
ZESZYTY NAUKOW E POLITECHNIKI ŚLĄSKIEJ
Seria: AUTOMATYKA z. 134

2002
N r kol. 1554

Wojciech BOŻEJKO1, Mieczysław WODECKI2
'Politechnika Wrocławska
2Uniwersytet Wrocławski

PARALLEL ALGORITHM FOR SOME SINGLE MACHINE
SCHEDULING PROBLEMS

S um m ary. Problem o f scheduling a single machine to minimize total weighted late
job can be described as follows: there are n jobs to be processed, each job has an
integer processing time, a weight and a due date. The objective is to minimize the total
weighted late job, where the late job is performed after its due date. The problem
belongs to the class o f NP-hard problems. In the paper, we propose sequential and
parallel (for SIMD model computing) branch and bound algorithms based on
elimination criteria. Finally, the computation results and discussion o f the performance
o f algorithms are presented.

ALGORYTM RÓWNOLEGŁY DLA PEWNEGO JEDNOMASZYNOWEGO
PROBLEMU SZEREGOWANIA ZADAŃ

Streszczenie. W pracy zajmujemy się problemem optymalizacji kolejności
wykonywania zadań na jednej maszynie, w którym kryterium optymalności jest suma
kosztów zadań spóźnionych. Jest on oznaczany przez n|l||Ew,Ł// i należy do klasy
problemów silnie NP-zupelnych. Przedstawiamy algorytm równoległy (dla modelu
SIMD) oparty na metodzie podziału i oszacowań, w którym wykorzystano kryteria
eliminacyjne.

1. Introduction

The single machine weighted number o f late jobs problem known as «|l|lZwiU/ is NP-

hard (Karp [3]). This problem can be stated as follow: Each o f « jobs (numbered 1 , . . . , n) is to

be processed without interruption on a single machine which can handle only one job at a

time. For each job i let p it dt w, be as follows: processing time, due date and weight (which is

the penalty incurred if the job is completed after its due date). The objective is to sequence the

jobs so that the total penalty is minimized.

82 W. Bozejko, M. Wodecki

In the literature there are known optimal algorithms to solve the above problem which

use dynamic programming (Lawler and Moore [4] - pseudopolynomial algorithm which

requires 0 (« m in { ^ .p y ,m a x y{d; }}) time, Sahni [8] - when all weights are integer which

requires 0 (n m in{]>^p j , maXj{dj}}) time). There are also branch and bound

algorithms (Villarreal and Bulfin [10], Potts and van Wassenhowe [5],[6]). However

considering that these algorithms are memory and time expensive it is very hard to calculate

bigger problems. Therefore, in the last years we can see intensive development of

approximate algorithms especially those which use various ideas o f local search (tabu search,

simulated annealing).

Sections 2 and 3 contain problem description and methods to solve them. Next sections

describe branch and bound algorithm and computer simulations o f sequential and parallel

algorithms.

2. Problem form ulation and enum eration scheme

Let N={1,2, ... ,«} be the set o f all tasks and 77 the set o f permutations o f elements
/

from N. For permutation n e l l let us denote q, (C„0 = 'YJp ,u)) to be a due date o f the job
i-1

i in permutation n (i.e. when tasks are executed in order o f appearance in it). Then let us

denote:

0, w henC,

1 [1, otherwise,

to be a tardiness o f the job and /(C ,j= w/U/ the penalty. The weight (penalty) o f the

permutation is defined by:

%) = E *
/-i

Therefore, we have to calculate the optimal permutation in our problem (which has minimal

weight) in the set o f all permutations 77.

For any set Q cN , we define P (0) = ^ iey p,.

Generation process o f permutations from set 77 we will present as a search tree. We

create this tree as follows. From the root node (zero level), where no jobs have been

scheduled, we branch to n different nodes on the first level, each node corresponding to a

Parallel Algorithm For Some Single. 83

specific job being scheduled in the n-th position. Each o f these nodes leads to n- 1 new nodes

on the second level, corresponding to one o f the remaining n-1 jobs filling the (n-l)-th

position.

Each node tc from k-\h level (k = 0,l,2,...,n) is characterized by a set o f fix ed jo b s

S'M={n{k+\),n(k+2),...,7t{n)) and free jo b s Sx =(n{\),n(2),...rfk)) where |5 ,| = A, S ’, kjSk = N

and S'„nS, = 0. Producing new permutation p from n (new node on (A-l)-th level o f tree)

consists in fixing on k-th position in P one o f the free jobs from the set S K, i.e. change

positions o f fixed job with the job which is on Ar-th position in n and include it in the set o f

fixed jobs S°p . Remaining jobs on the same positions are in both permutations. Obviously in

each successor o f permutation p the job fixed on k-th position in P will still remain.

1 2 k - 1 k k + 1 n - 1 n < - p osition

n = ff(2),....,x j k - 1) ,* (*) , x { k +1),.... -1), n{hj)

' X ’ y.

3. Elim inations c riteria

Each node n in the search tree is characterized by a set S„ o f unscheduled jobs.

We define a precedence relation, that this, a partial order on the jo b ’s set Sm such that an

optimum sequence exists that satisfies this precedence relation.

This relation will be denoted by 91, and i91j means that job i must be performed before

job j , (ijeSx). In this case job j is called descendant o f job i and job i is called an ascendant o f

job j . Sets A,={/'eSx: i91j) and B r ije S ,.: j91i) will, respectively, denote indices o f the

descendants and the ascendants o f job ie S„. In the following, we restricted ourselves to

schedules which satisfy the precedence constrains. By determining so many o f these

precedence relation 91, we present theorems on so-called eliminations criteria.

Theorem 1 [1], If for a jo b le S x we have:

dj>P(Sj),

then we only have to consider schedules whereby / comes last among the jobs in

Theorem 2 [9]. If for two jobs i je S „ we have:

d,>P(SMj),

then we only have to consider schedules whereby i precedes j .

84 W. Bozejko, M. Wodecki

T heorem 3 [2], If for two jobs i je S „ w e have:

d,<dj, wj> Wj, p:<pj,

then we only have to consider schedules whereby i precedes j .

T heorem 4. If jobs i j e S x and:

P (B j) + p j > max {o', : l e S x and w, / p, > Wj / p s ,

then we only have to consider schedules whereby i precedes j .

These theorems are checked in every node o f a search tree.

4. Low er bound

Let n be a node o f the tree H on /c-th level, S = jyr(l),...,;?(/:)} - the set o f free jobs and

S ’ = [7t{k + l),...,;r(rt)} - the set o f fixed jobs. A lower bound LB o f the costs o f all possible

schedules generated from n can be defined as follow:

L B (x) = F (S ') + L B (S),
where:

o)>/«*+1
is the cost o f executing fixed jobs from the set 5” and LB(S) is the lower bound o f executing

free jobs from the set S. We will calculate LB(S) using two methods.

A Lower B oundfrom the greedy method.

Lower bound LBG(S) o f free jobs execution costs can be calculated as follows:

A lgorithm LBG

L B G (S) := 0; W := S \p := P(W)\
Execute k times:

if there exists i s W such as d t > P(W)

then W and p ?= p - p ,
else

L B G (S):= LB G (S) + mm { /(/?)} and p := p - m a x { p ,}

It is easy to prove that for any permutation y o f jobs from the set S, F (y) > LBG (S).

A Lower Bound from the Assignment Problem.

Parallel Algorithm For Some Single.. 85

Let

T,(q) = m in { P (0 : g c S \ { 5 , u 4 u { / } } ,

where q = \Q\ . Next

tj = P (B j) + p, + T ,(j- \B ,\ + 1), |S , |l j l \ S \ A \ ,

and

^ fo r |5 (| < ; < | 5 \ 4 | ,

oo fo r l< y s |jB y |a n d |5 \y 4 (|< y ^ k .

A lower bound LBAP(S) o f the free jobs execution from the set S is equal to the optimal

solution of the following assignment problem:
k k

Minimize: E Z c!/*i/>

k

for Xy e {0,1}, Y jxu = 1> / = 1«2 k and =1, / = 1 ,2 ,...,* .
/«I 7-1

In paper [7] the lower bound for n| 1 |Zw/7/ problem is calculated similarly.

Let LB(S) = m ax{LBG(S), LBAPQS)).

Theorem 5. If

LB{k) £ F (n) ,

then permutation «'can be eliminated.

5. Branching rule

We will set jobs from the candidate set K on k-th position in permutation rr(|S,,|=£):

K { *) = S \ { j B , .
/-I

For each job le K let us denote the following indication:

A(0 =/v(c;-p (+jPi)+ g E /^)(C.U)) - / f (Cf),
y-r+1 j» r +1

where I = /r(r) and q = ;r(&).

Theorem 6. If /? is a permutation generated from 7rby fixing o f the job !eK(rr) on the

position k, then:

86 W. Bozejko, M. Wodecki

F(jB) = F (x) + A(l).

Therefore, expression F(n)+A(!) is a permutation weight generated from x by fixing

free job s on ¿-th position. W hile the algorithm progresses we will choose jobs that after

fixing will generate permutation - direct successor which has the smallest possible weight

(i.e. which has the smallest A(i), is. K(t,r)).

6. B ranch and bound algorithm

The starting point o f the algorithm (the root of solutions tree H) is a permutation /r0,

and the set o f free jobs 5 ,o = N. Let us assume n < -rr0 as the best solution and let upper

bound U B= F\x). The tree level is h = 0.

Let 7rbe a permutation (node) on h-th level o f the tree H. The set o f free jobs Sx = \k\ , k = n-h.

STE P 1: {Lower bound)
I f lower bound LB{x) > F (x") then go to STEP 4

STEP 2: {Upper bound)
I f F (x) < UB then UB <- F (x) , n n ;

STEP 3: {Calculations}
I f K(rz) = 0 then go to STEP 4
Select a job I e K(jc) , such that:

¿ (0 = ieK(x)

Generate new permutation ¡5 (node in H) by selecting the job / on the k-
thposition. Let h < -h + \-,k< r-n -h ; x < -J3;

Go to STEP 1.
STE P 4: {Backtrack}

I f ;ris the root o f the tree {n is an optimal solution) then EX IT.
I f permutation iz was generated from ¡5 by fixing free job / e K {x) then:

h <r- h - 1; k < - n - h\ K (n) •<- K(jr) \ {/}, goto STEP 3.
■

The quality o f solutions calculated by branch and bound algorithm depends also on

starting point. Below we present heuristic algorithm which calculates this solution.

A lgorithm AH (heuristic algorithm).

Enumerate jobs, such as d, s d2... s d, . Let / to a current time.
Set W<—0 ; /<-0;
fo r i 1 to n do
begin

Parallel Algorithm For Some Single. 87

if t+pi < di then
Set: W<r-W^J {i},t<r-t+pi;

else
Create set: Q = {/ e W : Y ,P i~ Pi + A s 41;

jt.i
if Q * 0 then
Create set: V = {_/ e g : w, > «>,};

if K * 0 then
Set ¿ e K such as w*=max{w/: le V} and
set W<—W \ {&}u{/}; t<—t - pk+pi',

end;
Execute jobs from the set W (in order o f appearance), next execute the remaining jobs

in any order.

The AH algorithm requires O(nlogn) time.

7. Algorithm Parallelization

Parallel algorithm was implemented for SIMD model o f parallel processors without

shared memory. Each processor has its own local memory with short time o f access;

Communication between processors is very slow (comparing to local-memory access).

The main idea o f parallel algorithm is to make concurrent search process on solution’s

tree H. Each processor has set o f vertex to search and local value o f upper bound UB. If every

processor had the newest value o f the best upper bound in every moment, the speedup

(comparing to sequential algorithm) would be the greatest. But broadcasting o f upper bound

costs - the time o f communication between processors is very long. That’s why frequency of

communication between processors (broadcasting o f the newest value o f upper bound) have

to be low. In our implementation the processor is getting a new value o f UB when it wants to

broadcast its own re* and (independently) after some period o f time (or number o f iterations

BroadcastJter).

Comparison results o f some B roadcastjter for parallel algorithm can be seen in

Table 2.

Scheme of parallel algorithm

for each processor
begin

Heap : heap; {local for each processor}
while Heap o NULL
begin

iz:= Get (Heap)\

88 W. Boiejko, M. Wodecki

{Upper Bound}
if F{k) < UB then
begin

UB <— F (n) , tt <- J t ;
b roadcast n* to o ther processors;

end;
Select a job / e K {n) , such that A (/) = min {A,},

ieK(x)
Generate new permutation J3 (node in H) by selecting the job I on the
£-thposition. Let h < -h + \ ; k < - n - h ' , .

Put {Heap, p)\
end;

end.

8. C om puter sim ulations

Test problems were generated as follows [7]. For each job i, an integer processing time

Pi was generated from the uniform distribution [1, 100] and, for weighted tardiness problems,

an integer weight was generated from the uniform distribution [1, 10]. Problem hardness is

likely to depend on the relative range o f due dates (RDD) and on the average tardiness factor

(TF). Having computed P = i p t and selected values o f RDD and TF from the set {0.2,

0.4, 0.6, 0.8, 1.0}, an integer due date di from the uniform distribution [P(l -T F -R D D /2),

P(1 - TF + RDD/2)] was generated for each job i. Five problems were generate for each of

the 25 pairs o f values o f RDD and TF, yielding 100 problems for each value o f n.

Table 1

Number o f iterations

n
number o f processors

1 2 4
20 1542 2287 2930
25 5654 6052 7468
30 22985 18006 15913
35 91587 66321 79854
40 293122 226892 224632

The algorithm was implemented in Ada95 language and run on Sun Enterprise

4x400M Hz computer under Solaris 7 operating system. Tasks o f Ada95 language were

executed in parallel as system threads.

There are average results o f iteration number o f algorithm for each number of

processors in Table 1. As we can see parallel algorithm makes less number o f iterations than

Parallel Algorithm For Some Single.. 89

the sequential algorithm for large problem size («>25). In parallel algorithm the number o f

iterations is counted as the sum o f iterations for every processor - so the speedup we can get,

may be greater than P, where P is number o f processors.

Table 2

Comparing o f number o f iterations and execution
time for one random problem instance («=12,

RDD=TF=1.0,4 and 1 processors)

4 - processors implementation
Broadcast iter iterations time (sec.)

1 208118 37
10 200434 14

100 205357 14
500 206889 9
1000 196128 9
5000 207699 9

10 000 205983 11
20 000 206750 11

1 - processor implementation______
I 247046 I 29

As we have said before, the frequency o f communication between processors

(broadcasting o f the newest value o f upper bound) have to be low. The best value for our

computer was 1000 iteration, but BroadcastJter value strongly depends on machine and

communication speed.

9. Conclusions

This paper gives a practical sequential and parallel branch and bound algorithm for the

total weighted late job problem. Preliminary calculation let us suppose that increase number

of processors cause to make possible to solve larger instances (more than 50 jobs), especially

when we will use stronger lower bounds and additional elimination criteria.

LITERATURA

1. Elmaghraby S.E.: The One-Machine Sequencing Problem with Delay Costa, Journal o f
Industrial Engineering, 19(1968) pp. 105-108.

2. Emmons H.: One-Machine Sequencing to Minimize Certain Functions o f Job Tardiness,
Operations Research, 17(1969), pp. 701-705.

90 W. Bożejko, M. Wodecki

3. Karp R.M.: Reducibility among Combinatorial Problems, Complexity o f Computations,
R.E. Millerand J.W. Thatcher (Eds.), Plenum Press, New York, 1972, pp.85-103.

4. Lawler E.L., Moore J.M.: A Functional Equation and its Applications to Resource
Allocation and Sequencing Problems, Management Sci., 16(1969), pp.77-84.

5. Potts C.N., Van Wassenhove L.N.: A Branch and Bound Algorithm for the Total
Weighted Tardiness Problem, Operations Research, 33(1985), pp.177-181.

6. Potts C.N., Van Wassenhove L.N.: Algorithms for Scheduling a Single Machine to
Minimize the Weighted Number o f Late Jobs, Management Science, vol. 34, No.7, 1988,
pp.843-858.

7. Rinnoy Kan A.H.G., B.J. Lageweg, Lenstra J.K.: Minimizing total costs in one-machine
scheduling, Operations Research, 25(1975) pp.908-927.

8. Sahni S.K.: Algorithms for Scheduling Independent Jobs, J.Assoc. Comput. Match.,
23(1976), pp.l 16-127.

9. Shwimer J.: On the n-job, one-machine sequencing-independent scheduling problem with
tardiness penalties: A branch and bound solution, Management Sci., 18 B(1972) pp.301-
313.

10. Villareal F.J., Bulfin R.L.: Scheduling a Single Machine to Minimize the Weighted
Num ber o f Tardy Jobs, IE Trans., 15(1983), pp.337-343.

Recenzent: Prof, dr hab. inż. Tadeusz Sawik

Streszczenie

W pracy rozpatrujemy problemu kolejnościowy polegający na uszeregowaniu n zadań

na jednej maszynie. Maszyna ta, w dowolnej chwili, może wykonywać co najwyżej jedno

zadanie. Dla zadania i niech p , , w ,, d, będą odpowiednio: czasem wykonania, wagą funkcji

kosztów oraz wymaganym terminem zakończenia (linią krytyczną). Jeśli ustalona jest

kolejność wykonywania zadań i C,-jest terminem wykonania zadania i (i- l ,2 ,... ,n), to U, =1,

gdy Cj>di, a 0 w przeciwnym przypadku nazywa się spóźnieniem, natomiast w,Ui jest kosztem

spóźnienia zadania. Rozważany problem polega na wyznaczeniu takiej kolejności

wykonywania zadań, która zminimalizuje sumę kosztów spóźnień w,Ur Należy on do

klasy problemów silnie NP-zupełnych. Przedstawiamy algorytm równoległy (dla modelu

obliczeń SIAD) oparty na metodzie podziału i ograniczeń, w którym wykorzystano kryteria

eliminacyjne. Pozwalają one na znaczne zmniejszenie zbioru rozwiązań dopuszczalnych. Przy

większej liczbie procesorów, w rozsądnym czasie, można tym algorytmem rozwiązywać

średnich rozmiarów przykłady.

