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SCHEDULING COUPLED TASKS ON A SINGLE PROCESSOR

Summary. This paper considers a problem of coupled task scheduling on one
processor, where all processing times are equal to 1, the gap has exact length
h, precedence constraints are strict and the criterion is to minimize the schedule
length. This problem is introduced e.g. in systems controlling radar operations.
We show that the general problem is NP-hard. This paper also shows a fast
approximation algorithm for chain precedence constraints.

SZEREGOWANIE ZADAN SPRZEZONYCH NA JEDNYM PROCESORZE

Streszczenie. W referacie zaprezentowano problem szeregowania zadan sprzezo-
nych na jednym procesorze, z jednostkowymi czasami wykonywania operacji, stalg
dtugoscia przerwy pomiedzy operacjami, gdzie celem jest minimalizacja dtugosci
uszeregowania. Problem ten czesto wystepuje w praktyce w systemach sterowania
urzadzeniami radarowymi. W referacie pokazujemy NP-trudno$¢ problemu w przy-
padku ogoélnych ograniczen kolejnosciowych oraz szybki algorytm aproksymacyjny
dla ograniczen kolejnosciowych typu ,tancuch”.

1. Introduction

A scheduling problem is, in general, a problem answering a question of how to allocate
some resources over time in order to perform a given set of tasks [1], In practical applica-
tions resources are processors, money, manpower, tools, etc. Tasks can be described by a
wide range of parameters, like ready times, due dates, relative urgency factors, precedence
constraints and many more. Different criteria can be applied to measure the quality of a

schedule. The general formulation of scheduling problems and the commonly used nota-
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tion can be found in books such as [5], [15], [2], [14], [3] and [4]. A survey of the most
important results is given in [10].

One branch of scheduling theory is concerned with scheduling of coupled tasks. A
task is called coupled if it contains two operations where the second has to be processed
some time after a completion of the first one. This problem, described in [16] and [17],
often appears in radar-like devices, where the first operation is the transmission of an
electromagnetic pulse and the second is the reception of its echo. Several algorithms
designed to solve the problem of radar pulse scheduling can be found in [8] and [11].

The complexity of various scheduling problems with coupled tasks has been studied
in [12]. Although most of the cases are NP-hard [12], some polynomial algorithms were
found in [13].

A coupled task scheduling problem with variable length gap is surveyed in [9] and [6].
NP-hardness of this case is proved in [18], where some interesting connections between
coupled tasks and flow shops are also given.

In this note, we complement the above results by presenting the NP-completeness
proof for the problem of scheduling coupled tasks on a single processor, with all processing
times equal to 1, exact, integer gap length, general strict precedence constraints and the
optimization criteria of minimizing the schedule length.

An organization of the paper is as follows. The problem is formulated in Section 2. The
NP-hardness proof is presented in Section 3. The approximation algorithm is presented

in Section 4. We conclude in Section 5.

2. Problem formulation

We consider the problem of scheduling n coupled tasks on a single machine, where
each coupled tasks Tj consists of two operations Tu and TJ2 and a gap between them.
During the gap, another task can be processed. Let p,i and p,2 denote the processing
times of operations and Ti2, respectively.

The gap is exact when operation Tj2 has to start exactly /q units of time after the
end of operation Th, where /i< denotes a length of the gap. In this paper, the only cases

considered are those where all hi are equal, i.e. /g =h,i—1,2,...,n.
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Precedence constraints of coupled tasks can be strict or weak. Tj -< Tj means that
Ti2 -<Tji if precedence constraints are strict, and Tj2-<Tj\ A Tv <T,2 if they are weak.

The special case of a coupled task problem involves identical tasks. Commonly, such
tasks are denoted by (pi,h,p2), where p\ = pu, p2= Pi2, h = hi forall 1< i <n.

Adapting the commonly accepted notation for scheduling problems [7], the scheduling
problem considered in this paper can be denoted by 1) —eoupled, strict prec,

exact gap\Cmax, which means:

e There is one processor in a system.
e Tasks are coupled and identical, with processing times pn = pi2 = 1, Vi<j<,,
e Gaps are exact and have uniform length h.

« Every operation has a processing time equal to 1, and the length of
¢ Precedence constrains are strict.

e« The optimization criterion is to minimize the schedule length Cmax — max{fj2},

where tj2 is a completion time of Tj (its second operation).

3. NP-hardness of the general case

In case where precedence constraints are general the problem of scheduling coupled
tasks on a single processor is NP-hard even for unit processing times. We will prove this

by a series of lemmae showing NP-hardness of some intermediate problems.

Lemma 1. Problem of Balanced Coloring of Graphs with Partially Ordered Vertices is
NP-hard.

Proof: The problem of Balanced Coloring of Graphs with Partially Ordered Vertices
(BCGPOV for short) can be stated as follows:

Instance: A directed, acyclic graph G = [V,E) where IV* = q. (It is clear that the arcs
define a partial order in set V.)

Question: Can the vertices of G be colored with | colors such that no pair of adjacent

vertices shares the same color and exactly q/l vertices are colored with the same color.
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(We will call such a coloring the balanced coloring.) W ithout loss of generality we can

assume that q/l € Z+.

Firstly, we prove that BCGPOVbelongs to class NP. To verify a solution of BCGPOV

is enough to verify that

1. No pair of adjacent vertices is monochromatic. Because each vertex has no more

than (g — 1) adjacent vertices the complexity of this step is 0(q2).
2. Exactly g/l vertices are colored with each color. Complexity of this step is 0(q).

A solution of BCGPOV can be verified in polynomial time, which means that the problem

BCGPOYV belongs to class NP.

In order to prove NP-completeness of the problem BCGP OV we will use the 3-Partition
problem defined as follows:
Instance: A collection of 3r items, bound B e Z+, and size s(a7) 6 Z+, Vayga such that
B/4 < s(aj) < B/2 and such that YlajeAs(ai) ~ r”-
Question: Can A be partitioned into r disjoint sets Ai,...,A r such that for 1 < i <,

s(ai) = & (note that each A- must contain exactly three elements from A)?
The transformation: For any instance of the 3-Partition problem let us define the corre-

sponding instance of the BCGPOV problem as follows:
* q=3r2+rB
e |I=r
e For each item a, e A, 1< j < 3r let us construct graph Gj in the following way:

1. Construct complete graph Kj. on r vertices. Denote one vertex of K{ by Vj.
2. Construct set of s(a;) independent vertices.
3. Create all possible edges (vx,vy) such that vx € K f vx j* Vj and vy e

Graph Gj is fully defined by a triple (j,r, s(aj)) so the construction has the com-

plexity of 0(log max{j, r,s(aj)}). It is clear that edges of graph Gj can be directed

to define a partial order in the set of vertices of Gj.

An example of such a graph is shown in Fig. 1
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Fig. 1. Anexample of graph Gj, where ¢ — 4,s(a.j) = 3
Rys. 1 Przyklad grafu Gj, dlag = 4,sCLj) = 3

The complexity of this transformation is O(r + log B).

It is clear that Gj can be colored with r colors only in the following way: each vertex
from K8 has a different color and all vertices from are colored with the same color
as vertex Vij.

No two vertices of any subgraph K}, 1 < j < 3r can share the same color, so after
coloring of all K3, exactly 3r vertices are colored with the same color. All vertices of

are connected with all but Vj vertices of K3, so all vertices of D3 y have to be
colored with the same color as vertex Vj. So, the set of vertices of any has to be
monochromatic.

Let Ai,...,Aj be a solution for the given instance of 3-Partition problem and let
Ai = {a<(i),a,(2), a;(3)}. Let us denote Si = G;(i)UG,-(2UGi(3). G can be colored such that
sets Di and Dj share the same color if and only if both D, and Dj are in the same Si. It
means that for all i exactly s(ai(i)) + s(aj(2j) + s(a;(3)) = B vertices of sets D, so exactly
3r + B vertices of graph G, are colored with each color.

On the other hand, let Si,S2,mm ,Sr be a disjoint sets of vertices of graph G, such
that V{G) = 5Zi=i s6ii each vertex in Si is colored with i-th color and V; |5;] = 3r + B.
Let SP be a subset of Si that contains only vertices belonging to subgraphs. Si

has to contain 3r vertices belonging to K3, so |5D] = B for each i. For each fea-
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sible coloring each is monochromatic, so Vi<j<3r 3i<<<r D8(@j) e "i- Because
Vi<j<3r 5/4 < s(a.j) < 5/2 each Si has to contain exactly 3 subgraphs ij — 1,2,3.
So, we can denote Ai — {a;y) :j = 1,2,3},i = 1,2,...,r and this is the solution of the

3-Partition problem.

O

Now, we will show that problem BCGPOVpolynomially transforms to our scheduling

problem.

Lemma 2. The problem of Balanced Coloring of Graphs with Partially Ordered Vertices
polynomially transforms to 1|(1, h, 1) - coupled, strict prec, exact gap\Cmax.

Proof: Let G = (V,E) be an instance of problem BCGPOV. Let it contain all tran-
sitive arcs. Let us define a corresponding instance of 1|(1,/i, 1) - coupled, strict prec,

exact gap\Cmax problem in the following way:
s n=gq
e h=gqg/ll —1
» For each vertex n-of graph G define the coupled task T,

¢ For each arc {vi,Vj) of graph G define an arc T{ -<7) of precedence constraints in

the scheduling problem.

ey~ Gmax 2n.

Let us assume that a balanced coloring of G exists. Let S\, be subsets of
V{G) such that U|=1 S, —'F(G), and all vertices that belong to Si are colored witl
i-th color and Vi<i<; |Si| = qg/l. Sets St are partially ordered because vertices of C

partially ordered and G contains all transitive arcs. Schedule sets Si in accordance to the
partial order using the following algorithm:

Algorithm 1

begin
s:=0
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repeat
Get a task Tj 6 Si.

Let s be the starting time of the task Tj.

Si = SJT]
s:=s+ 1
until Si~* 0

end;

The schedule generated in such way is shown in Fig. 2.
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Fig. 2. Schedule ofset S{ = {T~, Tj,, Tc, Trf, Te} whereh = 4
Rys. 2. Uszeregowanie zbioru = {TATj, Tc, Trf, Te} diah = 4

This procedure guarantees that no precedence constraint will be violated. The schedule
contains no idle intervals, so its length isy.

On the other hand, let us assume that a schedule of length y for the given instance of
the coupled tasks problem exists. The schedule does not contain idle intervals, so it has
to be a sequence of segments as shown in Fig. 2. Each segment contains h+ 1 independent
tasks, which means that the corresponding vertices in G are also independent. So, the
vertices from one segment can be colored with the same color, which means G can be

colored with n/(h + 1) colors such that exactly h+ 1 vertices shares the same color.

Now we can conclude.
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Theorem 1. Problem I|(l,/i, 1) —coupled,strict prec, exact gap\Cmax is NP-hard.

Proof: Follows immediately Lemmae 1 and 2.

O

4. The approximation algorithm

In this section we present a fast approximation algorithm for the problem of scheduling
coupled tasks on a single processor, with all processing times equal to 1, exact, integer
gap of length 2k, general strict precedence constraints and the optimisation criteria of

minimising the schedule length.

4.1. The algorithm

Let c denote the number the number of chains in precedence graph. Let Sj and fj
denote respective starting and finishing times of chain Cj. An instance of the problem
1|(1, 2k, 1) —coupled, strict chains, exact gap\Cmax is fully described by given lengths of
the chains, so it can be encoded using O(logn) bits.
Algorithm 2.
Input: A set of chains of coupled tasks.
Step 1: We can consider a chain of coupled tasks as one preemptive task, so our problem
converts to 2k + llpmtniICmax with preemptions allowed only in integer points of time.
Step 2: Sort the preemptive tasks in descending order of their lengths.

Step 3: Compute value:

(1)

Step 4: Solve the preemptive problem using McNaughton’s rule in time window of length
D. Denote a completion time of the last task processed on machine Pi by

Step 5: If chain C) is scheduled in such a way that
Sj < bi < fj irj ©
forany 1< i < 2k + 1,it should be split into two subchains Cj and Cj, whose processing

finishes and starts at time 6; respectively. Note that no chain splits into more than 2k +1

subchains.
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Output 61, &ieseihk-i and a set of fours (j,i, sj,/]) where j is the number of chain, i
is the number of subchain, s- and /j are respective the start ancfthe finish time of the

subchain in the preemptive schedule.

The total complexity of the algorithm is

for fixed k.

4.2. Segments
Now we have the schedule still in the preemptive form. It should be converted back to the

coupled tasks form by choosing the right type of schedule (called segment) in the following way:

¢ Sl: Schedule all subchains Cj such that /j < @afc+i in the way shown in Fig. 2.
The coupled tasks schedule of this part has length of 2(2k + 1)62*41 and contains no idle

time units.

e S2: Compute
62* = 79k —R(t>2k —62*4-1, 2k + 1)

where R(x,y) is the remainder of division x by y. Schedule all subchains Cj such that

s) > 62*41 and /j < b2 in the way shown in Fig. 3.

Notice that 2fc+ 1 such transformations covers entire rectangular area in the preemptive
schedule, as shown in Fig. 4. The coupled tasks schedule of this part has length of
2+2k(2k + I)(b2k - 62*41) + 2 and contains 2 units of idle time regardless of the length of
this part.

« Si't Schedule all subchains Cj such that sj > B2k and fj < b in form of segment Si
(shown in Fig. 2) without the task E, which renders 1 unit of idle time per segment. The
couple tasks schedule of this part has length (2-2k + 1)(&2jt- b2k) and contains (62* - B2k)
idle time units. Off course (b2k —H2k) < 2k.

e S3: Schedule all subchains Cj such that sj > b2k in the way shown in Fig. 5. The
coupled tasks schedule of this part has length of (2k + 2)(61 - &f)+ 2 emax{z : 2 <
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Fig. 3. Conversion to schedule type (segment) S2. Only one time slot is converted (using a task
borrowed from the next one) in the figure. In the next time slot the two tasks should be

taken from another processor
Rys. 3. Konstrukcja segmentu S2. Wykorzystano jedna jednostke czasu z uszeregowania dla pro-

blemu 2k + I\prntn\cmax ijedno zadanie “pozyczone” z kolejnej jednostki

Fig. 4. A few “time slots” that are used one after another to construct a segment S2. Notice that

the shape remains rectangular if its length can be divided by 2k + 1 without remainder
Rys. 4. Po utworzeniu 2fc + 1 kolejnych segmentéw S2, wykorzystana czes$¢ uszeregowania dla

problemu 2fc + I\pm tn\C max odzyskuje ksztatt prostokata

this part if b~-i = b\. If b*-i < b\ the number of idle time slots is not important —

the machine Pl process only one long chain, so shortening of the schedule will violate

precedence constraints.

4.3. Worst case analysis

There are only three following forms of the preemptive schedule possible, in general.

e Apart Si followed by a part S2 followed by a part Si'. The schedule contains no more

than 0 + 2 + 2fc units of idle time, so

Cma-CSL<2k +2



Scheduling coupled tasks on a single processor 63
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Fig. 5. Conversion to schedule type (segment) S3
Rys. 5. Konstrukcja segmentu S3

A part 52 followed by a part 51' followed by a part 53. In this case &k-i = &i, so the

schedule contains no more than 2 + 2k + 2k units of idle time, so

QreX- C A =4k +2

A part 53 only. In this case the instance contains at least one chain of length 6,, so
N>(2*+2)6,
The length of schedule generated by this algorithm is
Cmax = (2fc+ 2)6, + 2max{i:2<i<2k- 1 A 6 =26}

SO

Cmax-C "x <4k-2

To summarise

Onax- CZX<4c+2

So, the solution generated by this algorithm can be longer than the optimal one by a constant

number of time units (the k is fixed) regardless of the size of the instance.
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5. Conclusions

In the paper, scheduling of coupled tasks has been considered. General precedence con-
straints resulted in a NP-hardness of the problem, even for unit processing times and equal gap
lengths for all the tasks. The other cases, especially where precedence constraints are chain-like
or tree-shaped are still open.

In this paper is also shown the approximation algorithm of complexity O(clogc) that gen-
erates solutions with fixed error comparative to the optimal ones is given for the strict chains
precedence constraints and even length of the gap. The algorithm can be also applied for in-forest

and out-forest precedence constraints.
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Streszczenie

W referacie zaprezentowano problem szeregowania zadan, zwanych zadaniami sprze-
zonymi, sktadajacych sie z dwdch operacji, przy czym wykonywanie drugiej z nich moze
zosta¢ rozpoczete po uptywie okreslonego czasu od momentu zakonczenia pierwszej op-
eracji. Problem szeregowania zadan sprzezonych jest czesto spotykany w praktyce w
systemach sterowania urzadzeniami radarowymi, gdzie pierwszg operacja jest wysianie
impulsu radarowego, a druga odbiér powracajacego echa.

W referacie skupiono si¢ na problemie szeregowania zadan sprzezonych na jednym
procesorze, gdzie czasy wykonywania wszystkich operacji sg jednostkowe, dtugo$¢ przerwy
pomiedzy operacjami jest stata, a celem jest minimalizacja dtugos$ci uszeregowania.

Najpierw skupiliSmy sie na przypadku ogolnych ograniczen kolejnosciowych i wykaza-
lisSmy, ze dla ogo6lnego grafu ograniczen kolejnosciowych problem szeregowania zadanh
sprzezonych jest NP-trudny, nawet przy statej dtugosci przerwy i jednostkowych cza-
sach wykonywania operacji. W dowodzie wykorzystaliSmy jako posredni etap problem
sprawiedliwego kolorowania graféw z czesciowo uporzagdkowanymi wierzchotkami. Naj-
pierw pokazaliSmy pseudowielomianowg transformacje problemu tréjpodziatu zbioru do
problemu sprawiedliwego kolorowania graféw, a nastepnie wielomianowg transformacje

problemu kolorowania graféw do danego problemu szeregowania.
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W dalszej kotejnos'ci przedstawiliSmy szybki algorytm znajdujacy przyblizone roz-
wigzanie naszego problemu szeregowania zadan sprzezonych dla przypadku, gdy graf
ograniczen kotejnosciowych ma posta¢ tancuchow, a dtugos$¢ przerwy pomiedzy operac-
jami jest parzysta. DokonaliSmy analizy najgorszego przypadku i wykazaliSmy, ze btad
bezwzgledny rozwiazania generowanego przez ten algorytm jest nie wiekszy od pewnej

statej niezaleznie od wielkosci instancji.



