Seria: ENERGETYKA z. 66

Nr kol. 562

Edward SZWARC, Arkadiusz DĄBROWSKI Politechnika Warszawska

MODEL DYNAMIKI PIONOWEJ U-RUROWEJ WYTWORNICY PARY DLA ELEKTROWNI JADROWEJ Z REAKTOREM WODNYM CIŚNIENIOWYM

> <u>Streszczenie</u>. Przedstawiono nieliniowy model dynamiki pionowej U-rurowej wytwornicy pary dla elektrowni jądrowej z reaktorem wodnym ciśnieniowym. Opismo procesy cisplne i hydrauliczne z uwzględnieniem asymetrii obciążenia cieplnego w obszarze pęczka grzejnego oraz zmiany krotności cyrkulacji naturalnej czynnika obiegu wtórnego. Zaprezentowano wybrane charakterystyki dynaniczne obliczene na maszynie cyfrowej IBM379/145. Zestaviono najważniejsze wnioski.

Oznaczenia

- c krotność obiegu naturalnego
- d średnica, m
- F powierzchnia ogrzewalna, m²
- H wysokość, m
- i entalpia, kJ/kg
- M strumień masy, kg/s
- Q ilość ciepła, W
- P ciánienie, MPa
- S przekrój, m²
- t temperatura, °C
- V objętość, m³
- y współczynnik rozdziału ciepła

```
z - stopień otwarcia zaworu,
```

```
\infty - współczynnik wnikania olepła, W (m<sup>2</sup>.K)
```

```
α - zastępczy współczynnik wnikania ciepła, W (m<sup>2</sup>,K)
```

- δ grubość, m
- △p spadek ciśnienia
- Λ przewodność cieplna, W (m.K)

Q - gęstość właściwa, kg/m³

Indeksy cyfrowe

Pierwszy 1 - obieg pierwotny 2 - obieg wtórny 0 - metal

Drugi	1		wejście	
	2	e-100	wyjście	
	0		wartość średnia	
Trzeci	1	****	ustalony stan początkowy ($\tilde{l} = 0$)	

Indeksy literowe

- k kanał
- ár áradni
- w wewnetrzny
- z zewnętrzny

1. Watep

Wytwornica pary jest jednym z głównych urządzeń niekonwencjonalnych elektrowni jądrowych z reaktorami wodnymi ciśnieniowymi (PWR, WWER). Tworzy ona wraz z reaktorem zasadniczy zespół w jądrowym układzie wytwarzania pary i jest (rys. i) elementem przynależnym zarówno do obiegu pierwotnego jak i wtórnego elektrowni. Z tego względu dynamika jej ma istotny wpływ na dynamike bloku.

Rys. 1. Uproszczony schemat wytwornicy pary w elektrowni jądrowej z reaktorem wodnym ciśnieniowym

 reaktor, 2 - wytwornica pary, 3 - główna pompa cyrkulacyjna, 4 - stabilizator ciśnienia, 5 - doprowadzenie wody zasilającej, 6 - odprowadzenie pary do turbiny, I - obieg pierwotny, II - obieg wtórny

2. Budowa i działanie pionowej U-rurowej wytwornicy pary

Pionowa U-rurowa wytwornica pary jest aktualnie i będzie w latach 80 najpowszechniej stosowanym typem wytwornicy w blokach jądrowych krajów zachodpich. Również w kraju ten typ wytwornicy jest przedmiotem szeregu prac studialnych. Budowę i zasadę działania wytwornicy przedstawia schematycznie rys. 2.

Ze względu na specyficzny kształt elementów powierzchni ogrzewalnej (U-rurki lub rurki w kształcie litery []) proces wymiany ciepła jest w pionowej U-rurowej wytwornicy pary wysoce zróźnicowany w obszarze obu połówek pęczka grzejnego, co widać wyraźnie na wykresie t - Q (rys. 3). Ma to bezpośredni wpływ na zróżnicowanie natężenia przepływu wody cyrkulacyjnej w przestrzeni międzyrurkowej pęczka grzejnego.

Rys. 2. Eudowa i zasada działania pionowej U-rurowej wytwornicy pary

1 - wlot chłodziwa reaktorowego, 2 - wylot chłodziwa reaktorowego, 3 - komory chłodziwa reaktorowego, 4 - dno sitowe, 5 - pęczek grzejny, 6 - kanał opalowy, 7 - kanał nieogrzewany, 8 - pierwszy stopień separacji wilgoci, 9 - drugi stopień separacji wilgoci, 10 - wylot pary, 11 - wlot wody zasilającej, 12 - płaszcz wytwornicy

Rys. 3. Wykres t - Q wytwornicy (rozwinięcie wzdłuż rurki grzejnej)

3. Wprowadzenie do modelu dynamiki

Prezentowany model dynamiki pionowej U-rurowej wytwornicy pary jest modelem wysoce uproszozonym. Określa on zależności matezatyczne powiędzy przebiegami dynamicznymi parametrów ozynników obiegu pierwotnego i wtórnego na wylocie z wytwornicy a przebiegami parametrów tychże ozymników na wlocie do wytwornicy przy założeniu rosłożonych pojezności cieplnych. Nie zawiera on natomiast żadnych zależności określających dynamiczny stan naprężeń w newralgioznych wyskach konstrukcyjnych wytwornicy. Tak sformułowany model jest modelem w III stopniu uproszczenia, jeżeli przyjąć klasyfikację podaną w [1].

W wyniku realizacji modelu powinny zostać określone:

- a) parametry pary wylotowej,
- b) parametry chłodziwa reaktorowego na wylocie z wytwornicy,
- c) poziom wody w kanale opadowym,
- d) charakterystyczny parametr geometryczny (długość, wysokość) poszczególnych stref wymiany ciepła,
- e) średnie temperatury ścianki rurki pęczka grzejnego w poszczególnych strefach obliczeniowych wytwornicy.

4. Koncepcja modelu i przyjęty model fizyczny wytwornicy

Koncepcja modelu dynamiki rozpatrywanego typu wytwornicy podporządkowana została konieczności określenia parametrów wymienionych w p. 3a-3e z uwzględnieniem problemów wynikających:

- a) ze zmiennej krotności cyrkulacji czynnika obiegu wtórnego,
- b) z asymetrii obciążenia cieplnego w obszarze pęczka grzejnego.

Zależność funkcyjną krotności cyrkulacji czynnika obiegu wtórnego od ozasu przyjęto na podstawie dostępnych danych eksploatacyjnych z terenu elektrowni jądrowych z wytwornicami rozpatrywanego typu [5].

Uwzględniając asymetrię obciążenia cieplnego na obszarze pęczka grzejnego, założono podział pęczka na dwie gałęzie "gorącą" i "zimną" o stałych długościach równych polowie długości średniej rurki pęczka grzejnego. W obszarze każdej gałęzi wyróżniono dwie strefy

- strefę podgrzewu,

- strefe wrzenia,

o długościach zmiennych w funkcji czasu.

Tak więc w obszarze pęczka grzejnego podzielono wytwornice na 4 strefy:

- 1 strefa podgrzewu współprądowego,
- 2 strefa wrzenia przy zgodnym kierunku przepływu ozymników obiegu pierwotnego i wtórnego,
- 3 strefa wrzenia przy przeciwnym kierunku przepływu czynników obiegu pierwotnego i wtórnego.

4 - strefa podgrzewu przeciwprądowego.

Rys. 4. Pionowa Ururowa wytwornica pary: podział na strefy obliczeniowe Poza obszarem pęczka grzejnego, dla celów badania dynamiki poziomu wody w kanale opadowym wyróżniono strefę tego kanału (strefa 5). Wyróżniono również strefę nieogrzewanego kanału między skrajnymi rurkami pęczka grzejnego a separatorami I stopnia, w której w wyniku procesu mieszania czynnika obiegu wtórnego następuje ustalenie parametrów termodynamicznych pary wylotowej (strefa 6).

Model fizyczny wytwornicy przyjęty jako podstawa dla opracowania modelu dynamiki przedstawiony został na rys. 4.

5. Podstawowe założenia przyjęte przy budowie modelu dynamiki

Ograniczone możliwości rozwiązania skomplikowanego układu równań różnieskowych i algebraicznych powstającego w wyniku próby stworzenia modelu dynamiki wytwernicy zmuszają do przyjęcia daleko idących założeń upraszozających. Potwierdzają to źródła literaturowe, np. [3],[4], [6].

W trakcie budowy prezentowanego modelu przyjęto szereg założeń upreszczających wyszczególnionych w [7].

Do najważniejszych należą następujące:

- 1. Znane sa wszystkie interesujące wielkości w ustalonym stanie wyjściowym.
- 2. Wytwornica jest objektem o rozłożonej pojemności cieplnej.
- 3. Płaszcz zewsętrzny wytwornicy jest ścianką adiabatyczną.
- 4. Wężownice pęczka grzejnego są całkowicie zalane wodą obiegu wtórnego.
- Przyjzuje się rurkę grzejną o dlugości średniej jako reprezentatywną dla peczka.
- Przyjmuje się liniowy spadek ciśnienia ozynnika obiegu pierwotnego na długości rurki grzejnej.
- 7. Przyjmuje się stały wydatak w obiegu pierwotnym (M₁₀ = const).

8. Przyjmuje się, że para jest pobierana wyłącznie przez turbinę.

9. Nie uwzględnia się awaryjnych stanów pracy wytwornicy.

6. Podstawowe zależności przyjęte przy budowie modelu

6.1. Równania stanu

Równania stanu dla czynnika jednogazowego zapisano jako funkcje dwu zmiennych typu:

$$\mathbf{F}(\mathbf{x},\mathbf{y},\mathbf{z}) = \mathbf{0} \tag{1}$$

natomiast dla stanu nasycenia jako funkcje jednej zmiennej

$$F(x,y) = 0 \tag{2}$$

135

6.2. Równania zachowania masy

W związku z przyjęciem założenia 7 p. 5 równanie zachowania masy rozpątrzono wyłącznie dla czynnika obiegu wtórnego:

 a) w strefach przepływu jednofazowege (strefy i = 1, i = 4) równanie to ma postać;

$$\frac{d}{d\tau} \left[\Im_{201}(\tau) \cdot \Psi_{201}(\tau) \right] = M_{211}(\tau) \cdot M_{221}(\tau)$$
(3)

b) w strefach przepływu dwufazowego (i = 2, i = 3) równanie zachowania masy sprowadzone do postaci:

$$\frac{d}{d\tau} \left[\hat{\varphi}_{201}^{\prime}(\tau) \cdot \hat{V}_{201}^{\prime}(\tau) \right] = M_{211}(\tau) - M_{221}(\tau)$$
(4)

 c) dla strefy kanału opadowego równanie zachowania masy przyjęto w postaci:

$$\frac{d}{d\tau} = \frac{9}{20(5)(\tau)} \cdot \frac{H_{20}(5)(\tau)}{\tau} \cdot \frac{S_{k}}{\tau} = \frac{M_{21}(\tau)}{\tau} - \frac{M_{22}(\tau)}{\tau}$$
(5)

6.3. Równania zachewania pędu

Równanie zachowania pędu dla czynnika obiegu pierwotnego przyjęto uwzględniając założenie 6 p. 5 w postaci:

$$P_{12i}(\tau) = P_{11i}(\tau) - \frac{P_{10}(\tau)}{r_{10}} \cdot 1 i(\tau)$$
 (6)

Ze względu na charakter procesów (cyrkulacja naturalna czynnika obiegu wtórnego) nie uwzględniono w modelu równania zachowania pędu dla czynnika obiegu wtórnego.

6.4. Równania zachowania energii

a) Dla czynnika obiegu pierwotnego

$$\frac{d}{d\tau} \left[\varphi_{10}_{i}(\tau) \, v_{10i}(\tau) \, \cdot \, i_{10i}(\tau) \right] = M_{10} \left[i_{11i}(\tau) \, - \, i_{12i}(\tau) \right] + \varphi_{10i}(\tau) \quad (7)$$

przy czym równanie (7) jest obowiązujące dla straf 1=4. b) Dla czynnika obiegu wtórnego

bi) w strefie przepływu jednofazowego

$$\frac{d}{d\tau} \left[\varphi_{201}(\tau) \cdot \nabla_{201}(\tau) \cdot \mathbf{1}_{201}(\tau) \right] = \varphi_{201}(\tau) - \left[\mathbb{M}_{221}(\tau) \cdot \mathbf{1}_{221}(\tau) + \mathbb{M}_{211}(\tau) \right]$$

$$\cdot \mathbf{1}_{211}(\tau) \right]$$
(8)

b2) w strefie przepływu dwufazowego.

136

Zgodnie z pierwszą zasadą termodynamiki równanie zachowania energii w strefie przepływu dwufazowego można zapisać w postabi:

$$dQ = dJ - Vdp$$
 (9)

Przy zaniedbaniu członu Vdp, co wg [6] prowadzi dla ciśnieć mniejszych od 7MPa, do błędu nie przekraczającego 2% oraz zastąpieniu wyrażenia $\mathcal{P}_{201}(\gamma)^{\circ} \cdot \frac{1}{201}(\gamma) \cdot \frac{1}{201}(\gamma) \cdot \frac{1}{201}(\gamma) \cdot \frac{1}{201}(\gamma), co dla wa$ runków charakterystycznych dla pracy pionowej U-rurowych wytwornic paryobarcza obliczenia błędem nie większym niż 8%, uzyskuje się równanie zachowania energii w postaci:

$$\frac{d}{d\tau} \left[\varphi_{201}^{\prime}(\gamma) \cdot v_{201}^{\prime}(\gamma) \cdot \frac{1}{201}(\gamma) \right] = Q_{201}(\gamma)^{-M} 221(\gamma)^{\frac{1}{2}} 221(\gamma)^{+M} 211(\gamma)^{\frac{1}{2}} 211(\gamma)$$
(10)

6.5. Równania bilansowe

 a) Równanie bilansu ciepła na granicy: czynnik obiegu pierwotnego - ścianka rurki grzejnej:

$$Q_{10i}(\gamma) = F_{10i}(\gamma) \cdot \alpha_{10i}^{*}(\gamma) \cdot \left[t_{10i}(\gamma) - t_{ooi}(\gamma)\right]$$
(11)

b) Równanie bilansu ciepła dla ścianki rurki:

$$\frac{\mathrm{d}}{\mathrm{d}\tau} \left[\hat{\mathcal{C}}_{0} \cdot \mathbf{V}_{\mathrm{ooi}}(\tau) \cdot \mathbf{c}_{0} \cdot \mathbf{t}_{\mathrm{ooi}}(\tau) \right] = \mathcal{Q}_{10i}(\tau) - \mathcal{Q}_{20i}(\tau)$$
(12)

 c) Równanie bilansu ciepła na granicy: ścianka rurki - czynnik obiegu wtórnego:

$$Q_{201}(\gamma) = F_{201}(\gamma) \cdot \alpha_{201}^{*}(\gamma) \left[t_{001}(\gamma) - t_{201}(\gamma) \right]$$
(13)

W równaniach powyższych wielkości $\alpha_{10i(\Upsilon)}^*$, $\alpha_{20i(\Upsilon)}^*$ definiowano jako

$$\alpha_{i}^{*}(2) = \frac{1}{\frac{1}{\alpha_{i}(\gamma)} + \frac{d_{sr}}{4\pi_{oo}} \ln \frac{dz}{dw}}$$
(14)

Zaś współczynniki wnikania ciepła $\alpha_{i(1)}$ określono na podstawie powszechnie stosowanych zależności.

6.6. Równania specjalne

a) Równanie określające krotność cyrkulacji czynnika obiegu wtórnego Równanie to uzyskano na podstawie interpolacji wyników podanych wg [5]

$$\circ_{20(\Upsilon)} = \circ_{201}(2,963 \text{ M}^3 - 3,444 \text{ M}^2 - 1,967 \text{ M} + 3,464)$$
 (15)

gdzie:

$$M = \frac{M_{22}(\hat{t})}{M_{221}}$$
(16)

b) Rémanie określające współczynnik rozdziału ciepła

$$\mathbf{y}(\tilde{\mathbf{\chi}}) = \frac{Q_{20(2)}(\tilde{\mathbf{\chi}})}{Q_{20(2)}(\tilde{\mathbf{\chi}}) + Q_{20(3)}(\tilde{\mathbf{\chi}})}$$
(17)

e) Równanie poboru pary

Rówanie to przyjęto w oparciu o [2] jako:

$$M_{22}(\gamma) = K \cdot P_{22}(\gamma) \cdot Z_{20}(\gamma)$$
(18)

gdzie:

$$K = \frac{M_{221}}{P_{221} * 2_{201}}$$
(19)

7. Struktura modelu

	Model zbude	owany dl	a celów realizacji obliczeń dynasiłoznyc	h zestawiond	2
z	szeregu makı	robloków	, tj.:		
	makrobloku	"PRIM"	- opisującego dynamiką obiegu piervotne	go dle strei	r
			1-4 wytwornicy,		
	makrobloku	"SELO"	- opisującego dynamikę obiegu stormego	w strefack	2
			przepływu jednofazowago (1,4)		
	makrobloku	"SETP"	- opisującego dynamikę obiegu wiórnogo	w strefack	1
			przepływu dwufazowego (2,3),		
	makrobloku	"SUM"	- opisującego parametry czymnika obiegu	wtórnego e	ţ
			kanale nieogrzewanym (strefa 6),		
	makrobloku	"CHAN"	- opisującego dynamikę czynnika obiegu	wtórnego w	đ
			kanale opadowym (strefa 5),		
	makrobloku	poboru	pary.		

Schemat blokowy wytwornicy z zaznaczonymi wejściami i wyjściami oraz sprężeniami występującymi między makroblokami przedstawiono na rys. 5.

Rys. 5. Schemat blokowej pionowej U-rurowej wytwornicy pary dla celów obliczeń dynamicznych

8. Realizacja modelu

Model dynamiki omawianej wytwornicy zestawiono ze 125 równań, w tej liczbie z 17 równań różniczkowych, zwyczajnych, nieliniowych. Celem wyznaczenia wartości interesujących parametrów zbudowano algorytm obliczeń, który zapisano w postaci programu na emc w języku Fortran IV. Program zrealizowano na maszynie cyfrowej IEM-37"/145. Badano odpowiedzi dynamiczne na zakłócenia wartości pięciu parametrów:

- ciśnienia czynnika obiegu pierwotnego,
- temperatury czynnika obiegu pierwotnego,
- temperatury wody zasilającej,
- wydatku wody zasilającej,
- wydatku pary.

Zakłócenia realizowano jako "skoki jednostkowe" od wartości ustalonej. Charakterystyki dynamiczne dla danych wybranych zakłóceń przedstawiono na rys. 6 i 7.

9. Wnioski

W trakcie budowy i realizacji modelu dynamiki wytwornicy nasunęło się szereg wniosków. Do najważniejszych należą:

- a) dokonany podział wytwornicy w obszarze pęczka grzejnego na 4 strefy wydaje się optymalny. Zwiększenie krotności podziału zmusiłoby do stosowania skomplikowanej obliczeniowo procedury poszukiwania początku strefy wrzenia, co spowodowałoby nadmierną rozbudowę i tak skomplikowanego modelu;
- b) nie wszystkie z badanych zaburzeń parametrów na wlocie do wytwornicy prowadzą do równie istotnych zmian wartości parametrów na wylocie. Z testowanych zaburzeń najsilniejszy wpływ mają zaburzenia temperatury chłodziwa reaktorowego oraz wydatku pary;
- c) stan osiągania nowego stanu równowagi jest różny dla różnych zaburzeń i wynosi od kilku do kilkunastu sekund. Praktycznie dla zaburzeń testowanych po czasie 15 sekund układ osiągał nowy stan ustalony bez względu na rodzaj zaburzenia.

LITERATURA

- Duda M.: Struktura, zakres i założenia modelu matematycznego dynamiki podstawowych urządzeń EJ z reaktorem wodno-ciśnieniowym. Instytut Energetyki, 1974 (nie publikowane).
- [2] Girszfeld W.I., Kulikow W.S.: Issledowanie manevrennosti bloka 200 MW, Tiepłoeniergetika, 1969 nr 1.
- [3] Rubek J.: Programa dla razozeta dinamiczeskich charakteristik parogeneratora na CUM pri ucztywanii osnownych nieliniejnostiej. Sympozjum RWPG. Warszawa, 1973 (nie publikowane).
- 4 Sanathanan C.K.: Dynamic modeling of a large once-trough steam generator. Nuclear Engineering and Design, 1972, t. 23 nr 3.
- [5] Shenk H., Mayr A., Pickel E.: Erfahrungen mit den Dampferzeugern im Kernkraftwerk Obrigheim... Mitteilungen der VGB, 1971 nr 3 s. 175-181.
- [6] Spasskov V.P. i inni: Matematiczeskaja model dla issledovania dinamiki processov w I konture i parogeneratorach ustanovki s reaktorom tipa WWER. Sympozjum RWPG. Warszawa 1973 (nie publikowane).
- [7] Szwarc E.: Nieliniowy model dynamiki pionowej U-rurowej wytwornicy pary dla elektrowni jądrowej z reaktorem wodnym ciśnieniowym. Instytut Techniki Cieplnej, Politechnika Warszawska 1975 (nie publikowane).

МОДЕЛЬ ДИНАМИКИ ВЕРТИКАЛЬНОГО U-ОБРАЗНОГО ПАРОГЕНЕРАТОРА ДЛЯ АТОМНОЙ ЭЛЕКТРОСТАНЦИИ С РЕАКТОРОМ ТИПА ВВЭР

Резрме

Представлена нелинейная модель динамики U-образного вертикального парогенератора для атомной электростанции с реактором типа BB3P. Описаны процессы теплообмена и гидравлики с обращением внимания на асимметрию тепловой нагрузки в пространстве греющего пучка и на изменение кратности естественной циркуляции. Указаны некоторые динамические характеристики. Подчеркнуты главные выводы.

THE COMPLEX MODEL OF DYNAMICS OF VERTICAL U-TUBE STEAM GENERATOR FOR A NUCLEAR POWER STATION

Summary

Nonlinear model of vertical U-tube steam generator for PWR atomic power plant dynamics was shown. Heat transfer and hydrodynamic processes with taking into account asymmetric heat load in the area of tubes bundle and a change of natural circulation ratio was described Selected dynamic characteristics and main conclusions are presented.