Seria: ENERGETYKA z. 83

Nr kol. 775

Gerard KOSMAN, Henryk ŁUKOWICZ Instytut Maszyn i Urządzeń Energetycznych

CIEPLNE VARUNKI PRACY VIRNIKÓW W CZASIE ROZRUCHU TURBINY

Streszczenie. Przeanalizowano stan termiczny wirnika w ozasie rozruchu turbiny. Do rozważań szczegółowych wybrano proces nagrzewania ze stanu ciepłego. Dodatkowo wyznaczono ustalony rozkład temperatury w wirniku dla obciążenia nominalnego oraz opisano proces stygnięcia. Główną uwagę zwrócono na określenie rozkładu parametrów pary i współczynników wnikania ciepła.

1. Watep

W czasie rozruchu turbiny parametry i strumień pary na wejściu zmieniają się w szerokim zakresie. Powoduje to zmianę rozkładu ciśnienia i temperatury pary w układzie przepływowym turbiny. Zmieniają się warunki wymiany ciepła. Wszystko to wpływa na stan ciepłny i wytrzymałościowy elementów.

W niniejszym artykule rozpatrzono ten problem w odniesieniu do wirników typu tarczowego, stosowanych w turbinach akcyjnych.

Obliczenia szczegółowe prowadzono dla turbiny o mocy 130 MW. Jest te turbina akcyjna, kondensacyjna, trójkadłubowa z regulacją dyszową. Para dopływa do turbiny poprzez cztery zawory regulacyjne w części WP. Turbina jest zasilana parą o temperaturze 540°C i ciśnieniu 12,7 MPa. Przy oiśnieniu 3 MPa para jest ponownie przegrzewana do tempezatury 540°C. Przegrzew międzystopniowy umiejscowiono między częścią wysokoprężną WP i wysokotemperaturową WT.

Rozpatrywano stan termiczny wirnika. Wyznaczono pole temperatury w wirniku dla następujących faz pracy turbiny:

- obciążenie nominalne,
- stygnięcie,
- rozruch ze stanu oleplego.

2. Przedmiot badań

Rozpatrujemy fragment wirnika turbiny obejmujący uszczelnienie labiryntowe pomiędzy tarczą wirnikową stopnia regulacyjnego części WP, a tarczą wirnikową pierwszego stopnia części wysokotemperaturowej WT.

Rys. 1. Schemat układu przepływowego turbiny

Rys. 2. Badany fragment wirnika

Schemat układu przepływowego os. WP i WT pokazano na rys. 1. Obie ozęści mieszczą się w jednym kadłubie zewnętrznym. Para po przejściu przez część WP kierowana jest do przegrzewacza międzystopniowego a następnie wchodzi do części WT.

Postać konstrukcyjną i główne wymiary badanego fragmentu wirnika przedstawiono na rys. 2. Powierzchnia zewnętrzna wału nie jest gładka. Wytoozenia, znajdujące się na całej długości między tarozami stanowią część uszczelnienia labiryntowego.

3. Przebieg zmian parametrów pary

Powierzchnia zewnętrzna wału oraz powierzchnie boczne tarcz omywa para o parametrach zmieniających się wzdłuż uszczelnienia.

Na podstawie instrukcji obsługi turbiny [1] ustalono parametry pary w punktach charakterystycznych przy obciążeniu nominalnym turbiny.

Założono, że parametry pary przed turbiną zmieniają się w czasie rozruchu zgodnie z charakterystykami rozruchowymi podanymi w [1]. Rozpatrywano rozruch ze stanu zimnego oraz po 36-godzinnym postoju.

Odrębnym zagadnieniem jest określenie zmian parametrów pary w czasie stygnięcia. Podczas swobodnego stygnięcia turbiny trudno jest określić przebieg zmian temperatury pary a jeszcze trudniej jest zdefiniować warunki wymiany ciepła na powierzchni zewnętrznej wału i tarcz. W przeprowadzonych badaniach rozwiązano to zagadnienie metodą stanu uporządkowanego [2=4].

4. Pole temperatury w wirniku przy obciążeniu nominalnym turbiny

4.1. Parametry pary w punktach charakterystycznych

Na podstawie instrukcji obsługi turbiny [1] ustalono następujące parametry pary w punktach charakterystycznych przy obciążeniu nominalnym turbiny (rys. 1)

```
- wlot do części WP (punkt 0 na rys. 1)

temperatura T_0 = 540^{\circ}C

ciśnienie p_0 = 12.7 MPa

- wylot z części WP (punkt W)

temperatura T_w = 347^{\circ}C

ciśnienie p_w = 3,22 MPa

- wlot do części WT (punkt P)

temperatura T_p = 540^{\circ}C

ciśnienie p_p = 2,9 MPa

- wylot z części WT (punkt K)

temperatura T_k = 458^{\circ}C

ciśnienie p_k = 1,6 MPa
```

Uproszczony przebieg procesu rozprężania w części WP i WT przedstawiono na rys. 3.

4.2. Parametry pary omywającej wirnik

Powierzchnia boczna tarozy wirnikowej stopnia regulacyjnego cz. WP jest omywana parą wypływającą z przyrządów rozprężających. Parametry pary określa punkt R na rys. 3. Odcinek 0-1 przedstawia dławienie pary w zaworze odcinającym, a odcinek 1-2 - dławienie w zaworach regulacyjnych.

Rys. 3. Przebieg procesu rozprężania

V obu przypadkach przyjęto, że przy obciążeniu nominalnym straty ciśnienia są równe 3% ciśnienia przed zaworami. Linia 2-W przedstawia rozprężanie w części WP. Dzieląc spadek entalpii H_S^{WP} na poszczególne stopnie znajdujemy położenie punktu R [5].

$$P_{R} = 9,75 \text{ MPa}$$

 $T_{R} = 505^{\circ}C.$

Analogicznie opisano przepływ przez cz. WT. Parametry pary za przyrządami rozprężającymi pierwszego stopnia cz. WT są równe

$$p_{I} = 2,4 \text{ MPa}$$
$$T_{T} = 510^{\circ}\text{C}.$$

Para ta omywa powierzchnię boczną tarczy wirnikowej pierwszego stopnia.

Uszczelnienie między tarczami składa się z dwóch segmentów. Komora pomiędzy segmentami połączona jest z wylotem z części WP (rys. 2). Do dalszych rozważań przyjęto

$$p_{II} = p_{III} = p_{W}$$

Temperaturę pary w uszczelnieniu można w sposób przybliżony określić za pomocą krzywej FANNO [6].

Uzyskany w ten sposób rozkład temperatury i ciśnienia w uszczelnieniu pokazano na rys. 4. Przebieg krzywej FANNO w interesującym nas zakresie jest prawie poziomy. Z tego względu w obliczeniach praktycznych można temperaturę za segmentem (punkt II na rys. 2) wyznaczyć z dławienia izentalpowego od p_R do p_{II} , natomiast rozkład temperatury w segmencie aproksymować linią prostą (rys. 4).

Rys. 5. Współczynniki wnikania na powiarzchniach bocznych tarcz wirnikowych

4.3. Warunki wymiany ciepła

Współczynniki wnikania ciepła na powierzchni zewnętrznej wirnika obliczono z następujących zależności:

- tarcze

$$\alpha_{t} = 0,366 c_{M} \left(\frac{\omega P r}{3p}\right)^{0,8} r^{0,6}$$
(1)

gdzie:

C_M - zredukowany współczynnik mocy tarcia - uszczelnienie

$$Nu_{u} = 0,41 \text{ Re}^{0,7} (\frac{\delta}{h})^{0,56}$$
(2)

gdzie:

$$Nu_{\rm u} = \frac{2\delta\omega_{\rm u}}{\lambda_{\rm p}}, \quad {\rm Re} = \frac{2\delta w}{\gamma_{\rm p}}$$
 (3)

δ - szczelina,

h - odległość między walem i obejmą uszczelnienia,

🤊 - kinematyczny współczynnik lepkości dla pary,

), - współczynnik przewodzenia ciepła dla pary,

Pr - liczba Prendtla dla pary,

w - prędkość pary pod ostrzem.

Wyniki obliczeń o_t i 🔨 przedstawiono na rys. 4 i 5.

4.4. Rozklad temperatury

Do obliczenia rozkładu temperatury zastosowano metodę różnicową [6]. Do podziału wirnika na elementarne podobszary zastosowano siatkę walcową. Temperatury wyznaczano w środkach elementarnych podobszarów. Płaszczyzny symetrii tarcz przyjęto jako powierzchnie adiabatyczne.

Wyniki obliczeń przedstawiono na rys. 6.

Rys. 6. Rozkład temperatury przy obciążeniu nominalnym turbiny

5. Pole temperatury w wirniku w czasie stygnięcia

5.1. Obniżenie mocy i odstawienie turbiny

Po zdjęciu obciążenia i odcięciu dopływu pary do turbiny rozpoczyna się proces powolnego stygnięcia, który przebiega płynnie a charakter zmian temperatur w poszczególnych punktach jest zbliżony. Krzywe stygnięcia dla kotła i turbiny przedstawiono na rys. 7.

Z badań cieplnych turbin (np. [7]) wynika, że różnice temperatur w wybranych punktach mają wartości podobne do warunków pracy w stanie równowagi cieplnej i jedynie w momencie zamknięcia dopływu pary obserwuje się krótkotrwałe zmiany wartości Δt dla miejsc położonych w pobliżu rurociągów dolotowych. Na podstawie cytowanych badań można przyjąć, że przebieg procesu stygnięcia wirnika jest podobny do stygnięcia kadłuba wewnętrznego turbiny.

5.2. Wyznaczenie rozkładu temperatury w czasie stygnięcia metodą stanu uporządkowanego

W analizie pola temperatury w czasie stygnięcia wykorzystujemy teorię uogólnionego stanu uporządkowanego [2]. Z teorii tej wynika, że proces nagrzewania (chłodzenia) można opisać zależnością:

$$T = \Theta = Au \exp(-mt), \qquad (4)$$

gdzie:

9 - rozkład temperatury dla końcowego stanu ustalonego,

m - szybkość nagrzewania (chłodzenia),

u - funkcja uzależniona od geometrii i warunków ohłodzenia,

A - stala.

Przyjmując na podstawie rys. 7 m = 0,011 [1/h] oraz $\Theta = 20^{\circ}$ C po dodatkowym uproszczeniu wzoru (4) otrzymujemy:

$$T = 20 + (T = 20)exp(-0.011 t)$$
 (5)

gdzie:

Tu - rozkład temperatury w wirniku dla stanu ustalonego przy obciążeniu nominalnym (rys. 6).

6. Pole temperatury w wirniku w czasie rozruchu po 36 godz postoju

6.1. Rozruch i obciażenie turbiny

Wszystkie rozruchy są prowadzone przy całkowicie otwartych zaworach regulacyjnych cz. SP i przy użyciu do podnoszenia obrotów zaworów regula-

cyjnych cz. WP. Podwyższenie obrotów i obciążenie należy przeprowadzić zgodnie z programem dla każdego rodzaju rozruchu.

Charakterystyki rozruchowe turbiny dla uruchomienia po 36 godz postoju podano na rys. 8. Poszczególne krzywe dotyczą zmian temperatury pary przed częścią WP i WT, obrotów i mocy.

6.2. Parametry pary

Temperaturę pary omywającą tarcze wirnikowe i przepływającą przez uszczelnienie labiryntowe wyznaczono zgodnie z uwagami podanymi w punkcie 4.2. Rozkład ciśnienia w części WP i WT przy obciążeniu częściowym obliczono z zależności

$$p_{i} = \sqrt{\left(\frac{m}{m_{0}}\right)^{2} \left(p_{i0}^{2} - p_{i+1,0}^{2}\right) + p_{i+1}^{2}}$$
(6)

gdzie:

p_{i0}, p_i = ciénienia pary przed i=tą grupą stopni, p_{i+1,0}, p_{i+1} = ciénienie pary za i=tą grupą stopni, indeks "o" dotyczy nominalnych warunków pracy. Wyniki obliczeń przedstawiono na rys. 9.

Rys. 9. Przebiegi czasowe temperatury pary w czasie rozruchu po 36 godz. postoju

6.3. Rozkład temperatury w wirniku

Nieustalone pole temperatury w wirniku wyznaczono dla tych samych założeń jak dla stanu ustalonego. Współczynniki wnikania ciepła obliczono ze wzorów podanych w punkcie 4.3. Wyniki obliczeń przedstawiono na rys. 10.

Obliczenia rozkładu temperatury wykonano dla czterech następujących wariantów:

- nagrzewanie prowadzone wg instrukcji rozruchu [1],

- nagrzewanie 2 razy szybsze od zalecanego w instrukcji,

- nagrzewanie 4 razy szybsze od zalecanego w instrukcji,

- nagrzewanie 2 razy wolniejsze od zalecanego w instrukcji.

Rezultaty obliczeń rozkładu temperatury w wirniku pokazano na rys. 11-14. Początkowy rozkład temperatury wyznaczono z (5).

Podane przebiegi czasowe temperatury dotyczą tylko wybranych punktów wirnika. Położenie tych punktów pokazano na rys. 6. Porównanie temperatury w wyróżnionych punktach pozwala ocenić stopień równomierności nagrzewania się wirnika w kierunku promieniowym i osiowym.

Z podanych rezultatów wynika, że temperatura wirnika maleje w kierunku przepływu pary, ale profil rozkładu temperatury wzdłuż promienia i różnica w kierunku promieniowym jest prawie stała.

264

Rys. 12. Temperatury T [1, j] w wybranych punktach (1, j) wirnika (rys. 6) w czasie rozruchu po 36 godz. postoju, nagrzewanie 2 razy szybsze od zalecanego w instrukcji

Rys. 13. Temperatury T [i,j] w wybranych punktach (i,j) (rys. 6) w czasie rozruchu po 36 godz. postoju, nagrzewanie 4 razy szybsze od zalecanego w instrukcji

Przebiegi czasowe temperatury pokazano na rys. 11, wskazują, że proces nagrzewania prowadzony wg instrukcji rozruchu [1] jest bardzo równomierny i odbywa się z prawie stałą prędkością

$$\frac{dT}{dt} \cong 45 - 50 \text{ K/h} \cong 0,75 - 0,85 \text{ K/min.}$$

W porównaniu z dopuszczalnymi prędkościami nagrzewania innych elementów turbiny podobnego typu (tablica 1) jest to wartość mała.Z tego względu przeanalizowano proces nagrzewania prowadzony 2 i 4 razy szybszy od zalecanego w instrukcji [1].

Tablica 1

Miejsce pomieru	Zakres temperatur		
	<200°C	200-400°C	>400°C
Rurociąg pary świeżej	5	4	3
Kadłuby zaworów szybko zamykających WP	3	2	2
Kadłuby zaworów szybko zamykających SP	4	3	3
Kadłuby zaworów regulacyjnych WP i SP	6	5	3
Kadłub wewnętrzny WP i SP	3	2	2
Kadłub zewnętrzny WP i SP	4	3 .	3

Dopuszczalne prędkości zmian temperatur w wybranych punktach turbiny dużej mocy, OT/Ot [K/min] wg [8]

Po ocenie stanu wytrzymałościowego wirnika można będzie zweryfikować dotychozasową technologię rozruchu turbiny. Analizę taką przeproważzono w [9]. Jako dane wejściowe do modelowania stanu naprężenia i odkształcenia wirnika wykorzystano wyniki przedstawione na rys. 11-14.

7. Uwagi końcowe

W przeprowadzonych rozważaniach bardzo mało miejsca poświęcono metodzie modelowania pól temperatur. Nie opisano algorytmu obliczeniowego i sposobu realizacji obliczeń. Są to zagadnienia dostatecznie rozpracowane i opisane we wcześniejszych publikacjach (zob. wykaz literatury w skrypcie [6] i pracy [4]). Główną uwagę zwrócono na wyznaczenie rozkładu parametrów pary i sposób formułowania warunków brzegowych wymiany ciepła. Generalnie rzecz biorąc są to sprawy, które zawsze stanowią największy problem.

Prof. Stefan Wiśniewski w swojej monografii [10] pisze: "Ze względu na uproszczenia kształtów i warunków brzegowych wymiany ciepła, wyniki rozwiązań analitycznych są najmniej dokładne. Gdy uproszczenia niezbędne do rozwiązania analitycznego są zbyt duże lub gdy wymagana jest wysoka dokładność określenia pól temperatur, stosuje się w zasadzie mniej dokładne od metod analitycznych, przybliżone metody numeryczne lub analogowe, lecz z możliwie jak najdokładniejszymi warunkami brzegowymi. Dokładność określenia pól temperatur jest obecnie ograniczona głównie małą dokładnością znajomości współczynników przewodzenia ciepła i niedokładną znajomości warunków brzegowych wymiany ciepła". Z opinią tą trzeba się zgodzić. Mamy metody, algorytmy, nawst gotowe programy obliczeniowe, brak jest natomiast rozwiązań szczegółowych z uwagi na trudności w przyjęciu warunków brzegowych. W dalszych pracach problem ten powinien być badany.

LITERATURA

- Instrukcja eksploatacji turbiny 130 MW wraz z zrządzeniami pomooniczymi, 1975.
- [2] Kondratiew G.M.: Reguljarnyj tiepłowyj režim, GITTL, Moskwa 1954.
- [3] Viéniewski S.: Wymiana ciepła, WNT, Warszawa 1980,
- [4] Kosman G.: Ocena nieustalonych obciążeń cieplnych oraz dobór warunków nagrzewania turbin parowych. ZN Pol.Śl. Energetyka z. 75, 1979.
- [5] Chmielniak T. i inni: Zbiór zadań z turbin cieplnych. Skrypt Politechniki Śląskiej, Gliwice 1982.
- [6] Kosman G.: Termowytrzymałość maszyn przepływowych. Skrypt Politechniki Śląskiej, Gliwice 1982.
- [7] Grzegorzewski W., Latuszkiewicz W.: Badanie rozkładu temperatur w kadłubie wysokoprężnej turbiny parowej. Prace Instytutu Techniki Cieplnej, z. 22, 1963.
- [8] Instrukcja obsługi turbiny 13 K 215, praca ZAMECH-u 8074188, Elbląg 1971.
- [9] Kosman G.: Dsokonalenie opisu stanów przejściowych turbin oleplnych, Etap I, problem PR-8, Gliwice 1982.
- [10] Viániewski S.: Obciążenia cieplne silników turbinowych. WKiŁ, Varszawa 1974.

Recenzent: doc. dr inż. Jerzy Roszkowski

ТЕРМИЧЕСКИЕ УСЛОВИЯ РАБОТН РОТОРОВ ВО ВРЕМЯ ЗАПУСКА ТУРБИНН

Резюме

В статье проледено анализ термического состояния ротора во время запуска турбины. Для подробного рассмотрения выбрано процесс нагревания из тёпдого состояния. Определено распределение температур в роторе при номинальной нагрузке а также описано процесс остывания. Особенное внимпиме обращенс на определение распределения параметров пара и коэффициентов проникнования тепла. THERMAL CONDITIONS IN ROTORS DURING TURBINE STARTING

Summary

Thermal state of a rotor during turbine starting is discussed. The heating process beginning of the warm state is considered. Moreover a steady state of temperature in the rotor for a nominal load is found. Main attention is paid to the steamparameters and heat penetration coefficients distribution.