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SIMULTANEOUS LOADING AND SCHEDULING WITH NO
REVISITING OF STATIONS IN A FLEXIBLE ASSEMBLY
SYSTEM1

Summary. The paper presents mixed integer programming approach to simul-
taneous loading and scheduling of a flexible assembly system (FAS). The FAS is
made up of a network of assembly stages interconnected by transportation links,
where each stage consists of one or more identical parallel stations. Each station
has its own internal input and output buffer of a finite capacity and a limited
work space for part feeders. The problem objective is to determine an allocation
of assembly tasks and part feeders among the stations and to find an assembly
schedule for a mix of products with no revisting of stations so as to complete the
products in minimum time. Numerical example and some computational results
are presented to illustrate applications of the proposed approach.

ROZDZIAL ZASOBOW | HARMONOGRAMOWANIE
BEZ POWROTOW WYROBOW DO MASZYN
W ELASTYCZNYM SYSTEMIE MONTAZOWYM

Streszczenie. W pracy przedstawiono model programowania catkowitoliczbowego
mieszanego do jednoczesnego obcigzenia maszyn i szeregowania zadan w elasty-
cznym systemie montazowym. System sktada sie z sieci stacji montazowych. Kazda
stacja obejmuje jedng lub kilka jednakowych maszyn pracujgcych réwnolegle, z
wiasnymi buforami wejsciowymi i wyjsciowymi o skonczonych pojemnos$ciach oraz
ograniczong przestrzenig roboczg na podajniki cze$ci. Montowany wyrdb prze-
chodzi przez rézne stacje, odwiedzajac kazdg co najwyzej raz. Nalezy wyznaczy¢
rozdziat zadan montazowych i podajnikéw czesSci pomiedzy stacje oraz harmono-
gram montazu bez powrotéw wyrobow do raz odwiedzanych stacji, tak aby zmini-
malizowaé czas wykonywania zadanego zbioru réznych wyrobdw. Wyniki ekspery-
mentow obliczeniowych ilustrujg zastosowanie proponowanego podejscia.
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1. Introduction

A flexible assembly system (FAS) is a network of assembly stages interconnected
by transportation links, where each stage consists of one or more identical parallel
stations. Each station has a finite work space for part feeders and finite capacity
input and output buffers for temporary storage of products waiting for processing or
for transfer between the stations. In the system different types of assembly tasks can
be performed to assemble various types of products. Each product visits a subset
of assembly stations, where the required part feeders have been assigned, however
revisiting of stations is not allowed.

The two major short-term planning issues in flexible assembly systems are load-
ing and scheduling. Given a mix of products to be assembled, the objective of the
loading problem is to allocate assembly tasks and part feeders among the assembly
stations with limited work space and by this to select assembly routes for a mix
of products, so as to balance the station workloads and to eliminate revisiting of
stations by products. In contrast, the objective of the scheduling problem is to de-
termine the detailed sequencing and timing of all assembly tasks for each individual
product, so as to maximize the system productivity, which may be defined in terms
of the assembly schedule length (makespan) for a mix of products. The limited
in-process buffers result in scheduling problem with machine blocking (e.g. [1, 4]),
where a completed product may remain on a machine and block it until output
buffer of the machine becomes empty. This prevents another product from being
processed on the blocked machine.

In this paper simultaneous loading and scheduling of a FAS is considered with
no revisiting of stations and a mixed integer programming formulation is proposed
to solve the problem.

The integer programming approach has been widely used to solve the loading
problems (e.g. [3, 5]), some scheduling problems (e.g. [2]), and recently also to
schedule surface mount technology lines (e.g. [7]).

Mixed integer programming models for simultaneous or sequential loading and
scheduling of various FAS configurations with unlimited in-process buffers and re-
visiting of stations were presented in [6].

The paper is organized as follows. Mixed integer programming model for simul-
taneous FAS loading and scheduling is presented in the next section. A numerical
example and some results of computational experiments with AMPL/CPLEX solver
are presented in section 3 and conclusions are made in the last section.

2. Mixed integer program for simultaneous loading and scheduling

Let us consider a FAS made up of m processing stages i e | = laUPb —
{1,... ,m}, for assembly {la) and for buffering (Jfl). The processing stages are in-
terconnected by transportation paths that link any pair of assembly stages. Trans-
portation times between the stages, however, are assumed to be negligible. Each
assembly stage i £ la consists of m* > 1 identical parallel assembly stations. In
addition, each assembly stage has its own internal input and output buffer stages
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Table 1
Notation
Indices
h = processor in stage i, h £ H, = {1,..., m;}
i = processing stage, i £ 1 = laUlb = {L eee>
j = processing task, j € J = {1,... ,n}
k product, kK £ K = {1,..., v}
= Input parameters
&ij working space required for assignment of task j to assembly station in
stage i
hi total working space of each assembly station in stage i £ la (number
of tasks that may be assigned to each station in stage i, if all ay = 1)
Pijk = processing time in stage i of task j of product k
Hi = the set of parallel processors at stage i
la = the set ofassembly stages
b = the set of buffer stages
hii) — {i —I,i + 1} - the set of input and output buffer stages of assembly
stage i € la
h = the set of assembly stages capable of performing task j
Jk = the ordered set of tasks required for product k
Q = a large number not less than the schedule length
Decision variables
Umax - Schedule length
Cik = completion time in stage i of product k
dik = departure time from stage i of product k
Xij = 1, if task j is assigned to processing stage i € Ij\ otherwise xy = 0
(task assignment variable)
Vks 1, if product k precedes product s; otherwise yks = 0 (product se-
= quencing variable)
zink = 1, ifproduct k is assigned to processor h e Hiin stage i £ /; otherwise

zihk = 0 (product assignment variable)

i- 1and i+ 1ofa fixed capacity m;_i and mi+1 buffers, respectively. Denote by

JB(i) = {i —I,i + 1} the set of input and output buffer stages of assembly stage
if£la-

In the system n different types of assembly tasks j £ J = {lI,...,n} can be
performed to simultaneously assemble v products k £ K — {lI,...,u} of various

types. Let Jk be the sequence of assembly tasks required to complete product k.

Each assembly station in stage i £ la has a finite work space 6; where a limited
number of component feeders and gripper magazines can be placed. As a result
only a limited number of assembly tasks can be assigned to one assembly station.
Let Ij C la be the subset of assembly stages capable of performing task j, and let
ay be the amount of working space of assembly station in stage i £ 1j, required
for assignment of task j. Finally, denote by py* > 0 the assembly time required to
perform in stage i € 1j task j € J* of product k.
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The problem objective is to determine an allocation of assembly tasks and part
feeders among the stations with limited working space and to find an assembly
schedule for a mix of products so as to complete the products in minimum time
with no backtracking, i.e., with no revisiting of stages by products.

An assignment of assembly tasks to stations determines a processing route for
each product, i.e., a sequence of stations to be visited in order to complete the
required sequence of tasks. The ”no backtracking” requirement implies that for
each product a subset of successive tasks is assigned to one assembly station, and
hence each assembly station can be visited at most once by every product.

A unified modeling approach is adopted with the buffers viewed as machines
with zero processing times. As a result the scheduling problem with buffers can be
converted into one with no buffers but with blocking. The blocking time of a machine
with zero processing time denotes product waiting time in the buffer represented by
that machine. We assume that each product assigned to sortie assembly station must
also visit the input and output buffers of that station. However, zero blocking time
in a buffer stage indicates that the corresponding product does not need to wait in
the buffer. Let us note that for each buffer stage, a product’s completion time is
equal to its departure time from the previous stage, since the buffer processing time
is zero.

Waiting of product in the input or output buffer connected with an assembly
stage where the assembly task j is to be performed is referred to as buffering task j.
Both assembly stations and buffers are referred to as processors, and both assembly
and buffering tasks are referred to as processing tasks.

For each type of product the total assembly time in each stage depends on the
assignment of assembly tasks and the corresponding part feeders. The "no back-
tracking” requirement enables a subset of successive tasks of each product assigned
to an assembly station to be performed contiguously, with no breaks between the
tasks. Therefore, for each product k and each assembly stage i S la, the total
assembly time is a variable determined by the summation of the assembly times for
all tasks j € Jk that have been assigned to this stage, i.e. Y,jEjkPijk*ij, where Xy is
task assignment binary variable (see, Table 1).

For every product k let denote its completion time in each stage i, and
dik its departure time from stage i. Processing without preemption indicates that
product k completed in stage i at time c¢-* starts its processing in that stage at
time Ck —12jeJkPijk”ij- Product k completed in stage i at time departs at time
dik > Cik to an available processor in the next stage of its processing route. If at
time Cik all processors in the next stage are occupied, then the processor in stage i
is blocked by product k until a downstream processor becomes available.

The mathematical formulation of the mixed integer program for simultaneous
loading and scheduling with no backtracking of a FAS is presented below.

Minimize

Cmax @)

subject to
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Task assignment with no backtracking constraints

y xij=ij N

ieij
y) aijxij ~ ~i N ia
jeld
Xij =xl>j € J,i £ 1j,1 £
xig ™ xij 4" £jrlj  KEK, j,9,.f GE/jPjlIr:j «g 4r

Product assignment constraints

y Zihk > xa\ k £ K,j £ Jk,i € 1j
hell;

E zme<1if1,kEK
hSHi

Zink=  Ai'6/x,ie -ToW.hf Huff Htk £ K \mi=mlh =f
Product completion constraints
Ck P. Pijkxijt i £ 1Ak £ K
jeJk

cik 4“Q(2 2/) ~ Ck 4 ~ )PIgkxlg, k £ H,j, r € 2£ AJIE IT .
9£Jk

i, j < last{Jk),r = next(jJk)

Product non-interference constraints

Cik 4Q(2 “F Pks  zihk  zihs) A N3 A 1pijkxij]i € d,h £ Hi,k,se H k <Cs
jeJk

cis 4" Q(3 Dks zihk  zihs) A dik 4*) *Pirsxini £ J,h £ Hi,k,s£ H . k S
rel,

Buffering constraints

Q—ik 4*Q(2 Xij  X[r)> diAiki k £ K,j,r £ 7"2 £ 1j, 1 £ Ir .
iNLi<m,l >1,j wlast(Jk),r = next(j, Jk)
ci—-k Q2 Xij Xir) di+ik] k £ H,j,r £ Jk,i € Jj,| £ dr:
i N Li<m,l >1,j <last{Jk),r = next(j,Jk)
Ck = di-ik 4- E Pijkxijli € IAK £ K :i>1
jZJk
Citifc = dikl iE1A ,KEK i<m
Completion and departure time constraints
dik<Qyxij-,ifl,kEK
jeJk
Ck < dik, i £ 1,k £ K
dik<Cmax\i£1,k £K
E Pijkxij/mi < Cmax’) i e la
ke.Kje.Jk
E Pijkxij < cmexi k £ K
*Glaj€Jk
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Variable elimination constraints

Xij —0; i GMAtj 0 1j (22)
yk, = 0; k,s e K :k >s (23)

Variable nonnegativity and integrality constraints

Cik > 0 viel kek (24)
<k>0;i61, k6K (25)

Xije {0,1}; i <1,j 61 (26)

Z2fcle { 0,1} ; (27)

zint € {0,1}; z€ I, h 6 if), k €K (28)

The objective function (1) represents the schedule length to be minimized. Con-
straint (2) ensures that each task type is assigned to exactly one stage, and (3) that
total space required for the tasks assigned to each assembly stage does not exceed
the stage finite work space available. Equation (4) ensures that the buffering tasks
are assigned to the input and output buffer of the assembly stage where the corre-
sponding assembly task is assigned. Constraint (5) ensures that consecutive tasks
of each product are assigned to the same assembly stage, so that backtracking (re-
visiting of stages) is not required, (-< denotes precedence relations among assembly
tasks).

Constraints (6) and (7) ensure that in every assembly stage each product is
assigned to exactly one processor, if at least one of its required tasks is assigned to
this stage, and equation (8) ensures that the product is assigned to the input and
output buffers of the assembly station selected by (6) and (7).

Constraint (9) ensures that each product is processed in all stages, where the
tasks required for its completion are assigned, and (10) maintains for each product
the precedence relations among its tasks.

Constraints (11) and (12) are product non-interference constraints. No two prod-
ucts can be performed on the same processor simultaneously. For a given sequence
of products either constraint (11) or (12) is active, and only if both products k and
s are assigned to the same processor.

A pair of constraints (13) and (14) indicate that each product arrives in an input
buffer | —1 of an assembly stage | € la immediately after its departure from the
output buffer i + 1 of the preceding assembly stage i £ la of its processing route.
Equation (15) ensures that in every stage i € la assembly of each product starts
immediately after its departure from the input buffer i —1, and (16) that each
product arrives in the output buffer i + 1 immediately after its departure from the
assembly stage z6 la-

Constraint (17) ensures that the product does not visit stages where its required
tasks are not assigned, and (18) indicates that in every stage product departure time
is not later than its completion time. Finally (19) defines the maximum completion
time, and (20), (21) impose lower bounds, that account on maximum workload and
maximum total processing time, respectively.
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3. Numerical examples

In this section a numerical example and some computational results are presented
to illustrate application of the proposed mathematical programming formulation.

The FAS configuration for the example is shown in Fig. 1. The system is made
up m = 9 processing stages. The set of assembly stages is la — {2,5,8} and the set
of buffering stages is Ib = {1,3,4,6,7,9}. Each assembly station has its internal
input and output buffer of a unit capacity. The system consists of m- = 2 parallel
processors in stages i = 1,2,3, m ,= 3 parallel processors in stages i = 4,5,6 and
rrii = 2 parallel processors in stages i —7,8,9.

R4 M5 R6
P

Bl M2 B3 R7 M8 &

e«

Fig. 1. FAS with parallel stations
Rys. 1. System z maszynami réwnolegtymi

The production batch consists of v = 7 products to be assembled of n = 20 types
of components. The ordered sets A ,k 6 K of tasks required for each product k are

shown below.

Ji= (1,2,3,4,6,8,11,12,13,14,16,18)
J2=(1,2,4,5,6,7,9,10,11,12,14,15,16,17,19,20)
J3=(2,3,4,5,7,8,9,10,12,13,14,15,17,18,19,20)
J4=(1,3,5,6,7,8,9,10,11,13,15,16,17,18,19,20)
Js=(1,3,5,6,7,8,9,10,11,13,15,16,17,18,19,20)

J6=(1,2,3,4,6,8,11,12,13,14,16,18)

J7=(1,2,3,4,6,8,11,12,13,14,16,18).
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The assembly times (pijk = Pjk,Vi € 1j, j = 1,...20, k = 1,...7), work space
required for feeder assignments (ai#, i = 2,5,8, j = 1,.. -20), and the total work
space i = 2,5,8) available at each station are given below

4.4.0.4.4.4.4
2.2.2.0.0.2.2
2,022,222
2,2,2,0,0,2,2
0,4,4,4,4.0,0
2,2,0,2,2,2.2
0,3,3,3,3,0,0
5.0.5.5.5.5.5
0,2,2,2,2,0,0

, 0,4,4,4,4,0,0
Pl — 4404444
2.2.2.0.0,22
2,02,2,2,2,2
2,2,.2,0,0,272
0,4,4,4,4,0,0
2,202,222
0,3,3,3,3,0,0
5,0,5,5,5,5,5
0,2,2,2,2,0,0
L0,4,4,4,4,0,0

1.2.3.1.2.3.0.0.0.0.1.2.3.1.2.3.0.0.0.0
[aij] 0,0,0,1,2,3,1,2,3,5,0,0,0,1,2,3,1,2,3,5
12.3.0.0.0.12.3.5.1.2.3.0.0.0.1.2.3.5

b7 = 16, b5 = 20, b8 = 18.

For the example problem the mixed integer programming approach has con-
structed an assembly schedule with minimum makespan Cmax — 78. The schedule
is shown in Gantt chart presented in Fig. 2. In the figure M indicates an assembly
stage and B stands for a buffering stage. Products are numbered and indicated with
different patterns.

In order to evaluate performance of the mixed integer programming approach
and the CPLEX solver, additional test instances of the example problem were solved.
The problem characteristics and computational results are shown in Table 2. For
the test instances the number of assembly stages \la\ was equal to 3,5,6 or 10, the
total number of processing stages m was 9,15,18 or 30, the number of assembly task
types n was 10 or 20, and the total number of assembly tasks J2k=i 71 was 50 or
100. Each stage i g | consists of m, = 2 parallel processors.

The size of the mixed integer programming model for the test instances is rep-
resented by the total number of variables, Var., number of binary variables, Bin.,
number of constraints, Constr., and number of nonzero coefficients, Nonz., in the
constraint matrix. The last two columns of the table give best solution value and
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Fig. 2. Assembly schedule for FAS with parallel stations
Rys. 2. Harmonogram montazu dla systemu z maszynami réwnolegtymi

total number of nodes in the branch-and-bound tree until the best solution was
reached. The computational experiments were performed with AMPL and the
CPLEX v.6.5.2 on a Compaq Presario laptop with Pentium Ill, 450 MHz. The
computation time for each test instance was limited to 3600 CPU seconds.

Table 2
Problem Characteristics and Solution Results
m x TTii.n, Y%=i ljd Var. Bin. Constr. Nonz. "7y Nodes

9x2,10,50 354 227 1863 9059 41 511
9x2,20,100 434 307 5877 23652 83 858
15x2,20,100 708 497 10774 47335 71 1390
18x2,20,100 846 593 13980 62980 67 1316
30x2,20,100 1394 973 27937 138435 64 11163

* Best makespan found within time limit of 3600 CPU seconds

For the test instances CPLEX solver was not able to prove optimality within
the allowed 3600 seconds of CPU time, however the best solutions were found much
earlier than the time limit.

It should be noted that the number of "no backtracking” constraints (5) is
0(|/4|n.3u), where \IA\, n, and v denote respectively, the number of assembly stages,
number of task types and number of products. In some of the test instances the
number of constraints (5) was as large as half of the total number of all the con-
straints, which indicates that no backtracking requirement significantly contributes
to the computation time of the FAS loading and scheduling problem.
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The experiments with various features of the CPLEX solver to speed up the
solution process have indicated that the best results are obtained for various non-
default settings of the branch-and-bound algorithm. In most cases, the best results
were obtained for a nearly depth-first branch-and-bound strategy for node selection
and for the strong branching strategy with a limited number of different branches
considered for different choices of branching variable. For such settings good feasible
solutions were found more quickly and fewer nodes were required to reach the best
solutions.

4. Conclusions

This paper shows that mixed integer programming approach can be used to solve
hard combinatorial optimization problem of simultaneous loading and scheduling a
general flexible assembly system with finite capacity in-process buffers, limited work
space for part feeders and no revisiting of stations. The proven optimal solutions that
can be obtained for small size problems may also help to evaluate the performance
of various heuristic algorithms constructed for the loading and scheduling problems.
However, the computational effort required to find proven optimal schedules for
realistic problems can be very high. In such cases a hierarchical, two-level approach
(e.g. [6]) may help to find best assembly schedules at a much lower computational
cost. In the two-level approach the solution of the loading problem at the top-level
creates a job shop problem with finite in-process buffers to be solved at the base-
level, where both the problems are simpler than the original mixed integer program
for the simultaneous loading and scheduling.
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Streszczenie

W pracy przedstawiono model programowania catkowitoliczbowego mieszanego
do jednoczesnego obcigzenia maszyn i szeregowania zadan w elastycznym sys-
temie montazowym. System skiada sie z wielu stadiow montazowych potgczonych
siecig transportowa, za$ kazde stadium obejmuje jednag lub kilka jednakowych
maszyn pracujacych réwnolegle. Kazda maszyna ma bufor wejsciowy i wyjsciowy o
skonczonej pojemnosci oraz ograniczong przestrzed roboczg, w ktérej umieszczane
sg podajniki montowanych czesci. W systemie montowane sg jednocze$nie rézne
typy wyrobow. Kazdy wyréb przechodzi w roznej kolejnosci przez wiele stadidow
montazowych, odwiedzajagc co najwyzej raz kazde stadium. Nalezy wyznaczy¢
rozdziat zadan montazowych i podajnikéw czesci pomiedzy stadia oraz harmono-
gram montazu bez powrotéw wyrobdw do raz odwiedzanych stadiéw, tak aby zmini-
malizowaé czas wykonywania zadanego zbioru wyrobéw. Wyniki eksperymentéw
obliczeniowych ilustrujg zastosowanie proponowanego podejscia.



