHHil, onncMBa»a;HX Ehime- 
yKasaHHui* n p o p e c c t  dujio paspadoiaiic aji.i cjzy^a^ nccTcaHHoro a nepeMCHHoro bo 
BpeMeHK ycKopeHHa,

O WŁAŚCIWOŚCIACH ŁOŻYSK OPOROWYCH 2 PROWADNIKIEM PRZYSPIESZAOĄCYM

S t r e s z c z e n i e

Właściwości łożysk oporowych były badane w ruchu wywołanym przez pro
wadnik przyspieszający. Wybrany został przypadek, gdy płyn wewnątrz filmu 
olejowego jest początkowo w bezruchu i w chwili zerowej nieskończenie sze
roki prowadnik uzyskuje prędkość, która jest funkcją czasu. Numeryczne 
rozwiązanie układu równań różniczkowych opisujących powyższy proces zosta
ło opracowane dla przypadku przyspieszenia stałego i zmiennego w czasie.

Z wynikami otrzymanymi w omawianej metodzie numerycznej zostały porów
nane wyniki poprzednio publikowanych rozwiązań enalitycznych.


