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FOREWORD

The Quarterly of Applied Mathematics has been founded primarily to
meet the needs of certain mathematicians and engineers whose interests ex-
tend beyond the accepted boundaries of their respective groups. These mathe-
maticians find their greatest interest in the application of mathematics to
physical problems, and these engineers seek solutions of practical problems
by advanced mathematical methods. Thus they meet on the common ground
of applied mathematics with a stimulating variety of interest.

It is not desirable to attempt too precise a definition of the boundaries of
the field to which the Quarterly will be devoted. The mathematical solution
of one problem often throws light on another problem in an entirely different
field; indeed, the peculiar strength of the mathematical method lies in its
power to cut across those lines of demarcation which seem to divide science
into separate compartments.

Nevertheless, it is necessary to give an outline of policy for, within fairly
wide limits, the pages of the Quarterly should appeal to a common interest. It
seems best to start with the common ground of mathematics and engineering as
a nucleus, and to build around it a wider circle of interest, embracing mathe-
matical theory related to engineering problems. Thus certain subjects— fluid
mechanics, elasticity, plasticity, thermodynamics, and classical mechanics in
its engineering applications— are to be regarded as lying within the scope of
the Quarterly, and to these must be added electrical engineering, which has
been one of the most fruitful fields of mathematical application.

W hile it is not the purpose of the Quarterly to publish experimental re-
sults, we shall welcome mathematical contributions which have an intimate
connection with application in industry or practical science. Indeed, the ideal
contribution to our pages would be one in which advanced and general mathe-
matical methods lead speedily to results which are in close agreement with
experiment, and which are of high importance, either in direct practical ap-
plication or as an illumination of interesting phenomena hitherto unex-
plained.

The Editors.



TOOLING UP MATHEMATICS FOR ENGINEERING*

BY

THEODORE von KARMAN
California Institute of Technology

It has often been said that one of the primary objectives of Mathematics
is to furnish tools to physicists and engineers for solution of their problems.
It is evident from the history of the mathematical sciences that many funda-
mental mathematical discoveries have been initiated by the urge for under-
standing nature’s laws and many mathematical methods have been invented
by men primarily interested in practical applications. However, every true
mathematician will feel that a restriction of mathematical research to prob-
lems which have immediate applications would be unfair to the “Queen of
Sciences.” As a matter of fact, the devoted “minnesingers” of the Queen have
often revolted against degradation of their mistress to the position of a “hand-
maiden” of her more practical minded and temporarily more prosperous
sisters.

It is not difficult to understand the reasons for the controversial view-
points of mathematicians and engineers. They have been pointed out more
than once, by representatives of both professions.

The mathematician says to the engineer-. I have built a building on a sound
foundation: a system of theorems based on well defined postulates. | have
delved into the analysis of the process of logical thinking to find out whether
or not there are any statements which could be considered true or at least
potentially true. | am interested in functional relations between entities
which are well defined creations of my own mind and in methods which en-
able me to explore various aspects of such functional relations. If you find
any of the concepts, logical processes or methods which | have developed
useful for your daily work, | am certainly glad. All my results are at your
disposal, but let me pursue my own objectives in my own way.

Says the engineer: Your great forbears, who were mathematicians long
before you, talked a different language. Did not Leonhard Euler distribute
his time between discoveries in pure mathematics and in the theory of engi-
neering devices? The fundamentals of the theory of turbines, the theory of
buckling of columns, the theory of driving piles into soil were contributions
of Euler. The development of mathematical analysis cannot be separated
from the development of physics and especially of mechanics. It is doubtful
whether a human mind would ever have conceived the idea of differential
equations without the urge to find a mathematical tool for the computation

* Received March 1S, 1943.
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of the path of moving bodies. If one assumes that the motion is determined by
certain fundamental mechanical or geometrical relations, which are valid at
every instant of the motion, one naturally is led to the idea of the differential
equation. Also, the calculus of variations was invented mainly for solution
of physical problems; some of which were of teleological, some of practical
nature. The eighteenth century and the first decades of the nineteenth were
perhaps the period of the most glorious progress in mathematical science; at
that time, there was no distinction between pure and applied mathematicians.
The abstract minded mathematicians stepped in after the big job was done;
they endeavored to fill certain logical gaps, to systematize and codify the
abundance of methods and theorems which the giants of the foregoing period
created by a combination of logical thinking and creative intuition.

The mathematician: It seems to me that you underestimate the impor-
tance of what you call systematization and codification. Don’t you think that
in order to assure the correct application of calculus and differential equa-
tions, there was an absolute necessity to define exactly what we mean by a
limiting process; or, was it not absolutely necessary to give a real sense to
such terms as infinitely small and infinitely large? You may remember that
Galileo— whom you hardly can call an abstract or pure mathematician—
pointed out the contradictions which are unavoidable if you try to apply the
notions of equality and inequality to infinite quantities. He noticed that you
can say either that the number of the integers is larger than the number of
the squares, since every square is an integer, but not every integer is a square;
or you can say with the same justification that there are as many squares as
integers, since every number has a square. The notions of commensurability,
denumerability, the logical analysis of the continuum, the theory of sets, and
in more recent times, topology, were fundamental steps in the development
of the human mind. Many of these developments were conceived independ-
ently of any conscious physical applications. But even for the sake of ap-
plications, it was necessary to improve the foundations of our own house,
that is to improve the logical structure of mathematics. Without exact analy-
sis of the conditions for the convergence of series (the conditions which
allow carrying out the processes of differentiation and integration), nobody
could feel safe in handling series. It is not correct that the tendency to seek
for a solid foundation of the new discoveries began after the men endowed
with imagination and intuition did the big job. D’Alembert already de-
manded that the calculus be founded on the methods of limits. Cauchy,
Legendre and Gauss certainly were among the creative mathematical ge-
niuses in your sense; they effectively contributed to the transition from intui-
tion to rigor. In the second half of the nineteenth century this development
continued toward the great goal that the mathematicians of that age— per-
haps optimistically— considered as perfect logic or absolute rigor. However,
in addition to the clarification of the fundamentals, that period also opened
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new paths for applied mathematics. You mentioned, for example, differential
equations. Don’t you believe that the theory of functions of complex vari-
ables, the classification of differential equations according to their singu-
larities, and the investigation of these singularities, all developed in the period
that you call the period of codification, were most important steps in building
up the very branch of mathematics from which you engineers derive so much
benefit? These theories changed the primitive way of finding solutions of
differential equations by trial into a systematic method of mastering the
whole field.

The engineer-. | agree, especially with what you say about complex vari-
ables. Indeed, the conformal transformation is one of the most powerful and
most elegant methods for the solution of innumerable physical and engineer-
ing problems. | also agree with you on the fundamental importance of the
analysis of singularities. In fact, our graphical and numerical methods neces-
sarily fail or become awkward near the irregular points and we have to take
recourse to analytical methods. However, you mathematicians unfortunately
are somewhat like a physician who is less interested in the laws of normal
functioning of the human body than in its diseases, or like the psychologist
who instead of investigating the laws of normal mental processes concen-
trates his attention on the pathological aberrations of the human mind. We
have to deal in most cases with “sound functions” and would like to have
efficient methods to determine with fair accuracy their behavior in certain
definite cases.

Answers the mathematician: Can you not apply the general methods that
we developed for the solution of differential and integral equations? If the
solutions are given by “sound functions,” as you please to call them, | do not
see any great difficulty nor do | see what more you expect us to do.

The engineer: Your general theorems deal mostly with the existence of
solutions and the convergence of your methods of solution. You may recall
the wisecrack of Heaviside: “According to the mathematicians this series is
divergent; therefore, we may be able to do something useful with it.” You
people spend much time and much wit to show the existence of solutions
whose existence often is evident to us for obvious physical reasons. You
seldom take the pains to find and discuss the actual solutions. If you do so,
then you restrict yourself mostly to simple cases, as for example, problems
involving bodies of simple geometrical shapes. | refer to the so-called special
functions. | concede that a great many such functions were investigated by
mathematicians. Their values have been tabulated, their developments in
series and their representations by definite integrals have been worked out
in great detail. Unfortunately, such functions have only a restricted field of
application in engineering. The physicist in his search for fundamental laws
may choose specimens of simple geometrical shapes for his experimentation.
The engineer has to deal directly with structures of complicated shapes; he
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cannot give to a structure a simple geometrical form just because the stress
distribution in such a structure can be calculated by special functions. Fur-
thermore, most special functions are applicable only to linear problems. In
the past, physicists and engineers often linearized their problems for simplic-
ity’s sake. Mathematicians liked this simplification because it furnished a
beautiful hunting ground for the application of elegant mathematical meth-
ods. Unfortunately, as engineering science progressed, the need for more
exact information and the necessity to get nearer and nearer to physical
reality, forces us to grapple with many nonlinear problems.

The mathematician: Well, many modern mathematicians are extremely
interested in non-linear problems. It seems your primary need is the develop-
ment of appropriate methods of approximation. However, you are not right
in your criticism of our proofs of existence. Many proofs of existence in mod-
ern mathematics go far beyond the limits of intuition. Then, too, | under-
stand you engineers have good success with various iteration methods. Now,
if we want to prove for example the existence of a solution of a boundary
value problem, very often we use the iteration method. In other words, we
really construct a sequence of approximate solutions exactly as you do. The
whole difference is that we prove and you only assume that the process of
iteration leads to a unique solution. Also, your so-called “energy method”
used for the solution of your problems in elasticity and structures appears
to me closely related to the direct methods of the calculus of variations, i.e.,
to methods which try to construct directly the minimizing function for given
boundary values, without referring to the Euler-Lagrange differential equa-
tion. It seems to me that after'all there are many common elements in pure
analysis and applied mathematics.

The engineer: | shall not deny that; as a matter of fact, | have always
felt that analysis is the backbone of applied mathematics. However, if you
really start to apply analysis to actual cases you will see that there is a long
way from the general idea of a method of approximation to a successful
application of the same method. There is, for example, the question of avail-
able time and manpower. For certain types of work, we have ingenious me-
chanical or electrical devices such as the differential analyzer or electric
computers. However, in most cases we have to do the computation without
such help. Then it is not sufficient to know that the process of approxima-
tion converges. We have to find out which method requires the least time for
a given degree of approximation; we have to have a fair estimate of the
improvement of accuracy by successive steps. All such practical questions
require difficult mathematical considerations. | think we definitely need math-
ematicians who help us to refine and, if you wish to say so, criticize and
systematize our intuitive methods. In fact, successful applications of mathe-
matics to engineering require the close cooperation of mathematicians and
engineers. It is by no means a routine job to recognize the underlying common
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mathematical relations in apparently very different fields. The mathem ati-
cian who intends to do applied mathematical research has to have a pretty
good sense for the physical processes involved. On the other hand, the engi-
neer has to go into the fundamentals of analysis to a considerable depth in
order to use the mathematical tools properly. An arbitrary assembly of ma-
chine tools does not constitute an efficient machine shop. We know there are
powerful machine tools in your mathematical arsenal. The task before us is
to know how to adapt and apply them.

The mathematician'. | think you've got something there. To carry your
analogy further, in order to get the solution of engineering problems into pro-
duction, you need some kind of tool designers. These are the real applied
mathematicians. Their original backgrounds may differ; they may come from
pure mathematics, from physics or from engineering, but their common aim
is to “tool up” mathematics for engineering.



A REVIEW OF THE STATISTICAL
THEORY OF TURBULENCE?*

BY

HUGH L. DRYDEN
National Bureau of Standards

1. Introduction. The irregular random motion of small fluid masses to
which the name turbulence is given is of such complexity that there can be
no hope of a-theory which will describe in detail the velocity and pressure
fields at every instant. Existing theories may be classified as either empirical
or statistical.

In the empirical theories attention is focused only on the distribution of
mean speed and mean pressure, and assumptions are made as to the depend-
ence of the shearing stresses required to satisfy the equations of motion of
the mean flow. These assumptions involve one or more empirical constants.
W hile the type of assumption adopted is often selected on the basis of some
hypothesis as to the character of the fluctuations of speed and pressure, the
theory rests on the final assumption rather than on the hypothesis as to the
fluctuations. The various “mixing length” theories are of this type.

In the statistical theories consideration is given to the frequency distribu-
tion and mean values of the pressure and of the components of the velocity
fluctuations, i.e. to the statistical properties of the fluctuations, and to the
relation between the mean motion and these statistical properties.

Some attempts have been made to apply the methods of statistical me-
chanics of discrete particles. In all such attempts it is necessary to select cer-
tain discrete elements corresponding to the particles, and to make some
assumption as to the probability of occurrence of various values of associated
properties or more directly the frequency distribution of the associated prop-
erties. Difficulties are encountered at both points. The best known theory of
this type is that of Burgersl who selected as elements in two-dimensional
flow the points in a square network of equally spaced points and as associated
property the value of the stream function. This theory has not as yet led to
useful results and is not satisfactory to Burgers himself. Other attempts of

* Received Nov. 19, 1942.

1Burgers, J. M., On the application of statistical mechanics to the theory of turbulent
fluid motion, |1 to VI, inclusive, Verh. Kon. Akad. v. Wetensch. Amsterdam 32, 414, 643, 818
(1929); 36, 276, 390, 487, 620 (1933). Summarized by Trubridge in Reports Phys. Soc. Lon-
don, 1934, p. 43.
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this nature have been made by von Karméan,2Noether,3Tollmien,4Gebelein,6
Dedebant, Wehrlé and Schereschewsky,6and Takahasi.7

M any of the statistical theories just mentioned do not require the turbu-
lent fluctuations to satisfy the equations of motion nor do they require the
fluid motion to be continuous. A statistical theory of turbulence which is
applicable to continuous movements and which satisfies the equations of mo-
tion was inaugurated in 1935 by Taylors and further developed by himself
and by von Karman.9 It is the object of this paper to give a connected ac-
count of the present state of this particular statistical theory of turbulence.

2. Turbulent fluctuations and the mean motion. As in other theories of
turbulent flow, the flow is regarded as a mean motion with velocity compo-
nents, U, V, and W, on which are superposed fluctuations of the velocity with
components of magnitude U, V, and W at any instant. The mean values of U, V,
and W are zero. In most cases U, V, and W are the average values at a fixed
point over a definite period of time, although in certain problems it is more
convenient to take averages over a selected area or within a selected volume
at a given instant. The rules for forming mean values were stated by Rey-
noldsl0 and some further critical discussion by Burgers and others has been
recorded in connection with a lecture by Oseen.ll

When the turbulent motion is produced in a pipe by the action of a con-
stant pressure gradient or near the surface of an object in a wind tunnel in
which the fan is operated at a constant speed, there is considerable freedom

2 Karman, Th. von, Uber die Stabilitat der LaminarStrémung und die Theorie der Turbulenz,
Proc. 1st Inter. Congr. Appl. Mech., Delft, 1924, p. 97.

3 Noether, F., Dynamische Gesichtspunkte zu einer statistischen Turbulenztheorie, Z. angew.
Math. u. Mech. 13, 115 (1933).

4Tollmien, W., Der Burgersche Phasenraum und einige Fragen der Turbulenzstatistik,
Z. angew. Math. u. Mech. 13, 331 (1933). Brief abstract of this paper entitled,  Onthetur-
bulence statistics in Burgers’ phase space, Physics, 4, 289 (1933).

8 Gebelein, H., Turbulenz: Physikalische Statistik und Hydrodynamik, Julius Springer,
Berlin, 1935.

3 Dedebant, G., Wehrlé, Ph., and Schereschewsky, Ph., Le maximum de probabilité dans
les mouvements permanents. Application a la turbulence, Comptes Rendus Ac. Sei. Paris 200, 203
(1935). Also Dedebant, G., and Wehrlé, Ph., Sur les équations aux valeurs probables d'un fluide
turbulent, Comptes Rendus Ac. Sei. Paris 206, 1790 (1938).

7 Takahasi, K., On the theory of turbulence, The Geophysical Magazine 10, 1 (1936).

8Taylor, G. I., Statistical theory of turbulence, I-V inclusive, Proc. Roy. Soc. London
Ser. A, 151, 421 (1935) and 156, 307 (1936). Also, The statistical theory of isotropic turbulence,
Jour. Aeron. Sei., 4, 311 (1937).

9Karman, Th. von, On the statistical theory of turbulence, Proc. Nat. Acad. Sei. 23, 98
(1937). Also The fundamentals of the statistical theory of turbulence, Jour. Aeron. Sei. 4, 131
(1937). Also with Howarth, L., On the statistical theory of isotropic turbulence, Proc. Roy. Soc.
London Ser. A, 164, 192 (1938).

10 Reynolds, O., On the dynamical theory of incompressible viscous fluids and the determina-
tion of the criterion, Phil. Trans. Roy. Soc. London 186, 123 (1895).

11 Oseen, C. W., Das Turbulenzproblem, Proc. 3rd Inter. Congr. Appl. Mech., Stockholm,
1931, vol. 1, p. 3.
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in selecting the time interval for which mean values are taken. So long as the
time interval is longer than some fixed value dependent on the scale of the
apparatus and the speed, the mean values are independent of the magnitude
of the time interval selected and there is a clear separation between the turbu-
lent fluctuations and the mean motion. If the mean motion itself is “slowly”
variable, as in the case of the natural wind, difficulty arises; the separation
becomes imperfect and arbitrary. The slowly variable mean may be taken
over time intervals of five minutes, one day, or ten years according to the
object of the study and the magnitude of the turbulent fluctuations varies
accordingly. Even in flows under constant pressure gradient, there will usu-
ally be some experimental difficulty in maintaining the conditions absolutely
constant, and the question will naturally arise as to how the fluctuations aris-
ing from this source may be eliminated from the “true” turbulent fluctuations.

3. Vortex trails. For a long time every flow in which “fast” fluctuations
of velocity occurred was regarded as a turbulent flow but experimental meas-
urements of fluctuations show several identifiable types. The experimental
results suggest the limitation of the term “turbulent fluctuation” to one of
these types characterized by the random nature of the fluctuations. This
random characteristic is in marked contrast with the regularity and periodic-
ity noted in a second type of fluctuation associated with vortex trails.

It iswell known thatwhen a cylinder or other object of blunt cross section
is exposed to a fluid stream, a vortex trail appears under certain circum -
stances, vortices breaking away with a regular periodicity. The speed fluctua-
tions observed in the trail are periodic and in themselves do not produce
turbulent mixing. At comparatively short distances the regular pattern trans-
forms into an irregular turbulent motion, but the fluctuations within the trail
itself do not have the character of the final turbulent fluctuations.

The fluctuations of turbulence are irregular, without definite periodicity
with time. The amplitude distribution corresponds to the Gaussian distribu-
tion, i.e. the number of times during a long time interval that a given magni-
tude of fluctuation is reached varies with the magnitude according to the
“error” curve.

If this randomness is regarded as an essential feature of the turbulent
fluctuations, turbulence is not equivalent to any regular vortex system how-
ever complex. The equivalent vortex picture is a large family of vortex sys-
tems, whose statistical properties only, notindividual histories, are significant.

4. Space and time averages. The speed fluctuations u, v, and w, though
designated the fluctuations at a point, are in reality averages throughout a
certain volume and over a certain time as are the speed components in the
usual hydrodynamic theory. The volume is small in comparison with the
dimensions of interest in the flow but large enough to include many mole-
cules. A cube of size 0.001 mm, containing at atmospheric pressure about
2.7X107molecules, satisfies this condition. The time interval is short in com-
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parison with any time interval of interest in the mean properties of the flow
but long in comparison with the time required for a molecule to traverse the
mean free path. The number of collisions at atmospheric pressure is of the
order of 5X109 per second and hence a time interval of 10~6seconds would
suffice.

No instruments have yet been constructed to give values averaged over
so small a volume or so short a time interval. The best performance obtained
to date is that of hot wire anemometers which have been developed to the
point where average values over a cylindrical volume perhaps 0.01 mm in
diameter and 1 mm long and over a time interval of approximately 0.5 X10-3
seconds can be obtained. Experimental results show that averages over these
space and time intervals are not appreciably different from those for some-
what larger space and time intervals and suggest that averages over smaller
intervals would not be appreciably different. The results also suggest that
measuring equipment that does not approach these space and time intervals
gives results which largely reflect the properties of the measuring instrument
rather than the properties of the turbulent fluctuations. In other words the
measurement is that of a variable mean velocity over space and time intervals
fixed by the characteristics of the instrument, rather than measurements of
the turbulent fluctuations. If the frequency spectrum of the turbulent fluctua-
tions is known, the effect of the instrument characteristics can be estimated,
as discussed in section 19.

5. Pulsations. Reference has previously been made to the difficulty in
certain cases of making a clear separation between the mean motion and the
turbulent fluctuations, because of the difficulty of defining a time interval
long enough to include many fluctuations but small enough so that the mean
varies only slowly. The difficulty is often increased by the presence of a fairly
rapid variation of the mean speed over large areas, perhaps the entire cross
section of the fluid stream, to which the name pulsation may be given. Such a
fluctuation is recognizable by the fact that there is a regularity in the space
distribution of the fluctuations such that definite phase relations exist. Pulsa-
tions have been observed in laminar flow in boundary layers. An essential
characteristic of the turbulent fluctuations is an irregularity and randomness
in the space distribution as well as in the time distribution.

It is often possible to eliminate the effect of pulsations on the measure-
ments by a low frequency cut-off in the equipment for measuring u, v, and vs.
The choice of the cut-off frequency is equivalent to a selection of the time
interval over which averages are taken to obtain the mean speed and by this
device the pulsations are regarded as variations of the mean speed.

6. Continuity of the turbulent motion. It is well known that the structure
of a fluid is in the final analysis discontinuous, the fluid consisting of individ -
ual molecules. Nevertheless the usual hydrodynamic theory regards the fluid
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as a continuum. Such an assumption can be justified when the dimensions
of the flow system are very large compared to the mean free path of the
molecules. The velocity of the fluid at any point is then defined as the vector
average of the velocities of the molecules in a small volume surrounding the
point, the value obtained being independent of the magnitude and shape of
the volume within certain limits.

Some investigators12 have concluded that the phenomena of turbulence
require the assumption of discontinuity in the instantaneous components.
The Taylor-von Karm an statistical theory retains the assumption that the
fluctuations are continuous functions of space and time asin Reynolds’ theory.

The applicability of this assumption is a matter for experimental determi-
nation. If experimentally a volume and time interval can be selected which
may be regarded as large in comparison with molecular distances and periods
but small as compared to the volumes and time intervals of interest in the
turbulent fluctuations, the fluctuations may be safely regarded as continuous.
As described in section 4, the experimental data perhaps do not prove but do
definitely suggest that such a choice is possible and to that extent the as-
sumption of continuity is experimentally justified.

7. The Reynolds stresses. If in the Navier-Stokes equations of motion the
components of the velocity are written as U+u, V-fa, WA-w, thus regarding
the motion as a mean motion U, V, W, with fluctuations u, v, w superposed,
and mean values taken in accordance with the rules mentioned in section 2,
a new set of equations is obtained which differs from the first only in the pres-
ence of additional terms added to the mean values of the stresses due to vis-
cosity. These additional terms are called the Reynolds stresses or eddy
stresses. The eddy normal stress components are —pu2, —pv2, —pw2 and
the eddy shearing stress components are —puv, —pvw, —puw. Each stress
component is thus equal to the rate of transfer of momentum across the cor-
responding surface by the fluctuations.

In the light of kinetic theory the eddy stresses closely parallel in origin
the viscous stresses. It has been explained how u, v, and w are themselves the
mean speeds of many molecules. The effect of the molecular motions appears
in the smoothed equations of the continuum as a stress, the components of
which are equal to the rate of transfer of momentum by the molecules across
the corresponding surfaces.

8. Correlation. If the fluctuations were perfectly random, the eddy shear-
ing stress components —puv, —pvw, —puw would be zero. The existence of
eddy shearing stresses is dependent on the existence of a correlation between
the several components of the velocity fluctuation at any given point. The
coefficient of correlation between u and v is defined as

2 Kampé de Fériet, J., Some recent researches on turbulence, Proc. Fifth Inter. Congr.
Appl. Mech., Cambridge, Mass.,1938, p. 352.
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uv
(8.1)

The mean values s/it?, vV . and s/tsP- are often called the components
of the intensity of the fluctuations.

The eddy shearing stress may be written in terms of the correlation coeffi-
cient as

— puv = — pRu\/u*\/v* (8.2)

and similarly for the other components.

In addition to the correlation between the components of the velocity
fluctuations at a given point, the Taylor-von Karman theory makes much
use of correlations between the components of the velocity fluctuations at
neighboring points. Denote the components of the fluctuations at one point
by ui, vx, wi, and at another point by Uz, vz, wz. The coefficient of correlation
between Wxand vz is defined as

UxVz
(8.3)

and similarly for any other pair. These correlation coefficients form useful
tools to describe the statistical properties of the fluctuations with respect to
their spatial distribution and phase relationships.

9. Scale of turbulence. The earliest attempt to describe the spatial char-
acteristics of turbulence was the introduction of the mixing length concept,
the mixing length being analogous to the mean free path of the kinetic theory
of gases. Logical difficulties arise because there are no discrete fluid particles
in the turbulent flow which retain their identity. A method of avoiding these
difficulties was suggested by Taylor13 many years ago. He showed that the
diffusion of particles starting from a point depends on the correlation Rt be-
tween the velocity of a fluid particle at any instant and that of the same par-
ticle after a time interval t. If the functional relationship between Rtand tis
of such a character that Rt falls to zero at some interval T and remains so for
greater intervals, it is possible to define a length Ix by the relation:

(9.1)

in which v is the component of the velocity fluctuations transverse to the
mean flow and in the direction in which the diffusion is studied.

13Taylor, G. 1., Difusion by continuous movements, Proc. London Math. Soc. Ser. A, 20,
196 (1921).
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This method of assigning a scale to turbulence is of value in the study of
diffusion as described in section 22. It is based on the Lagrangian manner of
describing the flow by following the paths of fluid particles. It is more com-
mon to use the Eulerian description by considering the stream lines existing
in space at any instant. Taylor later8suggested a method of describing the
scale in the Eulerian system based on the variation of the correlation coeffi-
cient R v between the values of the component U at two points, separated by
the distance y in the direction of the y coordinate, as y is varied. The curve
of Ry against y represents the statistical distribution of u along the y axis at
any instant. If Rv falls to zero and remains zero, a length L may be defined
by the relation :

(9.2)
(o]

The length L is considered a possible definition of the average size of the
eddies present and has been found to be a most usefiil measure of the scale
of the turbulence, especially for the case of isotropic turbulence. Correspond-
ingly,a length L xmay be defined by the relation :

(9.3)
0

where R X is the correlation between the values of the component u at two
points separated by distance X in the direction of the a coordinate.

10. Isotropic turbulence. The simplest type of turbulence for theoretical
or experimental investigation is that in which the intensity components in
all directions are equal. More accurately, isotropic turbulence is defined by
the condition that the mean value of any function of the velocity components
and their derivatives at a given point is independent of rotation and reflection
of the axes of reference. Changes in direction and magnitude of the fluctua-
tions at a given point are wholly random and there is no correlation between
the components of the fluctuations in different directions. Thus ul—v2= w2
and ttv=vw =uw = 0.

There is a strong tendency toward isotropy in all turbulent motions. The
turbulence at the center of a pipe in which the flow is eddying or in the natu-
ral wind at a sufficient height above the ground is approximately isotropic.
A grid of round wires placed in a uniform fluid stream sets up a more or less
regular eddy system of non-isotropic character which very quickly transforms
into a field of uniformly distributed isotropic turbulence.

The assumption of isotropy introduces many simplifications in the statis-
tical representation of turbulence. The two quantities, intensity and scale,
appear to give a description of the statistical properties of the turbulent field
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which is sufficient for most purposes. Turbulent fields of this type can readily
be produced experimentally and studied. The intensity may be varied from
less than 0.1 to about 5.0 percent of the mean speed and the scale independ-
ently from a few mm to 25 mm.}4

11. Decay of isotropic turbulence. The kinetic energy of the turbulent
fluctuations per unit volume is equal to -|p(m5+1;2-fw 2 which forisotropic tur-
bulence becomes {3/2)pu2 The rate of decay is therefore —{3/2)pd{uz2)/dt. If
the isotropic turbulence is superposed on a stream of uniform speed U, we
may write dt=dx/U and hence the rate of decay with respect to distance *
as —(3/2)puUd(uz)/dx.

In a fully developed turbulent flow the Reynolds stresses are proportional
to the squares of the turbulent fluctuations. The work done against these
stresses, which in the absence of external forces must come from the kinetic
energy of the system, is proportional to pu'3L where u' is written for V «2
and L is a linear dimension defining the scale of the system, which may be
taken as the L defined by (9.2). Equating the two expressions for the dis-
sipation and designating the constant of proportionality as 3 A, we find:

- {3/2)PUd{u'd/dx = 3Apu'IL (11.1)
or
Ld{U/u')/dx = A. (11.2)
Integrating:
U/u'- Ul/ul =A f dx/L (11.3)
" X0

swhere U/u/ is the value of U/u! at x = xq. This equation has been found to
give a very good representation of the experimental data. The essential fea-
tures of the derivation were given by Taylor. To evaluate the integral, L must
be known as a function of x. Taylor’s first proposal was to assume that L is
independent of x and proportional to the mesh M of the grid giving rise to
the turbulence. If L is constant,

U/u' - Ulul = A(x - xo0)/L (11.4)

giving a linear variation of U/u' with x. Assuming L/M —k, Taylor found
values of A/k for data from various sources varying between 1.03 and 1.32.

1 Dryden, H. L., Schubauer, G. B., Mock, W. C., Jr., and Skramstad, H. K., Measure-
ments of intensity and scale of wind-tunnel turbulence and their relation to the critical Rey-
nolds number of spheres, Tech. Rept. Nat. Adv. Comm. Aeron. No. 581 (1937).
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When measured values of L became available it was found that L in-
creased as X increased, the results being represented em pirically within the ac-
curacy of the measurements by the relation L =L 0-{-c(x—x0), whence

U/u' - Ului = (Alc) log, [1 + c(x - xo0)/L0]. (11.5)

Taylor®’ found values of A for data from various sources varying between
0.43 and 0.19.

Further study suggests another relation for the variationof L with X.
A discussion ofthe general theory will be deferred until section 17 and the
guestion discussed on purely dimensional considerations. If one assumes that
du'/dl, the rate of change of intensity, and dL/dt, the rate of change of scale,
are determined solely by the values of L and U’, i.e. that viscosity and up-
stream conditions have no influence, it follows from dimensional reasoning
that

Ld(\/u')/dt —A and  (1/u’)dL/dt =B (11.6)

or
Ld(U/u)/dx = A and (U/u')dL/dx = B (11.7)

where A and B are numerical constants. The first equation of each pair is
the same as equation (11.2); the second is a new relation.
Integration of equations (11.6) and (11.7) leads to the relations:

' Tj+ 04+ B)«S(Xx-x0)-yi«+*> i
- I
u' L L qu j

and

L L (A + B)ui (x~ x0)dI*'M+*>
(11.9)
u L1+ uu J

where uo and Lo are the values atx = 0.

If it is desired to introduce a reference dimension pertaining to the dimen-
sions of the grid producing the disturbance, this may be done, but according
to equations (11.8) and (11.9) any dimension may be used and the decay
does not depend on its value. The mesh distance M is often used but certain
results reported by von Karmanl6show that if M/d is not too small, the use

5 Taylor, G. 1., Some recent developments in the study of turbulence, Proc. Fifth Inter.
Congr. Appl. Mech., Cambridge, Mass., 294 (1938). See later detailed report of measurements
in Hall, A. A., Measurements of the intensity and scale of turbulence, Rept. and Memo. No.
1842, Aeronautical Research Committee, Great Britain (1938).

15 Kdrm&n, Th. von, Some remarks on the statistical theory of turbulence, Proc. Fifth Inter.
Congr. Appl. Mech., Cambridge, Mass., 1938, p. 347. The grid dimensions are not given in
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d
FIG. 1. The turbulent fluctuation u' behind a grid of wires of diameter d
as a function of distance x from the grid.
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of the wire diameter d as the reference dimension leads to a single curve for
all grids irrespective of the mesh-diameter ratio.

The available data are plotted in Figs. 1 and 2 from references in foot-
notes 14, 15, and 16. The solid curves are respectively

(U/u'Y = 400[(1 + 0.04(x/d - 80)] (11.10)

and
(L/dY = 0.264[(1 + 0.04(x/d - 80)] (11.11)

which are in the form of equations (11.8) and (11.9) with the constants
A =15 = 0.2056. These curves are frankly selected to fit the National Bureau
of Standards data.

If one considers the complete system of screen and turbulent field, dimen-
sional considerations suggest that for geometrically similar screens whose
scale is fixed by some characteristic dimension, such as the mesh length M,
the ratios u'/ Uand L/M would be a function of Xx/M, of the Reynolds Num -
ber UM/v and of the turbulence of the free stream u[ /U, in which the screen
is placed. If the screens are not geometrically similar but are made up of
cylindrical rods of diameter d, the intensity and scale also depend on d/M
and on the roughness of the screen. The effects of these parameters have not
been fully investigated, and doubtless a part of the discrepancy between the
available results is to be ascribed to the influence of these factors.

For example, the screens used at the National Bureau of Standards were
either woven wire screens or wooden screens with fairly rough surfaces with
the members interlacing in the wire screens and intersecting in the wooden
screens. The ratio d/M varied from 0.186 to 0.201. The screens used by Hall
were arranged in two planes, i.e., horizontal rods in one plane, vertical rods
just touching the horizontal rods but in another plane. The ratio d/M was
0.184 to 0.188. Von Karman has studied the effect of varying d/M from 0.086
to 0.462 and has used screens both of the woven type (results published by
von Karman, loc. cit.) and of the biplane type (results not published). A
study of these data suggests that the difference between the results for woven
screens and biplane screens is unimportant and that if results are plotted in
terms of X/d rather than X/M the effect of d/M is small for values of d/M
near 0.2. No data are available on the effect of roughness.

Few data are available on the effect of free stream turbulence. Hall ob-
tained an increase of about 10 to 20 percent in u' for a I-inch screen at the

the paper, but Professor von Kdrm&n has kindly supplied them as follows:

Grid Mesh Plstance, M Wire _D|ameter, d M /d
inches inches
1 4.96 0.230 2.16

2 5.00 .105 4.75
3 5.07 .084 6.03
4 4.99 .043 11.6
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same value of x/M by increasing the free stream turbulence from 0.2 percent
to 1.3 percent. We have had the opportunity of making some measurements
behind the same 1-inch screen used in the measurements described in NACA
Technical Report No. 581 in an airstream for which the free stream turbu-
lence is 0.03 percent as compared with 0.85 percent for the older measure-
ments. The results are shown in Fig. 3 as compared with Hall’s measurements.
It is obvious that the turbulence of the free stream is one of the controlling
factors, but not the only one. N

Fig. 3. Effect of free stream turbulence on the turbulence behind a 1-inch screen.

The study of the turbulent field behind screens as affected by numerous
parameters is of interest from the standpoint of a study of screens. However,
the turbulent field may be regarded from another point of view, i.e. in relation
solely to the theory of isotropic turbulence. If the turbulence is truly iso-
tropic, and if its characteristics can be adequately described by the two
quantities, intensity and scale, its behavior can depend only on the values
of intensity and scale at some given point. The details of construction of the
source screen and its distance upstream are of no importance. Even the in-
fluence of the turbulence of the free stream should be absorbed in the given
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values of u' and L at some one point. The decay of isotropic turbulence is
considered from this point of view in section 17.

12. Effect of contraction. The behavior of turbulence in a contracting
stream is of interest in connection with the flow in the entrance cone of a
wind tunnel. Prandtll7 suggested that the longitudinal components of the
fluctuations were reduced in the ratio of 1 to | where | is the ratio of the en-
trance area to the exit area of the cone. This result was derived on the as-
sumption that the gain in energy is the same for all filaments traversing the
cone. The same result was obtained from the Helmholtz vortex theorem,
which was also used to show that the lateral components were increased in
the ratio y/'l. Since the mean speed increases proportional to /, the values of
u'/ Uand v'/ Uare reduced according to this theory in the ratios 1/Z2and I/\/Z
respectively. This computation neglects the decay of the turbulence because
of viscosity.

Taylorl8computed the effect of a contraction on certain mathematically
defined forms of disturbance. Two objections may be offered to this treat-
ment. First, as in Prandtl's treatment, the decay of the turbulence is neg-
lected. Second, the computation is made on a regular disturbance which is
assumed to retain its regularity. When the rapid development of an isotropic
turbulent field from a Karman vortex trail is considered, it is hard to believe
that a regular vortex pattern could retain its character throughout the length
of awind tunnel entrance cone unless the scale was very large indeed.

If it is assumed that the istropic turbulent field is unaffected by changes
in the mean speed, the decrease in u' may be computed from the decay during
the time required for the fluid to traverse the cone. This time interval is
f*zZ@x/U. If A is the area of the cross section at any value of x, UA = UoAo
where Uo and A o are the values at x=x0, and hence the time interval is
JINA dx/UoAo-

There are as yet no suitable experimental data for checking any theory.
In the measurements quoted by Taylor all the data were obtained sufficiently
close to a grid to lie within the non-isotropic turbulence of the vortex trails
from the individual wires.

13. The correlation tensor function. Von Karmanl9 introduced the cor-
relation tensor function in the statistical theory of turbulence as a generaliza-
tion of the particular correlation coefficients discussed by Taylor. The cor-
relation coefficients between any component of the speed fluctuation at a
given point and any component of the speed fluctuation at another point

1 Prandtl, L., llerstellung einwandfreier Luftstrome (Windkanale), Handbuch der Experi-
mentaiphysik, F. A. Barth, Leipzig, 1932, Vol. 4, Part 2, p. 73.

18 Taylor, G. I., Turbulence in a contracting stream, Z. angew. Math. u. Mech. 15, 91
(1935).

18 KZLrmdn, Th. von, and Howarth, L., On the statistical theory of isotropic turbulence,
Proc. Roy. Soc. London, Ser. A, 164, 192 (1938).
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form a tensor. If one pointis held fixed and the other varied, the tensor varies
as a function of the coordinates of the variable point with respect to the fixed
point. We may speak of this function as the correlation tensor function.

In isotropic turbulence the correlation tensor has spherical symmetry and
the several components are functions only of the distance r between the two
points, and of the time t. Denote by Mi, »1, WXand m2, v2, W2 the components
of the velocity fluctuations at the two points'Pi and P2 having coordinates

(xi, 0, 0) and (X2 0, 0) respectively. Suppose that u\, v\, Wk which by isotropy
are equal, are independent of position and equal to m|. Then «2 = t$=wjj= »2

The correlation coefficients z~/m 2and wxw2 m2will be identical because
of isotropy and will be some particular function of the distance r between

Fig. 4.

Pi and P2and of the time t, say g(r, t). The correlation coefficient MiM2m2
will also be a function of r and t, say /(r, /). The correlation coefficients
UjVi/u2, Miwm2 VI me, VIW2/ 111, Wiiii/m2and wlv2'u2can be shown to be zero.
Thus if the Y and Z axes are rotated about the X axis through 180°, the ab-
solute values of all components are unchanged but the signs of the v and w
components are reversed. Denoting values referred to the new axes by capital
letters, Ui—uUi, Z72= m2, V\= —v\, V2= —d2, Wi —wi, W 2= —w2, so that, for
example, UiV2——UiV2 But by isotropy, the value of any function of the
components is unchanged_by rotation of the axes, and therefore UiVz2- uly2
To satisfy both relations U2 must equal zero. Similarly for the other terms
containing Mi or m2. By reflection in the XZ plane vw2and WiV2may likewise
be shown to be zero.
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The correlation coefficient for components of the fluctuations in any arbi-
trary directions at any two points may be expressed in terms of the functions
f(r, t) and g(j, t) and the geometrical

Ui fU,t) parameters. Consider any two points
Pand Qand components of the fluc-

tuations p in the direction PP"at P

and qin the direction QQ"at Q. (Fig.

4). Denote by QQ" the orthogonal

projection of QQ' on the plane PP'Q;

by a, /3, and y the angles P'PQ,

ir-PQQ" andQQ'Q";and by pup2

psand qi, g2 gs the components of the

fluctuations at P and Q in the direc-

Ic ICAit
( ) tion PQ, in the direction normal to
PQ and Q'Q", and in the direction
Q"Q'. Then
p = picosa+ p2sina
Ut g = qi cos /3sin -y+ (2 sin j3siny
Fig. 5. The principal double correlations T 0z cosy. (13.1)
in isotropic turbulence.
Hence
pg = piqi cos a cos 0 sin'y + p2gz2 sin i3sin a sin y (13.2)

the other terms vanishing as proved in the preceding paragraph. In terms
of/(r, 0 and g(r, t)

pq/tiz = [/(r, t) cos a cos |3+ g{r, t) sin a sin /3] sin y. (13 .3)

The correlations denoted by/(r, t) and g(r, t) are indicated in Fig. 5.

If now any two points with coordinates (xi, y\, zi) and (x2,y2,z2 and speed
fluctuations with components uu v\, w\ and «2, v2, w2 are considered, the nine
guantities UiU2, UiV2, UiW2, i'ickn W2, vaw2, wpq, wx2, and Wiiv2 are the compo-
nents of a second rank tensor. Each one may be evaluated by equation (13.2)
in terms of /(r, t) and g{r, t) with the result in tensor notation

R = rr + g(r,t)l (13.4)

where r is the vector having components X = x *I, Y=y2—yh Z = s2—si

100
ris|r| and | is the unit tensor 0 10
001
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The velocity fluctuations satisfy the equation of continuity. Hence
duz dvz dw:
+ e = 0. (13.5)
8 X2 dy2 dz2

Multiplying by u\/u2which is independent of x2, y2, z2 and introducing the
correlation coefficients i?«|U2, etc. and the components X, Y, Z ofr:

dRu.U* Q ,to dRu'wW2
H — H — = 0. (13.6)

dX dy dz

From equation (13.4)

R Uluz = X2+ g\ RUVIi =3~ XY -, RUW = I*]-XZ
H r2 r2

whence, remembering that X 2+ F 2+ Z 2=r2 dr/dX =X/r, df/dX = (df/dr)
(dr/dX) = (X/r)(df/dr), etc., equation (13.6) becomes

X[2{f- g) + r(df/dr)] = o. (13.7)
The continuity equation must be true for any value of X. Hence
2/(o 0 - 2g(r, t) = — rdf(r, )/dr. (13.8)

The correlation tensor can thus be expressed in terms ofa single scalar
function, either/(r, l)or g(r, t). The function g(r, t) is the correlation coeffi-
cient previously denoted by Rv. The scale L= f*R,, dy-f ™ dr. The integral
jaRxdx=Jjdr is termed the longitudinal scale L x to distinguish it from
the lateral scale L. Obviously from equation (13.8)

»00 r*co
/ r(df/dr)ydr = \ 1 x(dRx/dx)dx. (13.9)
0 ~0
Since/and g are even functions ofr,
I = 1+JW /2 + eee (13.10)
Z= 1+gW/2+ mee (13.11)
From equation (13.8), 2fo =g"0, whence for small values of r,
R = U+ 002r21/+ [(fS~ &/2]rr (13.12)
= (1+IW)I- (1/2/2rr.

We require later the second derivatives of R at r=0, i,e. X=Y =2 =0, as
follows:
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----------- and similar terms obtained by cydic exchange = 2/0 (13.14)
dy: dz.

d2R Ulvt
and similar terms obtained by cyclic exchange = — (1/2)/0. (13.15)
dXdy
d2Ru,vt
All others, e.g. etc. are zero. (13.16)
dxdz

Von Karman points out that the correlation tensor is of the same form
as the stress tensor for a continuous medium when there is spherical sym -
metry. In the analogy/(r) corresponds to the principal radial stress at any
point, g(r) to the principal transverse stress, and the several R’s to the stress
components over planes normal to the coordinate axes. The relation between
/ and g given by the continuity equation corresponds to the condition for
equilibrium of the stresses.

Equation (13.8) has been experimentally checked at the National Physi-
cal Laboratory.4

14. Correlation between derivatives of the velocity fluctuations. In fur-
ther developments it will be necessary to know the mean values of the prod-
ucts of the derivatives of the components of the fluctuations at a given point,
for example {dui/dx\){dvjdy”). These mean values may readily be computed
from the correlation tensor. Thus:

d(u\Vi) _—azd(RUNJ — 370l o)

dx\ dxi dX
Since Viis not a function of x\, this may be written
(dtii/dxi)Vi — — u2dRUlv,/dX. (14.2)

Differentiating now with respect to yi

dut dvi d /dux \ d /dRUVA d*RUivt
-------------- = Y i P g (14.3)
dzi dy: dyAdXi ) dy2\ dX ) dxdy

Now letting Pi and Pi coincide,

du dv / d2R W\
= -u 2 )X =7 = 0. (14.4)
dxdy VdXdYj

The limiting value of the second derivative has previously been computed
(equation (13.15)), whence

du dv fi _ ,

dx dy 2

By similar reasoning it may be shown that
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dv dw \ 2
. . «do (14.6)
\dxj \,J - ( ’dz)
/duy 2 /du 2 /dvy 2 [ dw 2 /dw \ 2
\dy) \dz) \dx) \ dz) \ dx)
(14.7)
/dw \ 2
2m2 0
"\dy)
and
dv du dw dv du dw
(14.8)
dx dy dy dz dz dx 2N
The method can be extended to derivatives of higher order.
15. Triple correlations. Von Kar-
méan designates the mean values of h (A tJ Ui

the product of three components

of the velocity fluctuations, two of

which are taken at one arbitrary

point and the third at a second arbi- u,
trary point, as triple correlations.

They arise when correlation coeffi-

cients are introduced into the equa-

tions of motion. He shows that the (A, t)

triple correlations are components of
a tensor of third rank designated T
which is a function of X, Y, Z and the
time. He proves that in isotropic tur- /t-
bulence this tensor can be expressed
in terms of three functions h(r, 1),
k(r, t), and q(r, t) corresponding to
the correlations shown in Fig. 6, and that the development of these func-
tions in powers of r begins with the r3 term. The equation of continuity

u,

Fig. 6. The principal triple correlations
in isotropic turbulence.

permits the expression of k and g in terms of h by the relations:

k = —2h (15.1)
g= ~ h- (j/2){dh/dr). (15.2)
Thus the tensor T can be expressed in terms of a single scalar function h(r, t).
16. Propagation of the correlation with time. The fluctuations are assumed
to satisfy the equations of motion, namely,
du\ diii dui dui
—— + ui bri b wi-—
dt dxi dyi dzy
1 dp d2Uy d2Uy d
(16.1)

P dXy dx* + dy] dz] )
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and the two equations obtained by cyclic permutation.
M ultiplying this equation by uz2, introducing X, Y, and Z, and taking

mean values:

dui  d(u\iif)  d(uiviity)  d(uiwiUz)

vz dt dX dy dz
1 dp [ dzii\iiz d2uiUi 32 i«2\
— «2 h V( 1 1 ) (162)
P dxi \ dX: dY: dz: )

By an analogous procedure, it may be shown that:

diit dii2uU\ diifotfii duiw-iUi
Ul dt dX dy dz
(16.3)
1 dp (d2U\iiz 3 Ai«2 d2U\U2
Hi hv( 1 1
3*2 vV dX:2 dy: dz.

Von Karman shows that the pressure terms vanish. Adding the two equations
and introducing the correlation coefficients, we find

Q d Q
(«2i?2u,u2) — (W2)3'2——-- («1«2 + m|«i) — (112)3/2------ («1»1«2 + iliVitli)
t dX dy

d
(«2)3/2 rUiWiUs + UiwtUi) (16.4)
dz

r datiiiiz d2U\U2 d*Mi«2
= 2vh2 1

.
L dX: dy: dZ: ].

This equation may be expressed in terms of the functions/, g, k, g and h.
Then by using the relations (15.1) and (15.2) between these functions ob-
tained from the equation of continuity, a partial differential equation between
/ and his obtained, namely

djfu? _ [ dh 4/A / dZ 4 df\
2G ,w ( + 7)) . 2» ,(_ + 17 ). (16.5)
dt

This is the equation for the change of the function/with time, but it can-
not be solved without some knowledge of the function h.

17. Self-preserving correlation functions. Let us suppose that the func-
tions f(r, t) and h(r, t) preserve the same form as t increases, only the scale
varying. Such functions will be termed “self-preserving.” If L is some measure
of the scale of the correlation curve,/ and h will be functions of r/L only,
where L is a function oft. The length L may be any measure of the scale such
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as the radius of curvature of the correlation curve at r = 0 or any other desig-
nated point, the value of r for a given value of the correlation coefficient, or
the quantity obtained by integration of the correlation coefficient from r—o0
to infinity which has previously been termed the scale of the turbulence.
Introducing the new variable \p=r/L and placing (udll2=ur in equation
(16.5), we obtain

JL du'2 1 dL df (dh h\ 2 (dX 4 df\
. A+ 21— 44— )= — ~4+ — — ] (17.1)
un dt u' dt dp \d\p ip N \dip2 \p dip)
where N is the Reynolds Number of the turbulence u'L/v. Since the coeffi-
cient of the third term is a numerical constant, the functions/ and h will be
functions of ip and t alone only if the coefficients of the other terms are also
numerical constants. This requires that

L du'2 d(l u")
__________ ==-L = - A (172)
un dt dt
1 dL
_________ ==B (17.3)
u' dt
u'L
——==No (17.4)

where A, B, and No are independent of u', L, and t. It is readily shown that
these relations are consistent only if A =B and that the solutions are

1 1 2,4
= t (17.5)

u'2 uj2 Nov
L2-LI=2ANovt (17.6)

where u( and L Oare the values for 7=0and uo LQv =NO.

These equations are in the form of equations (11.8) and (11.9) with A =B
and agree well with the formulation of the experimental data represented by
equations (11.10) and (11.11) with 2AN Ov/LQ@= 2A u@N v=2A Vu\/L ,=0.04,
corresponding to 7=0 at a distance of 80 wire diameters from the grid. The
constant A is equal to 0.2056 when L is defined as JORydy.

For self-preserving turbulence equation (16.5) becomes

-Af-AiP (df/diP)+2(dh/diP +4h/i) = (2/No)[(dZ/diP2+ (A/i)(df/diP)].  (17.7)

This equation determinesthe shape of the correlation curve. VonKdrman19
discusses theshape when the function h is neglected.The shapedepends on
the Reynolds Number No of the turbulence. The shape also depends on the
constant A but closer examination shows that A is always associated with L
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and is dependent on the method of defining L. If ¥ is set equal to rA/L in-
stead of r/L, and the length LA is used instead of L in the definition of the
Reynolds Number of the turbulence, the A disappears from equation (17.7).
Whether the values of L defined by Jgdr will yield the same values of A for all
shapes of correlation curves described by (17.7) cannot be definitely an-
swered.

Approximate solutions of (17.7) are not easy since it turns out that/
varies with N Oin such a manner that, for small values of ~ at least, the term
on the right-hand side is of the order of unity.

L.
Fig. 7. Hall’'s measurements of turbulence behind screens.

According to this suggested theory, the shape is self-preserving and the
Reynolds Number remains constant during the decay of a given turbulent
field. The scale approaches very large values as the intensity approaches very
small values. The length X (which is discussed in section 18) is proportional
to L. For different values of the Reynolds Number of the turbulence the con-
stant of proportionality varies inversely as the square root of the Reynolds
Number. Likewise the shape of the correlation curve varies with the Reynolds
number of the turbulence.

Equation (17.6) shows the same functional relation between the scale and
the time as given by Prandtl at the Turbulence Symposium as a result of his
analysis of photographs of the decay of isotropic turbulence.
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Von Karman also discusses the case in which the assumption is made
that the self-preserving feature applies only to large values of \J and the
Reynolds Number iVo is sufficiently large that the right-hand term of (17.7)
can be neglected. In this case (17.2) and (17.3) are obtained without (17.4)
and the solution is identical with that given by (11.8) and (11.9) of sec-
tion 11. The theoretical equations (17.5) and (17.6) do not involve either U

16
14
12

10

ef«

°2 0 2 4 6 8 10 12 14
£
yL.
Fig. 8. Von Kdrmdn’s measurements of turbulence behind screens.

or M explicitly. However, for comparison with experimental data, they may
be written as follows:

— ) =1+ — — - 1+ 2A — + (17.8)
u / Z0 U LO

/L\2 2AWt no (x — xa

w = 1+ ~L - =1+ 21 IF (17-9)

Both Uo and L Oshould be known, but unfortunately L Owas not measured
in all of the experiments.

Figures 7, 8, and 9 show the results ot Hall, of von Kdrman, and of the
author and his associates (designated NBS) plotted in a manner to facilitate
comparison with equation (17.8).

The reference position X0 has been taken as 40 times the mesh length ex-
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cept for von Karman's results for which xOwas taken as 212.5 times the rod
diameter (equivalenttox0M =40 ford/M =0A88). In the absence of definite
information astoL0,LOM was assumed equal to 0.29 except for von KA&rman’s
results for which L /d was assumed to be 1.54 (equivalent to LM = 0.29 for
d/M =0.188). The value of ni was determined by interpolation from the ob-
servations of each experimenter near x/JIf = 40, giving the following results.

Fig. 9. NBS measurements of turbulence behind screens.

Rod .
. Mesh . Air Speed .
Experimenter Diameter ui/u Remarks
Inches ft/sec
Inches
Hall 1.0 0.188 20 0.0146
0.5 .092 20 .0144
0.5 .092 40 .0152
0.5 .092 80 .0174
von Kdrmdn 0.5 0.105 38 and 54 .0201 Screen 2
0.5 .084 38 and 75 .0201 Screen 3
0.5 .043 38 and 75 .0299 Screen 4
NBS 0.25 0.050 20-70 0.0250 NACATech. Rept. 581
0.5 .096 20-70 .0221 NACATech. Rept. 581
1.0 196 20-70 .0224 NACATech. Rept. 581
1.0 0.196 30 0.0188 Recent tests

1.0 .196 70 .0173 Recent tests
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The values of ul /U range from 0.0144 to 0.0299; presumably the differ-
ences are due mainly to the factors discussed in section 11, although system-
atic errors may be partly responsible.

In each figure, equation (17.8) with constant A equal to 0.29 is plotted
as a straight line. Most of the points would be better fitted by a curve of
increasing slope with increasing time. It thus appears that equation (11.9)
with (A -\-B)/A having some value between 1and 2 fits the experimental data
better than (17.8).

However, the data are not at all consistent. The departures are largest
lor the smaller values of u'/U. In Hall's experiments, the results on the
£-inch screen show little systematic departure at 40 and 80 ft/sec, whereas
those on the same screen at 20 ft/sec and on the 1-inch screen begin to rise
above the line at u/t/L 0=0.5. Von Karmdn’s data on screen 2 at 38 ft/sec
lie near the line; those on the same screen at 54 ft/sec and on screens 3 and 4
at 38 and 75 ft/sec begin to rise above the line at ult/L0—4.0. The older
results of the author and his associates, while scattered, agree with the line
within 12 percent to Uot/L 0= 18\ the more recent results begin to rise above
the line at Wot/Lo = 0.5 and are in fair agreement with Hall’s data on a 1-inch
screen. Unfortunately, data at large values of Xx/M could not be obtained in
the recent experiments.

Thus, even when attention is confined to the behavior of the isotropic
turbulent field, there remain discrepancies in the experimental data such that
no definite conclusions can be drawn as to the merits of any theory. Further
experiments are required under carefully controlled conditions in an air
stream of low turbulence over a wide range of values of x/M and with due
regard to the various systematic errors that may be present. These experi-
ments would be of the greatest value if the scale were also measured.

18. The length A. Relation between A and L. The general expression
the mean rate of dissipation in the flow of a viscous fluid is:

(18.1)

where n is the viscosity.
For isotropic turbulence this becomes:

(18.2)

which, from the relations given in section 14, reduces to:

>r

IV — — T.S'nuy0 = 7.5n{du/dy)2 (18.3)

for
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But gois defined by:

* 7= - (18.4)
r-o\ r2 /

and has the dimensions of the reciprocal of the square of a length. Let
go = — 2/X2 (18.5)
the factor 2 being introduced to conform to Taylor’s definition of X. Then

W = 15/mVX2 (18.6)

The length X may be interpreted in several ways. Equation (18.6) may be
considered a definition, X being regarded roughly as a measure of the diame-
ters of the smallest eddies which are responsible for the dissipation of energy.
Or, since I/X 2= lim,-*0 (1 —g)/r2= limy-,0 (1 —R V) T2,X2is a measure of the ra-
dius of curvature of the Rycurve at Y= 0. Or, if a parabola is drawn tangent
to the Rvcurve at Y —0, this parabola cuts the axis at the point F=X.

Since W= — (3/2)p(diil/dl), the decay law may be written:

du?/dt = - lOriivx2 (18.7)

This result can also be derived directly from equation (16.5) as shown by
von Karmé&n.

By comparing this expression for the decay law with that previously given
(equation 17.2), namely

du*/dt = — Aun/L (18.8)
it is seen that
Au'/L = 10r/X2 (18.9)
or, since U'L/v=No
X2Z,2= \0/ANo. (18.10)

Introducing the experimental value of A,
\/[L = 6.97A/Fo. (18.11)

A similar relation holds for \/L x where LXx is the longitudinal scale. If
the Reynolds Number is formed from L x, the numerical constant is approxi-
mately 4.93.

During the decay of self-preserving turbulence No is constant and X is
proportional to L but the constant of proportionality varies inversely as ViVo
for turbulent fields of different Reynolds Number.

Although it cannot be expected on physical grounds that these relations
hold at very low values of No, there is no experimental evidence of any de-
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parture from equations (18.7) and (18.8) for values of No as low as 10. There
seems to be no difficulty in drawing correlation curves for which X is greater
than L, but no such experimental curves have been measured. However, in
an example quoted by Taylor,16A/Z, is as great as 0.86.

19. The spectrum of turbulence, relation between spectrum and correla-
tion. The description of turbulence in terms of intensity and scale resembles
the description of the molecular motion of a gas by temperature and mean
free path. A more detailed picture can be obtained by considering the dis-
tribution of energy among eddies of different sizes, or more conveniently the
distribution of energy with frequency. Just as a beam of white light may be
separated into a spectrum by the action of a prism or grating, the electric
current produced by a hot wire anemometer subjected to the speed fluctua-
tions may be analyzed by means of electric filters into a spectrum.

The mean value of u- may be regarded as made up of -asum of contribu-
tions uz2F{n)dn, where F(n) is the contribution from frequencies between n
and n+dn and /0F{n)dn =\. The curve of F(n) plotted against n is the spec-
trum curve. According to the proof given by Rayleigh and quoted by Taylor2

F{n) = 2t lim (/T + 1\)/T (19.1)

T—®

where T is a long time and

11 = (L/it) f u cos 2rnt dt

do
(19.2)

lo= (I/x) 1| u sin 2trut dt.
do

When the fluctuations are superposed on a stream of mean velocity U and
are very small in comparison with U, the changes in u at a fixed point may be
regarded as due to the passage of a fixed turbulent pattern over the point,
i.,e., it may be assumed that

u= <) = cj>(x/U) (19.3)

where X is measured upstream at time /= 0 from the fixed point. The correla-
tion R xbetween the fluctuations at the times tand I+ x/U is defined by

r.= * @ . (19 .4)
It can be shown20 that
;3 h ©
>N+ x/U)dt = 2ir I (7i + 1d) cos (2%nx/U)dn (19.5)
-@ do

20 Taylor, G. l., The spectrum of turbulence, Proc. Roy. Soc. London, Ser. A, 164, 476
(1938).
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or, substituting for I\-\-12 its value in terms of F(n),

/ /-(«) cos (2-imx/U)in (19.6)

(o]

and

» @
/ RICos(2Tnx/U)dx (19.7)

0
In other words, the correlation coefficient R xand UF (n)/\/sirare Fourier
transforms. If either is measured, the other may be computed. R xis the func-

tion denoted by/in section 13. The length X, which was defined in terms of the
function g or Rv, is related to Rx by the equation:

1/X2= 21lim(1 - RX)/x\ (19.8)
X-+Q

When n and x are small, cos (2irnx/U) in (19.6) may be approximated by

1—27r2r2z2/ U2 Hence
» QD
/ n2F(n)dn. (19.9)

(o]

If the turbulence is self-preserving, the shape of the correlation curve is a
function of the Reynolds Number of the turbulence. Hence the spectrum
curve is also a function of the Reynolds Number of the turbulence. Introduc-
ing the longitudinal scale Lx (Lx=foRidx) in equation (19.9),

L x r ®/nLx\ 2 UF(n) (nLxX
V - (t) -tr < 1) (,9-10)
and in equation (19.7),
UF(n) f K 2imLx X ! x\
=4 R X €O §--mmmmmmmmmmmmeae d — ) (19.11)
L x Jo U Lx \LJ

both of which are expressed in terms of the non-dimensional variables
UF(x)/Lx, nLx/U, x/Lx,\/L x, and Rx. The mean speed U enters only in
fixing the frequency scale.

Typical spectrum curves determined experimentally2l'2 are shown in
Fig. 10. Studies of the relation between the spectrum and the correlation
curve have been given by Taylor.2

From equation (19.10) it may be inferred that if the curve of UF(n)/Lxvs.

21Simmons, L. F. G., and Salter, C., An experimental determination of the spectrum of
turbulence, Proc. Roy. Soc. London Ser. A, 165, 73 (1938).

2 Dryden, H. L., Turbulence investigations at the National Bureau of Standards, Proc. Fifth
Inter. Congr. Appl. Mech., Cambridge, Mass., 193S, p. 362.
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nLz/U is independent of U, L x/\ should also be independent of U, which is
contrary to the known dependence of LX/\ on the Reynolds Number of the
turbulence. Equation (19.9) shows that the value of X is determined largely
by the values of F(n) at large values of n. The NPL measurements in Fig. 10

Fig. 10. Comparison of National Bureau of Standards and National Physical Laboratory
measurements of the spectrum of turbulence, plotted non-dimensionally.

At left, NBS values 40( ) and 160(+) inches behind 1-inch mesh screen at 40 ft/sec.

At right, NPL values of (/"’(») from Table Il of reference 21, L x from reference 20) 82 inches
behind 3-inch mesh screen at 15(-), 20(X), 25(-f), 30(A), and 35(Q) ft/sec.

The reference curve in each case is the curve

UF(n) 4
L, A™Mn2L 2
u2

where U is the mean speed, Lxis the integral f*R xdx, Rz is the correlation between the fluctua-
tions at two points separated by the distance x in the direction of flow, n is the frequency, and
.F(n) is the fraction of the total energy of the turbulence arising from frequencies between n and
n+dn.

show clearly this dependence of the spectrum curve on U at high frequencies.

When the Reynolds Number of the turbulence is large, \/L x becomes
small. Experimental measurements show that both Rx and Rv curves ap-
proach exponential curves. From integration of equation (13.9) it follows that
2L = L Xand equation (19.11) for the corresponding spectrum curve becomes:

UF(n) 4
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This is the reference curve drawn in Fig. 10. As U decreases, X increases, and
the departures at large values of nLx/TJ becomes greater. The changes in the
total energy of the fluctuations associated with these changes in the spectrum
at high frequencies are extremely small.

Adopting this expression for the spectrum curve, it is possible to compute
the effect of varying the cut-off frequency of the measuring equipment on the
measured value of the energy of the fluctuations. If the equipment passes

fig. 11. Effect of cut-off frequencies of apparatus on observed energy of turbulence for
spectrum given by reference curve of Fig. 9.

«o0 is the lower cut-off frequency, «a the upper cut-off frequency, L x the longitudinal scale,
U the mean speed.

high frequencies but cuts off sharply at a lower frequency n0, the measured
total energy is
4(LXU)di, ( 4 2-mioL X\ —
AN

lpu- f = Al - — tan-1 — — ] |pti2e  (19.13)
JadxU1l+ AW LI/U

The ratio of the observed to the actual total energy is shown in Fig. 11 for
various values of noL x/U.

- Similarly, if the equipment passes low frequencies but cuts off sharply at a
higher frequency«*, the measured total energy is (4/2tt) tan-12mihLx/ U(%pu?.
The ratio of the observed to the actual total energy for high frequency cut-
off is also shown in Fig. 10.

The fact that the correlation and spectrum curves are of the exponential
type has been interpreted2as meaning that turbulence is a generalized chance
phenomenon, as nearly chance as a continuous curve can be and retain its
continuity.
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20. Fluctuating pressure gradients. In theories of the effect of turbulence
on transition in boundary layers, it is desired to know the value of the root-
mean-square pressure gradients, i.e., (dp/dx)2, (dp/dy)2 and (dp/dz)2 Taylor
has shown8that

V(dp/dx)2= 2\/2 pu2\. (20.1)

Combining this with the relation (18.11), i.e., X/Z. =6.97/\/(m2 ¥2Z A

The quantities x/u2 and L occur in this expression in the combination
[(V«2/TI/5162 The ratio (x/u2U)(D /L), where U is the mean speed and
D the reference dimension of a body under study is known as the Taylor
turbulence parameter.

21. The diffusive character of turbulence. An early experimental distinc-
tion between turbulent and non-turbulent flow was based on the observation
that a filament of dye introduced into a turbulent fluid stream is rapidly
diffused over the entire cross section of the stream whereas in a non-turbulent
flow the filament retains its identity although it may show some waviness.
It has been pointed out in section 7 that the effect of the turbulent fluctua-
tions on the mean motion is the introduction of eddy stresses associated with
the transfer of momentum by the diffusion of fluid particles. Von Karman23
has given a useful account of the mechanism of the diffusion of discrete par-
ticles and its effect in producing a shearing stress. A theory of diffusion by
continuous movements has been developed by Taylor.13The process of diffu-
sion has been found helpful in the experimental study of the statistical prop-
erties of turbulence.

22. Diffusion by continuous movements. Consider in a uniform isotropic
turbulent field the displacement X and velocity u parallel to the arbitrarily
selected X axis. The intensity V«2 is constant, the field being assumed
uniform. Let nt and Ut< be the values of u at times t and t' respectively.
Consider thedefinite integral f@turd i .Introducing thecorrelation coeffi-
cient R t,t-between utand Ur, remembering that u2isconstant,

f otitirar = w2 f (22.1)
Jo Jo

Let t'—t—T and place Rt,r =RT- Since Rt is an even function of T, (22.1)
may be written:

f uandt' =V2f RrdT. (22.2)
Ao -JO

2 Kdrmdn, Th. von, Turbulence, Jour. Roy. Aoron. Soc. 41, 1109 (1937).
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f utUfdt' = Hi f Ufdt' —utX = uX. (22.3)
Jo Jo

Hence
V2 f RrdT = ~X = (1/2)dW/dt. (22.4)
Jo

When the time tis so small that Rr approximates unity, equation (22.4)
becomes:

(1/2)d~X2dt = Vn
or

VT2= yluat. (22.5)

If Rtis equal to zero for all times greater than some time To

feilo
uX = uz | RrdT = constant. (22.6)
Jo

Define a length h by the relation :

/ *TO
RrdT (22.7)
0
whence °
I$/v? = UX = (1/2)rfF/ilf (22.8)
and
X2=2hs/Z-l (22.9)
If 2?2r=¢e_T/ro, li=\/7?To and the solution of (22.4) yields:
Z5= 2Fr0[/- ro(l - e-rir»)j. (22.10)

Equation (22.10) reduces to (22.5) when tis small compared to To and to
(22.9) when tis large compared to 2V

The diffusion in a uniform field is accordingly completely determined by
the correlation function RT.

23. Diffusion in isotropic turbulence. The foregoing theory is directly ap-
plicable to diffusion in a uniform isotropic field. However no general state-
ment can be made as to the relation between the length h and the scale L
defined in terms of the correlation coefficient Rvin section 9. For the turbu-
lence behind a grid or honeycomb, Taylor found from an analysis of the avail-
able experimental results that L was approximately twice V
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The essential features of diffusion in isotropic turbulence expressed in
equations (22.5) and (22.9) may be summarized as follows:

1. For time intervals which are small in comparison with the ratio of I\
to \/ur, the diffusing quantity spreads at a uniform rate proportional to the
intensity y/Tfi, and the rate is not dependent on the length I\.

2. For time intervals which are large in comparison with the ratio of h
to \/tF, the diffusing quantity N spreads in accordance with the usual diffu-
sion equation

dN ON diY ON d/ dN' d( dN\ d( dN\
hil + V + W = —[D - +—(D—————+-Id )
dt dx dy dz  dx\ dx. dy dy/ dz\ dz )
with a coefficient of diffusion D equal to I\\/it}, where I\ is a length defined
by f “RTdT.

3. Forintermediate time intervals, the diffusion is dependent on the func-
tion Rt which represents the correlation between the speed of a particle at
any instant and the speed of the same particle after a time interval T.

Consider the diffusion of heat from a hot wire placed in a uniform field of
isotropic turbulence in a fluid stream of mean speed U. Observations of the
lateral spread of the thermal wake at a distant Xx downstream may be used to
compute the root-mcan-square lateral displacement y/Y* of the heated par-
ticles during a time interval t=x/U.

It is convenient to characterize the spread by the angle subtended at the
source by the two positions where the temperature rise is half that at the
center of the wake. There is a lateral spread of heat produced by the ordinary
molecularconduction corresponding to an angle aoin degrees of 190.8\/k/pc Ux
where k, p, and c are thermal conductivity, density, and specific heat (at con-
stant pressure) of the fluid. It may be shown that the total subtended angle a
is related to the angle a (produced by turbulent diffusion and ao, as follows:

a = at+ a0 (23 .1)

The temperature distribution in the wake follows an “error” curve as does
the amplitude of the turbulent velocity fluctuations, so that the lateral dis-
placement Y also has the same Gaussian frequency distribution. The value
of the lateral spread at which the ordinate is half the maximum is 2.354y/Y*
for this distribution. Hence, expressing atin degrees,

at=13i.7\/T 2x (23.2)
whence from (22.5) for small values of x,
a,= m.7y/"U (23.3)

where v is written in place of u in (22.5) since the diffusion in the v direction
is being studied.
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Thus an.experiment on thermal diffusion provides a method of measur-
ing Vb9. The method was used by Schubauer2Zlwho showed that atwas inde-
pendent of speed over the range 10 to 50 ft/sec and also independent of X
over the range 1/2 to 6 inches.

From measurements at large values of x, it is theoretically possible to
compute the correlation curve, Rt, vs. T. In any actual experiment, how-
ever, the intensity of the turbulence will decrease with X to an extent that
must be considered. As discussed by Taylor,8 Rt may then be considered a
function of rj=JO\/vaIT = f*(\/vJU)dx. The equation analogous to (22.4) for
vand Y becomes:

(23.4)

The correlation is given by the expression
(23.5)

and thus involves a double differentiation of experimental curves, a process
which is usually not very accurate.

24. Statistical theory of non-isotropic turbulence. In non-isotropic turbu-
lence the description of the state of the turbulence becomes much more com-
plex. The eddy shearing stresses do not vanish and the eddy normal stresses
are not necessarily equal. Six quantities instead of one are required to specify
the intensity. Similarly the correlation tensor cannot be expressed in terms
of a single scalar function. In general six scalar functions are required. No
theoretical investigation using these twelve functions has yet been carried out.

The exploration of this field is still in its earliest stages. Von Karm an9-16
has given some discussion of energy transport and dissipation and vorticity
transport, neglecting the triple correlations, and he has also presented a more
detailed discussion of two-dimensional flow with constant shearing stress
(Couette’s problem). The advance of the theory is definitely handicapped by
the absence of reliable experimental data on the twelve functions required to
describe the state of turbulence.

25. Diffusion in non-isotropic turbulence. The only theoretical approach
at present available for estimating the diffusion in non-isotropic turbulence
is to consider the process as approximately equivalent to diffusion in isotropic
turbulence of intensity equal to \/v2and scale where v is the component
in the direction in which the diffusion is studied and I' is the length defined
by an equation analogous to (22.7), namely,

21 Schubauer, G. B., A turbulence indicator utilizing the diffusion of heat, Tech. Rept.
Nat. Adv. Comm. Aeron., No. 524 (1935).
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[/ »®
I' Rrdt. (25.1)
0
In most experiments the length V is not measured. Prandtl defined a mix-
ing length I in terms of the shearing stress r by the relation:

dU du

r = pl°- —
dy dy

. (25.2)

This relation may be interpreted as an equation governing the diffusion of
momentum with a coefficient of diffusion equal to I~\dU/dy\. Prandtl in fact
assumed vV proportional to INdU/dy\ and incorporated the factors of pro-
portionality in the length I. It is obvious that

PldU/dy | = I'y/?. (25.3)

The length | can be obtained experimentally if the distributions of velocity
and shearing stress are known, and, if \/vzis also measured, V may be com-
puted. Sherwood and Woertz2® have made an experimental study of these
relationships.

Taylor2 pointed out that fluctuating pressure gradients influence the
transfer of momentum and suggested that the vorticity be taken as the prop-
erty undergoing diffusion. The result was the well known vortex transport
theory.

Both theories imply diffusion for a time interval long compared to /'\/P .
W hen diffusion is studied near the source, experiment shows27a behaviour like
that discussed in section 23. The spread is nearly linear with x, although un-
symmetical in this case. It is probable that the unsymmetrical character can-
not be explained on the basis of a single scalar diffusion coefficient.

26. Correlation in turbulent flow through a pipe. Taylor28has shown that
the correlation between the component of velocity at a fixed point and that
at a variable point in the same cross section must be negative for some posi-
tions of the variable point, if the applied pressure difference between the ends
of the pipe is constant and the fluid may be considered incompressible. Sup-
pose the mean velocity is U and the correlation R has been measured between

5 Sherwood, T. K., and Woertz, B. B., Mass transfer between phases, role of eddy diffusion,
Ind. Eng. Chem. 31, 1034 (1939).

D Taylor, G. L., Transport of vorticity and heat through fluids in turbulent motion, Proc. Roy.
Soc. London Ser. A, 135, 685 (1932).

27 Skramstad, H. K., and Schubauer, G. B., The application of thermal diffusion to the
study of turbulent air flow, Phys. Rev., 53, 927 (1938). Abstract only. Full paper not published.
A few additional details are given in Dryden, Hugh L., Turbulence and diffusion, Ind. Eng.
Chem. 31, 416 (1939).

STaylor, G. I, Correlation measurements in a turbulent flow through a pipe, Proc. Roy.
Soc. London Ser. A, 157, 537 (1936).
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the component ii\ of the fluctuations at a fixed point P and u2 at a variable
point Q in the same cross section. Since the mean flow is constant,

J' (U + u2dydz =J udydz = constant (26.1)
where the integration is taken over the cross section. At any instant,
J uzydz = 0. (26.2)

Multiplying by w, which is constant for this integration and may be
placed under the integral sign,

J' wiidydz = 0. (26.3)

Since (26.3) is true for any instant, it is true for theintegral over a time
interval T. Hence

(/2?23 dt = 0. (26.4)

Changing the order of the integration and remembering that (1/7)Jouiuxt
:U\lh

J* uiiiodydz — 0. (26.5)
Introducing the correlation Rr,
j "Rululdydz = 0. (26.6)
But u[ is constant with respect to the integration and accordingly
A Ruldydz = O. (26.7)

Since u{ is positive, R must be negative for some positions of Q.
For a circular pipe (26.7) becomes:

sJ(;((l Rrdr = 0 (268)
where u - is the value of \/u? at radius r and a is the radius of the pipe.

This relation was experimentally verified in experiments made by Sim-
mons with the fixed point at the center of the pipe.



ON THE MOTION OF A PENDULUM IN A
TURBULENT FLUID"

BY

C. C. LIN
Guggenheim Laboratory, California Institute of Technology

1 Introduction. In a recent paper, Schumanni has investigated the mo-
tion of a damped pendulum in a turbulent fluid by considering the effect of
the fluid as a continuous fluctuating force. He first considers a damped
pendulum which is bombarded by pellets of equal mass mh at equal intervals
h of the time, and then treats the case of continuous fluctuations by a limiting
process. For this latter case, which “must be regarded as being of far more
practical importance,” Schumann obtains the very interesting result:2

r(")=

éJr()'R(x)e~XxSin (/3.v+7)ifa;[_3fo iK(x+0+£(x-2)}e-Xsin (0x+y)dx

+ 3% {F({-#)-*(#-£)}«-*« sin 0 (1.1)

The notation is as follows:

r(€) = correlation function of the displacements of the pendulum at two
instants separated by a time interval £
=limiting correlation function of the velocities of the impinging

pellets;

\=1-\-m/M, M being the mass of the pendulum and 1 its damping
factor;

I2=a2+/2—%2 2ir/a being the (damped) period of the pendulum;
sin 7 =j3/jsi;

0 =N+ X2=aXM/2

The analysis used by Schumann is very elegant, but somewhat lengthy.
In this article, we shall study the problem from another point of view, and
give an alternative derivation of (1.1). This derivation, though unable to
cover the case of discontinuous impacts, seems to show the nature of that
relation much more clearly.

2. Damped pendulum under the action of a fluctuating force. We shall
now investigate the correlation of displacement of a damped pendulum in
relation to that of the excitingforce. The notation used in this section should
first be regarded as having different (though analogous) interpretations from

* Received Dec. 4, 1942.
1Schumann, T. E. W., Phil. Mag. (7), 33, 138-150 (1942).
1Loc. cit., eq. (57), p. 146.
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those used in 8L The identification of the two systems of notation will be

made in 83
Consider the equation of motion of the pendulum

‘-1'? + 2x:%y + 02+ Xy = b, 2.1)
r

where y is the displacement, Xis the damping factor and 2w/(3 is the (damped)
period of the pendulum, p is the exciting forceper unitmass of the pendulum,
and t is the time. If the force P is quasi-pcriodic, and is given by the real
part of

p = E*nCi«1 (2.2)

where  and zl, are real and complex constants respectively, the steady-
state displacement of the frequency uw2ir is given by the real part of

— [ —_ A" _ *
Sn= ane™m, a, = G+ % T 2% (23)

Thus, we have )
) L U ” I2

2+ X- a2+ 4xXx4
This is the relation between the spectrum of the displacement and that of
the force in the case of discrete spectra. It is not difficult to generalize this

result to the case of continuous spectra by the considerations of generalized
harmonic analysis.3 We have then

I(«)=A - (2.5

(2.4)

where /(W) and F{@) are the spectra of the displacement and the force re-
spectively,

» /»co

l(coyrfw = 1, I F(w)du=I, (2.6)
0 *)
and A is a constant of normalization,

1M F(ui)du 2.7)
A-Jo (2+ X- a2+ HXae

These are the well-known relations in the phenomena of resonance.

The correlations r(£) and i?(E) of the displacement and the force.respec-
tively stand in Fourier transform relations to the spectra4 (apart from con-
ventional numerical factors):

3Wiener, N., “The Fourier Integral” (Cambridge, 1933), p. 150.
4Wiener, N., loc. cit., eq. (21.21), p. 161, and discussions on p. 163. To be exact, we
should follow Wiener in calling /(«) and F(w) the spectral densities.
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2 s* 00 p
/(@ =— 1 r(x) COScoxdx, re) = | /(co) cos aEday (2.8)
mJ o /0
© o
Hoo) = I R(X) cos wx dx, E) = 1 Hoo) cos aE<dm (2.9)
0

From (2.5), (2.8), and (2.9), we have at once

2/1 /-(D COS wtdw r*
WE) = oo | o2 20 i?(M) cosar<* (2.10
€3] JO(/32+X2C032+ 4X2CCEJO ® ( )

It is not difficult to justify a change of the order of integration, since the cor-
relation functions are expected to go to zero at infinity sufficiently rapidly.
The above relation then becomes

rx COS @£ COS wx ’ 211
@ = f(x)dx BT % mar dae @1

Since we have
cos @Ecos wx = | {cos ME+ *) + cos aE —x) }, (2.12)
we can evaluate the integral with respect to £in (2.11), if we know

COS wt

70=r 2.1
©=10 @+ %- @2+ axam™ (213)
This integral is relatively easy to evaluate. We write
P 2.14
mo= 01 (P2t Y- a2+ D™ @14

and consider the corresponding contour integral in the complex co-plane, the
contour being the usual one composed of the real axis and a semi-circle at
infinity. The circle is taken in the upper half-plane if />0, and in the lower
half-plane if /<0. Since (2.13) shows that 1(t) is an even function, we shall
carry out the calculations for / >0 alone.

There is no difficulty in showing that the integral over the semi-circle
goes to zero. For, when the imaginary part of a is positive, |eiu\ is bounded,
and | (R+X2—eaw)2+4 X2 =0(|co|4 for large values of |co|. The evaluation
of (2.14) then reduces to the calculation of the residues of the integrand at the
two simple poles +jg+iX (X>0) inside the contour. The result can be easily
verified to be
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1) = " sin @ + 7), (2.15)
4/3X
where
sin [ = (2.16)
(i32+ X212

With the help of (2.12), (2.13), and (2.15), the equation (2.11) becomes

+ {R(C - x) - R(x - Q3}e~XlIsin OS* + y)dx . (2.17)

This is Schumann’s relation (1.1), if the constants can be identified. There
is no difficulty with the normalization coefficient. We have
4/3X

A = 2  R{x)e~'KxSiNn (fix + 7)dx

(2.18)

on putting ¢=0in (2.17) and recalling (2.7). The second relation is a by-
product of our investigation. The limiting case X—0 reduces to the well-
known relation (2.9).

Referring to (2.9), we see that R(£) is an even function of £ so that the
second integral in (2.17) may be dropped.

From the derivation, we see that (2.17) is nothing but the Fourier trans-
form of the well-known resonance relation (2.5).

3. Identification of the results. We shall now identify Schumann’s result
with ours by showing that in the limiting case, his pendulum has an effective
damping factor Xinstead of 1, and that his correlation of velocity of the pellets
becomes the correlation of force. The equations of motion as given by Schu-
mann ares

31
M + mil M + mil ( )
at the rth impact at the instant t =rh, and
Y e+ MW qas v ny =0, (32
fl cit

8 Loc. cit., cqgs. (1), (2). It seems that there are some misprints in the original paper.
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between successive impacts. In (3.1), m' and ur denote respectively the veloci-
ties of the mass m just before and just after the rth impact, and vr is the veloc-
ity of the rth pellet.

In the limiting case, the discrete impacts become a continuous force given
by

Ur ~ UT

Pi = lim--------- M = —2mu + Zmy, (3.3

where u and v are the limiting values for urand v, at the instant t= rh. Thus u
is evidently the velocity of the pendulum dy/dt, and v is the velocity of the
infinitesimal impinging pellet in the interval (t,t+dt). The equation of motion
(3.2) then becomes

d*y dy 1/ dy
— 4+ 22—+ (or+ P)y =—(- 2 —+2m>. 3.4
dpP dt ( » M( BT ! 34

We see that this limiting case carries an inherent damping factor m/m in
addition to the damping factor 1. The term 2mv/m is evidently the exciting
force per unit mass, since m is the impinging mass per second, the factor 2
corresponding to the fact that when the impinging mass is infinitesimal com-
pared with the colliding mass, the former rebounds with the colliding speed,—
a fact often used in the kinetic theory of gases.

The identification of Schumann’s result with that given in & is therefore
complete.

4. Discussion. In view of the above derivation, we must be a little careful
in applying Schumann’s relation (1.1) to the study of the motion of a pendu-
lum in a turbulent fluid. The correlation function r obtained (by suitable
processes) according to that relation from the correlation function r of the
displacements is that for the hydrodynamicforce (the part corresponding to
an extra damping being removed). In a turbulent fluid, the connection be-
tween the velocity fluctuations of the fluid before the introduction of a pendu-
lum and the fluctuating/orce acting upon the pendulum after its introduction
is not at once evident. A preliminary careful investigation seems to be neces-
sary before the method suggested by Schumann could be used with advantage.

It is also clear that the spectrum of velocity fluctuations of the pendulum
will be proportional to a¥(w). It is then clear from (2.8) that the correlation
function of the velocity fluctuations will be proportional to —"(£).

There is another point which should be mentioned. The spectrum and
correlation function discussed above refer to those observed at a fixed spatial
point, if we assume the pendulum to be never far from its position of equi-
librium. It is not difficult to observe this spectrum with a hot-wire anemome-
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ter; as has been clone by several observers.6 The Fourier transform of this
spectrum will then give the correlation of the fluctuations at successive in-
stants at the same point in space. It is not clear, however, how (as Schumann
suggested) the pendulum can be used to observe the correlation function de-
fined with respect to the same material point,—the quantity introduced by
Taylor7 in the Lagrangian description of turbulence for the study of the
phenomenon of turbulent diffusion.s

In conclusion, the author wishes to express his sincere thanks to Professor
Theodore von Karman for suggesting the problem to him and for his invalu-
able suggestions.

0 For example, L. F. G. Simmons and C. Salter, Proc. Roy. Soc. Ser. A, 165, 73-89 (1938);
H. L. Dryden, Proceedings of the Fifth International Congress of Applied Mechanics (Cam-
bridge, Mass., 1938), pp. 362-367; H. Motzfeld, Zeits. f. angew. Math. u. Mech. 18, 362-365
(1938).

7Taylor, G. I.,, Proc. Lond. Math. Soc., (2), 20, 196-212, (1921). Clearer statements re-
garding this point are made in his paper of 1935, Proc. Roy. Soc., A, 151, 421-478 (1935).

8 A discussion of the three types of correlations that may be defined in the study of iso-
tropic turbulence has been made by G. Dedebant and P. Wehrle, Comptes Rendus 208, 625-
628 (1939).
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ON PLANE RIGID FRAMES LOADED PERPENDICULARLY
TO THEIR PLANE*

BY

W. PRAGER (Brown University) and G. E. MAY (University of Michigan)

1. Introduction. For purposes of stress analysis, the engineer prefers to
consider his structures as consisting of plane systems, each of which is subject
to forces acting in its plane. A typical example is furnished by the conven-
mional analysis of a parallel chord bridge span in which the side trusses take
the vertical loads and the top and bottom trusses the transverse loads due to
wind, etc. In civil engineering this resolution of space systems into plane com-
ponents is possible in most cases, and only very rarely is a structure consid-
ered as a unit in space. Accordingly, the methods of dealing with space
structures have not been developed nearly as much as those used in the
analysis of plane structures. Of course, the general principles of structural
theory, for instance the principle of virtual work or Castigliano’s principle,
apply to space structures as well as to plane structures but, as is known from

the case of plane structures, these principles frequently do not offer the most
convenient approach to the solution of a particular problem. As regards
special methods, which have been developed so abundantly in the case of
plane structures, little work has as yet been done in the field of space struc-
tures. Most of this work is concerned with pin-jointed frameworks. The itera-
tion procedure of R. V. Southwell’s relaxation method can be applied to space
structures as well as to plane structures, 1 but efficient direct methods for the
stress analysis of rigid frames in space are entirely lacking. The present paper,
intended as a contribution towards the development of such methods, deals
with the particular case of plane rigid frames carrying loads which act per-

* Received Dec. 3, 1942.
1See R. V. Southwell:.Relaxation methods in engineering science, Chap. 1V, Oxford 1940.
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pendicularly to the plane of the frame. An example of this type of structure
is the monoplane wing of Fig. la, where the spars A—A and B—B are con-
nected by several main ribs which are fastened rigidly to the spars. Another
example is the foot ring of an observatory cupola shown in Fig. Ib.
The method proposed in this
LJ—Li paper makes extensive use of a
dual analogy between plane struc-
tures loaded in their plane and
plane structures loaded perpen-
dicularly to their plane. In the
case of a single straight beam
this analogy forms the basis of
the method of conjugate beams2
which can be considered as a par-

9/ J J-//'rh’

Fig. Ib. Cupola foot ring.

ticular case of the present method.

2. Definitions, notations and sign conventions. This paper is concerned
with rigid frames consisting of straight or curved members whose axes lie in
the same plane. This plane is called the structural plane. We will consider only
frames with members such that every cross section has a principal axis of
inertia at its centroid lying in the structural plane. Accordingly, when the
frame is subject to forces acting in the structural plane, the points on the axis
of any member remain in the structural plane. On the other hand, when the
frame is loaded perpendicularly to its plane, the displacements of the points
on the axis of any member are normal to the structural plane. For conciseness,
the first type of loading will be referred to as plane loading and the second as
space loading.

In the case of plane loading the stresses transmitted across any cross section
of a member of the frame are statically equivalent to the following stress result-
ants: 1) an axial force which, for the sake of brevity, will be called the pull
although it may produce either compression or ten-
sion; 2) a transverse force, called the shear, which
acts in the structural plane normal to the axis of
the member under consideration; 3) a couple,
called the bending moment, which also acts in the
structural plane. In the case of space loading the
stress resultants are: 1) a twisting couple, called
torque, acting in the plane of the cross section;

2) a bending couple, called bending moment, whose
plane is perpendicular to the structural plane as
well as to the cross-sectional plane; 3) a transverse
force, called shear, whose line of action is normal
to the structural plane. Fig. 2

2H. M. Westergaard, Deflection of beams by the conjugate beam method, Journal of the
Western Society of Engineers,
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In order to arrive at notations applicable to both types of loading we
choose on the axis of each member of the frame an origin 0 and denote by j the
arc length of the axis measured from this point. A cross section B is then speci-
fied by giving the corresponding value of s (Fig. 2*). In most cases it will be
convenient to choose the origin 0 at one end of the member, in which case 5
will have positive values only. In order to establish appropriate sign conven-
tions for the loads, displacements, stress resultants and distortions at the
cross section B, we introduce a rectangular right hand triad with origin at B,
the #-axis being tangent to the axis of the member at B in the direction of
increasing s, and the y-axis lying in the structural plane (Fig. 2).

The loads which the structure carries at B may be forces or couples, either
concentrated or distributed, or both. The components of the concentrated
force at B, the distributed force at B, the concentrated couple at B and the
distributed couple at B we denote by Fx, Fv, Fz,fx,fy,fz, Cx, Cv, Cz, cX cv, cz
respectively, relative to the rectangular triad at B. For example, cx is a con-
centrated twisting couple, and is positive if its sense is the same as that of
the 90° rotation necessary to move the y-axis into coincidence with the z-axis.

*Not all the load components thus defined have practical importance; how-
ever, the analogies which we intend to establish appear more clearly -when the
most general case is considered.

The force system transmitted across the cross section at B is equivalent
to a force at the centroid plus a couple. These will be referred to as the stress
resultants, and we shall denote their components by Rx, Rv, Rz, Mx, Mv, M,
respectively, relative to the rectangular triad at B. rx is the pull, rRvand rz
the shears parallel and perpendicular to the structural plane, mx the torque
and mv, Mz the bending moments.

The stress resultants and the loads are connected by the equations of
equilibrium. If no concentrated forces are applied at the cross section B, the
equations of equilibrium for a straight structural member are:

RL + /*
Ry "Hfy = 0, My + y—Rz =0, (8]
Rz + fz — 0, Mz F~cz+Rv =0,

0, M' + cx=0,

where the dashes denote differentiation with respect to the arc length s. If
concentrated loads Fx, Fv, Fzandcx, cy, czare applied at B, we have

Rx(s + € —Rx(s —6 + Fx = 0, Mx{s + € —Mx(s —€) f-cx= 0,
Rys+ € - Ry(s- +Fy=0 Mvis+ e - Mvis - €+ cy=0, )
0 Mz(s + € —Mz(s —e) + Cx = (,

Rz(s € —Rz(s —€) + Fz

where e denotes an arbitrarily small length.

* In Fig. 2 the origin of the system X, y should be marked B.
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The displacement of the cross section B is specified by the components
M uy, uz of the translation of the centroid and the components ox oy, 9z of
the rotation of the cross section.

Finally, the six distortion components, gx, gv, gz and hx, hv, hz, of a straight
structural member are defined as follows:

ox M, lIx —6X,

w=M-a w=og, (20
gz — M + 0o, kz = 0z,

where thedashes again denote differentiation with respect to tfje arc length s.
gxWill be called the stretch, gy and gz the slips, hxthe twist and hyhz the bends.

Two structural members may be connected-by a link which permits some
relative displacement of the end sections of the two members, for instance
by a hinge permitting a free bend. Such relative displacements can be handled
aS concentrated distortions:

Gx = Hx(s + € —ux(s - €), lx=0x(s + €l — dx{s—§),
Gy = uyis + € —uv(s - 6), Iy—0,s+ € —s6y(s- €), 2"
Gz = uz(s + € —Uz(s - 6), lz=0zs + 1) - oxs- ),

where eis again an arbitrarily small length.
For elastic structural members the stress resultants can be represented as
the products of the corresponding distortions and stiffness factors:

axgX Ry 4wy, Rz @2z,
M X~ &xhz, My = fiylly, Mz = Pzhz,

where ax= EA, av= GA/ky,az= GA/kz (3Xis the torsional rigidity of the mem-
ber, 3y= Elz, /Z—E 1y, E being Young’s modulus, A the area of the cross sec-
tion, ¢ the modulus of rigidity, ky and kx constants depending on the shape
of the cross section, 1y and 1z the moments of inertia of the cross section with
respect to the axes ofy and z.

3. Analogy between statics of plane loaded and kinematics of space
loaded frames. For a plane loaded frame the loads F2 fz, Ccx, cx, Cv, cv and
the stress resultants Rz, Mx, My vanish. Similarly, for a space loaded frame
the displacements ux, uy, d2and the distortions Gx gx, Gy, gy, 112 h2are zero.
The remaining equations (1) for the members of the plane loaded frame then
are seen to correspond exactly to the remaining equations (2) for the members
of the space loaded frame according to the Table 1.

Table |
Statics of Plane Loaded Frame Kinematics of Space Loaded Frame
- -Hz, -H -G
Loads “f X’ & Distortions | ' Y '
z, fy, -hz, -hy, -gz

Stress resultants Rr, Rv, Mz Displacements oz, 0, (84
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At a point B where two straight members are rigidly fastened to one an-
other under the angle 4 (Fig. 3), we have the following relations between the
stress resultants of the plane loaded frame at the two sides of B:

Rx = RxCO0S 4+ RySsin < Ry = —RxSin $©+ Rv COS 43 Mz= Mz

These relations correspond exactly to the following relations for the displace-
ment components of the space loaded frame on the two sides of B:

0X— 0ZCOS 0 + ovSin gz oy = —oxsin $+ oveos < uz = «

A curved member may be considered as the limiting case of

a polygonal arrangement of straight members. Accordingly,

the correspondence between the stress resultants of the plane

loaded frame and the displacements of the space loaded frame

remains valid in the case of frames containing curved mem- Fig 3

bers. Of course, equations (1) and (2) in their present forms

do not apply to frames with curved members. Equations ap-

plicable to such frames will be developed in a later paper. XL o*tlhF
If more than two members join at the same point, the

analogy breaks down. This can be seen from the example in

Fig. 4, where we have for the stress resultants of the plane

loaded frame Fig. 4

Rx = Rx —R¥*, Ry = Ry + R*. Mz=Mz- M*,
and for the displacements of the space loaded from
6z= 0Xx= (2* dy = 6y = —0%*, Uz — Uz = 112,

The analogy therefore applies directly only to frames which consist of a

simple chain of members without branch points. In spite of this fact the
analogy is very useful even in the case of more
complex frames since these may be considered
as consisting of simple frames to which the
analogy can be applied.

In order that the analogy indicated above
hold everywhere in the structures, it is neces-
sary that there can be a certain correspondence
between the various supports and links in the
frame with plane loading and the frame with
space loading. For example, the analogy is
maintained if to a pin support in the frame
with plane loading there corresponds a simple
support in the plane with space loading. A

consideration of certain types of supports and links leads to the results pre-
sented in Table I1. This table is by no means complete.
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We shall now use this analogy to determine the influence lines for the
stress resultants of a statically determinate space loaded frame. We consider
the rectangular frame with three pin supports 1, 2, 3 shown in Fig. 5 Ac-
cording to a well known principle of the theory of structures, the ordinates
of the influence line for the bending moment produced at the section B by
transverse loads Fz are precisely the displacements uz produced by a unit
bend, 11y—1, at B. According to the analogy explained above these displace-
ments can be obtained as the bending moments, mz produced in the corre-
sponding plane loaded frame by the load, Fy= —1, at B. This latter frame is
called the conjugate frame and is the three hinged portal shown in Fig. 6a.
The bending moments due to the unit load are easily computed and are shown
in Fig. 6b. The diagram showing the bending moments of the conjugate
frame is at the same time the influence line for the bending moment produced
at the section B of the space loaded frame by transverse loads Fz.

Similarly, the influence line for the torque m x produced at the section B
of the space loaded frame by transverse loads Fz can be obtained as the bend-
ing moment diagram of the conjugate frame due to the load Fx= —1 at B.
Finally, the influence line for the shear rz produced at the section B of the
space loaded frame by transverse loads F: is found as the bending moment
diagram of the conjugate frame due to the couple cz= —l at B.

4. Analogy between kinematics of plane loaded and statics of space
loaded frames. For a plane loaded frame the displacements uzi dx, dv vanish
and the distortions Gz, gz, Hx, hx, 11V, hy are zero. For a space loaded frame
the loads Fx fx Fv,/,, Cz czand the stress resultants Rx, Rv, Mz vanish. The
remaining equations (2) for the members of the plane loaded frame then are
found to correspond exactly to the remaining equations (1) for the members
of the space loaded frame according to Table 111.

The relations between the displacements of the plane loaded frame at both
sides of the angle joint of Fig. 3 are easily seen to correspond to the relations
between the stress resultants of the space loaded frame. Furthermore, the
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correspondence between the various types of supports and links shown in
Table 11 is valid also in the present case where we are concerned with the
kinematics of the plane loaded frame and the statics of the space loaded
frame.

Table 1
Kinematics of Plane Loaded Frame Statics of Space Loaded Erame
Displacements UX Iy, Q Stress resultants Mx, My, R,
) ) - Cr, -Gy, -H, S .
Distortions ] S; -S\)l, Ih Loads \(% 8/\1 3

The analogy established in this section can
be used to find the stress resultants of a stat-
ically determinate space loaded frame by
determining the displacements of the con-
jugate plane loaded frame. Let us consider
for instance the frame in Fig. 5 carrying a
transverse load Fz—p at B. The stress result-
ants produced by this load can be found as the
displacements of the conjugate frame produced
by the bend 112= —p at B. The general trend
of these displacements is shown in Fig. 7. Rel-
ative to the right hand support, we obtain for
the transverse displacement at B:uv= 4a(p/3.

Relative to the left hand support, we have for the transverse displacement
at the same point: uv= 2a(P —<p)/3. By equating these expressions and
solving for 9 we find that —p/3. The displacements iix, uv, 8zof the con-
jugate frame are thus known. They correspond to the stress resultants
Mx, Mv, Rz Of the space loaded frame, the distribution of which is shown in
Figs. 8 a-c.

5. Elastic deformations of space loaded frames. Indeterminate space
loaded frames. When the stress resultants of a space loaded frame have been
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determined by the method given in the preceding section, the analogy of &3
can be used in order to find the elastic deformations of the space loaded frame.
For example, let us consider again the frame in Fig. 5, carrying a transverse
load Fz=P at B. The stress resultants have been determined in the preceding
section and are shown in Fig. 8. Equations (3) furnish the distortions pro-
duced by these stress resultants: hx= M X(3x hy= My/ j3, gz= Rz az. According
to the analogy of 83 the displacements ext dy, uz corresponding to these
distortions can be found as the stress resultants rx, Rv, Mz of the conjugate
frame carrying the loadsfx= —hx fy— —hy, cz= —gz. In most cases the influ-
ences of the shear rzon the deformations can be neglected, and consequently
in the conjugate frame the distributed couples cz need not be considered. The
loads on the conjugate frame then consist of the axial loads shown in Fig. 9a
and the transverse loads shown in Fig. 9b, it having been assumed that />*
and j3, have the same values for all members. The reactions can be computed
easily and are indicated in Figs. 9a and 9b. If now, for instance, we wish to
determine the deflection uz of the right hand corner C of the space loaded
frame, we have only to compute the bending moment m, at the corresponding
corner of the conjugate frame. We find that

pPa?

104/

uz = — [23 —1S»3+ 54y»], (6)
where n =b/a andy =/3,//3x

This method of computing elastic deformations enables us to carry out
the stress analysis of indeterminate space loaded frames. Let us suppose, for
instance, that the frame in Fig. 5 is given a further simple support at B and
carries a transverse load Fz=qQ at C. By establishing the condition for vanish-
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ing deflection at B and applying Maxwell's law of reciprotal deflections in
the usual way, we find the reaction at B in the form P = —Quc/ub, where
ub and uc denote the deflections which a unit transverse load Fx=1at B
produces at the points B and C respectively; uc can be obtained from (6) by
setting » =1; ub can be computed as the bending moment m, at the point
B of the conjugate frame, loaded according to Figs. 9a and 9b. With ¢ = 1
we find that

W= o [32 + IS«3+ 547¢]

and therefore
3(23 - 1S«3+ 547»)
2(32 + 1S«3+ 547»)

6. The inverse column analogy. The following method of determining the
stress resultants of indeterminate space loaded frames is patterned after
the column analogy method of H. Cross.3 In
order to avoid lengthy computations which
might obscure the essential feature of this new
method, we shall consider the simple problem
of the frame in Fig. 10 carrying a transverse
load Fz= P at B.
We suppose again that the stiffness factors jax
and /3, have the same values for all members.
The frame then is symmetrical and is loaded
symmetrically.
According to the analogy of &4, the torque
Mx and the bending moment my of the frame
can be obtained as the displacements ux and uy
of the conjugate frame produced by the bend Hz——P at B. Now the conju-
gate frame is entirely free. Since the system is symmetrical, it will possess a
kinematically indeterminate displacement v in the direction of the columns as
shown in Fig. 11a. This indeterminate displacement in the plane loaded frame
corresponds to the statically indeterminate torque in the columns of the space
loaded frame.

From equations (2) we see that the distortions of the space loaded frame
are given by hx= M X(3X hy =M y/;3y, or, by the analogy of &, by hx= iixf3x,
hy—ay/f3y, where ux and uy are the displacements in the conjugate plane
loaded frame. The analogy of 83 then indicates that the longitudinal and
transverse loads on the conjugate frame are given by/* = —ux/3x,fy= —uy/f3y.

3H. Cross, The column analogy, Univ. Illinois Engineering Experiment Station, Bull.
No. 215, 1930.
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The horizontal load is in equilibrium because of symmetry. The vertical load
is shown in Fig. lib, and is in equilibrium if

Pb 11
4 n+y

where n = b/a, y =j3//3x Thus the torque m x in the left hand column is given
by M x=ux=v. Also, the bending moment mv at B is given by

Mv= - (v- Pb/2)= o

The procedure outlined above is equivalent to the following procedure.
We suppose that the conjugate frame is embedded in an elastic jelly which

Fig. 11a.

offers resistance to the displacement of the frame in such a way that an ele-
ment ds with displacements ux and uv will meet with a resistance consisting
of longitudinal and transverse forces of magnitudes uJLs/$x and uwdy//3y, re-
spectively. We then determine the displacements of this elastically supported
frame, and the longitudinal displacement ux then gives the torque Mmx in
the space loaded frame, while the transverse displacement uy gives the bend-
ing moment mv. The above method of procedure is clearly seen to be the
counterpart of the column analogy of H. Cross; it will be called the inverse
column analogy.

The inverse column analogy furnishes a simple method of determining
the influence lines of an indeterminate space loaded frame. For example, let
us consider the influence line for the bending moment mv which transverse
loads Fz produce at the section B of the symmetric frame in Fig. 10. Following
the line of approach of 83, we consider the conjugate frame loaded by a
transverse force Fv= —Ilat B and supported elastically in accordance with the
inverse column analogy. Since this frame is symmetrical and loaded sym-
metrically, the displacements are of the type indicated in Fig. 12a. The forces
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which the elastic support exerts on the frame are shown in Fig. 12b. From
the condition of equilibrium for the vertical forces, we find that

Fig. 12a. Fig. 12b. Fig. 12c. s=vab/RBx+vb2R,,

Bv n
2b n+y

where again n —b/a and y =/3,//3l. The bending moment diagram of this elas-

tically supported frame (Fig. 12c) is at the same time the desired influence
line of the space loaded frame.
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ON THE VIBRATIONS OF A CLAMPED
PLATE UNDER TENSION*

Br

ALEXANDER WEINSTEIN and WEI ZANG CHIEN
Department of Applied Mathematics, University of Toronto

The object of the present paper is the computation of the fundamental
frequency of a vibrating clamped square plate under uniform tension. It will
be seen that the method used here reduces our problem for a plate of any
shape to the membrane problem for the corresponding domain. For this rea-
son similar numerical results could be obtained for a number of other shapes.
A similar question has been discussed for a circular plate by W. G. Bickley1
in connection with the problem of reception of acoustic signals in a condenser
microphone. The circular plate is an elementary problem from the theoretical
viewpoint. However, the actual calculations involving Bessel’s functions are
rather heavy. Bickley was able to give the frequencies only for a small range
of the tension.

The frequencies of a square plate cannot be obtained explicitly in terms
of elementary functions. However, the Rayleigh-Ritz method yields an upper
bound for these quantities. The result cannot be considered as satisfactory
since this method does not give us an estimation of the error. Fortunately,
an increasing sequence of lower bounds can be obtained for all frequencies
by the application of a variational method already introduced by one of the
authors in several vibration and buckling problems. Combining these lower
bounds with the upper bounds obtained by Rayleigh-Ritz, we obtain a narrow
interval in which our frequencies are located.

Moreover, it is obvious that for questions like that of microphone recep-
tion, the lower bounds are the more important data.

The theory of the new variational method has been developed in several
papers.2 The modifications in the present case are slight. For this reason we
will omit all theoretical details. The reader can easily reconstruct the proofs
of the rules which we are following here.

Let s be the domain of a plate of arbitrary shape, and let c denote its
boundary. In the numerical applications we shall assume that 5 is the square
—t/ 1 S x,yév/2.

We denote by:

2/i, the thickness of the plate

T, the tension

* Received Dec. 11, 1942.

1W. G. Bickley, Phil. Mag. (7), ]5, 776-797 (1933).

2A. Weinstein, Mémorial des Sciences Mathématiques, No. 88, 1937; A. Weinstein,
Portugaliae Mathematica 2, 36 (1941).
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E, Young’s modulus

a, Poisson’s ratio .

p, density of the material

D =2£/P/3(l —ad, the flexural rigidity

oo, the eigenfrequency (number of pulsations in 2ir seconds)

w, the transversal displacement.
We put r = T/p. Our problem admits an infinite sequence of eigenfrequencies
co=wWi, W2, « « «, in place of which we shall use the eigenvalues X=Xi, X, ¢ ¢ ¢,
where

2/lpop
D

The displacements corresponding to these eigenvalues will be denoted by
w =Wi, w2, - mm. These transverse displacements w satisfy in 5 the differential
equation:

AAW —caw - \W = 0 (1)

with the boundary conditions

w =0 (2)
dwjdn = 0 3
on C @
The equation (1) may be written as follows:
A+ a)a - fiyw = 0, (a> 0,0>0 @
with
B— - .. 3= X 5
or ©)
(6)
We see that we have the identity :
w=u+u in 5+c @
where n and u are solutions of
Au + au = 0, (8)
Au — [in - Q. ©)
We have therefore also the following identity:
Aw —A(u + u) —fin—au in 5+ cC (10)

The identities (7) and (10) will be useful in the following.
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It iswell known that the eigenvalues of our plate can be defined by minima
problems, the same as could be used in the Rayleigh-Ritz method. For in-
stance, the fundamental eigenvalue A=A, in which we are interested in this
paper, is given by the variational problem:

uM ./ / (**« , +,/1E(£)+ dyl) dxdy
=min = X (ID
with the condition
H(w) = 373" w-dxdy = 1 (12

and with the boundary conditions (2) and (3).

Let us note that u is not 'the potential energy of the plate. Nevertheless
our variational problem gives us the correct differential equation and bound-
ary conditions. This variational problem will be denoted by p. The higher
eigenvalues x2, x3, *** can also be defined by similar variational problems.
However, we shall not use them in this paper.

The Euler equation of p is the equation (1). This equation together with
the boundary conditions (2) and (3) defines a differential eigenvalue problem
P which admits the solutions w2 *e ¢ corresponding to the eigenvalues
Xi, X2, ¢ ¢ o,

In order to obtain an increasing sequence of lower bounds for Xi we begin
by cancelling in the variational problem p the boundary condition dw/dn= 0.
In this way we obtain a new variational problem p @

Uw) —min = X ); nw) =1 (13

with the boundary condition w = 0.

The conditions in P obeing less restrictive than in p, wehaveXf’ gXi.
The Euler equation in P ois the same as in P, namely the equation(1). How-
ever, the boundary conditions for this equation are

w = 0and Aw= 0 on C, (14

the last condition being a so-called natural boundary condition, i.e., a condition
which is automatically satisfied by the minimizing function in p o. The corre-
sponding differential eigenvalue problem pois given by (1) and (14). poad-
mits a sequence of eigenvalues A®, ffff, nmm the smallest of which is
identical with the minimum X0 in po In the case of a square plate, Pois
identical with the problem of the vibrations of a supported plate under ten-
sion. The problem po can be solved, for a domain of any shape, in terms of
the membrane problem for the same domain, a fact which has been implicitly
used in the elementary theory of a square supported plate.
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In order to show this we use the identities (7) and (10) and we obtain
from (14) at once

u=0,u=00nC

In view of (8) and (9), it follows immediately that «=0in P+C and that (1)
and (14) are satisfied by w = u, where u is an eigenfunction of the membrane
problem /\u-{-au =01ins, u=0o0n c. From the eigenvalues a of this problem
we can compute the eigenvalues Al) in Po by using the equations (5).

In order to obtain an increasing sequence of lower bounds for the eigen-
value A in P we link Po with P by a chain of intermediate variational prob-
lems pi, p~ e the solutions of which can be expressed in terms of the
solutions of P,,. In this way our problem for the clamped plate can be reduced
to the solution of powhich is, as we have seen, equivalent to the problem of
a vibrating membrane.

In order to show how this can be done, let

PI(s"), pli.1), , pm—=A(S), pints’), *** (Hi)

be an arbitrarily given sequence of functions defined on the boundary c of
the plate, s being the arc, and pi(s) being positive. The problem P,,
(ni —1, 2, * « m) is then defined as follows:

Problem Pm: Find the minimum X o f u(w) with the condition 11(w) =1
and with the boundary conditions

w=0o0nC, (16)
di
Ivds=0, k=12 eee m, ()]
dti

The conditions igle mare more restrictive than those in Pmi but they are
less restrictive thanghe boundary‘conditions in P.

We have therefore O 1S&T; X~ mme AXi. The minimizing function w
in P satisfies the same Euler equation (1) as in Po (or in P), but the boundary
conditions are given now by the equations (16), (17) and by

AW = aipi + ***+ amp,, On C, (18)

the last condition being again a natural boundary condition. The constant
coefficients ai, » me, amare unknowns. In order to solve P,,, we have to de-
termine the lowest eigenvalue of the differential problem Pmdefined by (1),
(16), (17) and (18). We use again the identities (7) and (10) in a way de-
scribed in our previous papers. In order to avoid repetitions which would
considerably increase the length of this paper, we will only formulate the
rules for the computation. It can be shown that X'I can be computed by the
following procedure. Denote by in and «e (7=1, » me, m) the solutions of
the equations
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Am + aiii =0 (19

Awge- O0Hi = 0 (20)
with the boundary conditions

m = - pi(s) (21)

Ui = pifs) (22)

where a and o are considered as parameters. These equations can be solved
in terms of the solutions of P omPut wi = ui-\-ii{and compute the quantities
' e =1 e
~ f pi S; L] —:,%®*, m,
*>_|(>Q J Cpl dn] .

where the parameter Xis defined in terms of a and o by (5) and (6). Then X
is the smallest root of the determinant equation

[« = 0; i = 1,00, m (24)

providedthat the smallest root is smaller than the second eigenvalueX” of
the differential eigenvalue problem p o, defined by the equations (1) and (14).

The calculation of (23) can be further simplified by introducing a sequence
of harmonicfunctions

Pi(*. y). M*. y), mam.Pm-i(x, y), pm(x, y), mmm (25)
whose boundary values are given as in (15). Then by Green’stheorem, (23)
can be written as follows

a(X) ~ 1 f Pi(x>y)(P*i ~ ccuj)dxdy. (26)

Calculation for a square plate (—w/ 2~ x, Y S=t/2): In this case, we take
cosh (02i-ix/2) cosh (a2i_i7r/2)
cosh (2i — Dw/2
I e{cosh (2i —\)x cos (2i — )y + cosh (2i —\)y cos (2i —1)«} (27)
where
az2-i = V(2*- h2- «, 02i-r = v(2i - 2+ o (28)
On the boundary, we have
(pi(x x/2,y) = cos (2f+1)y cosh ft,-ir2 cosh a2-nr/2
Ipi(x, + w/2) = cos (2i —I).r cosh [32_in/2 cosh a2,_ix/2.

Then the solutions of the problems (19), (21) and (20), (22) are
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[«,e= —eosh /2>i#/2 [cos (2i —I)# cosh a2,_iy+cos (2i —I)y cosh a2-ia;]

fif=_ cosh az,_in/2 [cos (2i — 1Y cosh /2,-_iy-f-cos (2i — 1)y cosh /3 iic].
Substituting £i(x, y) from (27), 2<and ui from (30) into (26), we obtain after
a little calculation,
ay = 4coshaz,_it/2 coshaz,-in2 cosh B2-it/2 cosh|s2;_im2 (.4+ 5,,) (31

where

Aa—Aji

2(2j—|)(2i—1)(—|)i+ii~ &
- — 1 <>

[ef—)2r 3 )
£ii=£[/32;_ir tanh /2i_nr/2—a2 ix tanh az ir —1/2]
{Zi,-z 0 for ij=j.
It should be noted that the roots of ||ce/(X)|| are equal to the roots of ||a,-,(X)||,
where
an = Aa + Bij. (34
The results of our numerical computations are given in Table I below.

The first and second columns give X0 and >&) for the supported plate. The
next three columns give the smallest root of the determinantal equation (24)

Table
Supported Plate Clamped Plate
1st elge_n- 2nd elge_n- \a) *Q a3 Rayleigh-
value xiw  value Xj0> Ritz method
5 14 50 24.982 25.222 25.236 25.509
10 24 75 36.639 36.845 36.862 37.443
15 34 100 48.084 48.253 48.284 49.261
20 44 125 59.289 59.452 59.491 61.008
30 64 175 81.651 81.760 81.809 84.372
50 104 275 125.43 125.56 125.59 130.85
100 204 525 225.56 225.63 225.65 246.58
200 404 1025 443.15 443.24 443.25 477.58

for m —1, 2, 3. Since these roots are smaller than the corresponding second
eigenvalues X™ they are, according to the general theory, identical with the
eigenvalues X X2, {3 and give therefore an increasing sequence of lower
bounds for the fundamental eigenvalue X in p. The corresponding upper
bounds, obtained by the Rayleigh-Ritz method are tabulated in the last
column. They have been obtained from the variational problem p by putting

w = A COS2x COS2y + B COS* x COS*y.
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A comparison with \[3 shows us that the error in the values of X is, for small
tensions, less than 1.2 per cent and, for great tensions, less than 7 per cent.
The fact that X3 hardly exceeds X2 makes it probable that the lower bounds
are much closer to the true value of X than the upper bound given by the
Rayleigh-Ritz method.

In figure 1are plotted curves of fundamental eigenvalues of clamped circu-
lar plate and square plate against the tension r. The curve | is the values of
X for the clamped square plate. The curves Il and 111 are respectively the
fundamental eigenvalues for a circular plate of equal area and equal circum-
ference as the given square plate. Both of the latter curves are calculated
from the Bickley result.

Fig. 1. Curve 1: Clamped Square Plate (ir/l"ix, —x/2)
Curve 2: Clamped Circular Plate (r = \Ar)
Curve 3: Clamped Circular Plate (r= 2)

Remark. Using our lower bound X3 for a single value To of  rwecaneasily
compute lower bounds for Xifor every value of . This result can beobtained
by combining our method with an idea of R. V. Southwell.31n fact, the lowest
eigenvalue Xi=Xi(r) is given by the minimum of u(w)/H(w) under the con-

3H. Lamb and R. V. Southwell, Proc. Royal Soc. Ser. A, 99, 272 (1921).
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ditions (2) and (3). Denoting in (11) the first and second integrals by J(w)
and D(w) respectively we have

U/H = J/H + «D/H = J/H + tD/H + (t- tOD/H. (35

Since D(w)/H(w) is obviously greater than 2 (i.e., greater than the lowest
eigenvalue of the vibrating membrane) we have for all values r>ro

Xi(t) > Xi(tQ + 2(t —r0 > x[ MNto) + 2(r — r0).

Putting to=5 we give in Table Il the values of x® (5)+2(t —b).

Table n
X j(5)+2(r-S)

s 25.236

10 35.236

IS 45.236

20 55.236

30 75.236

50 115.23
100 215.23
200 415.23

It will be seen that these lower bounds for Xi are smaller than the lower
bounds computed by our method alone.
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1 In a previous paperithe author proposed a direct approach to the prob-
lem of geometrical optics. In this paper we shall give a new image error theory,
to the fifth order, which seems to be more adapted to the practical problems
than former theories. We are given a rotationally symmetric system. Let us
choose two Cartesian systems, one in object space and the other in image
space, such that the x, x* andy, y* axes have the same directions and the z, s'
axes coincide with the optical axis of the system.

A ray is given in object (image) space by the coordinates x, y, (x', y') of
its intersection point with the plane z=0, (z=0). The optical direction
cosines (the direction cosines multiplied by the refractive indices n and n',
respectively) may be designated by the Greek letters

V, r = v«2- (f2+ UD; S,V f' = V«'2- «'2+ V2-

The fundamental problem of practical optics is to find x', y*, &, jj', when
x, y, £ Vv are given. Because of the rotational symmetry, four functions,
A, B, C, D, existsuch that,

= AX + Bt, t' = Cx + Dt,
y' = Ay + B4, t( = Cy+ D4

where A, B, ¢, b depend only on the three symmetric functions M, M, M of
our coordinates:

M= sx2+ y2, m2 = xi + yr], u3= §(£2+ V- ()

We found in the previous paperithat, according to the laws of geometrical
optics, A, B, ¢, D cannot be arbitrary functions, but must fulfill one finite
and three differential equations, viz.,

AD —BC — 1

and
[BC dD / dA dB) [ dA dcC dA dcC\
[ ) ot )+ am
IM2  dui \dti2  diii/ \diii dii2  dii2 dii\)

/dA dD dA dD N dB dC dB <3
\<BM dui  dii2 dui dui 32 du3 du\)

dB dD dB dD
+ 2«3(----
\dMi dit2  du2 dul

* Received Nov. 26, 1943.
1M. Herzberger, Direct methods in geometrical optics, Trans. Amer. Math. Soc., S3, 218
(1943).
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\du3 au<i) vd 2 duy) \dt13  dui/
(dA dB\ (dA dC dA dC\
— D I ——me- —j+ P I
\d iz du\( \diii dus dus dui/

/dA dD dA dD dB dC dB dC\
\dui du3 du3 dui dul au3 du3 auil
/dB dD dB dD\

+ 2ut
\dtli dlI3  du3 duj
A
dc  dD\ (dA  dB\ (dA dC dA dcC\ )
------------ - 22--) + 20A
\dti3 duid \du3 du? \du2 du3 dii3 dui/
+ J/dA dD dA dD ~ dB dC dB dC\ gh
\du2 du3s du3 du2 du2 du3 du3 du?
It is the purpose of this paper to develop from formulae (A) thetheory of

image errors. Developing A,B, ¢, D into a series with respect to ult u2, u3, we
can write

A =40 Aiui"TA2u24—A3J3
2 2 2
+ 2(AjiUi + 2A1201L2 + A22U2 -T eo* fAzU3), ®

and for B, ¢, o, correspondingly. Inserting (3) in (A) andcomparing coeffi-
cients leads to the first-order equation:

Ao —B®©o — 1; ()
the third-order equations
AqDi -T A jDo = BocCi + BlcQ
AoD2-f- AD0—BC2"T BXo, (5a)

A 3F430=8Q03-Ts3%0
and
Ao(C2 —Di) —CoA2 —B() =0,
AdC3 - DO +BO0(C2 - Di)- CO(A3 B2 - DofA2 Bi)=0,(5h)
BdC3 —2»)—Do(A3 —B() —0j
and finally the fifth-order equations:

* 1f we differentiate the finite equation above with respect to «1, ui, U) and subtract from
each of the equations (7) of the former paper,lequation (A) above results.
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Adu + DoAii —BdCu — CoBu = 2{B\C\ — A\D\),
A<yD\i - DOA22—BoCn— CqBu —B\Ci + BL 1 —A\D% —A~"Di,
AgD\3 + DgAW3 BgC\z CqB3 —B\C3 B3ci —d 18 —A3D1,
A2+ DgA2—BC2— coB2 =2(.522 —A D),
A28+ DgA B3—7SCB— CoBB =B2C3+ B2 —A D3 —AD2,
A3D3 + DgA B—BqC/3— (0°33 = 2(J33C3 —/13D),

(6a)

and
Mo(CA—D u)~ Co(An~Bu)=Ci(A2~ Bi)—Ai(C2—Di) —2(AiC2—A Zi),
Ao(C2 D) Co(dz 2'2)=C2(12—81)—A 2(C2—i?l) —A 1D2—A2D1)
—(BIC2—B2CY),
A0(C23-D19-Co(Att-Bu) =Cz(A2-BX-"(Cs-A) - 2(BiD2~B2DY),
Ao(C3i~D2i)-{-Bo(C2\—D n)—Co(A 31—B 21) —Do(A 21—Bu)
= —Bi(C2—Di) —A I(C3—b~)-\-Di{A2~M)+Ci("43—8 2 —2(.4iC3—1Cy),
O(CR " 2)~ByCo0—b 12) —€o(A P—B 2) —Dq(A 2—B 12)
= —B2(C2~ D\) —A2{C3—D2)-\-D2{,A2—Bi)-\-C2{A3—B2)
- (AxD3-A 3DO- {B~-BqCJ,
A 0(GB—D23)-\~Bq(C23—b 13) —€0(A 3—B 2) —Dq(A 2—H?3J)
=- £3C2 po-A 3(C3-D 2+D3JA2- BO+C3A3- B)- 2(BDs3- B3DO,
Bq{C3X-D21)-D 0(A31-B23)=D1(A3-B2)-B1(C3-D2)-2{A£3-A£2),
Bq{C32—D 22) —Dq{A 32—B 22) = Z2(a13—B) —B(Cz—D»)
—A2D3—A3D ) —BXL3 B2,
Ba(C3—D2) —Dq(A B B2)—B3d3—B2)- B3{C3~D”) —2(52ZB3—B3D2).

(6b)

Moreover, the (6 + 9) equations (6) are not independent; they are con-
nected by the identity

AR B2)+Bq{(J2 D12) Co(-d2 B2)-~ Dg(A2~ Bu) ]
+ [A Q224291 2—8 oc 2—Co.B2]—A qDu~\~DgA 3—BqCu—EC0.Bi3] @)
—\ Bg(C3\—b 21) —bq(AI1—B1) ] AdCB pu) cqAB -SIY]=o.

2. Gaussian optics. Let us consider first the rays in the neighborhood of
the axis. Let us assume that ui, «2, «3 are so small that we can assume func-
tions +, B, ¢, D to be equal to their constant members:

X' —Agx + 2%E — Co»+
y' —AO0 + By, y —Coy+ DQ;
where AqDg—BqCq= 1

(8)
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The evaluation of these equations and the investigation of the geometrical
meaning of the coefficients form the content of Gaussian optics.

We shall not go into great detail here, but refer the reader to the discus-
sion in the Journal of the Optical Society of America.2

Equations (8) can be inverted, and we obtain then

X = Dagx" —Bo!;, £= —cox' FAqv,
y = DOy - Bov', V=~ Cl" + Arf. )

Let us investigate what happens if one of the coefficientsvanishes.

A 0=0 meansthat for *=7=0,x'=y* = 0, which means thatthe bundle
of rays parallel to the axis converges to the image origin. We say that the
image origin is at the focal point of the system.

B 0=0 means that for x=y =0, x'=y '~ 0. The rays through the object
origin meet at the image origin. We say then that object and image origin are
optically conjugate.

c0=0 means that £=v —o implies £ =v* —o, or, a bundle of rays entering
the system parallel to the axis emerges parallel to the axis. The system is a
telescopic System.

D 0= 0 means thatx=y =0implies £ = 77 = 0. The rays through the object
origin emerge parallel to the axis. The object origin is the object-side (front)
focal point.

3. Image error functions. Let us for finite rays* project image point and
direction back into the object space, according to Gaussian optics. That
means we form equations (9) for our finite rays. The ensuing expressions may
be called the equivalent object coordinates x, y, \, rj. We have from (9) and (1)

x = Dox’ - £,£ = (DA - BoC)x + (DB - BM)E = ax + if,
= - Cox'+ A& = (- CoA + ACjx + (- coB + 4d>DE= c*+ df; (10)
and analogously,
y = ay + hi7,
j—cy + dv.
a, b, ¢, d are with A, B, ¢, b functions of «1, «2, «3, and we have
D= do — 1,
fo — @ = 8, (ID

the values ao, bQ co, do, being the limits of a, b, ¢, d for 2-=0. If Gaussian
optics were correct, we would have equation (11) for all values of u that is
for finite aperture and finite field. The deviation from its constant term as a

*M. Herzberger, On thefundamental optical invariant, the optical tetrality principle, and on
the new development of Gaussian optics based on this law, J. Opt. Soc. Amer. 25, 205-304 (1%)
* The expression finite is used in distinction from paraxial rays, rays near the axis.
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function of aperture and field is therefore a measure of the image errors. We
call a, b, ¢, d the error functions.
In the nomenclature of matrix algebra we can express these equations as

oww .

Let
o - o0 G ) - -0
xj,yo,f0,vo would be the coordinates of the image ray if Gaussian optics
were valid. Equations (12) combine equations (1) and (8), m being the matrix
5) aC e mg,;r'x™ 0
We have then

where
vi = Mo M, M — Mom. (13

From (13) it is obvious that the determinant of m is equal to unity.
Therefore,
ad - bc =1 (14

The reader can verify for himself that a, b,c, d fulfill equations (A) and
therefore equations (5) and (6), which simplify considerably, owing to the
fact that (11) is fulfilled.

Equations (13) can be written explicitly

a= DA —BdL, A = Aoca+Bd{
b = DOB - BOD, B =AG+B, ,(155\|
c = —CoA + A, C = Coo- + DO,
d=-C 0B+ AoD, D=Clh+Dod.

Differentiation and substitution in (A) prove our statement.
4. Third-order theory. The third-order image errors are usually called

Seidel errors.
From our point of view, we obtain the image errors by inserting (11) into

(5). Abbreviating (da/duic)U-0 by a*
diTd —o G —di
ai F-di =0 &% — hi (1d)
@ -} do — 0 a* — bi.
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Equations (16) lead to the conclusion that only six of these twelve coeffi-
cients are independent. Equations (16) are identically fulfilled by selecting
six parameters ¢.jt with permutable indices such that

01 — 21 (,| = (31 d-= — 11 dl= —;21
02 — 22 (2 = (32 C2 = — 12 (2 = — 22 (17)
03 = 23 ¢3 = ¢33 C3 — — ;13 (3 = — 23,

Geometrical investigation (which we omit) would show that (if object and
image planes are optically conjugated), ¢33 may be interpreted as the coeffi-
cient of spherical aberration for the object origin; ..s as the coma coefficient;
22 and ;13 as coefficients of the field errors; and ;12 as the coefficient of the
distortion for an object at the origin and an infinite entrance pupil.

On the other hand, ¢u may be considered as the coefficient of spherical
aberration for an infinite object; ;12 as coma coefficient; ;13 and (22 as field
errors; and (23 as the coefficient of distortion for an infinite object and the
entrance pupil at the object origin.

A The connections between these errors are well-known laws of the Seidel
theory.

The method developed here differs from the usual methods in that, first,
we do not assume the coordinate origins to be in conjugated planes, and, sec-
ond, we do not restrict ourselves to the consideration of the deviation of the
object point, but investigate at the same time the deviation of the direction
of the ray. Equations (10) give, within the limits of our Seidel region, the
following equations:

X (f; (6212%1 +  4222%2 + ;232%3)* +  (431**1 + (322*2 +  332%3)$, (18]
£ ~ £ = \kI\U\ + k\2Uu2 + k\ZUZ)X + (¢2171 + (2272 + N2373)EI
and y and 77analogously.

We recommend a detailed study of these equations and their derivatives
with respect to * and £ for meridian rays (y = v —o), especially in the case
where our origins are not conjugated.

5. Fifth-order aberrations. For the fifth-order aberrations we find from
(6a) and (sb) the following fourteen independent equations between the
twenty-four coefficients a,k etc.

Making use of equations (11) and (17) we find that

2 2
0L+ <7« =2 « cag ), 022 (‘0R2= 2 (22— ¢« ),
012~k*f|2::2¢«¢22—¢«2¢13—4«523, 023~f-*f23 = 2422&23—&«@23—4«433,
013 1 *n13= 2¢212(;23 ¢13— ¢ « ¢ 33, 033'f'*f33= 2(2¢23—¢«¢33),
021  <7ll=2¢12-f-411413— 3411422, b12— 013~ 13 1 ¢«¢22— 2412423, (19)
@2 dr= 22(;«(;13 { & 22— 023, 22—3= 2(;132(,23—5«(;33—(',2(',23>
023 diz—¢13 f («¢22 2,423, 23— 033= 223" «¢33 —3422:33>

0317 g« = 3(¢l12413 ¢« ¢ 23), 033--413 ~ 3 (¢ 13423— ¢ « ¢ 33).
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Here again, we can express the twenty-four quantities in terms of the
third-order coefficients and nine parameters k.

6. The single sphere and the plane. In our previous paper we were able
to calculate the functions A, B, ¢, b for the case of a plane and a sphere.

In the case of a plane, we put object and image origins at the point where
the axis intersects the plane and found that

orA=29=1B=c=0. In this case we have a=d = 1, b—~ 0, and all the
image errors vanish.

In the case of a spherical surface, we put the object and image origins at
the center, and found that

X' = AX, y' — Ay, (21)
% = Cx + 2% T =Cy + Drj;
where
2v?ux—u\
2n¢
1
A= —
D

If we develop A, B, c as functions of uu u2, <5, we obtain the Seidel and
fifth-order coefficients. Taking care of (5) and observing that

1
AO0= fl Bo —0:
(23)
11 —1u n*
Co = Do =
r n

we finally find the image-error coefficients:
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and the fifth-order coefficients:
_«All 1\2/ 3 2 3\

[Vol. I, No. 1

' «13=O,
rA\m n) \«'2 n'n*~n2’
. Y1 i\/ 2 3 2\
al2 . «23=O,
\» n)\n'2 n'n~n2"’
rVd «/°’ 3370
(11— 12" 422 — 413 — (23 — (33= 0,
e 3O/1 1 3 ;3 3
b V«'4.39 = n/n§1ML
Q2= fr_ -+ + 1\ «23=0,
o n'n n2’
"1
«@2= J—+i\, «33:01
n'n n2
«Y i I
y <¢'13:O,
. »V i i\ i ) '
= r3gn' n/n'n (023:0’
1/1 13/ _
b = nic ) B0

equations which fulfill all the conditions of equations ().

(24b)

The nonvanishing seventh-order coefficients for one surface would be:

xe/1 1 \2/ 56 10 &6 5\

re Vi' n ) \W4  n'3nn‘hi2 n'nxV’

» «4/ 1 1N/ S 19 25 19 8\
¢ rs\«' n)\n'4 nhi n'hi2 W«3 W4’
«7j__1 VI3 2 3\

Q2= \
ra V& nj \«'2 n'n n2’

@z r2 \«' «/ nmm
3«8/l 1\/5 17 26 33 26
r7\m' n/ \nn n'hi n'hi2 W33 n'2n4

17 5\

n'n6 »*/
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( 8 19 | 5 19 s
Ve'd  nac

mEnomme e (25)
B -3 7 | 1 7 1 i\
clz= m'4 me3m com2m2 NMMBE M
2/ 1 1y 1
«Q22=— I‘E‘r(\"n7 n/ )n n
b/ 1 1y / 1 2 2 2 1\
rée \«' «/ \m'4 m' 3m m'2«2 m'm3 »V
M/1  1\/ 1 1
"112—__(\_ )) <7 rT’mI_V\ﬂJ 7ft
m2/ 1 v / 1 2 1\
2= 7) (St b
_ 3/1 1AL
2\l
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THE IMPEDANCE OF A TRANSVERSE WIRE IN A
RECTANGULAR WAVE GUIDE*

BY

S. A. SCHELKUNOFF
Bell Telephone Laboratories

The purpose of this paper is to derive approximate formulae for the im-
pedance of a transverse wire carrying uniform current (Fig. 1).
The total impedance Z to the current through the wire may be defined as

z=7 )

where v is the applied voltage and 1 is the electric current in the wire. The
total electromotive force v is the sumziof the internal electromotive force F-
and the external electromotive force F,

V=Vi+t Vv @

Correspondingly, we have an internal impedance Z- of the wire and the ex-
ternal impedance z,, By (1) these two impedances are in series with each
other

Z2=2Z+2, (©)

If the guide is infinitely long on both sides of the wire, the external im-
pedance (above the absolute cut-off frequency) is complex

Z, =Rct iXe )

The resistance term represents radiation of energy into the guide. If the
frequency is within the principal frequency range and if k is the character-
istic impedance of the guide to the dominant wave, as seen from the wire,2
then evidently

R.=\K. ©

We shall now calculate the impedance of the wire on the assumption that
its radius is small. The current in the wire will generate transverse electric
waves in which the field is independent of the y-coordinate. The general form
of the field (for z> 0) is

* Received February 8, 1943.

1For an explanation, see S. A. Schelkunoff, Electromagnetic Waves, D. Van Nostrand Com-
pany, Inc., 1943.

*And not from a plane current sheet generating a pure dominant wave.
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. lirx
Iz(x, S) = ¢j Hi SN e-~riz,

" )

. IrX .
Ev(x, z) = —Xj Killi SIn e~ri*

where r (and ki are respectively the propagation constant and the specific
impedance of a typical TEet,0wave

naer2  4x2 o Iou
r-vrT % Y ®
The propagation constant of the dominant T£i,0-wave is
4x2  2iti »
x V'l 4nm2 (®)

The dominant wavelength range extends from Xi= 2a to X=a, X being the
cut-off wavelength of TEz,owave. If a<\<2a, all the propagation con-
stants of secondary waves are real

lir / 4a2
Ih=—A/1--—-= 1> 1. ©)
ay
For the specific impedances we obtain
/ x2V 2 |

= 1 v

iutia/ Afla~ 112 2al 4a2 - 12

1
<
'

(10)

for \

The external electromotive force F, necessary to support current i
through a thin wire of radius r is

V. = - bEWd, r), (11)
where d is the distance shown in Fig. 1 This equation presupposes that the

Fig. 1 Fig. 2
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current is distributed uniformly around the wire. As the radius of the wire
increases, the current distribution gradually begins to depart from uni-
formity. From (1), (6), and (11), we have
V. b « . lird
Zc= --—--=—X)KJh Sin-——e-ri" (12
[T B a
The next step is to calculate the coefficients Hi. We shall assume that the
wire is so thin that the field outside the wire could be regarded as nearly equal
to that of an infinitely thin electric current filament along the axis of the wire.
For an infinitely thin filament, we have
2 pdrt

. . hrx
Hi = lim— | —sin as r-> 0. (13
aJd r a

Integrating and passing to the limit, we obtain

I hrd
Hi = —sin (14)
a a
Substituting (14) in (12), we have
" . h d
Ze= —2 Kisin2 ' e~rr; (15)

and, therefore,

b . . ird
Rf =—KI1SIN2—>

a a
2b . ird
K = 2Re=—  Sin2—, (16)
a a
b “ . lird
iX, —— Ki SIn2 e~vir.
cL a

Substituting from (10), we obtain

« i 2b sinzircl(f i Xzy 12
' a a\  4a2
20 - 1/ 4daa 12 lird (17)

Ny —

X =it |(I Z)q1
Hence, the ratio of the external reactance of the wire to the characteristic
impedance of the guide (as seen from the wire) is
Xe a |/ x ird « 1/ daa - 12 hrd
K -tv =W T Sy rw ) a«

Sin2 e~r,r-
a
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It is evident that the total inductance of the wire is a series combination
of inductances associated with the individual secondary TE waves, generated
by the current in the wire.

For the internal impedance of the wire, we haves

bh(<r<r)
= Tnrriaenr
19
————————————————— [ i (19)
Chi = V + W£E) & = W —
y git

This is a general expression applicable to dielectric wires as well as to metal
wires. In the case of metal wires, we let e,=0. Usually, the radii of metal
wires will be sufficiently large to make the modified Bessel functions in (19)
nearly equal so that approximately

brji b / iwpi b /[ Tfm
. (20)
z'-17ri7VTT-171V "N + ).

If r/a is small, the series (18) converges slowly. The difficulty may be
obviated with the aid of the following device. Let

u= £I «i (22)

be a slowly converging series; let
v=£ H (22)
1
be a series of terms approximating (21) in such a way that the approximation
becomes increasingly better as 1 increases; then

«= £ i+ X)(«i —vi) (23)

so that (21) can be regarded as the sum of two series, of which the second is
more rapidly convergent than the original series. If now the sum of the first
series in (23) happens to be known, we have succeeded in replacing the
original slowly convergent by a more rapidly convergent series.

We shall apply this device to (18). First we rewrite (18) in the following
form

2hrd
- . 1—Cos-----
x, _ 1 ldaz . %d a .
= =V 1esc2—£ - S neTT (24)
K dV x2 «« ia [ 1~
Y, 12x2

3See the book mentioned in footnote 1.
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then we note that as/ tends to infinity, Tj tends to tir/a and V | —4a2//2% tends
to unity. Hence, a typical term of the i>series will be (I//)[I —
cos(2/m/la)]e-1Trlo, and (24) may be expressed as

2lird
1 —C0S-
X e 1 /4a2 irdT a
—4_AI_/ 30 1 0SC2— Lf£'2 | e lrrla+ T
K « L (25)
2lird
. 1—cCos-
: a (( e~tr | I\
| VAV
_ Vo1 2%
It is known that
" 1 1
£ —e-IpCOSIq = —2Iog (1 —2e,’cosq+ e, (26)
T
therefore,
X, o 4 //%1 esczrdf ! lo 21 2e~TT,a COS 2t|r0|( 2rr/“\)
K 47 X% a Lz gyt TetTacos o be A,
/ 2ird \
log (1 - e~Trla) - e~Tra( 1- cos Uy T (27)

This can be transformed into

irdlr 1 irr 2ird
........ 1 — —log, cosh cos
£sc2 1L 2 g\ a a /5

l—|og 2 —log sinh " e~TrIaE 1 —cosﬂJ\ + 7]1 . (28

An entirely different expression for zc can be obtained by the image
method. Assuming again that r is sufficiently small and that the wire is not
too close to the boundaries of the guide and that consequently there is no
“proximity effect,” we can immediately obtain

1 f % D »
= —V@o\ Hlipr) + 2£ Ho{2n[}a) - £ #0(2«/3a + 2pd)
4 L n-I n-0
« S|
- £ Fo(2«3a+ 2% - 23) . (29
n-0 J

This is a slowly converging series and is useless for direct numerical com-
putations; on the other hand, it may be useful for other purposes. Thus the
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difference between the external impedances of two wires of different radii is
obtained in the following simple form.

Ze(r2 - Z,(rd = hPb[HI(pr2d - H~AnNn)}
foPb [/0(j3) —70o(3ri)] + [A0(/3r) —An(/32].

The first term represents the effect4 of the radius of the wire on the impedance
of the guide as seen by the wire. The second term represents the difference
between the external reactances of two wires

X'{ra - x-(r,) = b&JtfoGsan) - N 32)J. (3D)

This equation can be used for numerical calculations in conjunction with (28).
The slowly converging part of (29) is the mutual impedance between the wire
and the wave guide.

An expression for the mutual impedance between two parallel wires in
the wave guide can also be obtained by the image method. Thus we have
(d2>di)

| r ®
Z2 = —ijfib lo(fid2 — fid\) -F- 22 Hn(2npa + fid?, —pdi)
4 L ni

[0} (09}
+ £ HO@n(3a + p<h - &J2) - £ Htfnfia + fidi + pd?

“1
. 32
] (32
Next we shall deal briefly with the external impedance of a “split” wire
(Fig. 2). Let the electromotive intensity at the surface of the wire and the
current in the wire be

O
—£ HoenGa+ 23 —odi — /3D
n-0

* mwy

Ey = “ /[ .Emcos 7t
MO 0
(33)
o B T cos MY
m »=0
The complex flow of power is
** = —vYeV'V¥x=— b\E*I0+ —£ EIIA_, A
2 ° 2 \_ 2 J (34
where 7 eis the external admittance of the split wire and v, the voltage across
this admittance. Since
Ve = bEQ, (35

*Which was entirely ignored in the derivation of (28).
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we obtain from (34)

y =—-1-if EmEm 36
‘ Fe 2 £)y “ E OEo* (%)

where
= e 37)

The first term in (36) is the external admittance corresponding to a uni-
form current filament (Fig. 1) and, hence, is equal to the reciprocal of either
(15) or (29). The second term is the capacitative admittance (assuming that
X>2b) between the external surfaces of the two portions of the transverse
wire. The impedance diagram is shown in Fig. 3 where the parallel lines

X.

X 4= X

Fig. 3 FiG. 4

represent the wave guide, the inductive reactance x i is the reactive part of
(29), the capacitative reactance xi* is the reciprocal of the second term in
(36) and xii is the reactance looking inward from the surface of the gap in the
wire. In the case illustrated by Fig. 4 the internal reactance is approximately

Xi* (38)
iutirr2
where r is the radius of the wire and s is the length of the gap.

The internal reactance of two hollow cylinders as well as the quantity
xi* will be discussed in a separate paper. Here we shall merely derive general
formulae and show that roughly xi* is equal to the external capacitative
reactance between two sections of a split transverse wire placed across infinite
parallel planes.

Each component 1mcos (mxy/b) of the total current 1 in (33) originates a
radial wave of the following type

ImKi(ynp mxy
)COS

2xrKi(ymr) b

HJp) =

(39)
VYmImKoiymp) vVixy



1943] THE IMPEDANCE OF A TRANSVERSE WIRE 85

where p is the distance from the axis of the current and v, is the radial
propagation constant of the rath cylindrical wave

W 27T2 4TT2THTT / 4b2

mV b ¥ bV 1 rox 240

If X>2b, all the radial propagation constants of order m higher than zero are
real. This explains why even the nearest image will have but little effect on
the admittance ym except whenthe wire is quite close to thewalls of the
wave guide,or when Xis nearly equal to 2b. Evenwhen the wire isclose to
the walls of the guide only the nearest image will have an appreciable effect
on ym unless Xis nearly equal to 2b.

The complete expression for the impedance zm=\/Yy mis

Am— yymb Ko(ynmr) + 2E£ KO(2nyma)
2wiPrKi(y,nr) ™=
o © 71
— X Ko2nyma + ymd) — X Ko(2nyma + Zyma + 2ymd) . (41)

J

71=0 71=0

Equation (29)corresponding to the principal cylindrical wave (m —o), is
of course, a special case of (41). The propagation constant To of the principal
wave, however, is pure imaginary and, hence, distant images have a pro-
nounced effect on z..
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NOTES
ON A. C. AITKEN’S METHOD OF INTERPOLATION*

By WILLY FELLER (Brown University)

1. A C. Aitken1has recently devised a method of practical interpolation
which is particularly well adapted for computing machines; neither differ-
ences nor tables of interpolation coefficients are used, and the necessary opera-
tions are most easily performed on modern computing machines. Moreover,
the degree of the interpolating polynomial decreases by two at each stage,
which minimizes the amount of necessary work. Recent experience has again
confirmed that the method is extremely convenient and timesaving. It would
nevertheless seem that the method is not sufficiently known, and we propose
therefore to give a brief outline. Our proofs seem simpler than the two proofs
given by Aitken,1or that given by Lidstone.3 At the same time we shall be
led to a procedure which works for an odd number of data as well as for an
even number (originally the method appeared to work for an even number
only and special computational devices were used to reduce an odd number
of data). For most practical arrangements of computations we have to refer
to Aitken12and Lidstone.3

2. Linear cross-means. The full power of the method appears only with
the use of quadratic cross-means, but these are in turn based on linear cross-
means. Moreover, with completely unsymmetrical data only linear cross-
means can be used.

Let it be required to compute the value/(£) of a polynomial of nth degree,
f{x), givenfk=f(xk) for & o0, mmm «. We note that

/o xo —E£
/ * = = XOo 1
<) f(x) X- £ M ) "
is a polynomial of degree n —1, and that/(1)(€) =/(£). Hence we are required
to find/ (IXE) knowing
lo *0o—£

- ‘F X - Xo 2

" fk xk- £ . ) @

for k—1, m«m, n. Thus the problem has been reduced from n to n—1 In
like manner the problem is further reduced to n —2 and so on.

All the computer has to do is to write in a column the “parts” £—£, and

* Received Dec. 18, 1942.

1A. C. Aitken: On interpolation by iteration of proportional parts, without the use of differ-
ences. Proc. Edinburgh Math. Soc. Ser. 2, 3, 56-76 (1932).

1A. C. Aitken: Studies in practical mathematics 111: The application of quadratic extrapo-
lation to the evaluation of derivatives, and to inverse interpolation Proc Roy Soc. Edinburgh,
Vol. 58, pp. 161-175, 1938.

3G. J. Lidstone: Notes on interpolation. J. Inst. Actuar., Vol. 68, pp. 267-296, 1938.
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in an adjacent column the corresponding values/*. Using (2), new columns
are successively added to the right, the number of rows decreasing by one
each time. The “parts” remain obviously the same throughout the computa-
tion. The determinant in (2) is easily computed, and the result appears in
the main dials ready for division without clearing. Moreover, on most ma-
chines, the divisor #—xo= (xk —£) —(X0—£) will automatically appear on the
secondary dials (provided the main keyboard has been used for the factors/*).
Actually in most cases the divisor #—xo will be a small integer. It should
also be noted that as the computation proceeds the entries will tend to agree
in an ever increasing number of their more important digits. These, of course,
will not be copied down; this reduction of digits of/* makes it in turn possible
to drop some last digits of the “parts.”

3. Quadratic cross-means. For these it is necessary that the given data
be placed symmetrically with respect to some point x = a. Denote, then, two
symmetrically placed points by # and &* (&= 1, me ¢, m; **—a=a—# *).
The point xo = a is included among the data only if n =2m. Consider

/(2a—*) 2a —x—£

4>{x) = F 2(x -
>{X) £0) . - £ (x - a) €
and c
—/(2a —x) 2a —x —
Py = BTN T —E e @
f(x) x- £

Obviously 4>{x) and \p(x) are even functions of x —a, and hence polynomials
in t=(x —a)2 Moreover, <EE) ="(£) =/(£).
(@ Ifn=2m—1, the problem is reduced to finding the value for 7= (E—a)2
of the polynomial of (m—I)th degree o (a+ \/7) given its values
] * **x_ f
<k = ok (xk - X-k) (5)
for t={xk—a)2 k=1, *me, m. Thus a simple application of (5) will reduce
the number of data from 2m to m. From here we proceed as before using
linear cross-means. It should be noticed that the “parts” now to be used are
(x*-a)2-(£-a)2=-(**-£) (*-*-£), that is to say the product of the parts
already used for (5). This invariant property dispenses of the necessity to
label the panels. In most practical cases the new “parts” will differ only by
integers or multiples of 1/2.
(b) If n=2m, we compute the values
-/ * x-k~ £
Pk fk xk —£ 2€- 9 ©)
for 7= (x*-a)2 ¢ =0, me e+, m, and proceed as before. Since here the denomi-
nator is the same for all k the division may be deferred to the final result.
This is a slight simplication.
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A NEW DERIVATION OF MUNK’S FORMULAE*

By w. c. RaNDELS1 (University of Oklahoma)

Recently M. A. Biot2 has applied the method of the acceleration po-
tential to some problems of two-dimensional airfoil theory. In this paper this
method will be used in order to obtain a short proof of Munk’s formulae3s
for the lift and moment of a thin airfoil.

As usual in the theory of thin wing sections we replace the airfoil by its
mean camber line supposed to deviate but little from the chord. Studying the
plane irrotational flow of an incompressible fluid around this indefinitely thin
airfoil, we take its chord as the x-axis of a system of rectangular coordinates
X, y, ascribing to the leading and trailing edge the abscissae —1 and +1 re-
spectively. Denoting by v the velocity at infinity and by a the angle of at-
tack, supposed to be small, we write the x- and y-components of the velocity
vector w as F-j-w and av +v respectively, where u, v and av will be small
as compared with F. We denote the pressure by p and the density by p.
Then, by Bernoulli’s equation

=]
w2t p == const.

Neglecting quantities of the second order, we have
p(F2+ 2wF) = - 2(p - po). (1)

The quantity i>=—L/p (p—po) is called the acceleration potential, since the
acceleration equals grad o>

It is known that v-\-u—i(a.v-\-v) is an analytic function of z=x-H'y.
Since F is a constant (£F2+ wF) —(aF2-f-vv) is also an analytic function
of z. The functions €= (f F2T-wF), Tr=-(aF”~+rF) are thus seen to be con-
jugate harmonic functions.

Let the.mean camber line of the airfoil be given by the equation y=c(x),
(H~x™1; c(l) =c(—1) =0). The condition that this be part of a stream
line furnishes the condition

av fd
vV + u

= ¢'(x) along y = c(x), (-15*71).

* Received Oct. 28, 1942.

1This note has been prepared at the suggestion of Professor W. Prager while the author
was a fellow under the Program of Advanced Instruction and Research in Mechanics at Brown
University. The author is indebted to Dr. L. Bers for valuable advice.

2M. A. Biot, Some simplified, methods in airfoil theory, Journal of the Aeronautical Sci-
ences 9, 185-190, (1942).

*M. M. Munk, General theory of wing sections, N.A.C.A. Techn. Rep. No. 142 (1922).
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Neglecting quantities which are small of a higher order than the first, we
obtain

fr= —vx'(x) along y = r(a), (—1n~ N ). ()
Since v vanishes at infinity we have
k(o) = “ aVv2

As the mean camber line deviates but little from the segment —1¢ sg|
of the x-axis, we will not commit an appreciable error by fulfilling the condi-
tion (2) along this segment rather than along the mean camber line. We set

= ay?2 j_ rmi Ar2

where
S =avzand f2= —vax'(x)along —1" xg 1l y=0
and
Nej(co) = M 2(°°) = o.

i and the conjugate harmonic function $1 have been determined by Biot.
From i> the lift distribution due to the angle of attack can be obtained. In
the following we shall set a =0 and thus obtain the lift distribution due to
the curvature of the mean camber line. Within the framework of our linear
theory these two influences are additive.

In order to solve the boundary value problem for S4 we map the exterior
of the segment of the real axis between z ——1 and z=+ 1 onto the exterior
of the unit circle in the f plane by the conformal transformation

z = 1/20-+ 1/f).

The line segment (—1, 1) then is transformed into the circumference of the
unit circle and we have #=cos 6 (Fig. 1). Since a conformal transformation
takes a harmonic function into a harmonic function, our problem becomes
that of finding a harmonic function having the values —FV/(cos 6) on the
unit circle. If we assume T to be regular on the boundary, the solution is
given by the Poisson integral but the resulting function will not vanish at
infinity unless

2r

c'(cos 0)dd = 0.

Therefore, to satisfy the condition i(=0)=0 we introduce a singularity cor-
responding to a source-sink doublet at the leading edge.4 With the notations
of Fig. 1, we obtain

* 1t is natural to assume a singularity at the leading edge since our assumption about u
and v being small does not hold here.
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coso1 1 n-T r2_ i
S(FU5) = - 280V 2 -V [C(cosr) - «.1 dr.
ri 2t Jo rs+ 1 —2rcos (r —o)

This function clearly vanishes at infinity and will satisfy the other boundary
condition because

COS di 1

. — on the unit circle.
ri 7

I he Poisson integral used above is only legitimate if

fv<co-)iz
jo Joa [l - x21*

I his implies a condition on the rapidity with which c(e) tends to zero as
tends to + 1.

~ The values of the conjugate function 3(r, 9) on the boundary of the unit
circle are given by the formulas

singi 1 r*2
Nf>9 = —2aov2----—--—-1t-—-—-1  €'(cost) cot wr,
0]

where/ denotes the Cauchy principal value. The total lift L will be given by

*J. D. Tamarkin, “Theory of Fourier series,” Brown University, 1933, p. 110.
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-
1

p £ $(1, 6) sin ddd
Jo

= - 2apF2 f sin ddd
Jo
V2 r 2T . r*2r, r-d
+ — | sinddo c'(cos t) cot dr.
2ir Jo Ja 2

It is easy to calculate:

2r Sindi .
sinddd = ir.
S.

The second integral is evaluated by making a formal interchange of the order
of integration. This interchange can be easily justified. We then have:
* —_—

r 2t r*a r—d
— 1 sindad I ¢'(cosr) cot dr
2irJ o Jo 2
R A
c'(cosrjdr m—I sin ocot ¢0
0 2 J o
and since the function conjugate to sin 6 is —€0s 9

r 9
—_ sm 0 cot-=------= dd = —COSt.
2

Using this together with the definition of aowe obtain the lift

-
I

—pT2£J" €'(cosr)dr + J* c'(cosr) cos KN

r | X
- 2pv2 C(X) dx
[ - oXx2]12

S+ x 1 r1, N _ 1m
irriF5 ,,.-JJW -fr:
dx
- X2

= 2pF2

We have assumed that c(x) is such that lim,,i (c(x)(I —x)_v2=0. The under-

lined expression is Munk’s formula for the total lift, due to the curvature of
the wing.
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A similar procedure furnishes the moment m of the lift. It is given by

M =p f $(1, 0) coso sin ado
Jo

r 2t sinoi .
= —2pF2o0 | . C0s 6 SIN ddd
Jo rl
pF2 r 2 , r* 2, t—9
H I cososinads I  c'(cosr) cot dr.
2rr Jo Jo 2
Then
2r sin oi . T
X COS 0 Sin 9dd = ------ >
r\ 2
and
12t ) re2r t—9
— 1 cososinor 1 c'(cosy) cot dr
2tdd 0 2
1 [*x
= I c'(cosr) cos 2rdr
2 Jo
so that
r i fo2r i fo2r “
M = —pF2 I c'(cos D"TH I c'(cos r) cos 2ti/t
L 24«o 2 «o
Fi1 *2—1
= - 2PF2 cCH— — dx
J-i 1- 21w
xdx
= PFmE«(,)
[ - s212

which is Munk’s formula for the moment, due to the curvature of the wing.e

* After the manuscript of this paper had been completed (August 1942), H. J. Stewart
has published an analysis proceeding along similar lines: A simplified two-dimensional theory
of thin airfoils, Journal of the Aeronautical Sciences 9, 452-456 (Oct. 1942).
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CONCERNING THE ACCELERATION POTENTIAL*

By LIPMAN BERSf (Brown University)

The following lines aim at indicating the possibility of a more rigorous
approach to Prandtl’s method of the acceleration potential for two dimen-
sional flow.1

We consider a steady incompressible potential flow past an airfoil of in-
finite span. We assume the profile, P, to be given by

7 —x+ iy = z(s), 0N s g se. (P)

where the sense of increase of the arc length 5 corresponds to the counter-
clockwise direction and the sharp trailing edge, T, isgiven by T = z(0) =z (st).
The position of the stagnation point, s, near the nose of the airfoil shall be
given by s=z(ss). We also set

dz
ds
8 (S) being a continuous function of s and such that on the upper bank of the
wing near T, —Tr/2~R~ir/2.
We denote by u and v the velocity components in the a&and y directions
respectively and assume that

u=u->0  v= 0 atinfinity.
Then u —iv is an analytic function of z=x-\-iy and so is
+ jfr=log W— iv).

At 5 the function <f>+i'fr possesses a singularity. (There also is a singularity
at T, unless the angle there is 0.) i’+f'i’may be determined as a solution of
the following boundary value problem:

A To determine a one-valued analyticjunction T+t'K defined on the region
exterior to P and satisfying on P the boundary condition

* Received Jan. 22, 1943.

t This note has been written at the suggestion of Professor W. Prager. The author is
indebted to Professor K. 0. Friedrichs for criticism.

1Cf. L. Prandtl, Beitrag zur Theorie der tragenden Fléche, Zeitschrift f. ang. Math. u. Mech.
16, 360-361 (1936); Uber neuere Arbeiten zur Theorie der tragenden Fliche, Proc. Intern. Congress
for Appl. Mech., Cambridge, U.S.A., (1938), pp. 478-482, (See also: N.A.C.A. Technical
Memorandum No. 962); M. A. Biot, Some Simplified Methods in Airfoil Theory, Journ. of the
Aeronaut. Sei., 9, 185-190 (1942); W. C. Randels, A New Derivation of Munk's Formulae,
this Quarterly 1, 88 (1943).
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. (—Rs) for oi si js
B I|'[ —fs) for ss~ s~ st

(1)

as well as the condition
$=1logu, i =0, at 2= «, (2)
Equation (1) expresses that P is a streamline of the flow and takes care of
the Kutta-Joukowsky condition (no flowaround 1). The unknown position of
5 is uniquely determined by (2). For instance, let s=/(f) map |f| >1 con-

formally into the exterior of P, taking f= «intoz= andf=1lintoz=T.
Set f(e'e) —z[<t(8)], S=f(eiT). Then the condition (2) may be written in the

form
y\z[<T(e)]\dd = o.
0

r=2r L 20[a(O)]d6. ©)
TJO

In view of (1) we obtain

From $ we can calculate the pressure p. In fact, we have by Bernoulli's
equation

P + 5P(«2+ wv2 ~ P-0+ \ipul= po, (4)

where p is the density, , » the pressure at infinity and , othe stagnation
pressure. Since $ =log \u —iv\,

©)

If the wing is infinitely thin, say given by
X = X y = Y{x), - 1M x M (Pi)
the boundary value problem A takes the form:

B. To determine a one-valued analytic function T -H'F defined on the region
exterior to P\ and satisfying on Pi the boundary condition

rc tan y'(x’)on the upper bank of Pi,
arc tan v'{x) - r on the lower bank of Pi, —1 g x g xs

—arc tan y'(x) on the lower bank of Pi, xs S x”™ 1
(xsf-iv(xs) being the stagnation point) as well as the condition (2).

If the wing is very slightly curved and very slightly inclined, the above
rigorous but inconvenient treatment can be simplified as follows. The dis-
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tancebetween the leadingedge L = —\-\-iv{—1) and thestagnationpoint 5
is small ofsecond orderas compared with theangle ofattack. Infact, the
general character of the flow around pi will be similar to that of a flow
around a straight line, say P2

y = —x tana, —C0Ssa g x ™ COSa. (P2
By
1 1
z=fd 4.e-~2'af— (6)

the exterior of P2is mapped into |f|>5 and T is taken into \e~ia. s is taken
into —%e-~ia (this follows for instance from (3)). Therefore

S = — (fP*+ e~ua)
and, since in this case L = —e~'a, We have for small values of a
|[L- S|~ 2a2

Now, possesses singularities at L and at s. For small angles of
attack we may assume that we will make a very slight error if we replace
these two singularities by a single singularity situated at L. In order to
determine the character of this singularity, we again consider the flow around
Pi. The complexpotential, say for u = 1, isgiven by

w=f d_-4-'F b (t sina) log f @)

so that, by(e)and (7),
dw dw /dz fad*fe*
dz de/ d{f f+ \e~ia
and
$d- (T = log (f & heia) - log (f - ce~<d).
This is (in the f-plane) the complex potential of a source at —\e~'a and a
sink at —*a. For small values of a we may approximate this source-sink

system by a doublet with a vertical axis.
Thus we replace problem B by

C. To determine a one-valued analytic function 4 > d defined on the region
exterior to Pi, satisfying on Pi the boundary condition
$= —arc tan v'(x) (8)

as well as the condition (2) and possessing at L a singularity which assumes the
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form of a potential of a doublet with a vertical axis when the exterior of Pi is
mapped conformally into that of a circle (by a transformationf(z) witlif (°O) > O).

The actual solution of this problem is still difficult. Therefore we make use
of the fact that pi is closely approximated by the slit

y = 0, - 19 »g 1, (P3
and replace the domain of definition of by the exterior of p3 Then we
obtain the following boundary value problem:

D. To determine a one-valued analyticfunction T f-PI' defined on the region
exterior to P 3 satisfying on P 3condition (8)as well as condition (2) and possess-
ing at —1 a singularity which, in the %-plane determined by

assumes theform of a potential of a doublet with a vertical axis.

This problem can be easily solved. The presence of the singularity en-
ables us to satisfy both conditions, (2) and (8).

It remains to show that the method described above is identical with the
method of the acceleration potential, the latter usually being presented as
based upon the assumption

Ap = 0.

By virtue of our hypotheses p —p,, will be very small as compared to px —po
(except at the neighborhood of the leading edge), so that disregarding terms
of higher than first order in (f—pf)/(p., —pf) We have

log (po- p) = log (po- pf) + — —
PO ~ px
and, by (4) and (5),
p= — + const.

On the basis of the above considerations an estimationofthe error (due
to replacing the actual problem B first by C and then D)seemsto beboth
desirable and possible.

lor-»« rror-HW IK n
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