Seria: ENERGETYKA z. 86

Wr kol. 805

Vladyslaw ŁUKASZEK, Stanisław KUCYPERA Instytut Techniki Cieplnej

OPTYMALIZACJA WYBRANYCH PARAMETRÓW Występujących w pomiarach gęstości Metodą Absorpcji promieniowania gamma

> <u>Streszomenie.</u> W pracy opisano metodę wymnaczania optymalnych wartości parametrów warunkujących minimalny błąd pomiaru gęstości. Metodę milustrowano obliczeniami oraz podano uwagi dotyczące praktycznej jej realizacji w technice pomiarowej.

1. Wprowadzenie

Pomiar gęstości (średniej) metodą absorpoji wąskiej wiązki promieniowania gamma w materiale próbki może być opisany wzorem

$$\mathbf{r} - \mathbf{r}_{t} = (\mathbf{r}_{0} - \mathbf{r}_{t}) e^{-\lambda t d \cdot \mathbf{q}}, \qquad (1)$$

gdzie:

- r natężenie (ozęstość) zliczeń w przypadku prześwietlania próbki wiązką promieniowania gamma, impulsów/s,
- r_o natężenie sliczeń w przypadku usunięcia próbki z przestrzeni objętej wiązką promieniowania gamma, impulsów/s,
- rt nateżenie zliczeń rejestrowane pod wpływem promieniowania tła,impulsów/s.
- 9 gestość materialu próbki, g/om³,
- masowy współczynnik pochłaniania dla materiału próbki, om²/g,
- d grubošć prôbki (długość drogi wiązki promieniowania gamma w materiale próbki), om.

Z przekształcenia wzoru (1) wynika wzór definicyjny,który może być wykorzystany do pomiaru gęstości metodą absorpoji promieniowania gamma

$$q = \frac{1}{c^{\mu d}} \ln \frac{r_0 - r_t}{r - r_t}$$
 (2)

Wielkość C = $-\mu d$ spełnia warunek

$$c^{-1} = \frac{1}{9} \frac{\partial q}{\partial (\mu d)}$$

i w literaturze nazywana jest czułością względną (lub krócej czułością) metody pomiaru gęstości [1].

"Geometria" układu wykorzystywanego do pomiarów gęstości absorbentów przepływających rureciągiem jest przedstawiona na rysunku 1.

Rys. 1. Geometria układu do pomiaru gęsteści absorbentów przepływających rurociągiem

 źródło promieniowania gamma, 2 - kolimater źródła, 3 - pomiarewy edeinek rurociągu, 4 - abserbent (próbka), 5 - kelimator i osłona detektera, 6 - detekter promieniowania

Dalsze rezważania zostaną egraniczone do pomiarów gęstości prowadzonych z wykorzystaniem przeliczników.

2. Oszacowanie blędu pomiaru gestości

Oszacowanie kwadratu blodu pomiaru gostości ekreśla się za pomocą sumy

$$S_{0}^{2}(q) = S_{at}^{2}(q) + S_{\mu d}^{2}(q) + S_{ap}^{2}(q), \qquad (3)$$

gdsie:

S_{st}(ℓ) - błąd oząstkowy statystyczny (wynikający z pomiarów natężeń zliczeń),

$$S_{md}(q)$$
 - bląd oząstkowy uwarunkowany błędem parametru µd,
 $S_{md}(q)$ - bląd eząstkowy aparaturowy.

Vesystkie blędy interpretewane są jake blędy jednosigmewe, tzm. edpewiądające peziomowi ufneści równemu ek. 68,26%.

2.1. Blad omestkewy statystyczny

Blad oząstkowy statystyczny możo być określony wzorem

$$S_{st}(Q) = \sqrt{\left(\frac{\partial Q}{\partial r_{o}}\right)^{2} S^{2}(r_{o}) + \left(\frac{\partial Q}{\partial r}\right)^{2} S^{2}(r) + \left(\frac{\partial Q}{\partial r_{t}}\right)^{2} S^{2}(r_{t})}, \qquad (4)$$

gdzie: S²(r_o), S²(r) i S²(r_t) oznaczają oszacowania kwadratów błędów odpowiednich pomiarów natężeń zliczeń. W przypadku pomiarów wykonywanych przelicznikiem prawdziwe są zależności [2]:

$$s^{2}(\mathbf{r}_{o}) = \frac{\mathbf{r}_{o}}{\mathbf{t}^{2}} = \frac{\mathbf{r}_{o}}{\mathbf{t}_{o}}, \tag{5}$$

$$s^{2}(r) = \frac{n}{t^{2}} = \frac{r}{t},$$
 (6)

$$s^{2}(\mathbf{r}_{t}) = \frac{\mathbf{n}_{t}}{\mathbf{t}_{t}^{2}} = \frac{\mathbf{r}_{t}}{\mathbf{t}_{t}},\tag{7}$$

gdzie: n_o, n, n_t oznaczają ileści zliczeń (w impulsach) zarejestrowane odpowiednie w czasie t_o , t i t_+ (sekund).

2.2. Blad omestkowy uwarunkowany bloden parametru ud

Drugi skladnik wsoru (3) mežna określić zgodnie z zależnością

$$s_{\mu d}^{2}(q) = \left[\frac{2q}{2(\mu d)}\right]^{2} s^{2}(\mu d),$$
 (8)

gdzie S²(µd) jest oszacowaniem kwadratu blędu parametru µd. Przyjmuje się, że błąd parametru µd ustala błąd wapółczynnika pochłaniania µ określony w wyniku pomiarów (współczynnika pochłaniania). Zgodnie z podanym założeniem

$$s^{2}(\mu d) = d^{2} s^{2}(\mu).$$

V określowych warunkach pomiaru gęstości (ustalona energia promieniowania określowy skład próbki) wykorzystuje się konkretną wartość błędu współenymnika pochłaniania se eznacza, że meżna mapisać

$$s^2(\mu) = idem$$

2.3. Blad osastkowy aparaturowy

Liozne ozynniki zakłócające (do których można zaliczyć: fluktuacje wysokiego napięcia i napięć zasilających, fluktuacje temperatury, szumy układów elektronicznych) są przyczyną błędów w działaniu aparatury zastosowanej w układzie pomiarowym. Vezystkie ozynniki zakłócające działanie zastosowanej aparatury (rozpatrywane łącznie) warunkują, tzw. błąd aparaturowy.

V literaturze błąd aparaturowy traktuje się z reguły jako zmienną losową o rozkładzie normalnym. Przy określaniu wartości liczbowych błędu aparaturowego zakłada się często równość błędu aparaturowego i błędu statystycznego. Podane założenie wykorzystuje się w ramach niniejszej pracy co cznacza, że wartość liczbową błędu cząstkowego aparaturowego ustala się zgodnie z zależnością

$$s_{ap}^{2}(q) = s_{at}^{2}(q).$$
⁽⁹⁾

2.4. Blad pomiaru gestości

Łącząc zależności (3), (4), (5), (6), (7), (8) i (9) uzyskuje elę następującą postać wzoru dla oszacowania kwadratu błędu pomiaru gęstości

$$S_{0}^{2}(q) = \frac{1}{(\mu d)^{2}} \left\{ \frac{1}{(r_{0} - r_{t})^{2}} \frac{r_{0}}{t_{0}} + \frac{1}{(r - r_{t})^{2}} \frac{r}{t} + \frac{1}{\left[\frac{1}{r - r_{t}} - \frac{1}{r_{0} - r_{t}}\right]^{2}} \frac{r_{t}}{t_{t}} \right\} + \frac{1}{\left[\frac{1}{r - r_{t}} - \frac{1}{r_{0} - r_{t}}\right]^{2}} \frac{r_{t}}{r_{t}} + \frac{1}{(\mu d)^{4}} \ln^{2} \left(\frac{r_{0} - r_{t}}{r - r_{t}}\right) S^{2}(\mu d) + S_{ap}^{2}(q).$$
(10)

Zgodnie z podanymi woześniej uwagami błędy $S(\mu d)$ i $S_{ap}(q)$ są interpretowane jako wielkości stałe (funkcje stałe).

3. Optymalizacja bledu pomiaru gestości

Optymalizacja blędu pomiaru gęstości określonego zależnością (10) przeprowadzona zostanie w dwóch etapach,

3.1. Opłymalizacja ze względu na ozacy pomiarów natężeń zliczeń (etap 1)

Przyjmuje się następujące sformulowanie zagadnienia optymalizacji w zakresie pierwezege stapu:

8

Należy wyznaczyć minimum funkcji

$$S_{0}(Q) = F(t, t_{0}, t_{1})$$

przy ograniczeniu

$$t + t_0 + t_+ = T_0,$$
 (11)

gdzie ozas T_c jest wielkością ustaloną.

Eliminując t_t, zagadnienie aprowadza się do wyznaczenia minimum bezwarunkowego funkcji (zmiennych t_o i t)

$$S_{0}(q) = \left[\frac{1}{(\mu d)^{2}} \left\{ \frac{1}{(r_{0} - r_{t})^{2}} \frac{r_{0}}{t_{0}} + \frac{1}{(r - r_{t})^{2}} \frac{r}{t} + \left[\frac{1}{r - r_{t}} - \frac{1}{r_{0} - r_{t}}\right]^{2} \frac{r_{t}}{T_{c} - t_{0} - t} \right\} + \left[\frac{1}{(\mu d)^{4}} \ln^{2} \left(\frac{r_{0} - r_{t}}{r - r_{t}}\right) S^{2}(\mu d) + S^{2}_{ap}(q)\right]^{\frac{1}{2}}.$$
(12)

Z analizy zagadnienia wynika, żs funkcja $S_g(Q)$ jest określona i cią-gła w obszarze trójkątnym F_{Δ}

$$F_{\Delta} \begin{cases} 0 < t_o < T_o, \\ 0 < t < T_o - t_o. \end{cases}$$

W obszarze F_{Δ} funkcja $S_{\sigma}(q)$ jest dodatnia i spelnie warunki:

$$s_{0}(q) \rightarrow \infty$$
, dia $t \rightarrow 0$, lub dia $t_{0} \rightarrow 0$ lub dia $t_{0} + t \rightarrow T_{c}$,

co oznasza, że w miarę zbliżania się do zewnętrza obszaru F_{Δ} funkcja $S_{a}(q)$ reśnie mieograniczenie.

Rozpatrzone własności uzasadniają istnienie minimum funkcji $S_q(Q)$ w obazarze F_{Δ} , a zatem warunki

$$\frac{\partial S_{o}}{\partial t_{o}} = 0, \qquad (13)$$

$$\frac{\partial S_{o}}{\partial t_{o}} = 0, \qquad (14)$$

mogą być interpretowane jako warunki dostateczne istnienia minimum. Z warunków (13), (14) i (11) wynikają związki

$$\frac{\mathbf{t}_{o}}{\mathbf{t}} = \frac{\mathbf{r} - \mathbf{r}_{t}}{\mathbf{r}_{o} - \mathbf{r}_{t}} \sqrt{\frac{\mathbf{r}_{o}}{\mathbf{r}}}, \tag{15}$$

$$\frac{\mathbf{t}_{o}}{\mathbf{t}_{t}} = \frac{\mathbf{r} - \mathbf{r}_{t}}{\mathbf{r}_{o} - \mathbf{r}} \sqrt{\frac{\mathbf{z}_{o}}{\mathbf{r}_{t}}},\tag{16}$$

$$\frac{\Gamma_{c}}{r_{o}} = 1 + \frac{r_{o} - r_{t}}{r - r_{t}} \left| \frac{r}{r_{o}} + \frac{r_{o} - r}{r - r_{t}} \right| \left| \frac{r_{t}}{r_{o}} \right|$$
(17)

Wprowadzając stosunki (15), (16), (17) do równości (12) uzyskuje się wyrażenie na błąd optymalny ze względu na czasy pomiarów natężeń zliczeń

$$S_{o,m}(Q) = \left[\frac{1}{(\mu d)^{2} T_{c}} \left\{ \frac{1}{\sqrt[4]{r_{o}} + \sqrt{r_{t}}} + \frac{1}{\sqrt[4]{r_{o}} - \sqrt{r_{t}}} \right\}^{2} + \frac{1}{(\mu d)^{4}} \ln^{2} \left(\frac{r_{o} - r_{t}}{r - r_{t}} \right) S^{2}(\mu d) + S^{2}_{ap}(Q) \right]^{\frac{1}{2}}.$$
(18)

3.2. Optymalizacja ze względu na parametr µd (etap 2)

Optymalizację zależności (18) ze względu na parametr µd przeprowadzi się przy założeniu, że natężenie zliczeń r jest funkcją µd określoną zgodnie z wyrażeniem (1).

Analizując zależność (18) przy uwzględnieniu wyrażenia (1) łatwo stwierdzić, że są spełnione następujące warunki:

$$S_{0,m}(\mathbf{q}) \rightarrow \infty$$
 dla $\mathcal{Y}_{ud} \rightarrow 0$ lub $\mathcal{Y}_{ud} \rightarrow \infty$.

Podane waruuki przy szukaniu minimum funkcji (18) ze względu na parametr ud pozwalają ograniczyć rozważania do badania pierwszej pochodnej.

Optymalna wartość parametru jid może być wyznaczona z rówsania

$$\frac{\partial S_{\sigma_{\mu}\overline{m}}}{\partial (\mu d)} + \frac{\partial S_{\sigma_{\mu}\overline{m}}}{\partial r} \frac{dr}{d(\mu d)} = 0.$$

Po wykonaniu odpowiednich przekształosń i uwzględnieniu zależności

$$\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}(\mathrm{\mathbf{\mu}}\mathrm{d})} = -q(\mathbf{r} - \mathbf{r}_{t}),$$

uzyskuje się wyrażenie na optymalną wartość parametru (ud)

$$\left(\mu d \right)_{0} = \frac{2 \left\{ \left[\frac{1}{\sqrt{r_{0}} + \sqrt{r_{t}}} + \frac{1}{\sqrt{r_{m}} - \sqrt{r_{t}}} \right]^{2} + T_{c} \varphi^{2} s^{2} \left(\mu d \right) \right\} }{\frac{\varphi}{\sqrt{r_{m}}} \frac{\sqrt{r_{m}} + \sqrt{r_{t}}}{\sqrt{r_{m}} - \sqrt{r_{t}}} \left[\frac{1}{\sqrt{r_{0}} + \sqrt{r_{t}}} + \frac{1}{\sqrt{r_{m}} - \sqrt{r_{t}}} \right] },$$
(19)

gdzie:

$$= r_{t} + (r_{o} - r_{t})e^{-(\mu d)g}.$$

Jeżeli S(ud) = 0 wówczas otrzymujemy

$$\left(\mu d\right)_{0} = \frac{2}{\ell} \frac{\sqrt{r_{m}} \left(\sqrt{r_{0}} + \sqrt{r_{m}}\right)}{\left(\sqrt{r_{0}} + \sqrt{r_{t}}\right)\left(\sqrt{r_{m}} + \sqrt{r_{t}}\right)}.$$
(19a)

Wartości parametru (Md) odpowiada błąd

$$S_{e,m,m}(\varsigma) = \left[\frac{1}{(\mu d)_{o}^{2} T_{c}} \left\{ \frac{1}{\sqrt{r_{o}} + \sqrt{r_{t}}} + \frac{1}{\sqrt{r_{m}} - \sqrt{r_{t}}} \right\}^{2} + \frac{Q^{2}}{(\mu d)_{o}^{2}} S^{2}(\mu d) + S_{mp}^{2}(\varsigma) \right]^{\frac{1}{2}}.$$
(20)

4. Dobór aktywności i energii źródła premieniewania gamma

Aktywność punktowego źródła promieniowania gamma destesowana do przeprewadzenych rozważań może być określona za pomocą wzeru

$$A = \frac{4 \Re R^2 \ k \ r_o}{\mathcal{V}_2 \ k \ \xi_2^{b}}, \ Bq$$
(21)

gdzie:

- k krotneść osłabienia promieniowania w materiałach ograniczających próbkę (np. w ścianach rurociągu),
- R odleglość źródlo-detekter, m,
- Pz wydajność emisji kwantów źródła promieniowania gamma, kwantów/rezpad,
- a powierzchnia czynna (oświetlena) detektora promieniewania gamma, m².
- E wydajność wewnętrzna detektora promieniewania gamma, impulsów/ kwant.

Aktywność A może być wyrażona w jednostkach Ci (Curie) zgodnie z relacją

$$1 \text{ C1} = 3.7 \cdot 10^{10} \text{ Bq}$$

Przy założonej grubości próbki d odpowiednią wartość parametru $(\mu d)_{0}$ można uzyskać wykorzystując zależność współczynnika pochłaniania materiału próbki od energii promieniowania, tzn. wybierając określoną energię kwantów. Energie kwantów izotopowych źródeł promieniowania gamma stanowią zbiór dyskretny i dlatego należy brać również pod uwagę konieczność wpływania na mniany wartości parametru $(\mu d)_{0}$ za pomocą zmian grubości próbki,

5. Obliczenia przykładowe, Opracowanie wykresów

Obliczenia przykładowe obejmują:

- a) eszacowania błędów (wzory (12), (18), (20)) z uwzględnieniem podziału oałkowitego czasu pomiaru T₀ (wzory (15), (16), (19)) i odpowiednich wartości parametru Ad (wzory (19), (19a)).
- b) oszacowanie grubości warstw wody i aktywności źródeł promieniowania (Am-241, Cs-137, Co-60) przy wykorsystaniu wyników z punktu a).

Wyniki obliczeń uporządkowano w tabelach 1 i 2 przyjzując następujące dane wejściowe:

$$r_0 = 10^{\frac{1}{2}} \text{ imp./s, } r_t = 500 \text{ imp./s, } Q = 1 \text{ g/om}^3,$$

 $S^2(\mu d) = 0,001 \text{ om}^6/g^2.$

Blędy w tabeli 1 oszacowano dla 4 par wartości blędów $S(\mu d)$ i $S_{ap}(q)$ oraz dla dwóch wartości czasów T_c (3s, 6s). Wartość blędu $S_{ap}(q) \neq 0$ przyjmuje się równą odpowiedniej wartości blędu cząstkowego statystycznego wynikającej z zastosowania wzoru (12), (18) lub (20). Wykorzystane wartości czasów t, t_o, t_t oraz wartości parametrów jud zostały podane w uwagach do tabeli 1.

Vartości liniowych współozynników pochłaniania (dla wody – μ_{H_20} , dla rurociągu wykonanego z aluminium – μ_{Al} , dla detektora z kryształu NaI – - μ_{NaI}) pochodzące z pozycji [4] i niezbędne do wykonania obliczeń zostały podane w tabeli 2.

Grubość ścianki \mathbf{x}_{A1} odcinka pomiarowego rurociągu (wypełnionego wodą) oraz grubość scyntylatora \mathbf{x}_{Na1} z jodku sodu, założono równe odpowiednic 0,4 om i 2,5 cm. Wzory dla obliczenia parametrów k i \mathcal{E}_{d} oraz konieczne wyjaśnienia zostały podane w piątej kolumnie tabeli 2.

Tabela 1

ORTHOGANITY DIGGON DOMISION SALOROI						
Oszacowanie Dlędu	S(ud) = 0 $S_{ap}(q) = 0$	s(ud) = 0 $s_{ap}(q) \neq 0$	$\begin{array}{l} S(\mu d) \neq 0 \\ S_{ap}(q) = 0 \end{array}$	$S(\mu d) \neq 0$ $S_{ap}(q) \neq 0$		
s_(q)	0,0188 1)	0,0266 1)	0,0246 1)	0,0309 1)		
(wzór (12))	0,0133 2)	0,0188 2)	0,0206 2)	0,0246 2)		
s _{o,m} (q)	0,0169 ³⁾	0,0239 3)	0,0231 3)	0,0286 3)		
(wzór (18))	0,0119 4)	0,0169 4)	0,0197 4)	0,0231 4)		
s _{o,m,m} (q)	0,0164 5)	0,0232 5)	0,0226 6)	0,0289 6)		
(wzór (20))	0,0116 7)	0,0164 7)	0,0185 8)	0,0229 8)		
Uwagi do tabeli 1 1. $t_0 = t = t_t = 1s$, $\mu d = 2 \text{ om}^3/g$ 2. $t_0 = t = t_t = 2s$, $\mu d = 2 \text{ om}^3/g$						
3. $t_0 = 0.54 \text{ s}$, $t = 1.69 \text{ s}$, $t_t = 0.77 \text{ s}$, $T_e = 3 \text{ s}$, $\mu d = 2 \text{ cm}^3/\text{g}$.						
4. $t_0 = 1,08 a$, $t = 3,38 s$, $t_t = 1,54 a$, $T_c = 6 a$, $\mu d = 2 cm^3/g$						
5. Dane jak w uwadze 3 lecz µd = 1,6535 cm ³ /g. µd obliczono wg wzoru (19a)						
6. Dane jak w uwadze 3 lecz µd = 2,2823 cm ³ /g. µd obliczono wg wzoru (19)						
7. Dane jak w	uwadze 4 lecz	µd = 1,6535 om	³ /g. µd oblic	ZOBO WE WZOTU		

zacowania błędów pomiarów gestości

8. Dane jak w uwadze 4 lecz $\mu d = 2,5200 \text{ cm}^3/\text{g}$. μd obliczono wg wzoru (19).

W. Łukaszek, S. Kucypers

Tabela 2

	A				
Parametr	Izotop				
	Am-241	Ca-137	Co-60	U W a g 1	
E, MeV	0,060 1)	0,661 2)	1,25 2)	-	
μ ₂ 0, σ= ⁻¹	0,190 2)	0,0862 2)	0,0641 ²⁾	-	
d, om	8,7	19,2	25,8	$d = \frac{1,6535}{c^{10}H_20} \ell,$	
d, om	12,0	26,5	35,6	$d = \frac{2,2823}{\lambda^4} \frac{q}{\pi_2 0} q,$	
d, om	13,3	29,2	39,3	$d = \frac{2.5200}{l^{2} H_{2}0} q,$	
41, om-1	0,640 2)	0,194 2)	0,150 2)	-	
k	1,669	1,168	1,127	$k = e^{24A_{A1} x_{A1}}, x_{A1} = 0,4 \text{ om},$	
NaI, om-1	22,72 2)	0,277 2)	0,190 2)	-	
84	1,00	0,500	0,378	$\delta_{g} = 1 - e^{-\mu_{\text{NaI}} \cdot \mathbf{x}_{\text{NaI}}}, \mathbf{x}_{\text{NaI}} = 2,5 \text{ om}$	
Ŷ2	0,4	0,92	2,0	-	
A, mCi	28,9	17,6	10,3	$R = 40 \text{ em}, a = 0,785 \text{ cm}^2$	

Grubości próbek (abacrbenta) i aktywności źródeł promieniewania gamma

Uvagi do tabeli 2

Emergia wg pezyoji [3]
 Dane wg pezyoji [4].

Zależność (19) przekształeona de postaci

$$(ud)_{0} = \frac{2\sqrt[4]{v}(\sqrt[4]{v} - 1)(w^{2} + q^{2}Q)}{qw(\sqrt[4]{v} + 1)},$$
 (22)

14

15

gdzie:

$$Q = T_{o}S^{2}(\mu d)r_{t}, \quad om^{6}/g^{2},$$

$$U = \frac{r_{o}}{r_{t}}, \quad V = \frac{r_{m}}{r_{t}} = 1 + (U-1)e^{-(\mu d)}e^{0},$$

$$W = \frac{1}{\sqrt{U+1}} + \frac{1}{\sqrt{\sqrt{V}-1}},$$

została wykorzystana do sporządzenia wykresów

Rys. 2. Rodzina krzywych $(\mu d)_{0}$ = Rys. 3. Rodzina krzywych $(\mu d)_{0}$ = = f $(\frac{r_{0}}{r_{t}}, q, Q)$ dla pięciu wartości q = f $(\frac{r_{0}}{r_{t}}, q, Q)$ dla sześciu warto-przy założeniu Q = 0 $\frac{\sigma m^{6}}{r^{2}}$ ści Q przy założeniu q = 1 $\frac{g}{\sigma}/\sigma^{3}$

 $Q = T_c \cdot S^2(ud) \cdot T_t$

Obliczenia wartości (µd)_o wykonano za pomocą odpowiedniego programu napiaanego w języku FORTRAN na m.o. ODRA 1305 dla naatępujących wartości perametrów

 $Q = 0, 1, 3, 6, 9, 12, \text{ om}^{6}/\text{g}^{2},$ $S = 0,8 (0,1) 1,2, \text{ g/om}^{3},$ U = 5 (5) 50.

Vybrane wyniki obliczeń wartości (µd)_o zilustrowano za pomocą wykresów na rysunku 2 i na rysunku 3.

6. Dyskusja wyników

Analiza wyników z tabeli 1 pozwala stwierdzić, że błędy oszacowań maleją w miarę wzrostu oałkowitego ozasu pomiaru T_c i w miarę kontynuowania procesu optymalizacji. Etap optymalizacji wg parametru μ d wpływa na ogół mniej wyraźnie na poprawę oszacowania błędu aniżeli bezpośrednio poprzedzający etap optymalizacji ze względu na podział ozasu pomiaru. Wartości oszacowań pogarszają się jeżeli do błędu statystycznego (kolumna 2 tabeli 1) dołączane są dalsze błędy (S(μ d) i S_{ap}(ς)). Z wykresów przedstawionych na rysunkach 2 i 3 wynika, że na wzrost wartości parametru (μ d) można wpływać zwiększając stosunek r_o/r_t, zwiększając wartość parametru Q lub zmniejszając gęstość ς .

Tabela 1 obejmuje wyniki pierwszego i drugiego etapu optymalizacji. Zakończenie procesu optymalizacji wymaga dodatkowo obliczenia wartości czasów pomiarów natężeń zliczeń t, t_o i t_t, dostosowanych do obliczonej wartości parametru (µd)_o. W szczególności dla wyników z tabeli 1 do których odnosi się uwaga 8, wartości parametru (µd)_o = 2,5200 om³/g i wartości czasu T_c = 6s, odpowiadają:

t = 3,32 a, $t_{c} = 0,75$ a, $t_{\pm} = 1,93$ a.

Minimalną wartością blędu pomiaru gęstości dla dyskutowanego wariantu jest podana w tabeli 1 wartość

$$S_{0,m,m}(q) = 0,0229 \text{ g/om}^3.$$

Na podstawie wyników obliczeń z tabeli 2 łatwo zauważyć, że większym energiom promieniowania gamma odpowiadają większe optymalne grubości próbek i mniejsze aktywności źródeł. Wartości aktywności podane w tabeli 2 zapewniają nieprzekroczenie błędów, oszacowanych w tabeli 1 pod warunkiem dotrzymania wartości parametrów wynikających z przeprowadzonych obliczeń optymalizacyjnych.

7. Schemat obliczeniowy. Uwagi końcowe

W przypadku korzystania z informacji zawartych w niniejszym artykule odpowiednie zasady Postępowania mogą być uporządkowane zgodnie z następującym schematem:

- Oszacować gęstość materiału próbkię, przyjąć początkową wartość całkowitego ozasu pomiaru T_c oraz założyć wstępnie wartości natężeń zliozeń r_c i r_t.
- 2. Obliczyć parametr Q. Wartość błędu S(µd) może być oszacowana na podstawie dostępnych danych literaturowych lub na podstawie analizy dokładności możliwych do zrealizowania metod eksperymentalnego pomiaru wsp61ozynnika pochłaniania.
- 3. Wyznaczyć wartość parametru $(\mu d)_o$, np. odczytując ją z wykresów rodziny krzywych $(\mu d)_o = f(\frac{r_o}{r_t}, q, q)$.
- 4. Stosując wzory (15), (16) i (17) obliczyć wartości czasów pomiarów natężeń zliczeń t, t_0 i t_t odpowiadające parametrowi (ud)₀. Obliczone wartości czasów mogą być zackrąglone w górę do najbliższych wartości caąkowitych
- 5. Wykorzystując wzór (20) oszacować wartość błędu pomiaru gęstości S_{c.m.m}(ς).
- 6. Nawiązując do znanej wartości parametru (ud) wybrać izotop promieniotwórczy oraz określić grubość próbki d.
- 7.. Obliczyć wymaganą aktywność źródła A stosując wzór (21).

Projekt stanowiska pomiarowego musi uwzględniać możliwość wprowadzenia pewnych modyfikacji w czasie eksploatacji, np. możliwość zmiany odległości między źródłem i detektorem, możliwość wymiany źródła promieniowania itp. Istniejące stanowisko pomiarowe można wykorzystać do uściślenia wyników uzyskanych zgodnie z podanym schematem obliczeniowym. W szczególności natężenia zliczeń r_o i r_t mogą być określone za pomocą odpowiednich pomiarów. Przyjmując, np. dostatecznie duże, całkowite wartości czasów pomiaru, dogodną wartość parametru 🖉 d oraz zmniejszając odpowiednio wartości natężeń zliczeń (w szczególności r.) można wpływać na zmniejszenie blędu pomiaru gęstości i obniżenie aktywności źródła. W przypadku długich czasów pomiarów poprawia się statystyka zliczeń ponieważ są obserwowane duže ilości przemian promienictwórczych. W konsekwencji fluktuacje w emisji i rozprzestrzenianiu się promieniowania lepiej się kompensują. Wartości natężenia zliczeń r₊ można zmieniać za pomocą odpowiednich modyfikacji w układzie pomiarowym, np. stosując mniej lub bardziej efektywne oslony źródła i detektora. Mniejsze aktywności źródeł promieniowania uła-

W. Lukaszek, S. Kuoypera

twiają zachowanie warunków bezpieczeństwa pracy zgodnych z przepisami ochromy przed promieniowaniem.

Wartość aktywności może być również określona za pomocą wartości natężenia zliczeń \mathbf{r}_0 uzależnionego od błędu pomiaru gęsteści. Teoretycznie można w tym celu wykorzystać wzór (12) po wyrugowaniu \mathbf{r}_0 i przyjęciu szacunkowych wartości dla wszystkich parametrów łącznie z przyjęciem wartości błędu pomiaru gęstości. Wyrugowanie parametru \mathbf{r}_0 z wzoru (12) nie jest jednak łatwe i wymaga zastosowania metod numerycznych. Proste przypadki określania aktywności źródła promieniowania za pomocą wartości \mathbf{r}_0 będącej funkcją błędu gęstości znaleźć można w pozycji [1].

LITERATURA

- Klempner K.S., Čeredničenko J.M.: "Verojatnostnyj analiz pri proektirovanii radioizotepnych priberev", Atemizdat, Moskwa 1971.
- Price W.: "Detekoja promieniowania jądrowego" (tłum z jęz. ang.), PWN, Warszawa 1960.
- Wallmoden W. (redakcja): "Ochrona przed promieniowaniem jomizującym", Część I, Wyd, CLOR, Warszawa 1966.
- Kimel L.P. (i inni): Zaščita ot jonizirujuščich izlučenij", Wyd. 2, Atomizdat, Moskwa 1972.

Recenzent: doc. dr hab. inż, Zdzisław Kabza

Wpłynężo do Redakoji w marom 1983 r.

ОПТИМИЗАЦИЯ ИЗБРАННЫХ ПАРАМЕТРОВ ВЫСТУПАЮЦИХ В ИЗМЕРЕНИЯХ ПЛОТНОСТИ МЕТОДОМ АБСОРИЦИИ ИЗЛУЧЕНИЯ ГАММА

Резюме

В работе описан метод определения оптимальных значений нараметров обуславливающих » наименьшую опибку измерения плотности. Метод илиюстрирован расчётами. Даны замечания касающиеся практической реализации метода в измерительной технике.

OPTIMIZATION OF CHOSEN PARAMETERS IN THE DENSITY MEASUREMENTS UTILIZING THE ADSORPTION OF GAMMA RAYS

Summary

In this paper a method of the minimal error determination of density measurement is described. The examples of calculations and comments about the rules of density measurement are given.