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F O R E W O R D

The Quarterly of Applied M athem atics has been founded prim arily to 
meet the needs of certain mathematicians and engineers whose interests ex­
tend beyond the accepted boundaries of their respective groups. These mathe­
maticians find their greatest interest in the application of mathematics to 
physical problems, and these engineers seek solutions of practical problems 
by advanced mathematical methods. T h u s they meet on the common ground 
of applied mathematics w ith a stimulating variety of interest.

I t  is not desirable to attempt too precise a definition of the boundaries of 
the field to which the Quarterly will be devoted. T h e  mathematical solution 
of one problem often throws light on another problem in an entirely different 
field; indeed, the peculiar strength of the mathematical method lies in its 
power to cut across those lines of demarcation which seem to divide science 
into separate compartments.

Nevertheless, it is necessary to give an outline of policy for, w ithin fairly  
wide limits, the pages of the Quarterly should appeal to a common interest. It  
seems best to start w ith the common ground of mathematics and engineering as 
a nucleus, and to build around it a wider circle of interest, embracing mathe­
matical theory related to engineering problems. T h u s certain subjects— fluid 
mechanics, elasticity, plasticity, thermodynamics, and classical mechanics in 
its engineering applications— are to be regarded as lying w ithin the scope of 
the Quarterly, and to these must be added electrical engineering, which has 
been one of the most fruitful fields of mathematical application.

W hile it is not the purpose of the Quarterly to publish experimental re­
sults, we shall welcome mathematical contributions which have an intimate 
connection with application in industry or practical science. Indeed, the ideal 
contribution to our pages would be one in which advanced and general mathe­
matical methods lead speedily to results which are in close agreement with  
experiment, and which are of high importance, either in direct practical ap­
plication or as an illumination of interesting phenomena hitherto unex­
plained.

T h e  E d i t o r s .
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T O O L I N G  U P  M A T H E M A T I C S  F O R  E N G I N E E R I N G *

BY

T H E O D O R E  v o n  K ÂRM ÂN  
California Institu te o f Technology

It  has often been said that one of the prim ary objectives of M athematics 
is to furnish tools to physicists and engineers for solution of their problems. 
I t  is evident from the history of the mathematical sciences that many funda­
mental mathematical discoveries have been initiated by the urge for under­
standing nature’s laws and many mathematical methods have been invented 
by men prim arily interested in practical applications. However, every true 
mathematician will feel that a restriction of mathematical research to prob­
lems which have immediate applications would be unfair to the “Queen of 
Sciences.” As a matter of fact, the devoted “minnesingers” of the Queen have 
often revolted against degradation of their mistress to the position of a “hand­
maiden” of her more practical minded and temporarily more prosperous 
sisters.

I t  is not difficult to understand the reasons for the controversial view ­
points of mathematicians and engineers. Th ey  have been pointed out more 
than once, by representatives of both professions.

The mathematician says to the engineer-. I have built a building on a sound 
foundation: a system of theorems based on well defined postulates. I have 
delved into the analysis of the process of logical thinking to find out whether 
or not there are any statements which could be considered true or at least 
potentially true. I  am interested in functional relations between entities 
which are well defined creations of my own mind and in methods which en­
able me to explore various aspects of such functional relations. If  you find 
any of the concepts, logical processes or methods which I  have developed 
useful for your daily work, I am certainly glad. A ll my results are at your 
disposal, but let me pursue my own objectives in my own way.

Says the engineer : Y o u r great forbears, who were mathematicians long 
before you, talked a different language. D id not Leonhard Eu le r distribute 
his time between discoveries in pure mathematics and in the theory of engi­
neering devices? The  fundamentals of the theory of turbines, the theory of 
buckling of columns, the theory of driving piles into soil were contributions 
of Eu ler. The  development of mathematical analysis cannot be separated 
from the development of physics and especially of mechanics. I t  is doubtful 
whether a human mind would ever have conceived the idea of differential 
equations without the urge to find a mathematical tool for the computation

* Received March IS, 1943.
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of the path of moving bodies. If  one assumes that the motion is determined by 
certain fundamental mechanical or geometrical relations, which are valid at 
every instant of the motion, one naturally is led to the idea of the differential 
equation. Also, the calculus of variations was invented m ainly for solution 
of physical problems; some of which were of teleological, some of practical 
nature. The  eighteenth century and the first decades of the nineteenth were 
perhaps the period of the most glorious progress in mathematical science; at 
that time, there was no distinction between pure and applied mathematicians. 
The abstract minded mathematicians stepped in after the big job was done; 
they endeavored to fill certain logical gaps, to system atize and codify the 
abundance of methods and theorems which the giants of the foregoing period 
created by a combination of logical thinking and creative intuition.

The m athem atician: It  seems to me that you underestimate the impor­
tance of what you call systematization and codification. D on’t you think that 
in order to assure the correct application of calculus and differential equa­
tions, there was an absolute necessity to define exactly what we mean by a 
limiting process; or, was it not absolutely necessary to give a real sense to 
such terms as infinitely small and infinitely large? You  may remember that 
Galileo— whom you hardly can call an abstract or pure mathematician—  
pointed out the contradictions which are unavoidable if you try  to apply the 
notions of equality and inequality to infinite quantities. He noticed that you 
can say either that the number of the integers is larger than the number of 
the squares, since every square is an integer, but not every integer is a square; 
or you can say with the same justification that there are as m any squares as 
integers, since every number has a square. The  notions of commensurability, 
denumerability, the logical analysis of the continuum, the theory of sets, and 
in more recent times, topology, were fundamental steps in the development 
of the human mind. M any of these developments were conceived independ­
ently of any conscious physical applications. B ut even for the sake of ap­
plications, it was necessary to improve the foundations of our own house, 
that is to improve the logical structure of mathematics. W ithout exact analy­
sis of the conditions for the convergence of series (the conditions which 
allow carrying out the processes of differentiation and integration), nobody 
could feel safe in handling series. I t  is not correct that the tendency to seek 
for a solid foundation of the new discoveries began after the men endowed 
with imagination and intuition did the big job. D ’Alembert already de­
manded that the calculus be founded on the methods of lim its. Cauchy, 
Legendre and Gauss certainly were among the creative mathematical ge­
niuses in your sense; they effectively contributed to the transition from intui­
tion to rigor. In  the second half of the nineteenth century this development 
continued toward the great goal that the mathematicians of that age— per­
haps optim istically— considered as perfect logic or absolute rigor. However, 
in addition to the clarification of the fundamentals, that period also opened
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new paths for applied mathematics. You mentioned, for example, differential 
equations. D on’t you believe that the theory of functions of complex v a ri­
ables, the classification of differential equations according to their singu­
larities, and the investigation of these singularities, all developed in the period 
that you call the period of codification, were most im portant steps in building 
up the very branch of mathematics from which you engineers derive so much 
benefit? These theories changed the prim itive w ay of finding solutions of 
differential equations by trial into a system atic method of mastering the 
whole field.

The engineer-. I agree, especially with w hat you say about complex vari­
ables. Indeed, the conformal transformation is one of the most powerful and 
most elegant methods for the solution of innumerable physical and engineer­
ing problems. I also agree with you on the fundamental importance of the 
analysis of singularities. In  fact, our graphical and numerical methods neces­
sarily fail or become awkward near the irregular points and we have to take 
recourse to analytical methods. However, you mathematicians unfortunately 
are somewhat like a physician who is less interested in the laws of normal 
functioning of the human body than in its diseases, or like the psychologist 
who instead of investigating the laws of normal mental processes concen­
trates his attention on the pathological aberrations of the human mind. We 
have to deal in most cases with “sound functions” and would like to have 
efficient methods to determine with fair accuracy their behavior in certain 
definite cases.

Answers the mathematician: Can you not apply the general methods that 
we developed for the solution of differential and integral equations? If  the 
solutions are given by “sound functions,” as you please to call them, I do not 
see any great difficulty nor do I see w hat more you expect us to do.

The engineer: Yo u r general theorems deal mostly with the existence of 
solutions and the convergence of your methods of solution. You  m ay recall 
the wisecrack of Heaviside: “According to the mathematicians this series is 
divergent; therefore, we m ay be able to do something useful with it .” You  
people spend much time and much w it to show the existence of solutions 
whose existence often is evident to us for obvious physical reasons. You  
seldom take the pains to find and discuss the actual solutions. If  you do so, 
then you restrict yourself mostly to simple cases, as for example, problems 
involving bodies of simple geometrical shapes. I  refer to the so-called special 
functions. I concede that a great many such functions were investigated by 
mathematicians. The ir values have been tabulated, their developments in 
series and their representations by definite integrals have been worked out 
in great detail. Unfortunately, such functions have only a restricted field of 
application in engineering. The  physicist in his search for fundamental laws 
m ay choose specimens of simple geometrical shapes for his experimentation. 
The engineer has to deal directly with structures of complicated shapes; he
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cannot give to a structure a simple geometrical form ju st because the stress 
distribution in such a structure can be calculated by special functions. F u r­
thermore, most special functions are applicable only to linear problems. In  
the past, physicists and engineers often linearized their problems for sim plic­
ity ’s sake. M athem aticians liked this simplification because it furnished a 
beautiful hunting ground for the application of elegant mathematical meth­
ods. Unfortunately, as engineering science progressed, the need for more 
exact information and the necessity to get nearer and nearer to physical 
reality, forces us to grapple with many nonlinear problems.

The mathematician: W ell, m any modern mathematicians are extremely 
interested in non-linear problems. It  seems your prim ary need is the develop­
ment of appropriate methods of approximation. However, you are not right 
in your criticism  of our proofs of existence. M any proofs of existence in mod­
ern mathematics go far beyond the lim its of intuition. Then , too, I under­
stand you engineers have good success with various iteration methods. Now, 
if we want to prove for example the existence of a solution of a boundary 
value problem, very often we use the iteration method. In  other words, we 
really construct a sequence of approximate solutions exactly as you do. The  
whole difference is that we prove and you only assume that the process of 
iteration leads to a unique solution. Also, your so-called “energy method” 
used for the solution of your problems in elasticity and structures appears 
to me closely related to the direct methods of the calculus of variations, i.e., 
to methods which try  to construct directly the minimizing function for given 
boundary values, without referring to the Euler-Lagrange differential equa­
tion. I t  seems to me that after'all there are m any common elements in pure 
analysis and applied mathematics.

The engineer: I shall not deny that; as a matter of fact, I have always 
felt that analysis is the backbone of applied mathematics. However, if you 
really start to apply analysis to actual cases you will see that there is a long 
way from the general idea of a method of approximation to a successful 
application of the same method. There is, for example, the question of avail­
able time and manpower. Fo r certain types of work, we have ingenious me­
chanical or electrical devices such as the differential analyzer or electric 
computers. However, in most cases we have to do the computation without 
such help. Then it is not sufficient to know that the process of approxima­
tion converges. W e have to find out which method requires the least time for 
a given degree of approximation; we have to have a fair estimate of the 
improvement of accuracy by successive steps. A ll such practical questions 
require difficult m athematical considerations. I th ink we definitely need math­
ematicians who help us to refine and, if you wish to say so, criticize and 
system atize our intuitive methods. In  fact, successful applications of mathe­
matics to engineering require the close cooperation of m athematicians and 
engineers. I t  is by no means a  routine job to recognize the underlying common



6 TH. v. K ARM AN

m a t h e m a t ic a l  r e la t io n s  in  a p p a r e n t ly  v e r y  d if f e r e n t  f ie ld s . T h e  m a t h e m a t i­

c ia n  w h o  in t e n d s  to  d o  a p p lie d  m a t h e m a t ic a l r e s e a r c h  h a s  to  h a v e  a  p r e t t y  

g o o d  s e n s e  f o r  t h e  p h y s ic a l  p ro c e s s e s  in v o lv e d .  O n  t h e  o t h e r  h a n d , t h e  e n g i­

n e e r  h a s  t o  g o  in t o  t h e  f u n d a m e n t a ls  o f  a n a ly s is  to  a  c o n s id e r a b le  d e p t h  in  

o r d e r  to  u s e  th e  m a t h e m a t ic a l to o ls  p r o p e r ly .  A n  a r b it r a r y  a s s e m b ly  o f  m a ­

c h in e  t o o ls  d o e s  n o t  c o n s t it u t e  a n  e ff ic ie n t  m a c h in e  s h o p . W e  k n o w  t h e r e  a r e  

p o w e r f u l m a c h in e  t o o ls  in  y o u r  m a t h e m a t ic a l  a r s e n a l.  T h e  t a s k  b e fo re  u s  is  

to  k n o w  h o w  to  a d a p t  a n d  a p p ly  th e m .

T h e  m athem atic ian '.  I  t h in k  y o u ’v e  g o t  s o m e t h in g  t h e re . T o  c a r r y  y o u r  

a n a lo g y  f u r t h e r ,  in  o r d e r  to  g e t  t h e  s o lu t io n  o f  e n g in e e r in g  p r o b le m s  in t o  p r o ­

d u c t io n ,  y o u  n e e d  s o m e  k in d  o f  to o l d e s ig n e r s . T h e s e  a r e  t h e  r e a l a p p lie d  

m a t h e m a t ic ia n s .  T h e i r  o r ig in a l  b a c k g r o u n d s  m a y  d if f e r ;  t h e y  m a y  c o m e  f ro m  

p u r e  m a t h e m a t ic s ,  f ro m  p h y s ic s  o r  f r o m  e n g in e e rin g , b u t  t h e ir  c o m m o n  a im  

is  to  “ to o l u p ” m a t h e m a t ic s  f o r  e n g in e e rin g .
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A  R E V I E W  O F  T H E  S T A T I S T I C A L  

T H E O R Y  O F  T U R B U L E N C E *

BY

H UG H  L. D R Y D E N  
N ational B ureau o f S tandards

1. In t r o d u c t io n .  T h e  ir r e g u la r  r a n d o m  m o t io n  o f  s m a ll  f lu id  m a s s e s  to  

w h ic h  t h e  n a m e  t u r b u le n c e  is  g iv e n  is  o f  s u c h  c o m p le x it y  t h a t  t h e r e  c a n  b e 

n o  h o p e  o f  a - t h e o r y  w h ic h  w i l l  d e s c r ib e  in  d e t a il  t h e  v e lo c it y  a n d  p r e s s u r e  

f ie ld s  a t  e v e r y  in s t a n t .  E x is t in g  t h e o rie s  m a y  b e c la s s if ie d  a s  e it h e r  e m p ir ic a l  

o r  s t a t is t ic a l.

I n  th e  e m p ir ic a l  t h e o rie s  a t t e n t io n  is  fo c u s e d  o n ly  o n  t h e  d is t r ib u t io n  o f  

m e a n  s p e e d  a n d  m e a n  p r e s s u r e , a n d  a s s u m p t io n s  a r e  m a d e  a s  to  t h e  d e p e n d ­

e n c e  o f  th e  s h e a r in g  s tr e s s e s  r e q u ir e d  to  s a t is f y  th e  e q u a t io n s  o f  m o t io n  o f 

th e  m e a n  flo w . T h e s e  a s s u m p t io n s  in v o lv e  o n e  o r  m o re  e m p ir ic a l  c o n s t a n t s .  

W h ile  t h e  t y p e  o f  a s s u m p t io n  a d o p t e d  is  o ft e n  s e le c t e d  o n  th e  b a s is  o f  s o m e  

h y p o t h e s is  a s  to  th e  c h a r a c t e r  o f  t h e  f lu c t u a t io n s  o f  s p e e d  a n d  p re s s u r e , th e  

t h e o r y  r e s t s  o n  t h e  f in a l  a s s u m p t io n  r a t h e r  t h a n  o n  t h e  h y p o t h e s is  a s  t o  th e  

f lu c t u a t io n s .  T h e  v a r io u s  “ m ix in g  le n g t h ” t h e o rie s  a r e  o f  t h is  t y p e .

I n  t h e  s t a t is t ic a l  t h e o rie s  c o n s id e r a t io n  is  g iv e n  to  th e  f r e q u e n c y  d is t r ib u ­

t io n  a n d  m e a n  v a lu e s  o f  t h e  p r e s s u r e  a n d  o f  t h e  c o m p o n e n t s  o f  t h e  v e lo c it y  

f lu c t u a t io n s ,  i.e . t o  t h e  s t a t is t ic a l  p r o p e r t ie s  o f  t h e  f lu c t u a t io n s ,  a n d  to  th e  

r e la t io n  b e t w e e n  t h e  m e a n  m o t io n  a n d  th e s e  s t a t is t i c a l  p r o p e r t ie s .

S o m e  a t t e m p t s  h a v e  b e e n  m a d e  to  a p p ly  t h e  m e t h o d s  o f  s t a t is t ic a l  m e ­

c h a n ic s  o f  d is c r e t e  p a r t ic le s .  I n  a l l  s u c h  a t t e m p t s  i t  is  n e c e s s a r y  to  s e le c t  c e r ­

t a in  d is c r e t e  e le m e n ts  c o r r e s p o n d in g  to  t h e  p a r t ic le s ,  a n d  to  m a k e  so m e  

a s s u m p t io n  a s  to  th e  p r o b a b i l i t y  o f  o c c u r r e n c e  o f  v a r io u s  v a lu e s  o f  a s s o c ia te d  

p r o p e r t ie s  o r  m o re  d ir e c t ly  t h e  f r e q u e n c y  d is t r ib u t io n  o f  t h e  a s s o c ia t e d  p r o p ­

e rt ie s . D if f ic u lt ie s  a r e  e n c o u n t e r e d  a t  b o t h  p o in t s .  T h e  b e s t  k n o w n  t h e o r y  o f 

t h is  t y p e  is  t h a t  o f B u r g e r s 1 w h o  s e le c t e d  a s  e le m e n ts  in  t w o - d im e n s io n a l 

f lo w  t h e  p o in t s  in  a  s q u a r e  n e t w o r k  o f  e q u a l ly  s p a c e d  p o in t s  a n d  a s  a s s o c ia t e d  

p r o p e r t y  t h e  v a lu e  o f  th e  s t r e a m  f u n c t io n .  T h i s  t h e o r y  h a s  n o t  a s  y e t  le d  to  

u s e f u l r e s u lt s  a n d  is  n o t  s a t is f a c t o r y  to  B u r g e r s  h im s e lf .  O t h e r  a t t e m p t s  o f

* Received N ov. 19, 1942.
1 Burgers, J. M ., On the application of statistical mechanics to the theory o f turbulent 

flu id  motion, I to V II, inclusive, Verh. Kon. Akad. v . W etensch. Amsterdam 32, 414, 643, 818 
(1929); 36, 276, 390, 487, 620 (1933). Summarized b y  Trubridge in Reports Phys. Soc. Lon­
don, 1934, p. 43.
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t h is  n a t u r e  h a v e  b e e n  m a d e  b y  v o n  K â r m â n , 2 N o e t h e r ,3 T o l lm ie n , 4 G e b e le in ,6 

D e d e b a n t ,  W e h r lé  a n d  S c h e r e s c h e w s k y ,6 a n d  T a k a h a s i . 7

M a n y  o f  t h e  s t a t is t ic a l  t h e o rie s  j u s t  m e n tio n e d  d o  n o t  r e q u ir e  th e  t u r b u ­

le n t  f lu c t u a t io n s  to  s a t is f y  t h e  e q u a t io n s  o f  m o t io n  n o r  d o  t h e y  r e q u ir e  t h e  

f lu id  m o t io n  to  b e  c o n t in u o u s .  A  s t a t is t ic a l  t h e o r y  o f  t u r b u le n c e  w h ic h  is  

a p p lic a b le  to  c o n t in u o u s  m o v e m e n t s  a n d  w h ic h  s a t is f ie s  t h e  e q u a t io n s  o f m o ­

t io n  w a s  in a u g u r a t e d  in  1 9 3 5  b y  T a y l o r s a n d  f u r t h e r  d e v e lo p e d  b y  h im s e lf  

a n d  b y  v o n  K â r m â n . 9 I t  is  t h e  o b je c t  o f  t h is  p a p e r  to  g iv e  a  c o n n e c t e d  a c ­

c o u n t  o f  th e  p r e s e n t  s t a t e  o f  t h is  p a r t i c u la r  s t a t is t ic a l  t h e o r y  o f  t u r b u le n c e .

2. Turbulent fluctuations and the mean motion. A s  in  o t h e r  t h e o r ie s  o f 

t u r b u le n t  f lo w , t h e  flo w  is  r e g a r d e d  a s  a  m e a n  m o tio n  w it h  v e lo c it y  c o m p o ­

n e n t s , U, V, a n d  W, o n  w h ic h  a r e  s u p e r p o s e d  f lu c t u a t io n s  o f  t h e  v e lo c it y  w it h  

c o m p o n e n t s  o f  m a g n it u d e  u, v, a n d  w  a t  a n y  in s t a n t .  T h e  m e a n  v a lu e s  o f  u, v, 
a n d  w a r e  z e ro . I n  m o s t  c a s e s  U, V, a n d  W  a r e  th e  a v e r a g e  v a lu e s  a t  a  f ix e d  

p o in t  o v e r  a  d e f in it e  p e r io d  o f  t im e , a lt h o u g h  in  c e r t a in  p r o b le m s  i t  is  m o re  

c o n v e n ie n t  to  t a k e  a v e r a g e s  o v e r  a  s e le c t e d  a r e a  o r  w it h in  a  s e le c t e d  v o lu m e  

a t  a  g iv e n  in s t a n t .  T h e  r u le s  f o r  f o r m in g  m e a n  v a lu e s  w e re  s t a t e d  b y  R e y ­

n o ld s 10 a n d  s o m e  f u r t h e r  c r i t i c a l  d is c u s s io n  b y  B u r g e r s  a n d  o t h e r s  h a s  b e e n  

r e c o rd e d  in  c o n n e c t io n  w it h  a  le c t u r e  b y  O s e e n .11

W h e n  th e  t u r b u le n t  m o tio n  is  p r o d u c e d  in  a  p ip e  b y  th e  a c t io n  o f  a  c o n ­

s t a n t  p r e s s u r e  g r a d ie n t  o r  n e a r  th e  s u r f a c e  o f  a n  o b je c t  in  a  w in d  t u n n e l in  

w h ic h  t h e  fa n  is  o p e ra te d  a t  a  c o n s t a n t  s p e e d , t h e r e  is  c o n s id e r a b le  fre e d o m

2 Kârmân, Th. von, Über die Stabilität der Lam inar Strömung und die Theorie der Turbulenz, 
Proc. 1st Inter. Congr. Appl. M ech., Delft, 1924, p. 97.

3 Noether, F ., Dynamische Gesichtspunkte zu  einer statistischen Turbulenztheorie, Z. angew. 
M ath. u. M ech. 13, 115 (1933).

4 Tollm ien, W ., Der Burgersche P hasenraum  und  einige Fragen der Turbulenzstatistik, 
Z. angew. M ath. u. M ech. 13, 331 (1933). Brief abstract of this paper entitled, On the tur­
bulence statistics in  Burgers’ phase space, Physics, 4, 289 (1933).

8 Gebelein, H ., Turbulenz: Physikalische S ta tistik  und H ydrodynam ik, Julius Springer, 
Berlin, 1935.

3 Dedebant, G., Wehrlé, Ph., and Schereschewsky, Ph., Le m axim um  de probabilité dans 
les mouvements permanents. A pplica tion  à la turbulence, Comptes Rendus Ac. Sei. Paris 200, 203 
(1935). Also Dedebant, G., and Wehrlé, Ph., S u r  les équations aux  valeurs probables d 'un  flu ide
turbulent, Comptes Rendus Ac. Sei. Paris 206, 1790 (1938).

7 Takahasi, K., On the theory o f turbulence, T he Geophysical M agazine 10, 1 (1936).
8 Taylor, G. I., Statistical theory o f turbulence, I -V  inclusive, Proc. Roy. Soc. London 

Ser. A, 151, 421 (1935) and 156, 307 (1936). Also, The statistical theory o f isotropic turbulence, 
Jour. Aeron. Sei., 4, 311 (1937).

9 Kârmân, Th. von , On the statistical theory o f turbulence, Proc. N at. Acad. Sei. 23, 98 
(1937). A lso The fundam enta ls o f the statistical theory o f turbulence, Jour. Aeron. Sei. 4, 131 
(1937). A lso with Howarth, L., On the statistical theory o f isotropic turbulence, Proc. Roy. Soc. 
London Ser. A, 164, 192 (1938).

10 Reynolds, O., On the dynam ical theory o f incompressible viscous flu id s  and the determina­
tion o f the criterion, Phil. Trans. Roy. Soc. London 186, 123 (1895).

11 Oseen, C. W., D as Turbulenzproblem, Proc. 3rd Inter. Congr. Appl. M ech., Stockholm , 
1931, vol. 1, p. 3.
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in  s e le c t in g  t h e  t im e  in t e r v a l  f o r  w h ic h  m e a n  v a lu e s  a r e  t a k e n . S o  lo n g  a s  t h e  

t im e  in t e r v a l  is  lo n g e r  t h a n  s o m e  f ix e d  v a lu e  d e p e n d e n t  o n  t h e  s c a le  o f  th e  

a p p a r a t u s  a n d  t h e  s p e e d , t h e  m e a n  v a lu e s  a r e  in d e p e n d e n t  o f  t h e  m a g n it u d e  

o f  t h e  t im e  in t e r v a l  s e le c t e d  a n d  t h e r e  is  a  c le a r  s e p a r a t io n  b e t w e e n  t h e  t u r b u ­

le n t  f lu c t u a t io n s  a n d  t h e  m e a n  m o t io n . I f  t h e  m e a n  m o t io n  it s e lf  is  “ s lo w ly ” 

v a r ia b le ,  a s  in  t h e  c a s e  o f  t h e  n a t u r a l  w in d ,  d if f ic u lt y  a r is e s ;  t h e  s e p a r a t io n  

b e c o m e s  im p e r f e c t  a n d  a r b it r a r y .  T h e  s lo w ly  v a r ia b le  m e a n  m a y  b e  t a k e n  

o v e r  t im e  in t e r v a ls  o f  f iv e  m in u t e s , o n e  d a y ,  o r  te n  y e a r s  a c c o r d in g  to  th e  

o b je c t  o f  t h e  s t u d y  a n d  t h e  m a g n it u d e  o f  t h e  t u r b u le n t  f lu c t u a t io n s  v a r ie s  

a c c o r d in g ly .  E v e n  in  f lo w s  u n d e r  c o n s t a n t  p r e s s u r e  g r a d ie n t ,  t h e r e  w i l l  u s u ­

a l l y  b e  s o m e  e x p e r im e n t a l d if f ic u lt y  in  m a in t a in in g  t h e  c o n d it io n s  a b s o lu t e ly  

c o n s t a n t ,  a n d  t h e  q u e s t io n  w i l l  n a t u r a l l y  a r is e  a s  to  h o w  t h e  f lu c t u a t io n s  a r is ­

in g  f r o m  t h is  s o u r c e  m a y  b e  e lim in a t e d  f r o m  t h e  “ t r u e ” t u r b u l e n t  f lu c t u a t io n s .

3 .  V o r t e x  t r a i l s .  F o r  a  lo n g  t im e  e v e r y  f lo w  in  w h ic h  “ f a s t ” f lu c t u a t io n s  

o f  v e lo c it y  o c c u r r e d  w a s  r e g a r d e d  a s  a  t u r b u le n t  f lo w  b u t  e x p e r im e n t a l m e a s ­

u r e m e n t s  o f  f lu c t u a t io n s  s h o w  s e v e r a l id e n t if ia b le  t y p e s . T h e  e x p e r im e n t a l 

r e s u lt s  s u g g e s t  t h e  l im it a t io n  o f  t h e  t e r m  “ t u r b u le n t  f lu c t u a t io n ” to  o n e  o f 

th e s e  t y p e s  c h a r a c t e r iz e d  b y  t h e  r a n d o m  n a t u r e  o f  t h e  f lu c t u a t io n s .  T h i s  

r a n d o m  c h a r a c t e r is t ic  is  in  m a r k e d  c o n t r a s t  w it h  t h e  r e g u la r it y  a n d  p e r io d ic ­

i t y  n o te d  in  a  s e c o n d  t y p e  o f  f lu c t u a t io n  a s s o c ia t e d  w it h  v o r t e x  t r a i ls .

I t  is  w e ll  k n o w n  t h a t  w h e n  a  c y l in d e r  o r  o t h e r  o b je c t  o f  b lu n t  c r o s s  s e c t io n  

is  e x p o s e d  to  a  f lu id  s t r e a m , a  v o r t e x  t r a i l  a p p e a r s  u n d e r  c e r t a in  c ir c u m ­

s t a n c e s , v o r t ic e s  b r e a k in g  a w a y  w it h  a  r e g u la r  p e r io d ic it y .  T h e  s p e e d  f lu c t u a ­

t io n s  o b s e r v e d  in  t h e  t r a i l  a r e  p e r io d ic  a n d  in  t h e m s e lv e s  d o  n o t  p r o d u c e  

t u r b u le n t  m ix in g .  A t  c o m p a r a t iv e ly  s h o r t  d is t a n c e s  t h e  r e g u la r  p a t t e r n  t r a n s ­

f o r m s  in t o  a n  i r r e g u la r  t u r b u le n t  m o t io n , b u t  t h e  f lu c t u a t io n s  w it h in  t h e  t r a i l  

it s e lf  d o  n o t  h a v e  t h e  c h a r a c t e r  o f  th e  f in a l t u r b u le n t  f lu c t u a t io n s .

T h e  f lu c t u a t io n s  o f  t u r b u le n c e  a r e  ir r e g u la r ,  w it h o u t  d e f in it e  p e r io d ic it y  

w it h  t im e . T h e  a m p lit u d e  d is t r ib u t io n  c o r r e s p o n d s  to  t h e  G a u s s ia n  d is t r ib u ­

t io n ,  i.e . th e  n u m b e r  o f  t im e s  d u r in g  a  lo n g  t im e  in t e r v a l  t h a t  a  g iv e n  m a g n i­

t u d e  o f  f lu c t u a t io n  is  r e a c h e d  v a r ie s  w it h  t h e  m a g n it u d e  a c c o r d in g  t o  th e  
“ e r r o r ” c u r v e .

I f  t h is  r a n d o m n e s s  is  r e g a r d e d  a s  a n  e s s e n t ia l f e a t u r e  o f  t h e  t u r b u le n t  

f lu c t u a t io n s ,  t u r b u le n c e  is  n o t  e q u iv a le n t  to  a n y  r e g u la r  v o r t e x  s y s t e m  h o w ­

e v e r  c o m p le x . T h e  e q u iv a le n t  v o r t e x  p ic t u r e  is  a  la r g e  f a m ily  o f  v o r t e x  s y s ­

t e m s , w h o s e  s t a t is t ic a l  p r o p e r t ie s  o n ly ,  n o t  i n d iv id u a l  h is t o r ie s ,  a r e  s ig n if ic a n t .

4 . S p a c e  a n d  t im e  a v e r a g e s .  T h e  s p e e d  f lu c t u a t io n s  u ,  v, a n d  w ,  t h o u g h  

d e s ig n a t e d  t h e  f lu c t u a t io n s  a t  a  p o in t ,  a r e  in  r e a l i t y  a v e r a g e s  t h r o u g h o u t  a 

c e r t a in  v o lu m e  a n d  o v e r  a  c e r t a in  t im e  a s  a r e  t h e  s p e e d  c o m p o n e n t s  in  t h e  

u s u a l h y d r o d y n a m ic  t h e o r y .  T h e  v o lu m e  is  s m a ll  in  c o m p a r is o n  w it h  t h e  

d im e n s io n s  o f  in t e r e s t  in  t h e  f lo w  b u t  la r g e  e n o u g h  to  in c lu d e  m a n y  m o le ­

c u le s . A  c u b e  o f  s iz e  0 .0 0 1  m m , c o n t a in in g  a t  a t m o s p h e r ic  p r e s s u r e  a b o u t  

2 .7  X 1 0 7 m o le c u le s , s a t is f ie s  t h is  c o n d it io n .  T h e  t im e  in t e r v a l  is  s h o r t  in  c o m ­
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p a r is o n  w it h  a n y  t im e  in t e r v a l  o f  in t e r e s t  in  th e  m e a n  p r o p e r t ie s  o f  t h e  flo w  

b u t  lo n g  in  c o m p a r is o n  w it h  th e  t im e  r e q u ir e d  f o r  a  m o le c u le  to  t r a v e r s e  th e  

m e a n  fre e  p a t h .  T h e  n u m b e r  o f  c o l l is io n s  a t  a t m o s p h e r ic  p r e s s u r e  is  o f  th e  

o r d e r  o f  5 X 1 0 9 p e r  s e c o n d  a n d  h e n c e  a  t im e  in t e r v a l  o f  1 0 ~ 6 s e c o n d s  w o u ld  

s u ffic e .

N o  in s t r u m e n t s  h a v e  y e t  b e e n  c o n s t r u c t e d  to  g iv e  v a lu e s  a v e r a g e d  o v e r  

so  s m a ll  a  v o lu m e  o r  s o  s h o r t  a  t im e  in t e r v a l .  T h e  b e s t  p e r f o r m a n c e  o b t a in e d  

to  d a t e  is  t h a t  o f  h o t  w ir e  a n e m o m e t e rs  w h ic h  h a v e  b e e n  d e v e lo p e d  to  t h e  

p o in t  w h e re  a v e r a g e  v a lu e s  o v e r  a  c y l in d r ic a l  v o lu m e  p e r h a p s  0 .0 1  m m  in  

d ia m e t e r  a n d  1 m m  lo n g  a n d  o v e r  a  t im e  in t e r v a l  o f  a p p r o x im a t e ly  0 .5  X 1 0 -3 

s e c o n d s  c a n  b e  o b t a in e d . E x p e r im e n t a l  r e s u lt s  s h o w  t h a t  a v e r a g e s  o v e r  th e s e  

s p a c e  a n d  t im e  in t e r v a ls  a r e  n o t  a p p r e c ia b ly  d if f e r e n t  f ro m  th o s e  f o r  s o m e ­

w h a t  la r g e r  s p a c e  a n d  t im e  in t e r v a ls  a n d  s u g g e s t  t h a t  a v e r a g e s  o v e r  s m a lle r  

in t e r v a ls  w o u ld  n o t  b e  a p p r e c ia b ly  d if f e r e n t . T h e  r e s u lt s  a ls o  s u g g e s t  t h a t  

m e a s u r in g  e q u ip m e n t  t h a t  d o e s  n o t  a p p r o a c h  th e s e  s p a c e  a n d  t im e  in t e r v a ls  

g iv e s  r e s u lt s  w h ic h  la r g e ly  r e f le c t  th e  p r o p e r t ie s  o f  th e  m e a s u r in g  in s t r u m e n t  

r a t h e r  t h a n  t h e  p r o p e r t ie s  o f  t h e  t u r b u le n t  f lu c t u a t io n s .  I n  o t h e r  w o r d s  th e  

m e a s u r e m e n t  is  t h a t  o f  a  v a r ia b le  m e a n  v e lo c it y  o v e r  s p a c e  a n d  t im e  in t e r v a ls  

f ix e d  b y  t h e  c h a r a c t e r is t ic s  o f  t h e  in s t r u m e n t ,  r a t h e r  t h a n  m e a s u r e m e n t s  o f 

th e  t u r b u le n t  f lu c t u a t io n s .  I f  th e  f r e q u e n c y  s p e c t r u m  o f  t h e  t u r b u le n t  f lu c t u a ­

t io n s  is  k n o w n , t h e  e ffe c t  o f  th e  in s t r u m e n t  c h a r a c t e r is t ic s  c a n  b e  e s t im a t e d , 

a s  d is c u s s e d  in  s e c t io n  19.

5. Pulsations. R e f e r e n c e  h a s  p r e v io u s ly  b e e n  m a d e  t o  t h e  d if f ic u lt y  in  

c e r t a in  c a s e s  o f  m a k in g  a  c le a r  s e p a r a t io n  b e tw e e n  t h e  m e a n  m o tio n  a n d  th e  

t u r b u le n t  f lu c t u a t io n s ,  b e c a u s e  o f  t h e  d if f ic u lt y  o f  d e f in in g  a  t im e  in t e r v a l  

lo n g  e n o u g h  to  in c lu d e  m a n y  f lu c t u a t io n s  b u t  s m a ll e n o u g h  so  t h a t  t h e  m e a n  

v a r ie s  o n ly  s lo w ly .  T h e  d if f ic u lt y  is  o ft e n  in c r e a s e d  b y  t h e  p re s e n c e  o f  a  f a i r l y  

r a p id  v a r ia t io n  o f  t h e  m e a n  s p e e d  o v e r  la r g e  a r e a s , p e r h a p s  t h e  e n t ir e  c r o s s  

s e c t io n  o f  th e  f lu id  s t r e a m , to  w h ic h  th e  n a m e  p u ls a t io n  m a y  b e  g iv e n . S u c h  a  

f lu c t u a t io n  is  r e c o g n iz a b le  b y  th e  f a c t  t h a t  t h e r e  is  a  r e g u la r it y  in  t h e  s p a c e  

d is t r ib u t io n  o f  th e  f lu c t u a t io n s  s u c h  t h a t  d e f in it e  p h a s e  r e la t io n s  e x is t .  P u ls a ­

t io n s  h a v e  b e e n  o b s e r v e d  in  la m in a r  f lo w  in  b o u n d a r y  la y e r s .  A n  e s s e n t ia l 

c h a r a c t e r is t ic  o f  th e  t u r b u le n t  f lu c t u a t io n s  is  a n  i r r e g u la r i t y  a n d  r a n d o m n e s s  

in  th e  s p a c e  d is t r ib u t io n  a s  w e ll a s  in  t h e  t im e  d is t r ib u t io n .

I t  is  o ft e n  p o s s ib le  to  e lim in a t e  t h e  e ffe c t  o f  p u ls a t io n s  o n  t h e  m e a s u r e ­

m e n ts  b y  a  lo w  f r e q u e n c y  c u t - o f f  in  t h e  e q u ip m e n t  f o r  m e a s u r in g  u ,  v, a n d  vs. 
T h e  c h o ic e  o f  t h e  c u t - o f f  f r e q u e n c y  is  e q u iv a le n t  t o  a  s e le c t io n  o f  t h e  t im e  

in t e r v a l  o v e r  w h ic h  a v e ra g e s  a r e  t a k e n  to  o b t a in  t h e  m e a n  s p e e d  a n d  b y  t h is  

d e v ic e  t h e  p u ls a t io n s  a r e  r e g a r d e d  a s  v a r ia t io n s  o f  t h e  m e a n  s p e e d .

6. Continuity of the turbulent motion. I t  is  w e ll  k n o w n  t h a t  t h e  s t r u c t u r e  

o f  a  f lu id  is  in  t h e  f in a l a n a ly s is  d is c o n t in u o u s ,  t h e  f lu id  c o n s is t in g  o f  i n d i v i d ­

u a l m o le c u le s . N e v e r t h e le s s  t h e  u s u a l h y d r o d y n a m ic  t h e o r y  r e g a r d s  t h e  f lu id
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a s  a  c o n t in u u m . S u c h  a n  a s s u m p t io n  c a n  b e ju s t if ie d  w h e n  t h e  d im e n s io n s  

o f  t h e  f lo w  s y s t e m  a r e  v e r y  la r g e  c o m p a r e d  to  t h e  m e a n  fre e  p a t h  o f  t h e  

m o le c u le s . T h e  v e lo c it y  o f  t h e  f lu id  a t  a n y  p o in t  is  t h e n  d e f in e d  a s  th e  v e c t o r  

a v e r a g e  o f  t h e  v e lo c it ie s  o f  th e  m o le c u le s  in  a  s m a ll  v o lu m e  s u r r o u n d in g  th e  

p o in t ,  t h e  v a lu e  o b t a in e d  b e in g  in d e p e n d e n t  o f  th e  m a g n it u d e  a n d  s h a p e  o f 

t h e  v o lu m e  w it h in  c e r t a in  l im it s .

S o m e  in v e s t ig a t o r s 12 h a v e  c o n c lu d e d  t h a t  t h e  p h e n o m e n a  o f  t u r b u le n c e  

r e q u ir e  t h e  a s s u m p t io n  o f  d is c o n t in u it y  in  t h e  in s t a n t a n e o u s  c o m p o n e n ts . 

T h e  T a y lo r - v o n  K a r m  a n  s t a t is t ic a l  t h e o r y  r e t a in s  t h e  a s s u m p t io n  t h a t  th e  

f lu c t u a t io n s  a r e  c o n t in u o u s  f u n c t io n s  o f  s p a c e  a n d  t im e  a s  in  R e y n o ld s ’ t h e o r y .

T h e  a p p l ic a b i l i t y  o f  t h is  a s s u m p t io n  is  a  m a t t e r  f o r  e x p e r im e n t a l d e t e r m i­

n a t io n .  I f  e x p e r im e n t a lly  a  v o lu m e  a n d  t im e  in t e r v a l  c a n  b e  s e le c t e d  w h ic h  

m a y  b e  r e g a r d e d  a s  la r g e  in  c o m p a r is o n  w it h  m o le c u la r  d is t a n c e s  a n d  p e r io d s  

b u t  s m a ll  a s  c o m p a r e d  t o  t h e  v o lu m e s  a n d  t im e  in t e r v a ls  o f  in t e r e s t  in  th e  

t u r b u le n t  f lu c t u a t io n s ,  t h e  f lu c t u a t io n s  m a y  b e  s a f e ly  r e g a r d e d  a s  c o n t in u o u s .  

A s  d e s c r ib e d  in  s e c t io n  4 , t h e  e x p e r im e n t a l d a t a  p e r h a p s  d o  n o t  p r o v e  b u t  d o  

d e f in it e ly  s u g g e s t  t h a t  s u c h  a  c h o ic e  is  p o s s ib le  a n d  to  t h a t  e x t e n t  t h e  a s ­

s u m p t io n  o f  c o n t in u it y  is  e x p e r im e n t a lly  ju s t if ie d .

7 .  T h e  R e y n o ld s  s t r e s s e s .  I f  in  t h e  N a v ie r - S t o k e s  e q u a t io n s  o f  m o t io n  th e  

c o m p o n e n t s  o f  t h e  v e lo c it y  a r e  w r it t e n  a s  U + u ,  V - f a ,  W Ą - w ,  t h u s  r e g a r d in g  

th e  m o t io n  a s  a  m e a n  m o t io n  U, V, W ,  w it h  f lu c t u a t io n s  u, v, w  s u p e r p o s e d , 

a n d  m e a n  v a lu e s  t a k e n  in  a c c o r d a n c e  w it h  t h e  r u le s  m e n t io n e d  in  s e c t io n  2, 

a  n e w  s e t  o f  e q u a t io n s  is  o b t a in e d  w h ic h  d if f e r s  f r o m  t h e  f i r s t  o n ly  in  t h e  p r e s ­

e n c e  o f  a d d it io n a l  t e r m s  a d d e d  to  th e  m e a n  v a lu e s  o f  t h e  s tre s s e s  d u e  to  v i s ­

c o s it y .  T h e s e  a d d it io n a l  t e r m s  a r e  c a lle d  t h e  R e y n o ld s  s tr e s s e s  o r  e d d y  

s tre s s e s . T h e  e d d y  n o r m a l s t r e s s  c o m p o n e n t s  a r e  —  p u 2, —pv2, — pw 2 a n d  

th e  e d d y  s h e a r in g  s t r e s s  c o m p o n e n t s  a r e  —puv, —pvw, —puw .  E a c h  s t r e s s  

c o m p o n e n t  is  t h u s  e q u a l to  th e  r a t e  o f  t r a n s f e r  o f  m o m e n t u m  a c r o s s  t h e  c o r ­

r e s p o n d in g  s u r f a c e  b y  t h e  f lu c t u a t io n s .

I n  t h e  l ig h t  o f  k in e t ic  t h e o r y  t h e  e d d y  s tre s s e s  c lo s e ly  p a r a lle l  in  o r ig in  

th e  v is c o u s  s tre s s e s . I t  h a s  b e e n  e x p la in e d  h o w  u, v, a n d  w  a r e  t h e m s e lv e s  th e  

m e a n  s p e e d s  o f  m a n y  m o le c u le s . T h e  e ffe c t  o f  t h e  m o le c u la r  m o t io n s  a p p e a r s  

in  t h e  s m o o t h e d  e q u a t io n s  o f  t h e  c o n t in u u m  a s  a  s tr e s s , t h e  c o m p o n e n t s  o f  

w h ic h  a r e  e q u a l to  th e  r a t e  o f  t r a n s f e r  o f  m o m e n t u m  b y  t h e  m o le c u le s  a c ro s s  

th e  c o r r e s p o n d in g  s u rf a c e s .

8 . C o r r e la t io n .  I f  th e  f lu c t u a t io n s  w e re  p e r f e c t ly  r a n d o m , t h e  e d d y  s h e a r ­

in g  s t r e s s  c o m p o n e n t s  —puv, —pvw, —p u w  w o u ld  b e  z e ro . T h e  e x is t e n c e  o f 

e d d y  s h e a r in g  s t r e s s e s  is  d e p e n d e n t  o n  th e  e x is t e n c e  o f  a  c o r r e la t io n  b e tw e e n  

t h e  s e v e r a l c o m p o n e n t s  o f  th e  v e lo c it y  f lu c t u a t io n  a t  a n y  g iv e n  p o in t .  T h e  

c o e ff ic ie n t  o f  c o r r e la t io n  b e tw e e n  u  a n d  v is  d e f in e d  a s

12 Kam pé de Fériet, J., Some recent researches on turbulence, Proc. Fifth Inter. Congr. 
Appl. M ech., Cambridge, M ass.,1938, p. 352.
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uv
( 8 . 1 )

The mean values s/it?, v V .  and s/tsP- are often called the components
of the intensity of the fluctuations.

The  eddy shearing stress m ay be written in terms of the correlation coeffi­
cient as

and sim ilarly for the other components.
In  addition to the correlation between the components of the velocity  

fluctuations at a given point, the Taylor-von Karm an theory makes much 
use of correlations between the components of the velocity fluctuations at 
neighboring points. Denote the components of the fluctuations at one point 
by u i ,  Vx, w i ,  and at another point by Uz, Vz, w z. The coefficient of correlation 
between Ux and vz is defined as

and sim ilarly for any other pair. These correlation coefficients form useful 
tools to describe the statistical properties of the fluctuations with respect to 
their spatial distribution and phase relationships.

9. Scale of turbulence. The  earliest attempt to describe the spatial char­
acteristics of turbulence was the introduction of the mixing length concept, 
the mixing length being analogous to the mean free path of the kinetic theory 
of gases. Logical difficulties arise because there are no discrete fluid particles 
in the turbulent flow which retain their identity. A  method of avoiding these 
difficulties was suggested by T ay lo r13 many years ago. He showed that the 
diffusion of particles starting from a point depends on the correlation R t be­
tween the velocity of a fluid particle at any instant and that of the same par­
ticle after a time interval t. If  the functional relationship between R t and t is 
of such a character that R t falls to zero at some interval T  and remains so for 
greater intervals, it is possible to define a length lx by the relation:

in which v is the component of the velocity fluctuations transverse to the 
mean flow and in the direction in which the diffusion is studied.

— puv = — pRuv\/u * \/v* ( 8 . 2 )

UxVz
( 8 . 3 )

( 9 . 1 )

13 Taylor, G. I., D ifu s io n  by continuous movements, Proc. London M ath. Soc. Ser. A, 20, 
196 (1921).
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T h is  method of assigning a scale to turbulence is of value in the study of 
diffusion as described in section 22. I t  is based on the Lagrangian manner of 
describing the flow by following the paths of fluid particles. I t  is more com­
mon to use the Eulerian description by considering the stream lines existing 
in space at any instant. T ay lo r later8 suggested a method of describing the 
scale in the Eulerian system based on the variation of the correlation coeffi­
cient R v between the values of the component u  at two points, separated by 
the distance y  in the direction of the y  coordinate, as y  is varied. T h e  curve 
of Ry  against y  represents the statistical distribution of u  along the y  axis at 
any instant. If R v falls to zero and remains zero, a length L  may be defined 
by the relation :

The  length L  is considered a possible definition of the average size of the 
eddies present and has been found to be a most usefül measure of the scale 
of the turbulence, especially for the case of isotropic turbulence. Correspond­
in g ly ,a  length L x m ay be defined by the relation :

where R x is the correlation between the values of the component u  at two 
points separated by distance x  in the direction of the a; coordinate.

10. Isotropic turbulence. The simplest type of turbulence for theoretical 
or experimental investigation is that in which the intensity components in 
all directions are equal. More accurately, isotropic turbulence is defined by 
the condition that the mean value of any function of the velocity components 
and their derivatives at a given point is independent of rotation and reflection 
of the axes of reference. Changes in direction and magnitude of the fluctua­
tions at a given point are wholly random and there is no correlation between 
the components of the fluctuations in different directions. Thus u l — v2 = w2 
and ttv = vw = uw = 0.

There is a strong tendency toward isotropy in all turbulent motions. The  
turbulence at the center of a pipe in which the flow is eddying or in the natu­
ral wind at a sufficient height above the ground is approximately isotropic. 
A  grid of round wires placed in a uniform fluid stream sets up a more or less 
regular eddy system of non-isotropic character which very quickly transforms 
into a field of uniformly distributed isotropic turbulence.

The  assumption of isotropy introduces many simplifications in the statis­
tical representation of turbulence. T h e  two quantities, intensity and scale, 
appear to give a description of the statistical properties of the turbulent field

o
( 9 . 2 )

o
( 9 . 3 )
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w h ic h  is  s u ff ic ie n t  f o r  m o s t  p u rp o s e s . T u r b u le n t  f ie ld s  o f  t h is  t y p e  c a n  r e a d i ly  

b e  p r o d u c e d  e x p e r im e n t a lly  a n d  s t u d ie d .  T h e  in t e n s it y  m a y  b e  v a r ie d  fro m  

le s s  t h a n  0 .1  to  a b o u t  5 .0  p e r c e n t  o f  th e  m e a n  s p e e d  a n d  th e  s c a le  in d e p e n d ­

e n t ly  f ro m  a  fe w  m m  to  25 m m .14

1 1 . D e c a y  o f  is o t r o p ic  t u r b u le n c e .  T h e  k in e t ic  e n e r g y  o f  t h e  t u r b u le n t  

f lu c t u a t io n s  p e r  u n it  v o lu m e  is  e q u a l to  -|p(m5+ î ; 2-f w 2) w h ic h  f o r  is o t r o p ic  t u r ­

b u le n c e  b e c o m e s  {3 /2 )p u 2. T h e  r a t e  o f  d e c a y  is  t h e r e fo re  — {3 /2 )p d {u 2) / d t .  I f  

th e  is o t r o p ic  t u r b u le n c e  is  s u p e r p o s e d  o n  a  s t r e a m  o f u n if o r m  s p e e d  U,  w e  

m a y  w r it e  dt =  d x / U  a n d  h e n c e  t h e  r a t e  o f  d e c a y  w it h  r e s p e c t  to  d is t a n c e  * 

a s  — ( 3 / 2 ) p U d ( u 2) / d x .
I n  a  f u l l y  d e v e lo p e d  t u r b u le n t  f lo w  t h e  R e y n o ld s  s tre s s e s  a r e  p r o p o r t io n a l 

to  t h e  s q u a r e s  o f  th e  t u r b u le n t  f lu c t u a t io n s .  T h e  w o r k  d o n e  a g a in s t  th e s e  

s tre s s e s , w h ic h  in  t h e  a b s e n c e  o f  e x t e r n a l fo r c e s  m u s t  c o m e  f ro m  t h e  k in e t ic  

e n e r g y  o f  t h e  s y s t e m , is  p r o p o r t io n a l to  p u '3/ L  w h e r e  u '  is  w r it t e n  f o r  V « 2 

a n d  L  is  a  l in e a r  d im e n s io n  d e f in in g  t h e  s c a le  o f  t h e  s y s t e m , w h ic h  m a y  b e  

t a k e n  a s  t h e  L  d e f in e d  b y  (9 .2 ) .  E q u a t in g  t h e  t w o  e x p r e s s io n s  f o r  t h e  d is ­

s ip a t io n  a n d  d e s ig n a t in g  t h e  c o n s t a n t  o f  p r o p o r t io n a l i t y  a s  3 A ,  w e  f in d :

-  {3 /2 )PU d{u '2) / d x  =  3 A p u '3/ L  ( 1 1 . 1 )

o r

L d { U / u ' ) / d x  =  A .  ( 1 1 . 2 )

In t e g r a t in g :

U / u '  -  U / u /  = A  f  d x / L  ( 1 1 . 3 )
"  xo

■where U /u /  is  t h e  v a lu e  o f  U /u !  a t  x  =  x q . T h i s  e q u a t io n  h a s  b e e n  f o u n d  to  

g iv e  a  v e r y  g o o d  r e p r e s e n t a t io n  o f  t h e  e x p e r im e n t a l d a t a .  T h e  e s s e n t ia l fe a ­

t u r e s  o f  t h e  d e r iv a t io n  w e re  g iv e n  b y  T a y lo r .  T o  e v a lu a t e  th e  in t e g r a l,  L  m u s t  

b e  k n o w n  a s  a  f u n c t io n  o f  x .  T a y l o r ’s f ir s t  p r o p o s a l w a s  to  a s s u m e  t h a t  L  is  

in d e p e n d e n t  o f  x  a n d  p r o p o r t io n a l to  t h e  m e s h  M  o f  t h e  g r id  g iv in g  r is e  to  

th e  t u r b u le n c e .  I f  L  is  c o n s t a n t ,

U / u '  -  U /u /  =  A ( x  -  x o ) /L  ( 1 1 . 4 )

g iv in g  a  l in e a r  v a r ia t io n  o f  U / u '  w it h  x .  A s s u m in g  L / M — k,  T a y l o r  fo u n d  

v a lu e s  o f  A / k  f o r  d a t a  f ro m  v a r io u s  s o u r c e s  v a r y in g  b e t w e e n  1 .0 3  a n d  1 .3 2 .

11 Dryden, H . L., Schubauer, G. B., M ock, W. C., Jr., and Skramstad, H. K., M easure­
ments o f in tensity  and scale o f w ind-tunnel turbulence and their relation to the critical R ey­
nolds number o f spheres, Tech. Rept. N at. Adv. Comm. Aeron. No. 581 (1937).
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W h e n  m e a s u r e d  v a lu e s  o f  L  b e c a m e  a v a i la b le  i t  w a s  fo u n d  t h a t  L  i n ­

c re a s e d  a s  x  in c r e a s e d , t h e  r e s u lt s  b e in g  r e p r e s e n t e d  e m p ir ic a l ly  w it h in  t h e  a c ­

c u r a c y  o f  th e  m e a s u r e m e n t s  b y  t h e  r e la t io n  L = L 0-{-c(x—xo), w h e n c e

U /u ' -  U /u i  =  (A /c) lo g ,  [1 +  c(x  -  xo)/L0]. ( 1 1 . 5 )

T a y l o r 15 f o u n d  v a lu e s  o f  A  f o r  d a t a  f ro m  v a r io u s  s o u r c e s  v a r y in g  b e tw e e n

0 .4 3  a n d  0 .1 9 .

F u r t h e r  s t u d y  s u g g e s ts  a n o t h e r  r e la t io n  f o r  t h e  v a r ia t io n  o f L  w it h  x.
A  d is c u s s io n  o f  t h e  g e n e ra l t h e o r y  w i l l  b e  d e f e rr e d  u n t i l  s e c t io n  1 7  a n d  th e

q u e s t io n  d is c u s s e d  o n  p u r e ly  d im e n s io n a l c o n s id e r a t io n s .  I f  o n e  a s s u m e s  t h a t  

d u '/d l, t h e  r a t e  o f  c h a n g e  o f  in t e n s it y ,  a n d  d L /d t, t h e  r a t e  o f  c h a n g e  o f  s c a le , 

a r e  d e t e r m in e d  s o le ly  b y  t h e  v a lu e s  o f  L  a n d  u ’, i.e . t h a t  v is c o s it y  a n d  u p ­

s t r e a m  c o n d it io n s  h a v e  n o  in f lu e n c e , i t  f o llo w s  f ro m  d im e n s io n a l r e a s o n in g  

t h a t

L d ( \ /u ') /d t  — A a n d  (1  /u ')d L /d t = B  ( 1 1 . 6 )

o r

L d (U /u ') /d x  =  A  a n d  (U /u ')d L /d x  =  B  ( 1 1 . 7 )

w h e re  A  a n d  B  a r e  n u m e r ic a l  c o n s t a n t s .  T h e  f i r s t  e q u a t io n  o f  e a c h  p a ir  is  

t h e  s a m e  a s  e q u a t io n  ( 1 1 . 2 ) ;  t h e  s e c o n d  is  a  n e w  r e la t io n .

In t e g r a t io n  o f  e q u a t io n s  ( 1 1 . 6 )  a n d  ( 1 1 . 7 )  le a d s  to  th e  r e la t io n s :

* - T i
u '  L
«»' T j  +  0 4 +  B ) « S ( x - x o ) -y i«+ *>  i

L qU  j

a n d

L  T  (A  + B ) u i  ( x -  * o)-l* 'M +*>

u

r  {A +  B ) u j  {x  -  xo)J

L 1 +  U U  J
( 1 1 . 9 )

w h e re  uo a n d  L 0  a r e  t h e  v a lu e s  a t  x  =  0.

I f  i t  is  d e s ir e d  to  in t r o d u c e  a  r e fe re n c e  d im e n s io n  p e r t a in in g  to  t h e  d im e n ­

s io n s  o f  t h e  g r id  p r o d u c in g  t h e  d is t u r b a n c e ,  t h is  m a y  b e  d o n e , b u t  a c c o r d in g  

to  e q u a t io n s  ( 1 1 . 8 )  a n d  ( 1 1 . 9 )  a n y  d im e n s io n  m a y  b e  u s e d  a n d  t h e  d e c a y  

d o e s  n o t  d e p e n d  o n  it s  v a lu e .  T h e  m e s h  d is t a n c e  M  is  o ft e n  u s e d  b u t  c e r t a in  

r e s u lt s  r e p o r t e d  b y  v o n  K a r m a n 16 s h o w  t h a t  i f  M / d  is  n o t  to o  s m a ll,  t h e  u se

15 Taylor, G. I., Some recent developments in  the study o f turbulence, Proc. Fifth Inter. 
Congr. Appl. M ech., Cambridge, M ass., 294 (1938). See later detailed report of measurements 
in Hall, A. A., M easurements o f the in tensity  and scale o f turbulence, Rept. and M emo. No. 
1842, Aeronautical Research Com m ittee, Great Britain (1938).

15 Kdrm&n, Th. von, Some remarks on the statistical theory o f turbulence, Proc. F ifth  Inter.
Congr. Appl. M ech., Cambridge, M ass., 1938, p. 347. T he grid dimensions are not given in
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FlG. 1. The turbulent fluctuation u' behind a grid of wires of diameter d 
as a function of distance x  from the grid.
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function of distance x  from the grid.
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o f t h e  w ir e  d ia m e t e r  d  a s  t h e  r e fe re n c e  d im e n s io n  le a d s  to  a  s in g le  c u r v e  fo r  

a l l  g r id s  ir r e s p e c t iv e  o f  t h e  m e s h - d ia m e t e r  r a t io .

T h e  a v a i la b le  d a t a  a r e  p lo t t e d  in  F ig s .  1 a n d  2 f ro m  r e fe re n c e s  in  f o o t ­

n o t e s  1 4 , 1 5 , a n d  16 . T h e  s o lid  c u r v e s  a r e  r e s p e c t iv e ly

w h ic h  a r e  in  th e  f o r m  o f e q u a t io n s  ( 1 1 . 8 )  a n d  ( 1 1 . 9 )  w it h  t h e  c o n s t a n t s  

A  = 1 5  =  0 .2 0 5 6 . T h e s e  c u r v e s  a r e  f r a n k l y  s e le c t e d  to  f it  t h e  N a t io n a l  B u r e a u  

o f  S t a n d a r d s  d a t a .

I f  o n e  c o n s id e r s  th e  c o m p le t e  s y s t e m  o f  s c re e n  a n d  t u r b u le n t  f ie ld , d im e n ­

s io n a l c o n s id e r a t io n s  s u g g e s t  t h a t  f o r  g e o m e t r ic a lly  s im il a r  s c re e n s  w h o s e  

s c a le  is  f ix e d  b y  s o m e  c h a r a c t e r is t ic  d im e n s io n , s u c h  a s  t h e  m e s h  le n g t h  M , 
t h e  r a t io s  u ' /  U  a n d  L / M  w o u ld  b e  a  f u n c t io n  o f  x /M ,  o f  t h e  R e y n o ld s  N u m ­

b e r  U M /v  a n d  o f  th e  t u r b u le n c e  o f  th e  fre e  s t r e a m  u [  /U ,  in  w h ic h  th e  s c re e n  

is  p la c e d . I f  t h e  s c re e n s  a r e  n o t  g e o m e t r ic a lly  s im ila r  b u t  a r e  m a d e  u p  o f 

c y l in d r ic a l  r o d s  o f  d ia m e t e r  d, th e  in t e n s it y  a n d  s c a le  a ls o  d e p e n d  o n  d /M  
a n d  o n  th e  r o u g h n e s s  o f  t h e  s c re e n . T h e  e ffe c ts  o f  th e se  p a r a m e t e r s  h a v e  n o t  

b e e n  f u l l y  in v e s t ig a t e d ,  a n d  d o u b t le s s  a  p a r t  o f  t h e  d is c r e p a n c y  b e tw e e n  th e  

a v a i la b le  r e s u lt s  is  to  b e  a s c r ib e d  to  t h e  in f lu e n c e  o f  th e s e  f a c t o r s .

F o r  e x a m p le , th e  s c re e n s  u s e d  a t  th e  N a t io n a l  B u r e a u  o f  S t a n d a r d s  w e re  

e it h e r  w o v e n  w ir e  s c re e n s  o r  w o o d e n  s c re e n s  w it h  f a i r l y  r o u g h  s u r f a c e s  w it h  

th e  m e m b e rs  in t e r la c in g  in  t h e  w ir e  s c re e n s  a n d  in t e r s e c t in g  in  t h e  w o o d e n  

s c re e n s . T h e  r a t io  d /M  v a r ie d  f r o m  0 . 1 8 6  to  0 .2 0 1 . T h e  s c re e n s  u s e d  b y  H a l l  

w e re  a r r a n g e d  in  tw o  p la n e s , i.e .,  h o r iz o n t a l r o d s  in  o n e  p la n e , v e r t ic a l  ro d s  

j u s t  t o u c h in g  t h e  h o r iz o n t a l r o d s  b u t  in  a n o t h e r  p la n e . T h e  r a t io  d /M  w a s

0 . 1 8 4  to  0 .1 8 8 . V o n  K a r m a n  h a s  s t u d ie d  t h e  e ffe c t  o f  v a r y in g  d /M  f ro m  0 .0 8 6  

t o  0 .4 6 2  a n d  h a s  u s e d  s c re e n s  b o t h  o f  t h e  w o v e n  t y p e  ( r e s u lt s  p u b lis h e d  b y  

v o n  K a r m a n ,  lo c . c i t . )  a n d  o f  t h e  b ip la n e  t y p e  ( r e s u lt s  n o t  p u b l is h e d ) .  A  

s t u d y  o f  th e s e  d a t a  s u g g e s ts  t h a t  th e  d iffe r e n c e  b e tw e e n  th e  r e s u lt s  f o r  w o v e n  

s c re e n s  a n d  b ip la n e  s c re e n s  is  u n im p o r t a n t  a n d  t h a t  i f  r e s u lt s  a r e  p lo t t e d  in  

t e r m s  o f  x /d  r a t h e r  t h a n  x / M  th e  e ffe c t  o f  d /M  is  s m a ll  f o r  v a lu e s  o f  d /M  
n e a r  0 .2 . N o  d a t a  a r e  a v a i la b le  o n  t h e  e ffe c t  o f  ro u g h n e s s .

F e w  d a t a  a r e  a v a i la b le  o n  t h e  e ffe c t  o f  f re e  s t r e a m  t u r b u le n c e .  H a l l  o b ­

t a in e d  a n  in c r e a s e  o f  a b o u t  10  to  2 0  p e r c e n t  in  u '  f o r  a  l - i n c h  s c re e n  a t  th e

the paper, but Professor von Kdrm&n has kindly supplied them  as follows:

a n d

( U / u ' Y  =  4 0 0 [ ( 1  +  0 . 0 4 ( x / d  -  8 0 )]

(.L / d Y  =  0 . 2 6 4 [ ( 1  +  0 . 0 4 ( x / d  -  8 0 )]

( 1 1 . 1 0 )

( 1 1 . 1 1 )

Grid M esh Distance, M W ire Diameter, d
M /d

1
2
3
4

inches
4 . 9 6
5 .00
5 .07
4 . 9 9

inches
0 .230

.105

.084

.043

2 .1 6
4 .7 5
6 .03

11.6
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same value of x / M  by increasing the free stream turbulence from 0.2 percent 
to 1.3 percent. W e have had the opportunity of making some measurements 
behind the same 1-inch screen used in the measurements described in N A C A  
Technical Report No. 581 in an airstream for which the free stream turbu­
lence is 0.03 percent as compared w ith 0.85 percent for the older measure­
ments. T h e  results are shown in Fig. 3 as compared with H a ll’s measurements. 
I t  is obvious that the turbulence of the free stream is one of the controlling 
factors, but not the only one. ^

F ig . 3. Effect of free stream turbulence on the turbulence behind a 1-inch screen.

T h e  study of the turbulent field behind screens as affected by numerous 
parameters is of interest from the standpoint of a study of screens. However, 
the turbulent field may be regarded from another point of view, i.e. in relation 
solely to the theory of isotropic turbulence. If  the turbulence is tru ly iso­
tropic, and if its characteristics can be adequately described by the two 
quantities, intensity and scale, its behavior can depend only on the values 
of intensity and scale at some given point. The  details of construction of the 
source screen and its distance upstream are of no importance. Even  the in­
fluence of the turbulence of the free stream should be absorbed in the given
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v a lu e s  o f  u '  a n d  L  a t  s o m e  o n e  p o in t .  T h e  d e c a y  o f  is o t r o p ic  t u r b u le n c e  is  

c o n s id e r e d  f ro m  t h is  p o in t  o f  v ie w  in  s e c t io n  1 7 .

1 2 . E f f e c t  o f c o n t r a c t io n .  T h e  b e h a v io r  o f  t u r b u le n c e  in  a  c o n t r a c t in g  

s t r e a m  is  o f  in t e r e s t  in  c o n n e c t io n  w it h  t h e  flo w  in  th e  e n t r a n c e  c o n e  o f  a 

w in d  t u n n e l.  P r a n d t l 17 s u g g e s te d  t h a t  t h e  lo n g it u d in a l  c o m p o n e n t s  o f  th e  

f lu c t u a t io n s  w e re  r e d u c e d  in  th e  r a t io  o f  1 to  I w h e re  I is  t h e  r a t io  o f  t h e  e n ­

t r a n c e  a r e a  to  t h e  e x it  a r e a  o f  th e  co n e . T h i s  r e s u lt  w a s  d e r iv e d  o n  th e  a s ­

s u m p t io n  t h a t  th e  g a in  in  e n e r g y  is  th e  s a m e  f o r  a l l  f i la m e n t s  t r a v e r s in g  th e  

c o n e . T h e  s a m e  r e s u lt  w a s  o b t a in e d  fro m  t h e  H e lm h o lt z  v o r t e x  th e o re m , 

w h ic h  w a s  a ls o  u s e d  to  s h o w  t h a t  t h e  la t e r a l c o m p o n e n t s  w e re  in c r e a s e d  in  

th e  r a t io  y/'l. S in c e  th e  m e a n  s p e e d  in c re a s e s  p r o p o r t io n a l to  /, th e  v a lu e s  o f  

u ' /  U a n d  v ' /  U a r e  r e d u c e d  a c c o r d in g  to  t h is  t h e o r y  in  th e  r a t io s  1 /Z2 a n d  l / \ / Z  

r e s p e c t iv e ly .  T h i s  c o m p u t a t io n  n e g le c ts  t h e  d e c a y  o f  t h e  t u r b u le n c e  b e c a u s e  

o f  v is c o s it y .

T a y l o r 18 c o m p u t e d  th e  e ffe c t  o f  a  c o n t r a c t io n  o n  c e r t a in  m a t h e m a t ic a lly  

d e fin e d  fo r m s  o f  d is t u r b a n c e .  T w o  o b je c t io n s  m a y  b e o ffe re d  to  t h is  t r e a t ­

m e n t. F i r s t ,  a s  in  P r a n d t l ’s t r e a t m e n t , th e  d e c a y  o f  t h e  t u r b u le n c e  is  n e g ­

le c te d . S e c o n d , t h e  c o m p u t a t io n  is  m a d e  o n  a  r e g u la r  d is t u r b a n c e  w h ic h  is  

a s s u m e d  to  r e t a in  it s  r e g u la r it y .  W h e n  t h e  r a p id  d e v e lo p m e n t  o f  a n  is o t r o p ic  

t u r b u le n t  f ie ld  f ro m  a  K a r m a n  v o r t e x  t r a i l  is  c o n s id e r e d , i t  is  h a r d  to  b e lie v e  

t h a t  a  r e g u la r  v o r t e x  p a t t e r n  c o u ld  r e t a in  it s  c h a r a c t e r  t h r o u g h o u t  t h e  le n g t h  

o f  a  w in d  t u n n e l e n t r a n c e  c o n e  u n le s s  t h e  s c a le  w a s  v e r y  la r g e  in d e e d .

I f  i t  is  a s s u m e d  t h a t  th e  is t r o p ic  t u r b u le n t  f ie ld  is  u n a ffe c t e d  b y  c h a n g e s  

in  t h e  m e a n  s p e e d , th e  d e c re a s e  in  u '  m a y  b e c o m p u t e d  f r o m  th e  d e c a y  d u r in g  

t h e  t im e  r e q u ir e d  f o r  t h e  f lu id  to  t r a v e r s e  t h e  c o n e . T h i s  t im e  in t e r v a l  is  

f*zlQd x / U .  I f  A  is  t h e  a r e a  o f  t h e  c r o s s  s e c t io n  a t  a n y  v a lu e  o f  x ,  U A  = U o A 0 

w h e re  Uo a n d  A  o a r e  t h e  v a lu e s  a t  x = x o ,  a n d  h e n c e  t h e  t im e  in t e r v a l  is  

J l \ A  d x /U o A o -
T h e r e  a r e  a s  y e t  n o  s u it a b le  e x p e r im e n t a l d a t a  f o r  c h e c k in g  a n y  t h e o r y .  

I n  th e  m e a s u r e m e n t s  q u o t e d  b y  T a y l o r  a ll  th e  d a t a  w e re  o b t a in e d  s u f f ic ie n t ly  

c lo s e  to  a g r id  to  lie  w it h in  t h e  n o n - is o t r o p ic  t u r b u le n c e  o f  t h e  v o r t e x  t r a i ls  

f ro m  t h e  in d iv id u a l  w ir e s .

1 3 . T h e  c o r r e la t io n  t e n s o r  f u n c t io n .  V o n  K a r m a n 19 in t r o d u c e d  t h e  c o r ­

r e la t io n  t e n s o r  f u n c t io n  in  th e  s t a t is t ic a l  t h e o r y  o f  t u r b u le n c e  a s  a  g e n e r a l iz a ­

t io n  o f  th e  p a r t i c u la r  c o r r e la t io n  c o e ff ic ie n t s  d is c u s s e d  b y  T a y lo r .  T h e  c o r ­

r e la t io n  c o e ff ic ie n t s  b e tw e e n  a n y  c o m p o n e n t  o f  t h e  s p e e d  f lu c t u a t io n  a t  a 

g iv e n  p o in t  a n d  a n y  c o m p o n e n t  o f  th e  s p e e d  f lu c t u a t io n  a t  a n o t h e r  p o in t

11 Prandtl, L., Ilerstellung einwandfreier Luftstrom e (W indkana le) , Handbuch der Experi- 
m entaiphysik, F . A. Barth, Leipzig, 1932, Vol. 4, Part 2, p. 73.

18 Taylor, G. I., Turbulence in  a contracting stream, Z. angew. M ath. u. M ech. 15, 91 
(1935).

18 KZLrmdn, T h. von, and Howarth, L., On the statistical theory o f isotropic turbulence,
Proc. Roy. Soc. London, Ser. A, 164, 192 (1938).
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fo r m  a  te n s o r. I f  o n e  p o in t  is  h e ld  f ix e d  a n d  t h e  o t h e r  v a r ie d ,  t h e  t e n s o r  v a r ie s  

a s  a  f u n c t io n  o f  th e  c o o r d in a t e s  o f  t h e  v a r ia b le  p o in t  w it h  r e s p e c t  to  th e  f ix e d  

p o in t .  W e  m a y  s p e a k  o f  t h is  f u n c t io n  a s  th e  c o r r e la t io n  t e n s o r  f u n c t io n .

I n  is o t r o p ic  t u r b u le n c e  t h e  c o r r e la t io n  t e n s o r  h a s  s p h e r ic a l s y m m e t r y  a n d  

t h e  s e v e r a l c o m p o n e n t s  a r e  f u n c t io n s  o n ly  o f  t h e  d is t a n c e  r  b e t w e e n  t h e  tw o  

p o in t s ,  a n d  o f  t h e  t im e  t. D e n o t e  b y  Mi, »1, wx a n d  m2, v2, w 2 t h e  c o m p o n e n t s  

o f  t h e  v e lo c it y  f lu c t u a t io n s  a t  th e  tw o  p o i n t s 'P i  a n d  P 2 h a v in g  c o o r d in a t e s  

(xi, 0, 0 ) a n d  (x2, 0, 0 )  r e s p e c t iv e ly .  S u p p o s e  t h a t  u\, v\, w2lt w h ic h  b y  is o t r o p y  

a r e  e q u a l,  a r e  in d e p e n d e n t  o f  p o s it io n  a n d  e q u a l to  m|. T h e n  « 2  =  t $ = w jj  =  » 2.

T h e  c o r r e la t io n  c o e ff ic ie n t s  z ^ / m 2 a n d  w xw 2/ m2 w i l l  b e  id e n t ic a l  b e c a u s e  

o f  is o t r o p y  a n d  w i l l  b e  s o m e  p a r t i c u la r  f u n c t io n  o f  t h e  d is t a n c e  r  b e tw e e n

r
F ig . 4.

P i  a n d  P 2 a n d  o f  t h e  t im e  t, s a y  g(r, t) .  T h e  c o r r e la t io n  c o e f f ic ie n t  MiM2/m 2 
w i l l  a ls o  b e  a  f u n c t io n  o f  r  a n d  t, s a y  / ( r ,  / ) .  T h e  c o r r e la t io n  c o e ff ic ie n t s  

UjVi/u2, MiW2/m2, V1U2/ m2, V1W2/ 111, Wiiii/m2 a n d  wLv2/ u 2 c a n  b e  s h o w n  t o  b e  ze ro . 

T h u s  i f  t h e  Y  a n d  Z  a x e s  a r e  r o t a t e d  a b o u t  t h e  X  a x is  t h r o u g h  1 80° ,  t h e  a b ­

s o lu t e  v a lu e s  o f  a l l  c o m p o n e n t s  a r e  u n c h a n g e d  b u t  t h e  s ig n s  o f  t h e  v a n d  w 
c o m p o n e n t s  a r e  r e v e r s e d . D e n o t in g  v a lu e s  r e f e r r e d  t o  t h e  n e w  a x e s  b y  c a p it a l  

le t t e r s ,  U i — ui, Z72 =  m2, V \ = — v\, V 2=  — d2, W i  — wi, W 2= — w 2, so t h a t ,  f o r  

e x a m p le , U 1 V 2 — —  UiV2. B u t  b y  is o t r o p y ,  t h e  v a lu e  o f  a n y  f u n c t io n  o f  t h e  

c o m p o n e n t s  is  u n c h a n g e d _ b y  r o t a t io n  o f  t h e  a x e s , a n d  t h e r e fo r e  Ui V 2 -  u /y2. 
T o  s a t is f y  b o t h  r e la t io n s  uxv2 m u s t  e q u a l z e ro . S i m i l a r l y  f o r  t h e  o t h e r  t e r m s  

c o n t a in in g  Mi o r  m2. B y  r e f le c t io n  in  t h e  X Z  p la n e  vxw2 a n d  WiV2 m a y  lik e w is e  

b e s h o w n  to  b e  z e ro .
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T h e  c o r r e la t io n  c o e ff ic ie n t  f o r  c o m p o n e n t s  o f  th e  f lu c t u a t io n s  in  a n y  a r b i ­

t r a r y  d ir e c t io n s  a t  a n y  t w o  p o in t s  m a y  b e  e x p r e s s e d  in  t e r m s  o f  t h e  f u n c t io n s

f ( r ,  t) a n d  g ( j ,  t) a n d  t h e  g e o m e t r ic a l

U i f U , t )

/c I (  A i t )

Ut

F ig . 5. T he principal double correlations 
in isotropic turbulence.

p a r a m e t e r s . C o n s id e r  a n y  t w o  p o in t s  

P a n d  Q a n d  c o m p o n e n t s  o f  t h e  f lu c ­

t u a t io n s  p  in  t h e  d ir e c t io n  PP' a t  P 
a n d  q in  t h e  d ir e c t io n  QQ' a t  Q. ( F ig .  

4 ).  D e n o t e  b y  Q Q "  t h e  o r t h o g o n a l 

p r o je c t io n  o f  QQ' o n  t h e  p la n e  PP'Q; 
b y  a ,  /3, a n d  y  t h e  a n g le s  P'PQ, 
i r - P Q Q "  a n d Q Q 'Q " ; a n d  b y  p u p2, 
p 3  a n d  qi, q2, q3  t h e  c o m p o n e n t s  o f  th e  

f lu c t u a t io n s  a t  P a n d  Q  in  t h e  d ir e c ­

t io n  PQ, in  t h e  d ir e c t io n  n o r m a l to  

PQ a n d  Q 'Q ", a n d  in  t h e  d ir e c t io n  

Q "Q '. T h e n

p = pi co s a +  p 2 s in  a

q =  qi co s /3 s in  -y +  q2 s in  j3 s in  y  

T  qz co s y .  ( 1 3 . 1 )

H e n c e

pq  =  p iq i  co s a  co s 0  s in  y  +  p 2q2 s in  ¡3 s in  a  s in  y ( 1 3 . 2 )

th e  o t h e r  t e r m s  v a n is h in g  a s  p r o v e d  in  t h e  p r e c e d in g  p a r a g r a p h .  I n  t e r m s  

o f / ( r ,  0  a n d  g(r, t)

p q / t i 2 =  [ / ( r ,  t)  co s a  co s |3 +  g{r, t) s in  a  s in  /3] s in  y.  ( 1 3  .3 )

T h e  c o r r e la t io n s  d e n o t e d  b y / ( r ,  t)  a n d  g(r, t ) a r e  in d ic a t e d  in  F ig .  5 .

I f  n o w  a n y  t w o  p o in t s  w it h  c o o r d in a t e s  ( x i ,  y \ ,  z i )  a n d  ( x 2, y 2, z 2)  a n d  s p e e d  

f lu c t u a t io n s  w it h  c o m p o n e n t s  u u  v\, w \  a n d  « 2, v2, w 2  a r e  c o n s id e r e d , t h e  n in e  

q u a n t it ie s  UiU2, UiV2, UiW2, i ' i« n  V\V2, v2 w 2, w p q , w xv2, a n d  Wiiv2 a r e  t h e  c o m p o ­

n e n t s  o f  a  s e c o n d  r a n k  t e n s o r. E a c h  o n e  m a y  b e  e v a lu a t e d  b y  e q u a t io n  ( 1 3 . 2 )  

in  t e r m s  o f  / ( r ,  t)  a n d  g{r, t ) w it h  t h e  r e s u lt  in  t e n s o r  n o t a t io n

R  =

w h e r e  r  is  t h e  v e c t o r  h a v in g  c o m p o n e n t s  X = x

1 0 0

r i s | r |  a n d  I  is  t h e  u n it  t e n s o r  0 1 0

0 0 1

r r  +  g ( r , t ) I  ( 1 3 . 4 )

*i ,  Y = y 2 —y h  Z  =  s 2 — si



T h e  v e lo c it y  f lu c t u a t io n s  s a t is f y  t h e  e q u a t io n  o f  c o n t in u it y .  H e n c e

d u 2 dvz d w 2

 + ----- + -------=  0. ( 1 3 . 5 )
8 x 2 dy ’ 2 d z 2

M u l t i p l y i n g  b y  u \ / u 2 w h ic h  is  in d e p e n d e n t  o f  x 2, y 2, z 2  a n d  in t r o d u c in g  t h e  

c o r r e la t io n  c o e ff ic ie n t s  i? « |U2, e tc . a n d  t h e  c o m p o n e n t s  X ,  Y ,  Z  o f  r :

dRu.U* Q , t; o dRu'W 2-
 H —  H —  =  0. ( 1 3 . 6 )

d X  d Y  dZ

F r o m  e q u a t io n  ( 1 3 . 4 )

R Ulu2 =  X 2 +  g\ R UlVi =  J- ^ X Y - ,  R UiWi =  l ^ J - X Z  
H  r 2 r 2

w h e n c e , r e m e m b e r in g  t h a t  X 2+ F 2+ Z 2 =  r 2, d r / d X  =  X / r ,  d f / d X  = ( d f /d r )  
( d r / d X )  =  ( X / r ) ( d f / d r ) ,  e tc ., e q u a t io n  ( 1 3 . 6 )  b e c o m e s

X [ 2 { f -  g) +  r ( d f /d r ) ]  =  0. ( 1 3 . 7 )

T h e  c o n t i n u it y  e q u a t io n  m u s t  b e  t r u e  f o r  a n y  v a lu e  o f  X .  H e n c e

2 / ( o  0  -  2g(r, t) =  — rd f(r ,  I ) /d r .  ( 1 3 . 8 )

T h e  c o r r e la t io n  t e n s o r  c a n  t h u s  b e  e x p r e s s e d  in  t e r m s  o f  a  s in g le  s c a la r

f u n c t io n ,  e i t h e r / ( r ,  l)  o r  g(r, t).  T h e  f u n c t io n  g(r, t )  is  t h e  c o r r e la t io n  c o e ffi­

c ie n t  p r e v io u s ly  d e n o t e d  b y  R v. T h e  s c a le  L =  f * R „  d y -  f ”g dr.  T h e  in t e g r a l 

j aR x d x = J j  d r  is  t e r m e d  t h e  lo n g it u d in a l  s c a le  L x to  d is t in g u is h  i t  f r o m  

t h e  la t e r a l  s c a le  L .  O b v io u s ly  f r o m  e q u a t io n  ( 1 3 .8 )

/»oo r* co

r ( d f /d r ) d r  =  \  I x ( d R x/ d x ) d x .  ( 1 3 . 9 )

0 ^  0

S i n c e / a n d  g  a r e  e v e n  f u n c t io n s  o f  r,

/  =  1 + J W / 2  +  • • • ( 1 3 . 1 0 )

Z =  1 + g W / 2 +  ■ • • . ( 1 3 . 1 1 )

F r o m  e q u a t io n  ( 1 3 . 8 ) ,  2f0  =g"0 , w h e n c e  f o r  s m a ll  v a lu e s  o f  r,

R  =  U  +  0>o/2)r2] /  +  [(fS ~  & / 2] r r

=  (1 + J W ) I -  ( l / 2)/?rr.
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( 1 3 . 1 2 )

W e  r e q u ir e  la t e r  t h e  s e c o n d  d e r iv a t iv e s  o f  R  a t  r  =  0 , i.e . X = Y = Z  =  0 , a s  
f o llo w s :
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d 2R Ului d 2R Uiu2
----------- =  a n d  s im ila r  te rm s o b ta in e d  b y  c y d ic  e x c h a n g e  =  2 / 0 ( 1 3 . 1 4 )

d Y 2 d Z 2

d 2R Ulv t

d X d Y
a n d  s im ila r  term s o b ta in e d  b y  c y c lic  e x c h a n g e  =  —  ( l / 2 ) / 0 .  ( 1 3 . 1 5 )

d 2R u,v t
A ll  o th e rs , e . g .  etc. a re  ze ro . ( 1 3 . 1 6 )

d X d Z

V o n  K â r m â n  p o in t s  o u t  t h a t  t h e  c o r r e la t io n  t e n s o r  is  o f  t h e  s a m e  fo r m  

a s  t h e  s t r e s s  t e n s o r  f o r  a  c o n t in u o u s  m e d iu m  w h e n  t h e r e  is  s p h e r ic a l s y m ­

m e t r y .  I n  t h e  a n a l o g y / ( r )  c o r r e s p o n d s  to  t h e  p r in c ip a l  r a d ia l  s t r e s s  a t  a n y  

p o in t ,  g(r)  to  th e  p r in c ip a l  t r a n s v e r s e  s t r e s s , a n d  th e  s e v e r a l R ’s  to  t h e  s t r e s s  

c o m p o n e n t s  o v e r  p la n e s  n o r m a l t o  t h e  c o o r d in a t e  a x e s . T h e  r e la t io n  b e tw e e n  

/  a n d  g  g iv e n  b y  t h e  c o n t i n u it y  e q u a t io n  c o r r e s p o n d s  to  t h e  c o n d it io n  f o r  

e q u i l i b r iu m  o f t h e  s t re s s e s .

E q u a t io n  ( 1 3 .8 )  h a s  b e e n  e x p e r im e n t a lly  c h e c k e d  a t  th e  N a t io n a l  P h y s i ­

c a l L a b o r a t o r y . 14

1 4 . C o r r e la t io n  b e t w e e n  d e r iv a t iv e s  o f  t h e  v e lo c it y  f lu c t u a t io n s .  I n  f u r ­

t h e r  d e v e lo p m e n t s  i t  w i l l  b e  n e c e s s a r y  to  k n o w  t h e  m e a n  v a lu e s  o f  t h e  p r o d ­

u c t s  o f  t h e  d e r iv a t iv e s  o f  t h e  c o m p o n e n t s  o f  t h e  f lu c t u a t io n s  a t  a  g iv e n  p o in t ,  

f o r  e x a m p le  { d u i /d x \ ) { d v j  dy^). T h e s e  m e a n  v a lu e s  m a y  r e a d i ly  b e  c o m p u t e d  

fro m  th e  c o r r e la t io n  t e n s o r. T h u s :

d(u\Vi)  — .  d ( R Ulv,) —_ 3 ( i ? Ul„,)
  =  m2 -------------  =  —  u 2-  —  • ( 1 4 . 1 )

d x \  d x i  d X

S in c e  Vi is  n o t  a  f u n c t io n  o f  x \ ,  t h is  m a y  b e  w r it t e n

(d ti i /dx i)V i — —  u 2d R Ulv , /d X .  ( 1 4 . 2 )

D if f e r e n t ia t in g  n o w  w it h  r e s p e c t  to  y i

du t  dVi d /d u x  \  d / d R UlVA  d*RUivt
-------------- =   1 ---Vi I — — u  ------( -----------I =  — u 2 --------------   ( 1 4 . 3 )
d z i  d y 2 d y A d X i  )  d y 2 \  d X  )  d X d Y

N o w  le t t in g  P i  a n d  P i  c o in c id e ,

du  dv  / d 2R Uv \
 =  - u 2(  ) X  = 7  =  0.
d x d y  \ d X d Y j

( 1 4 . 4 )

T h e  l im it i n g  v a lu e  o f  t h e  s e c o n d  d e r iv a t iv e  h a s  p r e v io u s ly  b e e n  c o m p u t e d  

( e q u a t io n  ( 1 3 . 1 5 ) ) ,  w h e n c e

du dv f i  _  ,
 = —  u 2. ( 1 4 . 5 )
d x  d y  2

B y  s im i l a r  r e a s o n in g  i t  m a y  b e  s h o w n  t h a t
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\ d x j  \

dv

J - ( ;
d w  \ 2 

dz )
« 2/o

/ d u \ 2 / d u \ 2 / d v \ 2 /

\ d y )  \ d z )  \ d x )  \

dv\ 2 

d z )

/ d w  \ 2 

\  d x  )

( 1 4 . 6 )

( 1 4 . 7 )

a n d

/ d w  \ 2

"  \ d y )
2m 2/ 0

d w  dv du dw

dz dz d x  2 ^

h ( A , t J

dv du

d x  d y  d y

T h e  m e t h o d  c a n  b e  e x t e n d e d  to  d e r iv a t iv e s  o f h ig h e r  o r d e r .

15. Triple correlations. V o n  K â r -  

m â n  d e s ig n a t e s  t h e  m e a n  v a lu e s  o f  

t h e  p r o d u c t  o f  t h r e e  c o m p o n e n t s  

o f  t h e  v e lo c it y  f lu c t u a t io n s ,  t w o  o f  

w h ic h  a r e  t a k e n  a t  o n e  a r b it r a r y  

p o in t  a n d  t h e  t h ir d  a t  a  s e c o n d  a r b i ­

t r a r y  p o in t ,  a s  t r ip le  c o r r e la t io n s .

T h e y  a r is e  w h e n  c o r r e la t io n  c o e ffi­

c ie n t s  a r e  in t r o d u c e d  in t o  t h e  e q u a ­

t io n s  o f  m o t io n .  H e  s h o w s  t h a t  t h e  

t r ip le  c o r r e la t io n s  a r e  c o m p o n e n t s  o f 
a  t e n s o r  o f  t h ir d  r a n k  d e s ig n a t e d  T  
w h ic h  is  a  f u n c t io n  o f  X ,  Y ,  Z  a n d  t h e  

t im e . H e  p r o v e s  t h a t  in  is o t r o p ic  t u r ­

b u le n c e  t h is  t e n s o r  c a n  b e  e x p r e s s e d  

in  t e r m s  o f  t h r e e  f u n c t io n s  h(r ,  l) , 
k ( r , t) ,  a n d  q(r, t) c o r r e s p o n d in g  to

( 1 4 . 8 )

U i

U.,

( A , t  )

U,

/ t -

F ig . 6. The principal triple correlations 
in isotropic turbulence.

t h e  c o r r e la t io n s  s h o w n  in  F ig .  6, a n d  t h a t  t h e  d e v e lo p m e n t  o f  th e s e  f u n c ­

t io n s  in  p o w e rs  o f  r  b e g in s  w it h  t h e  r 3 t e r m . T h e  e q u a t io n  o f  c o n t i n u it y  

p e r m it s  t h e  e x p r e s s io n  o f  k  a n d  q in  t e r m s  o f  h  b y  th e  r e la t io n s :

k =  — 2h  ( 1 5 . 1 )

q =  ~  h -  ( j / 2 ) {d h /d r ) .  ( 1 5 . 2 )

T h u s  t h e  t e n s o r  T  c a n  b e e x p r e s s e d  in  t e r m s  o f  a  s in g le  s c a la r  f u n c t io n  h(r ,  t) .
16. Propagation of the correlation with time. T h e  f lu c t u a t io n s  a r e  a s s u m e d  

to  s a t is f y  t h e  e q u a t io n s  o f  m o t io n , n a m e ly ,

d u \  diii du i  du i
— —  +  u i  b r i  b w i - —

dt d x i  d y i  dzy
1 dp

P dXy

d2Uy d2Uy d'

d x * +  dy] dz] )
( 1 6 . 1 )



a n d  t h e  t w o  e q u a t io n s  o b t a in e d  b y  c y c l ic  p e r m u t a t io n .

M u l t i p l y i n g  t h is  e q u a t io n  b y  u 2, in t r o d u c in g  X ,  Y,  a n d  Z ,  a n d  t a k in g  

m e a n  v a lu e s :
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d u i  d(u\iiî)  d(uiViitY) d(uiWiUz)

U 2  dt d X  d Y  dZ

1 dp  /  d 2i i\ii2 d2UiUi 3 2« i « 2 \
—  « 2  h v ( --------------1---------------- 1--------------- ) .  ( 1 6 . 2 )
P d x i  \  d X 2 d Y 2 dZ2  )

B y  a n  a n a lo g o u s  p r o c e d u r e , i t  m a y  b e  s h o w n  t h a t  :

d i i ï  d ii2U\ d i i fo t f i i  duiW -iU i

Ul dt d X  d Y  dZ

1 dp (  d 2 U\ii2 3 2« i« 2  d 2U\U2

 H i  h v ( --------------1---------------- 1--------------
P 3*2 V  d X 2 d Y 2 d Z 2

( 1 6 . 3 )

V o n  K a r m a n  s h o w s  t h a t  t h e  p r e s s u r e  t e r m s  v a n is h .  A d d in g  th e  t w o  e q u a t io n s  

a n d  in t r o d u c in g  th e  c o r r e la t io n  c o e ff ic ie n t s , w e  f in d

Q d Q

  ( « 2i ? u ,u2)  — (w 2) 3' 2 ------  (« 1 « 2  +  m |« i )  — ( î i 2) 3 /2 -------  («1»1«2  +  iliV itl i)
dt d X  d Y

d
( « 2) 3 / 2  rUiWiUs +  UiWtUi) ( 1 6 . 4 )

dZ

 r  d 2tiiii2 d 2U\U2 d*Mi«2
=  2 vh  2 --------------1---------------- 1-------------

L  d X 2 d Y 2 d Z 2 ]■
T h i s  e q u a t io n  m a y  b e e x p r e s s e d  in  t e r m s  o f  th e  f u n c t io n s  / ,  g, k ,  q a n d  h. 

T h e n  b y  u s in g  t h e  r e la t io n s  ( 1 5 . 1 )  a n d  ( 1 5 . 2 )  b e t w e e n  th e s e  f u n c t io n s  o b ­

t a in e d  fr o m  t h e  e q u a t io n  o f  c o n t in u it y ,  a  p a r t i a l  d if f e r e n t ia l  e q u a t io n  b e t w e e n  

/  a n d  h  is  o b t a in e d , n a m e ly

d j f u 2)

dt

_  / dh  4 /A   /  d2f  4 d f \
2 („ , w ( _  +  7 ) . 2» , ( _  +  7 _ ) .  ( 1 6 . 5 )

T h i s  is  t h e  e q u a t io n  f o r  t h e  c h a n g e  o f  t h e  f u n c t i o n / w i t h  t im e , b u t  i t  c a n ­

n o t  b e  s o lv e d  w it h o u t  s o m e  k n o w le d g e  o f  t h e  f u n c t io n  h.
1 7 . S e lf - p r e s e r v in g  c o r r e la t io n  f u n c t io n s .  L e t  u s  s u p p o s e  t h a t  t h e  f u n c ­

t io n s  f ( r ,  t )  a n d  h(r, t )  p r e s e r v e  t h e  s a m e  f o r m  a s  t  in c re a s e s , o n ly  t h e  s c a le  

v a r y in g .  S u c h  f u n c t io n s  w i l l  b e  t e r m e d  “ s e lf - p r e s e r v in g .” I f  L  is  s o m e  m e a s u r e  

o f  t h e  s c a le  o f  t h e  c o r r e la t io n  c u r v e ,  /  a n d  h  w i l l  b e  f u n c t io n s  o f  r / L  o n ly ,  

w h e r e  L  is  a  f u n c t io n  o f  t. T h e  le n g t h  L  m a y  b e  a n y  m e a s u r e  o f  t h e  s c a le  s u c h
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as the radius of curvature of the correlation curve at r = 0 or any other desig­
nated point, the value of r for a given value of the correlation coefficient, or 
the quantity obtained by integration of the correlation coefficient from r — 0 
to infinity which has previously been termed the scale of the turbulence. 
Introducing the new variable \p = r /L  and placing (u2) ll2 = u r in equation 
(16.5), we obtain

JL du'2 1 dL d f (d h
  4 , - 4 -  21 —
un dt u ' dt d\p

(d h  h \  2 ( d 2f  4 d f \
+  2 —-  +  4 —  ) = —  ~ 4  +  —  — J (17.1)

\d\p ip )  N  \dip2 \p dip)

where N  is the Reynolds Number of the turbulence u 'L /v .  Since the coeffi­
cient of the third term is a numerical constant, the functions /  and h w ill be 
functions of ip and t alone only if the coefficients of the other terms are also 
numerical constants. T h is  requires that

L  du'2 d (l u')
(17.2)----  ------== - L  =  -  A

u n dt dt

1 dL
---------== B (17.3)
u' dt

u'L
----== No (17.4)

where A , B , and No are independent of u ', L , and t. I t  is readily shown that 
these relations are consistent only if A  = B  and that the solutions are

1 1 2,4
-------------= -------t (17.5)
u '2 u j 2 Nov

L 2 - L l = 2 A N o v t  (17.6)

where u (  and L 0 are the values for 7 = 0 and uo L 0/v  = N 0.
These equations are in the form of equations (11.8) and (11.9) w ith A  = B  

and agree well w ith the formulation of the experimental data represented by 
equations (11.10) and (11.11) with 2A N 0v /L 20 = 2A  u20/ N 0v = 2A  V u \ / L „ = 0.04, 
corresponding to 7 = 0 at a distance of 80 wire diameters from the grid. The  
constant A  is equal to 0.2056 when L  is defined as J 0Rydy.

Fo r self-preserving turbulence equation (16.5) becomes

-A f-A iP (d f/d iP )+ 2 (d h /d iP + 4 h /i)  = (2/No)[(d2f/diP2+ (A /i)(d f/d iP )]. (17.7)

T h is  equation determines the shape of the correlation curve. Von Kdrm an19
discusses the shape when the function h is neglected. T h e  shape depends on
the Reynolds Num ber No of the turbulence. T h e  shape also depends on the 
constant A  but closer examination shows that A  is always associated w ith L
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and is dependent on the method of defining L. If  1/  is set equal to r A /L  in­
stead of r / L , and the length L I  A  is used instead of L  in the definition of the 
Reynolds Number of the turbulence, the A  disappears from equation (17.7). 
W hether the values of L  defined by Jgdr w ill yield the same values of A  for all 
shapes of correlation curves described by (17.7) cannot be definitely an­
swered.

Approximate solutions of (17.7) are not easy since it turns out t h a t /  
varies with N 0 in such a manner that, for small values of ^ at least, the term  
on the right-hand side is of the order of unity.

L.

F ig . 7. H all’s measurements of turbulence behind screens.

According to this suggested theory, the shape is self-preserving and the 
Reynolds Num ber remains constant during the decay of a given turbulent 
field. T h e  scale approaches very large values as the intensity approaches very  
small values. The  length X (which is discussed in section 18) is proportional 
to L . Fo r different values of the Reynolds Num ber of the turbulence the con­
stant of proportionality varies inversely as the square root of the Reynolds 
Number. Likew ise the shape of the correlation curve varies w ith the Reynolds 
number of the turbulence.

Equation (17.6) shows the same functional relation between the scale and 
the time as given by Prandtl at the Turbulence Symposium as a result of his 
analysis of photographs of the decay of isotropic turbulence.
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Von Karm an also discusses the case in which the assumption is made 
that the self-preserving feature applies only to large values of \J/ and the 
Reynolds Number iVo is sufficiently large that the right-hand term of (17.7) 
can be neglected. In this case (17.2) and (17.3) are obtained without (17.4) 
and the solution is identical with that given by (11.8) and (11.9) of sec­
tion 11. The  theoretical equations (17.5) and (17.6) do not involve either U

16 

14 

12 

10

e f«
6

4

2

° 2  0 2 4 6 8 10 12 14
y£L.

F ig . 8. Von Kdrmdn’s measurements of turbulence behind screens.

or M  explicitly. However, for comparison with experimental data, they may 
be written as follows:

« 0  V  2/1 Mo t Uo (x —  £o)
— ) =  1 +  — —  -  1 +  2A —  ±  (17.8)
u  / Z 0 U L 0

/ L \ 2 2A Uo t no (x  — xa)

W =  1 +  ~ L -  =  1  +  2 / 1  I F  ( 1 7 -9)

Both Uo and L 0 should be known, but unfortunately L 0 was not measured 
in all of the experiments.

Figures 7, 8, and 9 show the results ot H all, of von Kdrm an, and of the 
author and his associates (designated N B S ) plotted in a manner to facilitate 
comparison with equation (17.8).

The  reference position x 0 has been taken as 40 times the mesh length ex­
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cept for von Kârm ân's results for which x 0 was taken as 212.5 times the rod 
diameter (equivalent t o x 0/ M = 40 for d /M = 0 A 8 8 ) .  In the absence of definite 
information as to L 0, L 0/ M  was assumed equal to 0.29 except for von K ârm ân ’s 
results for which L 0/d  was assumed to be 1.54 (equivalent to L 0/M =  0.29 for 
d /M  = 0.188). The  value of n i  was determined by interpolation from the ob­
servations of each experimenter near x/Jlf = 40, giving the following results.

F ig. 9. N B S measurem ents of turbulence behind screens.

Experimenter

Hall

von Kdrmdn

N B S

Mesh
Inches

1.0
0 .5
0 .5
0 .5

0 .5
0 .5
0 .5

0 .25
0 .5
1.0

1.0
1.0

Rod
Diameter

Inches
0 .188

.092

.092

.092

0.105
.084
.043

0.050
.096
.196

0 .1 9 6
.196

A ir  Speed  
f t  /sec

u i / U Rem arks

20
20
40
80

0 .0146
.0144
.0152
.0174

38 and 54 
38 and 75 
38 and 75

.0201

.0201

.0299

Screen 2 
Screen 3 
Screen 4

20-70
20-70
20-70

0.0250
.0221
.0224

N A C A T ech. Rept. 581 
N A C A T ech. Rept. 581 
N A C A T ech . Rept. 581

30
70

0 .0188
.0173

Recent tests 
Recent tests
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The values of u l  / U  range from 0.0144 to 0.0299; presumably the differ­
ences are due m ainly to the factors discussed in section 11, although system­
atic errors may be partly responsible.

In  each figure, equation (17.8) w ith constant A  equal to 0.29 is plotted 
as a straight line. M ost of the points would be better fitted by a curve of 
increasing slope with increasing time. It  thus appears that equation (11.9) 
with (A -\-B )/A  having some value between 1 and 2 fits the experimental data 
better than (17.8).

However, the data are not at all consistent. The  departures are largest 
lor the smaller values of u '/U .  In  H all's experiments, the results on the 
£-inch screen show little systematic departure at 40 and 80 ft/sec, whereas 
those on the same screen at 20 ft/sec and on the 1-inch screen begin to rise 
above the line at u / t / L 0 = 0.5. Von Karm dn’s data on screen 2 at 38 ft/sec 
lie near the line; those on the same screen at 54 ft/sec and on screens 3 and 4 
at 38 and 75 ft/sec begin to rise above the line at u l  t / L 0 —4.0. The  older 
results of the author and his associates, while scattered, agree with the line 
within 12 percent to Uo t / L 0 = 18 \ the more recent results begin to rise above 
the line at Wo t/Lo  = 0.5 and are in fair agreement w ith H a ll’s data on a 1-inch 
screen. Unfortunately, data at large values of x / M  could not be obtained in 
the recent experiments.

Thus, even when attention is confined to the behavior of the isotropic 
turbulent field, there remain discrepancies in the experimental data such that 
no definite conclusions can be drawn as to the merits of any theory. Further 
experiments are required under carefully controlled conditions in an air 
stream of low turbulence over a wide range of values of x / M  and w ith due 
regard to the various system atic errors that may be present. These experi­
ments would be of the greatest value if the scale were also measured.

18. The  length A. Relation between A and L . The  general expression for 
the mean rate of dissipation in the flow of a viscous fluid is:

(18.1)

where n  is the viscosity.
For isotropic turbulence this becomes:

(18.2)

which, from the relations given in section 14, reduces to:
 ' ,* r  _________

IV — — T . S ' n u 2g"0 =  7 .5 n {du/dy)2. (18.3)
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B u t  g'o is  d e fin e d  b y :

* ? = -  ( 1 8 . 4 )
r-0  \  r 2 /

a n d  h a s  t h e  d im e n s io n s  o f  t h e  r e c ip r o c a l o f  t h e  s q u a r e  o f  a  le n g t h . L e t

go =  —  2 / X 2 ( 1 8 . 5 )

th e  f a c t o r  2 b e in g  in t r o d u c e d  to  c o n f o r m  to  T a y l o r ’s  d e f in it io n  o f  X . T h e n

W  =  1 5 /m V X 2. ( 1 8 . 6 )

T h e  le n g t h  X m a y  b e  in t e r p r e t e d  in  s e v e r a l  w a y s .  E q u a t io n  ( 1 8 .6 )  m a y  b e  

c o n s id e r e d  a  d e f in it io n ,  X  b e in g  r e g a r d e d  r o u g h ly  a s  a  m e a s u r e  o f  t h e  d ia m e ­

t e r s  o f  t h e  s m a lle s t  e d d ie s  w h ic h  a r e  r e s p o n s ib le  f o r  t h e  d is s ip a t io n  o f  e n e rg y . 

O r , s in c e  l / X 2 =  lim ,-*o (1  — g ) / r 2 =  lim y -,o  (1  — R v) T 2,X 2 is  a  m e a s u r e  o f  t h e  r a ­
d iu s  o f  c u r v a t u r e  o f  t h e  R y c u r v e  a t  Y =  0. O r, i f  a  p a r a b o la  is  d r a w n  t a n g e n t  

to  t h e  R v c u r v e  a t  Y  — 0 , t h is  p a r a b o la  c u t s  t h e  a x is  a t  t h e  p o in t  F = X .

S in c e  W =  — ( 3 / 2 )p(diil/d l), t h e  d e c a y  la w  m a y  b e  w r it t e n :

du?/dt =  -  lO r i iV X 2. ( 1 8 . 7 )

T h i s  r e s u lt  c a n  a ls o  b e  d e r iv e d  d ir e c t ly  f r o m  e q u a t io n  ( 1 6 .5 )  a s  s h o w n  b y  

v o n  K a r m & n .

B y  c o m p a r in g  t h is  e x p r e s s io n  f o r  t h e  d e c a y  la w  w it h  t h a t  p r e v io u s ly  g iv e n  

( e q u a t io n  1 7 . 2 ) ,  n a m e ly

du*/dt =  — A u n /L  ( 1 8 . 8 )

i t  is  s e e n  t h a t

A u '/L  =  lO r / X 2 ( 1 8 . 9 )

o r ,  s in c e  u 'L /v  =  N o

X 2/Z ,2 =  \0 /A N o .  ( 1 8 . 1 0 )

I n t r o d u c in g  t h e  e x p e r im e n t a l v a lu e  o f  A ,

\ / L  = 6 .9 7 A /F o . (18.11)

A  s im ila r  r e la t io n  h o ld s  f o r  \ / L x w h e re  L x is  th e  lo n g it u d in a l  s c a le . I f  

t h e  R e y n o ld s  N u m b e r  is  f o r m e d  f ro m  L x, t h e  n u m e r ic a l  c o n s t a n t  is  a p p r o x i­

m a t e ly  4 .9 3 .

D u r in g  t h e  d e c a y  o f  s e lf - p r e s e r v in g  t u r b u le n c e  N o  is  c o n s t a n t  a n d  X is  

p r o p o r t io n a l to  L  b u t  t h e  c o n s t a n t  o f  p r o p o r t io n a l i t y  v a r ie s  in v e r s e ly  a s  V iV o  

f o r  t u r b u le n t  f ie ld s  o f  d if f e r e n t  R e y n o ld s  N u m b e r .

A lt h o u g h  i t  c a n n o t  b e  e x p e c t e d  o n  p h y s ic a l  g r o u n d s  t h a t  th e s e  r e la t io n s  

h o ld  a t  v e r y  lo w  v a lu e s  o f  No,  t h e r e  is  n o  e x p e r im e n t a l e v id e n c e  o f  a n y  d e ­
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p a r t u r e  fro m  e q u a t io n s  ( 1 8 . 7 )  a n d  ( 1 8 . 8 )  f o r  v a lu e s  o f  No  a s  lo w  a s  10. T h e r e  

se e m s  to  b e  n o  d if f ic u lt y  in  d r a w in g  c o r r e la t io n  c u r v e s  f o r  w h ic h  X  is  g r e a t e r  

t h a n  L ,  b u t  n o  s u c h  e x p e r im e n t a l c u r v e s  h a v e  b e e n  m e a s u re d . H o w e v e r ,  in  

a n  e x a m p le  q u o t e d  b y  T a y l o r , 16 A /Z , is  a s  g r e a t  a s  0 .8 6 .

19 . T h e  s p e c t r u m  o f t u r b u le n c e ,  r e la t io n  b e t w e e n  s p e c t r u m  a n d  c o r r e la ­

t io n . T h e  d e s c r ip t io n  o f  t u r b u le n c e  in  t e r m s  o f in t e n s it y  a n d  s c a le  re s e m b le s  

t h e  d e s c r ip t io n  o f  t h e  m o le c u la r  m o t io n  o f  a  g a s  b y  t e m p e r a t u r e  a n d  m e a n  

fre e  p a t h . A  m o re  d e t a ile d  p ic t u r e  c a n  b e  o b t a in e d  b y  c o n s id e r in g  th e  d is ­

t r ib u t io n  o f  e n e r g y  a m o n g  e d d ie s  o f  d if f e r e n t  s iz e s , o r  m o re  c o n v e n ie n t ly  t h e  

d is t r ib u t io n  o f  e n e rg y  w it h  f r e q u e n c y .  J u s t  a s  a  b e a m  o f w h it e  l ig h t  m a y  b e 

s e p a r a t e d  in t o  a  s p e c t r u m  b y  t h e  a c t io n  o f  a  p r is m  o r  g r a t in g ,  t h e  e le c t r ic  

c u r r e n t  p r o d u c e d  b y  a  h o t  w ir e  a n e m o m e t e r  s u b je c t e d  to  t h e  s p e e d  f lu c t u a ­

t io n s  m a y  b e a n a ly z e d  b y  m e a n s  o f  e le c t r ic  f ilt e r s  in t o  a  s p e c t r u m .

T h e  m e a n  v a lu e  o f  u-  m a y  b e r e g a r d e d  a s  m a d e  u p  o f  -a s u m  o f c o n t r ib u ­

t io n s  u 2 F {n )d n ,  w h e r e  F (n )  is  th e  c o n t r ib u t io n  f r o m  f r e q u e n c ie s  b e tw e e n  n  
a n d  n + d n  a n d  / 0 F { n )d n  =  \ .  T h e  c u r v e  o f  F (n )  p lo t t e d  a g a in s t  n  is  t h e  s p e c ­

t r u m  c u r v e .  A c c o r d in g  to  th e  p r o o f  g iv e n  b y  R a y le ig h  a n d  q u o t e d  b y  T a y l o r 20

F{n)  =  2t  l im  ( / Î  +  l \ ) / T  ( 1 9 . 1 )
T —► oo

w h e re  T  is  a  lo n g  t im e  a n d

1 1  =  (1  / i t )  f  u  co s 2r n t  dt 
d  o

( 1 9 . 2 )

I o =  ( l / x )  I u  s in  2trut dt. 
d  o

W h e n  t h e  f lu c t u a t io n s  a r e  s u p e r p o s e d  o n  a  s t r e a m  o f m e a n  v e lo c it y  U  a n d  

a r e  v e r y  s m a ll in  c o m p a r is o n  w it h  U,  t h e  c h a n g e s  in  u  a t  a  f ix e d  p o in t  m a y  b e 

r e g a r d e d  a s  d u e  to  t h e  p a s s a g e  o f  a  f ix e d  t u r b u le n t  p a t t e r n  o v e r  t h e  p o in t ,

i.e ., i t  m a y  b e  a s s u m e d  t h a t

u  =  <t>(t) =  cj>(x/U) ( 1 9 . 3 )

w h e r e  x  is  m e a s u r e d  u p s t r e a m  a t  t im e  /  =  0 f r o m  t h e  f ix e d  p o in t .  T h e  c o r r e la ­

t io n  R x b e tw e e n  th e  f lu c t u a t io n s  a t  t h e  t im e s  t a n d  l + x / U  is  d e f in e d  b y

r .  =  * æ  . ( I 9 .4 )

I t  c a n  b e  s h o w n 20 t h a t

/ 30 /» CO
4 >(/)</>(/ +  x / U ) d t  =  2 ir I  ( 7 i  +  Id)  co s (2 % n x /U )d n  ( 1 9 . 5 )

—oo d  0
20 Taylor, G. I., The spectrum o f turbulence, Proc. Roy. Soc. London, Ser. A, 164, 476 

(1938).
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o r, s u b s t it u t in g  f o r  I \ - \ - l 22  it s  v a lu e  in  t e r m s  o f  F (n ) ,

/> oo

/ - ( « )  co s ( 2 - im x /U ) in  ( 1 9 . 6 )

o

a n d

/» oo

R l C o s ( 2 T n x / U ) d x  ( 1 9 . 7 )

o

I n  o t h e r  w o r d s ,  t h e  c o r r e la t io n  c o e ff ic ie n t  R x a n d  U F ( n ) / \ / 8 ir a r e  F o u r i e r  

t r a n s f o r m s . I f  e it h e r  is  m e a s u r e d , t h e  o t h e r  m a y  b e  c o m p u t e d . R x is  t h e  f u n c ­

t io n  d e n o t e d  b y / i n  s e c t io n  1 3 . T h e  le n g t h  X, w h ic h  w a s  d e fin e d  in  t e r m s  o f  th e  

f u n c t io n  g o r  R v, is  r e la t e d  to  R x b y  t h e  e q u a t io n :

1 / X 2 =  2 l i m  (1 -  R x) / x \  ( 1 9 . 8 )
X-+Q

W h e n  n  a n d  x  a r e  s m a ll,  c o s  ( 2 ir n x /U )  in  ( 1 9 . 6 )  m a y  b e  a p p r o x im a t e d  b y  

1 — 27r 2.r2;z2/  U2. H e n c e

/» oo

n 2F (n )d n .  ( 1 9 . 9 )

o

I f  t h e  t u r b u le n c e  is  s e lf - p r e s e r v in g ,  t h e  s h a p e  o f  t h e  c o r r e la t io n  c u r v e  is  a  

f u n c t io n  o f  t h e  R e y n o ld s  N u m b e r  o f  t h e  t u r b u le n c e .  H e n c e  t h e  s p e c t r u m  

c u r v e  is  a ls o  a  f u n c t io n  o f  t h e  R e y n o ld s  N u m b e r  o f  t h e  t u r b u le n c e .  I n t r o d u c ­

in g  th e  lo n g it u d in a l  s c a le  L x ( L x = f 0 R i d x ) in  e q u a t io n  ( 1 9 . 9 ) ,

L x r  00 / n L x\ 2 UF(n) ( n L x\

V  -  ( t )  - t r  < f )  ( , 9 - 10)

a n d  in  e q u a t io n  ( 1 9 . 7 ) ,

U F (n ) f  K 2 im L x x  /  x \
 = 4  R x c o s -------------------d  —  ) ( 1 9 . 1 1 )

L x J  o U L x \ L J

b o t h  o f  w h ic h  a r e  e x p r e s s e d  in  t e r m s  o f  th e  n o n - d im e n s io n a l v a r ia b le s  

U F ( x ) / L x, n L x/ U ,  x / L x, \ / L x, a n d  R x. T h e  m e a n  s p e e d  U  e n t e r s  o n ly  in  

f ix in g  t h e  f r e q u e n c y  s c a le .

T y p i c a l  s p e c t r u m  c u r v e s  d e t e r m in e d  e x p e r im e n t a lly 21’22 a r e  s h o w n  in  

F ig .  1 0 . S t u d ie s  o f  t h e  r e la t io n  b e tw e e n  t h e  s p e c t r u m  a n d  t h e  c o r r e la t io n  

c u r v e  h a v e  b e e n  g iv e n  b y  T a y l o r . 20

F r o m  e q u a t io n  ( 1 9 . 1 0 )  i t  m a y  b e  in f e r r e d  t h a t  i f  t h e  c u r v e  o f  U F ( n ) / L x v s.

21 Simmons, L. F. G., and Salter, C., A n  experimental determ ination o f the spectrum of 
turbulence, Proc. Roy. Soc. London Ser. A, 165, 73 (1938).

22 Dryden, H. L., Turbulence investigations at the N ational B ureau o f Standards, Proc. Fifth  
Inter. Congr. Appl. M ech., Cambridge, M ass., 193S, p. 362.
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n L z/ U  is  in d e p e n d e n t  o f  U, L x/ \  s h o u ld  a ls o  b e  in d e p e n d e n t  o f  U,  w h ic h  is  

c o n t r a r y  to  t h e  k n o w n  d e p e n d e n c e  o f  L x/ \  o n  th e  R e y n o ld s  N u m b e r  o f  th e  

t u r b u le n c e .  E q u a t io n  ( 1 9 . 9 )  s h o w s  t h a t  t h e  v a lu e  o f  X is  d e t e r m in e d  la r g e ly  

b y  t h e  v a lu e s  o f  F (n )  a t  la r g e  v a lu e s  o f  n.  T h e  N P L  m e a s u r e m e n t s  in  F ig .  10

F ig . 10. Comparison of National Bureau of Standards and National Physical Laboratory 
measurements of the spectrum of turbulence, plotted non-dimensionally.

A t left, N B S  values 40( • ) and 1 6 0 (+ )  inches behind 1-inch mesh screen at 40 ft/sec .
At right, N PL  values of (/'’(») from Table II of reference 21, L x from reference 20) 82 inches 

behind 3-inch mesh screen at 15( -), 2 0 (X ), 2 5 (- f ) ,  3 0 (A ), and 3 5 (Q ) ft/sec .
T he reference curve in each case is the curve

UF(n) 4

L , A ^ n 2L 2

U2
where U  is the mean speed, L x is the integral f ^ R xdx, R z is the correlation between the fluctua­
tions at tw o points separated by the distance x  in the direction of flow, n  is the frequency, and 
.F(n) is the fraction of the total energy of the turbulence arising from frequencies between n and 
n + d n .

s h o w  c le a r ly  t h is  d e p e n d e n c e  o f  t h e  s p e c t r u m  c u r v e  o n  U  a t  h ig h  fr e q u e n c ie s .

W h e n  t h e  R e y n o ld s  N u m b e r  o f  t h e  t u r b u le n c e  is  la r g e , \ / L x b e c o m e s  

s m a ll.  E x p e r im e n t a l  m e a s u r e m e n t s  s h o w  t h a t  b o t h  R x a n d  R v c u r v e s  a p ­

p r o a c h  e x p o n e n t ia l  c u r v e s .  F r o m  in t e g r a t io n  o f  e q u a t io n  ( 1 3 . 9 )  i t  f o llo w s  t h a t  

2L = L X a n d  e q u a t io n  ( 1 9 . 1 1 )  f o r  t h e  c o r r e s p o n d in g  s p e c t r u m  c u r v e  b e c o m e s :

UF(n)  4
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T h i s  is  t h e  r e fe re n c e  c u r v e  d r a w n  in  F ig .  10. A s  U  d e c re a s e s , X  in c r e a s e s , a n d  

t h e  d e p a r t u r e s  a t  la r g e  v a lu e s  o f  n L x/T J  b e c o m e s  g r e a t e r.  T h e  c h a n g e s  in  th e  

t o t a l e n e r g y  o f  th e  f lu c t u a t io n s  a s s o c ia t e d  w i t h  th e s e  c h a n g e s  in  t h e  s p e c t r u m  

a t  h ig h  f r e q u e n c ie s  a r e  e x t r e m e ly  s m a ll.

A d o p t in g  t h is  e x p r e s s io n  fo r  th e  s p e c t r u m  c u r v e ,  i t  is  p o s s ib le  to  c o m p u t e  

t h e  e ffe c t  o f  v a r y in g  t h e  c u t - o f f  f r e q u e n c y  o f  t h e  m e a s u r in g  e q u ip m e n t  o n  t h e  

m e a s u r e d  v a lu e  o f  th e  e n e r g y  o f  t h e  f lu c t u a t io n s .  I f  t h e  e q u ip m e n t  p a s s e s

F i g .  11. Effect of cut-off frequencies of apparatus on observed energy of turbulence for 
spectrum given by reference curve of Fig. 9.

«o is the lower cut-off frequency, «a the upper cut-off frequency, L x the longitudinal scale, 
U  the mean speed.

h ig h  f r e q u e n c ie s  b u t  c u t s  o ff  s h a r p ly  a t  a  lo w e r  f r e q u e n c y  n 0, t h e  m e a s u r e d  

t o t a l e n e r g y  is

Ipu'- f
J  ntiqLx/U

4 ( L X/U )d i ,

1 +  AtvW L I / U

(  4 2-mi0L x\  —
- =  ^ 1  -  —  t a n - 1 — —  J  |p t i2 • ( 1 9 . 1 3 )

T h e  r a t io  o f  t h e  o b s e r v e d  to  th e  a c t u a l  t o t a l  e n e r g y  is  s h o w n  in  F ig .  11  f o r  

v a r io u s  v a lu e s  o f  n 0 L x/ U .
- S im i la r ly ,  i f  t h e  e q u ip m e n t  p a s s e s  lo w  f r e q u e n c ie s  b u t  c u t s  o ff  s h a r p ly  a t  a 

h ig h e r  f r e q u e n c y « * ,  th e  m e a s u r e d  t o t a l e n e r g y  is  ( 4 /2 t t )  t a n - 1 2 m ih L x/  U(%pu2). 
T h e  r a t io  o f th e  o b s e r v e d  to  th e  a c t u a l  t o t a l e n e rg y  f o r  h ig h  f r e q u e n c y  c u t ­

o ff is  a ls o  s h o w n  in  F ig .  10.

T h e  f a c t  t h a t  t h e  c o r r e la t io n  a n d  s p e c t r u m  c u r v e s  a r e  o f  t h e  e x p o n e n t ia l 

t y p e  h a s  b e e n  in t e r p r e t e d 22 a s  m e a n in g  t h a t  t u r b u le n c e  is  a  g e n e r a liz e d  c h a n c e  

p h e n o m e n o n , a s  n e a r ly  c h a n c e  a s  a  c o n t in u o u s  c u r v e  c a n  b e  a n d  r e t a in  it s  

c o n t in u it y .
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2 0 . F lu c t u a t in g  p r e s s u r e  g r a d ie n t s .  In theories of the effect of turbulence 
on transition in boundary layers, it is desired to know the value of the root- 
mean-square pressure gradients, i.e., (dp /dx)2, (dp /dy)2, and (dp/dz)2. Tay lo r  
has shown8 that

V (d p /d x )2 = 2\/2 pu2/ \ .  (20.1)

Combining this w ith the relation (18.11), i.e., X/Z. = 6.97/ \ / ( m2)1/2Z,A

The quantities x /u 2 and L  occur in this expression in the combination 
[ (V « 2) / T l/5]6/2. The  ratio (x /u 2/U ) ( D /L ) lli, where U is the mean speed and 
D  the reference dimension of a body under study is known as the Tay lo r  
turbulence parameter.

2 1 .  T h e  d if f u s iv e  c h a r a c t e r  o f  t u r b u le n c e .  An early experimental distinc­
tion between turbulent and non-turbulent flow was based on the observation 
that a filament of dye introduced into a turbulent fluid stream is rapidly 
diffused over the entire cross section of the stream whereas in a non-turbulent 
flow the filament retains its identity although it may show some waviness. 
I t  has been pointed out in section 7 that the effect of the turbulent fluctua­
tions on the mean motion is the introduction of eddy stresses associated with  
the transfer of momentum by the diffusion of fluid particles. Von K arm an23 
has given a useful account of the mechanism of the diffusion of discrete par­
ticles and its effect in producing a shearing stress. A  theory of diffusion by 
continuous movements has been developed by T ay lo r.13 The process of diffu­
sion has been found helpful in the experimental study of the statistical prop­
erties of turbulence.

2 2 . D if f u s io n  b y  c o n t in u o u s  m o v e m e n t s .  Consider in a uniform isotropic 
turbulent field the displacement X  and velocity u  parallel to the arbitrarily  
selected x  axis. The  intensity V « 2 is constant, the field being assumed 
uniform. L e t  n t and Ut< be the values of u  at times t  and t '  respectively. 
Consider the definite integral f ‘0u tu f d t ' . Introducing the correlation coeffi­
cient R t,t- between u t and Ur, remembering that u2 is constant,

f  t i t t i f d l '  =  u 2 f  ( 2 2 . 1 )
J o  J  o

Le t t '  — t —T  and place R t,r  = RT- Since R t is an even function of T, (22.1) 
may be w ritten :

f  uan.dt' = V 2 f  R rdT. (22.2)
^ 0  -JO

23 Kdrmdn, Th. von, Turbulence, Jour. Roy. Aoron. Soc. 41, 1109 (1937).
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B u t

f  u tUfdt' = Hi f  Ufdt '  — u tX  = u X .  ( 2 2 . 3 )
J o  J o

H e n c e

V 2 f  R r d T  = ^ X  =  ( l / 2 ) d W / d t .  ( 2 2 . 4 )
J  o

W h e n  t h e  t im e  t is  so  s m a ll t h a t  R r  a p p r o x im a t e s  u n it y ,  e q u a t io n  (2 2 .4 )  

b e c o m e s :

( l / 2 )d~X2/ d t  =  V n
o r

V T 2 =  y / u 2t. ( 2 2 . 5 )

I f  R t  is  e q u a l to  z e ro  f o r  a l l  t im e s  g r e a t e r  t h a n  s o m e  t im e  To

•To  f i t
=  u 2 I R r d T  =  c o n s ta n t. ( 2 2 . 6 )

J  o

D e f in e  a le n g t h  h  b y  t h e  r e la t io n  :

/ * T0
R r d T  ( 2 2 . 7 )

o

l $ / v ?  =  Ü X  =  ( l / 2 ) r f F / i / f  ( 2 2 . 8 )

u X
0

0
w h e n c e

a n d

X 2 = 2 h s / Z 2l. ( 2 2 . 9 )

I f  2 ? r  =  e_ T / r o , li =  \ / 7 ? T o  a n d  th e  s o lu t io n  o f  (2 2 .4 )  y ie ld s :

Z 5 =  2 F r 0 [/ -  r o ( l  -  e - r / r » )j. ( 2 2 . 1 0 )

E q u a t io n  (2 2 .1 0 )  r e d u c e s  t o  ( 2 2 .5 )  w h e n  t is  s m a ll  c o m p a r e d  to  To  a n d  to  

(2 2 .9 )  w h e n  t  is  la r g e  c o m p a r e d  t o  2 V

T h e  d if f u s io n  in  a  u n if o r m  f ie ld  is  a c c o r d in g ly  c o m p le t e ly  d e t e r m in e d  b y  

th e  c o r r e la t io n  f u n c t io n  R T.
2 3 .  D if f u s io n  i n  is o t r o p ic  t u r b u le n c e .  T h e  f o r e g o in g  t h e o r y  is  d i r e c t ly  a p ­

p lic a b le  to  d if f u s io n  in  a  u n if o r m  is o t r o p ic  f ie ld . H o w e v e r  n o  g e n e ra l s t a t e ­

m e n t  c a n  b e  m a d e  a s  to  t h e  r e la t io n  b e t w e e n  t h e  le n g t h  h  a n d  t h e  s c a le  L  
d e fin e d  in  t e r m s  o f  t h e  c o r r e la t io n  c o e f f ic ie n t  R v in  s e c t io n  9. F o r  t h e  t u r b u ­

le n c e  b e h in d  a  g r id  o r  h o n e y c o m b , T a y l o r  f o u n d  f r o m  a n  a n a ly s is  o f  t h e  a v a i l ­

a b le  e x p e r im e n t a l r e s u lt s  t h a t  L  w a s  a p p r o x im a t e ly  t w ic e  V



1943] A REVIEW OF THE STATISTICAL THEORY OF TURBULENCE 39

T h e  e s s e n t ia l f e a t u r e s  o f  d if f u s io n  in  is o t r o p ic  t u r b u le n c e  e x p r e s s e d  in  

e q u a t io n s  ( 2 2 .5 )  a n d  (2 2 .9 )  m a y  b e s u m m a r iz e d  a s  f o llo w s :

1. F o r  t im e  in t e r v a ls  w h ic h  a r e  s m a ll  in  c o m p a r is o n  w it h  th e  r a t io  o f  l\ 
to  \ / u r ,  th e  d if f u s in g  q u a n t it y  s p r e a d s  a t  a  u n if o r m  r a t e  p r o p o r t io n a l to  th e  

in t e n s it y  y/Tfi,  a n d  th e  r a t e  is  n o t  d e p e n d e n t  o n  th e  le n g t h  l\.
2. F o r  t im e  in t e r v a ls  w h ic h  a r e  la r g e  in  c o m p a r is o n  w it h  th e  r a t io  o f  h  

to  \/tF, t h e  d if f u s in g  q u a n t it y  N  s p r e a d s  in  a c c o r d a n c e  w it h  th e  u s u a l d if f u ­
s io n  e q u a t io n

d (  d N \  d (  d N \
+  — [ D ----- ) +  - I d  )

dy \  dy /  d z \  dz )

w it h  a  c o e ff ic ie n t  o f  d if f u s io n  D  e q u a l to  l \ \ / i t } ,  w h e r e  l\ is  a  le n g t h  d e fin e d  

b y  f “R Td T .
3 . F o r  in t e r m e d ia t e  t im e  in t e r v a ls ,  t h e  d if f u s io n  is  d e p e n d e n t  o n  th e  f u n c ­

t io n  R t  w h ic h  r e p r e s e n t s  t h e  c o r r e la t io n  b e t w e e n  t h e  s p e e d  o f  a  p a r t ic le  a t  

a n y  in s t a n t  a n d  th e  s p e e d  o f  t h e  s a m e  p a r t ic le  a f t e r  a  t im e  in t e r v a l  T .
C o n s id e r  t h e  d if f u s io n  o f  h e a t  f ro m  a  h o t  w ir e  p la c e d  in  a  u n if o r m  fie ld  o f 

is o t r o p ic  t u r b u le n c e  in  a  f lu id  s t r e a m  o f  m e a n  s p e e d  U.  O b s e r v a t io n s  o f  th e  

la t e r a l  s p r e a d  o f  t h e  t h e r m a l w a k e  a t  a  d is t a n t  x  d o w n s t r e a m  m a y  b e  u s e d  to  

c o m p u t e  th e  r o o t - m c a n - s q u a r e  la t e r a l  d is p la c e m e n t  y / Y *  o f t h e  h e a t e d  p a r ­

t ic le s  d u r in g  a  t im e  in t e r v a l  t = x / U .
I t  is  c o n v e n ie n t  to  c h a r a c t e r iz e  t h e  s p r e a d  b y  t h e  a n g le  s u b t e n d e d  a t  th e  

s o u rc e  b y  th e  tw o  p o s it io n s  w h e r e  t h e  t e m p e r a t u r e  r is e  is  h a lf  t h a t  a t  th e  

c e n t e r  o f  t h e  w a k e . T h e r e  is  a  la t e r a l s p r e a d  o f  h e a t  p r o d u c e d  b y  th e  o r d in a r y  

m o le c u la r  c o n d u c t io n  c o r r e s p o n d in g  to  a n  a n g le  ao in  d e g re e s  o f  1 9 0 .8 \ / k /p c  U x  
w h e re  k, p,  a n d  c a r e  t h e r m a l c o n d u c t iv it y ,  d e n s it y ,  a n d  s p e c if ic  h e a t  ( a t  c o n ­

s t a n t  p r e s s u r e )  o f  t h e  f lu id .  I t  m a y  b e  s h o w n  t h a t  t h e  t o t a l s u b t e n d e d  a n g le  a  
is  r e la t e d  to  th e  a n g le  a ( p r o d u c e d  b y  t u r b u le n t  d if f u s io n  a n d  ao,  a s  f o llo w s :

2 2 2 , 
a  =  a t +  a 0. (2 3  .1 )

T h e  t e m p e r a t u r e  d is t r ib u t io n  in  th e  w a k e  f o llo w s  a n  “ e r r o r ” c u r v e  a s  d o e s 

t h e  a m p lit u d e  o f  t h e  t u r b u le n t  v e lo c it y  f lu c t u a t io n s ,  so  t h a t  t h e  la t e r a l  d is ­

p la c e m e n t  Y  a ls o  h a s  t h e  s a m e  G a u s s ia n  f r e q u e n c y  d is t r ib u t io n .  T h e  v a lu e  

o f  th e  la t e r a l  s p re a d  a t  w h ic h  t h e  o r d in a t e  is  h a lf  t h e  m a x im u m  is  2 .3 5 4 y /Y *  
f o r  t h is  d is t r ib u t io n .  H e n c e , e x p r e s s in g  a t in  d e g re e s ,

a t = l 3 i . 7 \ / T 2/ x  ( 2 3 . 2 )

w h e n c e  f ro m  ( 2 2 .5 )  f o r  s m a ll  v a lu e s  o f  x,

a , =  m . 7 y / ^ / U  ( 2 3 . 3 )

w h e r e  v is  w r it t e n  in  p la c e  o f  u  in  ( 2 2 .5 )  s in c e  t h e  d if f u s io n  in  t h e  v d ir e c t io n  

is  b e in g  s t u d ie d .

d N  ON diY ON d /  d N '
 h i /  +  V  + W  = — [ D -----
dt d x  d y  dz d x \  d x .
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T h u s  a n . e x p e r im e n t  o n  t h e r m a l d if f u s io n  p r o v id e s  a  m e th o d  o f  m e a s u r-

p e n d e n t  o f  s p e e d  o v e r  t h e  r a n g e  10 to  5 0  f t / s e c  a n d  a ls o  in d e p e n d e n t  o f  x  
o v e r  t h e  r a n g e  1 / 2  to  6 in c h e s .

F r o m  m e a s u r e m e n t s  a t  la r g e  v a lu e s  o f  x ,  i t  is  t h e o r e t ic a l ly  p o s s ib le  to  

c o m p u t e  t h e  c o r r e la t io n  c u r v e ,  R t ,  v s .  T .  I n  a n y  a c t u a l  e x p e r im e n t ,  h o w ­

e v e r , t h e  in t e n s it y  o f  t h e  t u r b u le n c e  w i l l  d e c re a s e  w it h  x  to  a n  e x t e n t  t h a t  

m u s t  b e  c o n s id e r e d . A s  d is c u s s e d  b y  T a y l o r , 8 R t  m a y  t h e n  b e  c o n s id e r e d  a  

f u n c t io n  o f  rj= J 0\ / v 2d T  =  f * ( \ / v 1/U )d x . T h e  e q u a t io n  a n a lo g o u s  to  (2 2 .4 )  f o r  

v  a n d  Y  b e c o m e s :

a n d  t h u s  in v o lv e s  a  d o u b le  d if f e r e n t ia t io n  o f  e x p e r im e n t a l c u r v e s ,  a  p r o c e s s  

w h ic h  is  u s u a l ly  n o t  v e r y  a c c u r a t e .

2 4 . S t a t is t ic a l  t h e o r y  o f n o n - is o t r o p ic  t u r b u le n c e .  I n  n o n - is o t r o p ic  t u r b u ­

le n c e  t h e  d e s c r ip t io n  o f  th e  s t a t e  o f  t h e  t u r b u le n c e  b e c o m e s  m u c h  m o re  c o m ­

p le x . T h e  e d d y  s h e a r in g  s tre s s e s  d o  n o t  v a n is h  a n d  t h e  e d d y  n o r m a l s tre s s e s  

a r e  n o t  n e c e s s a r ily  e q u a l.  S ix  q u a n t it ie s  in s t e a d  o f o n e  a r e  r e q u ir e d  to  s p e c if y  

th e  in t e n s it y .  S im i la r ly  t h e  c o r r e la t io n  t e n s o r  c a n n o t  b e  e x p r e s s e d  in  t e r m s  

o f  a  s in g le  s c a la r  f u n c t io n .  I n  g e n e ra l s ix  s c a la r  f u n c t io n s  a r e  r e q u ir e d .  N o  

t h e o r e t ic a l in v e s t ig a t io n  u s in g  th e s e  t w e lv e  f u n c t io n s  h a s  y e t  b e e n  c a r r ie d  o u t .

T h e  e x p lo r a t io n  o f  t h is  f ie ld  is  s t i l l  in  it s  e a r lie s t  s ta g e s . V o n  K a r m a n 9-16 

h a s  g iv e n  s o m e  d is c u s s io n  o f  e n e r g y  t r a n s p o r t  a n d  d is s ip a t io n  a n d  v o r t i c i t y  

t r a n s p o r t ,  n e g le c t in g  th e  t r ip le  c o r r e la t io n s ,  a n d  h e  h a s  a ls o  p r e s e n te d  a  m o re  

d e t a ile d  d is c u s s io n  o f  t w o - d im e n s io n a l f lo w  w it h  c o n s t a n t  s h e a r in g  s t r e s s  

( C o u e t t e ’s p r o b le m ).  T h e  a d v a n c e  o f  t h e  t h e o r y  is  d e f in it e ly  h a n d ic a p p e d  b y  

th e  a b s e n c e  o f  r e lia b le  e x p e r im e n t a l d a t a  o n  t h e  t w e lv e  f u n c t io n s  r e q u ir e d  to  

d e s c r ib e  th e  s t a t e  o f  t u r b u le n c e .

2 5 . D if f u s io n  i n  n o n - is o t r o p ic  t u r b u le n c e .  T h e  o n ly  t h e o r e t ic a l  a p p r o a c h  

a t  p r e s e n t  a v a ila b le  f o r  e s t im a t in g  t h e  d if f u s io n  in  n o n - is o t r o p ic  t u r b u le n c e  

is  to  c o n s id e r  th e  p r o c e s s  a s  a p p r o x im a t e ly  e q u iv a le n t  to  d if f u s io n  in  is o t r o p ic  

t u r b u le n c e  o f  in t e n s it y  e q u a l to  \ / v 2 a n d  s c a le  w h e r e  v is  t h e  c o m p o n e n t  

in  th e  d ir e c t io n  in  w h ic h  t h e  d if f u s io n  is  s t u d ie d  a n d  I '  is  th e  le n g t h  d e f in e d  

b y  a n  e q u a t io n  a n a lo g o u s  to  ( 2 2 . 7 ) ,  n a m e ly ,

in g  V b 9. T h e  m e t h o d  w a s  u s e d  b y  S c h u b a u e r 21 w h o  s h o w e d  t h a t  a t w a s  in d e -

o
( 2 3 . 4 )

T h e  c o r r e la t io n  is  g iv e n  b y  t h e  e x p r e s s io n

( 2 3 . 5 )

21 Schubauer, G. B., A  turbulence indicator u tilizing  the d iffusion  o f heat, Tech. Rept. 
N at. Adv. Comm. Aeron., No. 524 (1935).
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I'
/ » 00

Rrdt.  ( 2 5 . 1 )

0

I n  m o s t  e x p e r im e n t s  t h e  le n g t h  V  is  n o t  m e a s u r e d . P r a n d t l  d e f in e d  a  m ix ­

in g  le n g t h  I in  t e r m s  o f  t h e  s h e a r in g  s t r e s s  r  b y  t h e  r e la t io n :

r  =  pl°-
d U

d y

d U
—  • ( 2 5 . 2 )
d y

T h i s  r e la t io n  m a y  b e  in t e r p r e t e d  a s  a n  e q u a t io n  g o v e r n in g  t h e  d if f u s io n  o f 

m o m e n t u m  w it h  a  c o e f f ic ie n t  o f  d if f u s io n  e q u a l to  l ~ \ d U / d y  \ . P r a n d t l  in  f a c t  

a s s u m e d  v V  p r o p o r t io n a l to  l \ d U / d y \  a n d  in c o r p o r a t e d  th e  f a c t o r s  o f  p r o ­

p o r t io n a l it y  in  th e  le n g t h  I. I t  is  o b v io u s  t h a t

P  | d U / d y  | =  I ' y / ? .  ( 2 5 . 3 )

T h e  le n g t h  I c a n  b e  o b t a in e d  e x p e r im e n t a lly  i f  t h e  d is t r ib u t io n s  o f  v e lo c it y  

a n d  s h e a r in g  s t r e s s  a r e  k n o w n , a n d , i f  \ / v 2 is  a ls o  m e a s u r e d , V  m a y  b e  c o m ­

p u t e d . S h e r w o o d  a n d  W o e r t z 26 h a v e  m a d e  a n  e x p e r im e n t a l s t u d y  o f  th e se  
r e la t io n s h ip s .

T a y l o r 26 p o in t e d  o u t  t h a t  f lu c t u a t in g  p r e s s u r e  g r a d ie n t s  in f lu e n c e  th e  

t r a n s f e r  o f  m o m e n t u m  a n d  s u g g e s te d  t h a t  th e  v o r t i c i t y  b e  t a k e n  a s  th e  p r o p ­

e r t y  u n d e r g o in g  d if f u s io n .  T h e  r e s u lt  w a s  th e  w e ll k n o w n  v o r t e x  t r a n s p o r t  
t h e o r y .

B o t h  t h e o rie s  im p ly  d if f u s io n  f o r  a  t im e  in t e r v a l  lo n g  c o m p a r e d  to  / ' \ / P .  

W h e n  d if f u s io n  is  s t u d ie d  n e a r  t h e  s o u rc e , e x p e r im e n t  s h o w s 27 a  b e h a v io u r  l ik e  

t h a t  d is c u s s e d  in  s e c t io n  2 3 . T h e  s p r e a d  is  n e a r ly  l in e a r  w it h  x ,  a lt h o u g h  u n -  

s y m m e t ic a l in  t h is  c a se . I t  is  p r o b a b le  t h a t  t h e  u n s y m m e t r ic a l  c h a r a c t e r  c a n ­

n o t  b e  e x p la in e d  o n  th e  b a s is  o f  a  s in g le  s c a la r  d if f u s io n  c o e ff ic ie n t .

2 6 . C o r r e la t io n  i n  t u r b u le n t  f lo w  t h r o u g h  a  p ip e . T a y l o r 28 h a s  s h o w n  t h a t  

t h e  c o r r e la t io n  b e t w e e n  th e  c o m p o n e n t  o f  v e lo c it y  a t  a  f ix e d  p o in t  a n d  t h a t  

a t  a  v a r ia b le  p o in t  in  th e  s a m e  c r o s s  s e c t io n  m u s t  b e  n e g a t iv e  f o r  s o m e  p o s i­

t io n s  o f  t h e  v a r ia b le  p o in t ,  i f  th e  a p p lie d  p r e s s u r e  d iffe r e n c e  b e tw e e n  t h e  e n d s  

o f  t h e  p ip e  is  c o n s t a n t  a n d  t h e  f lu id  m a y  b e  c o n s id e r e d  in c o m p r e s s ib le .  S u p ­

p o se  th e  m e a n  v e lo c it y  is  U  a n d  th e  c o r r e la t io n  R  h a s  b e e n  m e a s u r e d  b e tw e e n

25 Sherwood, T . K ., and W oertz, B. B., M ass transfer between phases, role o f eddy d iffusion, 
Ind. Eng. Chem. 31, 1034 (1939).

20 Taylor, G. I., Transport o f vorticity and heat through flu id s  in  turbulent motion, Proc. Roy. 
Soc. London Ser. A, 135, 685 (1932).

27 Skramstad, H. K., and Schubauer, G. B., The application o f thermal d iffusion  to the
study o f turbulent air flow , Phys. Rev., 53, 927 (1938). Abstract only. Full paper not published.
A few additional details are given in Dryden, Hugh L., Turbulence and diffusion, Ind. Eng.
Chem. 31, 416 (1939).

25 Taylor, G. I., Correlation measurements in  a turbulent flow  through a pipe, Proc. Roy.
Soc. London Ser. A, 157, 537 (1936).



the component ii\ of the fluctuations at a fixed point P and u 2 at a variable 
point Q in the same cross section. Since the mean flow is constant,

J '  ( U  +  u 2)d yd z  = J  Udyd z  =  constant (26.1)

where the integration is taken over the cross section. At any instant,

J  u 2dydz  =  0. (26.2)

Multiplying by U\, which is constant for this integration and may be 
placed under the integral sign,

J '  u\i i2dydz  = 0. (26.3)

Since (26.3) is true for any instant, it is true for the integral over a time
interval T.  Hence

(1/ 2? J ’ dt = 0. (26.4)

Changing the order of the integration and remembering that ( l / T ) J 0UiU2dt
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: U\lh

J '  uiiiodydz — 0. (26.5)

Introducing the correlation R,

j '  R u l u l d y d z  = 0. (26.6)

But u [  is constant with respect to the integration and accordingly

^  R u l  dydz  =  0. (26.7)

Since u{  is positive, R  must be negative for some positions of Q.
For a circular pipe (26.7) becomes:

J'«'J  0
Rrdr  = 0 (26.8)

where u ’ is the value of \ / u ?  at radius r  and a  is the radius of the pipe.
This relation was experimentally verified in experiments made by Sim­

mons with the fixed point at the center of the pipe.
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ON THE M OTION OF A PENDULUM IN A 
TURBULENT FLUID"

B Y

C. C. L IN

Guggenheim Laboratory, California Institute of Technology

1. Introduction. In a recent paper, Schumann1 has investigated the mo­
tion of a damped pendulum in a turbulent fluid by considering the effect of 
the fluid as a continuous fluctuating force. He first considers a damped 
pendulum which is bombarded by pellets of equal mass mh  at equal intervals 
h of the time, and then treats the case of continuous fluctuations by a limiting 
process. For this latter case, which “must be regarded as being of far more 
practical importance,” Schumann obtains the very interesting result: 2

r(^)= . r„ . [  f  ¡ K ( x + 0 + £ ( x - Z ) } e - Xx sin ( 0 x + y ) d x
2J 0 R(x)e~Xx sin (/3.v+7 )ifa; L J o

+  J *  {*({-#)-*(#-£)}«-*« sin 0 (1 .1)

The notation is as follows:
r(£) = correlation function of the d isplacements  of the pendulum at two 

instants separated by a time interval £;
=Iimiting correlation function of the velocities of the impinging 

pellets;
\ = l - \ - m / M ,  M  being the mass of the pendulum and I its damping 

factor;
/32 = a2+ /2— X2, 2 i r / a  being the (damped) period of the pendulum; 

sin 7 =j3/j8i;
0  2= ^+X 2 = a2+ /2.

The analysis used by Schumann is very elegant, but somewhat lengthy. 
In this article, we shall study the problem from another point of view, and 
give an alternative derivation of (1.1). This derivation, though unable to 
cover the case of discontinuous impacts, seems to show the nature of that 
relation much more clearly.

2 . Damped pendulum under the action of a fluctuating force. We shall 
now investigate the correlation of d isplacement  of a damped pendulum in 
relation to that of the exciting force.  The notation used in this section should 
first be regarded as having different (though analogous) interpretations from

* R eceived  D ec. 4 , 1942.
1 Schum ann, T . E . W ., Phil. M ag. (7), 33, 138-150  (1942).
1 Loc. c it ., eq. (57), p. 146.
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those used in §1. The identification of the two systems of notation will be 
made in §3.

Consider the equation of motion of the pendulum
d-y  d y
- f  +  2X - j -  +  (02 +  X2)y = P,  (2.1)
d r  dt

where y  is the displacement, X is the damping factor and 2tt/(3 is the (damped)
period of the pendulum, P  is the exciting force per unit mass of the pendulum,
and t is the time. If the force P  is quasi-pcriodic, and is given by the real 
part of

P  = E^nC i““,1 (2.2)
where and zl„ are real and complex constants respectively, the steady- 
state displacement of the frequency u u/2 ir  is given by the real part of

A " , *>’n = ane""n‘, a„ = -------------------------- --  (2.3)
(02 +  X2 -  «*) +  2*X<on

Thus, we have
, , U „ i2

(2.4)
(/32 +  X2 -  co2) 2 +  4X2<4

This is the relation between the spectrum of the displacement and that of 
the force in the case of discrete spectra. It is not difficult to generalize this 
result to the case of continuous spectra by the considerations of generalized 
harmonic analysis.3 We have then

F(u)
/(«) = A  —------------ , (2.5)

(/32 +  X2 -  co2)2 +  4X2co2
where /(w) and F{co) are the spectra of the displacement and the force re­
spectively,

/ » oo /»co

/(co)rfw = 1, I F ( w ) d u = l ,  (2.6)
0 *̂ 0

and A  is a constant of normalization,
F(ui)du

1 r M

A ~  J 0A J 0 (|32 +  X2 -  co2) 2 +  4X2co2
(2.7)

These are the well-known relations in the phenomena of resonance.
The correlations r(£) and i?(£) of the di sp lacement  and the fo rce .respec­

tively stand in Fourier transform relations to the spectra4 (apart from con­
ventional numerical factors):

3 W iener, N ., “T h e  Fourier In tegra l” (C am bridge, 1933), p. 150.
4 W iener, N ., loc. c i t . , eq. (21 .21), p. 161, and  d iscussions on  p. 163. T o  be exact, w e  

should follow  W iener in  calling  / ( « )  and F(w) the  spectral densities.
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/(co) = — I r(x)  cos cox dx,  r(£) = I /(co) cos co£ c/co; (2 .8)
7T J  o •/ 0

2 co /i co
F(co) = — I R(x) cos wx dx, /?(£) = I F(co) cos co£ </co. (2.9)

7T */ o 0

From (2.5), (2.8), and (2.9), we have at once

2/1 / • 00 cos wtdw r*00
r(£) = ---- I ---------------------------- I i?(^) cos cocr </*. (2 .10)

7T J 0 (/32 +  X2 -co2) 2 +  4X2co2J 0

It is not difficult to justify a change of the order of integration, since the cor­
relation functions are expected to go to zero at infinity sufficiently rapidly. 
The above relation then becomes
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2/1 r 00 r x cos co£ cos wx
r(& = - R ( x ) d x ---------------------------------c/co. (2.11)

r  Jo J 0 (/32 +  X2 -  co2) 2 +  4X2co2
Since we have

cos co£ cos wx = |  {cos co(£ +  *) +  cos co(£ — x) }, (2 .12)

we can evaluate the integral with respect to £ in (2.11), if we know

cos wt
7 (o = r

v 0 (,32 +  X2 -  co2) 2 +  4X2co2 

This integral is relatively easy to evaluate. We write

dw. (2.13)

1 r '

m = l  I (P2 +  X2 -  co2) 2 +  4X2co2
dw, (2 .14)

and consider the corresponding contour integral in the complex co-plane, the 
contour being the usual one composed of the real axis and a semi-circle at 
infinity. The circle is taken in the upper half-plane if />0, and in the lower 
half-plane if /<0. Since (2.13) shows that I ( t) is an even function, we shall 
carry out the calculations for / > 0  alone.

There is no difficulty in showing that the integral over the semi-circle 
goes to zero. For, when the imaginary part of co/ is positive, | e iu‘ \ is bounded, 
and | (/32+X2—oo2)2+4X2co2| =0(|co|4) for large values of |co|. The evaluation 
of (2.14) then reduces to the calculation of the residues of the integrand at the 
two simple poles ±j8 +iX (X>0) inside the contour. The result can be easily 
verified to be
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ire x<
/(/) =

4/3X
sin (ff/ +  7 ), (2.15)

where

(2 .1 6 )s i n  7 =
(j32 +  X2) 1/ 2

With the help of (2 .12), (2.13), and (2.15), the equation (2.11) becomes

on putting ¿ = 0 in (2.17) and recalling (2.7). The second relation is a by­
product of our investigation. The limiting case X—»0 reduces to the well- 
known relation (2.9).

Referring to (2.9), we see that R(£) is an even function of £, so that the 
second integral in (2.17) may be dropped.

From the derivation, we see that (2.17) is nothing but the Fourier trans­
form of the well-known resonance relation (2.5).

3. Identification of the results. We shall now identify Schumann’s result 
with ours by showing that in the limiting case, his pendulum has an effective 
damping factor X instead of I, and that his correlation of velocity of the pellets 
becomes the correlation of force. The equations of motion as given by Schu­
mann are5

+  { R(Ç -  x )  -  R ( x  -  Q } e~Xl s i n  OS* +  y ) d x  . ( 2 . 1 7 )

This is Schumann’s relation (1.1), if the constants can be identified. There 
is no difficulty with the normalization coefficient. We have

4/3X
 = 2 R{x)e~'Kx sin (fix +  7 )d x
A

(2.18)

M  +  mil M  +  mil

at the rth impact at the instant t = rh, and

d 'y  , n, d y , , ,  ,

(3.1)

- f + 2  l - d + ( a >  +  n y  = 0 ,
fl/“ cit

(3.2)

8 Loc. c it ., cqs. (1 ), (2). It seem s th a t there are som e m isprints in  th e  original paper.
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between successive impacts. In (3.1), m/ and u r denote respectively the veloci­
ties of the mass M  just before and just after the rth impact, and vr is the veloc­
ity of the rth pellet.

In the limiting case, the discrete impacts become a continuous force given
by

U r ~  U'T
P i  = lim--------- M  = — 2 mu  +  2 mv, (3.3)

a - o  h

where u and v are the limiting values for ur and v, at the instant t =  rh. Thus u 
is evidently the velocity of the pendulum d y / d t , and v is the velocity of the 
infinitesimal impinging pellet in the interval (t , t + d t ) .  The equation of motion
(3.2) then becomes

d*y d y  1 /  d y  \
—  +  21 —  +  (or +  P ) y  = — ( -  2m — +  2mv ). (3.4)
dP dt M  \  di /

We see that this limiting case carries an inherent damping factor m / M  in 
addition to the damping factor I. The term 2m v / M  is evidently the exciting 
force per unit mass, since m  is the impinging mass per second, the factor 2 
corresponding to the fact that when the impinging mass is infinitesimal com­
pared with the colliding mass, the former rebounds with the colliding speed,— 
a fact often used in the kinetic theory of gases.

The identification of Schumann’s result with that given in §2 is therefore 
complete.

4. Discussion. In view of the above derivation, we must be a little careful 
in applying Schumann’s relation (1.1) to the study of the motion of a pendu­
lum in a turbulent fluid. The correlation function R  obtained (by suitable 
processes) according to that relation from the correlation function r of the 
displacements is that for the hydrodynamic force (the part corresponding to 
an extra damping being removed). In a turbulent fluid, the connection be­
tween the velocity fluctuations of the fluid before the introduction of a pendu­
lum and the fluctuating/orce acting upon the pendulum after its introduction 
is not at once evident. A preliminary careful investigation seems to be neces­
sary before the method suggested by Schumann could be used with advantage.

It is also clear that the spectrum of velocity fluctuations of the pendulum 
will be proportional to co2/(w). It is then clear from (2.8) that the correlation 
function of the velocity fluctuations will be proportional to — r"(£).

There is another point which should be mentioned. The spectrum and 
correlation function discussed above refer to those observed at a fixed spa t ia l  
point, if we assume the pendulum to be never far from its position of equi­
librium. It is not difficult to observe this spectrum with a hot-wire anemome­
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ter; as has been clone by several observers.6 The Fourier transform of this 
spectrum will then give the correlation of the fluctuations at successive in­
stants at the same point in space. It is not clear, however, how' (as Schumann 
suggested) the pendulum can be used to observe the correlation function de­
fined with respect to the same material  point,—the quantity introduced by 
Taylor7 in the Lagrangian description of turbulence for the study of the 
phenomenon of turbulent diffusion.8

In conclusion, the author wishes to express his sincere thanks to Professor 
Theodore von Karman for suggesting the problem to him and for his invalu­
able suggestions.

0 For exam ple, L. F . G . S im m ons and C. Salter, Proc. R o y . Soc. Ser. A , 165, 7 3 -8 9  (1938); 
H . L. D ryden , Proceedings of th e  F ifth  In ternational C ongress o f A pplied  M ech an ics (C am ­
bridge, M ass., 1938), pp. 3 6 2 -3 6 7 ; H . M otzfe ld , Z eits. f. angew . M ath . u. M ech . 18, 362-365  
(1938).

7 T ay lor , G. I., Proc. L ond. M ath . Soc., (2), 20, 196-212 , (1921). C learer sta tem e n ts  re­
garding th is  point are m ade in his paper of 1935, Proc. R oy . Soc., A , 151, 4 2 1 -4 7 8  (1935).

8 A discussion of th e  three ty p e s of correla tion s th a t m ay be defined in th e  stu d y  of iso­
tropic turbu lence has been  m ade b y  G . D ed eb an t and P . W ehrle, C om p tes R endus 208, 6 2 5 -  
628 (1939).
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ON PLANE RIGID FRAMES LOADED PERPENDICULARLY 
TO TH EIR PLANE*

BY

W . P R A G E R  (Brown University) a n d  G . E . M A Y  ( University of Michigan)

1. Introduction. For purposes of stress analysis, the engineer prefers to 
consider his structures as consisting of plane systems, each of which is subject 
to forces acting in its plane. A typical example is furnished by the conven- 

■ tional analysis of a parallel chord bridge span in which the side trusses take 
the vertical loads and the top and bottom trusses the transverse loads due to 
wind, etc. In civil engineering this resolution of space systems into plane com­
ponents is possible in most cases, and only very rarely is a structure consid­
ered as a unit in space. Accordingly, the methods of dealing with space 
structures have not been developed nearly as much as those used in the 
analysis of plane structures. Of course, the general principles of structural 
theory, for instance the principle of virtual work or Castigliano’s principle, 
apply to space structures as well as to plane structures but, as is known from

the case of plane structures, these principles frequently do not offer the most 
convenient approach to the solution of a particular problem. As regards 
special methods, which have been developed so abundantly in the case of 
plane structures, little work has as yet been done in the field of space struc­
tures. Most of this work is concerned with pin-jointed frameworks. The itera­
tion procedure of R. V. Southwell’s relaxation method can be applied to space 
structures as well as to plane structures, 1 but efficient direct methods for the 
stress analysis of rigid frames in space are entirely lacking. The present paper, 
intended as a contribution towards the development of such methods, deals 
with the particular case of plane rigid frames carrying loads which act per-

* R eceived  D ec. 3, 1942.
1 S ee  R. V . S o u th w ell:.Relaxation methods in  engineering science, C hap. IV , Oxford 1940.
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pendicularly to the plane of the frame. An example of this type of structure 
is the monoplane wing of Fig. la, where the spars A —A and B — B are con­
nected by several main ribs which are fastened rigidly to the spars. Another 
example is the foot ring of an observatory cupola shown in Fig. lb.

The method proposed in this 
paper makes extensive use of a 
dual analogy between plane struc­
tures loaded in their plane and 
plane structures loaded perpen­
dicularly to their plane. In the 
case of a single straight beam 
this analogy forms the basis of 
the method of conjugate beams2 
which can be considered as a par-

2 . Definitions, notations and sign conventions. This paper is concerned 
with rigid frames consisting of straight or curved members whose axes lie in 
the same plane. This plane is called the structural plane.  We will consider only 
frames with members such that every cross section has a principal axis of 
inertia at its centroid lying in the structural plane. Accordingly, when the 
frame is subject to forces acting in the structural plane, the points on the axis 
of any member remain in the structural plane. On the other hand, when the 
frame is loaded perpendicularly to its plane, the displacements of the points 
on the axis of any member are normal to the structural plane. For conciseness, 
the first type of loading will be referred to as plane loading and the second as 
space loading.

In the case of plane loading the stresses transmitted across any cross section 
of a member of the frame are statically equivalent to the following stress resul t­
ants:  1) an axial force which, for the sake of brevity, will be called the pul l  
although it may produce either compression or ten­
sion; 2) a transverse force, called the shear , which 
acts in the structural plane normal to the axis of 
the member under consideration; 3) a couple, 
called the bending moment ,  which also acts in the 
structural plane. In the case of space loading the 
stress resultants are: 1) a twisting couple, called 
torque, acting in the plane of the cross section;
2) a bending couple, called bending moment ,  whose 
plane is perpendicular to the structural plane as 
well as to the cross-sectional plane; 3) a transverse 
force, called shear, whose line of action is normal 
to the structural plane. Fig. 2.

2 H . M . W estergaard , Deflection of beams by the conjugate beam method, Journal of th e  
W estern  S o c ie ty  o f  E ngineers, 26, 369 (1921).

L J — L i

J J J J .
// ■//rh’
F i g . lb . C upola foot r in g .

ticular case of the present method.
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In order to arrive at notations applicable to both types of loading we 
choose on the axis of each member of the frame an origin 0  and denote by j the 
arc length of the axis measured from this point. A cross section B is then speci­
fied by giving the corresponding value of s (Fig. 2*). In most cases it will be 
convenient to choose the origin 0  at one end of the member, in which case 5 
will have positive values only. In order to establish appropriate sign conven­
tions for the loads, displacements, stress resultants and distortions at the 
cross section B, we introduce a rectangular right hand triad with origin at B, 
the #-axis being tangent to the axis of the member at B in the direction of 
increasing s, and the y-axis lying in the structural plane (Fig. 2).

The loads which the structure carries at B may be forces or couples, either 
concentrated or distributed, or both. The components of the concentrated 
force at B, the distributed force at B, the concentrated couple at B and the 
distributed couple at B we denote by Fx, Fv, Fz, f x, f y, f z, Cx, Cv, Cz, cXl cv, cz 
respectively, relative to the rectangular triad at B. For example, Cx is a con­
centrated twisting couple, and is positive if its sense is the same as that of 
the 90° rotation necessary to move the y-axis into coincidence with the z-axis. 

• Not all the load components thus defined have practical importance; how­
ever, the analogies which we intend to establish appear more clearly -when the 
most general case is considered.

The force system transmitted across the cross section at B is equivalent 
to a force at the centroid plus a couple. These will be referred to as the stress 
resultants, and we shall denote their components by R x, R v, R z, M x, M v, M ,  
respectively, relative to the rectangular triad at B. R x is the pull, R v and R z 
the shears parallel and perpendicular to the structural plane, M x the torque 
and M v, M z the bending moments.

The stress resultants and the loads are connected by the equations of  
equi l ibrium.  If no concentrated forces are applied at the cross section B, the 
equations of equilibrium for a straight structural member are:

RL +  /* = 0, M '  +  cx = 0,
Ry "H fy = 0, My  +  Cy — R z = 0, (1')
Rz +  f z  — 0, M z -f- cz +  R v = 0,

where the dashes denote differentiation with respect to the arc length s. If 
concentrated loads Fx, Fv, F z and Cx, Cy, Cz are applied at B, we have

R x(s +  e) — R x(s — e) +  Fx = 0, M x{s +  e) — M x(s — e) -f- Cx = 0,
Ry(s +  e) -  Ry(s -  e) +  Fy = 0, M v(s +  e) -  M v(s -  e) +  Cy = 0, (1")
R z(s -f- e) — R z(s — e) +  Fz = 0, M z(s +  e) — M z(s — e) +  Cx =  0,

where e denotes an arbitrarily small length.

* In F ig . 2 th e  origin  of th e  sy stem  x, y  should  be m arked B.
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The d isplacement  of the cross section B is specified by the components 
Mu u y, u z of the translation of the centroid and the components 0X, 0y, 9Z of 
the rotation of the cross section.

Finally, the six distortion components ,  gx, gv, g z and hx, hv, hz, of a straight 
structural member are defined as follows:

gx Mx , llx — 6X ,
gy = My -  Oz, Jly = Oy , (20
gz — M Z +  Oy, kz = 0'z ,

where the dashes again denote differentiation with respect to tfje arc length s.
gx will be called the stretch, gy and gz the sl ips ,  hx the twi st  and hy, hz the bends.
Two structural members may be connected-by a link which permits some 
relative displacement of the end sections of the two members, for instance 
by a hinge permitting a free bend. Such relative displacements can be handled 
as concentrated distort ions:

Gx = Hx(s +  e) — ux(s -  e), IIx =  0x(s +  el — dx{s — e),
Gy = U y ( s  +  e) — uv(s -  e), IIy — 0„(s +  e) — 6y(s -  e), (2")
Gz = u z(s +  e) — Uz(s -  e), IIz =  0z(s +  t) -  0x(s -  e),

where e is again an arbitrarily small length.
For elastic structural members the stress resultants can be represented as 

the products of the corresponding distortions and stiffness factors:

OiXgX, Ry CXygy, R z OC2gz,

M X ~  &xhz, My  = fiylly, M z = Pzhz,

where a x =  E A ,  a v =  G A / k y, a z =  G A / k z, (3X is the torsional rigidity of the mem­
ber, (3y =  EIz,  /3z — E I y, E  being Young’s modulus, A  the area of the cross sec­
tion, G the modulus of rigidity, ky and k x constants depending on the shape 
of the cross section, I y and I z the moments of inertia of the cross section with 
respect to the axes of y  and z.

3. Analogy between statics of plane loaded and kinematics of space 
loaded frames. For a plane loaded frame the loads F2, f z, Cx, cx, C v, c v and 
the stress resultants R z, M x, M y  vanish. Similarly, for a space loaded frame 
the displacements ux, u y, d2 and the distortions Gx, gx, Gy, gy, I I 2, h2 are zero. 
The remaining equations (1) for the members of the plane loaded frame then 
are seen to correspond exactly to the remaining equations (2) for the members 
of the space loaded frame according to the Table I.

Table I

S ta tic s  o f P lane L oaded F ram e K in em a tics o f S p ace Loaded F ram e

Loads ( f x’ G
\fz, fy, Cz

S tress resu ltan ts Rr, Rv, Mz

D isto rtio n s j 
D isp lacem en ts

-Hz, - H y ,  - G ,
-hz, -hy,  -g z

Oz, Oy, Uz
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At a point B where two straight members are rigidly fastened to one an­
other under the angle 4> (Fig. 3), we have the following relations between the 
stress resultants of the plane loaded frame at the two sides of B:

R x = R x cos 4> +  R y sin <£, R y = — R x sin <f> +  R v cos 4>, M z =  M z.

These relations correspond exactly to the following relations for the displace­
ment components of the space loaded frame on the two sides of B :

0X — 0Z cos 0 +  0V sin cj>, 0y = — 0X sin <f> +  0V cos <£, u z = «

A curved member may be considered as the limiting case of 
a polygonal arrangement of straight members. Accordingly, 
the correspondence between the stress resultants of the plane 
loaded frame and the displacements of the space loaded frame 
remains valid in the case of frames containing curved mem­
bers. Of course, equations (1) and (2) in their present forms 
do not apply to frames with curved members. Equations ap­
plicable to such frames will be developed in a later paper.

If more than two members join at the same point, the 
analogy breaks down. This can be seen from the example in 
Fig. 4, where we have for the stress resultants of the plane 
loaded frame

R x =  R x — R * ,  Ry = R y +  R * .  M z = M z -  M * ,  

and for the displacements of the space loaded from

6Z =  0X =  (?„*, dy =  6y = — 0*, Uz — Uz = 11?.

The analogy therefore applies directly only to frames which consist of a 
simple chain of members without branch points. In spite of this fact the

analogy is very useful even in the case of more 
complex frames since these may be considered 
as consisting of simple frames to which the 
analogy can be applied.

In order that the analogy indicated above 
hold everywhere in the structures, it is neces­
sary that there can be a certain correspondence 
between the various supports and links in the 
frame with plane loading and the frame with 
space loading. For example, the analogy is 
maintained if to a pin support in the frame 
with plane loading there corresponds a simple 
support in the plane with space loading. A 

consideration of certain types of supports and links leads to the results pre­
sented in Table II. This table is by no means complete.

Fig. 3.

XL * t l F

Fig. 4.



Table II

S ta tic s  o f P lane L oaded  F ram e • K in em atics o f Space L oaded  F ram e

D escrip tion R « R , Sym bol D escrip tion Or ev ttr Sym bol

Pin support — — 0 Sim ple support — — 0 B —

tn R oller support 0 __ 0 £ T Pin support 0 __ 0 E —
& (axial m otion)
O.3

</) R oller support — 0 0 Journal bearing — 0 0 ¿¿A
777\

"O (transverse m o­
w tion)

0 0 C lam ped end 0 0 0
A

r  ree end 0
t r

C lam ped end — — — Free end — — — —

</3
C Pin  support d iscon t. d iscont. con t.

A y
Spherical h inge discon t. d iscon t. con t.

-J
TJ
CCJ
CO
uOa

R oller support con t. d iscont. con t. H inge cont. d iscont. con t.

cx
3

(/)

.2 H inge con t. con t. 0 — 0— Sim ple support cont. con t. 0 — ® —

eu
*-*c

E x ten sib le  h inge 0 con t. 0 -=H> P in  support 0 con t. 0 — EB—
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We shall now use this analogy to determine the influence lines for the 
stress resultants of a statically determinate space loaded frame. We consider 
the rectangular frame with three pin supports 1, 2, 3 shown in Fig. 5. Ac­
cording to a well known principle of the theory of structures, the ordinates 
of the influence line for the bending moment produced at the section B by 
transverse loads Fz are precisely the displacements uz produced by a unit 
bend, I I y — 1, at B. According to the analogy explained above these displace­
ments can be obtained as the bending moments, M z, produced in the corre­
sponding plane loaded frame by the load, Fy =  — 1, at B. This latter frame is 
called the conjugate frame and is the three hinged portal shown in Fig. 6a. 
The bending moments due to the unit load are easily computed and are shown 
in Fig. 6b. The diagram showing the bending moments of the conjugate 
frame is at the same time the influence line for the bending moment produced 
at the section B of the space loaded frame by transverse loads Fz.

Similarly, the influence line for the torque M x produced at the section B 
of the space loaded frame by transverse loads Fz can be obtained as the bend­
ing moment diagram of the conjugate frame due to the load Fx=  —1 at B. 
Finally, the influence line for the shear R z produced at the section B of the 
space loaded frame by transverse loads Fz is found as the bending moment 
diagram of the conjugate frame due to the couple Cz =  — 1 at B.

4 . Analogy between kinematics of plane loaded and statics of space 
loaded frames. For a plane loaded frame the displacements u zi dx, dv vanish 
and the distortions Gz, gz, H x, hx, I I V, hy are zero. For a space loaded frame 
the loads Fx, f x, Fv, /„, Cz, cz and the stress resultants R x, R v, M z vanish. The 
remaining equations (2) for the members of the plane loaded frame then are 
found to correspond exactly to the remaining equations (1) for the members 
of the space loaded frame according to Table III.

The relations between the displacements of the plane loaded frame at both 
sides of the angle joint of Fig. 3 are easily seen to correspond to the relations 
between the stress resultants of the space loaded frame. Furthermore, the
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correspondence between the various types of supports and links shown in 
Table II is valid also in the present case where we are concerned with the 
kinematics of the plane loaded frame and the statics of the space loaded 
frame.

Table III

K in em a tics of P lane L oaded F ram e S ta tic s  of S p ace L oaded  Eram e

D isp lacem en ts  

D istortion s j
UX, lly, Oz
Gr, -Gy,  - H ,  
Sx. -Sv,  - l h

Stress resu ltan ts M x, My, R , 

L oads i C l' Cv'
\CZ} Cy} Jz

The analogy established in this section can 
be used to find the stress resultants of a stat­
ically determinate space loaded frame by 
determining the displacements of the con­
jugate plane loaded frame. Let us consider 
for instance the frame in Fig. 5 carrying a 
transverse load Fz — P  at B. The stress result­
ants produced by this load can be found as the 
displacements of the conjugate frame produced 
by the bend I I 2 =  — P  at B. The general trend 
of these displacements is shown in Fig. 7. Rel­
ative to the right hand support, we obtain for 
the transverse displacement at B : u v =  4a(p/3.  

Relative to the left hand support, we have for the transverse displacement 
at the same point: u v =  2 a ( P  —<p)/3. By equating these expressions and 
solving for <p, we find that <p — P / 3 .  The displacements iix, u v, 8Z of the con­
jugate frame are thus known. They correspond to the stress resultants 
M x, M v, R z of the space loaded frame, the distribution of which is shown in 
Figs. 8 a-c.

5. Elastic deformations of space loaded frames. Indeterminate space 
loaded frames. When the stress resultants of a space loaded frame have been
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determined by the method given in the preceding section, the analogy of §3 
can be used in order to find the elastic deformations of the space loaded frame. 
For example, let us consider again the frame in Fig. 5, carrying a transverse 
load FZ= P  at B. The stress resultants have been determined in the preceding 
section and are shown in Fig. 8. Equations (3) furnish the distortions pro­
duced by these stress resultants: hx =  M X/(3X, hy =  M y/ j3„, gz = R z/ a z. According 
to the analogy of §3, the displacements 6xt dy, u z corresponding to these 
distortions can be found as the stress resultants R x, R v, M z of the conjugate 
frame carrying the loads f x=  —hx, f y — —hy, cz =  —gz. In most cases the influ­
ences of the shear R z on the deformations can be neglected, and consequently 
in the conjugate frame the distributed couples cz need not be considered. The 
loads on the conjugate frame then consist of the axial loads shown in Fig. 9a 
and the transverse loads shown in Fig. 9b, it having been assumed that /?* 
and j3„ have the same values for all members. The reactions can be computed 
easily and are indicated in Figs. 9a and 9b. If now, for instance, we wish to 
determine the deflection u z of the right hand corner C of the space loaded 
frame, we have only to compute the bending moment M ,  at the corresponding 
corner of the conjugate frame. We find that

Pa?
u z = —   — [23 — IS» 3 +  54y»J, (6)

162dj/
where n = b / a  and y  = /3„//3x.

This method of computing elastic deformations enables us to carry out 
the stress analysis of indeterminate space loaded frames. Let us suppose, for 
instance, that the frame in Fig. 5 is given a further simple support at B and 
carries a transverse load Fz = Q at C. By establishing the condition for vanish-
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ing deflection at B and applying Maxwell's law of reciprotal deflections in 
the usual way, we find the reaction at B in the form P  = — Q uc /u b ,  where 
ub and uc  denote the deflections which a unit transverse load Fx = 1 at B 
produces at the points B and C respectively; uc  can be obtained from (6) by 
setting P  = 1 ;  ub can be computed as the bending moment M ,  at the point 
B of the conjugate frame, loaded according to Figs. 9a and 9b. With P = 1  

we find that

ub =
243/3,

[32 +  IS« 3 +  547«]

and therefore

R =
3(23 -  IS« 3 +  547») 
2(32 +  IS« 3 +  547»)

6 . The inverse column analogy. The following method of determining the 
stress resultants of indeterminate space loaded frames is patterned after

the column analogy method of H. Cross.3 In 
order to avoid lengthy computations which 
might obscure the essential feature of this new 
method, we shall consider the simple problem 
of the frame in Fig. 10 carrying a transverse 
load FZ =  P  at B.

We suppose again that the stiffness factors ¡3X 
and /3„ have the same values for all members. 
The frame then is symmetrical and is loaded 
symmetrically.

According to the analogy of §4, the torque 
M x and the bending moment M y of the frame 
can be obtained as the displacements u x and u y 

of the conjugate frame produced by the bend H z — —P at B. Now the conju­
gate frame is entirely free. Since the system is symmetrical, it will possess a 
k inematica l ly  indeterminate  displacement v in the direction of the columns as 
shown in Fig. 11a. This indeterminate displacement in the plane loaded frame 
corresponds to the statically indeterminate torque in the columns of the space 
loaded frame.

From equations (2) we see that the distortions of the space loaded frame 
are given by hx =  M X/(3X, hy = M y/¡3y, or, by the analogy of §4, by hx =  iix/f3x, 
hy — a y/f3y, where u x and u y are the displacements in the conjugate plane 
loaded frame. The analogy of §3 then indicates that the longitudinal and 
transverse loads on the conjugate frame are given by/* = — ux//3x, f y =  —u y/f3y.

3 H . C ross, The column analogy, U n iv . Illino is E n gin eerin g  E xp erim en t S ta tio n , B u ll. 
N o . 215, 1930.
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The horizontal load is in equilibrium because of symmetry. The vertical load 
is shown in Fig. lib, and is in equilibrium if

Pb 11 

4 n +  y

where n =  b /a ,  y  = j3v//3x. Thus the torque M x in the left hand column is given 
by M x = u x = v. Also, the bending moment M v at B is given by

Pb 2y  +  n
M v =  -  (v -  P b / 2) =   -------

4 y  +  11

The procedure outlined above is equivalent to the following procedure. 
We suppose that the conjugate frame is embedded in an elastic jelly which

F i g . 11 a .

offers resistance to the displacement of the frame in such a way that an ele­
ment ds with displacements u x and u v will meet with a resistance consisting 
of longitudinal and transverse forces of magnitudes uJLs /$x and u vdy/ /3y, re­
spectively. We then determine the displacements of this elastically supported 
frame, and the longitudinal displacement u x then gives the torque M x in 
the space loaded frame, while the transverse displacement u y gives the bend­
ing moment M v. The above method of procedure is clearly seen to be the 
counterpart of the column analogy of H. Cross; it will be called the inverse  
column analogy.

The inverse column analogy furnishes a simple method of determining 
the influence lines of an indeterminate space loaded frame. For example, let 
us consider the influence line for the bending moment M v which transverse 
loads Fz produce at the section B of the symmetric frame in Fig. 10. Following 
the line of approach of §3, we consider the conjugate frame loaded by a 
transverse force Fv =  — 1 at B and supported elastically in accordance with the 
inverse column analogy. Since this frame is symmetrical and loaded sym­
metrically, the displacements are of the type indicated in Fig. 12a. The forces
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which the elastic support exerts on the frame are shown in Fig. 12b. From 
the condition of equilibrium for the vertical forces, we find that

F i g . 12a .

v/p

.v/p, v/p'

V =

F i g .  12b . 

ß v n

F i g .  12c . s = vab/ßx +vb2/ß„

2b n +  y

where again n —b / a  and y  =/3„//3I. The bending moment diagram of this elas­
tically supported frame (Fig. 12c) is at the same time the desired influence 
line of the space loaded frame.
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ON THE VIBRATIONS OF A CLAMPED 
PLATE UNDER TENSION*

BY
A L E X A N D E R  W E I N S T E IN  and W E I Z A N G  C H IE N  

Department of A pplied  Mathematics, University of Toronto

The object of the present paper is the computation of the fundamental 
frequency of a vibrating clamped square plate under uniform tension. It will 
be seen that the method used here reduces our problem for a plate of any 
shape to the membrane problem for the corresponding domain. For this rea­
son similar numerical results could be obtained for a number of other shapes. 
A similar question has been discussed for a circular plate by W. G. Bickley1 
in connection with the problem of reception of acoustic signals in a condenser 
microphone. The circular plate is an elementary problem from the theoretical 
viewpoint. However, the actual calculations involving Bessel’s functions are 
rather heavy. Bickley was able to give the frequencies only for a small range 
of the tension.

The frequencies of a square plate cannot be obtained explicitly in terms 
of elementary functions. However, the Rayleigh-Ritz method yields an upper 
bound for these quantities. The result cannot be considered as satisfactory 
since this method does not give us an estimation of the error. Fortunately, 
an increasing sequence of lower bounds can be obtained for all frequencies 
by the application of a variational method already introduced by one of the 
authors in several vibration and buckling problems. Combining these lower 
bounds with the upper bounds obtained by Rayleigh-Ritz, we obtain a narrow 
interval in which our frequencies are located.

Moreover, it is obvious that for questions like that of microphone recep­
tion, the lower bounds are the more important data.

The theory of the new variational method has been developed in several 
papers.2 The modifications in the present case are slight. For this reason we 
will omit all theoretical details. The reader can easily reconstruct the proofs 
of the rules which we are following here.

Let S  be the domain of a plate of arbitrary shape, and let C denote its 
boundary. In the numerical applications we shall assume that 5 is the square 
— tt/ I S x , y é v / 2 .

We denote by:
2/i, the thickness of the plate
T, the tension
* R eceived  D ec. I I , 1942.
1 W . G. B ick ley , Phil. M ag. (7 ), 15, 776-797  (1933).
2 A . W ein ste in , M ém orial d es S cien ces M ath ém atiq u es, N o . 88, 1937; A . W ein ste in , 

P ortugaliae M ath em atica  2 , 36 (1941).
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E,  Young’s modulus
a, Poisson’s ratio .
p, density of the material
D  = 2£/P/3(l — cr2), the flexural rigidity
co, the eigenfrequency (number of pulsations in 2ir seconds)
w, the transversal displacement.

We put r  =  T / D .  Our problem admits an infinite sequence of eigenfrequencies 
co=wi, w2, • • • , in place of which we shall use the eigenvalues X=Xi, X2, • • • , 
where

The displacements corresponding to these eigenvalues will be denoted by 
w  = w/i, W2, • ■ ■ . These transverse displacements w  satisfy in 5 the differential 
equation:

2 //pop
D

AAw — t A w  —  \ w  =  0 (1)
with the boundary conditions

w  = 0 

d w j d n  = 0
(2)
(3)

on C.
The equation (1) may be written as follows:

(A +  a ) (A  -  f i)w = 0, (a >  0, 0 > 0) (4)
with

|3 — a  —  t , a t3 = X. (5)
or

(6)

We see that we have the i dent i ty  :

w  = u  +  ü in 5 +  C, 

where n and ü are solutions of
(7)

Au +  a u  = 0, 
Aü — [iü - 0.

(8)
(9)

We have therefore also the following i den t i t y :

A w  — A (u +  u) — fin — a u  in 5 +  C. 

The identities (7) and (10) will be useful in the following.
(10)
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It is well known that the eigenvalues of our plate can be defined by minima 
problems, the same as could be used in the Rayleigh-Ritz method. For in­
stance, the fundamental eigenvalue A=Ai, in which we are interested in this 
paper, is given by the variational problem:

u M .  / / ( * * « ,  +  ,  / / £ ( £ ) +  '
d y ) .

= min = Xi 
with the condition

d xd y

(ID

I I ( w) =  J 'J "  w-dx dy  =  1 (12)

and with the boundary conditions (2) and (3).
Let us note that U  is not 'the potential energy of the plate. Nevertheless 

our variational problem gives us the correct differential equation and bound­
ary conditions. This variational problem will be denoted by P .  The higher 
eigenvalues X2, X3, • • • can also be defined by similar variational problems. 
However, we shall not use them in this paper.

The Euler equation of P  is the equation (1). This equation together with 
the boundary conditions (2) and (3) defines a differential  eigenvalue problem  
P  which admits the solutions w2, *'• • corresponding to the eigenvalues 
Xi,  X2, • • • .

In order to obtain an increasing sequence of lower bounds for Xi we begin 
by cancelling in the variational problem P  the boundary condition d w / d n =  0. 
In this way we obtain a new variational problem P Q\

U(w) — min = Xi ); I I (w) = 1 (13)
with the boundary condition w  =  0 .

The conditions in P 0 being less restrictive than in P ,  we have Xf’gXi.
The Euler equation in P 0 is the same as in P ,  namely the equation (1). How­
ever, the boundary conditions for this equation are

w = 0 and Aw = 0 on C, (14)
the last condition being a so-called natural  boundary condit ion, i.e., a condition 
which is automatically satisfied by the minimizing function in P 0. The corre­
sponding differential eigenvalue problem P 0 is given by (1) and (14). P 0 ad­
mits a sequence of eigenvalues A®, ffff, ■ ■ ■ the smallest of which is 
identical with the minimum X[0) in P 0. In the case of a square plate, P 0 is 
identical with the problem of the vibrations of a supported plate under ten­
sion. The problem P 0 can be solved, for a domain of any shape, in terms of 
the membrane problem for the same domain, a fact which has been implicitly 
used in the elementary theory of a square supported plate.
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In order to show this we use the identities (7) and (10) and we obtain 
from (14) at once

u =  0 , u = 0 on C.

In view of (8) and (9), it follows immediately that « = 0 in P+C and that (1) 
and (14) are satisfied by w =  u, where u is an eigenfunction of the membrane 
problem / \u- { -au  = 0 in S, u =  0 on C. From the eigenvalues a  of this problem 
we can compute the eigenvalues Al,) in P0 by using the equations (5).

In order to obtain an increasing sequence of lower bounds for the eigen­
value Ai in P  we link Po with P  by a chain of intermediate variational prob­
lems Pi ,  P ^  • • • , the solutions of which can be expressed in terms of the 
solutions of P„. In this way our problem for the clamped plate can be reduced 
to the solution of P 0 which is, as we have seen, equivalent to the problem of 
a vibrating membrane.

In order to show how this can be done, let
Pl(s'), pli.1), , pm— l(s), pints'), * * * (Hi)

be an arbitrarily given sequence of functions defined on the boundary C of 
the plate, s being the arc, and pi ( s)  being positive. The problem P,„ 
(ni — 1, 2 , • • ■ ) is then defined as follows:
Problem P m: Find the minimum X o f  U(w) with the condition I I ( w)  = 1 
and with the boundary conditions

w  = 0 on C, (16)

/
div

p k  ds = 0, k = 1, 2, • • • , m. (17)
c dti

The conditions in P m are more restrictive than those in Pm_i but they are 
less restrictive than the boundary'conditions in P.

We have therefore Xj0’ rSA*,1’ ¿X(,2) ^  ■ ■ • ^Xi. The minimizing function w  
in P satisfies the same Euler equation (1) as in P 0 (or in P), but the boundary 
conditions are given now by the equations (16), (17) and by

Aw = aipi  +  • • • +  amp„, on C, (18)
the last condition being again a natural boundary condition. The constant 
coefficients a-i, • ■ • , a m are unknowns. In order to solve P,„ we have to de­
termine the lowest eigenvalue of the differential problem Pm defined by (1), 
(16), (17) and (18). We use again the identities (7) and (10) in a way de­
scribed in our previous papers. In order to avoid repetitions which would 
considerably increase the length of this paper, we will only formulate the 
rules for the computation. It can be shown that X̂"1’ can be computed by the 
following procedure. Denote by in and «,• (7 = 1, • ■ • , m)  the solutions of 
the equations



A m  +  aiii = 0  (19)
A w ,• -  0 H i  =  0  ( 2 0 )

with the boundary conditions
m  = -  pi(s)  (21)
üi = pi{s) (22)

where a  and 0  are considered as parameters. These equations can be solved 
in terms of the solutions of P 0■ Put w i =  u i -\-ii{ and compute the quantities
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*>j(X) ~  f  pi
J  C

dwj  

c dn]
ds; i, j  — ! , • • • ,  m, (23)

where the parameter X is defined in terms of a  and 0  by (5) and (6). Then Xim> 
is the smallest root of the determinant equation

||«u(X)|| = 0 ; i, j  = 1, • • • , m (24)

provided that the smallest root is smaller than the second eigenvalue X^ of
the differential eigenvalue problem P 0, defined by the equations (1) and (14).

The calculation of (23) can be further simplified by introducing a sequence 
of harmonic funct ions

Pi(*. y ). M*. y) ,  ■ ■ ■ . Pm-i(x,  y ), p m(x, y),  ■ ■ ■ (25)

whose boundary values are given as in (15). Then by Green’s theorem, (23)
can be written as follows

a«(X) ~  J  f  Pi(x > y ) ( P* i  ~  ccuj)dxdy. (26)

Calculation f o r  a square plate ( — tt/ 2 ^ x , y s=7t / 2) : In this case, we take

cosh (02 i- ix/2)  cosh (a2i_i7r/2)
Pt(x. y) = ------------------------------------cosh (2 i  — 1) 7t/2

I • {cosh (2 i  — \ ) x  cos (2 i  — l)y +  cosh (2 i  — \ ) y  cos (2i — 1)«} (27)

where
a2,-i = V(2* -  l) 2 -  «, 02i-r =  V ( 2 i  -  l ) 2 +  0. (28)

On the boundary, we have

( p i ( ±  x / 2 , y )  = cos (2f+l)y cosh ft,-i7r/2  cosh a2,-nr/2  

Ipi (x , + tt/ 2 )  = cos (2 i — l).r cosh |32,_i7r/2  cosh a2,_i7r/2.

Then the solutions of the problems (19), (21) and (20), (22) are



[«,•= —cosh /32>—i7t/2  [cos (2i — I)# cosh a2,_iy+cos (2i — l)y cosh a2.-ia;]
r i

f i {=  cosh a2,_i7r/2  [cos (2i — 1)̂ ; cosh /32,-_iy-f-cos (2i — 1 )y cosh /32»_iic j.
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Substituting £i(x, y) from (27), 2<< and Ui from (30) into (26), we obtain after 
a little calculation,
a ,7 = 4 cosh a2,_i7r/2  cosh a2,-_i7r/2  cosh /32,-_i7r/2  cosh |32;_i7r/2  ( . 4 +  5,,) (31) 

where
2(2j  — l)(2i—1)(— l)i+i (~ &

[ 5 — 1 <»>

{

A a —A ji — _ _
[(2f—1)2+  (2j — l)2]

£ii=£[/32;_i7r tanh /32i_nr/2 — a2i_ix tanh a2t-_i7r — 1/2]
25i,• = 0 for i j * j .

It should be noted that the roots of ||ce,/(X)|| are equal to the roots of ||a,-,(X)||, 
where

a n  = A a  +  Bij.  (34)

The results of our numerical computations are given in Table I below. 
The first and second columns give X[0) and X£0) for the supported plate. The 
next three columns give the smallest root of the determinantal equation (24)

Table I

Supported  P la te C lam ped P la te

1st e igen ­ 2nd e ig en ­ \ a) * (2) d 3) R ay le igh -
v a lu e  x iw v a lu e  Xj0> R itz  m ethod

5 14 50 2 4 .9 8 2 2 5 .2 2 2 2 5 .2 3 6 2 5 .5 0 9
10 24 75 3 6 .6 3 9 3 6 .8 4 5 3 6 .8 6 2 3 7 .4 4 3
15 34 100 4 8 .0 8 4 4 8 .2 5 3 4 8 .2 8 4 4 9 .2 6 1
20 44 125 5 9 .2 8 9 5 9 .4 5 2 5 9 .4 9 1 6 1 .0 0 8
30 64 175 8 1 .6 5 1 8 1 .7 6 0 8 1 .8 0 9 8 4 .3 7 2
50 104 275 1 2 5 .4 3 1 2 5 .5 6 1 2 5 .5 9 1 3 0 .8 5

100 204 525 2 2 5 .5 6 2 2 5 .6 3 2 2 5 .6 5 2 4 6 .5 8
200 404 1025 4 4 3 .1 5 4 4 3 .2 4 4 4 3 .2 5 4 7 7 .5 8

for m  — 1, 2, 3. Since these roots are smaller than the corresponding second 
eigenvalues X™, they are, according to the general theory, identical with the 
eigenvalues X]1*, X[2), X[3) and give therefore an increasing sequence of lower 
bounds for the fundamental eigenvalue Xi in P .  The corresponding upper 
bounds, obtained by the Rayleigh-Ritz method are tabulated in the last 
column. They have been obtained from the variational problem P  by putting

w  = A  cos2 x  cos2 y  +  B  cos* x  cos* y.
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A comparison with \ [ 3) shows us that the error in the values of Xi is, for small 
tensions, less than 1.2 per cent and, for great tensions, less than 7 per cent. 
The fact that X[3) hardly exceeds X[2) makes it probable that the lower bounds 
are much closer to the true value of Xi than the upper bound given by the 
Rayleigh-Ritz method.

In figure 1 are plotted curves of fundamental eigenvalues of clamped circu­
lar plate and square plate against the tension r. The curve I is the values of 
X<3) for the clamped square plate. The curves II and III are respectively the 
fundamental eigenvalues for a circular plate of equal area and equal circum­
ference as the given square plate. Both of the latter curves are calculated 
from the Bickley result.

F i g .  1. C urve 1 : C lam ped Square P la te  (ir / l ' i x , — x / 2 )
C urve 2: C lam ped Circular P la te  (r =  \A r)
C urve 3: C lam ped C ircular P la te  (r =  2)

Re mark .  Using our lower bound X<3) for a single value To of r  we can easily
compute lower bounds for Xifor every value of t .  This result can be obtained
by combining our method with an idea of R. V. Southwell. 3 In fact, the lowest 
eigenvalue Xi=Xi(r) is given by the minimum of U ( w ) / H ( w )  under the con-

3 H . L am b and  R . V . S ou th w ell, P roc. R oyal Soc. Ser. A, 9 9 , 272 (1921).
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ditions (2) and (3). Denoting in (11) the first and second integrals by J(w) 
and D(w)  respectively we have

U / H  =  J / H  +  tD / H  =  J / H  +  t0D / H  +  (t -  t0) D / H .  (35)

Since D(w)/ H (w )  is obviously greater than 2 (i.e., greater than the lowest
eigenvalue of the vibrating membrane) we have for all values r > r 0

X i(t)  >  X i( t0) +  2 ( t  — r 0) >  x [  ^(to) +  2(r  — r 0).

Putting t 0 = 5 we give in Table II the values of X ® ( 5 ) + 2 ( t  — 5).
Table II

X j ( 5 ) + 2 ( r - S )

s 2 5 .2 3 6
10 3 5 .2 3 6
IS 4 5 .2 3 6
20 5 5 .2 3 6

30 7 5 .2 3 6
50 1 1 5 .2 3

100 2 1 5 .2 3
200 4 1 5 .2 3

It will be seen that these lower bounds for Xi are smaller than the lower 
bounds computed by our method alone.



A DIRECT IMAGE ERROR THEORY*
M . H E R Z B E R G E R  

Communication No. 894 from  the K odak Research Laboratories

1. In a previous paper1 the author proposed a direct approach to the prob­
lem of geometrical optics. In this paper we shall give a new image error theory, 
to the fifth order, which seems to be more adapted to the practical problems 
than former theories. We are given a rotationally symmetric system. Let us 
choose two Cartesian systems, one in object space and the other in image 
space, such that the x,  x '  and y ,  y '  axes have the same directions and the z, s' 
axes coincide with the optical axis of the system.

A ray is given in object (image) space by the coordinates x,  y ,  (x ', y ' )  of 
its intersection point with the plane z = 0, (z' = 0). The optical direction 
cosines (the direction cosines multiplied by the refractive indices n  and n ' , 
respectively) may be designated by the Greek letters

v, r =  v « 2 -  ( f2 +  U1); S', v', f '  =  V « '2 -  « ' 2 +  V 2)-

The fundamental problem of practical optics is to find x' ,  y ' ,  §', jj', when 
x, y ,  £, V are given. Because of the rotational symmetry, four functions, 
A ,  B ,  C, D ,  exist such that,

=  A x  +  B t ,  t '  =  C x  +  Dt ,

y'  =  A y  +  B t}, t(  =  C y  +  D tj.

where A ,  B ,  C, D  depend only on the three symmetric functions Mi, M2, M3 of 
our coordinates:

Ml = $ ( x 2 +  y 2), m 2 = x i  +  yr], u 3 = §(£2 +  V2)- (2)
We found in the previous paper1 that, according to the laws of geometrical 

optics, A ,  B ,  C, D  cannot be arbitrary functions, but must fulfill one finite 
and three differential equations, viz.,

A D  — BC  — 1
and

/ B C  d D \  /  dA d B \
A I ------------ ) -  C -( ------------) +  2m

\9m2 d u i /  \ d t i 2 d i i i /

/ d A  dD dA dD ^  dB dC dB  <3C\
\<5mi dui  dii2 dui  dui 3m2 du3 d u \ )

( d B  dD dB dD
+  2«3(----------------------

\dMi dit2 du 2 du 1
* R ece ived  N o v . 26, 1943.
1 M . H erzberger, Direct methods in  geometrical optics, T rans. A m er. M a th . S oc., S3, 218

(1943).
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/  dA dC dA d C \

\d i i i  dii2 dii2 d i i \ )
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\ d u 3 à u < i )  \ d 1l 2 d u \ )  \ d t l 3 d U ï /

( d A  d B \  ( d A  dC dA d C \
— D  I —-----------  —  j +  2« i  ( -------------------------- ]

\ d 1i 2 d u \ (  \ d i i i  du 3  du 3  d u i /

/ d A  dD dA dD dB dC

\ d u i  du3 du3 dui  du 1 âu3

+  2 u-t

dB d C \  

du3 âu iJ  

/ d B  dD dB d D \

\ d t l i  dll3 du3 d u j
(A)

(  dC d D \  ( d A  d B \  ( d A  dC dA d C \
B  ( ------------ ) -  2 2 ------------) +  2u A ------------------------ )

\ d t i 3 du iJ  \ d u 3 du2/  \ d u 2 du3 dii3 d u ï /

+  / d A  dD dA dD ^  dB dC dB d C \  q ^
\ d u 2 du3 du3 du 2 du 2 du 3 du 3 d u 2/

It is the purpose of this paper to develop from formulae (A) the theory of
image errors. Developing A ,  B ,  C, D  into a series with respect to u lt u2, u3, we
can write

A  =  A 0 A ¡ U i  "T A 2U 2 4 -  A 3U 3
2 2 2 

+  2 (A ¡¡Ui +  2A 12U1U2 +  A 22U2 -T • • * -f- A 33U3), (3)

and for B,  C, D ,  correspondingly. Inserting (3) in (A) and comparing coeffi­
cients leads to the first-order equation:

A ¡¡Do — B 0C 0 — 1 ; (4)
the third-order equations

A q D i  -T  A  ¡ D o  =  B o C i  +  B 1C 0,

AoD2 -f- A 2D 0 — B 0C 2 "T B 2Co, (5a)
A 0D 3 -f- A 3D 0 =  B 0C 3 -T B 3C 0',

and

Ao(C2 — Di )  — C o(A2 — B()  = 0,
A o(C3 -  DO  +  B 0(C2 -  Di )  -  C 0( A 3 -  B 2) -  D o{A 2 -  B i )  = 0, (5b)

B o(C3 — 22») — Do(A3 — B()  — 0j
and finally the fifth-order equations:

* If w e d ifferen tia te th e  fin ite eq u ation  a b o v e  w ith  respect to  « 1, ui, U) and  subtract from  
each  of th e  eq u ation s (7) o f th e  form er paper,1 eq u ation  (A ) a b o v e  resu lts.



(6a)

(6b)

A qD u  +  DoAii  — B qC u  — CoBu =  2{B\C\  — A\ D\ ) ,

A<yD\i -f- D 0A 12 — BoCn  — CqBu  — B\Ci  +  B 2C 1 — A\D% — A^Di,

A qD\3 +  DqA \3 BqC\z CqB\3 — B  \C 3 B 3C 1 — d 1.D3 — A 3D 1,

A 0D 22 +  DqA 22 — JB0C22 — C 0B 22 = 2 (.52^2 — A 2D 2),

A 0D 23 +  DqA 23 — 7S0C23 — C0B23 = B 2C 3 +  B 3C 2 — A 2D 3 — A 3D 2,

A 3D 33 +  DqA 33 — BqC/33 — Cô 33 = 2(J33C3 — /I3.D3),
and
4̂o(C2i — D u ) ~  C o ( A n ~  B u ) = C i( A 2 ~  B i ) —Ai(C 2—Di)  — 2(AiC2—A 2Ci),

Ao(C22 D 12) Co(d 22 2 1̂2) =C2(/1 2 — B l ) —A 2(C*2— i?l) — (A 1D 2 — A 2D 1)

— ( B 1C 2 — B 2C 1),

A o ( C 2 3 - D 13) - C o ( A  t t - B u )  = C z ( A  2 - B x) - ^ (C s - A )  -  2 ( B 1D 2 ~ B 2 D 1), 

Ao(C3i~D2i)-{-Bo(C2\ — D n ) —Co(A 31— B 21) —Do(A 21—B u )

=  —Bi(C2—Di)  —A i(C3 — D^)- \ - Di {A 2~^i)+Ci(^43 — B 2) — 2(.4iC3 — /I3C1),
-do(C32 ^ 22) ~bBq^CoO — D 12) —Co(A 32 — B 22) —Dq(A 22— B 12)

=  — B 2(C2~  D\)  —A2{C3 — D 2) - \ -D 2{,A2 — Bi)- \-C2{A3—B2)

-  (A xD3- A  3DO -  { B ^ - B q C J ,

A o(G33 — D23)-\~Bq(C23 — D 13) —Co(A 33 — B 23) —Dq(A 23—-Bl 3)
= -  £ 3(C2-  D O - A  3(C3-D 2)+D 3(A 2- BO+C3(A 3 -  B2) -  2(B1D3- B 3D O , 

Bq{C3X-D21) - D 0( A 3 1 - B 2 3 ) = D 1( A 3 - B 2 ) - B 1( C 3 - D 2 ) - 2 { A £ 3 - A £ 2 ) ,

Bq{C32—D 22) —Dq{A 32—B 22) = Z?2(a1 3 — -B2) — -B2(C3 — -D2)
— (A 2D 3—A 3D 2) — ( B 2C 3 B 3C 2) ,

B  a(C 33 —D 23) —Dq(A 33 B 23) — B3(d 3—B 2) -  B 3{C3~D^)  — 2(52Z73 — B 3D 2).

Moreover, the (6 +  9) equations (6) are not independent; they are con­
nected by the identity
[A o(d*32 “ B22) +*Bq{(J22 D 12) Co(-d 32 B 22) ~  Dq(A 22 ~  B u )  ]

+  [A oZ?22+29<)/1 22 — B 0C 22 — C0.B22]— [A qDu~\~DqA 13 — Bq C u— C0.B13] (7)
— \_B q(C 3\ — D 21) —Dq(A 31 — -B21) ]— \_A o(Ĉ23 D u )  Cq(A 23 -Sl3) ]= 0 .

2 . Gaussian optics. Let us consider first the rays in the neighborhood of 
the axis. Let us assume that ui, «2, «3 are so small that we can assume func­
tions +, B,  C, D  to be equal to their constant members:

x' — A qx +  2?o£, — Co»+
y'  — A 0y  +  B 0y, y' — Coy +  D  Qy; 

where A q D q —BqCq =  1.
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(8 )
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The evaluation of these equations and the investigation of the geometrical 
meaning of the coefficients form the content of Gaussian optics.

We shall not go into great detail here, but refer the reader to the discus­
sion in the Journal of the Optical Society of America.2

Equations (8) can be inverted, and we obtain then
x  = D qx' — Bo!;', £ = — Cox' -f- A q̂ ',

y  = D 0y'  -  Bov', V =  ~  C 0y'  +  A r f .  (9)
Let us investigate what happens if one of the coefficients vanishes.
A o = 0 means that for  ̂= 77 = 0 , x ' = y '  =  0 , which means that the bundle

of rays parallel to the axis converges to the image origin. We say that the 
image origin is at the focal point of the system.

B o = 0 means that for x = y  =  0, x ' = y ' ~ 0. The rays through the object 
origin meet at the image origin. We say then that object and image origin are 
optically conjugate.

Co = 0 means that £ = v — 0 implies £' = v '  — 0 , or, a bundle of rays entering 
the system parallel to the axis emerges parallel to the axis. The system is a 
telescopic system.

D o = 0 means thatx=y = 0 implies £' = 77' = 0 . The rays through the object 
origin emerge parallel to the axis. The object origin is the object-side (front) 
foca l  point .

3. Image error functions. Let us for finite rays* project image point and 
direction back into the object space, according to Gaussian optics. That 
means we form equations (9) for our finite rays. The ensuing expressions may 
be called the equivalent object coordinates x, y,  \ ,  rj. We have from (9) and (1)

x =  D 0x’ -  £„£' = (DqA -  BoC)x +  (D0B  -  B 0D)£ = ax +  if,
£ = -  Cox' +  A &  = ( -  CoA +  A 0C j x  +  ( -  C0B  +  .40L>)£ = c* +  d£; (10)

and analogously,
y  = a y  +  bi7, 
rj — cy  +  dv .

a, b, c, d are with A ,  B ,  C, D  functions of «1, «2, «3, and we have

<To = do — 1,
, n (IDbo — Co =  0 ,

the values a 0, b0, c0, do, being the limits of a, b, c, d  for zi,- = 0. If Gaussian 
optics were correct, we would have equation (11) for all values of u that is 
for finite aperture and finite field. The deviation from its constant term as a

* M . H erzberger, On the fundam ental optical invariant, the optical tetrality principle, and on 
the new development of Gaussian optics based on this law, J. O pt. Soc. A m er. 25, 295-304 (1935).

* T h e  expression  fin ite is used in d istin ction  from  paraxial rays, rays near th e  ax is.



function of aperture and field is therefore a measure of the image errors. We 
call a, b, c, d the error functions.

In the nomenclature of matrix algebra we can express these equations as 
follows:
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Let

(! )- '(;)' o - o -

0 - 0 '  G ) - - 0

(12)

x j , yo , £o , Vo would be the coordinates of the image ray if Gaussian optics 
were valid. Equations (12) combine equations (1) and (8), M  being the matrix

5 )  anĈ ^ie ma,;r‘x^ 0
We have then

where
vi =  Mo M ,  M  — Mom. (13)

From (13) it is obvious that the determinant of m  is equal to unity. 
Therefore,

ad -  bc =  1. (14)
The reader can verify for himself that a, b , c ,  d  fulfill equations (A) and 

therefore equations (5) and (6), which simplify considerably, owing to the 
fact that (11) is fulfilled.

Equations (13) can be written explicitly
a = D qA — B qC, A = Aoa +  B qC,

b = D 0B -  B 0D, B  = A 0b +  B 0d, , N(15)
c = — CoA +  A 0C, C =  Coo- +  D 0c,

d = - C 0B  +  AoD, D  =  C0b + D o d .

Differentiation and substitution in (A) prove our statement.
4. Third-order theory. The third-order image errors are usually called 

Seidel errors.
From our point of view, we obtain the image errors by inserting (11) into 

(5). Abbreviating (da/duic)Ui-o by a*
di T  d\ — 0 Ci — di

ai -f- di  = 0 c% — hi (Id)
a% -}- do — 0 a* — bi.
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Equations (16) lead to the conclusion that only six of these twelve coeffi­
cients are independent. Equations (16) are identically fulfilled by selecting 
six parameters ¿.¡t with permutable indices such that

0 1  — ¿ 2 1  ¿ l = ¿ 3 1  Cl = — ¿11 d l = — ¿ 2 1

02  — ¿ 2 2  ¿ 2  =  ¿3 2  C2 =  —  ¿ 1 2  ¿ 2  =  —  ¿ 2 2  ( 1 7 )

03  =  ¿23  ¿3 =  ¿33 C3 — — ¿13  ¿ 3  =  —  ¿23.

Geometrical investigation (which we omit) would show that (if object and 
image planes are optically conjugated), ¿33 may be interpreted as the coeffi­
cient of spherical aberration for the object origin; ¿ 2 3  as the coma coefficient; 
¿22 and ¿13 as coefficients of the field errors; and ¿12 as the coefficient of the 
distortion for an object at the origin and an infinite entrance pupil.

On the other hand, ¿u may be considered as the coefficient of spherical 
aberration for an infinite object; ¿12 as coma coefficient; ¿13 and ¿22 as field 
errors; and ¿23 as the coefficient of distortion for an infinite object and the 
entrance pupil at the object origin.

The connections between these errors are well-known laws of the Seidel 
theory.

The method developed here differs from the usual methods in that, first, 
we do not assume the coordinate origins to be in conjugated planes, and, sec­
ond, we do not restrict ourselves to the consideration of the deviation of the 
object point, but investigate at the same time the deviation of the direction 
of the ray. Equations (10) give, within the limits of our Seidel region, the 
following equations:

X — X =  (¿212*1 +  ¿222*2 +  ¿ 232*3) *  +  (¿31**1 +  ¿322*2 +  ¿ 332*3 )$ ,
(»* (18J

£  ~  £  =  \ k l \ U \  +  k \ 2 U 2  +  k \ z U z ) X  +  ( ¿ 2 1 ^ 1  +  ¿ 2 2 ^ 2  +  ^ 2 3 ^ 3 ) £ l

and y  and 77 analogously.
We recommend a detailed study of these equations and their derivatives 

with respect to * and £ for meridian rays (y  =  v —0),  especially in the case 
where our origins are not conjugated.

5. Fifth-order aberrations. For the fifth-order aberrations we find from 
(6a) and (6b) the following fourteen independent equations between the 
twenty-four coefficients a , K, etc.

Making use of equations (11) and (17) we find that
2 2

011 +  <7« = 2 ^ «  ¿ « ¿ « ) ,  022_('0r22= 2  (¿22—  ¿«¿23) ,
0 1 2 ~ k * fl2 == 2  ¿ « ¿ 2 2 —  ¿ « ¿ 1 3 —  ¿ « ¿ 2 3 ,  023~f-*f23 =  2 ¿ 2 2 ¿ 2 3 — ¿ « ¿ 2 3 —  ¿ « ¿ 3 3 ,

2 2
013 1 *71 3 =  2 ¿ 1 2 ¿23 ¿ 1 3 — ¿ « ¿ 3 3 , 0 3 3 ' f '* f 3 3 =  2 ( ¿ 2 3 —  ¿ « ¿ 33 ) ,

2 2
0 2 1  < 7 l l = 2 ¿ l 2 - f - ¿ l l ¿ 1 3 — 3 ¿ l l ¿ 2 2 ,  b  1 2 — 0 1 3  ~  ¿ 1 3  1 ¿ « ¿ 2 2 — 2 ¿ l 2 ¿ 2 3 ,  ( 1 9 )

022 d 12 = 2 ¿«¿13 ¿«¿22— ¿«¿23, ¿22 — 023 = 2 ¿13 ¿23— ¿«¿33 — ¿22¿23>
2 2

023 d iz  — ¿13 f ¿ « ¿ 2 2  2 ¿ « ¿ 2 3 ,  ¿ 2 3 —  0 3 3 =  2 ¿ 2 3 ^ '  ¿ « ¿ 3 3  — 3¿22¿33>

0 3 1 ^ ' ¿ «  =  3 ( ¿ l 2 ¿ l 3  ¿ « ¿ 23) ,  0 3 3 - f - ¿ 1 3  ~  3 ( ¿ 1 3 ¿ 2 3 —  ¿ « ¿ 33 ) .
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Here again, we can express the twenty-four quantities in terms of the 
third-order coefficients and nine parameters k lt\.

6.  The single sphere and the plane. In our previous paper we were able 
to calculate the functions A ,  B ,  C, D  for the case of a plane and a sphere.

In the case of a plane, we put object and image origins at the point where 
the axis intersects the plane and found that

or A  =29 = 1, B  =  C =  0. In this case we have a = d  =  1, b — c ~ 0, and all the 
image errors vanish.

In the case of a spherical surface, we put the object and image origins at 
the center, and found that

If we develop A ,  B ,  C  as functions of u u u 2, « 3 , we obtain the Seidel and 
fifth-order coefficients. Taking care of (5) and observing that

x' =  A x ,  y'  — A y ,

% = Cx  +  22£, T)' = C y  +  Drj;
(21)

where
2v?ux—u\

2 n ‘

1
A = —

D

11
A 0 = —71 

11
Bo — 0 :

(23)
11 — 11 n‘

CoCo = Do =
r n

we finally find the image-error coefficients:
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and the fifth-order coefficients:
„4

a n

a i2

_ « 4/  1 1 \ 2/  3 2 3 \
r4 \m' n )  \ « ' 2 n' n* ~ n 2) ’

Y 1 i \  /  2 3 2 \
\» ' n ) \ n ' 2 n ' n ^ n 2) '

r2 V«' « /  ’

« 1 3  = 0, 

« 2 3  = 0,

« 3 3 = 0 ,

¿ 1 1 —  ¿ 1 2 “  ¿ 2 2  —  ¿ 1 3  —  ¿ 2 3  —  ¿ 3 3 =  0,
3« 6 /  1 1

«11 =

«12 =

«22 =

■
3 3i 3 1 '

V« '4 8̂ CO 8_ M S. to / 3 1n n 3 M4.

f  ±  -- ± + l \! "s n'n n2)  ’
' 1 J _ + ± \

n'n n 2)  ’

«23= 0,

«33=0,

<¿13 = 0,

(¿23= 0 ,

<¿33=0,

(24b)

«Y  i î y

» V  i i \  i
<¿12= ---- (  I 1

r3 \ n '  n / n ' n

1 / 1  1 y
d» = - { ~ ---- ) ,r2 \« « /

equations which fulfill all the conditions of equations (6).
The nonvanishing seventh-order coefficients for one surface would be:

3« 6 /  1 1 \ 2/  5 6 10 6 5 \
r6 Vi' n )  \  w' 4 n'3n n'hi2 n 'n2 «V ’

«4/ l  1 \  /  S 19 25 19 8 \
r s \« ' n ) \ n ' 4 n'hi n'hi2 w'« 3 w4/ ’

_ « 7 j _ _l_V/_3____2 3 \
r4 V«' n j  \ « ' 2 n'n n 2)  ’

r2 \« ' « /  m'm
_3«8/ l  1 \  /  5 17 26 33 26 17 5 \

r7 \m' n /  \  nn n'hi n'hi2 w' 3« 3 n'2n4 n 'n6 »*/ ’

«112

«122

«222
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C112 =

C122 =

(  8 19 25I 19 8 '
V« '4 m ' 3« m ' 2 m 2 m ' m 3 m 4

' 3 7 11 7 .1 3N
. m ' 4

|
m ' 3m  ' m ' 2m 2 /  3 ‘MM 4 M 4 /

3« 2 /  I 1 y  1
«222=— r ( " 7  )r4 \ n  n /  n n

3m6/  1 1 y  /  1 2 2 2 1 \
r 6 \ « '  « /  \ m ' 4 m ' 3m  m ' 2« 2 m ' m 3 » V

M4 /  1 1 \  /  1 1 1A 1
¿112= — -( —  ) ( ~rrH—;—I—; J-7-

r6 \ n  n )  \  « 2 mm w2/  « «
m2 /  1 I V /  1 2 1 \

¿122=—( —----- ) ( — + — ■!—;)>r4 \m n /  \  » 2 n n n l f

3 / 1  1A 1
¿222 — — I —:-------] ““  •rs \m n /  n n

* ; 
'ft

(25)
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TH E IMPEDANCE OF A TRANSVERSE W IRE IN A 
RECTANGULAR WAVE GUIDE*

BY

S. A . S C H E L K U N O F F  

Bell Telephone Laboratories

The purpose of this paper is to derive approximate formulae for the im­
pedance of a transverse wire carrying uniform current (Fig. 1).

The total impedance Z to the current through the wire may be defined as
VZ = j ,  (1)

where V  is the applied voltage and I  is the electric current in the wire. The 
total electromotive force V  is the sum1 of the internal electromotive force F,- 
and the external electromotive force F,

V  = Vi  +  V (2)
Correspondingly, we have an internal impedance Z,- of the wire and the ex­
ternal impedance Z „  By (1) these two impedances are in series with each 
other

Z = Z,- +  Z„ (3)
If the guide is infinitely long on both sides of the wire, the external im­

pedance (above the absolute cut-off frequency) is complex

Z, = R c +  i X e. (4)

The resistance term represents radiation of energy into the guide. If the 
frequency is within the principal frequency range and if K  is the character­
istic impedance of the guide to the dominant wave, as seen from the wire,2 
then evidently

R . = \ K .  (5)

We shall now calculate the impedance of the wire on the assumption that 
its radius is small. The current in the wire will generate transverse electric 
waves in which the field is independent of the y-coordinate. The general form 
of the field (for z > 0) is

* R ece ived  F eb ru ary  8, 1943.
1 F or an  ex p lan ation , see  S . A . Schelkunoff, Electromagnetic Waves, D . V an  N ostran d  C om ­

p an y, In c ., 1943.
* A nd n ot from  a  p lane current sh ee t gen eratin g  a pure d om in an t w ave.
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“ _ lirx
I I z(x, s) = ¿ j  Hi  sin e~r iz,

" . lrX
E v(x,  z) =  — X j K i l l i  sin e~r i*,

(6)

where r ( and K i  are respectively the propagation constant and the specific 
impedance of a typical T E t,0-wave

/ lhr2 4x2

X2

4x2 2iti

ICXU
K t =  —  

Ti

/ l 2ir

r ' - V T

The propagation constant of the dominant T£i,o-wave is

V ' 1X2

X2

4n2

(7)

(8)

The dominant wavelength range extends from Xi = 2a to X2 = a, X2 being the 
cut-off wavelength of T Ez ,0-wave. If a < \ < 2 a ,  all the propagation con­
stants of secondary waves are real

lir /  4a2
Ih = —  A / 1 -------

a y  /2X2
I >  1. (9)

For the specific impedances we obtain
/ x2 V ' 2 I

= 1 v =  y -

i u t i a /  4fl2\ ~ I/2 2 a /  4 a2\ - 1/2
(10)

for \

The external electromotive force F, necessary to support current I  
through a thin wire of radius r is

V .  = -  b E v(d, r), (11)
where d  is the distance shown in Fig. 1. This equation presupposes that the

Fig. 1 Fig. 2
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current is distributed uniformly around the wire. As the radius of the wire 
increases, the current distribution gradually begins to depart from uni­
formity. From (1), (6), and (11), we have

V .  b « lird
Z c = -----= — X) K J h  sin-----e~r i'. (12)

I I I -  i a

The next step is to calculate the coefficients Hi .  We shall assume that the 
wire is so thin that the field outside the wire could be regarded as nearly equal 
to that of an infinitely thin electric current filament along the axis of the wire. 
For an infinitely thin filament, we have

2 r d^ '  I  hrx
Hi  =  lim — I — sin as r-> 0. (13)

a J  d 4 r a

Integrating and passing to the limit, we obtain

a a

Substituting (14) in (12), we have

I  hrd
Hi  = — sin  (14)

and, therefore,

b " hrd
Z e =  — 2  K i  sin2  e~rr ;  (15)

CL i  CL

b ird
R f == — K i sin2 — > 

a a

2b ird
K  = 2 R e = — sin2 — , (16)

a a

b “ lird
i X ,  — — K i  sin2  e~vir.

CL CL

Substituting from (10), we obtain
X2 \ - 1' 22b ird (  X2 \

X  ~  ij sin2 f i -)
a a \  4a2/

2b - 1 /  4a2\ _1/2 lird
X , = i] — ^2  — ( I  I sin2 e~ r,r-X t i  I \  Z2X2/  a

(17)

Hence, the ratio of the external reactance of the wire to the characteristic 
impedance of the guide (as seen from the wire) is

X e a /  X2 ird « 1 /  4a2\ - 1' 2 hrd

- t v ' - w“ ’T S y r w )  a «K
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It is evident that the total inductance of the wire is a series combination 
of inductances associated with the individual secondary T E  waves, generated 
by the current in the wire.

For the internal impedance of the wire, we have3

bh(<r<r)
• = ------ ;—7 ’InrrlAcnr)

  (19)-----------------  /  lUfii
CTi =  V  +  W £ , ) ,  7?; =  \  ------------ ;------

y  gi +
This is a general expression applicable to dielectric wires as well as to metal 
wires. In the case of metal wires, we let e,= 0. Usually, the radii of metal 
wires will be sufficiently large to make the modified Bessel functions in (19) 
nearly equal so that approximately

brji b /  iwpi b /  T fm

z ‘ - 1 7 r i 7 r V T T - 1 7 r V ^ '  +  i ) -

(20)

If r / a  is small, the series (18) converges slowly. The difficulty may be 
obviated with the aid of the following device. Let

u = £  «i (21)
I

be a slowly converging series; let
v =  £  Hi (22)

i

be a series of terms approximating (21) in such a way that the approximation 
becomes increasingly better as I increases; then

« = £  i>i +  X) («i — vi) (23)
i i

so that (21) can be regarded as the sum of two series, of which the second is 
more rapidly convergent than the original series. If now the sum of the first 
series in (23) happens to be known, we have succeeded in replacing the 
original slowly convergent by a more rapidly convergent series.

We shall apply this device to (18). First we rewrite (18) in the following 
form

2hrd
■  1 — cos-----

X ,  1 /4a3 .. _
_  . .  „ (24)

K

1 /4a2 %d “ a
= — \ / --------1 esc2— £  ------  - e r‘r;

d V x 2 « «  i a / Ï ^
V /2x2

3 S ee  th e  b ook  m en tion ed  in  fo o tn o te  I.
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then we note that as / tends to infinity, Tj tends to l i r /a  and V l — 4a2//2X2 tends 
to unity. Hence, a typical term of the i>-series will be (l//)[l — 
cos(2/7n//a)]e-!Tr/o, and (24) may be expressed as

2 lird 
1 — cos-

X e 1 /4a2 i rdT “ a 1
   — A /  1  C S C 2 —  £   e lrrla +  T  ,

K  4 T  X2 a I f ,  l J

1 — cos-

« L ¡-2

2lird
(25)

“ a (  e~r,r \
£  ---------------- ( -----  : . — -  e - lrrla) .

l V /  4a2 /
V  1 /2X2

It is known that
" 1 1
£  — e~lp cos Iq =  — — log (1 — 2e_,’ cos q +  e~2p); (26)
;-i I 2

therefore,
X ,  1 /4a2 r d f  1 (  2trd \
 = — a /  ■—— — 1 esc2 — — log ( 1 — 2e~TT,a cos (- e 2rr/“ )

K  4 r X2 a L 2 V a /
/  2ird \

-  log (1 -  e~Trla) -  e~Tr'a ( 1 -  cos J +  T

This can be transformed into

(27)

X c 1 /4a2 ird  r  1 /  irr 2 ir d \
-—  = — A / --------1 C S C 2 — — log cosh cos )

K  4 T X2 a L 2 \  a a /
1 irr (  2 i r d \  1

 — log 2 — log sinh   e~Trla[ 1 — cos—— J  +  7 j . (28)

An entirely different expression for Z c can be obtained by the image 
method. Assuming again that r is sufficiently small and that the wire is not 
too close to the boundaries of the guide and that consequently there is no 
“proximity effect,” we can immediately obtain

1 f  *» 30 »
= — V(3b\ Hl i pr )  +  2 £  Ho{2n[}a) -  £  #o(2«/3a +  2pd) 

4  L  n - l  n -0

« ~j
-  £  Fo(2«|3a +  2/3a -  2/3d) .

n - 0  J
(29)

This is a slowly converging series and is useless for direct numerical com­
putations; on the other hand, it may be useful for other purposes. Thus the



difference between the external impedances of two wires of different radii is 
obtained in the following simple form.

Z e(r2) -  Z , ( r d  = h P b [ H l ( p r 2) -  H ^ n ) }

= foPb [/0(j3r2) — 70(|3ri)] +  [A70(/3ri) — A7'0(/3r2) ].
The first term represents the effect4 of the radius of the wire on the impedance 
of the guide as seen by the wire. The second term represents the difference 
between the external reactances of two wires

X ' { r 2) -  X ' ( r ,) = b/J&[tfoG8n) -  /V„(/3/-2)J. (31)

This equation can be used for numerical calculations in conjunction with (28). 
The slowly converging part of (29) is the mutual impedance between the wire 
and the wave guide.

An expression for the mutual impedance between two parallel wires in 
the wave guide can also be obtained by the image method. Thus we have 
(d2>di)

l r  00
Z12 = — rjfib IIo(fid2 — fid\) -f- 22  Hn(2npa +  fid?, — pdi)

4 L n-1
00 00

+  £  H 0(2n(3a +  p<h -  &d2) -  £  H t f n f i a  +  fidi +  p d 2)
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co “1
— £  H 0(2n(}a +  2/3a — 0di  — /3d2) • 

n - 0  J
(32)

Next we shall deal briefly with the external impedance of a “split” wire 
(Fig. 2). Let the electromotive intensity at the surface of the wire and the 
current in the wire be

* mwy
Ey = “  / . E m C O S  “ t 

m«0 O

A  r m * y
I  =  £  / m COS  — -----

(33)

m »=0

The complex flow of power is

** = — Y e V ' V * = —  b \ E * I 0 +  — £  E l l  A , 
2 2 L 2 J

(34)

where 7 e is the external admittance of the split wire and V,  the voltage across 
this admittance. Since
  V e = bE 0, (35)

* W hich  w as en tire ly  ignored in th e  derivation  of (28).
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w e obtain from (34)

where

y  = — - I - i f y  EmEm 
‘ Fe 2 £ )  “ E 0Eo*

Y~  =
bE„

(36)

(37)

The first term in (36) is the external admittance corresponding to a uni­
form current filament (Fig. 1) and, hence, is equal to the reciprocal of either 
(15) or (29). The second term is the capacitative admittance (assuming that 
X>2b) between the external surfaces of the two portions of the transverse 
wire. The impedance diagram is shown in Fig. 3 where the parallel lines

x'.

x: 4 = xi

F i g . 3 F iG .  4

represent the wave guide, the inductive reactance X i  is the reactive part of 
(29), the capacitative reactance X i '  is the reciprocal of the second term in
(36) and X i  is the reactance looking inward from the surface of the gap in the 
wire. In the case illustrated by Fig. 4 the internal reactance is approximately

Xi*
iutirr2

(38)

where r is the radius of the wire and s  is the length of the gap.
The internal reactance of two hollow cylinders as well as the quantity 

X i '  will be discussed in a separate paper. Here we shall merely derive general 
formulae and show that roughly X i '  is equal to the external capacitative 
reactance between two sections of a split transverse wire placed across infinite 
parallel planes.

Each component I m cos ( m x y / b )  of the total current I  in (33) originates a 
radial wave of the following type

I mK i ( y mp) m x y
H J p )  = ------------- cos------

2 x r K i ( y mr) b

VYmlmKoiymp) v i x y
(39)
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where p is the distance from the axis of the current and y,„ is the radial 
propagation constant of the rath cylindrical wave

/ W 27T2 4 7 T2 7H7T /  4 b 2

7m~V b2 X2 _  b V  1 ra2X2' <'40^
If X>2b, all the radial propagation constants of order m higher than zero are 
real. This explains why even the nearest image will have but little effect on 
the admittance Y m except when the wire is quite close to the walls of the
wave guide, or when X is nearly equal to 2b. Even when the wire is close to
the walls of the guide only the nearest image will have an appreciable effect 
on Y m unless X is nearly equal to 2b.

The complete expression for the impedance Z m= \ / Y m is

K 0( y mr) +  2 £  K 0( 2 n y ma)
71= 1

_  yymb
^  m —

2wiPrKi (y,nr)
eo co ”1

— X  K 0( 2 n y ma +  2y md) — X  K 0( 2 n y ma +  2y ma +  2y md) . (41)
7 1 = 0  7 1 = 0  J

Equation (29) corresponding to the principal cylindrical wave (m — 0), is
of course, a special case of (41). The propagation constant To of the principal 
wave, however, is pure imaginary and, hence, distant images have a pro­
nounced effect on Z. .
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N O T E S

ON A. C. AITKEN’S M ETHOD OF INTERPOLATION*

B y  W IL L Y  F E L L E R  (Brown University)

1. A. C. Aitken1 has recently devised a method of practical interpolation 
which is particularly well adapted for computing machines; neither differ­
ences nor tables of interpolation coefficients are used, and the necessary opera­
tions are most easily performed on modern computing machines. Moreover, 
the degree of the interpolating polynomial decreases by two at each stage, 
which minimizes the amount of necessary work. Recent experience has again 
confirmed that the method is extremely convenient and timesaving. It would 
nevertheless seem that the method is not sufficiently known, and we propose 
therefore to give a brief outline. Our proofs seem simpler than the two proofs 
given by Aitken, 1 or that given by Lidstone.3 At the same time we shall be 
led to a procedure which works for an odd number of data as well as for an 
even number (originally the method appeared to work for an even number 
only and special computational devices were used to reduce an odd number 
of data). For most practical arrangements of computations we have to refer 
to Aitken1’2 and Lidstone.3

2. Linear cross-means. The full power of the method appears only with 
the use of quadratic cross-means, but these are in turn based on linear cross­
means. Moreover, with completely unsymmetrical data only linear cross­
means can be used.

Let it be required to compute the value/(£) of a polynomial of nth degree, 
f { x ) ,  given f k = f ( x k) for & = 0 , ■■■,«.  We note that

/<*>(*)

h  -

-r- (x  -  X 0)  ( 1 )

-F ( X k  —  X o )  (2)

/o xo — £
f ( x )  X -  £

is a polynomial of degree n — 1, and th a t/(1)(£) =/(£). Hence we are required 
to find / (1>(£) knowing

/o *o — £ 
fk xk -  £

for k — l ,  ■ • ■ , n. Thus the problem has been reduced from n  to n — 1. In 
like manner the problem is further reduced to n — 2 and so on.

All the computer has to do is to write in a column the “parts” £«, — £, and
* R eceived  D ec . 18, 1942.
1 A . C . A itk en : On interpolation by iteration of proportional parts, without the use of differ­

ences. Proc. E d inburgh M a th . Soc. Ser. 2, 3 , 5 6 -7 6  (1932).
1 A . C . A itk en : Studies in  practical mathematics I I I : The application of quadratic extrapo­

lation to the evaluation of derivatives, and to inverse interpolation  P roc R o y  Soc. E dinburgh , 
V ol. 58, pp. 161-175 , 1938.

3 G . J. L idstone: Notes on interpolation. J. In st. A ctuar., V ol. 68, pp. 2 6 7 -2 9 6 , 1938.
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in an adjacent column the corresponding values/*. Using (2), new columns 
are successively added to the right, the number of rows decreasing by one 
each time. The “parts” remain obviously the same throughout the computa­
tion. The determinant in (2) is easily computed, and the result appears in 
the main dials ready for division without clearing. Moreover, on most ma­
chines, the divisor #* —x o =  (xk —£) — (xo — £) will automatically appear on the 
secondary dials (provided the main keyboard has been used for the factors/*). 
Actually in most cases the divisor #*—x 0 will be a small integer. It should 
also be noted that as the computation proceeds the entries will tend to agree 
in an ever increasing number of their more important digits. These, of course, 
will not be copied down; this reduction of digits of/* makes it in turn possible 
to drop some last digits of the “parts.”

3. Quadratic cross-means. For these it is necessary that the given data 
be placed symmetrically with respect to some point x  =  a. Denote, then, two 
symmetrically placed points by #* and &*_* (& = 1, ■ • • , m;  * * —a =  a — #_*). 
The point Xo =  a is included among the data only if n  = 2 m. Consider

and
4>{x) =  

P(x)  =

-f- 2( x  -  a) 

-5- 2(£ -  a).

(3)

(4)

/( 2a — *) 2a — x — £
f ( x )  x  -  £

— /(2a — x) 2a — x — £ 
f ( x )  x -  £

Obviously 4>{x) and \p(x) are even functions of x  — a, and hence polynomials
in t = ( x  — a ) 2. Moreover, <£(£) =^(£) =/(£).

(a) If n =  2m — 1, the problem is reduced to finding the value for 7= (£ — a ) 2 
of the polynomial of ( m — l)th degree 0 (a +  \ /7) given its values

<Pk =
/_* *_* -  f 
/* Xk — £

(xk - X-k) (5)

for t = { x k — a ) 2, k =  l ,  • ■ • , m.  Thus a simple application of (5) will reduce 
the number of data from 2m  to m. From here we proceed as before using 
linear cross-means. It should be noticed that the “parts” now to be used are 
(x*-a)2- ( £ - a ) 2= -(**-£) (*-*-£), that is to say the product of the parts 
already used for (5). This invariant property dispenses of the necessity to 
label the panels. In most practical cases the new “parts” will differ only by 
integers or multiples of 1/ 2 .

(b) If n =  2m, we compute the values

'Pk
- /_* x - k ~  £ 
fk x k — £

-  2(£ -  a) (6)

for 7 = (x*-a)2, ¿ = 0, ■ • • , m,  and proceed as before. Since here the denomi­
nator is the same for all k the division may be deferred to the final result. 
This is a slight simplication.
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A NEW DERIVATION OF M UNK’S FORMULAE*
By W . C. R A N D E L S 1 (University of Oklahoma)

Recently M. A. Biot2 has applied the method of the acceleration po­
tential to some problems of two-dimensional airfoil theory. In this paper this 
method will be used in order to obtain a short proof of Munk’s formulae3 
for the lift and moment of a thin airfoil.

As usual in the theory of thin wing sections we replace the airfoil by its 
mean camber line supposed to deviate but little from the chord. Studying the 
plane irrotational flow of an incompressible fluid around this indefinitely thin 
airfoil, we take its chord as the x-axis of a system of rectangular coordinates 
x, y ,  ascribing to the leading and trailing edge the abscissae — 1 and + 1  re­
spectively. Denoting by V  the velocity at infinity and by a  the angle of at­
tack, supposed to be small, we write the x- and y-components of the velocity 
vector w  as F-j-w and a V + v  respectively, where u, v and a V  will be small 
as compared with F. We denote the pressure by p  and the density by p. 
Then, by Bernoulli’s equation

P
— w 2 +  p  = po = const.
2

Neglecting quantities of the second order, we have
p(F2 +  2wF) = -  2( p -  po). (1)

The quantity i>= — 1 / p ( p —po) is called the acceleration potential, since the 
acceleration equals grad d>.

It is known that V - \ - u — i(a.V-\ -v)  is an analytic function of z=x-H'y. 
Since F is a constant (£F2 +  wF) — i‘(aF2-f-v V )  is also an analytic function 
of z. The functions <I? = (f F2T-wF), Tr= -(aF ^ + rF ) are thus seen to be con­
jugate harmonic functions.

Let the.mean camber line of the airfoil be given by the equation y=c(x), 
( — l ^ x ^ l ;  c(l) =c(— 1) =0). The condition that this be part of a stream 
line furnishes the condition

a V  -f- d
——  = c'(x) along y  = c(x), ( - 1 5 * ^ 1 ) .

V +  u

* R eceived  O ct. 28, 1942.
1 T h is  n o te  h as been  prepared a t th e  su g gestion  of P rofessor W . P rager w h ile  th e  a u th or  

w as a fe llow  under th e  Program  of A d van ced  In stru c tion  and  R esearch  in M ech an ics a t  B row n  
U n iv ersity . T h e  a u th or is ind eb ted  to  D r. L . B ers for va lu a b le  ad vice .

2 M . A . B io t , Some simplified, methods in  airfoil theory, Journal o f th e  A eron au tica l S ci­
ences 9 , 185-190 , (1942).

* M . M . M u n k , General theory of wing sections, N .A .C .A . T ech n . R ep . N o . 142 (1922).
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Neglecting quantities which are small of a higher order than the first, we 
obtain

'fr = — V 2c'(x) along y  = r(a;), (— 1 ^  ^  1). (2)
Since v vanishes at infinity we have

>k(oo) = “  aV2.
As the mean camber line deviates but little from the segment —1 ¿ s g l  

of the x-axis, we will not commit an appreciable error by fulfilling the condi­
tion (2) along this segment rather than along the mean camber line. We set

=  _  ay 2 _j_ ^■i  ^r2

where
Ski = a V 2 and 'f,2 = — V 2c' (x) along — 1 ^  x g  1, y = 0

and
^•j(co) = ^ 2(°°) = 0 .

Ski and the conjugate harmonic function $1 have been determined by Biot. 
From i>i the lift distribution due to the angle of attack can be obtained. In 
the following we shall set a  = 0 and thus obtain the lift distribution due to 
the curvature of the mean camber line. Within the framework of our linear 
theory these two influences are additive.

In order to solve the boundary value problem for Ski we map the exterior 
of the segment of the real axis between z — — 1 and z = + 1 onto the exterior 
of the unit circle in the f plane by the conformal transformation

z = 1/ 20- +  1/f).
The line segment ( — 1, 1) then is transformed into the circumference of the 
unit circle and we have # = cos 6 (Fig. 1). Since a conformal transformation 
takes a harmonic function into a harmonic function, our problem becomes 
that of finding a harmonic function having the values — FV(cos 6) on the 
unit circle. If we assume T to be regular on the boundary, the solution is 
given by the Poisson integral but the resulting function will not vanish at 
infinity unless

2 r

c'(cos 0)dd = 0.

Therefore, to satisfy the condition i (=o)=0 we introduce a singularity cor­
responding to a source-sink doublet at the leading edge.4 With the notations 
of Fig. 1, we obtain

* I t  is  natura l to  a ssu m e a  sin gu larity  a t  th e  lead in g  edge sin ce  our assu m p tion  a b ou t u 
and v b ein g  sm all does not hold here.
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cos 91 1 n - T r 2 _  i
* ( r t 5 ) =  -  2 a 0V 2 ----------------- - V ,  [c'(cos r )  -  « „ ] --------------------------- ----------------d r .

ri 2tt J 0 r5 +  1 — 2r cos (r — 0)

This function clearly vanishes at infinity and will satisfy the other boundary 
condition because

cos di 1
 = — on the unit circle.ri 7

I he Poisson integral used above is only legitimate if

f v < c o - ) i 2
j  0  J _ 1  [ l  -  x 2) 1'*

I his implies a condition on the rapidity with which c(:e) tends to zero as in­
tends to ± 1.

The values of the conjugate function 3>(r, 9) on the boundary of the unit 
circle are given by the formula6

sin 9i 1 r  *2r
(̂f> 9) = — 2a0V 2 -------- 1---- I e'(cos t) cot

r i 2tt J  o
■ d r ,

where /  denotes the Cauchy principal value. The total lift L  will be given by

‘ J . D . T am ark in , “T h eo ry  of F ourier se r ies ,” B row n U n iv ers ity , 1933, p. 110.



1943] W. C. RANDELS 91

L  =  p f  $(1, 6) sin ddd
J  o

=  -  2a0p F 2 f  
J  0

sin ddd

V 2 r  2T r * 2r r - d
+  —  I sin ddO c'(cos t) cot dr.

2ir J o  J q 2

It is easy to calculate:

S .

2r sin di
sin ddd =  ir.

The second integral is evaluated by making a formal interchange of the order 
of integration. This interchange can be easily justified. We then have:

1 r  2t r *2r r — d
— I sin ddd  I c'(cos r) cot d r
2ir J  o J o  2

/. 2t J /.* 2r
c'(cos rjdr ■— I sin 0 cot

o 2tt J  o

and since the function conjugate to sin 6 is —cos 9

1 r * iT (r -  0)
— I sin 0 cot--------- dd  = — cos t.
2-jt J  o 2

Using this together with the definition of a 0 we obtain the lift

L = — pT2 £ J ' e'(cos r)dr +  J* c'(cos r) cos 7<̂TJ 

r 1 l -f- x= -  2 p V 2 c'(x)   —  d x
[1 -  X 2 ] 1' 2

( l +  x 1 r 1 , N 1 ■
i r r i F 5  „ . - J j W - f r :

¿0

dx
=  2pF2 :) [l -  X2]1' 2

We have assumed that c(x) is such that lim„i (c(x)(l —x)_1/2 = 0 . The under­
lined expression is Munk’s formula for the total lift, due to the curvature of 
the wing.
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A similar procedure furnishes the moment M  of the lift. It is given by

M  =  p f  $(1, 0) cos 0 sin 9d0 
J  0

Then

and

so that

r  2t sin 0i
= — 2pF2a0 I  cos 6 sin ddd

J o  r i
pF2 r 2r . r *  2t t — 9

H I cos 9 sin 9d9 I c'(cos r) cot dr.
2rr J  o J  o 2

X
2r sin 0i 7T

cos 0 sin 9dd = ------>
r\ 2

M

1 r  2t r *  2r t — 9
— I cos 0 sin 0^0 I c'(cos t ) cot dr
2 ttJ 0 2

1 /*2r
=  I c'(cos r )  cos 2 r d r

2 J o

r  i  f 2r i f 2'
= — p F 2  I c'(cos T)^T H I c'(cos r)  cos 2tî/t

L 2 «/ o 2 «/ o

F 1 *2 — 1
= -  2PF2 c'C*) — —  dx

J - i  1 -  -v2 1/2

x dx
= 2PF2■ £ « ( ,)

[l -  s2] 1' 2

which is Munk’s formula for the moment, due to the curvature of the wing.6

* A fter  th e  m anuscrip t of th is  paper had b een  com p leted  (A u gust 1942), H . J . S tew art 
has pub lished  an  a n a ly sis  proceed ing a lon g  sim ilar lin es: A sim plified two-dimensional theory 
of thin airfoils, Journal of th e  A eronautica l S cien ces 9, 4 5 2 -4 5 6  (O ct. 1942).
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CONCERNING TH E ACCELERATION POTENTIAL*
B y  L I P M A N  B E R S f  (Brown University)

The following lines aim at indicating the possibility of a more rigorous 
approach to Prandtl’s method of the acceleration potential for two dimen­
sional flow.1

We consider a steady incompressible potential flow past an airfoil of in­
finite span. We assume the profile, P ,  to be given by

z — x +  i y  = Z(s ) ,  0 ^  s g S t ,  (P)
where the sense of increase of the arc length 5 corresponds to the counter­
clockwise direction and the sharp trailing edge, T,  is given by T  =  Z ( 0 )  = Z ( st). 
The position of the stagnation point, S, near the nose of the airfoil shall be 
given by S = Z ( s s ) .  We also set

dZ  
 =

ds

ß (s) being a continuous function of s and such that on the upper bank of the 
wing near T,  — T r / 2 ^ ß ^ i r / 2 .

We denote by u and v the velocity components in the ac and y  directions 
respectively and assume that

u = U >  0, v =  0, at infinity.
Then u —iv is an analytic function of z = x - \ - i y  and so is

+  j'fr = log (w — iv).

At 5 the function <f>+i'fr possesses a singularity. (There also is a singularity 
at T,  unless the angle there is 0.) i ’+ f 'i’ may be determined as a solution of 
the following boundary value problem:

A. To determine a one-valued ana lyt i c  junc t io n  T+t'k defined on the region 
exterior to P  and  sa t i s fy ing  on P  the boundary condit ion

* R ece ived  Jan . 22, 1943.
t  T h is  note has been w ritten  a t th e  su ggestion  of Professor W . Prager. T h e  au th or is 

indebted  to  Professor K . 0 .  Friedrichs for criticism .
1 C f. L. P randtl, Beitrag zur Theorie der tragenden Fläche, Z eitschrift f. ang. M ath . u. M ech. 

16, 3 60-361  (1936); Über neuere Arbeiten zur Theorie der tragenden Fläche, Proc. In tern . C ongress  
for A ppl. M ech ., C am bridge, U .S .A ., (1938), pp. 4 7 8 -4 8 2 , (See also: N .A .C .A . T echnical 
M em orandum  N o . 962); M . A . B iot, Some Sim plified Methods in  A irfoil Theory, Journ. of the  
A eronaut. S ei., 9, 185 -1 9 0  (1942); W . C. R andels, A New Derivation of M unk's Formulae, 
th is Q uarterly 1, 88 (1943).
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( — /3(s) for 0 i  s i  js
*  = i  , s (1)I t  — f}(s) for s s ^  s ^  St

as well  as the condi t ion

$ = log U, i  = 0 , at 2 = « . (2)
Equation (1) expresses that P  is a streamline of the flow and takes care of 

the Kutta-Joukowsky condition (no flow around T) .  The unkno wn  position of 
5 is uniquely determined by (2). For instance, let s=/(f) map |f | >1 con­
formally into the exterior of P ,  taking f = «> into z= and f = l into z  =  T.  
Set f ( e ' e) —Z[<t(8)],  S = f ( e iT). Then the condition (2) may be written in the 
form

/»
y \ z [ < T ( e ) ] \ d d  =  o .

0

In view of (1) we obtain
1 r 2r = 2 r  0[a(O)]d6. (3)
T  J  0

From $ we can calculate the pressure p.  In fact, we have by Bernoulli's 
equation

P  +  5 P ( « 2 +  v 2)  ~  P -o +  \ i p U 1 =  p 0,  ( 4 )

where p is the density, p m  the pressure at infinity and p o the stagnation 
pressure. Since $  = log \u  — i v \ ,

(5)

If the wing is infinitely thin, say given by
x = x, y  =  Y{x ) ,  -  1 ^  x ^  1, (Pi)

the boundary value problem A takes the form:

B. To determine a one-valued ana ly t i c  fun c t i on  T -H'F defined on the region 
exterior to P \  and  sa t i s fy ing  on Pi the boundary  condit ion

{— arc tan Y'(x') on the upper bank of Pi,
— arc tan Y'{x)  - r  on the lower bank of Pi, — 1 g x g xs

— arc tan Y' (x)  on the lower bank of Pi, xs S x ^  1
( x s f - i Y ( x s )  being the stagnation point) as  well  a s the condi t ion  (2).

If the wing is very slightly curved and very slightly inclined, the above 
rigorous but inconvenient treatment can be simplified as follows. The dis-
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tance between the leading edge L =  — \ - \ - i Y {  — 1) and the stagnation point 5
is small of second order as compared with the angle of attack. In fact, the
general character of the flow around P i  will be similar to that of a flow 
around a straight line, say P2,

y  =  — x  tan a, — cos a  g x ^  cos a. (P2)

By
1 1z = f d e~2'a — (6)
4 f

the exterior of P 2 is mapped into | f | > 5  and T  is taken into \ e ~ ia. S  is taken 
into — %e~ia (this follows for instance from (3)). Therefore

S  =  — -¿(fP“ +  e~Ua)

and, since in this case L =  —e~'a, we have for small values of a

| L -  S  | ~  2a2.

Now, possesses singularities at L  and at S.  For small angles of
attack we may assume that we will make a very slight error if we replace 
these two singularities by a single singularity situated at L .  In order to 
determine the character of this singularity, we again consider the flow around 
Pi.  The complex potential, say for U =  1, is given by

w = f d----- b (t sin a) log f (7)
4f

so that, by (6) and (7),
dw  d w  /  dz f d* fe*“
dz d£ /  d {  f +  \ e ~ ia

and
$ d- ¿T = log (f d- heia) -  log (f -f ¿e~<a).

This is (in the f-plane) the complex potential of a source at — \e~'a and a 
sink at — ¿e*'a. For small values of a  we may approximate this source-sink 
system by a doublet with a vertical axis.

Thus we replace problem B by
C. To determine a  one-valued ana ly t i c  func t ion  4 > d defined on the region 

exterior to P i ,  sa t i sfying  on P i  the boundary condit ion

<]> = — arc tan Y ' ( x) (8)

as  well  as the condit ion (2) and  possessing at  L  a  s ingulari ty  which assumes  the
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f o r m  of  a potent ial  o f  a  doublet  w i th  a  vertical ax i s  when the exterior o f  P i  is  
m a p p e d  conformal ly  into that  of  a circle (by a t ransformat ion  f ( z )  w i t l i f  ( °o) > 0).

The actual solution of this problem is still difficult. Therefore we make use 
of the fact that P i  is closely approximated by the slit

y  =  0, -  1 g  »  g  1, ( P 3)

and replace the domain of definition of by the exterior of P 3. Then we
obtain the following boundary value problem:

D. To determine a one-valued an a ly t i c  fun c t i on  T f -P l '  defined on the region 
exterior to P 3, sa t i s fy ing  on P 3 condi t ion  (8) as  well  a s  condit ion (2) an d  possess­
ing  at  — I a  s ingular i t y  which,  in  the %-plane determined by

assumes  the f o r m  of  a potent ial  o f  a  doublet  wi th a  vertical  ax is .

This problem can be easily solved. The presence of the singularity en­
ables us to satisfy both conditions, (2) and (8).

It remains to show that the method described above is identical with the 
method of the acceleration potential, the latter usually being presented as 
based upon the assumption

A p =  0.

By virtue of our hypotheses p —p „  will be very small as compared to p x —po 
(except at the neighborhood of the leading edge), so that disregarding terms 
of higher than first order in ( f —p f ) / ( p „ —pf)  we have

log ( p 0 -  p)  = log (p0 -  p f )  +  — —
P0 ~~ px

and, by (4) and (5),

p  =  — +  const.
On the basis of the above considerations an estimation of the error (due

to replacing the actual problem B first by C and then D) seems to be both
desirable and possible.

lor-»« r r p r - H W I K n
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