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T H E  A N T E N N A  P R O B L E M *

BY
LEO N B R IL L O U IN  

Brown University

1. Introduction. T he recent expansion of radio tow ards u ltra  sh o rt w aves has 
aroused a  new in terest in theoretical problem s of electro-m agnetism  and  especially 
in the problem  of an ten n a  oscillations and  rad ia tion  properties. T he type of approxi
m ate  discussions used b y  radio engineers for th e  case of long wave lengths is of little  
practical value for u ltra  sho rt waves, where a  m ore rigorous theory  is needed, because 
the  d iam eter of th e  an ten n a  wire can no longer be considered as very  sm all when 
com pared to  the  wave length.

Some older calculations on ra th e r th ick  an tennas have already  been found very 
useful. M . A braham ’s 1 discussion of the  v ibrations of very  long ellipsoids has often 
been referred to. A com plete discussion of proper v ibrations of ellipsoids of revolution 
m ay be found in M. B rillouin’s book Propagation de l ’électricité (H erm ann, Paris, 
1904, pp. 314-395) w ith num erical tables for all eccentricities, from the  sphere to 
ra th e r th in  ellipsoids. M ore recently, L. Page and  N. I. Adam s, and  subsequently  
R. M . R yder2 have discussed the free and forced oscillations of all types of pro late 
ellipsoids of revolution; while B arrow , 3 Schelkunoff,4 and others have trea ted  the  
problem  of th e  biconical an ten n a  and  its free or forced oscillations. M ie and  D ebye5 
had form erly discussed the  free v ibrations of the sphere. In m ost of these papers, the  
theo ry  was based on a com putation  of the  whole field d istribu tion  around  the  an ten n a  
w ith  the  proper boundary  conditions on the  surface of the  an tenna. For a perfect 
m etal, for instance, the  electric field m ust be orthogonal to  the m etal surface.

T he aim  of the present paper is to  em phasize the practical im portance of ano ther 
m ethod based on the  use of re ta rded  potentials. T he principle of the procedure was 
indicated a  long tim e ago , 6 and  the m ethod was recently  applied b y  H allen and

* Received M ay 3, 1943. Part of a research sponsored by the Federal T el. and Radio Laboratories, 
N ew  York.

1 M . Abraham, Ann. d. Physik, 66, 435 (1898); M ath. Ann. 52, 81 (1899).
! L. Page and N . I. Adams, Phys. Rev. 53, 819 (1938); R . M . Ryder, Appl. Phys. 13, 327 (1942).
3 W. L. Barrow, L. J. Chu, J. J. Jansen, Proc. I .R .E ., 27, 769 (1939).
* S. A. Schelkunoff, Trans. A .I.E .E ., 57, 744 (1938); Proc. I.R .E ., 29, 493 (1941).
5 G. M ie, Ann. d. Phys., 25, 377 (1908); P. Debye, Ann. d. Physik, 30, 59 (1909).
* H. C. Pocklington, Proc. Cambridge Phil. Soc., 9, 324 (1897); Lord Rayleigh, Proc. Roy. Soc., 

Ser. A, 87, 193 (1912); C. W. Oseen, Ark. f. M at. Astr. Fysik, 9, No. 12 (1913); L. Brillouin, Radio-élec
tricité, 3, 147 (1922).
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Ronold King7 to  the actual com putation of an tennas. T he finite conductiv ity  of a 
real m etal can be taken in to  account, b u t there are still a  few basic questions to  be 
discussed, and  these will appear m ore clearly in the problem  of a perfect m etal w ith 
infinite conductiv ity .

T he principle of the m ethod is the following: let us first assum e a very  th in  wire 
and  call 5 a d istance m easured along the wire. T he problem  is to  find the curren t 
d istribution , I (s ,  t ), along the an tenna wire. To such a current, I ,  there corresponds a 
charge density, a(s, t), b y  the condition of conservation of electricity

da d l  

dt os

or, if we assum e the following tim e dependence I(s ,  t) =  I{s)eiui,
i  d l

a(s, t) =  —  — e“ ‘. (2)
CO ds

Here, real co m eans sustained oscillations; while proper oscillations of the an tenna 
a rray  will yield complex proper values co, the im aginary p a r t corresponding to  rad ia
tive dam ping.

An a rb itra ry  cu rren t d istribu tion  (1), creates an electrom agnetic field in the whole 
space which satisfies M axwell’s equations. T his field can be readily com puted by  the 
method o f retarded potentials. In  particu lar, the field on the surface of the m etal wire 
can be obtained in this w ay; and  one m ay then  w rite the necessary boundary  condi
tion, th a t  this electric field shall be orthogonal to  the surface. This yields an integro- 
differential equation which is perfectly rigorous and whose solution is the actual cu r
ren t d istribu tion  required.

Using re tarded  potentials, one is certain  to  obtain , a t  a large distance, a field 
d istribu tion  corresponding to  a w ave spreading ou t of the  an tenna . I t  should be  em 
phasized, however, th a t  the  sam e m ethod can not always be used for the com putation 
of oscillations inside a closed tank resonator, where the oscillations are of the  type of 
stand ing  waves and have no outside rad iation  (advanced potentials m ay  som etimes 
be needed too).

T he proper values of th is integral equation give the proper frequencies (including 
dam ping) of the  an tenna . T he sam e m ethod can be used to  stu d y  forced vibrations, 
if one assum es an ou ter electric field acting  on the  an tenna (receiving an tenna) or a 
certain  electrom otive force inserted in the  circuit (transm itting  an tenna). In the  sec
ond case, one m ust take in to  account, for the com putation  of th e  re tarded  potentials, 
the  field rad ia ted  from a dipole representing the  electrom otive force.

L et us discuss the free v ibrations of an  an tenna . T he field a t  a po in t P  is given by  
the  well known form ulae:

f dV  dFz 1 C <**ds
■ -  ’ Íd x  dt J  r

v '
MoH x =  —-------- —  ) • • • > • • • ;  F — mo J '

dFz dFv .. F i*ds

dy  dz

7 E . Hallen, Uppsala U niv. Arsskrift 1930, No. 1; N ova Acta, Uppsala, Ser. 4, 11, No. 4 (1938); 
L. V. King, Trans. Roy. Soc. London, 236, 381 (1937); Ronold K ing and F. G. Blake, Proc. I.R .E ., 30, 
335 (1942).
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h, electric field; FI, m agnetic field; V, scalar po ten tia l; F, vector po ten tia l; r d istance
from  the  elem ent ds on the circuit to  the poin t P  where the field is observed; <r*, i* 
charge and the  curren t a t  the  tim e t — r /c \  e0, ¡j.0 dielectric constan t and perm eability  
in vacuum , in non-rationalized units (rationalized units in troduce a  1/ 47T factor in 
the  form ulae for bo th  potentials). L et us assum e an an tenna  consisting of a stra ig h t 
wire along the z axis, extending from z =  0 to  z =  /. We need the z com ponent, h„ of 
the electric field along the wire and  m ust w rite th a t  th is longitudinal com ponent 
van ishes:

T he field a t  po in t z is the  resu lt of integration over all the points, z ', of the  an ten n a . 
Finally, we obtain  the  condition

This is our fundam ental integro-differential equation for the s tra ig h t an tenna .
One difficulty appears im m ediately: G is infinite for r = 0, z — z ' .  This m eans th a t  

one m ust take into account the radius of the wire; b u t when this radius, a, is explicitly 
introduced in the  calculation, there is an additional condition to  be w ritten  for bo th  
ends of the  wire. H ere m ost au tho rs do n o t a tte m p t to  w rite rigorous conditions; they  
are satisfied w ith approxim ations corresponding to  the  problem  of very  th in  wires. 
T hey  neglect a / l  b u t keep term s in Q-1, ft-2, • • • where

Such a  procedure is suggested b y  the sim ilar approxim ations used b y  M . A braham  in 
his discussion of ellipsoids. I t  should work correctly  when Q > 14 , which m eans 
/ / a  > 1000 , b u t could certain ly  n o t be relied upon for th icker wires.

Furtherm ore, Oseen and  Hallen bo th  use the following assum ptions:

T he first condition, A, is n o t quite correct, since there m ust be  a  sm all cu rren t a t  both  
ends in order to  charge and  discharge the  term inal capacities. I t  is only for the  case 
of a hollow cylinder th a t  the cu rren t would be exactly  zero a t  bo th  ends; and this 
hollow pipe is a very  special case, as shall be seen later.

T he second assum ption, B, is explained differently b y  bo th  w riters. Oseen as
sum es a current f low ing along the ax is  of the  cylindrical wire and  com putes the field hz, 
Eq. (5), on the  surface. H ence his boundary  condition (5) is right, b u t  th e  assum p

 ̂ _  dV dFz 

dz dt
i* =  I ( z ,)e '<-Ut kT\  k =  —  =  co\/eoMo ,

c
(4)

dl(z ')  dG(r) 

dz’ dz
e-ikr

-  -  ¿2/(z')G(r) J  dz' =  0 

r =  | z — s ' | .
(5)

putting G(r) =
r

I
fi =  2 log — (6)

a

A) 7(0) =  0, 1(1) =  0, current zero a t both ends;

B) r =  [(z -  z 'Y  +  a2]1' 2.
(7)
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tion  ab o u t the  axial cu rren t is certain ly  wrong. Indeed, owing to  the skin effect, the 
actual electric^current, in a perfect conductor, flows along the surface. Oseen assum es 
th a t  the  field created by  this ac tual superficial cu rren t could be obtained b y  a ficti
tious axial current. T his m ay be right for very th in  wires, b u t the assum ption is ob
viously wrong for th ick  wires or for cylinders of large radius. M oreover, it  cannot 
be proved th a t the  fictitious axial cu rren t satisfies the first assum ption A. So Oseen 
hard ly  justifies the use of bo th  assum ptions A and  B.

Hallen takes a different po in t of view. He s ta rts  from the well-known property  
th a t  the cu rren t flows along the surface; b u t instead of com puting the field on the 
surface of the  sam e cylinder, he takes the hz field along the axis. This field m ust 
certain ly  vanish; and  from th is fact, Eqs. (5) and (7 B) follow. This necessary condi
tion, however, is no t sufficient. One m ay very  well have no longitudinal field along 
the axis and still find a longitudinal field on the surface of the cylinder. These approxi
m ations would probably  be all righ t for very  th in  wires; b u t they  can certain ly  n o t be 
used for th ick  wires, where B is wrong and A m ust be replaced b y  a m ore elaborate 
condition, in order to  take account of the electric curren ts and  charges on the  flat 
ends of the  cylinder.

2 . Complete sta tem en t for a cylindrical wire of finite rad ius. T he an tenna  is a 
solid cylinder of radius a  and  height I. T he oscillations stud ied  are those of cylindrical

sym m etry  where the curren t is equally d istribu ted  
around the cylinder and  flows along the  surface. 7(z', t) 
is the to ta l cu rren t a t  z ' , and  (1/27t) 7(z', t)d<p is the  
cu rren t through a small sector dtp (Fig. 1); hence, 
<r(z', t )d z ' , Eqs. (1), (2), is the charge per length d z ' , all 
around the cylinder, and ( \ / 2 tv) adz'dtp the charge for a 
small angle dtp. For the flat top of th e  cylinder (z =  0> we 
call /((p) the to ta l radial cu rren t crossing a circle of 
radius p; while cri(p)dp represents the  electric charge 
between p and p + d p :

dtti d l i  i  d l i

dt dp ic dp

Sim ilar definitions apply  for the bo ttom  of the  cylinder 
(z =  0 ) w ith a cu rren t 70(p) and  charge a 0(p)dp. T he
positive signs correspond to  the  directions indicated
b y  arrows in Fig. 1. T he conditions for con tinu ity  of 
the cu rren t around the  corners, a t  z =  0 and z  — l read

I f ia )  =  -  /( /) , Jo(o) =  7(0). (9)

L et us first s tu d y  the fields and  poten tials at a point 
P (z) located on the cylindrical surface. T he potentials 

due to  currents and  charges along the cylinder are the following (e,at factors have 
been d ro p p ed ):

i  r l r 2r dl{z') e~xkr dp

F i g . 1 .



T he currents along the  cylinder flow vertically ; hence, there are no horizontal com
ponents Fcx, Fcy of the vector potential. T he distance r is shown in Fig. 1.

On the flat top  of the cylinder, the cu rren t flows radially  in the horizontal plane; 
hence, the  F tz com ponent is zero, b u t we find horizontal com ponents, F u  and  Fiy, 
of the vector po ten tial:
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/. a  p J T  g- , k r

I / ¡ ( p )  cos <p —  dp,
o ^ o  f  ' 2tt

/ .a ~ 2r e-ikr
I-----/ ¡ ( p ) ------- sin <p — dp =  0 .

o J  n T 2 tt

( 11)

T he transverse com ponents F !v, for a  po in t P  in the  x-s-plane, is obviously zero by 
sym m etry:

i  r  r * *  d l l  e~ ikT dip
V fa )  = ----  /  -----------^ d p  (12)

€oCO J  0 J  0 dp r  Z7T

and sim ilar form ulae for the poten tials F 0x and F 0 due to  curren ts and  charges on the  
bo ttom  of the  cylinder.

, T he tp in tegrals are of tw o fundam ental types which will now
j be explained in connection w ith Fig. 2.

r 2 =  (z -  s ' ) 2 +  P2 +  p ' 2 -  2 pp' cos <p, (13)

^ 2 t  g—ikr
Gk{p, p', z — s'

Fig. 2.

1 C e~x
' ) = -   dip, (14)

2x J  o f

1 r  2r e~ikr
C*(p, p', s — s') =  —  I  cos ipe/p. (15)

27T J  o r

Gk and Ck are tw o functions which will be discussed more fully in section 5. T hey  are 
sym m etrical in p, p ' and  even functions of s —s '. W ith these functions, our form ulae 
(10, 11, 12) read

1 d li F d l
F e(z) = ----  I — Gk(a, p , z  — z')dz',

ioCO J  0 oz

F„(s) =  po f  I{z')Gk{a, p, z — s')<fz', 
v o

i  r a d h
Vi(z) = -------- - ~ - G k{ p ' , p , z - l ) d p ' ,

^ 0

F i3;(z) =  po f  hC k{p ',  p, z — l)dp',
J  0

(16)
° a /;



where p = a  for the  po in t P (z) on the cylinder.
W e now are in a position to  com pute the longitudinal field lit (z) a t  the point P ,  

according to  Eqs. (4) and (16).

f _  dVc dFcz d V o _  dVi 

dz dt dz dz
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€qo) r  * r  d i  ^ n
 ht (z) =  I ----------Gk(a, a, z — z') +  F/(z')G i.(a, a, z — z') \iz '

i  J  o L dz' dz J

/’° d l i  d r a dlo d
— 7 — Gk{p', cl ,  z — l)dp' +  I — 7 — Gk{p i ci, z)dp =  0 .

o dp dz J  o dp dz

(17)

T his is the first integral equation of the  problem  which corresponds to  Eq. (5) for 
the simplified example of a  th in  wire. I t  should be noticed im m ediately th a t  in the 
first integral

a a
— G k(a ,a ,z  — z') =  Gk(a, a, s — s'). (17a)
dz dz'

T his transform ation will be very useful, afterw ards, in applying in tegration b y  parts.
A nother integral equation is ob tained  by w riting the fact th a t  the  horizontal field 

com ponent is zero a t  a po int P (p ) on the top of the cylinder:

dVc dVi d V 0 dF,x dF0z a a
l i x(p )   --------------------------------------------------------> —  =  — >

d x  dx  d x  dt dt d x  dp

1 d i  a

(18)

€qü) r L d i  d
 h x{p) =  — 7 — Gk(a, p, I — z')dz'

i J o dz dp

r  a h  a r a d i 0 a
+  I — 7 — Gk(pr, p , 0)dp' +  I — ■— Gk(p , p, l)dp'

J  0 op op j  0 Op op

+  f  * |/i(p ')c*(p ', p, 0) +  h{p')Ck{p', p, 1 ) W  =  0 .
J  o

A sim ilar equation could be w ritten  for the  bo ttom  of the  cylinder; b u t  this is actually  
no t needed, since it reduces to  (18) by  reason of sym m etry .

T he proper oscillations of the  cylinder can be divided into two groups:

sym m etrical oscillations I i (p ' )  = I 0{p'), 1(1 —z) =  —I(z) ,

d l ( l  -  z) _  a/(z)

dz dz ’
(19)

antisym m etrical oscillations J j(p ')  =  — Io(p ') ,  I ( l  — z ) —I(z ) ,

d l ( l  -  z) a/(z)

dz dz

These two types will be discussed together in th e  following form ulae. T he upper sign 
corresponds to  sym m etrical and  the  lower sign to  an tisym m etrical vibrations.
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3. D iscussion of the  first in tegral equation (17). W ave propagation along the  
cylinder. E quation  (17) can now be w ritten  in the following w ay:

r ‘ r  d l  d “I
   — ~Gk(,a, a, z — z') +  k2I(z ')Gk(a, a, z — z') dz'

J  o L dz dz J

r a d h  d r
=  -  7 7 - [G*(p'. a , z - l )  ±  Gk{p', a, z)]dP' =  R ( h ,  z). (20)

J  o dp dz

T he left hand  integral contains only vertical currents, I { z ' ) ,  along the  cylindrical 
b oundary ; while the  righ t han d  term s, R ,  show the  coupling betw een these vertical 
currents and the currents or charges on bo th  flat ends of the  cylinder.

L et us in tegrate  the left hand  integral b y  parts , s ta rtin g  from dG k/ d z ' :

r l r d 2I  1 d l
—— +  m { z ' )  \Gk(a, a, z — z')dz' =  — ~ G k(a, a, z — z') 

do  Ldz 2 J  dz'

z ' - l

+  R ( h ,  Z)
z '- 0

=  ( —y )  [Gk(a, a, z — I) + Gk(a, a, z)] +  R ( h ,  z). (21)
\ d z  / z'-i

This new form ula has been obtained w ithou t any approxim ations. L e t us now m ake a 
few sim plifying assum ptions, in order to  get a  b e tte r  understanding  of the  m eaning of 
th is equation.

For a very th in  and  long voire, we m ay neglect the i?(/;,z) term , as bo th  charges 
and  currents on the flat term inals become very  small. Furtherm ore , a t  a  certain  dis
tance from the  term inals, Gk(a, a, z — l) and  Gk(a, a, z) are also very  small, since Gk 
decreases approxim ately  like 1/ r  for large distances. T he only im portan t term  is th e  
one on the left, which has the obvious solution

d2I  co 2 T
—  +  k2I{z ')  =  0 , k  =  -  =  -  • (22)
d z 2 c X

T his shows wave propagation  w ith the  velocity of light along the  m ajor p a r t  of the  
wire. T his result is obtained under the  assum ption /iS>a and  w ith o u t an y  restriction 
ab o u t the wave length X, which can be of the order a  or even sm aller; b u t it holds 
only for the m edium  p a r t  of the wire, far aw ay from bo th  ends . 8

T his shows the connection w ith the usual e lem entary  theory  of an tennas. T he 
classical discussion8 s ta rts  from the  assum ption of sinusoidal standing  waves along 
the  wire, which cancels ou t com pletely th e  left hand  integral in equation  (21). Then, 
using this cu rren t d istribu tion , the longitudinal field along the wire m ay be co m p u ted ; 
and according to  (17) and  (21) i t  comes o u t as

h,(z) =  i ( — [Gk{a, a, z -  I) + Gk(a, a, z)] +  R ( h ,  z ) \ . (23)
e0co ( \ o z  )

8 It should be emphasized, here, that our discussion is limited to  the case of oscillations w ith cylindri
cal sym m etry (see beginning of Section 2). Vibrations with nodal lines parallel to  the axis are not included.

* L. Brillouin, Radio-électricité, loc. cit.
J. A. Stratton, Electromagnetic theory, M cGraw-Hill, N ew  York, 1941, pp. 455-460. Stratton uses 

rational units, hence a 1 / 4 t  factor before the integrals, and he uses the opposite sign before i.
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This plays the  role of a small additional average im pedance Z  along the an tenna , 
which can be defined by

The real p a r t  of Z  is called the radiation resistance, Z r, and  the expression Z rI~ repre
sents the  energy, W ,  rad ia ted  a t  large d istance (see S tra tto n , p. 458), from which the 
dam ping of the  an ten n a  oscillations m ay be com puted. For a  very  th in  wire, one m ay 
neglect the term  R ( h ,  z ), which represents the  role played by  the  currents and  charges 
on both  flat term inals of the wire; and one m ay take for Gk the  expression (1 / r ) e ~ ikT 
as in Eq. (5). W ith these approxim ations, our equation (23) becomes identical with 
S tra tto n ’s Eq. (76a), p. 457.

I t  should be noticed th a t  Eq. (23) is physically wrong, as we know in advance 
th a t  the  longitudinal electric field along the wire is zero. These equations (23) and  
(2.3a) m erely represent a  second approxim ation in a system  of successive approxim a
tions s ta rtin g  from (22). An a tte m p t will be m ade, in the next section, to  build  up a 
consistent system  of approxim ations of sim ilar s tructure .

R eturn ing  now to Eq. (20), we m ay try  ano ther in tegration by  parts , s ta rtin g  from 
d l / d z ' ,  which yields

L et us again discuss this equation for a very th in  wire. T he term  R ( I i ,  z) represents 
th e  role of bo th  term inals and m ay be neglected, I ( z ' )  is zero a t  bo th  ends (z' =  0 , 
z ' = l ) ,  and  consequently all the  righ t hand  term s are zero. T his transform ation is 
very closely connected w ith the  one used b y  Schelkunoff and F eldm an10 in a recent 
paper. These au thors discuss the  problem  of forced v ibrations in a  transm ission an 
tenna, instead of the free v ibrations which we have in m ind. T hey  use bo th  approxi
m ations (7A) and (7B) of Oseen and  Hallen and  take  for G the  simplified expression 
(l / r ) e ~ikr, Eq. (5). These approxim ations m ay  app ly  for a  very  th in  wire. F u rth e r
more, th ey  sp lit the  ( l / r ) e - iir  function into its real and im aginary p arts  before per
form ing the  in tegration  b y  parts . T h e ir final result is ac tua lly  identical w ith the  one 
derived from the elem entary  theory  and  Eq. (23). This is no t surprising, as both  
m ethods are very  closely connected.

4. Principle of a m ethod of successive approxim ations. As s ta ted  in the preceding 
section, i t  seems possible to  build  up a m ethod of successive approxim ations in order 
to  solve Eq. (21) along a w ay ra th e r sim ilar to  the  one followed in the  classical ele
m entary  discussion.

F irs t of all, we m ay split the  integro-differential equation  (21) into an  integral 
equation and  a differential equation, b y  w riting:

o
(23a)

d
=  7(z') —  Gk(a, a, z -  s') +  R ( h ,  z). (24)

10 S. A. Schelkunoff and C. B. Feldm an, Proc. I.R .E ., 30, 511 (1942).
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f  F(z')Gk(a, a, z — z')dz' =  R'(z),  (25)
J  o

where R '{z )  = ( d I / d z /)1’„i[Gk(a, a, z — l ) + G k(a, a, z )]+ 2?(Ji, z),

^ - + m ( z ' ) ^ F { z ' ) .  (26)
dz 2

T he first equation is an integral equation of the first kind, with the  kernel G*(z — z '). 
Its  solution can be w ritten  with the help of the resolving kernel J J t ( z '—z"), which 
satisfies the following conditions

f l Gk(z -  z ' )H k{z' -  z")dz' =  3(z -  z"), (27)
j  0

F(z') = f  ‘ R '(z")Hk(z' -  z")dz", (28)
*7 o

where 8 m eans a delta  function. Hence, th e  first question is to build up the resolving
kernel H k, a problem  for which some general m ethods have been developed. This
being done, we are left with Eq. (26) to which we apply  the usual Rayleigh-Schrod- 
inger m ethod of successive approxim ations. L et us first notice th a t the Gk function 
becomes very large for z = z '  which, according to  (27), m eans th a t  I l k  is small. T hus 
we m ay rew rite (26) and  s ta te  explicitly by  an e coefficient the sm allness of the righ t 
hand  term :

a2/
 b k2I{z')  =  eV{z'), F  =  tip. (26a)
dz' 2

T hen we use the following expansions:

/(s ')  =  /„(z') +  th { z ' )  +  62/ 2 ( z ' )  

2 2 
k 2  =  ¿ 0  +  e x i  +  «  X 2  ■ •  •

(29)

and obtain the successive approxim ations:

d2I a 2
—  + .*o /°  =  °,

c)2/
— ~  +  k l h  =  -  X x h  +  V , (3 0 )
dz -

d2I 2 2
+  ¿ 0̂ 2 =  — X 2I0  — X \ I \  ‘ ‘ ‘

dz'2

Jo is a sinusoidal function, as in the elem entary  trea tm en t,

Jo =  A  sin ¿0(s' +  f)

where the f  constan t is necessary in order to give a small b u t finite value for the 
curren t Jo a t  the bo ttom  of the cylinder (z' =  0). T his is needed for the  junction  w ith
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the currents on the  lower flat end of the cylinder. By sym m etry , the correction a t  the 
upper end m ust also be f  ; hence,

A 2t
ko (I +  2f) =  mr, I -f- =  n  — , ko = — • (31)

2 Xo

T he constan t f  will be determ ined b y  m eans of the second integral equation (18) 
for the flat term inals. Now let us tu rn  to  the second equation (30). As is well known,
it  is necessary for the righ t hand term  to be orthogonal to the solution of the hom o
geneous equation, which means

' i
sin k0(z' +  f) [— Xiko +  <p\dz' =  0

o
or ;

^X i f  sin2 ko(z' +  l )dz ' = j <p sin k0(z' +  i ) d z \  (32)
^  0 ^  0

/j  0

T his yields the correction x i to the proper value k20. I t  is readily  seen th a t equation 
(32) is very  sim ilar to  the relation (23a) used in the elem entary theory  to  obtain  the 
average “rad iation  resistance” of the an tenna  and thence the dam ping coefficient in 
the proper oscillations. T he im portan t point, however, is th a t  equation (32) contains 
<p, which is no t R '  b u t is com puted from R '  by  m eans of (28)-(26a).

Once xi is obtained, the second equation (30) can be solved; then X2 is first com
pu ted  by  a sim ilar orthogonality  condition, and so on. Hence, the whole procedure 
should yield a solution along lines parallel to  the elem entary trea tm en t and show 
how far the  usual form ulae can be trusted .

W e m ay already go one step  fu rther and w rite the general expression of the  func
tion F (z ')  on the basis of Eqs. (25) and  (27):

* p V )  = F(s') =  f  1 R'{z")IIk{z' -  z")dz"
J  o

=  [5(3' - I )  + 5(3') ]  +  f  ‘ R(di, z" )H k{z' -  z")dz". (33)
W / . ' - i  do

T he 5 functions appear here au tom atically , because Gk is an even function of (s — z'),
and so is H k for z '  —z " ; hence, the integral in (28) comes out as

J Gk{z" -  l ) I I k{z' -  z")dz" =  J Gk(l -  z")H k{z'r -  z')dz" 5 V  -  I)

according to (27).
We can use the new expression (28) for the discussion of some simplified examples. 

L et us s ta r t  with the wire of vanishing radius. T he whole R ( I i ,  z") term , which repre
sents the  term inal effect, drops out ;  and  we are left with an  equation

~  +  P I ( z ' )  = F{z') =  ( ^ j )  [5(3' - I )  + 5(s ') ]. (34)
OZ L \OZ / z'„l

from (26) an d  (28). T he condition on both  term inals is obviously 7(0) =  /( /)  =  0; 
hence f  =  0 in (31), which results in the following equation:
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I  a =  A sin k0z', kQ = mr/I. (35)

n  =  2m +  l:  sym m etrical oscillation, s i gn— = (  —l ) n in bracket, 
n  = 2m: antisym m etrical oscillation, sign +  = ( —1)" in bracket.

ep(z') =  F (z') = Ako  [( — l ) ’‘5(z' — ¿) +  5(z')] as cos k 0l =  ( — 1)" and Eq. (32) reduces to

1
exi — =  h

2

= ko [( l ) n sin ( k 0l) -f- sin (£0O)] =  0 (36)

which gives no dam ping a t  all. T he physical explanation is the following: a finite 
am ount of energy is radiated  per second; b u t this does n o t mean any  dam ping of the 
oscillations, because the energy accum ulated in the field around the wire is infinite. 
As a m a tte r of fact, both  electric and m agnetic fields are infinite as 1 /r  near the wire 
of infinitely small radius. T he square of the field is of the order 1/ r 2; and the energy is 
obtained by  m ultiplying b y  2-irr dr and in tegrating  with respect to r, which gives 
logarithm ic infinite term s. The situation  is sim ilar to  the  one obtained in a circuit 
w ith infinite L, zero capacity , and finite resistance R,  which yields a negligible dam p
ing coefficient R /2 L .

This shows the difficulties involved in the assum ption (7A), as p u t forth  by  Oseen 
and H allen. W hen such a condition is used in the rigorous Eqs. (25), (26), i t  leads 
directly  to  (36) and yields practically  no dam ping.

Such is also the case for a hollow cylinder. H ere again, there is no end effect, no 
term inals, no R  term , and condition (7A) holds good. T he whole procedure from (34) 
to (36) repeats itself and shows again no dam ping. Of course, the Gk and  H k functions 
would differ m aterially  in both  cases; b u t these 
functions have been elim inated from Eq. (34) and 
finally drop out.

T he explanation is sim ilar to the one given for 
the thin wire, b u t no t quite so obvious. T he p rob 
lem of a hollow cylinder of indefinitely small th ick
ness m ust be considered as the lim it of a  cylinder 
of finite wall thickness, as represented in Fig. 3.
On such a cylinder, one should take into account, 
separately , a cu rren t I i  flowing along the external 
surface of the  cylinder and ano ther cu rren t /,• along 
the in terna l surface. A t the  lim it, these two cur
rents merge into a single one, for which the theory  
indicates a sinusoidal d istribution . Hence, for a 
cylinder of finite thickness, there certain ly  is a 
cu rren t flowing around the edge of the cylinder, as shown in Fig. 3. On this edge,
one m ust also consider the electric charge; and this results in an accum ulation of
electric fields and of electro-m agnetic energy near the cylinder, while the energy rad i
a ted  per second a t  large d istance rem ains finite. Hence the dam ping becomes negligible.

T he result is general and  applies for any  hollow cylinder of indefinitely small th ick 
ness, w hatever the shape of the cross-section m ight be. T he field d istribu tion  inside

\ \ / X "
E l e c t r i c

I« Ix Ii

F i e l d

Ie

C U R R E N T S

Y V\ y\ s

F i g . 3 .

f  [(— l ) ’‘3(z' — l) +  5(z')] sin koz'dz' 
j  0



the cylinder should correspond to a superposition of E 0 waves (transverse m agnetic) 
and should show a strong decay from both  ends down to the m iddle p art of the cylinder, 
especially when the d iam eter of the cylinder is small com pared to  the wave length.

These tw o simple examples show the im portance of the  role played b y  the shape of 
bo th  term inals and the danger of using assum ptions like (7A) or (7B).

5. Som e im portant form ulae. We have in troduced in (14), (15) two fundam ental 
functions:

1 r  2x e~ikr
Gk(p, p ' ,  f )  =  —  I  dip, f  =  s  — z' ,

2ir J  o r
• 2r p—ikr
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1  /"• 2 r g - . t r

Ck(p, p \  f) =  —  I  COS <pdip,
2ir J  o r

(37)

r2 =  Î 2 +  P2 +  p'2 — 2 pp' cos tp = q — 2p cos <p, }  à  2 p,

q = 2 +  P2 +  p'2, p =  PP'.

From  these relations, we see th a t  Gk and  Ck depend upon p, p', f  only through the 
two com binations p  and q. Furtherm ore, it  is easily proved th a t

9Gk dCk 1 r 2x 1 d f  e~ikr\
■— - =  — 2 ----  =  — — I — — ( ------- ) cos ipdip. (38)
dp dq 2ir J  o r d r \  r /

Ck and Gk being both  zero a t  infinity, th is can be w ritten  as

dGk

2 J  q dpc * = ~~ f  ~7~ dq- (39)2 J  0

These integrals are closely connected with the com plete elliptic integrals K  and D ,11 
as is seen for a th in  wire when the radius a  is small com pared.w ith the  wave length 
(ka small). T he following expansions can be used:

r =  \ / q  — 2p  cos ip =  \ / q  +  [ \ /q  — 2p cos tp — v 7? ]
r ,  . (40)

e~'kr =  e~ikVq{1 — iklxG} — 2p cos tp — \ / q\ ■ • ■ J.

T he b racket [ ] is of the order of m agnitude of a, and  its p roduct when m ultiplied 
b y  k  is sm all:

- (  1 p 2r 1 +  i k \ / q  )
Gk =  e~ik'/q<,— I  ------------------ —̂  dtp — i k  ■ • ■ >

i.27r J  o [? — 2p cos <p]112 )

_ ( 1 r 1 +  i k \ / q  )
Ck = e~ 'k q\  — I  ------------------  —  cos ipdip — 0 +  • • • z •

(2 it J  o [q — 2p cos ^>]1/2 J

We m ay w rite

q — 2p cos tp = (q +  2p )( l  — k2 sin2 yp)

4 p ip — ir
k2 = --------- , yp = ----------

q +  2p 2
Hence

(41)

( 4 2 )

11 E . Jahnke and F. Em de, Tables of functions, 2nd ed., Springer, Berlin, 1933, pp. 127-145.
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f 2r d>p 2 Ç Tl2 -—  #  _ w  ^

J o  [g -  2p cos *]«* _  [g +  2 * ]1/2 73 * • “ =  r ' ^[g -  2p cos g»]1' 2 [g +  2/>]>'2 J _ r/2 [l -  k2 sin2 ^ ] 1' 2 [g +  2p]'l* 

and

L  7T

1 +  iÆ\/g 

[? +  2p]112
Gk = e - ik^  I —   A(k) -  ik (43)

W hen ¿'—>0, the variables q and p  re ta in  finite values; b u t when a t  the  sam e tim e 
p = p ' ,  q = 2p, then  k is 1 and K  is logarithm ically  infinite. This could easily be fore
seen and does no t m ake any  special trouble in the  integrations. T he second integral C k 
is transform ed in a sim ilar w ay:

/■ cos >{>d<p 2 r 1/2 2 sin2 p  — 1

o [g — 2p cos .p]1' 2 ~  [g +  2¿ j 1' 2 J_ , /2 [l -  k2 sin2 * ]» '2 ^

4
=  7--------- r ~  2D M  -  # (* )]>  (44)[g +  2p]112 1 J

_ C 2 1 +  i k y /q  . . )
C , -  *-**•■• { - • f i n «  - * ( « ) ! • • • } .

These approxim ate formulae should be used for a th in  wire and represent.the first two
term s in an expansion when a / A  is sm all b u t n o t negligible. For the fundam ental
v ibration, X is of the order of 21 (twice the  length of the  an tenna). Hence using the 
expansions (43), (44), one should be able to  go one step  fu rther th an  Oseen or H allen, 
who com pletely neglected a / l  and were satisfied w ith keeping term s in 12-1, 12~2, where

I
12 =  2 log — • (6a)

a

This param eter comes in, when in tegrations are perform ed on D  and  K  for k near 1,

9 -  2 P f 2 +  (p -  p' ) 2
g +  2p f 2 +  (p +  p ' ) 2

small; f  =  z — z'.

This happens when z and  s ' are nearly  equal for two points on the cylindrical surface 
p = p '  = a. I t  happens again for two points on one of the flat term inals, when s =  z ' =  0 
or /, and p is nearly  p '. In  such cases, K  and D  are represented b y  the following ex
pansions (Jahnke-E m de, p. 145)

A -  1
K  = A -\------------ Kn  • • • , D =  A — 1 +  f(A -  £)«'2

4

4 (z -  z' ) 2 +  (p -  p' ) 2
A =  log — =  log 4 — i  log k' 2 =  log 4 — \  lo g ------------------------------

(* -  s' ) 2 +  (p +  p' ) 2

(45)

In tegration  and averaging process carried o u t on A will in troduce the  p aram eter 12.
Finally, let us discuss the dependence on k of bo th  functions Gk and Ck• From  

the  definition itself (37), it  is seen th a t bo th  functions can be expressed in term s of 
G u  C i  corresponding to  £ =  1,



214 L E O N  B R I L L O U I N

k r  e~ikT
Gk =  — I  d<p =  kGi(kr) hence:

2ir J  kr

Gk(p, p ' ,  f) =  kGi(kp, V ,  ¿f) =  kGi(k~q, k2p ) ,

C k(p , p ', f )  =  « 7 i ( * p ,  V ,  * r ) =  ¿C riU 2?, ¿ V ) .

T he sam e decomposition can be seen from the expansions (41).
6 . Conclusions. T he preceding sections show clearly the im portance of the role 

p layed by  both  end-surfaces, whose exact shape should be taken  into consideration 
very  carefully. W e have shown, on the example of plane term inations, th a t  the p rob
lem consists in finding two unknown curren t d istributions, one for the cylindrical 
surface and one for the (sym m etrical) term inal surfaces, and this requires solving 
two integral equations. This is the essential difference from the problem s of the proper 
oscillations of one closed algebraic surface, such as an  ellipsoid. For plane term ina
tions, a com plete stu d y  of equations (17) and  (18) should be affected, and the suc
cessive approxim ations should be worked ou t sim ultaneously on both  equations. 
O ther shapes of end-surfaces, like half spherical or half ellipsoidal term inals, would 
certain ly  yield quite different results. A discussion of this problem  is n o t a ttem p ted  in 
the present paper, the aim  of which was m erely to  offer a precise sta tem en t of the 
m athem atical theory  of an tennas and to  em phasize some difficulties which seemed 
to have been overlooked by previous authors.
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S T A B IL IT Y  O F  C O L U M N S  A N D  S T R I N G S  U N D E R  P E R IO D IC A L L Y  
V A R Y IN G  F O R C E S *

BY
S. L U B K IN  AND J. J. STO K ER  

New York University

1. Introduction. I t  is a well known fact th a t  a rigid body hinged a t  one end and 
standing vertically  can be p u t into stable equilibrium  by  applying a vertical periodic 
force of proper frequency and  am plitude a t  the lower end. T he differential equation 
for small oscillations of the rod is a linear homogeneous equation with a periodic co
efficient— it is a M athieu equation if the  applied force is a sim ple sine or cosine func
tion of the time. S tab ility  of the rod would require th a t  all solutions of this equation 
be bounded; it is found th a t  this is the case if the frequency and am plitude of the 
applied force are properly chosen. A more com plicated problem  of the same general 
type in a  system  with more th an  one degree of freedom has been considered by
G. Hamel [4]1; linear differential equations with periodic coefficients p lay the essen
tial role in this case also.

We shall be in terested  here in analogous problem s in elastic system s with infinitely 
m any degrees of freedom. One of these is the problem  of the column under periodic 
compressive forces F(t)' applied a t  the ends of the colum n .2 T he analogue of the 
problem s m entioned above would be as follows: the force F(t) consists of a constan t 
p a r t P  plus a periodic p a r t I I  cos cot. Suppose th a t P  were a compressive force larger 
th an  the lowest com pressive load (the Euler load) for which the column in the 
original unben t position is instable. T he question is, then, w hether or no t I I  and w 
can be chosen in such a w ay th a t  small m otions in the  neighborhood of the unde
flected position are stable ones. We shall see th a t  this can always be done, though, 
as one would expect, the q u an tity  I I  m ust be chosen so th a t the to tal force F(t) falls 
below the Euler value during a t  least p a r t  of the tim e. However, the  tim e average 
of F  (over a cycle) m ay be very  much larger than  the E uler load. On the  o ther hand, 
it is quite possible th a t the colum n m ay be instable when P  is a compressive force 
sm aller than  the Euler load or when P  is a  tension ra th e r than  a compression, if I I  
and w are properly chosen .3 From  the po int of view of the practical applications these 
la tte r  possibilities are certain ly  the  m ore im p o rtan t ones. For the  case of the  column 
with pinned ends we give diagram s which m ake it possible to decide w hether the 
column is stable or no t under any  of these circum stances. T he stab ility  of the 
stretched  string  under a tension which varies periodically in tim e is also considered.

In  all of these problem s the M athieu equation4 (more properly, a  sequence of

* Received April 9, 1943.
1 Numbers in square brackets refer to the bibliography at the end.
3 A special case of this problem has been treated by I. Utida and K. Sezawa [16].
3 Analogous problems for plates under loads in the plane of the plate have been considered by  

R. Einaudi [l ].
* W e consider always that the applied forces are simple harmonic functions of the time— otherwise 

we should have to deal with the more general H ill’s equation.
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M athieu equations in the  continuous system s) plays a  central rôle, since the decision 
as to  s tab ility  depends upon the character of the solutions of such equations. For this 
reason a brief sum m ary of the main facts concerning the solutions of the M athieu 
equation is included here. A brief trea tm en t of the M athieu equation w ith a viscous 
dam ping term  added is also included because of its im portance for the stab ility  
problem .

2 . T he column under periodic axial forces a t its  ends. W e m ake the  assum ptions 
th a t  are custom ary in dealing with the transverse oscillations of th in  rods. Of these, 
the  principal ones are: 1) the rod is an  initially  stra ig h t uniform  cylinder, 2 ) the 
lateral deflection w  (Fig. 1) and the cross sectional dimensions of the beam  are small 
in com parison w ith the length I, 3) all stresses rem ain below the proportional lim it,

F i t ) F ( t )

- X -

F i g . 1.

4) the effects of shear and ro ta ry  inertia are negligible.6 In addition , we assum e th a t 
the column is subjected to  axial forces F  depending on the tim e t and applied  a t  
the ends of the colum n; these forces are counted positive when th ey  are tensions. 
W ith these assum ptions the  differential equation for the  lateral deflection w(x, t) is 
well known to be as follows:

d*w d2w d-w
e i  F (t) —  +  m  —  = 0. (2 . 1)

d x 4 d x2 dt2

In this equation E  and I  are Y oung’s m odulus of the  column and  the m om ent of 
inertia of its cross section, and m  is the m ass per un it length. In w hat follows we 
assume always th a t  F(t)  is given by

F(t) =  P  +  I I  cos 2tt//; (2.2)

i.e., it consists of a constan t p a r t plus a harm onic com ponent of am plitude H  and 
freq u en cy /.

I t  should be pointed ou t th a t  the derivation of (2.1) involved a tac it assum ption 
no t included am ong those enum erated  above. This was th a t the  forces F(t) applied 
a t  the ends of the column resu lt in forces th roughout the column which are, to  a 
sufficiently close approxim ation, independent of x. We proceed to  show th a t th is 
assum ption is w arran ted  under the circum stances norm ally encountered in practice. 
T he differential equation for the longitudinal displacem ent u(x , t) of the rod is

d2u d2u
E   =  p  , (2.3)

d x2 dl2

in which p is the density  of the rod. T he to ta l force F  tran sm itted  through any  cross
section of the rod of area A  is given by

5 These effects could be taken into account without difficulty, but nothing new in principle would 
result.
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du
F =  A E —  • (2.4)

dx

We assume as boundary conditions

u = 0  at x  = 0 , (2.5)
and

du
F = A E  —  = P  +  I I  cos 2ivft at x  = 1/2, (2.6)

dx

the origin of coordinates being taken at the midpoint of the rod in order to take
advantage of symmetry. We seek the forced oscillation and neglect the free oscilla
tion. The result for the quantity F  is readily found to be

cos X*
F(x, t) =  P  +  I I  — —  cos 2irft, (2.7)

cos (A//2 )
with

X =  2»f ( p / E y i \  (2.8)

It is convenient to introduce the fundamental frequency /o of the free longitudinal 
vibration of the rod which has a single node at the center. This is given by

f0 =  ( 1 / 2 0 ( £ / p ) 1 /2 .  ( 2 . 9 )

Upon introducing this into (2.7) we obtain

cos (r fx / fo l)
F (x ,  t) =  P  +  H  - y cos 2rft. (2.10)

C O S ( i r / / 2 / o )

If /  is small compared with f 0 it is clear that F  will be nearly independent of x.  For 
steel or aluminum ( E / p ) 1/2 =  17000 ft./sec., while for brass, concrete, stone, or wood 
this quantity is about 12000 ft./sec. For any column of usual length / 0 will therefore 
be of the order of 500 cycles/sec. or more. Hence if the applied axial force F(t) is one 
of frequency below say 50 cycles/sec. it is reasonable to assume that the variation of 
the axial force with x  may be neglected.

We introduce new independent variables replacing t and x  in (2 .1 ) by the equations

i? =  2 wft and £ =  irx/l.  (2 . 1 1 )

In addition, it is convenient to introduce new parameters as follows:

P b  = t 2E I /1 2, e„ =  P e /E A ,  (2.12)

p = P / P E, h = H / P e . (2.13)

The quantity P E is the negative of the Euler load for the column and t 0 is the tensile
strain due to that load. The quantities p  and h are the ratios of the constant part and
of the amplitude of the oscillating part of the applied load to the negative Euler
load. With these new quantities the differential equation (2.1) becomes
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The quantity/o is the fundamental frequency of longitudinal vibration of the column 
given by (2.9).

The general problem which we wish to investigate can now be stated: for given 
boundary conditions there are certain values of p, h, and /  for which all solutions 
w(£, t?) of (2.14) remain bounded when arbitrary initial conditions are prescribed and 
other valdes of these quantities for which unbounded solutions exist. In the former 
case we say that the column is stable and refer to p, h, and /  in this case as stable 
values. Our problem is to separate the stable from the instable values of p, h, a n d /.

We do not solve the problem in this generality; we choose rather a special case 
with regard to the boundary conditions to be imposed.

3. Formulation of the stability problem for the column with pinned ends. The 
boundary conditions we choose are those corresponding to the case of a column with 
pinned ends; that is, we assume that the deflection w  and bending moment 
M = E I ( d 2w /d x 2) are both zero at x =  0 and x  — l. We have, therefore, as boundary 
conditions for (2.14):

d2w
w =  ------=  0  for £ =  0  and £ =  r .  (3.1)

<3£2

These boundary conditions can be satisfied by taking for w  a solution in the 
form of a Fourier sine series:

oo
w = F„(d) sin «£. (3 .2 )

n*»l

The series (assuming that it converges properly) is a solution of (2.14) provided that 
the function Fn(t?) satisfies the differential equation

d 2Fn
+  (<*„ +  j3„ cos d)Fn =  0, n  =  1, 2, 3, • ■ • , (3.3)

at?2
in which

a» =  n \ p j t 0/ p ) ( n 2 +  p) (3.4)

and

0« =  n K P p o / f ) ( h ) .  (3.5)

The quantities / ,  / 0, e0, p, and h have been defined by equations (2 .2 ), (2.9), (2 . 1 2 ), 
and (2.13) respectively. The differential equation (3.3) is, of course, a Mathieu 
equation.

We can now see why the choice of the boundary conditions (3.1) brings with it 
essential simplifications. To begin with, it is not possible to separate the variables in
(2.14) in the usual way: if we insert for w  in (2.14) an expression of the form 
w=/(£)F(t?) we do not obtain a pair of ordinary differential equations for /  and F  
alone. By assuming for w  the special form given in (3.2) we are able to satisfy (2.14)
by virtue of the fact that only even ordered derivatives of w  with respect to £ occur
in it. This form of solution is, however, not useful for boundary conditions other than 
those given by (3.1 ) . 6 The reason for this is-as follows: since w  satisfies (2.14) we

6 The problem can be solved for other boundary conditions, but with much more difficulty. It is not 
possible, for example, to make use of the theory of the Mathieu equation in other cases. For a possible 
approach, see R. Einaudi [ l ], and S. Lubkin [8],
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must require that d4tfl/d£ 4 be continuous, since w  and dTa/dp (the bending moment 
within a constant factor) should be assumed continuous on physical grounds. But the 
sine series (3.2) can be differentiated four times with respect to £ if, and only if, 
w  and d 2w/dI?  vanish at £ =  0  and £ =  7t, the end points of the column . 7

Our definition of stability requires that w(£, #) be bounded for 0 ^ # <  <» when 
arbitrary initial conditions are prescribed. Hence we must require for stability that 
all solutions F n(d) of (3.3) for n  = 1, 2, 3, • • • and 0 ^ # <  oo remain bounded when 
arbitrary initial conditions are prescribed. This is, of course, only a necessary condi
tion for stability. However, we show in an appendix that the Fourier series (3.2) 
will, roughly speaking, converge for a l l#  if it converges fo r$  =  0 and if each F n(#) 
is a stable solution of the Mathieu equation. Such a question does not arise in the 
more usual type of initial value problem, since the functions analogous to F„(#) 
are generally of the form e~r"d( A n cos w # + B n sin «#), rn^ 0 .

4. The Mathieu equation. The problem of the stability of the column with pinned 
ends has been reduced to that of determining whether all solution^ of the Mathieu 
equation

d 2F
 1- (a +  cos #)F =  0, (4.1)
d#2

i.e., of Eq. (3.3) without subscripts, are bounded for given values of a  and j3 or not.
We summarize briefly the known theory of this equation in so far as it is needed 

for our purposes; more extended discussions and proofs can be found in the pamphlets 
of M. J. O. Strutt [15] and P. Humbert [5], and in the books of E. L. Ince [7] and 
Whittaker and W atson [ l 7]. We have also made use of papers of S. Goldstein [2], 
E. L. Ince [6 ], and M. J. O. Strutt [14]. The notation we have chosen for the 
Mathieu equation has been taken to fit our problem; we compare it with the notation  
used by others:

Strutt Goldstein
Ince and 

Whittaker and Watson Here

u y y F
2x 2x 2x d
X/4 a a/4 a

-¿ 7 2 - 4  q 4 q P

It can be shown (theorem of Floquet) that there exist in general two linearly 
independent solutions Fi and F 2 of (4.1) which satisfy the relations

F &  +  2tt) =
(4.2)

F 2(# +  2tr) =  K 2F2{#).

The quantities K \  and K 2 are either conjugate complex or real constants which 
satisfy the relation

7 The analogous problem of the rectangular plate with simply supported edges can be treated in the 
same way as the column with pinned ends. The only essential difference would be that the relations corre
sponding to (3.4) and (3.5) would contain more parameters.
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K 1 - K i = 1. (4.3)

Hence all solutions of (4.1) will be bounded only if

I J fi| =  | K t \ =  1. (4.4)

In case (4.4) is not satisfied, it follows from (4.3) that K i  and K 2 are both real— a 
fact of which we make use later on. For certain values of a  and ¡3 there exist solutions 
for which the values of K  are + 1  or —1; such solutions are therefore periodic of 
period 2 ir or 47r respectively.8 The pairs of values (a, [3) for which such periodic 
solutions of (4.1) exist can be shown to fill out curves in an a ,  /3-plane which divide 
that plane into “stable” regions in which (4.4) holds and “instable” regions in which 
it does not hold. The boundary curves themselves belong to the instable region, the 
general solution of (4.1) corresponding to (a, ¡3) on such a curve consisting of the 
sum of a periodic function plus #  times a periodic function. Fig. 2 indicates these 
regions, the stable ones being shaded.

It is of some interest to note that in the stable regions the relation

«  +  \P  \ > 0  (4.5)

must hold since otherwise d2F /d d 2 would always have the sign of F  and a solution 
not identically zero could not remain bounded for $ —>+ 00 as well as for $ —>— °o ; 
this would mean instability since F ( —&) is evidently a solution of (4.1) if F(d) is.

The stable regions are connected at the points a  =  £2/4 , /3 =  0, k — 1 , 2, 3, • • • , 
for which the solutions of (4.1) are evidently bounded. As indicated earlier, the 
boundary curves separating stable and instable regions are characterized by the fact 
that a periodic solution of period 27r or 47r exists for any pair of values (a, /3) on such 
a curve. This can be made the basis of a method (due to Ince [6]) for determining 
these curves, as follows: a Fourier series with undetermined coefficients is assumed 
as a solution of (4.1). Upon substitution in (4.1) an infinite set of linear equations in 
the coefficients is obtained, each of which involves only three successive coefficients. 
Each equation may then be solved for the ratio of two successive coefficients in terms 
of the next higher or of the next lower coefficients. B y successive substitution in 
these relations one is in this way led to two expressions for any such ratio, one of 
which is a finite and the other an infinite continued fraction. B y equating the two, 
a relation between a  and /3 is obtained which holds at the boundary points separating 
the stable and instable regions. For a given value of /3 and with a  ranging from 
— 00 to +  «j one comes first upon the boundary curve Co which begins at <2 =  0, 
[3 =  0 (cf. Fig. 2)9; the periodic solutions corresponding to points on this curve are of 
period 2 tt. Following this, the next two curves, Ci and S%, starting at a  =  1/4, /3 =  0 
correspond to solutions of period 47r, followed by two, S 2 and C2, starting at a  =  l,  
[3 =  0 corresponding to solutions of period 2 ir, etc. The letters C and C refer to develop
ments in cosine series (for the even solutions) and in sine series (for the odd solutions). 
The points between two successive curves for which the periods of the corresponding 
solutions are different are stable points. For small [3 the boundary curves are given 
by the following expressions, solutions of type C2k and S 24 having the period 27r, 
while those of type C2k+h S*k+ 1 have period 4 7r:

8 For a given value of 0, say, the problem of determining values of a for which such solutions exist is 
obviously a linear eigenvalue problem.

• Essentially the same figure appears in the book of Strutt [15].



1943] STABILITY U ND ER  PERIODICALLY VARYING FORCES 221

C0: a =  -  0 2/ 2  +  O ( 0 < ) , '

C y a =  1 / 4  -  0 / 2  -  0 2/ 8  +  0 * / 3 2  +  O ( 0 4) ,

S y a =  1 / 4  +  0 / 2  -  0 2/ 8  -  0 3/ 3 2  +  0 ( 0 « ) ,

S y a «  1 -  0 2/ 1 2  +  0 ( 0 « ) ,

C2: a =  1 +  5 /S 2/ 1 2  +  0 ( 0 « ) ,

C y a =  9 / 4  +  /3 2/ 1 6  -  0 3/ 3 2  +  0 ( 0 « ) ,

a =  9 / 4  +  0 2/ 1 6  +  0 3/ 3 2  +  0 ( 0 « ) ,

S t , Cu: a =  k 2/ i  +  p 2/ 2 (k 2 -  1) +  0(/34), k =  4, 5, 6 , • ■ •

Fig. 2.

Curves of type C2jt and S 2k have contact of order 2k at the points a  = k 2, ¡3 = 0, while 
curves of type C2fc+iand S n+ ihave contact of order 2k +  l at the points a  = (2 & +  1 )2/4 ,  
/3 =  0. This behavior is clearly indicated in Fig. 2. A table of values of a  and 0 for 
points on these curves is given at the end of the paper. These values were calculated  
by means of the procedure outlined above and were checked against values given by  
S. Goldstein [2] and E. L. Ince [6 ] where possible.

For large positive values of a  the points for which |j3| < a  are stable except for 
very narrow strips which lie near the lines a  = k 2/4z. For large values of 0 it has been 
shown that all boundary curves tend to have the slope — 1 (for |3>0). T hestable
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regions are in general very narrow for a < 0  and grow narrower as | 0 | increases. 
These observations are all borne out by Fig. 2 .

S. The stability of the column with pinned ends. We may now conclude that the 
column with pinned ends will be stable only if the applied force F  — P - \ - H  cos ut  
is such that all points (a„, 0n) given by (3.4) and (3.5) fall within the shaded region 
of Fig. 2. In other words, a set of values (p , h , f )  is stable only if every point of the 
sequence (a n, 0 „) determined by (p , h, f )  is stable.

Suppose, for example, that P = P E (i.e., the steady part of the load is a tension 
equal in value to that of the Euler load) and that the harmonic part of the load has 
a freq u en cy /= /o (io /2 )1/2. We find that a i =  l and that the column (it is, rather, a 
tensile member in this case) is instable even for small amplitudes I I  of the oscillatory 
part of the load (i.e., for |0 x| small), since the points ( 1 , 0 i) are clearly seen with 
reference to Fig. 2  to be instable if |j8 x| is small. We could expect the column to 
be set into motion with heavy lateral oscillations.

On the other hand, let us assume the steady load P  to be a compression of twice 
the Euler value, while the harmonic part of the load has a fr e q u e n c y /= 2 /0eoI/2 and 
an amplitude such that I i= H /P e  = 3 A .  We find in this case:

ai =  — 0.25, 0i =  0.775,

a 2 =  2.00, 02 =  3.10,

a 3 =  15.75, 03 =  6.975,

an =  m2( » 2 — 2)/4 , 0„ =  0.775w2.

We can readily convince ourselves that all points (a„, 0 n) lie in the stable region of 
Fig. 2 . The points (aa, 0i) and (a 2, 0 2) are stable, as one sees from Fig. 2 and the table 
of values of a  and 0  for points on the boundary curves given at the end of the paper. 
(Note particularly the values of a  and 0 on Co and Ci for ao^. — 0.25 and the values on 
C2 for a ~ 2 .0 ) .  The numbers a n can be written in the form a n = {n2 — 1)2/4  —1/4  
=  &2/4  —1/4, with k = n 2 — 1; in other words the abscissae a n lie always a distance 
1/4  to the left of the points (&2/4 , 0) where the boundary curves delimiting the 
stable regions cross the a-axis. The points (an, 0) for n >  1 are therefore stable points. 
Also, for 0 not too large the boundary curves lie to the right of the straight lines
a  =  &2/4 , as one secs from (4.6). Hence all points (a„, 0„) will be stable if each 0„
is not too large in comparison with a n, and this condition is certainly fulfilled in our 
case for 2 . Note, for example, that 0 must be taken larger than 8  for a point of 
instability when a  =  8.75 (that is, a value 1/4  less than 9). For « 3  =  15.75 we have 
03 only 6.975 in value so that («3, 03) is certainly stable. Since the a n increase like m4 

while the 0 „ increase only like n2, it becomes obvious that all (a„, 0 „) are stable. 
The column is  therefore stable even though the steady value o f  the load is  twice that o f the 
Euler load . 10 However, the total compressive load always, as in this case, drops below 
P e  in value during at least part of the cycle if the column is stable: we have seen 
(cf. 4.5)) that the inequality a „ + |0 n | > 0  holds for stable solutions; in particular, 
for n  — 1 this leads to

10 A. Stephenson [13 ] appears to have been the first to point out the possibility of such phenomena 
in general. This paper appeared in 1908.
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p  +  \ h \ > - l ,  (5.1)

as one sees from (3.4) and (3.5), and our statement follows from (2.13).,
Thus there exist both stable and instable sets of values (p , h, / ) .  However, our 

definition of stability leaves out of account a possibility which is always inherent in 
any physical problem, i.e., that slight changes in the parameters of the problem 
(p , h, and /  in our case) may be sufficient to cause a stable motion to become an in
stable one. A  set o f  values (p, h, / )  should be considered stable in  a n y  proper physical 
sense only i f  a complete neighborhood o f these values exists which is  made up  entirely of  
what we have defined as stable sets o f  values.

We proceed to show that the problem of the column never has a stable solution 
in this more restricted sense; i.e., we show that arbitrarily small changes 8f  in /  and 
dp in p, for example, can always be found such that (p +  dp, h, f + 8f )  is instable no 
matter what values are chosen for p, h, and / .  This is done by showing that a certain 
pair of values (an, /3„) becomes instable when properly chosen but arbitrarily small 
changes are made in /  and p. Our statement follows from (3.4) and (3.5) and the 
character of the instable regions of the Mathieu equation for high values of a. We 
write equation (3.4) in the form

“H '/n  = ( to f l /p y 'K  1 +  P /n 2r \  (5 ■ 2)

and show first that this equation can always be satisfied by taking for a„ the square 
of an integer, provided only that /  is changed by a small amount df and n  is a suffi
ciently large integer: the real number (eo/g/ / 2) 174 can be approximated as accurately 
as desired by a rational number N / n .  It is clear that n  can always be chosen so large 
that an arbitrarily small change df in /  will suffice to make the right hand side of
(5.2) exactly equal to N / n .  Hence a n = N 4 and our statement is proved. It is also 
evident that an a ,  of the form w2/ 4 could have been determined in the same manner. 
We have thus determined a point (a , /3) for which a  = n 2/ 4, n  and f + S f  being now 
considered as fixed. We recall the fact that the instable regions of the Mathieu 
equation cross the a-axis at right angles at the points where a  =  «2/4  and that these 
regions for high values of n  are narrow strips which remain (for not too large values 
of /3) very near to the vertical straight lines a = w 2/4 . Since the values of j3„ increase 
like n 2, while those of a n increase like « 4 it becomes evident that a small change dp 
in the value of p in (3.4) will be sufficient to cause the point (a', /3) corresponding to 
the values p  +  dp, h , f - \ - d f  to fall inside an instable region of the Mathieu equation. 
We repeat: no values of p, h, and /  (h, / ^ 0) can be found such that the column is 
stable when small variations in these quantities are permitted.

In the actual physical problem, however, there is an important element present, 
i.e., viscous damping, which has been neglected so far. In a later section we shall 
show that the presence of even the slightest amount of viscous damping will suffice 
to make all values (a, j8 ) stable for which a ^ a 0 > 0 , and |/3| < a ,  when a 0 is a certain 
constant which may be large. In other words, damping acts in such a way as to cut 
out the narrow instable strips which occur for large a  in the regions for which 
|/3| < a .  Under these circumstances it becomes sufficient to test only a certain f in ite  
number of the points (a„, f3n) for stability. Thus the column may be stable if viscous 
damping is present even when small variations in the quantities p, h, a n d / take place, 
though, as we have seen, this is not the case without damping.
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Figures 3, 4, and 5 show the stable values of /  and h (frequency and relative 
amplitude h = H / P E of the vibratory part of the load) for the values p = P / P E 
=  —1.5, —1 .0 , and 1.0 respectively. The stable regions are shaded . 11 These diagrams 

have been constructed on the assumption that the amount of viscous damping is 
large enough that values of a  larger than 10 can be ignored. In other words, Figs. 
3, 4 and 5 were constructed by combining the stability regions of Fig. 2, which in
cludes values of a  up to 1 0  only, for a suitable number of values of n.

The general character of Figs. 3 and 4 is typical for the cases in which p <  — 1, 
i.e., in which the steady part of the load is a compression larger than the Euler 
load. We note that the shaded stable regions for £ = —1.5 are much smaller than

F i g . 4 .

those for £ = —1 .0 , as was to be expected; for the higher values of the steady 
compressive load beyond the Euler load it is necessary to make more accurate

11 Without damping, as we have seen, there could be no stable regions though there are stable points. 
It would have a certain mathematical interest to investigate the set of stable points in detail in this case.
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adjustments in the frequency and amplitude of the oscillatory part of the load in 
order to obtain stability. The full lines which cut through the shaded regions in the 
figures are not really curves; they represent, rather, narrow instable regions. How
ever, the two curves in Figs. 3 and 4 which appear to be straight lines running 
near the h-axis indicate narrow stable regions. Fig. 5 is typical for all cases in which 
p >  —1 .0 , i.e., for cases in which the steady part of the load is either a tension or 
a compression less in value than the Euler load. In these cases the column is stable 
for all frequencies when h =  0 ; it is in fact stable almost everywhere in the neighbor
hood of the axis h = 0 .

F i g . 5 .

It is of some interest to consider the special case in which the amplitude I I  of the 
oscillatory part of the applied load is very small so that the values of /3„ are small 
(for n  not too large). We note that the natural frequencies/„  of the free lateral oscilla
tions of the rod under steady load (that is, in this case, for I I — 0) are given by 

/ n= /a „ I,! as one can readily verify. From Fig. 2  we observe that the rod is instable 
for small values of (3 when a„ =  &2/4 , k  being any integer. Hence instability occurs for 
small amplitudes of the oscillatory part of the load whenever

/  =  2fn/k ,  * = 1 , 2 , 3 , . . - ,  ( 5 . 3 )

that is, whenever the load frequency is twice any integral submultiple of a natural 
frequency of oscillation. At such frequencies one could expect that heavy oscillations 
would be built up . 12 However, the most favorable case for the production of oscilla
tions is, in general, that for which n  = k  — 1. Consider, for example, the case p = 1. 
For n = k  = \ we find readily that ///o£o 1/2 =  81/2=2.83, and one readily sees from 
Fig. 5 that this furnishes the most favorable frequency for instability at small am
plitudes of the oscillatory force.

6 . The flexible string under harmonically varying tension. With only slight modi
fications our preceding results can be used to discuss the problem of the vibrating

12 This problem has been considered both experimentally and theoretically by I. Utida and K. Sezawa 
[ 1 6 ] ,
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string subjected to a harmonically varying tension . 13 We have only to set 7 =  0 in
(2.1) to obtain the fundamental differential equation. The tension F(t) in the string 
is assumed given by (2 .2 ) and the same independent variables as before are intro
duced. However, the parameters p  and h in (2.3) can obviously not be used here. 
Instead, we introduce the quantities

p , — P /E A ,  h, =  H / E A .  (6.1)

We may assume for w  the expansion (3.2) for a string with fixed ends and will 
obtain (3.3) as differential equation for the quantities Fn(&) if we now define a n and 
/3„ by the equations

« »  =  « * # . / / * .  Pn =  n * p j i , / p .  ( 6 . 2 )

The investigation of stability involves the same considerations as for the column, 
and much the same general remarks might be made as were made in the case of the 
column. For example, if P > 0  and P >  | 7 / | , i.e., if the force applied to the string is 
never a compression, viscous damping acts in such a way as to cut out the instable 
regions of Fig. 2  for sufficiently large values of a.  Hence it is possible to construct 
a diagram for the determination of the stable values of p, h, a n d /in  the same manner 
as for the column. Figure 6  shows the stable regions (shaded); the quantity f / f o p 2u ~ 
is taken as abscissa and H / P  = ^ n/ a n — h , /p ,  as ordinate.

F i g . 6 .

It is readily seen that the natural frequencies/„ for the free lateral oscillation of 
the string (under constant tension) are given b y /„ = /a „ l/2, just as in the case of the 
column. The string is instable for low amplitudes of the oscillatory part of the tension 
when a n = k 2/4:, k = \ ,  2, 3, • • • . In this case we know in addition th a t/„  =  n/i, in 
which / i  is the fundamental frequency of the string. Hence “resonance,” that is, 
heavy oscillations for low amplitudes of the applied oscillatory force, will occur when

13 This problem was first discussed by Lord Rayleigh [ 11 ]. The problem was discussed later by 
A. Stephenson [12], and [13], and by C. V. Raman [10J.
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f = 2 n f 1/ k ,  n, k =  1,-2, 3, • • • , (6.3)

that is, at twice any rational multiple of the fundamental frequency of free lateral
oscillation of the string. However, the most favorable case for the production of 
oscillations is readily seen to be that for which n = k = 1 (i.e., that corresponding to 
f / fo p * in  =  2.0). In M elde’s experiment lateral oscillations of a string are produced 
in accordance with (6.3) by attaching one end of the string to the prong of a tuning 
fork.

There is one marked (though not unexpected) difference between the behavior 
of the column and that of the string: it could be shown that the string is never stable 
even with viscous damping if the load on it becomes a compression during any part 
of the cycle. For stability of the string we must always require P ^ \ H \ .

7. The effect of damping. If it is assumed that there is a lateral damping force
acting on the column that is proportional to the velocity dw /d t ,  the differential equa
tion (2 . 1 ) is readily seen to be modified by the addition of a term 8 (d w /d t), 5 > 0 , to 
its left hand side. With the same notation as before we find as differential equation 
for the functions Fn(i?):

dW dF
 h 2 v  [- (a  -f- /3 cos d).F =  0, (7.1)
d r  d&

where

v =  <5/4ttw/ ,  (7.2)

and subscripts have been dropped.
The general theory of equation (7.1) could be developed in the same way as that 

for the Mathieu equation without damping (for a treatment which includes a damp
ing term, see the papers of G. Gorelik [3]). In particular, the a ,  /3-plane could be 
divided into stable and instable regions. We confine ourselves here to one special 
problem, i.e., to a discussion of the behavior of the solutions of (7.1) for a given 
value of v and large positive values of a .  We assume also that |/3| < a .

Upon making the substitutions

F = e-^G , a ' = a - p 2 (7.3)

Eq. (7.1) becomes

d-G
— - +  (cd +  /3 cos d)G =  0. (7.4)
d r

Obviously, if G is bounded, F  is not only bounded but approaches zero a s$  increases. 
Also, even at boundary points (a', /3) separating stable and instable regions of
(7.4), the corresponding solutions F  tend to zero since no solution G of (7.4) in
creases faster than t? in this case. If the amount of damping is slight (that is, if v 
is small), the boundary curves for (7.1) would lie near those for v = 0 , but they would 
not intersect the a-axis except at the origin since all solutions F  of (7.1) are clearly 
bounded for /3 =  0, a > 0 .  This reasoning makes it seem rather evident that the nar
row instable regions which occur for large positive values of a  when |/3| < a  are cut 
out when a damping term is added.

We proceed to give a proof of the following statement: i f  v > 0 and  |/3| < a ,  all
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solutions of {7.1) are stable fo r  all values o f  a  which exceed a certain value a o > 0 . It 
was pointed out earlier that there exist two linearly independent solutions Gi and Ga 
of (7.4) such that Gi(d +  2ir) = K G i(d )  and K G 2{^ +  2tt) =  G2($) with | i i |  >  1 in case 
{a ', ¡3) is in an instable region for (7.4). We know also that K  is a real number in this 
case. The solutions of (7.1) will, however, remain bounded even in such an instable 
case for (7.4) provided that

«*”  >  | IT |, (7.5)

as one sees from (7.3). Consequently our statem ent will be proved if we can show 
that | i f  | —»1 as a ' —>oo. This we prove through the use of the following asymptotic
formula for K ,  valid under our assumptions, which has been given by Strutt [14]:

K  +  1 / K  =  2 cosh X cos f  +  0 (  1 / W )  (7 ■ 6 )

in which

f  +  X \ / ^ T =  f  (a' +  ic o s t? ) ^ ,  (7.7)
j  0

and 0 { \ / \ / a ' )  means that all terms neglected are of order 1 / s / a '  or higher. Since 
we assume that |/3| < « '  the integral in (7.7) is real and A =  0. We have, therefore:

\ K + 1 / K \  < I 2 cos r I +  0 ( 1 /V ? )  <  2 +  0 (  1/Vfl?). (7.8)

Since K  is real it is readily seen that

2 £ \ K + \ / K \ ,  (7.9)

equality holding only for ¡ i f |  = 1 . From this and inequality (7.8) it follows at once 
that

| K  | —* 1 when a' —> . (7.10)

' In the case of the column we note from Eqs. (3.4) and (3.5) that |/3„| <«„ for 
sufficiently large n  and that a„—>a> with n. The assumptions under which (7.10) 
was derived are thus fulfilled in this case. When damping is present we are therefore
justified in neglecting all values of a  larger than a certain positive value ao in discuss
ing the stable values for the column. Our diagrams were drawn under the assumption 
that a o = 1 0 . In the case of the string, «„ and (3„ increase at the same rate with in
crease of n\  consequently our conclusions regarding the effect of damping in this 
case are valid only when P > |F / |  (which ensures that |/3„| < a„ ,) i.e., when P  is a 
tension and H  is such that the total force in the string is always a tension.

A ppen d ix

Sufficient conditions for stability. For stability we required always that the solu
tion

oo
w =  2 ^„(d) sin «£ (A l)

of our problems be bounded for arbitrary initial conditions; it is thus necessary to 
assume for stability that each F„($) be bounded for 0 g # <  »  (# is essentially the



time variable). In this appendix we prove a statem ent made at the end of section (3) 
to the effect that the series will converge for a ll#  if it converges for# = 0  and if the 
F n(#) are all stable solutions of the Mathieu equation.

In order to state our theorem precisely we introduce the series

X  D n sin w|, X  V* sin «£ (A2 )
n  n

in which D n and V n are defined by
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dF„
D n = F n{ 0), V n =  —-  

dû Ô- o
(A3)

We assume that the series (A2) are such that

X  { Pn  I D n  I +  P n « n  '  | V n  | }  <  00 , (A4)
n

in which p n is a certain positive quantity and a„ is one of the two parameters in the 
Mathieu equation for the functions A„(#):

d 2Fn
— - r  +  ( d n  +  cos #)Tn =  0. (A5)
a#-

We assume in addition that the A„(#) are stable solutions of (A5) for which

| /3„ | <  ka n, 0 ^  k <  1, (A6 )

at least for all n > N ,  say . 14 Under these assumptions we show that: the series

„  . „  dFn{x))
/  . F„(&) sin Kf and  X  ------sin
n  n dd

converge fo r  0 g # <  °o in  the same sense as the series (A 2), i.e., the convergence relation

dF „m
X  {P» | Fn(û) I +  pna n n

dû } <  «  (A7)

holds fo r  0 g # <  co.
If it were assumed that p„= 1 in (A4) then X « ^ " ^ ) sin would converge, but 

its derivative with respect t o #  would not necessarily converge. If p„ were assumed 
to be a]/2, the differentiated series would converge. In our cases a \ 12 is of order n  
for the string and of order k2 for the column. To assume p n = a „ 2 in (A4) would 
therefore not seem unduly restrictive when it is considered that the series (A l) 
should be assumed to converge when it is differentiated twice with respect to £ in 
the case of the string and four times with respect to £ in the case of the column.

We prove our theorem by showing that every stable solution of the Mathieu 
equation

d 2F
—  +  (a +  # cos #)F =  0 (A8 )
d#2

14 These latter conditions are fulfilled in the stable cases for both column and string. This follows from 
(3.4) and (3.5) for the column, and from (6.2) and the fact that \h,\ <p, in the case of the string.
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| /3 | <  ka, 0 g  k <  1, 

dF{û)
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F(  0) =  D,

satisfies the inequality

| F(û) | +  a ' 1' 2

dû
= V

0-0

dF(û)

dû
â  C{ | D  \ - f  o r1'2! V \  },

(A9) 

(A 10)

(A il)
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for «>, C being a constant which depends only upon k. Upon réintroduction
of the subscript n  in (A ll)  followed by multiplication with pn> 0 and a summation 
with respect to n, it is clear that (A7) would result from (A4), since C is independent 
of n.

We proceed to establish the validity of the inequality (A ll) .  For this purpose it 
is convenient to introduce a new independent variable <p as well as a new dependent 
variable / i n  (A8 ) as follows : 15

m  =  f
J  0

Xll2dû, x  =  «  +  P C O S  Û,

f  =  X1I4F.

In these variables the differential equation (A8 ) becomes

d 2f  /  P cos Û 5/32 sin2 û \
_ A + ( l  + ----------+ ---------------) / =  o,
d<p2 \  4X 2 16x3 /

or, as we prefer to write it

with
d<p2

+  /  =  a ly f ,

=  - « ( i
P cos d 5P2 sin2 û \

4x2
+

16x3

(A 12) 

(A13)

(A14)

(A 15) 

(A16)

From now on we consider f(cp) to be the solution of (A15) which satisfies the 
initial conditions

d f  .
m  =  i ,  ~  =  i, i  =  v = i .  (a i7 )

ay

It is then readily verified that f(<p) and its derivative satisfy the integral equations 

f(<p) — eir — — J '  y ( T) f ( j )e ~ iTdT — e~'v j"  y(r)  f(~)e'TdT^J, CA18)

df(<p)

dtp
= ie 'r +  — ^e'* j "  y (r)/(r)e "dr  — e J  y ( j ) f ( r ) e irdT^. (A19)

15 This transformation is frequently used in the treatment of various questions relating to the asymp
totic behavior of the solutions of certain types of second order ordinary differential equations.



From the general theory of the Mathieu equation it is known that every stable 
solution F(d) of (A8 ) can be expressed in the form in which H{&) is a periodic
function of period 2ir and a is a real constant. It follows from (A13) that /(<p($)) 
can be expressed in the form h(d)eu"} with h = H x l l i ', h(d) is thus also periodic of period 
2 ir in??. Consequently we may write

G =  max \ m \  =  max | h(t?) | =  max|^|gr | h(&) | =  max|j|gr |/(t?) | . (A20)

The validity of (A20) is the essential point in our proof; because of it, bounds for our
quantities in the interval — 7r g  d  ^  7r hold also for 0  g  t? <  » .

We find from (A16), the definition of x  in (A 1 2 ), and (A9) that

| t  | g  ¿/4(1 -  k2) +  5£2/1 6 (l -  hr) =  V. (A21)

We note also that
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ip(ir) S. t t \ /a  -f- ¡3 5= Tr\/~a \ / 1 -f- k, (A22)

as one sees from (A12). Finally we obtain from (A18) the following inequality for 
G =  max |/($ ) | :

r » V i  +  k
G g  1 H G. (A 23)

\ / a

In view of our purpose it is permissible to assume from now on that

a  ^  a o >  TV2(1 +  k) =  ail (A24)

once this is done (A23) may be written in the form

G g  1/(1 -  v W ^ o ) =  G0. (A25)

In a similar fashion we can show that

d m
max

dip
£  Go; (A26)

since df/dip  satisfies (A19) and, like f(ip) itself, can be written in the form / (̂l?)eía', 
with h of period 2 ir in $.

Since the function given by (A18) and its complex conjugate are linearly
independent solutions of (A15) it follows that we may write the general real solution 
F  of (A8 ) in the form

F(d) =  Re C x ~ Uim ,  C — A — iB ,  (A27)

in which Re means that the real part of what follows is to be taken, and A  and B  
are real but otherwise arbitrary-constants. The quantity d F /d d  is then given by 
the expression

dF ( d f  (A — iB)f{p{d))fi sin #)
—  =  Re  ̂ (a +  p  cos d){A  -  iB) ~  +  1 / 4 ---------- A : _.) .. ----------  •. (A28)
dd \ dip (a +  0  cos t? ) 5/4 )

We find at once, since



232

d f

S. LUBKIN A ND  J. J. STOKER [Vol. I, No. 3

<p( 0 ) =  0  and
d<p

=

D  =27(0) =  (a +  f l - U 'A ,  V  —

v>-0

dF

dd
=  (a +  p yi*B ,

from which we obtain
A  = (a +  P Y ^D , B  =  (a +  d)"1/4F. 

For | F(d) | we then have the inequality

'1 +  i y ' 4. , 1
.D H------------------------

' 1 o ; 1 /2 ( l  -  p y i *

< p 0 \ D \  +  qooT1121 V  I,

(A29)

(A30)

|F (0 ) * m
v \  >G,

(A31)

in which p 0 and q0 depend only upon the constant k  introduced in (A9), and G0 is 
the bound for max |/(t?)| given in (A25). From (A28) we find

dF

dd
<  1/4

1 -  k

g  a»*p 1 \ D \ ' +  ? i| V

(a — |8)-1/41 C I Go +  (a +  jS)I/41 C j Go

(A32)

where

and qi is of similar nature. The quantities pi  and qi, like p 0 and qo in (A31), depend 
only upon k. Division of both sides of (A32) by \ i a ,  followed by addition to (A31) 
yields

/TK1
(A34)

dF 1 |
| F | +  a - 1' 2 \D \dd

which establishes the validity of (A ll)  and thus completes the proof of our theorem. 

Coordinates of Points on the Boundary Curves of Fig. 2.

a «(Co) «(CO «(50 «(50

0.0 0.00000 0.25000 0.25000 1.00000

0.2 -0.01966 0.14525 0.34475 0.99667
0.4 -0.07510 0.03191 0.42796 0.98670
0.6 -0.15836 -0.08872 0.49816 0.97018
0.8 -0.26148 -0.21555 0.55906 0.94724
1.0 -0.37849 -0.34767 0.59480 0.91806

1.2 -0.50535 -0.48430 0.62006 0.88284
1.4 -0.63942 -0.62480 0.63015 0.84183
1.6 -0.77898 -0.76867 0.62592 0.79529
1.8 -0.92281 -0.91545 0.60857 0.74349
2.0 -1.07013 -1.06480 0.57950 0.68672
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0 «(C„) «(Ci) «(Si) «(S.)

2 . 2 -1.22031 -1.21640 0.54012 0.62526
2.4 -1.37291 -1.37002 0.49174 0.55938
2 . 6 -1.52760 -1.52544 0.43554 0.48935
2 . 8 -1.68410 -1.68248 0.37253 0.41542
3.0 -1.84221 -1.84098 0.30357 0.33785

3.2 -2.00175 -2.00081 0.22938 0.25684
3.4 -2.16258 -2.16185 0.15057 0.17263
3.6 -2.32457 -2.32402 0.06763 0.08541
3.8 -2.48764 -2.48720 -0.01901 -0.00468
4.0 -2.65168 -2.65134 -0.10899 -0.09734

4.4 -2.98242 -2.98220 -0.29781 -0.29009
4.8 -3.31627 -3.31614 -0.49688 -0.49171
5.2 -3.65286 -3.65277 -0.70474 -0.70124
5.6 -3.99186 -3.99180 -0.92026 -0.91787
6 . 0 -4.33302 -4.33298 -1.14253 -1.14088

6.4 -4.67611 -4.67609 -1.37085 -1.36970
6 . 8 -5.02097 -5.02096 -1.60460 -1.60383
7.2 -5.36744 -5.36743 -1.84328 -1.84271
7.6 -5.71537 -5.71537 -2.08644 -2.08607
8 . 0 -6.06467 -6.06466 -2.33382 -2.33353

8.4 -6.41522 -6.41522 -2.58498 -2.58478
8 . 8 -6.76694 -6.76694 -2.83970 -2.83955
9.2 -7.11974 -7.11974 -3.09772 -3.09761
9.6 -7.47357 -7.47357 -3.35883 -3.35875

1 0 .0 -7.82835 -7.82835 -3.62283 —3.62277

1 1 .0 -8.71911 -8.71911 -4.29436 -4.29434
1 2 .0 -9.61474 -9.61474 -4.98065 -4.98064
13.0 -10.51465 -10.51465 -5.67983 -5.67982
14.0 -11.41834 -11.41834 -6.39044 -6.39043
15.0 -12.32542 -12.32542 -7.11126 -7.11126

16.0 -13.23556 -13.23556 -7.84129 -7.84129
18.0 -15.06389 -15.06389 -9.32566 -9.32566
2 0 .0 -16.90154 -16.90154 -10.83807 -10.83807

0 «(Ci) «(C3) «(S3) «(Si)

0 . 0 1 .0 0 0 0 0 2.25000 2.25000 4.00000

0 . 2 1.01633 2.25225 2.25275 4.00133
0.4 1.06171 2.25808 2.26203 4.00530
0 . 6 1.12806 2.26622 2.27933 4.01181
0 . 8 1.20733 2.27554 2.30589 4.02075
1 .0 1.29317 2.28515 2.34258 4.03192
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fi «(G) «(G) «(5,) «(50

1.2 1.38126 2.29429 2.38967 4.04512
1.4 1.46860 2.30233 2.44680 4.06010
1.6 1.55305 2.30878 2.51308 4.07660
1.8 1.63302 2.31323 2.58723 4.09433
2.0 1.70727 2.31536 2.66777 4.11301

2.2 1.77487 2.31495 2.75314 4.13236
2.4 1.83509 2.31175 2.84194 4.15212
2.6 1.88745 2.30568 2.93284 4.17199
2.8 1.93163 2.29660 3.02467 4.19175
3.0 1.96752 2.28448 3.11640 4.21115

3.2 1.99517 2.26925 3.20712 4.22997
3.4 2.01478 2.25092 3.29604 4.24800
3.6 2.02665 2.22950 3.38247 4.26507
3.8 2.03118 2.20500 3.46578 4.28099
4.0 2.02881 2.17748 3.54547 4.29563

4.4 2.00521 2.11356 3.69216 4.32053
4.8 1.95947 2.03826 3.81969 4.33886
5.2 1.89487 1.95216 3.92636 4.34996
5.6 1.81419 1.85589 4.01149 4.35338
6.0 1.71968 1.75014 4.07538 4.34881

8.0 1.09281 1.09947 4.12172 4.20467
10.0 0.28857 0.29018 3.84895 3.87349
12.0 -0.63494 -0.63452 3.38071 3.38817
14.0 -1.64702 -1.64690 2.77777 2.78016

16.0 -2.72859 -2.72855 2.07287 2.07367
18.0 -3.86669 -3.86668 1.28641 1.28668
20.0 -5.05198 -5.05198 0.43241 0.43251

ß «(CO «(CO «(50 «(50

0.0 4.00000 6.25000 6.25000 9.00000

0.2 4.00134 6.25083 6.25083 9.00057
0.4 4.00538 6.25333 6.25333 9.00229
0.6 4.01226 6.25750 6.25751 9.00515
0.8 4.02215 6.26334 6.26337 9.00915
1.0 4.03530 6.27084 6.27094 9.01430

1.2 4.05204 6.27999 6.28025 9.02060
1.4 4.07273 6.29077 6.29134 9.02806
1.6 4.09776 6.30317 6.30427 9.03667
1.8 4.12755 6.31714 6.31911 9.04643
2.0 4.16245 6.33264 6.33594 9.05735

2.2 4.20283 6.34961 6.35487 9.06943
2.4 4.24889 6.36800 6.37604 9.08267
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ß a{Cf) « (Q «(Ss) «(■Se)

2.6 4.30085 6.38773 6.39956 9.09705
2.8 4.35867 6.40871 6.42560 9.11259
3.0 4.42220 6.43085 6.45432 9.12927

3.2 4.49121 6.45406 6.48591 9.14707
3.4 4.56533 6.47821 6.52052 9.16600
3.6 4.64406 6.50321 6.55837 9.18603
3.8 4.72688 6.52893 6.59962 9.20714
4.0 4.81318 6.55525 6.64444 9.22930

4.4 4.99383 6.60921 6.74533 9.27671
4.8 5.18127 6.66411 6.86185 9.32798
5.2 5.37113 6.71898 6.99394 9.38281
5.6 5.55951 6.77289 7.14093 9.44078
6.0 5.74803 6.82500 7.30201 9.50150

8.0 6.50217 7.03409 8.23272 9.82875
10.0 6.89864 7.11706 9.16125 10.14742
12.0 6.97136 7.05384 9.87814 10.40143
14.0 6.82083 6.85144 10.30874 10.55621

16.0 6.51561 6.52721 10.48838 10.59848
18.0 6.09463 6.09902 10.48167 10.52959
20.0 5.58132 5.58302 10.33749 10.35813
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ON MOMENT BALANCING IN STRUCTURAL DYNAMICS*
B Y

R. E. GASKELL**
Brovin University

1. The method of moment balancing. In recent years several writers in this coun
try have developed the method of moment balancing in the analysis of continuous 
beams and frameworks. Mention should be made especially of the basic paper by 
Hardy Cross. 1 ' 2 One could also classify as related procedures the method of balancing 
angle changes given in a paper by L. E. Grinter, 3 and the whole field of relaxation 
methods being investigated by R. V. Southwell. 4 That such interest is taken in these 
methods would seem to indicate that their extension to the dynamics of beams and 
frameworks might-be desirable, and it is the purpose of this article to provide at least 
the beginning of this extension.

We assume that we are dealing with plane structures on which loads are acting in 
the plane of the structure. Members of the structure consist of uniform straight 
beams; and they meet in stiff joints, which are assumed to be fixed against translation. 
All connections to a foundation are either built-in or hinged.

The method of moment balancing depends upon three very simple ideas, namely, 
fixed-end moment, stiffness and carry-over factor. We give their definitions here:

The “fixed-end mom ent” at the end of a member is the moment which would 
exist at that end if all joints to which it is connected were fixed against rotation.

If one end of a member is simply-supported, its “stiffness” is the moment re
quired to produce unit rotation of that end. The other end may be built-in, simply- 
supported or free.

The “carry-over factor” is the numerical value of the moment induced at one 
end of a member by a unit moment acting at the other end.

Methods of finding these characteristics of beams and other components of a 
structure are numerous and well-known. Having determined them for all components

* Received Feb. 3, 1943.
** This paper was prepared under the direction of Professor W. Prager, whose helpful suggestions 

and valuable assistance are gratefully acknowledged. The author is a Fellow under the Program of Ad
vanced Instruction and Research in Mechanics at Brown University.

1 H. Cross, Analysis of continuous frames by distributing fixed-end moments, Trans. A.S.C.E. 96, 
1 (1932). This paper is followed by discussions, that by L. E. Grinter, pp. 11-20, being particularly in
formative.

2 See also: Hardy Cross and N. D. Morgan, Continuous frames of reinforced concrete, John Wiley 
and Sons, 1932, Chapter IV, pp. 81-125; Moment distribution applied to continuous concrete structures, 
Portland Cement Association, Second Edition, 1942.

3 L. E. Grinter, Analysis of continuous beams by balancing angle changes, Trans. A.S.C.E. 102, 
1020 (1937).

4 R. V. Southwell, Relaxation methods in engineering science, Oxford University Press, 1940.
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E
~ zsr

of a framework, we assume that all joints of the framework (in Fig. 1, for example) 
are fixed against rotation; and determine the resulting fixed-end moments acting at

the ends of each member. Built-in, simply- 
supported or free ends are not considered as 
joints. Then at any joint, say D,  a moment 
equal but opposite in sign to the sum of its 
fixed-end moments is applied, representing the 
effect of releasing the joint. This moment is 
distributed to the members A D ,  CD, B D ,  E D ,  
meeting at D ,  in proportion to their stiffnesses, 
since all members meeting at D  rotate through 
the same angle. The share failing to each mem

ber is called the “balancing moment” acting at the end D  of this member. The joint
D  is now balanced, but the new balancing moment M b  a acting at the end D  of A D
will induce an additional moment

ZX B

F i g . 1.

B
T

r c

M a d  =  C a d M d a

at the opposite end A .  CAd is the carry-over factor for the member A D ,  and the mo
ment M d a  is said to be “carried over.” Likewise, moments are carried over to C 
and E ,  but none to B  since Cdb =  0. The joint D  
is again locked— this time in its balanced posi
tion— and the process repeated for all joints of 
the framework until the balancing moments are 
negligible. The order of choosing unbalanced 
joints for balancing is not obligatory, but usu
ally the joint with the largest total unbalanced 
moment at any given stage is balanced. Signs 
of the moments are chosen so that a positive 
moment acting on the end of the beam tends to 
rotate it in a clockwise direction. Likewise, a 
rotation in the clockwise direction is consid
ered positive.

E xa m p le  1. As a simple example consider the 
rectangular bent formed of uniform and equal 
bars, illustrated in Fig. 2. All of the bars are of equal stiffness and the carry-over fac
tor in each case is 1 / 2 . The only non-vanishing fixed-end moments are —A 2 5 P I  
and A 2 5 P I  at the left and right ends of the horizontal bar. The calculations used 
in the method of moment balancing are shown in Table I. In a given column, say  
that headed M cb/P I ,  we find recorded successively the fixed-end moment and the 
balancing moment. These are added, and since at this stage M cb+ M Cd =  0 , the joint 
C is balanced. The balancing moment has been carried over to column M Bc /P l ,  and 
the joint B  is balanced next. The same steps are followed until after five balancings 
the moments to be carried over are negligible. The results obtained agree with those 
computed by other methods.

2 . Dynamics of a simple beam. It is clear that if we can set up analogous defini
tions for fixed-end moment, carry-over factor and stiffness for a beam on which an 
oscillating force is acting, and if we can find these characteristics for the oscillating

F i g . 2 .
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beam, it may be possible to use the method of balancing moments just as it is in the 
dynamic case. A procedure adapted to this purpose can be found in an article of 
W. Prager’s ,6 the essentials of which will be given here.

T a b l e  I.

B C

M AB/ P l M Ba /P 1 M bc / P I M cb/ P I M cd/ P I M b c / P I
. 0 0 0 . 0 0 0 - . 1 2 5 . 1 2 5 . 0 0 0 . 0 0 0

- . 0 6 3 - . 0 6 2

- . 0 3 2 - . 0 3 1

. 0 0 0 . 0 0 0 - . 1 5 7 . 0 6 2 - . 0 6 2 - . 0 3 1
. 0 7 8 . 0 7 9

. 0 3 9 . 0 4 0

. 0 3 9 . 0 7 8 - . 0 7 8 . 1 0 2 - . 0 6 2 - . 0 3 1

- . 0 2 0 -  . 0 2 0

- . 0 1 0 - . 0 1 0

. 0 3 9 . 0 7 8 - . 0 8 8 . 0 8 2 - . 0 8 2 - . 0 4 1

. 0 0 5 . 0 0 5
. 0 0 2 . 0 0 2

. 0 4 1 . 0 8 3 - . 0 8 3 . 0 8 4 - . 0 8 2 - . 0 4 1

- . 0 0 1 - . 0 0 1

. 0 4 1 . 0 8 3 - . 0 8 3 . 0 8 3 - . 0 8 3 - . 0 4 1

The differential equation for the deflection, y(x ,  t), of a uniform beam with no 
external load is taken as

d2y  d4y
B — r +  E l  —4  =  0,

where p. is the mass per unit length of the beam and E l  
is its flexural rigidity (Fig. 3 ). Following a well-known 
procedure we write y (x ,  t) —u(x )  cos wt, u (x )  being the 
amplitude of the assumed harmonic motion and w its 
circular frequency. Hence

d*u
 b » 4m =  0,
d x 4

where n i =uP-p/EI\  and from this equation

u(x)  = A  cosh tix +  B  sinh n x  +  C cos n x  +  D sin nx.

It is convenient to express the four constants of integration in terms of four quanti
ties of immediate physical importance: the amplitudes  of the moments acting on the 
ends of the beam, and of the displacements at the ends of the beam. This can be done 
by use of the relations

E I sM

F i g . 3 .

5 W. Prager, Die Beanspruchung von Tragwerken durch schwingende Lasten, Ingenieur-Archiv 1, 527 
(1930).
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110 = A  +  C

111 =  A  cosh X +  B  sinh X +  C cos X -f- D sin X,

d h f]
M 0 =  -  E l  — - =  -  A

d X~ 3;e=0

M l  =  E l  -

C } E I n \ {

2m”1
— =  {A cosh X +  B  sinh X — C cos X — D  sin X ] E l n 2,

dhi

dx

where \  = n l.  It can be seen that the amplitudes of the deflection, angle of rotation, 
bending moment and shear for any value of a; will involve linearly the amplitudes of 
the end deflections and end moments. These quantities can be expressed in much 
simpler form if the following functions and abbreviations are introduced:

X
0 (X) =  (coth X — cot X)/2X, <£(X) =  — (coth X +  cot X),

X
iKX) =  — (csch X — esc X)/2X, p(X) =  — (csch X +  esc X),

I' =  l /E I .

Then we find the following expressions for the amplitudes of the angles of rotation at 
the end points (Fig. 4):

u o

Ml =

Mo<i>(X) Mi (̂X)_ +  _ _

tlQpiW) Ul<p(\)
■ +

I I

and for the amplitudes of the reactions:

Ro = -  EIuo

Rx E l  u  i

X4 X4 Mo -  M i
m°—  0 (X) +  Mi —  * 0 0  ~  ~ * 0 0  -  —

X4 X4 Mo -
-  «o —  *(x) -  mi -  — *(X)

V'(x),

M i _ 
T ,(X).

(1)

(2)

( 3 )

( 4 )

If the beam, simply supported at both ends, is loaded at its center by an oscillating 
load, P  cos cot (Fig. 5),
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M  (

Then, from (2) and (4),

o
¿ST r

Fig. S.

so that

— * ( - ) —  4 - )  ~ ~  M( - ) * ( ~ )  -  — ;2  \  2  /  I'H' \  2 /  I V 2  /  \  2 /  2

“ ( t )  =  P/2/4>(x) ’ (5)

=  -  ¿>ii(A), (6)

where

4>(X) =  — (tanh -¿X — tan -¿-X)/4X3, 4>(X) =  (tanh -¿X +  tan 5 X)/4 X.

Also, from formulas (5) and (6 ), and with ( l)- (4 ) , we find that

III =  P l l '* ( \ )  =  -  Ml, (7)

and
i? 0 =  P*(X) =  -  R u  (8 )

where

'f'(X) =  — (sech £X — sec -2X)4 X2, Sk(A) =  (sech ¿X +  sec §A)/4.

Now, if the beam in question is on unyielding supports but has moments acting 
on its ends in addition to the load acting at its center, we find by addition of (1 ) and 
(7) that

u l  =  M ül'4>{\) -  JfcWC§ +  Pll'ty(X) ; (9)

and, similarly

u l  =  -  4 W (X ) +  -  P«'*(X). (10)

Obviously, with the equations derived, problems in dynamics of frameworks are 
reduced to problems in statics of frameworks. To facilitate this work, tables of the 
functions 0 (A), ÿ(X), \pÇK), ÿ(X), 4>(X), 4>(X), T(A) and ^(X) are available . 6

3. Dynamic moment balancing. By substituting “moment-amplitude” and “rota
tion-amplitude” for “moment” and “rotation,” respectively, wherever they occur in 
the definitions of fixed-end moment, stiffness and carry-over factor, we arrive at 
suitable definitions for the corresponding dynamic quantities. These three quantities
will give us a basis for the application of the moment balancing method to problems
in dynamics of frameworks.

6 K. Hohenemser and W. Prager, Dynamik der Stabwerke, Julius Springer, Berlin, 1933.
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First let us consider the amplitudes of the moments acting at the ends of a cen
trally loaded built-in beam (Fig. 6 ). Equa- 

, | P  . tions (9) and (10) can be applied, and we
M o [ I — - — _ I _ — - f  \ M .  find that

-  M ^ ( \ )  =  -  P/*(X),
Fig. 6.

and
M 0i ( \ )  -  =  -  PZT(X).

r/  Then, since 4>Çk)+\pÇk) =  2d>(X), the ampli
tudes of the moment are given by the 
relations

Mo M  !
P/\F(X)

2<b(X) (ID

Fig. 7.

These quantities give the amplitudes of 
the fixed-end moments for a beam loaded 
at its center with a load of amplitude P .

/  The problem of finding the dynamic 
stiffness is illustrated in Fig. 7. If the far 
end of the beam is built-in (Fig. 7a), we 
find from (2 ) that

-  M o W )  +  =  1,

and from (9)
M  o<£(X) — M  îtZ'(X) =  0.

Since M i  is by definition the stiffness, K ,

<i»(X) XP(X)
K  = (12)

2'{[<KX)]2 -  [¿(A)]2}
where

B(X) =  cosh X sin X — cos X sinh X,

D (\)  =  cosh X cos X — 1.

Tables exist for these functions and for the quotient B (K )/D (K ).e 
For a beam on two simple supports (Fig. 7b), equation (2) gives

1 =  M /^ (X ), so K  =  1/7 V(X).

To find the stiffness of the cantilever beam (Fig. 7c), we find from (2) and (3) that

-  y f ( X )  +  M/<KX) =  1,

X4 M i _
wo

Hence,

i?  =

/2- * ( x ) -  —  *(x) =  o.

X4<j>(X) 
r { x 4[<Kx)]2 -  [ÿ (x )]2}

(13)
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The carry-over factor needs to be found only for the case illustrated in Fig. 7a, 
since it is zero in the other two cases.

From equation (1)
M 0<t>(\) -  =  0,

so that the carry-over factor is defined by

(14)
M ,  *(X)

We are now equipped to apply the moment balancing method to problems in 
dynamics of frameworks.

E xam ple  2. Consider again the bent illustrated in Fig. 2, but now suppose that 
the frequency w has a value such that X =3.30 for each bar. Then we have fixed-end 
moment-amplitudes of — .169P/ and A 6 9 P I  at the left and right ends of the horizontal 
bar, equal carry-over factors of 1.22, and equal stiffnesses for each bar. Table II 
gives the calculations involved in solving this problem. The values obtained from the 
1 2  balancings are correct to two significant figures.

4. Dynamic balancing of angle changes. The application of the results of Sec
tion 2 to L. E. Grinter’s method of balancing angle changes3 is not difficult. In 
balancing a given joint, the members of the framework meeting at the joint are as
sumed to be simply-supported and disconnected there. Then rotations are forced by 
means of applied moments until the angular discontinuities between the members are 
negligible. To work with rotations rather than moments we require two more defini
tions.

B y “angle-change” will be meant the change in slope produced at the end of 
a member either by loads or by an applied end moment.

The “angle carry-over factor” is the numerical value of the angle change in
duced at one end of a member by a unit angle-change imposed upon the other end.

The amplitudes of the angle changes, at the ends of a simply supported beam, 
due to a central load of amplitude P  are seen from (7) to be

u  0

The angle carry-over factor can be found by consideration of a simply supported 
beam, one of whose ends is rotated by means of an applied moment-amplitude (Fig. 
8 ). From equations (1 ) and (2), u{  =  — w0' p(K)/(j>(K) so that the angle carry-over 
factor is iKM/<£(X).

Similarly, by consideration of equations (1 ),
(2) and (4) we can arrive at an angle carry-over 
factor for a cantilever beam: Fig. 8 .

_ i(X)̂ (X) +  XV(X)-KX)
G —

[£(x) ] 3 -  x<[<kx) ] 2

Since cj)(0 ) = ÿ (0 ) =  1, it is seen that this reduces to unity in the static case.
Continuity is established between a member and a joint by giving the joint a 

rotation-amplitude K id i /X K ,  where 0 ,- is the amplitude of the angle change in the ith
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Table II.

B C

MAb/PI M ba/PI Mbc/PI M cb/PI M cd/PI M bc/PI
.0 0 0 .0 0 0 -.169 .169 .0 0 0 .0 0 0

-.084 -.085
-.103 -.103

.0 0 0 .0 0 0 -.272 .085 -.085 -.103
.136 .136

.166 .166

.166 .136 -.136 .251 -.085 -  . 103
-.083 -.083

- . 1 0 1 - . 1 0 1

.166 .136 -.237 .168 -.168 -.204
.051 .050

.062 .062

.228 .187 -.187 .230 -.168 -.204
-  .031 -.031

-.038 -.038

.228 .187 -.225 .199 -.199 -.242
.019 .019

.023 .023

.251 .206 -.206 .2 2 2 -.199 -.242
- . 0 1 1 - . 0 1 2

-.014 -.014

.251 .206 - . 2 2 0 .2 1 1 - . 2 1 1 -.256
.007 .007

.009 .009

.260 .213 -.213 .2 2 0 - . 2 1 1 -.256
-.005 -.004

-.005 -.005

.260 .213 -.218 .215 -.215 -.261
.0 0 2 .003

.003 .003

.263 .215 -.215 .218 -.215 -.261
- . 0 0 1 - . 0 0 2

- . 0 0 2 - . 0 0 2

.263 .215 -.217 .217 -.217 -.263
.0 0 1 .0 0 1

.263 .216 -.216 .217 -.217 -.263
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member, K i  its stiffness, and the summation extends over all bars meeting at the joint; 
and at the same time the end of the member itself is given a rotation-amplitude 
— [0i — K i d i f Z K ] .  This is done for each member meeting at the joint, thereby bal
ancing that joint; then the assigned rotation-amplitudes are carried over, and the 
balancing process continues.

After the rotation-amplitudes for all joints have been found with the desired ac
curacy, the moment-amplitudes can be found from a combination of (9) and (10):

+  u{ \p(\) PM'(X)

0 =  m < K x )]2 -

1 ¿'{[¿(A )]2 -  hKA)]2} 2<§(X) '

Table III.

B C

0ba/PU' Obc/PIP 0cb/PW e cd/ p ip
.0 0 0 0 .0625 -.0625 .0 0 0 0

.0357 -.0268
-.0178

.0 0 0 0 .0447 -.0268 -  .0268

.0192 -.0225
.0128

.0192 .0192 -.0140 -.0268
-.0073 .0055

.0036

.0192 .0228 -.0213 -.0213

.0016 - . 0 0 2 0
.0 0 1 0

.0208 .0208 -.0203 -.0213
-.0006 .0004

.0003

.0208 .0 2 1 1 -  .0209 -.0209

.0 0 0 1 - . 0 0 0 2
.0 0 0 1

.0209 .0209 -.0208 -  .0209
- . 0 0 0 1

.0209 .0209 -.0209 -  .0209

Mad= -0418 PI M ba= .0836 PI M cb= .0832 P/
Mdc= — .0419 PI Mbc~ — -0832 PI M od — — .0836 PI
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It is interesting to observe that when A =  0 equations (15) and (16) reduce to the 
slope-deflection equations for a centrally loaded beam . 7

E xam ple  3. As an illustration let us solve Example 1 by the method of balancing 
angle changes. For this method, the stiffness of the horizontal bar will be the moment 
required to produce unit rotation of one end while the other end is simply-supported; 
while the stiffness of a vertical bar requires the other end to be built-in. Hence the 
ratio of the stiffness of the horizontal bar to the stiffness of a vertical bar is 3 /4 . If 
all joints are assumed to be pin-connected, we have angle changes dBc = -0625PU' 
and dCB — —.0625PIV  due to the load P .  For simplicity, u{  is replaced by 0,-.

In Table III we find the computation used in solving this example. Joint C is 
balanced first by rotating the member CB  through the angle — (1 —•?■)( —.0625)P ll '  
=  .0357P ll '  and the other members of the joint (that is, CD) through the angle 
f (  — ,0625)Pll ' = — .0268P/F. Continuity at that joint is then established, but the 
rotation of CD  induces a rotation at the other end of the beam, 6 b c — — A 78PU '.  
This leaves a total unbalance of .0447P l l '  at joint B ,  which is balanced next. These 
balancings continue until the angle changes to be carried over are negligible. The 
resulting moments, computed from (15) and (16) are also listed, and compare favor
ably with the results obtained for Example 1 by moment balancing.

E xam ple  4. If, now, w has a value such that \  =  3.00, we find angle changes 
6 bc = .381PU' = — dCB due to the load P  coscot. Furthermore the angle carry-over 
factor for the horizontal bar is —.872, and as to stiffnesses, i£nc =  .549 I', K Ab =  K cd  
=  3.102 I'.  Table IV gives the computation involved in 12 balancings of angle changes 
in this case. The values of the moment-amplitudes obtained are compared with those 
obtained by moment balancing.

5. Convergence of the moment balancing process. Convergence of the process of 
moment balancing can be assured if the frequency of the forced vibration is smaller 
than the first natural frequency of the structure. The first step of the method of mo
ment balancing leads to the determination of the amplitudes of the unbalanced 
moments. For the following steps these unbalanced moments are considered as ex
terior couples acting on the joints of the structure. In the type of structure considered 
here (joints fixed against translation) the amplitudes of displacement and bending 
moment of any member are completely determined by the frequency w and the 
rotation-amplitudes at the two ends of the member. If a set of values of the rotation- 
amplitudes at the n  joints of the structure is assumed, it is therefore possible to com
pute the amplitudes of the periodic couples which must be applied to the joints in 
order to produce the assumed rotation-amplitudes. Let 0; =  u [ , (7 =  1, 2 , • • • , n), 
be the rotation-amplitudes and A { the corresponding amplitudes of the couples. 
Furthermore, let B{ be the amplitudes of the exterior couples obtained by the first 
step of the method of moment balancing. Then, if the assumed 0,- represent the actual 
configuration enforced by the loads Bi, A i  — 2 1 , =  0 ; but in general

A i  -  B i  =  C,-, (17)

where Ci is the residual moment-amplitude. .
Amongst all possible systems 0,- the actual one minimizes the energy function

7 See, for example, J. I. Parcel and G. A. Maney, Statically indeterminate stresses, John Wiley and 
Sons, 1936, p. 149.
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Table IV, .

Ob a / P W Osc/PW 8cb/ P W 6 cd / P H '

. 0 0 0 . 3 8 1 - . 3 8 1 . 0 0 0

. 3 0 7 - . 0 7 4

- . 2 6 8

. 0 0 0 . 1 1 3 - . 0 7 4

r—O1

. 0 2 2 - . 0 9 1

. 0 7 9

. 0 2 2 . 0 2 2 . 0 0 5 - . 0 7 4

- . 0 6 4 . 0 1 5

. 0 5 5

. 0 2 2 . 0 7 7 - . 0 5 9 - . 0 5 9

. 0 1 1 - . 0 4 4

. 0 3 8

. 0 3 3 . 0 3 3 - . 0 2 1 - . 0 5 9

- . 0 3 0 . 0 0 8

. 0 2 7

. 0 3 3 . 0 6 0 - . 0 5 1 - . 0 5 1

. 0 0 5 - . 0 2 2
. 0 1 9

. 0 3 8 . 0 3 8 - . 0 3 2 - . 0 5 1

- . 0 1 5 . 0 0 4

. 0 1 3

. 0 3 8 . 0 5 1 - . 0 4 7 - . 0 4 7

. 0 0 3 - . 0 1 0
. 0 0 8

. 0 4 1 . 0 4 1 - . 0 3 9 - . 0 4 7

- . 0 0 6 . 0 0 2

. 0 0 6

. 0 4 1 . 0 4 7 - . 0 4 5 - ' . 0 4 5

. 0 0 1 - . 0 0 5
. 0 0 5

. 0 4 2 . 0 4 2 - . 0 4 0 - . 0 4 5
- * - . 0 0 4 . 0 0 1

. 0 0 3

. 0 4 2 . 0 4 5 - . 0 4 4 - . 0 4 4

. 0 0 1 - . 0 0 2

. 0 4 3 . 0 4 3 - . 0 4 4 - . 0 4 4

B a b  =  0 d c  =  0 .
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Balancing angle changes Balancing moments

Mab/PI .116 .118
Mb a/P l .134 .135
Mbc/PI - .1 3 8 -.1 3 5
Men / PI .132 .135
Mcd/PI - .1 3 6 -.1 3 5
MDc/PI - .1 1 9 -.1 1 8

n  =  i  E  ctitisfik -  E  B kek.
t,fc-l ¿-1

(18)

The first term on the right side represents the internal energy,

\  E  ««W* = E i-E / f  ! W d x  -  /xco2 f  1 uHx} ,
i . J t — 1 1 ^ 0  0  /

(19)

where the right hand sum is to be taken over all members of the structure. The rela
tion (19) arises from the fact that, for any member, u"  and u  can be expressed linearly 
in terms of the rotation-amplitudes at the ends of this member. Note that a,-* =«*,■ 
and ^ ¡ = E * - i a *'*®i-

Let us denote the first natural frequency of the structure by wi. The values 
aù, « 22, • • • , (Xnn then can be shown to be positive as long as w<o>i. Indeed, by Ray
leigh’s principle

CO! i Y . E I  f  l ( i f)*  d x  /  E m  f o u*dx (20)

where the sums are to be extended over all members of the structure. As the function 
u  in (2 0 ) let us take the displacements corresponding to 0 i =  l ,  6 2  = 6 3 — ■ ■ • —6 n = 0 . 
From (19) and (20) together with the condition co<coi it is then clear that a n > 0 .  
Similarly a 22 > 0 , 0:33 > 0 , • • • ,a „ „ > 0 .

Let a first set of values 6 i = d[1) be given and compute the corresponding residual 
moment-amplitudes C,(1). Suppose the subscripts 1 , 2 , • • • , n  to be arranged in such 
a manner that | Cj1,| §: | C [ ^ \ , (i =  2, 3, • • • , n). We now define a second set of values 

which differs from the first one only in so far as the value of 0 i is concerned:

t l) +  <t>,
n<2> 9(1) 1 ( i  =  2, 3, • • • , n).

We propose to determine 0  in such a manner that the value of H  is decreased! 8 We 
have

H{dm ) -  H (ea)) =  r  E  «uri" -  5x1 <#, +  —  =  c i lV +  ^  (2 1 )
L k~ 1 J 2 2

Taking

8 See G. Temple, The General theory of relaxation methods applied to linear systems, Proc. R. Soc. of 
London, Ser. A, 169, 476, (1938-1939).
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C -
4> =   (22)

a u
we obtain

I I (0 m ) -  H (dW ) =  -  -Hci’Y A n  (23)

which is certainly negative as long as co <coi. The residual moment-amplitude C® cor
responding to the new values 6 {2) equals

d 2>=  - B l =  c l 1' +  a 114  =  0.
k - 1

This shows that the choice of 0  according to (22) corresponds precisely to the process 
of moment balancing where in each step the greatest absolute residual moment is 
“liquidated.” For the next step the subscripts i  have to be rearranged, so that C}2) 
is the greatest absolute residual moment. Continuing in this way we obtain a decreas
ing sequence of values of I I .  If we simplify our notation by writing I I lp) instead of 
II{Q('p))} this sequence becomes

//o> > 7/(2) >  > //G» > > H min,

with

=  _  1 [ c ^ Y / a i r ’ <  0.

Here a ’"1 has been written instead of the «u of (23), since as a consequence of the re
arrangement of the subscripts the value of this quantity changes from step to step. 
Now a (n is positive and can assume only a finite number of different values (n at 
the most). Furthermore, the sequence JI(p> is decreasing monotonically and is 
bounded from below by I I m¡„.. Therefore

lim [c iP)] =  0 .
p—► co

Since Ci”1 is the greatest absolute residual moment in the £th step, this means that 
ultimately all residual moments will disappear. The structure is then completely bal
anced.

This convergence may be rather slow, especially if co is near coi. For example, com
pare the 12 balancings used in Example 2, when A =  3.30, to the 5 needed in Example 
1, for the same structure when A =  0. For this structure Ai =  3.55.

The method of balancing angle changes may not always converge when wCcoj, 
as will be seen if Example 4 is attempted when A =  3.30. Usually the method of bal
ancing moments converges more rapidly than the method of balancing angle changes.
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AN APPLICATION OF THE METHOD OF THE 
ACCELERATION POTENTIAL*

BY

J. LEHNER (Cornell University) a n d  C. MARK (University of Manitoba)**

In this paper Prandtl’s theory of the acceleration potential is used, in conjunction 
with conformal mapping, in order to determine the pressure distribution on a sym 
metrical control surface consisting of a fin and flap separated by a gap of finite width, 
under the assumption of a steady irrotational flow of an incompressible perfect fluid. 
The method used is essentially that by which M. A. B iot1 recently derived the well- 
known formulae for lift and moment of a symmetrical airfoil with flap in a remarkably 
simple manner. The present problem is considerably more complicated than that of a 
single airfoil; but it is still possible to obtain formulae in closed form. In the case where 
the gap between fin and flap is large in proportion to the chord of either, the formulae 
obtained here for the pressure distribution on the fin, or on the flap, do not differ 
materially from thosfe used for a single symmetrical airfoil.

For treatments of this or related problems by the classical velocity-potential 
method, see I. Fliigge-Lotz and I. Ginzel, Die ebene Strom ung u m  ein geknicktes Profit 
m it Spalt, Ingenieur-Archiv 1 1 , 268-292 (1940), which also contains references to 
earlier studies. Fliigge-Lotz and Ginzel do not restrict themselves to the symmetrical 
case (fin and flap of equal length) as is done in this paper. The method by which they 
obtain the complex velocity potential is essentially the same as the one we use to 
derive the acceleration potential. They compute the pressure distribution for an un- 
symmetrical split wing rather than the total lift and moment, so that a comparison of 
their numerical results with ours is not practicable.

A paper by Kutta in the Sitzber. Bayerische Akad. of 1911 considers the special 
case in which the two airfoils have the same angle of attack. Our results agree with 
his if we make the identification sin 2 a  =  2 a, where a  is the angle of attack.

The first part of the paper gives a description of the methods and results; while 
some details of the mathematical methods used are given in the second part.

i. G eneral  D escription  of M ethods and  R esults

1. The acceleration potential. The equation of motion of an incompressible per
fect fluid of density p is

pd =  -  grad p, (1 . 1)

where d denotes the acceleration vector, and p  the pressure. According to Prandtl, 2

* Received Jan. 18, 1943.
** This paper was prepared at the suggestion of Professor W. Prager while the authors were partici

pants in the Program of Advanced Instruction and Research in Mechanics at Brown University, Summer 
1942. The authors are greatly indebted to Dr. L. Bers for valuable suggestions.

1 M. A. Biot, Some Simplified Methods in Airfoil Theory, Journal of the Aeronautical Sciences, 9, 
185-190 (1942).

1 L. Prandtl, Beitrag zur Theorie der tragenden Flache, Zeitschrift f. angew. Math. u. Mech., 16, 360- 
361 (1936).
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the function
-  P (1 .2 )

P
may be called the acceleration potential, since a =  grad <p.

We shall consider the steady irrotational plane flow around a symmetrical control 
surface consisting of a fin and flap separated by a finite gap. Taking the axis of *
parallel to the velocity U  which prevails at an infinite distance from the control
surface, we write the components of the velocity vector q as

qz =  U +  u, qy =  v. (1.3)

In the case of a thin profile with a small angle of attack, the terms u  and v can be as
sumed to be small compared with the velocity U  of the undisturbed stream.

For a steady flow, the components of the acceleration vector are

dqx dqx dqv dqu
Q-x Qx I Qy } &y — Qx i Qy

dx  dy  dx  dy

Introducing the acceleration potential <p on the left sides and the expressions (1.3) on 
the right sides of these relations, and neglecting terms of the second order in u  and v, 
we obtain

dip dll dip dv
—  =  U - ,  — =  u —  ■
d x  dx  dy  dx

According to the condition of incompressibility, d u / d x + d v / d y  = 0 , we have d u /d x  = 
— dv/dy .  Substituting this in the first of our equations gives

dip dv d<p dv
—  =  -  U - ,  — =  U —  • (1.4)
dx  dy dy dx

Elimination of v between these two equations leads to

d~ip d*ip
—— H   =  0. (1.5)
d x 2 d y 2

The acceleration potential tp is thus seen to satisfy the Laplace equation and, conse
quently, can be taken as the real part of an analytic function, f ( x + i y )  =ip(x, y)  
+i\p(x, y ) ,  of the complex variable x + i y .  M. A. Biot has shown that the conjugate 
function of the acceleration potential, \f/{x, y),  also has an immediate physical 
significance. Indeed, from (1.4) and the well-known Cauchy-Riemann relations, 
dip/dx = dip/dy, dip/dy = —d\J//dx, it follows that the function may be defined so 
as to equal — Uv.

In the rest of this section we shall speak of only one airfoil on the understanding 
that what is said applies equally to the fin and the flap.

The undisturbed flow U  along the ar-axis involves a normal velocity +  Ua  at the 
surface of a thin straight airfoil having the small angle of attack a. The boundary con
dition of tangential flow on the surface will be satisfied by a function giving the veloc
ity  — Ua  normal to the surface. As is usual in the linear approximation, this boundary 
condition is applied at the a>axis instead of at the surface; so that we now take a part 
of the ar-axis to represent the airfoil (see Fig. 1). We have, then, v =  — Ua;  and hence,

t  =  -  Uv = U 2a; (1.6)
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that is, \p is constant on the surface of the airfoil.
The problem of finding the pressures, and hence the lift on the airfoil, may now 

be restated. One seeks an analytic function of the.complex variable x - \- iy  the imagi
nary part of which satisfies the condition (1.6) and, since \j/— — Uv, vanishes at in
finity. The real part of this analytic function may then be used as the acceleration 
potential from which the pressures may be obtained by (1.2). Taking into account the 
properties of harmonic functions, the fact that \p must vanish at infinity in the z-plane 
( z = x + i y )  makes it necessary that ip have at least one singularity. Aerodynamical 
considerations indicate the leading edge of the airfoil as the obvious location of this 
singularity, partly by the analogy with the classical thin-wing theory in which the 
velocity turned out to be infinite at the leading edge. As in the case studied by Biot,

we assume this singularity to be a source-sink 
doublet with axis parallel to the y-axis.

To simplify further the determination of 
i/', the segment of the x-axis now used to rep
resent the airfoil is mapped conformally into 
a circle in the w-plane.

2. The mapping. We treat only the sym 
metrical case in which the fin and flap are 
of equal length.* Let these be represented by  
slits along the real axis: the fin from — \ / k '  
to —1 , the flap from 1 to \ / k ' ,  (0 < & '< 1 ). 
The z-plane exterior to the two slits can be 
mapped into the interior of a circular ring in 
the w-plane, as indicated in Fig. 1 . The radius 
of the outer circle may be taken as unity, the 
other radius, R ,  being then fixed. The slits 
transform into the boundary circles of the 
ring. The function giving the required map
ping can be written in closed form using ellip
tic functions (see §6 ).

In the mapping, the upper edge of the slit 
A B  (Fig. 1) goes into the upper semicircle 
A  ' B ' , the lower edge of the slit into the lower

Fig. 1. The actual fin and flap are indi- semicircle. Moreover, points such as G and H
cated in (a); the slits used to represent them on A B ,  G being on the Upper edge of the slit
in (b): it is on these slits that the condition and H  on the lower edge immediately be-
(1.6 ) is actually met. (c) shows the circles into low G, map into points such as G '(R , 6 ) and
which (b)I is mapped. It is convenient to use H ^ R  _ g) fof which the values of Q ^  j
temporarily several sets of polar coordinates . . . .  .. . r _
in the ui-plane: (r, 6), with origin at center of but opposite in Sign. Similarly for CD. For
circles; (n, 00. with origin at C"; (r2, 02), with uniqueness, we define the coordinate d in the
origin at A w-plane so that |0 |i= T . The point z =  <x>

maps into go '{ y /R ,  ir).

* The unsymmetrical case could be handled just as easily at this stage. Any fin-fiap arrangement 
could be mapped into the symmetrical case by a preliminary linear transformation of the type 
z' = (az+b)/(cz-\-d)\ subsequent steps being the same as here. It is in meeting the condition ^ (« )= 0  
that the symmetrical case is notably easier to treat; unsymmetrical cases might require numerical han
dling from that point on.

I
 1 . )     x
A(-l/kO B(-l) C(+l) DCl/k1)

(b): Z-PLANE
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The radius of the inner circle (transform of the fin) is given by
j? =  e-2 tk'/k (2 .1)

where K and K' are the complete elliptic integrals of the first kind (modulus k ), k  be
ing the complementary modulus to k '  (&2 -f- £ ' 2 =  l). The relation between the coordi
nate z of a point on one of the slits in Fig. 1 (b) and the coordinate 6  of the corresponding 
point in Fig. 1(c) is

i i M h o, V R )
z — +  ------------------  =  +  —=   7=  ; (2 . 2 )

dn(K0/ir, k) V V  9 ¡(¡9, V R )

in which the plus sign holds for z on the flap. The notation of the elliptic and $-func- 
tions is that used in Whittaker and Watson, Modern A n a lys is  (Cambridge Univ. 
Press, 4th Ed., 1927; Chap. X X I and X X II).

3. The potential. The problem now is to find a potential which will vanish at in
finity and have a singularity of the doublet type at the leading edges of fin and flap 
(the points A '  and C' in the w-plane), and of which the imaginary part \p will satisfy  
condition ( 1 .6 ) separately for each airfoil; namely,

ip = U2a  on r = R, and on r =  1.* (3.1)

In addition, corresponding to the Kutta-Joukowski condition in the classical theory, 
the acceleration potential must be continuous at the trailing edges of fin and flap.

We place a plane doublet of strength a\ at C' and one of strength a2 at A ' ,  the axis 
of each doublet being perpendicular to the real axis. The values of a 3 and a2 will be 
determined later by (3.1). The complex potential at the point £, in the plane of a com
plex variable u, due to a doublet of strength m  at the point u = 0  whose axis makes 
an angle ?? with the real axis is

Thus the potential due to the doublet at A ' ,  for example, is given by (see Fig. 1(c))

<J2r r 1ei(r/2_e,> =  ap T 1 sin 02 +  ia^ rf1 cos 02.

The imaginary part of this potential, o p r 1 cos 02, has the constant value a3/ 2 R  on the 
circle r = R ,  but is not constant on r = 1. Similarly, mutatis mutandis,  for apT 1 cos 6 \. 
The function a ir f1 cos fli+ a 2?T1 cos 02 will not, then, serve as the tp function, but it 
may be modified as follows.

We obtain the harmonic function F{r, d) which, to within an additive constant, 
takes the values —apT 1 cos 9i on r = R, and —a3r V  cos 02 on r =  1. Then the function

\p =  a ir f1 cos 0i +  apT 1 cos 02 +  F(r, 6 ) +  c, (3.2)

where a3, a2, and the available constant c are chosen so that (3.1) and

*(«>') =  =  0 (3.3)

are satisfied, will be the imaginary part of the potential required.
Equations (3.1) and (3.3) are satisfied (see §7) when

* When (r, 9) is the map of s we shall use <p(s) and ^(r, 9) indiscriminately where no misunderstanding 
can arise. The variable indicates the plane (and the point in the plane) at which the ^ function is to be 
considered. Similarly for other functions with a physical significance.
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/ k ' K  3 \  a2/K
— «I ( ---------1-------J -)-------- i —  ■

\  2tt 4 /  R  \2ir

2K a  -  /S )  -  +  j 8 ) \
ai =  Z72 ----------------------------------  , (3 .4 )

V K(1 +  V) 1

2 k 'K  (a -  P) +  t  (a  +o2 ^ ^  / 2 k  K(a — ft) +  T{.a +  0 ) \  

R  ~  V K(1  +  k ’) / 'K(1 +  k')

(The apparent difference between the ways in which a\ and a2 appear in (3.4) is due 
to the fact that a 2 is on a circle of radius R.)

The function F(r, 6 ) in (3.2) was obtained in the form of a Fourier series:
00

F(r, 6) =  X  (yl»rn +  B nr~n)  cos nd.
1

The conjugate harmonic function may then be written immediately as:
00

— X  (A nr n — B nr~n) sin n6 .
1

The conjugate function to

Oirf1 cos 0 i +  opT 1 cos 0 2 is — o p t 1 sin dx +  a2r2 l sin 0 2,

(the minus sign being due to the fact that di, as defined in Fig. 1(c), is measured in the 
negative sense). In this way the acceleration potential is obtained to within an addi
tive constant b (which disappears in evaluating the lift). Dropping the auxiliary co
ordinates, we have finally (see §7)

— ¿22 $ 2  fli (7/
on the fin: >p(Ri 0) = ---------------( R  R ) ----------------- ( R  R)  +  b,

2 R  t? 2 2 di
(3.5)

a 1 d i  a 2 d 3
on the flap: p (l, 0) =  -  — —  (¿0, R)  -  — ■ —  (¿0, R)  +  b\

2 vi 2 R  d 3

in which d i  /t? ,(R  R ) is written for

1 d

t»,-(R r ) d m
OM R R)).

4. The lift and moment. From (1.2) we have p  = — p<p. The lift on the air-foil at 
such a point as G is given by

l(z)  =  p(H )  -  p(G) =  p (H ')  -  p(G') =  P[*(0) -  * ( -  0)] =  2p(<p(d) - b ) =  1(8).

Thus, on the fin,
/  02 d i  d i  \

l(R, 0) ==p -  -  —  ( | 0 , R)  -  a ir —  ( R  * ))>  (4-1)
\  R  d 2 d i  J

on the flap,
/  d{  a2 d {  \

7(1, 0) =  p -  ai —  ( R  R)  -  —  —  ( | 0 , R)  ); (4.2)
\  d x R  d 3 )
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in which ai and a 2 are given by (3.4).
The total lift (on the flap, say) would then be given by

/.1 ik' ¿z
l(z)dz — 1 (6 )— d6 . (4.3)

1 J  0 dd

The moment of the flap about the point s =  0 is

/1 ¡k'
l(z)zdz; (4.4)

and about any point zlt it is

/l/ k'
l(z)(z  — z{)dz =  4 / 2(0 ) — ZyLi. (4.5)

The functions involved in these integrals are found in (4.2) and (2.2). It will be ob
served that the ^-functions appearing have different parameters.

5. Results. The above integrations can be carried out exactly. The method is de
scribed in §8, and the results are:

CL 8
P- H 7 -2Z2 =  — [t(1 — k') +  2 K k '~  E]d ( I - k ' ) ( w 2+ 4 K 2k'),

k' 2irk'

P~1 0 )  =  ( 1  -  * ' )  [ 2 E  -  i  x  ( 1  -  k') ]
k 2

8
-[ir(l — W) {K £ '+ E -£  tt ( 1  -  k') } +  (Kk' -  E)2], ( 5 . 1 )

Trk'*

p~l U~2L i  — ~  [2(E —K&'2) — (1 — ^')(2K^' —7r)]

+ ---------   [tt { 2 E  — K ( l  +  A ' 2)  } — ' ¿ 0  —  ¿ , ) ( 2 K j ^ /  — 7 r ) ( 2 K + 7 r ) ] ,
2 irk'

where Z.2, 4 / 2(0 ) have the meanings given in §4, L \  is the total lift on the fin, E  is the 
complete elliptic integral of the second kind modulus k, and 5=/3 —a.

As a limiting case we consider the situation where the gap between fin and flap 
is so large in proportion to the chord of the fin (or flap) that they may be expected to 
act as independent airfoils. In this case &' =  1, ¿ =  0. Reference to tables of elliptic 
integrals (e.g., Jahnke, Emde, Tables of Functions, Teubner, 2nd Ed., 1938) or direct 
integration gives K  =  £  =  7t/ 2  ; so that, from (2.1) we haveR  =  0. As an approximation, 
we neglect powers of R,  and our formulae become (Whittaker, Watson, p. 489)

a 1 =  — 2/3 U2, a z /R  =  2a U 2,

1(1, 0 ) =  2/SpZ72 cot \e .  (5.2)

The expression in (5.2) is the usual one for the lift on a single straight wing with 
angle of attack /3. For example: when the gap between fin and flap equals 8 times the 
chord of either, i? =  0.0008; and evaluating (4.2) we get, in this case,
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1(1, 0) =  pU 2(2A /3 -  0.1 <x) cot 10, (5.3) ,

which differs only slightly from (5.2) unless |/3 — a | is large; while for /3 = a, (5.3) re
duces to (5.2):

Some numerical examples are given in the table which follows. C L, Ch , Cp are the
usual lift and moment coefficients: lift coefficient, 
C l = L /p ( U - /2 ) c ,  c being the total chord from 
leading edge of fin to trailing edge of flap; mo
ment coefficient of the flap about its leading edge, 
Ch = M<i( l ) / p ( U ' 1/2)c-', moment coefficient of flap 
about P , C p= C h — C l J I P / c  where H P  is the dis
tance from the leading edge of the flap to P  (see 
Fig. 2). The subscripts 1 and 2 indicate fin and 
flap, respectively, while L  indicates lift on either. 

In the table H P  is expressed as a fraction of c ' , the chord of the flap; and 5 =  /3 — a  
and a  are expressed in radians.

Table 
(a and 5 in radians)

s/c' 0.1 0.2 0.3 0.4 0.5

Lift Coefficients

Fin: Cl, 
Flap: Cl,

4.57« +2.50* 
1.41« +2.055

4.19« +2.055 
1.51« +2.185

3.88« +1.6/5 
1.58« +2.226

3.63« +1.426 
1.61« +2.216

3.41« +1.235 
.1.62« +2.186

HP Moment Coefficients

0; Ch 
0.1c'; C., 
0.2c'; C.s 
0.25c'; C.«

0.21« +0.286 
0.15« +0.185 
0.080«+0.0S05 
0.046«+0.0326

0.20« +0.266 
0.13« +0.166 
0.065«+0.0645 
0.031«+0.0155

0.19« +0.256 
0.12« +0.155 
0 ,056«+0.0586 
0.022«+0.00945

0.18« +0.245 
0.12« +0.145 
0.053a+0.0525 
0.017a+0.00605

0.17« +0.226 
0.11« +0.145 
0.044a+0.0495 
0.012«+0.00485

Finally, it might be of interest to note that one can locate a point about which the 
moment on the flap would be proportional to 5. Although, if hinged at this point, the 
flap would not remain in the position 6 =  0  without some restraint, still, when in this 
position, the moment on it would be zero. Thus if:

s /c '  =  0 .5 , H P  = 0.270c', C. 270 = -  0.0145; 

s/o ' =  0 .1 , H P  =  0.313c', C.313 = -  0.0365.

II. MATHEMATICAL APPENDIX

The following references will be used:
W =  W hittaker and Watson, Modern A na lys is ,  Cambridge, University Press, 4 ed., 

1927.
J =Jahnke and Ernde, Tables o f  Functions, Leipzig, Teubner, 3 ed., 1938.

6 . The mapping. (See §2.) The mapping is accomplished in two steps. First, we 
map the slit s-plane into the interior of a rectangle in the ("-plane by the function

F i g . 2 .



f  =  f  [ ( 1  -  * ! ) ( 1  -  A'2*2) ] - 1'2,/*. (6 . 1)
j  0

This rectangle has vertices at ±K'(A) ±fK(A), the elliptic integrals being expressed as 
functions of the modulus A complementary to A'. The correspondence is: z =  l — =  K', 
z = k '~ 1— =  K '± iK , (plus, for the upper boundary of the cut), etc. The integral be
ing multiply valued, the mapping is repeated infinitely often in the f-plane, covering 
the plane without gaps by a net of congruent rectangles.

The second step of the mapping is

w =  exp [*-(f -  KO/K], (6.2)

This is periodic with period 2iK, hence w  takes both horizontal sides of the rectangle
into the part of the real «/-axis between — 1 and — 7?, (7?=exp ( —27TKVK)), i-e-. into 
the segment D 'A '  (Fig. 1(c)). The vertical sides are mapped into the circles | w\ = R ,  
\w\ = 1 . Because of the periodicity of the exponential function, the full network of 
rectangles in the f-plane is mapped into the ring 7 ? ^ |w | g l ,  congruent points of 
different rectangles going into the same point of the ring. Thus the mapping between 
the z- and w-planes is one-to-one.

The inverse mapping is, with w  = re ie, (W, p. 492),

z =  sn (f , k ') =  sn ^— log w +  K', A'  ̂ =  sn {id +  log r) +  K', A'^.

For the two important cases, r =  1, r = R ,  the last formula reduces to (2.2) if we trans
form the elliptic function to one having a real argument (W, pp. 500-506). N ote that 
when the elliptic function is expressed in terms of ^-functions, the parameter, q, of 
the ^-functions is exp ( —7tK'/K) =  7? 1/2 (W, p. 479, ex. 3).

7. The potential. (See §3.) The function F(r, 6 ), assumed as a Fourier series
co

F{r, 0) =  2  (A„rn +  B nr~n) cos nd, (7.1)
1

must, to within an additive constant, satisfy the boundary conditions

« i(l — R  cos d)
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F{R, d) — — a ir f1 cos di =  

F ( l ,  d) =  — a2r2 l cos d2 =

1 +  7? 2 — 2R  cos d 

— a2{R +  cos d)
(7.2)

1 +..T? 2 +  2 R  cos d

the expressions on the right being obtained from Fig. 1(c). But

1 — 7? cos d 1 "
=  9?------------— =  2 _/ 7?" cos nd,

1 +  7? 2 — 27? cos d 1 — R e w

7? +  cos d e~ie “
9?   =  ( — l ) n7?" cos (« +  1)0 ,

1 +  7? 2 +  27? cos d 1 +  R e - “

where 9i denotes the real part; and hence, substituting the last two expressions in
(7.2) and comparing with (7.1), we get

A „R n +  B nR~n -  ~  0i7?n, A n +  B n =  -  a2( -  l ) " - ^ * - 1, {n & 1), (7 .3 )



with solutions

aiR in +  a2{ -  l ) nR n~1 axR 2n +  a2( -  l ) nR 3n~1
A n =  ---------------------------------> B n = ----------------------------------------   (7.4)

1 _  R 2n i  -  i?2n

On substituting these values for A„, B n, or, more conveniently Eqs. (7.3), in the 
definition (7.1) of F{r, 9), we find

F (R , 6 ) — — flirf1 cos 0i +  ah F{  1, 9) =  — a2r2 ' cos 02; (7.5)

so that F{r, 9) satisfies the required conditions. The constant c in (3.2) must be chosen 
so that vanishes at the infinite point of the z-plane; i.e., (see (3.3)),

<A(i?1/2, 7r) =  [ — a ir f1 cos dy +  a2r2 l cos tf»],-«»*,«-»-
00

+  E  ( ~  l ) n('lni?,/2n +  B n R -W ")  + C =  0 .
1

The value of the bracket is obtained from Fig. 1 (c); and using (7.4) we find 

a j a2 ” i?3"/2(l -  R n)
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c =  + ^ ---------- +  o x Z ( -  1)-
1 +  R 1/2 i? 1/2( l -  2?I/2) i 1 -  i?2"

a2 i?3n/2( 1 -  7?n)

22 i 1 -  i?2n

(7.6)

For the evaluation of the infinite sums in (7.6) we need certain formulae from the 
theory of elliptic functions. These are

” qn K 1
E  — ^------- 7  (W, p. 511, ex. 1),
i 1 +  q-n 2 r  4
» ( _  l)n„n KA' 1

E  -----------= --------------  (ibid., ex. 2 ).
, 1 +  ?2" 2t  4

Using R = q 2 (cf. end of §6 ), and making some obvious algebraic reductions, we find 
for c the value given in (3.4).

The values of ai and a2 are found from (3.1) which with (3.2) and (7.5) give the 
equations

\ a 2/ R  -j- -f- c =  U 2a, 2 ai T  c ~  U 2/}.

The solutions of these are contained in (3.4); and thus is completely determined.
The acceleration potential <p is now obtained as the harmonic conjugate to the 

function ip. We have, (see §3)
00

<P =  — a ir f1 sin 0i +  a2r2 l sin f?2 — E  ( 4 / n — B„r~n)  sin nd +  b,
1

where b is an arbitrary constant; or, in terms of r and 9,

— air sin d a2r sin d
<p(r, d)

1 +  r2 — 2r cos d R 2 +  r2 +  2rR  cos d
(7.7)

oo

— E  — B nr~n) sin nd +  b.



For the purpose of evaluating the lift we need only 0(7?, 6 ) and <p(l, 6 ). These are given 
in (3.5); we establish the expression for <p{l, 6 ), that for <p(R, 6 ) being obtained in a 
similar way.

If, in (7.7), we set r =  1, use (7.4), and collect terms we find

CLl ( 50 R 2n )
<p{ 1 , 6) = ------ < cot -¿0 +  4 E  ------------- sin nd >

2 I 7 1 “  R 2n )
a2 I — R  sin 0 ”

 <---------------------------------E  ( ~  l)"7?n sin nd
R  l l  +  7? 2 + 2R  cos0 i

" ( -  l ) n7?n )
+  2  E  --------------- sin nd > +  b. (7.8)

i 1 -  7?2» j

(  Re~ i0 \  “
“ 3 ( l T ^ ) = T i - D - J i - s i ” «».
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But
— 7? sin

1 +  7? 2 +  27? cos 0 

where 3  denotes the imaginary part. Using this in (7.8) we obtain

cii ( 50 7?2n )
1 , 0) = ------ < cot |0  +  4 E  ------------- sin nd >

2 I i 1 -  7?2" )

a2 ( ” ( — 1)"7?" )
 < 4 E  --------------- sin nd > +  b.

27? I T  1 -  7?2n J

(7.9)

Finally, the terms in the brackets in (7.9) may be expressed by means of 7?-functions.
Making use of the results of W, p. 489, ex. 1 2 , we get

Ui t?/ a2 i?3
^(1 , 0) =  -  — —-  (|0, 7?) -  —  —  ( | 0, 7?) +  6 , (7.10)

2 l/l ZiV 1/3

as stated in (3.5). It is worth pointing out that the parameter of the ^-functions met 
here is 7?, whereas in equation (2.2) the parameter is 7?1/2.

8 . Some definite integrals. (See §4.) The integrals in §4 aie combinations of the 
following eight integrals:

/• T d'm dz
—  {& ,R )  —  de, (8 .11)

o
dd

/* r dz
— (10, 7?) z — dd, (m  = 1 , 2 , 3 ,  4), (8 .12)

o dm dd
where z and 6  are connected by (2.2). For their evaluation we can make use of the 
following formulae:

d d {  AzflO T>\ _



d d i  A
-  —  (*0, R)  =  — — —  +  B,  (8.23)
dd $3 1 -f- k z

d $1 A z
-  —  a e ,  R)  =  —  +  B, (8.24)
dd $4 z T  1

where
1
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(8.25) 
dn(K0 /x , k)

A  =  -  K2Æ2/ x 2, 5  =  K(K -  E )/x 2. (8.26)

We shall prove only (8 .2 1 ), the others being established in exactly the same way.
From the quasi-periodic properties of the ^-functions (W, p. 465, ex. 4) we see 

that the left member of (8 .2 1 ) is a doubly periodic function with periods 2 x, 27rr, 
where t  =  2fK'/K. We may restrict ourselves to a single period rectangle, say the one 
having the origin as the southwest vertex. Here the left member of (8 .2 1 ) is regular 
except for a pole with principal part — 2 /0 2 (W, p. 466, p. 489, ex. 12, and the Laurent 
series for the cotangent). But, using (8.25) and W, p. 504.

/  k- K202 V 1k- K202 \ - ‘ ¿2
1 H K202 +  • • • ,

2 x 2
(8.3)

A z 2 A x 2 2
 = --------- (1  +  O(02)) =  b const. +  • ■ • .
2 -  1 ¿2K202 02

Furthermore, A z / ( z — l)  is regular at points in the period rectangle other than 0 = 0 ,  
for z is an elliptic function of order 2 and (8.3) shows that it takes the value 1 twice 
at 0  =  0 .

We see, therefore, that the difference

d 0 /  A z
~  —  (tf , * )dd 0 1 z -  1

is a doubly periodic function without singularities; thus it is a constant, B,  which we 
evaluate at 0 = x . Using W, p. 489, ex. 1 2 , we have

d d{  “ i iR2n cos nO

and at 0  =  x,

A  i L  ( ■ , , „ ) ,  _ i  +  4 f  I -  » ■ * « "
dO r 1 -  R in

I t  1 -  s'- 1 I +  q’- '  I

The sums are evaluated by reference to W, p. 535, ex. 57, and p. 512, second formula 
differentiated. We obtain
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Also, by (8.25), z = k ' ~ 1 when 9 = ir. Hence,

K r , K
B  =  — [ -  K k '  -  E +  K t f k ' - K k ' - 1 -  I)"1! =  — (K -  E), (k°- +  k ' 2 =  1)

as in (8.26).
As before, we shall evaluate only one of the integrals, say I \  in (8.11). This is ac

complished by an integration by parts.

In the extreme right member of (8.5) both the integrated part and the integral are 
infinite, but their difference, considered as the limit

The integration can now be carried out without difficulty. In the integral in the 
right member of (8.5) use is made of (8.21), while dd/dz  is obtained from (8.25), the 
result being then expressed as a function of z. It is necessary to show that the singular 
contributions from the two terms of the right member of (8.5) cancel. This is done 
conveniently by employing their Laurent expansions. The integrals which present 
themselves are at worst elliptic integrals of the first two kinds, and can be found in J, 
pp. 52-56. In this way we obtain the results of §5.

( 8 . 5 )

lim
«->o

is finite.
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PERIODIC PROPERTIES OF THE SEMI-PERMANENT 
ATMOSPHERIC PRESSURE SYSTEMS*

H. J. STEWART 
California Institute of Technology

The outstanding features of the general circulation of the atmosphere are the 
belts of westerly winds and, on the equatorial side of these, the system of semi
permanent sub-tropical high pressure areas. In a previous paper1 the author has dis
cussed the problem of the formation of such high pressure systems. In particular, it 
was shown that these systems probably represent dynamically stable concentrations 
of vorticity similar to the Karman “vortex street” which is formed behind any two- 
dimensional bluff body over a wide range of values of the Reynolds number. It now 
appears that a further examination of the periods of the characteristic oscillations of 
such systems is of considerable interest. It is seen that the period of these oscillations 
is of the order of magnitude of years. This indicates that oscillations of this type may 
be of importance in the calculation of the long period displacements of the Pacific or 
Azores high pressure systems.

It is believed that this is the first time that atmospheric motions have been dis
cussed which have a period of the order of magnitude of, but different from, a year. 
Since the weather shows large variations from one year to another, it is apparent that 
such motions must exist; and, since the non-seasonal variation of the only external 
parameter, the solar energy input, is very small, these long period motions must be 
explainable in terms of the free oscillations of the earth’s atmosphere.

It seems that the horizontal field of motion is of primary importance in determin
ing the motion of these large scale systems; so it is assumed that the atmosphere can 
be treated as a single layer of fluid of constant density with the vertical velocities 
being of small importance so that the pressure can be determined from the hydro
static equation. It is also assumed that the apparent acceleration is negligible when 
compared to the Coriolis acceleration. In addition the effects of friction and of the
variation of the Coriolis parameter with latitude are neglected. This latter factor
means that the fluid motions considered are those taking place on a rotating disc
rather than on a rotating sphere.

The notation used in the discussion is as follows:
x ,  y  = Cartesian coordinates on a rotating disc, u  =  velocity in x direction, v — veloc

ity in y  direction, to =  angular velocity of the disc, h = depth of the fluid, g== accelera
tion due to gravity.

If the motion could have been started from rest with a uniform depth ho, the 
principle of conservation of the absolute vorticity states that

dv dll 2 w
------------=  —  (h  — ho). (1 )
dx  dy  ho

* Received August 4, 1943.
1 Stewart, H. J., Proc, Nat. Acad, of Sci., 26, 604 (1940).
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If the velocity components are eliminated from this equation by means of the geo- 
strophic wind equations,

dh dh
—  2 m  =  — g  —  j 2co u  =  — g  —  , ( 2 )

dx  dy

an expression determining the depth of the atmosphere (i.e. the sea-level pressure) 
is obtained. This is

d-h d2h 4w2
 + ----------------(// — ho) =  0. (3)
d x 2 d y 2 gh0

This equation can be further simplified by the introduction of dimensionless variables, 
X  =  2wx/\Zgho, Y = 2u y /y /g h o  and ij =  (h — ho)/ho. W ith these new variables, Eq. (3) 
becomes

d2rj d-T]
—  +  —  -  V =  0. (4)
d X 2 d Y 2

In terms of the dimensionless depth and dimensionless velocities defined by
U  = u / \ / g h 0 and V = v / y / g h 0, the geostrophic wind equation can be rewritten as

dt] dt]
—— =  V, —-  = — U. ( 5 )
d X  d Y

The only solution of Eq. (4) which vanishes at infinity and which represents flow
in circles about the origin and thus corresponds to a simple vortex is

V =  «ffo(r) (6)

where a  is an arbitrary constant, r — \ / X 2+  Y 2 and K 0(r) is a modified Bessel function2 

of the second kind. If a  is positive the motion is anticyclonic; if a  is negative the 
motion is cyclonic. All of the motions considered in the present investigation are built 
up through superposition of vortices of this type. From Eq. (5), this vortex has a di
mensionless tangential velocity, ue, given by

ue =  -  aK,{r) = —  ■ (7)
dr

The geostrophic wind equations used in the above development can be shown to be 
valid unless r « l .

Based on a homogeneous atmosphere having a mean sea-level pressure and density 
of 1.013 X I0 6 dynes/cm 2 and 1.22 X 10~ 3 gm /cm ’ respectively, the same as the stand
ard atmosphere, the characteristic velocities and distances used above to produce di
mensionless variables are y /g h 0 = 2.87 X lO4 cm /sec and V ghj2<x=  1.97 X 10 8 cm. A t a 
distance of 2000 km. from the center of the Pacific or Azores high pressure systems, 
the characteristic velocity is of the order of 10 meters/second. Since Afi(l) =0.602, 
this indicates that these anticyclones have a strength such that a  is approximately
0.06.

If the interaction between the northern and southern hemispheres is neglected, 
the ring of subtropical anticyclones can be roughly represented by N  equal anti
cyclones of the type given by Eq. (5) which are placed on a ring of radius a and spaced

1 Grey, Mathews and MacRobert, Bessel Functions, Macmillan and Co., London, 1931.
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at equal angles t  =  2 t t / N  as shown in Fig. 1. In the northern hemisphere, the Pacific 
and Azores high pressure regions are well defined. They are about 120° of longitude 
apart. There is some evidence of a third such system over India and equidistant from 
the other two; however this evidence is far from conclusive due to the low level inter
ference from the monsoon. In the southern hemisphere there are also three such sys
tems. The best model is thus obtained with N  = 3.

The surface deflection for such a system in its equilibrium state is

?7 =  a ^ 2  Ko[a2 +  r- — 2ar cos (0 — Mr)]I/2.
n-l

From Eq. 5 the dimensionless velocities in the radial and 
tangential directions, u r and m  respectively, are given 
by

(8)

Ur =
1 dV 

r d0 '
Ue

cb,

dr
(9)

The velocity of any vortex is the velocity at that point 
due to all of the remaining vortices. From the second of 
the expressions of Eq. 9, the system shown in Fig. 1 is 
seen to have a dimensionless angular velocity 12 given 
by

O

<
o

N - l

Fig. 1. Ring system of 
anticyclones.

Ü = — 23 K i[ 2 a sin \ n r \  sin \n r .  
a n_i

(10)

T a b l e  1 .

Angular Velocities of Vortex Systems, 
a = 0.06, 2V=3

a Í2 ail\/ghti

3.0 -.000112 — 9.6 cm/sec
3.5 -.000037 — 3.7 cm/sec

In Table 1 are given the values of 12 and of aU\Zgh0, the linear velocity of the vortices,
for a  =  0.06, N = 3 ,  and a = 3 . 0  and 
3.5. The values of o =  3 . 0  and 3.5 
correspond to the ring of subtropi
cal anticyclones being placed at 
latitude 37° and 29° respectively. 
From this result it is seen that such 
a vortex system would have a slow 
precession to the west. In the at
mosphere, there is also a region of 

distributed cyclonic vorticity to the north of the westerly winds. It is easily seen that 
this cyclonic vorticity tends to produce an eastward displacement of the subtropical 
highs. It appears that these two displacements cancel one another so that the sys
tems are practically stationary, a condition which is undoubtedly also imposed by 
the thermodynamic and topographical factors. Since the westward drift shown in 
Table 1 is very small, no attem pt will be made to correct the vortex system shown 
in Fig. 1 in order to take into account the polar cyclonic vorticity.

If the wth vortex is displaced by a distance Arn in the radial direction and by an 
angle A8 n in the tangential direction, the surface deflection in the displaced condi
tion is

T] — <*23 Aio[(a +  Ar„ ) 2 +  r2 — _2(a +  Arn)r cos (0 — nr  — A0„)] 1/2 (ID



The velocities of the vortices may be calculated as before by Eq. (9). If the displace
ments are small, the changes in velocity of the iVth vortex from the equilibrium value 
indicated by Eq. (10) may be written as

' d a  ^
A Ur =  —  (Arif) = — ArnK 0(Rn) sin (nr) 

at 2
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^  ( Ki(Rn) )
+  «2C  a(A On — Ad if) <    +  Ko(Rn) cos2 \ m  >

n-1 I Rn >

If- 1
+  <*2Z

n-I
where

' K  l(Rn)
- i -  A 0{.Kn) C O S 2 PIT >

K M  

Rn

r f , k m ))Ar„< K 0(Rn) sin2 \ m  +  ; > +  laA9„K0(R n) sin (nr)
I R n >

d at-i R  ) ( 12)
Aiia =  a — (A9{f) +  UAr.v =  aAr,y 23 i K q(R„) sin2 \ m  —   — cos (nr) >

dt n»i I R n )

R n =  2 a sin -¿nr.

It should be noted that the t in Eq. (12) is a dimensionless time. If the actual time is 
t*, then

/ =  2wt*. (13)

Expressions similar to Eq. (1 2 ) for the velocities of the other vortices could be written  
from symmetry. These would form a set of simultaneous differential equations for the 
displacements.

If the N  equations in each of the two sets indicated in Eq. ( 1 2 ) are added, it is seen 
that

d

dt
|  A0„ j  =  a j  2Z Ar„| j  23 j^AToi-R,,) sin2 ¿nr 4-----K i ( R n) sin ¿nr | .

0

(14)

From this it is seen that if a mean value of a is chosen so that 23n-i^?'» =  0 initially, 
then from Eq. (14) both Y l n ~ A r n and 23«-1A w i l l  remain constant. These results 
correspond to similar equations for two dimensional line vortices which state that 
the impulse of a system having no external forces remains constant.3

The disturbed motion of the vortex system as described in Eq. (12) can best be 
discussed by considering the normal modes of oscillation. From the symmetry condi
tions, the displacements in each normal mode must be of the form A rn = A rNe in'f and
A0„=A9xeinv where <p characterizes the normal mode and is a member of the series 
2 ir /N ,  47r/iV, • • • , 2tt( N — 1 ) /N ,  2it. With this notation, Eq. (12) can be written as"

I d  a d
— — (A r.v) =  d Ar/f — B  a Ad if, — — (A0;v) =  CAr.v 4" d <zA0a-, (15)
a dt a  dt

where

3 Lamb, H., Hydrodynamics, 6th edition, Cambridge University Press, London, 1932, 220.
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A — —  22 Ko(Rn)ein‘<> sin (nr)
2 n=l

( K M )

J V -l

" - 1 ( K M )  )
B  =  22 (1 ~  e"lv) ■) H K 0(Rn) cos2 \ m  >

n-l \  Ri% /
(16)

^  ( K M )  )
C =  22 | Ko(Rn) (1 +  e'nv) sin2 \ m  -)-------- — (1  — 2 cos (nr) +  e,nr) > .

n- 1  ( R n )

If the amplitudes ArN and A6 n  are assumed to vary like e ipt and p  is the dimen- 
sionless normal frequency, then from Eq. (15),

p =  a { -  iA ±  V B C ) .  (17)

From Eq. (16), it can be seen that for tp = 2ir, A  = B  =  0 and there are thus two zero 
normal frequencies. These two zero frequencies are those shown in Eq. (14). It can 
also be seen that for the specified values of <p, A  is always a purely imaginary quantity, 
B  is always real and not less than zero. From Eq. (17), the condition that the frequen
cies be real is that C be real and non-negative. Complex frequencies, of course, charac
terize systems in which the amplitudes increase with time and are thus unstable. Now  
C is always real and is always positive for N <  7. If N =  7, C is always positive if a  >  71. 
For N >  7, C is negative for one or more of the given values of <p. A  value of a >71  
corresponds either to disturbances of such great wave lengths or to motions of such a 
shallow layer of air in the earth’s atmosphere that it probably is of no significance. 
The vortex system is thus stable if N  is less than or equal to six.

The frequencies and modes of oscillation will be discussed in some detail for the 
cases where iV =  3 and a =  3.0 and 3.5. From Eq. (13) it may be seen that the period 
of an oscillation is given by

T  =  — sidereal days. (18)
2  p

The normal mode of oscillation, from Eq. (15), is given by

aA0„ a Adt,’ A — ip /a

A rn A rN B
(19)

The results for a =  3.0 and 3.5 are given in Tables 2 and 3, respectively. The two nor
mal modes thus show a short period (2000 days to 5000 days) and a long period oscil
lation (70,000 days to 250,000 days). The path of the vortex is in each case an ellipse. 
For the short period oscillation the vortices are east of their mean position when 
traveling south and west when traveling north. For the long period oscillation the 
sense of the rotation is reversed.

Conclusion. The present calculations cannot be considered as a quantitative theory 
of the oscillations of the semi-permanent high pressure systems; they must be con
sidered rather as an existence proof. Since the essential features of the model, vorticity  
concentrations at distances of roughly 1 0 , 0 0 0  km., are also found in the atmosphere, 
motions of this type must exist in the atmosphere. It might be expected that the 
effects of coupling between the systems of the Northern and Southern Hemispheres 
and of any cyclonic vorticity concentrations on the polar sides of the westerly winds
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Table 2.
Normal Modes of Oscillation for N = 3 ,  a - 3.0,a=0.06.

2ir/3 4 tt/3

—i A 0.002248 -0.002248

B 0.00414 0.00414

C 0.001182 0.001182

P 0.000268 0.000002 -0.000268 -0.000002

T-days 1,865 2.5X106 1,865 2.5X105

(iSOy

Ar.v
-0.53» +0.53» +0.53» -0.53»'

T able 3.
Normal Modes of Oscillation for 7V=3, a=3.5, <*= 0.06.

2x/3 47r/3

—i A 0.000859 -0.000859

B 0.001467 0.001467

C 0.000375 0.000375

P 0.000096 0.000007 -0.000096 -0.000007

T-  days 5,200 7.1X10* 5,200 7.1X10*

oAO.v 
A rN

-0.51» 0.51» 0.51» -0.51»'

would be to decrease the period of the shortest oscillation and to introduce additional 
natural frequencies. No attem pt has as yet been made to estimate the magnitude of 
these effects or of the errors involved in using velocity distributions corresponding to 
vortices on a rotating disc rather than to vortices on a rotating sphere and in neglect
ing the seasonal variations in the strength of the semi-permanent high pressure sys
tems. It is suggested that the present calculations may prove useful as a guide for 
the statistical analysis of empirically obtained data.
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— N O T E S —

ON HERZBERGER’S DIRECT METHOD IN 
GEOMETRICAL OPTICS*

By J. L. SYNGE (Ohio Slate University)

1. Introduction. In recent papers M. Herzberger1'2 has developed a “direct 
m ethod” for analytical ray-tracing through an instrument of revolution. At the end 
of the first paper he refers to H am ilton’s method, which he says “leads to an elimina
tion problem, hitherto unsolved.” Nevertheless the question arises: What is the 
connection between Herzberger’s approach and that of Hamilton? This question 
is best answered by attacking Herzberger’s problem by the method of Hamilton. 
As we shall see, this is quite feasible. Indeed, if we combine Herzberger’s “direct 
method” with H am ilton’s character function we obtain a very powerful technique.

Section 2 contains the formulation of the problem of determining the Herzberger 
transformation when Hamilton’s angle-characteristic is known for the instrument in 
question. Herzberger’s identity (A D  — B C = \ )  is obtained immediately.

In Section 3 the case of a single surface (refracting or reflecting) is considered. It 
is found that the coefficients are connected by a new relation.

In Section 4 I show how the problem of the sphere may be treated, Herzberger’s 
geometrical approach being replaced by a more system atic analytical method.

2 . The Herzberger transformation. To facilitate comparison with Herzberger’s 
work, I shall use his notation. The following table shows the correspondence between 
the notations of Herzberger and H am ilton:

HamiltonHerzberger

Coordinates of point on incident ray y, z x', y', z'
Components of incident ray 1, V, f
Coordinates of point on final ray y', *' x, y, s
Component of final ray v', r' a, r, u

According to the method of Hamilton there exists an angle-characteristic T ,  a 
function of £, 77, £', 77' ,  such that the equations of the incident and final rays are3

* -  z f/r  =  T t , x ' -  z 'Z t t '  =  -  z y ,

y  -  z n / i  =  z y  y  -  z V /T  =  -  z y .

The subscripts denote partial derivatives.
Now suppose that the instrument is of revolution and that the axes Oz, O 'z ' lie 

along its axis. Then T  is a function of the quantities

* Received May 21, 1943.
1 M. Herzberger, Trans. Amer. Math. Sex:. 53, 218-229 (1943).
5 M. Herzberger, Quarterly of Applied Mathematics, 1, 69-77 (1943).
3 J. L. Synge, Geometrical optics, Cambridge, 1937, p. 31.



«3 =  *({* +  V2), « i  =  &  +  W ,  «5 =  W 2 +  V'2)- (2.2)

Let us write d T / d u 3 = T 3, etc. Then, by (2.1), the intersections of the rays with the 
planes s =  0 , z' =  0 , satisfy

x =  T £  +  T t f ,  af =  -  -  T £ ,

y  — T 3t) T\T]', y '  — — T ati — T 3t]'.

These equations involve the eight quantities

x', y ,  v'; x, y, £, v-

The basis of the Herzberger method is to express the first set in terms of the second 
set. To do this, we introduce

mi = h ( x 2 +  y 2) ,  ih  = xi, +  yv- (2.4)

Let us multiply the x , y  equations in (2.3) by £, rj, respectively, and add; this gives

M2 =  2 jH3M3 -j- Ti'll4. (2.5)

Rearranging the x , y  equations in (2.3), squaring and adding, we get

T 4M6 =  U\ — T 3u 3 T  T 3U3. (2 -6 )

Supposing T  known as a function of m3, m4, m5, we have in (2.5), (2.6) two equations
to determine u it ub in terms of U\, m2, « 3 ; suppose the solutions are

Ui  =  / ( « I ,  « 2, M s ) ,  M s  =  g ( « i ,  M s ,  M s ) .  ( 2 . 7 )

Making this substitution, we may express r 3, T t , T$ as functions of u u m2, m3.
Now let us rearrange (2.3) into the Herzberger form:
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(2.8)
x' =  A x  T  B y  y  — C x  -J- D y

y  = A y  +  B t], y  = Cy +  D t],

The coefficients are as follows:

A  =  -  T t T r \  B  = T z T t T r 1 -  T t,  C = T r 1, D =  -  T 3TyK  (2.9) 

We immediately deduce Herzberger’s identity

A D  -  BC = 1. (2.10)

To sum up: Given the angle-characteristic T ( u 3, u i} uf) o f  an  instrum ent o f revolution,
•we obtain the coefficients A ,  B ,  C, D  o f  the Herzberger transformation in  two steps:

(i) We solve (2.5), (2.6) fo r  u\, u 3 in  terms of  Mi, m2, m3.
(ii) We substitute these values i n  (2.9), and so obtain A ,  B ,  C, D  in  terms of U\, m2, m3. 
For future reference, let us solve (2.9) for T 3, T it T 6:

T 3 = -  D C ~ \ T i  =  C ~ \  T 3 =  -  A C - 1. (2.11)

3. An identity satisfied by the Herzberger coefficients for a single surface. Con
sider a surface of revolution

z =  f ( r ) ,  r2 = x 2 +  y 2. (3.1)
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For refraction or reflection at this surface, the angle-characteristic is4 (if we take the 
origins 0 ,  O' coincident)

t  =  (f -  y ) x  +  (v -  v ' ) y  +  (r -  r )z ,

from which x ,  y, z are to be eliminated by the relations

£ — y  dz x

a x  r

77 —  77
■ m

(3.2)

(3.3)
f  -  r  a* J v ' r f  -  r

It is clear that F  will be a function of the two quantities

* =  * [ ( € - o *  +  (u -  *?')*]. ^ =  r — r ,

or, in the notation of (2 .2 ),

0 =  « 3  -  m4 +  Ms, *  =  0(m2 -  2m3) 1/2 -  0' ( « ' 2 -  2m8) 1/2. (3.4)

Here n, n '  are the refractive indices of the initial and final media, and 0, O' are ±  1; 
for refraction we have 8 6 ' =  1, and for reflection 8 8 ' =  — 1. If we take refraction with 
the rays proceeding in the positive sense, we have

8 =  6' =  1.

If we take reflection with the incident rays in the positive sense, we have

=  1, 9' =  — It n =  n .

(3.5)

(3.6)

By (3.4) we have

Hence

where

T 3 =  r*  -  T+d(n2 -  2 « 3) - 1/2,

F 4 =  — Tÿ,

F 6 =  r*  +  7 W 2 -  2m6) - 1/2.

T 3 +  Ta (n ' 2 -  2m6) 1/2
— k --------------------- 1

T a + T 3 (m2 — 2«3) 1/2

& =  1 for refraction, 

k =  — 1 for reflection. 

Let us substitute from (2.11) in (3.8); this gives

D -  1 _  (m' 2 -  2u 3y i 2

1
and so

(m2 — 2 w3) 1/2

/ d  -  i y
«5 =  5« ' 2 —  K » 2 —  2 m 3)  i  — - J .

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

When we substitute this value in (2.6), and at the same time substitute for F3, T\  
from (2 .1 1 ), we get

4 Synge, op. cit., 33.



( D  -  1\ 2
n'* -  ( n 2 -  2m3) i   J  =  2(C2mi +  CD u 2 +  D 2uf). (3.12)

To sum up: For refraction or reflection at a surface o f revolution, the coefficients A ,  C, D  
are connected by the identity  (3.12).

If B  — 0, then A  = D ~ l, and (3.12) simplifies to

n ,2 -  n 2D 2 =  2C(Cu! +  Duf). (3.13)

As an alternative procedure we may use the fact that T  is of the form

F =  (f -  m x ) ,  (3.14)
where

x =  [(* -  y y  +  o? -  v ) 2] /( r  -  y y .  (3 . 15)

This is evident from (3.2) and (3.3); the form of the function F  depends on the form 
of the surface. On differentiating (3.14) we obtain three equations analogous to (3.7), 
but containing F  and its derivative on the right hand sides. If we eliminate these 
quantities we obtain (3.8) and hence the identity (3.12).

4. The Herzberger transformation for a sphere. Let us take the origins 0 ,  O 'at 
the center of a sphere of radius | r \ . The angle characteristic for refraction or reflection 
at the sphere is6

r  =  ±  | r | [(€ — y y  +  ( v -  y y  +  (r -  n 2] i/2- (4 . 1)

If we suppose the rays incident in the positive sense, all ambiguities of sign are re
moved by writing

F =  r(kn '  — n)p112, ‘ (4.2)
where

2
P =  1 4------------------- \knn '  — ua — k (n 2 — 2 u f ) il2{n’ 2 — 2«5) 1/2]. (4.3)

(kn '  — n ) 2

Here r is positive if the rays are incident on the convex side, and negative if they are 
incident on the concave side; k = \ for refraction and k=> — 1 for reflection. All roots 
are positive.

We have then
( » ' 2 -  2 uf ) 112

F3 =  kr(kn '  — w)- 1p_ I / 2 --------------— >
(n2 -  2K3)1'2

T a =  -  r{kn' -  m )-V 1/2, (4.4)
(»2 -  2m3) 1/2

F 5 =  kr(kn ' — n)~lp 1/2 —  -
(a -  2 u ,y i2

It is evident that

T \  =  F 3F5, (4.5)

and so, by (2.9) and (2.10),

B  = 0, A  =  D-K  (4.6)
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8 Synge, op. cit., p. 36.
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We now solve (4.4) for u it u s in terms of T 3, T t , obtaining
■*

T  r~
«4 =  k(n2 — 2m3) -------- ) — +  §(m'2 +  n1),

T  4 2 j

„ ?1 (4.7)
m5 =  \n '2 — \ { n 2 — 2ii3) —  •

Substitution of these values into (2.5), (2.6) gives

«2r 4 =  k » 2 +  n '2) T \  +  «2r 3r 4 -  W ,

«i =  « 2r 3 +  i » ,2r 42 -  i » 2rj. ( 4 ' 8 )

These are two equations for T 3, T \ \  they may be written

T 3 =  »-*[«* -  \ { n 2 +  n'2) T ,  +  |r 2r 4_1], (4 .9)

r 4V -  n'2)2+  4jH4 [p2-  \ r 2(n2+  n '2) ] +  r4=  0 , (4.10)

where (in Herzberger’s notation)

p 2 =  2 «2«i — « 2- (4.11)

Solving (4.10) we get, after some simple reductions,

C =  T r l =  r-'jflK» 2 -  />2/r 2) > '2 +  0 2( » ' 2 -  ^2/ r2) i/2], (4 , 12)

where 0i and 02 are each + 1 , for the moment undetermined. We remove the ambiguity
of sign by considering the case £ =  77 =  0, so that by (2.8) £' =  Cx, 77' — Cy. It is evident 
from elementary considerations that C has the same sign as (n  — k n ' ) / r . Therefore 
0 i =  l ,  $2 =  —k, and so in general

C =  r~'[{n2 -  p 2/ r 2) 112 -  k (n ’ 2 -  p 2/ r 2Y ' 2]. (4.13)

By (2.11) and (4.9) we have

D =  n~2 [p2/ r 2 +  k(n2 -  p 2/ r 2Y ' \ n ' 2 -  p 2/ r 2Y n  -  u^C]. (4.14)

We verify that if x = y  = 0 , then D = k n ' / n ,  as it must be by (2.8) from elementary 
considerations. It is easy to check that (3.13) is satisfied by (4.13), (4.14).

For the case of refraction (& =  1) the formula (4.13) agrees with Herzberger’s 
equation (36)b except for a reversal of sign.
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ON THE FORCE AND MOMENT ACTING ON A 
BODY IN SHEAR FLOW*

By YUNG-HUAI KUO (California Institute of Technology)

Recently, H. S. Tsien solved the problem1 of a Joukowsky airfoil in a steady, two- 
dimensional flow of constant vorticity distribution. It is interesting to note that the 
hydrodynamical forces can be expressed in a form similar to the well known Blasius’ 
theorem, involving contour integration of the complex potential function. The follow
ing derivation of the formulae is believed to be simpler than that of Tsien.

1 . Equations of motion. Let u  and v be the velocity components parallel to the 
x- and y-axis, respectively. In the case of two-dimensional steady motion, the Eulerian 
dynamical equations are:

du dv (d v  d u \  1 dp ,
u ---- 1- V  'J ( -------------) = -------------- > (1-1)

d x  d x  \ d x  d y )  p dx

du dv (dv  d u \  1 dp /
u  h ®  b « ( --------— ) = -------------> (1-2)

dy dy \ d x  d y )  p dy

where p  is the pressure and p, the density of the fluid. The equation of continuity is

du dv
— +  — =  0. (1.3)
dx  dy

For the type of shear flow considered by Tsien , 1 the vorticity is constant every
where in the field and equal to — k. Thus

dv du
------------ = - £ ,  ¿ > 0 .  (1.4)
d x  dy

At the first sight, it seems that the problem might not be definite as one has four 
equations for three variables. B y eliminating p  between Eqs. (1.1) and (1.2), however, 
the result can be reduced to Eq. (1.3) by means of Eq. (1.4). This shows that any solu
tion which satisfies Eqs. (1.3) and (1.4) is consistent with Eqs. (1.1) and (1.2).

To simplify the problem, the solution is written in the following form:

u  = k y  +  (1.5)

v = v'. ( 1 . 6 )

Then Eqs. (1.3) and (1.4) reduce to

du' dv' _
 1 =  0, (1.  /)
d x  dy

dv' dll'
 =  0. (1.8)
d x  dy

* Received June 21, 1943.
1 H. S. Tsien, Symmetrical Joukowski airfoils in shear flow, Quarterly Appl. Math., 1, 129 (1943).



These equations are satisfied by

dp dp
u ' =  — , (1.9)

dy dx
or

dip dip
_I ,  v' = —  ; (1 . 1 0 )
3x dy

where i/' and are the imaginary and real parts of the complex potential F (z ) ; namely,

ip +  ip  = F(z), z = x  +  iy ;  (1.11)

and

u '  — iv' =  w'(z). ( 1 . 1 2 )

For a given problem the function F(z) is so determined that the velocity component
normal to the contour of the body is zero.

B y virtue of Eqs. (1.4), (1.5), and (1.6), Eqs. (1.1) and (1.2) give

p  = ---- q' 2 — p k u 'y  +  pkp, (1.13)

where q ' 2 = u ' 2 -\-v'2, and the constant of integration is absorbed in p.
2. Force and m om ent. If the motion is two-dimensional and steady, the compo

nents of the hydrodynamical force and moment2 acting on the body are given by

X  =  — (j) pdy  — p (j) u{udy  — vdx), (2.1)

Y  = (j) pdx  +  p ( £  v(vdx — udy), (2.2)

M, =  J )  p {xd x  +  ydy)  — p£  ( — v2x d x  — u 2yd y  +  uvydx  +  uvxdy ), (2.3)

where the contour integrals are taken along a closed curve containing the body. Using 
Eqs. (1.5), (1.6) and (1.13), the above equations can be written as:

X  = --<j) [ ( « ' 2 — v'2)d y  — 2u'v’d x \  — pk (j) [(i  ̂ +  u 'y )d y  — v’ydx] ,  (2.4)

[(m' 2 — v'2)d x  +  2 u'v'dy]  +  pk<j> [(^ — u 'y )d x  — i/ y dy ] ,  (2.5)

M  — — Re zu;,2^sJ

+  p k (j) [(^ — u 'y ) ( x d x  +  ydy) — (v 'yx  — 2  u 'y 2)d y  +  v 'y 2d x ]. (2 . 6 )
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* W. F. Durand, Aerodynamic theory, vol. 2, Springer, Berlin, 1935, pp. 31-33.
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If only bodies with closed boundary are considered, no sources can exist within the 
field of flow. Then the stream function ip is single-valued, and

£  ipdx =  <j) x{y'dx  — u'dy),  

^  ÿ d y  =  <j) y (v 'dx  — u'dy).

From these relations, it is not difficult to deduce

i
(j) [(w' 2 — v'2)dy  — 2  u'v 'dx], (2.7)

F - ~ i
yT [ ( « ' 2 — v’2)d x  +  2 u 'v 'dy\

+  pk (j) \v’(x d x  — ydy)  — u '( y d x  +  xdy) \ , (2 . 8 )

M  =  -  Re \ x l f f  ZW' 2̂ ZJ

4 (j) [— u ' [ ( x 2 — y 2)d y  +  2  xyd x}  +  tt'{(a:2 — y 2)d x  — l x y d y \ \ . (2.9)

These at once suggest the following alternative expressions:

X  — i Y  =  w'2dz +  i Im j~pk(j) w/zdzj, ( 2 . 1 0 )

M  = -  R e  s ( w'

and

Eqs. (2.10) and (2.11) may be regarded as an extension of Blasius’ theorem. They 
can be easily identified with the expressions given by Tsien . 1 The calculation of force 
and moment, however, can be simplified to a certain extent by using these new ex
pressions.

The writer wishes to thank Dr. H. S. Tsien for the use of his paper before publica
tion and for his helpful discussions.
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A CHART FOR PLOTTING RELATIONS BETWEEN 
VARIABLES OVER THEIR ENTIRE REAL RANGE*

By L. H. DONNELL {Illinois Institute of Technology)

The following simple method of graphical respresentation, covering the entire real 
range, seems rather obvious and the writer has found it useful for many years; how
ever he has never seen it described in the literature. It consists of an ordinary Car-

,0 0

/ > /

y { o  y { o

- /  - /

- 0 0  o

- / /

-—A 
■ - r

-
V

LslI - " '

r
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-  > i  = / '0 6y -
r m”m'

f -  -

?

is
&4'

-------------

-----------

£
-̂-----------

_ _ L

- 0 0  x  
_______ - /

X
o CD

Fig. 1.

tesian plot over the range —1 to + 1  of each variable, with adjoining Cartesian plots 
of the reciprocals of the variables from 0  to — 1 and from + 1  to 0 , arranged as shown 
in Fig. 1. This is evidently equivalent to a plot over the range — »  to +  °° for each 
variable. It is also evident that curves and their slopes will be continuous over the 
dividing lines between the two kinds of plots if the functions represented and their 
first derivatives are continuous at these points.

* Received March 22, 1943.
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To illustrate the method, the power relation x —y n has been plotted in Fig. 2  for 
values of x  and y  between — °o and +  «3 , and for various values of n.

In many applications only a part of such a chart would be required. For instance 
only the upper right hand quarter would be needed to cover all positive real values 
of the variables.

In some cases a change of variable will make the resulting plot much more useful. 
For instance a plot of the relation x =  106y 3, (see Fig. 1) follows the coordinate axes 
closely and would be nearly indistinguishable from many other functions, such as 
a: =  l 0 10y 3 or # =  1010;y5. On the other hand, a plot of x = y n , where y' =  100y, gives a 
much more illuminating and characteristic picture of the function. Any change of 
variable which makes the resulting curve pass through or near such points as ( 1 , 1 ), 
( 1 , —1 ), ( — 1 , 1 ) or ( — 1 , —1 ) would accomplish this purpose in most cases.

Fig. 2. Plot of x = y".
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THE LINES OF PRINCIPAL STRESS IN THE PLANE 
PROBLEM OF PLASTICITY*

By W. S. AMENT (Brown University)

Consider a s ta te  of plane strain  in an incompressible plastic body  yielding under a 
constan t m axim um  shearing stress. J . B oussinesq1 has shown th a t  the lines of p rin 
cipal stress then form an “equiareal p a tte rn ,” i.e. from the  two families of lines of 
principal stress individuals can be selected so as to render equal in area the  meshes 
formed by  these lines. In a  recent p ap er2 M. A. Sadowsky has stressed the im portance 
of this resu lt and has coined the term  “equiareal p a tte rn .” T he present note aim s a t 
establishing the relation between Boussinesq’s resu lt and  a theorem  concerning the 
lines of principal cu rvatu re  on certain  W eingarten surfaces.

If the lines of cu rvatu re  are chosen as param etric  curves and  k and  k' denote the 
principal cu rvatures corresponding to  the directions of v =  const, and  u  = const, re
spectively, the M ainardi-Codazzi relations take the form 3

d 2 8  k'
(log G) =  --------

Oil K — K Oil

2 A (1)O I  OK
—  (log E) =    —  ■
OV K — K OV

Consider now the W eingarten surfaces for which the difference of the principal cu rva
tures has a constan t value. E lim ination of k and  k' betw een the  equations (1) then  
leads to

a2
 (log EG) =  0.
dud v

Hence E G = f(u )g {v ) .  A transform ation  of th e  type «  =  «(«), v =  v(v) only relabels the 
param etric  curves b u t does no t affect their geom etric properties. Define u  and v by

du  ____  dv
—  =  V /(« ) , —  =  V g (v ) .
du dv

F or these new param eters E G =  1, i.e. the  meshes formed b y  the  param etric  curves 
corresponding to  two sets of equ id istan t values of u  and v are equal in area. The lines 
o f  princ ipa l curvature on a Weingarten surface with k — k' = const, therefore fo r m  an  
equiareal pattern.

T he relation between th is theorem  and Boussinesq’s result is im m ediate. In tro 
duce rectangular C artesian coordinates 0 ,  x, y ,  z, the  plane 0 ,  x, y  hav ing  the o rien ta
tion of the  p lane of stra in . T he norm al stresses <rx, <rv and  the  shearing stress r  then 
can be derived from a stress function F  according to

* Received Nov. 6, 1942.
1 C. R. Ac. Sci. Paris, 74, 242 (1872).
s Trans. Am. Soc. Mech. Eng. 63, A-74 (1941).
3 See for instance C. E. Weatherburn, Differential geometry, vol. II, Cambridge 1930, p. 52.
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d2F d2F d2F
<tx — ----- ) cru —  - i

By2 3x2 dxdy

T he yield condition

(ffi — crv)2 +  4 t 2 —  const, 

furnishes the following differential equation for F:

/ d2F d2F\ 2 /  d2F  \ 2

\3.-r- By2)  Vdxdy,
-  —  ) +  4 ( —  J  =  const. (2)

Consider the  surface 5  defined b y  z(x, y ) = a F ( x ,  y) ,  where a  is an a rb itra ry  small 
constan t rendering small the slope which the tangential planes of 5  have with respect 
to  the plane 0 ,  x, y. If term s of the second order in d F /d x  and  d F /d y  are neglected, 
the difference of the  principal cu rvatu res of 5  is seen to  equal the  square root of the 
left hand  side of (2) m ultiplied by  a.  T he surface S  therefore is a W eingarten surface 
of the type considered above. T he orthogonal projections of its lines of principal 
cu rvatu re  on the  plane 0 , x, y  are the lines of principal stress.



CONSERVATION OF SCHOLARLY JOURNALS

T he Am erican L ibrary  Association created  in 1941 the Com m ittee on Aid to  Li
braries in W ar Areas, headed b y  John R. Russell, the  L ibrarian  of the  U niversity  of 
Rochester. T he C om m ittee is faced w ith num erous serious problem s and  hopes th a t 
Am erican scholars and scientists will be of considerable aid in the solution of one of 
these problems.

One of the m ost difficult tasks in lib rary  reconstruction after the first W orld W ar 
was th a t  of com pleting foreign institu tional sets of A m erican scholarly, scientific, and 
technical periodicals. T he a tte m p t to avoid a duplication of th a t  situation  is now the  
concern of the  C om m ittee.

M any sets of journals will be broken b y  the financial inability  of the in stitu tions 
to  renew subscriptions. As far as possible they  will be com pleted from a stock of 
periodicals being purchased b y  the  C om m ittee. M any more will have been broken 
through mail difficulties and loss of shipm ents, while still o ther sets will have d isap
peared in the destruction  of libraries. T he size of the eventual dem and is impossible 
to  estim ate, b u t requests, received by  the C om m ittee already  give evidence th a t  it 
will be enormous.

W ith an im m inent paper shortage a ttem p ts  are being m ade to  collect old periodi
cals for pulp. Fearing this possible reduction in the already  lim ited supply  of scholarly 
and  scientific journals, the C om m ittee hopes to  enlist the cooperation of subscribers 
to  this journal in preventing  the  sacrifice of th is type of m aterial to  the pulp  dem and. 
I t  is scarcely necessary to  m ention the  appreciation of foreign in stitu tions and scholars 
for th is activ ity .

Questions concerning the pro ject or concerning the C om m ittee’s in terest in p a r
ticu lar periodicals should be directed to  D oro thy  J . Comins, Executive A ssistan t to  
the  C om m ittee on Aid to  L ibraries in W ar Areas, L ib rary  of Congress Annex, S tudy  
251, W ashington, 25, D. C.

A m erican  L ib r a r y  A sso c ia t io n ,  
C om m ittee on Aid to  L ibraries in W ar Areas.



SUGGESTIONS CONCERNING THE PREPARATION OF 
MANUSCRIPTS FOR THE QUARTERLY OF 

APPLIED MATHEMATICS

T h e  E ditors will appreciate the au th o rs’ cooperation in tak ing  note of the 
following directions for the  preparation of m anuscripts. These directions have 
been draw n up w ith a  view tow ard elim inating unnecessary correspondence, 
avoiding the  re tu rn  of papers for changes, and  reducing the  charges m ade 
for “a u th o r’s corrections.”

M anuscrip ts:  Papers should be subm itted  in original typew riting on one side 
only of w hite paper sheets and be double or triple spaced w ith  wide margins. 
T h e  papers subm itted  should be in final form. Only typographical errors may. 
be corrected on proofs; if au thors wish to  add m aterial, th ey  m ay do so a t  
their own expense. *

Titles:  T he title  should be brief b u t express adequately  th e  subject of the 
paper. T he nam e and  initials of the  au th o r should be w ritten  as he prefers; 
all titles and  degrees or honors will be om itted . T h e  nam e of the organization 
w ith  which the  au th o r is associated should be given in a  separate  line to  
follow his nam e.

Mathematical work: O nly very  simple sym bols and formulas should be type
w ritten . All others should be carefully w ritten  by hand in ink. A m ple space 
for m arking should be allowed above and  below all equations. G reek letters 
used in form ulas should be designated by  nam e in the m argin. T he difference 
between capital and  lower-case le tters  should be clearly shown; and care 
should be taken  to  avoid confusion between zero (0) and the le t te r  0 , between 
the  num eral one (1) and the  le tte r I and the prime (0 , between a lpha and a, 
kap p a  and k, m u and  u, nu and  v, e ta  and n. All subscripts and exponents 
should be clearly m arked, and  dots and bars over letters should be avoided 
as fa r as possible. Square roots of com plicated expressions should be w ritten 
with the exponent § ra th e r th an  -with the  sign v / . Com plicated exponents 
and  subscrip ts should be avoided. Any com plicated expression th a t  reoccurs 
frequently  should be represented by a special sym boh

Cuts: Drawings should be m ade w ith black Ind ia  ink on w hite paper or trac 
ing cloth. I t  is recom m ended to subm it drawings of a t  least double th e  desired 
size of the cu t. T he w idth of the lines of such drawings and the  size of the 
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