Seria: ENERGETYKA z. 67

Nr kol. 563

Marek JANUSZ, Janusz WANDRASZ Instytut Techniki Cieplnej

INSTALACJA DOŚWIADCZALNA DO BADANIA KONWEKCJI SWOBODNEJ W WYPEŁNIENIU REGENERATORA

Streszczenie. Badania modelowe współczynnika wnikania ciepła w kratownicach regeneratorów przeprowadzono w większości przypadków dla przepływów burzliwych. Wpływ konwekcji swobodnej na \mathfrak{a}_k nie miał w tym przypadku większego znaczenia. Dla przepływów czynnika, dla których Re< 2000 wpływ konwekcji swobodnej jest znaczny. Dla określenia jej wpływu na współczynnik wnikania ciepła \mathfrak{a}_k zaprojektowano i wykonano instalację doświadczalną.

1. Metoda badań

Zbudowana instalacja służy do badania wpływu konwekcji swobodnej na wepółczynnik wnikania ciepła α_k , który wyznacza się metodą bezpośrednią z równania Newtona.

$$\dot{Q} = Fa_{L}(t - \vartheta), \qquad (1)$$

gdzie:

Q – strumień ciepła, W,

F - pole powierzchni omywanej przez płyn, m²,

t, v - temperatura strugi płynu i powierzchni ściany. K.

Zaetosowanie równania Newtona (1) do wyznaczania współczynnika wnikania ciepła w rozpatrywanej kratownicy regeneratora narzuca konieczność

pomiaru strumienie przekazywanego ciepła, temperatury strugi płynu oraz temperatury powierzchni ściany.

Przy założeniu równomiernego rozkładu strug płynu [5] i strumieni ciepła w przekroju czynnym kratownicy, można wykorzystać symetrię i wydzielić elementy powtarzające się, posiadające jednakowy rozkład temperatur na powierzchni (rys. 1) [7], [9].

W układzie pomiarowym zastosowano belkę grzejną grzaną elektrycznie prądem stałym. Sumaryczną ilość ciepła przekazywanego przez główną belkę pomiarową wyznacza się z pomiaru mocy prądu zasilającego układ. Bilans energii głównej belki pomiarowej kratownicy prowadzi do równania:

$$N = F \alpha (v - t_m) + \sum \dot{Q}_{ri} + \sum \dot{Q}_{\lambda} + \dot{Q}_{ot}, \qquad (2)$$

gdzie:

α – sumaryczny współczynnik wnikania ciepła dla belki, W/m² K,

¹⁹ – średnia temperatura ścianki, K,

t_m – średnia temperatura strugi przepływającego gazu, K,

- F pole powierzchni belki omywanej przez płyn, m²,
- N moc prądu grzejnego (dla głównej belki pomiarowej), W,
- $\sum \dot{\mathbb{Q}}_{\lambda}$ suma strumieni ciepła przewodzonego do sąsiednich belek grzejnych, W,

 $\dot{\mathbb{Q}}_{a+}$ — strata ciepła do otoczenia belki pomiarowej, W.

we ciepto prekazane na drodze promieniowania

Rysunek 2 przedstawia schemat przepływu ciepła opisanego równaniem (2). Właściwy dobór materiałów izolacyjnych, izolujących element grzejny od ścianek modelu oraz wstępne pomiary pozwalają na pominięcie w rozważaniach strumienia ciepła Q_{ot}. Pominięcie tej wielkości możliwe jest z uwagi na konstrukcję samej belki, składającej się z płaszcza miei umieszczonych w dzianego niej elementów grzejnych, Brak pełnego wypełnienia,jak w [9],

zmniejsza powierzchnię kontaktu belki ze ścianą boczną, a wypełnienie zakończeń belki materiałem izolacyjnym ogranicza wymianę ciepła między piaskiem i ścianką wewnątrz układu (rys. 6).

2. Zakres badań

Uzyskane z równania (2) wartości α będące funkcją α radiacyjnego, α konwekcji wymuszonej i α konwekcji swobodnej są zależne od prędkości strumienia czynnika, jego własności fizycznych oraz geometrii układu. Zależności te zgodnie z teorią podobieństwa można przedstawić w postaci równania kryterialnego: Instalacja doświadczalna do badania...

$$Nu_{d} = f(Re_{d}, Gr_{d}, Pr, d/b, n, \zeta), \qquad (3)$$

gdzie:

Nud, Red, Grd	- liczby Nusselta, Reynoldsa, Grashoffa odniesione do
	odległości cegieł,
Pr	– liczba Prandtla,
d/b	– stosunek odległości cegieł do ich szerokości,
n	– kolejny numer warstwy,
5	– bezwymiarowa szorstkość belek.

Celem ustalenia postaci równania (3) prowadzi się badania zmieniając wartości liczb Reynoldsa w zakresie (50÷2500), liczb Grashoffa (500 ÷ 100000) oraz stosunku d/b = (0,75÷2). Wpływ liczby Pr i wielkości n i 5 może być uwzględniony w oparciu o [7], [9]. Celem wyeliminowania przypadkowych błędów pomiar każdej zmiennej wartości (Re, Gr, d/b) przeprowadza się wielokrotnie.

3. Opis zastosowanej instalacji doświadczalnej

Stanowisko badawcze przedstawione na rys. 3 składa się z dwu części: komory modelowej (10) oraz układu doprowadzającego powietrze modelujące.

Rys. 3. Schemat stanowiska badawczego

1 – wentylator, 2, 3, 7 – zawory, 4 – rotametry, 5 – przewody, 6 – podgrzewacz powietrza, 8 – termometry, 9 – siatki oporowe, 10 – komora badawcza

Komora modelowa została wykonana z blachy stalowej jako układ dzielony trójelementowy. Posiada podwójne ścianki, między którymi znajduje się izo-

63

lacja z wełny mineralnej (ma to na celu ograniczenie strat ciepła do otoczenia).

Przekrój komory jest kwadratowy o wymiarach 300 x 300 mm. Podzielność komory umożliwia łatwiejsze wykonanie podłączeń elektrycznych. Wykonanie komory o przekroju kwadratowym wymagało zastosowania układów dolotowych zapewniających równomierny rozpływ czynnika. W oparciu o [4] zaprojektowano w górnej i dolnej części modelu układy trzech sit zapewniających równomierny rozpływ czynnika po csłym przekroju [5]. Górny i dolny element komory (10a) jest elementem rozbiegowym.

Powietrze do układu dopływa przewodami stalowymi o średnicy 2". Do zasilania układu zastosowano wentylator o wydajności $\mathring{V} = 380 \ m_n^3/h$ i sprężu $\bigtriangleup p = 5000 \ \frac{N}{m^2}$. Ze względu na zmienne zapotrzebowanie powietrza w układ wbudowano zawory upustowe oraz przewód obejściowy umożliwiający przepływ czynnika przez komorę badawczą z góry w dół i z dołu do góry.

Regulację temperatury dopływającego czynnika umożliwia grzejnik elektryczny (poz. 6). Pomiar strumienia przepływającego czynnika dokonywany jest przy użyciu rotametrów typu RIN i ROL o różnych zakresach. Wypełnienie modelu stanowią trzy rodzaje belek wykonanych w skali 1:10 w stosunku do obiektu rzeczywistego. Belki modelowe mają wymiary 280 x 20 x 16 mm, przy czym grzejne i pomiarowe wykonano z miedzi o grubości ścianki 2 mm, a pozostałe stanowiące wypełnienie, z masy ceramicznej wydrążonej, celem zmniejszenia bezwładności cieplnej układu (rys. 4). W modelu zastosowano

Rys, 4. Belki modelowe a) grzejna i pomiarowa, b) belka wypełnienia

17 warstw belek, z czego 12 warstw stanowią belki imitujące wypełnienie (po 6 warstw od góry i od dołu). Reszta to belki grzejne i pomiarowe, przy czym te ostatnie rozmieszczono w ten sposób, że w warstwie środkowej znajdują się trzy belki pomiarowe, a w pozostałych po jednej. Główna belka pomiarowa zajmuje położenie centralne w środkowej warstwie belek grzejnych. Belki w komorze modelu mogą być ustawione w układzie przesuniętym lub nieprzesuniętym (rys. 5).

Rys. 5. Wypełnienie regeneratora a) układ nieprzesunięty, b) układ przesunięty

Układ pomiarowy komory obejmuje zasilanie belek grzejnych i pomiar mocy, pomiar temperatury ścianek belek pomiarowych oraz pomiar temperatury czynnika modelującego.

Grzanie belek grzejnych i pomiarowych wykonano za pomocą drutu oporowego (chromonikielina Ø 0,5 mm) poprowadzonego w osłonie ceramicznej. Przestrzeń wolne wewnątrz belki została wypełniona piaskiem kwarcowym. Belki te jednostronnie wyposażono w začiski umożliwiające podłączenie zasilania. Opory elektryczne elementów grzejnych są jednakowe dla wszystkich belek grzejnych i pomiarowych.

Belki pomiarowe mają dodatkowo umieszczone termopary pozwalające na pomiar temperatury ścianek. Każda z tych belek ma umocowane na swojej powierzchni od 8÷24 termopar miedź-konstantan. Temperaturę czynnika modelującego mierzy się przy użyciu siatek oporowych na dolocie i wylocie czynnika z komory.

Schemat elektryczny stanowiska pomiarowego przedstawiono na rys. 6, a na rys. 7, 8 pokazano schemat belki grzejnej i rozmieszczenie termopar.

Dla każdej belki w oparciu o pomiary została sporządzona charakterystyka przedstawiająca zależność siły termoelektrycznej termopar od temperatury ścianek belki.

4. Wnioski

Przeprowadzone pomiary wstępne pozwoliły na określenie strat ciepła do otoczenia. Straty średnie dla całego układu nie przekraczają 1%. Główna belka pomiarowa ma względne straty ciepła mniejsze od strat wyliczonych, co związane jest z jej szczególnym położeniem w układzie grzejnym.

Wstępne pomiary pozwoliły również określić miejsca zamocowania termopar na pozostałych belkach pomiarowych. Pomiary temperatur przy użyciu

65

Rys. 6. Schemat elektryczny stanowiska pomiarowego

Rys. 7. Schemat belki grzejnej

1 - płaszcz miedziany, 2 - elementy ceramiczne z drutami oporowymi, 3 - zaciski mocujące, 4 - płytka izolacyjna, 5 - piasek kwarcowy

Rys. 8. Rozmieszczenie termopar na powierzchni belki

tych termopar pozwolą na określenie przepływu energii przez promieniowanie z głównej belki pomiarowuj.

LITERATURA

- L Eckert E.B.C.: Introduction to the Transfer of Heat and Mass, Mc Graw Hill Book Company, 1950.
- [2] Hausen H.: Wärmeubertragung im Gegenstrom, Gleichstrom und Kreuzstrom. Techn. Physik Springer Verlag Berlin-Göttingen-Heideberg - München 1950.
- [3] Hobler T.: Ruch ciepła i wymienniki, WNT, Warszawa 1968.
- [4] Idielczik I.E.: Aerodynamika promyszliennych aparatow, Moskwa 1964.
- [5] Janusz M.: Rozkład prędkości strugi czynnika w modelu regeneratora w druku.
- [6] Johnstone R.E., Thring M.W.: Instalacje doświadczalne, modele i metody powiększania skali, PWT, Warszawa 1960.
- [7] Niemiec M.: Badania modelowe współczynników wnikania ciepła i oporu przepływu w kratownicach regeneratorów – praca doktorska, ITC, Gliwice 1974.
- [8] Romer E.: Miernictwo przemysłowe, PWN, Warszawa 1972.
- [9] Szargut J., Wandrasz J.: Badania konwekcyjnego współczynnika wnikania ciepła w kratownicy regeneratora, Archiwum Hutnictwa, Warszawa 1972.

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА ДЛЯ ИССЛЕДОВАНИЯ СВОБОДНОЙ КОНВЕКЦИИ В РЕШЕТКАХ РЕГЕНЕРАТОРОВ

Резюме

До настоящего времени процессы теплообмена в решётках регенераторов исследовались для условий вынужденной конвекции. Влияние свободной конвекции на коэффициент конвективного теплообмена в этих случаях весьма не существенно. При движении газов, определяемых числами Re 2000, влияние свободной конвекции значительно. В работе приводится схема и описывается принцип действия установки, предназначенной для исследования коэффициента теплообмена в решётках регенераторов с учётом свободной конвекции.

EXPERIMENTAL INSTALLATION FOR NATURAL CONVECTION INVESTIGATION IN THE REGENERATOR CHEQUERS

Summary

The model investigations of the heat penetration coefficient α_k in the regenerator chequers were carried out mainly for the turbulent flow. The influence of the natural convection on the α_k was negligible in

this case. However, for the flowing medium at (Re) <2000, the influence of the natural convection is significant. The experimental installation for the determination of the influence of natural convection on the heat penetration coefficient was designed and constructed.