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THE ANTENNA PROBLEM™*

BY

LEON BRILLOUIN
Brown University

1. Introduction. The recent expansion of radio towards ultra short waves has
aroused a new interest in theoretical problems of electro-magnetism and especially
in the problem of antenna oscillations and radiation properties. The type of approxi-
mate discussions used by radio engineers for the case of long wave lengths is of little
practical value for ultra short waves, where a more rigorous theory is needed, because
the diameter of the antenna wire can no longer be considered as very small when
compared to the wave length.

Some older calculations on rather thick antennas have already been found very
useful. M. Abraham’s1discussion of the vibrations of very long ellipsoids has often
been referred to. A complete discussion of proper vibrations of ellipsoids of revolution
may be found in M. Brillouin’s book Propagation de I’électricit¢é (Hermann, Paris,
1904, pp. 314-395) with numerical tables for all eccentricities, from the sphere to
rather thin ellipsoids. More recently, L. Page and N. I. Adams, and subsequently
R. M. Ryder2have discussed the free and forced oscillations of all types of prolate
ellipsoids of revolution; while Barrow,3 Schelkunoff,4 and others have treated the
problem of the biconical antenna and its free or forced oscillations. Mie and Debye5
had formerly discussed the free vibrations of the sphere. In most of these papers, the
theory was based on a computation of the whole field distribution around the antenna
with the proper boundary conditions on the surface of the antenna. For a perfect
metal, for instance, the electric field must be orthogonal to the metal surface.

The aim of the present paper is to emphasize the practical importance of another
method based on the use of retarded potentials. The principle of the procedure was
indicated a long time ago,6 and the method was recently applied by Hallen and

* Received May 3, 1943. Part of a research sponsored by the Federal Tel. and Radio Laboratories,
New York.

1 M. Abraham, Ann. d. Physik, 66, 435 (1898); Math. Ann. 52, 81 (1899).

I'L. Page and N. I. Adams, Phys. Rev. 53, 819 (1938); R. M. Ryder, Appl. Phys. 13, 327 (1942).

3W. L. Barrow, L. J. Chu, J. J. Jansen, Proc. I.R.E., 27, 769 (1939).

*S. A. Schelkunoff, Trans. A.l1.E.E., 57, 744 (1938); Proc. I.R.E., 29, 493 (1941).

5G. Mie, Ann. d. Phys., 25, 377 (1908); P. Debye, Ann. d. Physik, 30, 59 (1909).

*H. C. Pocklington, Proc. Cambridge Phil. Soc., 9, 324 (1897); Lord Rayleigh, Proc. Roy. Soc.,
Ser. A, 87, 193 (1912); C. W. Oseen, Ark. f. Mat. Astr. Fysik, 9, No. 12 (1913); L. Brillouin, Radio-élec-
tricité, 3, 147 (1922).
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Ronold King7 to the actual computation of antennas. The finite conductivity of a
real metal can be taken into account, but there are still a few basic questions to be
discussed, and these will appear more clearly in the problem of a perfect metal with
infinite conductivity.

The principle of the method is the following: let us first assume a very thin wire
and call 5 a distance measured along the wire. The problem is to find the current
distribution, I(s, t), along the antenna wire. To such a current, I, there corresponds a
charge density, a(s, t), by the condition of conservation of electricity

da dlI
dt 0S

or, if we assume the following time dependence I(s, t) = I{s)eiui,
iodr )
a(s, t) D% e - 2)
Here, real @ means sustained oscillations; while proper oscillations of the antenna
array will yield complex proper values oo, the imaginary part corresponding to radia-
tive damping.

An arbitrary current distribution (1), creates an electromagnetic field in the whole
space which satisfies Maxwell’s equations. This field can be readily computed by the
method of retarded potentials. In particular, the field on the surface of the metal wire
can be obtained in this way; and one may then write the necessary boundary condi-
tion, that this electric field shall be orthogonal to the surface. This yields an integro-
differential equation which is perfectly rigorous and whose solution is the actual cur-
rent distribution required.

Using retarded potentials, one is certain to obtain, at a large distance, a field
distribution corresponding to a wave spreading out of the antenna. It should be em-
phasized, however, that the same method can not always be used for the computation
of oscillations inside a closed tank resonator, where the oscillations are of the type of
standing waves and have no outside radiation (advanced potentials may sometimes
be needed too0).

The proper values of this integral equation give the proper frequencies (including
damping) of the antenna. The same method can be used to study forced vibrations,
if one assumes an outer electric field acting on the antenna (receiving antenna) or a
certain electromotive force inserted in the circuit (transmitting antenna). In the sec-
ond case, one must take into account, for the computation of the retarded potentials,
the field radiated from a dipole representing the electromotive force.

Let us discuss the free vibrations of an antenna. The field at a point P is given by
the well known formulae:

f dv  dFz 1 C <k
dx dt = - r
dFz  dFv . F o i*ds v
MOHX = —nmmmmv Joeoe>ees: F —mJ

dy dz
7E. Hallen, Uppsala Univ. Arsskrift 1930, No. 1; Nova Acta, Uppsala, Ser. 4, 11, No. 4 (1938);

L. V. King, Trans. Roy. Soc. London, 236, 381 (1937); Ronold King and F. G. Blake, Proc. I.R.E., 30,
335 (1942).
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h, electric field; FI, magnetic field; V, scalar potential; F, vector potential; r distance
from the element ds on the circuit to the point P where the field is observed; <* i*
charge and the current at the time t—r/c\ €0, j.Odielectric constant and permeability
in vacuum, in non-rationalized units (rationalized units introduce a 1/47T factor in
the formulae for both potentials). Let us assume an antenna consisting of a straight
wire along the z axis, extending from z=0 to z=/. We need the z component, h,, of
the electric field along the wire and must write that this longitudinal component
vanishes:

A dv dFz
- i* = I(z,)e'<x KN k = — = coVeoMo ,
dz dt c
(4)

The field at point z is the result of integration over all the points, z', of the antenna.
Finally, we obtain the condition

di(z') dG
(2 (Q - ¢2(Z")G(r)Jdz' = 0
dz’ dz
e-ikr ®)
putting G(r) = r=|z—s"|.
r

This is our fundamental integro-differential equation for the straight antenna.

One difficulty appears immediately: G is infinite for r=0, z—z'. This means that
one must take into account the radius of the wire; but when this radius, a, is explicitly
introduced in the calculation, there is an additional condition to be written for both
ends of the wire. Here most authors do not attempt to write rigorous conditions; they
are satisfied with approximations corresponding to the problem of very thin wires.
They neglect a/l but keep terms in Q-1, ft-2, » « « where

|
fi = 2 log — (6)
a

Such a procedure is suggested by the similar approximations used by M. Abraham in
his discussion of ellipsoids. It should work correctly when Q>14, which means
/la > 1000, but could certainly not be relied upon for thicker wires.

Furthermore, Oseen and Hallen both use the following assumptions:

0, 1(1) = 0, current zero at both ends;

[(z- z'Y + a2]l2

A) 7(0)

B) r ™

The first condition, A, isnot quite correct, since there mustbe a small current at both
ends in order to charge and discharge the terminal capacities. It is only for the case
of a hollow cylinder that the current would be exactly zero at both ends; and this
hollow pipe is a very special case, as shall be seen later.

The second assumption, B, is explained differently by both writers. Oseen as-
sumes a currentflowing along the axis of the cylindrical wire and computes the field hz,
Eqg. (5), on the surface. Hence his boundary condition (5) is right, but the assump-
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tion about the axial current is certainly wrong. Indeed, owing to the skin effect, the
actual electric”current, in a perfect conductor, flows along the surface. Oseen assumes
that the field created by this actual superficial current could be obtained by a ficti-
tious axial current. This may be right for very thin wires, but the assumption is ob-
viously wrong for thick wires or for cylinders of large radius. Moreover, it cannot
be proved that the fictitious axial current satisfies the first assumption A. So Oseen
hardly justifies the use of both assumptions A and B.

Hallen takes a different point of view. He starts from the well-known property
that the current flows along the surface; but instead of computing the field on the
surface of the same cylinder, he takes the hz field along the axis. This field must
certainly vanish; and from this fact, Eqs. (5) and (7 B) follow. This necessary condi-
tion, however, is not sufficient. One may very well have no longitudinal field along
the axis and still find a longitudinal field on the surface of the cylinder. These approxi-
mations would probably be all right for very thin wires; but they can certainly not be
used for thick wires, where B is wrong and A must be replaced by a more elaborate
condition, in order to take account of the electric currents and charges on the flat
ends of the cylinder.

2. Complete statement for a cylindrical wire of finite radius. The antenna is a
solid cylinder of radius a and height I. The oscillations studied are those of cylindrical

symmetry where the current is equally distributed
around the cylinder and flows along the surface. 7(z', t)
is the total current at z', and (1/27t) 7(z', t)d<p is the
current through a small sector dtp (Fig. 1); hence,
<r(z, t)dz', Egs. (1), (2), is the charge per length dz', all
around the cylinder, and (\/2t)adz'dtp the charge for a
small angle dtp. For the flat top of the cylinder (z= 0> we
call /((p) the total radial current crossing a circle of
radius p; while cri(p)dp represents the electric charge
between p and p+dp:

dtti dli i dli

dt dp ic dp
Similar definitions apply for the bottom of the cylinder
(z=0)with acurrent 70(p) and chargeaO(p)dp. The
positivesigns correspond to the directionsindicated

by arrows in Fig. 1. The conditions for continuity of
the current around the corners, at z= 0 and z —I read

Ifia) = - /(/), Jo(o) = 7(0). 9)

Let us first study the fields and potentials at a point
P(z) located on the cylindrical surface. The potentials
due to currents and charges along the cylinder are the following (e,at factors have
been dropped):

Fig. 1.

i r | r2rdl{z') e~xkr dp
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The currents along the cylinder flow vertically; hence, there are no horizontal com-
ponents Fcx, Fcy of the vector potential. The distance r is shown in Fig. 1.

On the flat top of the cylinder, the current flows radially in the horizontal plane;
hence, the Ftz component is zero, but we find horizontal components, Fu and Fiy,
of the vector potential:

.a pJT g-.kr
/ Vi(p) cos p— dp,

oo f 2tt (11)
/[ .a ~2r e-ikr
I-----/i(p)--—--—--- sin 9— dp = 0.
o Jn T 2t

The transverse components Flv, for a point P in the x-s-plane, is obviously zero by
symmetry:

i r r** dll e~ikT dip

Vi = — | e A 12
a) @0J0J 0 dp r Z?P (12)

and similar formulae for the potentials Foxand FO0due to currents and charges on the
bottom of the cylinder.
The tpintegrals are of two fundamental types which will now

j be explained in connection with Fig. 2.
r2= (z - s')2+ P2+ p'2- 2pp' COS <P (13)
1 C 2t @ikr
Gk{p, p',z —5" ) = - dip, (14)
2xJ o f
cx( ) 1 Ir2r e~ikr - (15)
*p, p', s —Ss') = — cos i .
PP 2mJ o r PP
Fig. 2.

Gk and Ck are two functions which will be discussed more fully in section 5. They are
symmetrical in p, p' and even functions of s—s'. With these functions, our formulae
(10, 11, 12) read

Fe(z) ! rldIGk( ")dz'
e(z) = —- — a, p,z — z')dz',
id@J 0 oz P

F.(s) = po f I{z")Gk{a, p, z —5)<fZ,
vV 0 (16)

i radhk

Vi(z) = - -~-Gk{p',p,z-1)dp",

Fi3@ = po‘]f0 hCk{p', p, z — Ddp’,
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where p=a for the point P(z) on the cylinder.
We now are in a position to compute the longitudinal field lit(z) at the point P,
according to Eqgs. (4) and (16).

f_ dvc dFcz dVo_ dvi
dz dt dz dz
€p r *rdi » . n.
Cht(z) = 1 e Gk(a, a, z —2') + F/(z")Gi.(a, a, z —z') \iz'
i Jo Ldz' dz J (17)

o dli d radlo d L
/ —7 —GK{p', e,z —Ddp*+ | —7 —Gk{p id,z)dp = 0.
0 dp dz J o dpdz
This is the first integral equation of the problem which corresponds to Eq. (5) for
the simplified example of a thin wire. It should be noticed immediately that in the
first integral

a a
— Gk(a,a,z —2') = Gk(a, a, s —5s). (17a)
dz dz'
This transformation will be very useful, afterwards, in applying integration by parts.
Another integral equation is obtained by writing the fact that the horizontal field
component is zero at a point P(p) on the top of the cylinder:

dvec dVi dv0o dF,x dFO0z a a
lix(p) > —_ = — >
dx  dx dx dt dt dx dp
€d) rLdildi a
hx{p) = —7 —Gk(a, p, | —z")dz'
i Jo dz dp
. (18)
rI al71 aGk 0)d Iradlo aGk I)d
+ —7 — ro, "+ — m— N '
30 Opop(pp)p i0 o op (p p, Ndp

+ ;;I/i(p')C*(p'. p, 0)+ h{p)Ck{p', p, 1)W = 0.

A similar equation could be written for the bottom of the cylinder; but this is actually
not needed, since it reduces to (18) by reason of symmetry.
The proper oscillations of the cylinder can be divided into two groups:

symmetrical oscillations li(p') = 10{p’), 1(1—2z) = —I(z),
di(l - 2) _ al(z)
dz dz ’
(19)
antisymmetrical oscillations Jj(p') = —lo(p'), 1(1 —z)—I(z),
di(l - 2) al(z)
dz dz

These two types will be discussed together in the following formulae. The upper sign
corresponds to symmetrical and the lower sign to antisymmetrical vibrations.
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3. Discussion of the first integral equation (17). Wave propagation along
cylinder. Equation (17) can now be written in the following way:

rer dl d “I
—~Gk(a, a, z —2') + k2A(z')Gk(a, a, z —1z") dz'
Jo L dz dz J
radh dr
= - 77 - [GXp.a,z-1) = GK{p', a z)]dP' = R(h, z). (20)
Jo dp dz

The left hand integral contains only vertical currents, 1{z'), along the cylindrical
boundary; while the right hand terms, R, show the coupling between these vertical
currents and the currents or charges on both flat ends of the cylinder.

Let us integrate the left hand integral by parts, starting from dGk/dz':

rird2 1 dl )Z'-'
——+ m{z') \Gk(a,a,z —z')dz' = —~Gk(a, a,z —Z7' R(h. Z
do Ldz 2 {2 J ( ) dz' ( 720 + R 2

= (—y/) [Ck(a, a, z — I) + Gk(a, a, z)] + R(h, 2). (1)
\dz [ z'-i

This new formula has been obtained without any approximations. Let us now make a
few simplifying assumptions, in order to get a better understanding of the meaning of
this equation.

For a very thin and long voire, we may neglect the i?(/;,z) term, as both charges
and currents on the flat terminals become very small. Furthermore, at a certain dis-
tance from the terminals, Gk(a, a, z—I) and Gk(a, a, z) are also very small, since Gk
decreases approximately like 1/r for large distances. The only important term is the
one on the left, which has the obvious solution

d2 + k2{z' 0 k 22
dz2 =) ’ c X (22)
This shows wave propagation with the velocity of light along the major part of the
wire. This result is obtained under the assumption /iS>a and without any restriction
about the wave length X, which can be of the order a or even smaller; but it holds
only for the medium part of the wire, far away from both ends.8
This shows the connection with the usual elementary theory of antennas. The
classical discussion8starts from the assumption of sinusoidal standing waves along
the wire, which cancels out completely the left hand integral in equation (21). Then,
using this current distribution, the longitudinal field along the wire may be computed;
and according to (17) and (21) it comes out as

h,(z) = i(\— [Gk{a, a, z - 1) + Gk(a, a, z)] + R(h, z ))\. (23)

e0co (\oz

81t should be emphasized, here, that our discussion is limited to the case of oscillations with cylindri-
cal symmetry (see beginning of Section 2). Vibrations with nodal lines parallel to the axis are not included.

*L. Brillouin, Radio-électricité, loc. cit.

J. A. Stratton, Electromagnetic theory, McGraw-Hill, New York, 1941, pp. 455-460. Stratton uses
rational units, hence a 1/4t factor before the integrals, and he uses the opposite sign before i.

the
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This plays the role of a small additional average impedance Z along the antenna,
which can be defined by

(23a)
0

The real part of Z is called the radiation resistance, Zr, and the expression Zrl~ repre-
sents the energy, W, radiated at large distance (see Stratton, p. 458), from which the
damping of the antenna oscillations may be computed. For a very thin wire, one may
neglect the term R (h, z), which represents the role played by the currents and charges
on both flat terminals of the wire; and one may take for Gk the expression (1/r)e~ikT
as in Eq. (5). With these approximations, our equation (23) becomes identical with
Stratton’s Eq. (76a), p. 457.

It should be noticed that Eq. (23) is physically wrong, as we know in advance
that the longitudinal electric field along the wire is zero. These equations (23) and
(2.3a) merely represent a second approximation in a system of successive approxima-
tions starting from (22). An attempt will be made, in the next section, to build up a
consistent system of approximations of similar structure.

Returning now to Eq. (20), we may try another integration by parts, starting from
dl/dz', which yields

d
= 7(z) — Gk(a a z- s') + R(h, 2). (24)

Let us again discuss this equation for a very thin wire. The term R(li, z) represents
the role of both terminals and may be neglected, I(z') is zero at both ends (z'=0,
z'=1), and consequently all the right hand terms are zero. This transformation is
very closely connected with the one used by Schelkunoff and Feldmani0in a recent
paper. These authors discuss the problem of forced vibrations in a transmission an-
tenna, instead of the free vibrations which we have in mind. They use both approxi-
mations (7A) and (7B) of Oseen and Hallen and take for G the simplified expression
(I/r)e~ikr, Eq. (5). These approximations may apply for a very thin wire. Further-
more, they split the (l/r)e-iir function into its real and imaginary parts before per-
forming the integration by parts. Their final result is actually identical with the one
derived from the elementary theory and Eq. (23). This is not surprising, as both
methods are very closely connected.

4, Principle of a method of successive approximations. As stated in the preced
section, it seems possible to build up a method of successive approximations in order
to solve Eq. (21) along a way rather similar to the one followed in the classical ele-
mentary discussion.

First of all, we may split the integro-differential equation (21) into an integral
equation and a differential equation, by writing:

10S. A. Schelkunoff and C. B. Feldman, Proc. I.R.E., 30, 511 (1942).

ing
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f F(z')Gk(a, a, z — z")dz' = R'(2), (25)
Jo
where R'{z) = (d1/dz/)1,,i[Gk(a, a, z—I)+ Gk(a, a, z)]+2?(Ji, 2),
AN-+m (z)MNF{z"). 26
s (z')"F{z") (26)

The first equation is an integral equation of the first kind, with the kernel G*(z—=z").
Its solution can be written with the help of the resolving kernel JJt(z'—z"), which
satisfies the following conditions

f IGk(z - z")HK{z' - z")dz' = 3(z - z"), 27)
jo
F(z') = f ‘R'(z")Hk(z' - z")dz", (28)
*T0
where 8 means a delta function. Hence, the first question is tobuildup theresolving

kernel Hk,a problem for which some general methods have beendeveloped. This
being done, we are left with Eq. (26) to which we apply the usual Rayleigh-Schrod-
inger method of successive approximations. Let us first notice that the Gk function
becomes very large for z=z' which, according to (27), means that Ilk is small. Thus
we may rewrite (26) and state explicitly by an e coefficient the smallness of the right
hand term:

a2
b k2{z") = eVv{z"), F = tip. (26a)
dz'2

Then we use the following expansions:
1(s") = 1,(Z") + th{z') + 62 2.2
2 2 (29)

K2 = 0+ exi+ o« X2 moeo

and obtain the successive approximations:

d2l a 2
—  +.%0/° = °,
02
— ~ + klh = - Xxh + V, (30)
dz -
da 2 2
+ = — X210 — X\I\ C S
dz'2

Jo is a sinusoidal function, as in the elementary treatment,
Jo = A sin (0(s' + f)

where the f constant is necessary in order to give a small but finite value for the
current Jo at the bottom of the cylinder (z' = 0). This is needed for the junction with
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the currents on the lower flat end of the cylinder. By symmetry, the correction at the
upper end must also be f; hence,

ko( 2f) f A k 2t (31)

o(l + = mr, I -f- = n—, 0= —-

2 X0

The constant f will be determined by means of the second integral equation (18)
for theflat terminals. Now let us turn to the second equation (30). As iswell known,
it isnecessary for the right hand term to be orthogonal to the solutionof the homo-
geneous equation, which means

i
A sin kO(z' + f) [—Xiko + <p\dz' = 0

or

"XiAfO sin2 ko(z' + dz' = "jo Psin kO(z' + i)dz\ (32)

This yields the correction xi to the proper value k@. It is readily seen that equation
(32) is very similar to the relation (23a) used in the elementary theory to obtain the
average “radiation resistance” of the antenna and thence the damping coefficient in
the proper oscillations. The important point, however, is that equation (32) contains
< which is not R* but is computed from R' by means of (28)-(26a).

Once xi is obtained, the second equation (30) can be solved; then X2 isfirst com-
puted by a similar orthogonality condition, and so on. Hence, the whole procedure
should yield a solution along lines parallel to the elementary treatment and show
how far the usual formulae can be trusted.

We may already go one step further and write the general expression of the func-
tion F(z') on the basis of Eqgs. (25) and (27):

*pV) = F(s") = f 1R{z")IIk{z' - z")dz"
Jo
= 53 -1) + 53)] + f “R(di, z")Hk{z' - z")dz". 33
W/.'-i[( ) )] i ( JHK{ ) (33)
The 5 functions appear here automatically, because Gk is an even function of(s—z"),
and so is H k for z' —z"; hence, the integral in (28) comes out as

\] Gk{z" - DIIk{z' - z™)dz" = \] Gk(l - z")Hk{zr- z)dz" 5V - 1)

according to (27).

We can use the new expression (28) for the discussion of some simplified examples.
Let us start with the wire of vanishing radius. The whole R(li, z") term, which repre-
sents the terminal effect, drops out; and we are left with an equation

BZL+ Pl(z') = F{z') = QOAZJ)/Z',,I [53@ -1) + 5(s)] (34)

from (26) and (28). The condition on both terminals is obviously 7(0)=/(/) =0;
hence f = 0 in (31), which results in the following equation:
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la= A sin k@', kQ= mr/I. (35)

n=2m+ |: symmetrical oscillation, sign—=( —I)nin bracket,
n =2m: antisymmetrical oscillation, sign+ = (—1)" in bracket.

ep(z") = F(z') =Ako [(—I)™5(z'—¢)+ 5(z")] as cos kA= (—1)" and Eq. (32) reduces to

1
exi— = h f [(—1)"3(z — 1) + 5(z")] sin koz'dz'
2 jo
= ko[( 1)nsin (kd) -f- sin (E00)] = 0 (36)

which gives no damping at all. The physical explanation is the following: a finite
amount of energy is radiated per second; but this does not mean any damping of the
oscillations, because the energy accumulated in the field around the wire is infinite.
As a matter of fact, both electric and magnetic fields are infinite as 1/r near the wire
of infinitely small radius. The square of the field is of the order 1/r2;and the energy is
obtained by multiplying by 2-irr dr and integrating with respect to r, which gives
logarithmic infinite terms. The situation is similar to the one obtained in a circuit
with infinite L, zero capacity, and finite resistance R, which yields a negligible damp-
ing coefficient R/2L.

This shows the difficulties involved in the assumption (7A), as put forth by Oseen
and Hallen. When such a condition is used in the rigorous Egs. (25), (26), it leads
directly to (36) and yields practically no damping.

Such is also the case for a hollow cylinder. Here again, there is no end effect, no
terminals, no R term, and condition (7A) holds good. The whole procedure from (34)
to (36) repeats itself and shows again no damping. Of course, the Gkand H k functions
would differ materially in both cases; but these
functions have been eliminated from Eq. (34) and Electric
finally drop out. WX Field

The explanation is similar to the one given for
the thin wire, but not quite so obvious. The prob-
lem of a hollow cylinder of indefinitely small thick-
ness must be considered as the limit of a cylinder CURRENTS
of finite wall thickness, as represented in Fig. 3.

On such a cylinder, one should take into account,
separately, a current Ii flowing along the external
surface of the cylinder and another current /. along

l« Ix li le

the internal surface. At the limit, these two cur- Y\\S yV
rents merge into a single one, for which the theory
indicates a sinusoidal distribution. Hence, for a Fig. 3.

cylinder of finite thickness, there certainly is a

current flowing around the edge of the cylinder, asshown inFig. 3. On thisedge,

one must also consider the electric charge; and thisresults in an accumulation of

electric fields and of electro-magnetic energy near the cylinder, while the energy radi-

ated persecond at large distance remains finite. Hence the damping becomes negligible.
The result is general and applies for any hollow cylinder of indefinitely small thick-

ness, whatever the shape of the cross-section might be. The field distribution inside
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the cylinder should correspond to a superposition of EO0waves (transverse magnetic)
and should show a strong decay from both ends down to the middle part of the cylinder,
especially when the diameter of the cylinder is small compared to the wave length.

These two simple examples show the importance of the role played by the shape of
both terminals and the danger of using assumptions like (7A) or (7B).

5. Some important formulae. We have introduced in (14), (15) two fundamental
functions:

1 r Xe~ikr

Gk(p, p', f) = — 1 dip, f=5s—z,
2irJ o r
1 o2k p—iker

Ck(p, p\ f) = — 1 QCB <dip, @7
2irJ o r

r2-= i2+ P2+ p'2—2pp' ' costp=q— 2p cos P }ao2p,
q= 2+ P2+ p2 p = PP.

From these relations, we see that Gk and Ck depend upon p, p', f only through the
two combinations p and g. Furthermore, it is easily proved that

9Gk dCk 1 rx1d ~ikr\ .
- —2-— = —— | — —E—e———l--r—) COs pdip. (38)
dp dq 2rJo r dr\ r [/

Ck and Gk being both zero at infinity, this can be written as

dGk
c* =y q ~d7p~ dog- (39)

These integrals are closely connected with the complete elliptic integrals K and D ,11
as is seen for a thin wire when the radius a is small compared.with the wave length
(ka small). The following expansions can be used:

r=\/qg —2pcosip=\/qg + [\/[g —2pcostp— vT7] )

r, .
e~'kr = e~ikvg{l — ikIxG} — 2p costp—\/qg\ me mJ.

The bracket [] is of the order of magnitude of a, and its product when multiplied
by k is small:

o -(1 peor 1+ ik\/q )
Gk = e~ik/qgg— 1 —-mmmmmmmemeee A dtp —ik mem >
i.2irJ o [? —2p cos <12 )
(1 1+ ik\/q L )
Ck = e~k qz\— | —meememmccmeceoen — cospdip — O+ eee Ze (41)
(2itd o [q — 2p cos "~>]12 J

We may write

g—2pcostp= (q+ 2p)(Il — K2sin2yp)

V7 — , W= - (42)

Hence

11 E. Jahnke and F. Emde, Tables offunctions, 2nd ed., Springer, Berlin, 1933, pp. 127-145.
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for dp 2 CT2 — # _ w A
Jo [0- 2pcos®ld®2_ [g+ 2~182) _ri2fd - k&sin2~]12= fg+ 2p]'l* ~
and
Gk = e-ikr I— -7 VEVg A) - ik (43)

Lm o [?+ 2p]l2

When ¢{—0, the variables g and p retain finite values; but when at the same time
p=p', q=2p, then kis 1 and K is logarithmically infinite. This could easily be fore-
seen and does not make any special trouble in the integrations. The second integral ck
is transformed in a similar way:

[ ] cos >Pep 2 12 2sin2p —1
/0 [g—2p cos .pli2~ [g+ 2;jr2d 2 [l - k2sin2*]»'27
4
= HTahjmPM - Oy (44)
_C2 1+ ikylq . )
C, - *=* e { - . fin« -*(«)leeoe},

These approximateformulae shouldbe used for a thin wire andrepresent.the first two

terms in anexpansion when a/A is small but not negligible. For the fundamental
vibration, X is of the order of 21 (twice the length of the antenna). Hence using the
expansions (43), (44), one should be able to go one step further than Oseen or Hallen,
who completely neglected a/l and were satisfied with keeping terms in 12-1, 12-2 where

|
2= 2log— - (6a)
a

This parameter comes in, when integrations are performed on D and K for knear 1,

9- 2p f2+ (p- p)2
g+ 2p f2+ @+ p)2

small; f=2z—7z.

This happens when z and s' are nearly equal for two points on the cylindrical surface
p=p' =a. It happens again for two points on one of the flat terminals, when s=z'=0
or /, and p is nearly p'. In such cases, K and D are represented by the following ex-
pansions (Jahnke-Emde, p. 145)
A-1
K = A-\----——Z---- Kn eeo, D=A—1+ f(A - £)«2

45
(z- 22+ (p- p)2 49

(*- sh2+ (p+ p)2
Integration and averaging process carried out on A will introduce the parameter 12
Finally, let us discuss the dependence on k of both functions Gk and Cke From

the definition itself (37), it is seen that both functions can be expressed in terms of
Gu Ci corresponding to £=1,

4
A= log— = log4 —i log k2= log 4 —\ log
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k ;’ e~ikT
2_ir.] kr
Gk(p, ». T) = kGi(kp, V, ¢f) = kGi(k~q, k),

Ck(p, p', f) = «7i(*p, V., *r) = ¢(CriU2?, ;V).

Gk = dp = kGi(kr) hence:

The same decomposition can be seen from the expansions (41).

6. Conclusions. The preceding sections show clearly the importance of the role
played by both end-surfaces, whose exact shape should be taken into consideration
very carefully. We have shown, on the example of plane terminations, that the prob-
lem consists in finding two unknown current distributions, one for the cylindrical
surface and one for the (symmetrical) terminal surfaces, and this requires solving
two integral equations. This is the essential difference from the problems of the proper
oscillations of one closed algebraic surface, such as an ellipsoid. For plane termina-
tions, a complete study of equations (17) and (18) should be affected, and the suc-
cessive approximations should be worked out simultaneously on both equations.
Other shapes of end-surfaces, like half spherical or half ellipsoidal terminals, would
certainly yield quite different results. A discussion of this problem is not attempted in
the present paper, the aim of which was merely to offer a precise statement of the
mathematical theory of antennas and to emphasize some difficulties which seemed
to have been overlooked by previous authors.



STABILITY OF COLUMNS AND STRINGS UNDER PERIODICALLY
VARYING FORCES*™*

BY

S. LUBKIN ANDJ. J. STOKER
New York University

1. Introduction. It is a well known fact that a rigid body hinged at one end and
standing vertically can be put into stable equilibrium by applying a vertical periodic
force of proper frequency and amplitude at the lower end. The differential equation
for small oscillations of the rod is a linear homogeneous equation with a periodic co-
efficient—it is a Mathieu equation if the applied force is a simple sine or cosine func-
tion of the time. Stability of the rod would require that all solutions of this equation
be bounded; it is found that this is the case if the frequency and amplitude of the
applied force are properly chosen. A more complicated problem of the same general
type in a system with more than one degree of freedom has been considered by
G. Hamel [4]1; linear differential equations with periodic coefficients play the essen-
tial role in this case also.

We shall be interested here in analogous problems in elastic systems with infinitely
many degrees of freedom. One of these is the problem of the column under periodic
compressive forces F(t)' applied at the ends of the column.2 The analogue of the
problems mentioned above would be as follows: the force F(t) consists of a constant
part P plus a periodic part Il cos ot. Suppose that P were a compressive force larger
than the lowest compressive load (the Euler load) for which the column in the
original unbent position is instable. The question is, then, whether or not Il and w
can be chosen in such a way that small motions in the neighborhood of the unde-
flected position are stable ones. We shall see that this can always be done, though,
as one would expect, the quantity Il must be chosen so that the total force F(t) falls
below the Euler value during at least part of the time. However, the time average
of F (over a cycle) may be very much larger than the Euler load. On the other hand,
it is quite possible that the column may be instable when P is a compressive force
smaller than the Euler load or when P is a tension rather than a compression, if Il
and ware properly chosen.3From the point of view of the practical applications these
latter possibilities are certainly the more important ones. For the case of the column
with pinned ends we give diagrams which make it possible to decide whether the
column is stable or not under any of these circumstances. The stability of the
stretched string under a tension which varies periodically in time is also considered.

In all of these problems the Mathieu equation4 (more properly, a sequence of

* Received April 9, 1943.

1 Numbers in square brackets refer to the bibliography at the end.

3 A special case of this problem has been treated by I. Utida and K. Sezawa [16].

3 Analogous problems for plates under loads in the plane of the plate have been considered by
R. Einaudi [I].

*We consider always that the applied forces are simple harmonic functions of the time—otherwise
we should have to deal with the more general Hill’s equation.
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Mathieu equations in the continuous systems) plays a central réle, since the decision
as to stability depends upon the character of the solutions of such equations. For this
reason a brief summary of the main facts concerning the solutions of the Mathieu
equation is included here. A brief treatment of the Mathieu equation with a viscous
damping term added is also included because of its importance for the stability
problem.

2. The column under periodic axial forces at its ends. We make the assumptions
that are customary in dealing with the transverse oscillations of thin rods. Of these,
the principal ones are: 1) the rod is an initially straight uniform cylinder, 2) the
lateral deflection w (Fig. 1) and the cross sectional dimensions of the beam are small
in comparison with the length 1, 3) all stresses remain below the proportional limit,

Fit) F(t)

Fig. 1.

4) the effects of shear and rotary inertia are negligible.6 In addition, we assume that
the column is subjected to axial forces F depending on the time t and applied at
the ends of the column; these forces are counted positive when they are tensions.
With these assumptions the differential equation for the lateral deflection w(x, t) is
well known to be as follows:

d*w d2w d-w

ei Ft) — + m— =0. (2.1
dx4 dx2 dt2

In this equation E and I are Young’s modulus of the column and the moment of

inertia of its cross section, and m is the mass per unit length. In what follows we
assume always that F(t) is given by

F(t) = P + 11 cos 2tt//; (2.2)

i.e., it consists of a constant part plus a harmonic component of amplitude H and
frequency/.

It should be pointed out that the derivation of (2.1) involved a tacit assumption
not included among those enumerated above. This was that the forces F(t) applied
at the ends of the column result in forces throughout the column which are, to a
sufficiently close approximation, independent of x. We proceed to show that this
assumption is warranted under the circumstances normally encountered in practice.
The differential equation for the longitudinal displacement u(x, t) of the rod is

da da
E = p , (2.3)

in which p isthe density oftherod. The total force F transmitted through any cross
section of the rod of area A is given by

5These effects could be taken into account without difficulty, but nothing new in principle would
result.
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du
F=AE—- (2.4)
dx
We assume as boundary conditions
u=o0 at x =o, (2.5)
and
du
F = AE ol P + Il cos 2ivft at x = 1/2, (2.6)
X
the origin ofcoordinates being taken at the midpoint of the rodinorderto take
advantage ofsymmetry. We seek the forced oscillation and neglectthe freeoscilla-

tion. The result for the quantity F is readily found to be

cos X*
F(x,t) = P + 1|1 ——_ COs 2irft, (2.7)
cos (All2)
with
X = 2»f(p/Eyi\ (2.8)

It is convenient to introduce the fundamental frequency /o of the free longitudinal
vibration of the rod which has a single node at the center. This is given by

fo= (1720 (£/p)1s2 (2.9)

Upon introducing this into (2.7) we obtain

cos (rfx/fol)
-y

F(x,t) = P+ H cos 2rft. (2.10)

cos (ir/i2/0)

If/ is small compared with fo it is clear that F will be nearly independent of x. For
steel or aluminum (E/p)12= 17000 ft./sec., while for brass, concrete, stone, or wood
this quantity is about 12000 ft./sec. For any column of usual length / o will therefore
be of the order of 500 cycles/sec. or more. Hence if the applied axial force F(t) is one
of frequency below say 50 cycles/sec. it is reasonable to assume that the variation of
the axial force with x may be neglected.

We introduce new independent variables replacingtand x in (2.1) by the equations

i?7=2wft and £ = irx/l. (2.11)
In addition, it is convenient to introduce new parameters as follows:

Pb = t2E1/12, e, = Pe/EA, (2.12)

p=PI/PE, h=H/Pe. (2.13)

The quantity PE is the negative of the Euler load for thecolumn and to is the tensile
strain dueto that load.The quantities p and h are the ratios of theconstant part and
of theamplitude ofthe oscillating part of the applied load tothenegative Euler
load. With these new quantities the differential equation (2.1) becomes
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The quantity/o is the fundamental frequency of longitudinal vibration of the column
given by (2.9).

The general problem which we wish to investigate can now be stated: for given
boundary conditions there are certain values of p, h, and / for which all solutions
W(E, t?) of (2.14) remain bounded when arbitrary initial conditions are prescribed and
other valdes of these quantities for which unbounded solutions exist. In the former
case we say that the column is stable and refer to p, h, and / in this case as stable
values. Our problem is to separate the stable from the instable values of p, h, and/.

We do not solve the problem in this generality; we choose rather a special case
with regard to the boundary conditions to be imposed.

3. Formulation of the stability problem for the column with pinned ends. The
boundary conditions we choose are those corresponding to the case of a column with
pinned ends; that is, we assume that the deflection w and bending moment
M =EI(d2w/dx2 are both zero at x = 0 and x —I. We have, therefore, as boundary
conditions for (2.14):

R — =90 for £=0 and £=r. (3.1)

These boundary conditions can be satisfied by taking for w a solution in the

form of a Fourier sine series:
@

w = F,.(d) sin «£. (3.2)
n*»|
The series (assuming that it converges properly) is a solution of (2.14) provided that
the function Fn(t?) satisfies the differential equation

dZn
+ (<,+ j3,cosd)Fn = 0, n=123 sme (3.3)
at?2
in which
a» = n\pjto/p)(n2+ p) (3.4)
and
0« = nKPpo/f)(h). (3.5)

The quantities/, /0, e0, p, and h have been defined by equations (2.2), (2.9), (2.12),
and (2.13) respectively. The differential equation (3.3) is, of course, a Mathieu
equation.

We can now see why the choice of the boundary conditions (3.1) brings with it
essential simplifications. To begin with, it is not possible to separate the variables in
(2.14) in the usual way: if we insert for w in (2.14) an expression of the form
w=/(£)F(t?) we do not obtain a pair of ordinary differential equations for/ and F
alone. By assuming for w the special form given in (3.2) weare able to satisfy(2.14)
by virtue of the fact that only even ordered derivatives of w with respect to £ occur
in it. This form of solution is, however, not useful for boundary conditions other than
those given by (3.1).6 The reason for this is-as follows: since w satisfies (2.14) we

6The problem can be solved for other boundary conditions, but with much more difficulty. It is not

possible, for example, to make use of the theory of the Mathieu equation in other cases. For a possible
approach, see R. Einaudi [1], and S. Lubkin [8],
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must require that dstfl/de4 be continuous, since w and dTa/dp (the bending moment
within a constant factor) should be assumed continuous on physical grounds. But the
sine series (3.2) can be differentiated four times with respect to £ if, and only if,
w and dzw/dl? vanish at £= 0 and £= 7, the end points of the column.7

Our definition of stability requires that w(£, #) be bounded for 0" #< < when
arbitrary initial conditions are prescribed. Hence we must require for stability that
all solutions Fn(d) of (3.3) forn=1,2, 3, e*+and 0”#< w remain bounded when
arbitrary initial conditions are prescribed. This is, of course, only a necessary condi-
tion for stability. However, we show in an appendix that the Fourier series (3.2)
will, roughly speaking, converge for all# if it converges for$ = 0 and if each Fn(#)
is a stable solution of the Mathieu equation. Such a question does not arise in the
more usual type of initial value problem, since the functions analogous to F,,(#)
are generally of the form e~r'd(Ancos w#+Bnsin «#), rn™0.

4. The Mathieu equation. The problem of the stability of the column with pinned
ends has been reduced to that of determining whether all solution”™ of the Mathieu
equation

dF

-(a+ cos#)F = 0, 4.1
442 ( ) (4.1)

i.e.,, of Eq. (3.3) without subscripts, are bounded for given values of a and jB or not.

We summarize briefly the known theory of this equation in so far as it is needed
for our purposes; more extended discussions and proofs can be found in the pamphlets
of M. J. O. Strutt [15] and P. Humbert [5], and in the books of E. L. Ince [7] and
Whittaker and Watson [17]. We have also made use of papers of S. Goldstein [2],
E. L. Ince [6], and M. J. O. Strutt [14]. The notation we have chosen for the
Mathieu equation has been taken to fit our problem; we compare it with the notation
used by others:

. Ince and
Strutt Goldstein Whittaker and Watson Here
u y y F
2X 2X 2X d
X/4 a ald a
=672 -4q 4q =

It can be shown (theorem of Floquet) that there exist in general two linearly
independent solutions Fi and F2 of (4.1) which satisfy the relations

F& + 2tt)

(4.2)
F2(# + 2tr) = K 2F2{#).

The quantities K\ and K2 are either conjugate complex or real constants which
satisfy the relation

7The analogous problem of the rectangular plate with simply supported edges can be treated in the
same way as the column with pinned ends. The only essential difference would be that the relations corre-
sponding to (3.4) and (3.5) would contain more parameters.
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Ki-Ki = 1 (4.3)

Hence all solutions of (4.1) will be bounded only if
1Jfi| = | Kt\ = 1 (4.4)

In case (4.4) is not satisfied, it follows from (4.3) that Ki and K 2 are both real—a
fact of which we make use later on. For certain values of a and 3 there exist solutions
for which the values of K are +1 or —1; such solutions are therefore periodic of
period zir or 47r respectively.8 The pairs of values (a, [3) for which such periodic
solutions of (4.1) exist can be shown to fill out curves in an a, /3-plane which divide
that plane into “stable” regions in which (4.4) holds and “instable” regions in which
it does not hold. The boundary curves themselves belong to the instable region, the
general solution of (4.1) corresponding to (a, {3) on such a curve consisting of the
sum of a periodic function plus # times a periodic function. Fig. 2 indicates these
regions, the stable ones being shaded.
It is of some interest to note that in the stable regions the relation

«+\P\>0 (4.5)

must hold since otherwise dz2F/dd2 would always have the sign of F and a solution
not identically zero could not remain bounded for $—+ 0 as well as for $——"°0;
this would mean instability since F(—&) is evidently a solution of (4.1) if F(d) is.

The stable regions are connected at the points a=£24, 3=0, k—1, 2, 3, s e,
for which the solutions of (4.1) are evidently bounded. As indicated earlier, the
boundary curves separating stable and instable regions are characterized by the fact
that a periodic solution of period 2 or 47r exists for any pair of values (a, /3) on such
a curve. This can be made the basis of a method (due to Ince [6]) for determining
these curves, as follows: a Fourier series with undetermined coefficients is assumed
as a solution of (4.1). Upon substitution in (4.1) an infinite set of linear equations in
the coefficients is obtained, each of which involves only three successive coefficients.
Each equation may then be solved for the ratio of two successive coefficients in terms
of the next higher or of the next lower coefficients. By successive substitution in
these relations one is in this way led to two expressions for any such ratio, one of
which is a finite and the other an infinite continued fraction. By equating the two,
a relation between a and f3is obtained which holds at the boundary points separating
the stable and instable regions. For a given value of 3 and with a ranging from
—oo to + « one comes first upon the boundary curve Co which begins at <=0,
[3= 0 (cf. Fig. 2)9; the periodic solutions corresponding to points on this curve are of
period 2tt. Following this, the next two curves, Ci and $%4 starting at a=1/4, 3=0
correspond to solutions of period 47r, followed by two, S2 and C2 starting at a =1,
[3= 0 corresponding to solutions of period 2 ir, etc. The letters Cand C refer to develop-
ments in cosine series (for the even solutions) and in sine series (for the odd solutions).
The points between two successive curves for which the periods of the corresponding
solutions are different are stable points. For small [3 the boundary curves are given
by the following expressions, solutions of type C2 and S24 having the period 27r,
while those of type Czk+h S*k+1 have period 47r:

8For a given value of 0, say, the problem of determining values of a for which such solutions exist is

obviously a linear eigenvalue problem.
« Essentially the same figure appears in the book of Strutt [15].
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CO: a = 022 + 0(0<),
Cy a= 1/4 - 0/2 02/8 + 0%/32 + 0 (04),
Sy a= 1/4 + 0/2 028 - 03/32 + 0(0«),
Sy a« 1 - 0212 + 0(0«),
C2: = 1+ 5/S212 + 0(0«),
Cy @ = 9/4 + /32116 - 0332 + 0(0«),
ad = 9/4 + 0216 + 0332 + 0(0«),
St,Cu: a = k2i + pad2(kz- 1)+ 0(/39, k=4,56,me

Fig. 2

Curves of type C2jtand S % have contact of order 2k at the points a =k2 i{3=0, while
curves of type Cefriand Sn+ihave contact of order 2k + | at the points a = (2 &+ 1)2/4,
3= 0. This behavior is clearly indicated in Fig. 2. A table of values of a and 0 for
points on these curves is given at the end of the paper. These values were calculated
by means of the procedure outlined above and were checked against values given by
S. Goldstein [2] and E. L. Ince [6] where possible.

For large positive values of a the points for which |j3| <a are stable except for
very narrow strips which lie near the lines a = kz2/4z. For large values of 0 it has been
shown that all boundary curves tend to have the slope —1 (for |[3>0). Thestable
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regions are in general very narrow for a<o and grow narrower as |o| increases.
These observations are all borne out by Fig. 2.

S. The stability of the column with pinned ends. We may now conclude that
column with pinned ends will be stable only if the applied force F—P-\-H cos ut
is such that all points (a,,, 0n) given by (3.4) and (3.5) fall within the shaded region
of Fig. 2. In other words, a set of values (p, h,f) is stable only if every point of the
sequence (an,o,) determined by (p, h, f) is stable.

Suppose, for example, that P =P E (i.e., the steady part of the load is a tension
equal in value to that of the Euler load) and that the harmonic part of the load has
a frequency/=/o(io/2)12 We find that ai = | and that the column (it is, rather, a
tensile member in this case) is instable even for small amplitudes Il of the oscillatory
part of the load (i.e., for |o x| small), since the points (1,0i) are clearly seen with
reference to Fig. 2 to be instable if |jsX is small. We could expect the column to
be set into motion with heavy lateral oscillations.

On the other hand, let us assume the steady load P to be a compression of twice
the Euler value, while the harmonic part of the load has a frequency/=2/oe0i/2 and
an amplitude such that li=H/Pe =3A. We find in this case:

ai = —0.25, 0i = 0.775,
az = 2.00, 02 = 3.10,
a3= 15.75, 03 =6.975,
an= m(»2—2)/4, 0,, = 0.775w2

We can readily convince ourselves that all points (a,,, on) lie in the stable region of
Fig. 2. The points (aa, 0i) and (a2 02) are stable, as one sees from Fig. 2 and the table
of values of a and o for points on the boundary curves given at the end of the paper.
(Note particularly the values of a and 0 on Coand Ci for ao”. —0.25 and the values on
C2 for a~2.0). The numbers an can be written in the form an= {n2—1)24 —1/4
= &4 —1/4, with k=n2—1; in other words the abscissae an lie always a distance
1/4 to the left of the points (&/4, 0) where the boundary curves delimiting the
stable regions cross the a-axis. The points (an, 0) for n> 1 are therefore stable points.
Also, for0 not toolarge the boundary curves lie to the right of thestraightlines
a = &/4,as one secsfrom (4.6). Hence allpoints (a,, 0,,) will bestable if each 0,
is not too large in comparison with an, and this condition is certainly fulfilled in our
case for 2. Note, for example, that 0 must be taken larger than s for a point of
instability when a = 8.75 (that is, a value 1/4 less than 9). For «3 = 15.75 we have
03 only 6.975 in value so that («3, 03) is certainly stable. Since the anincrease like m:
while the o,, increase only like n2 it becomes obvious that all (a,, o,) are stable.
The column is therefore stable even though the steady value of the load is twice that of the
Euler load.1o However, the total compressive load always, as in this case, drops below
Pe in value during at least part of the cycle if the column is stable: we have seen
(cf. 4.5)) that the inequality a,,+|0n| >0 holds for stable solutions; in particular,
for n —1 this leads to

1 A. Stephenson [13] appears to have been the first to point out the possibility of such phenomena
in general. This paper appeared in 1908.

the
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p+\h\> -1, (5.1)

as one sees from (3.4) and (3.5), and our statement follows from (2.13).,

Thus there exist both stable and instable sets of values (p, h, /). However, our
definition of stability leaves out of account a possibility which is always inherent in
any physical problem, i.e., that slight changes in the parameters of the problem
(p, h, and/ in our case) may be sufficient to cause a stable motion to become an in-
stable one. A set of values (p, h,/) should be considered stable in any proper physical
sense only if a complete neighborhood of these values exists which is made up entirely of
what we have defined as stable sets of values.

We proceed to show that the problem of the column never has a stable solution
in this more restricted sense; i.e., we show that arbitrarily small changes ¢« in/ and
dp in p, for example, can always be found such that (p+ dp, h, f+ sf) is instable no
matter what values are chosen for p, h, and/. This is done by showing that a certain
pair of values (an, /3,) becomes instable when properly chosen but arbitrarily small
changes are made in/ and p. Our statement follows from (3.4) and (3.5) and the
character of the instable regions of the Mathieu equation for high values of a. We
write equation (3.4) in the form

“H'/n = (tofl/py'K1+ P/nar \ (5m)

and show first that this equation can always be satisfied by taking for a,, the square
of an integer, provided only that/ is changed by a small amount df and n is a suffi-
ciently large integer: the real number (eo/g/i/2) 174 can be approximated as accurately
as desired by a rational number N/n. It is clear that n can always be chosen so large
that an arbitrarily small change df in/ will suffice to make the right hand side of
(5.2) exactly equal to N/n. Hence an=N4 and our statement is proved. It is also
evident that an a, of the form w2 4 could have been determined in the same manner.
We have thus determined a point (a, /3) for which a =n2/4, n and f+ Sf being now
considered as fixed. We recall the fact that the instable regions of the Mathieu
equation cross the a-axis at right angles at the points where a = «24 and that these
regions for high values of n are narrow strips which remain (for not too large values
of /3) very near to the vertical straight lines a=w2/4. Since the values of j3, increase
like n2 while those of anincrease like «4 it becomes evident that a small change dp
in the value of p in (3.4) will be sufficient to cause the point (a', /3) corresponding to
the values p + dp, h,f-\-df to fall inside an instable region of the Mathieu equation.
We repeat: no values of p, h, and/ (h, /™ 0) can be found such that the column is
stable when small variations in these quantities are permitted.

In the actual physical problem, however, there is an important element present,
i.e., viscous damping, which has been neglected so far. In a later section we shall
show that the presence of even the slightest amount of viscous damping will suffice
to make all values (a, p) stable for which a”~ao0>0, and |/3| <a, when aois a certain
constant which may be large. In other words, damping acts in such a way as to cut
out the narrow instable strips which occur for large a in the regions for which
[/3] <a. Under these circumstances it becomes sufficient to test only a certain finite
number of the points (a,,, f3n) for stability. Thus the column may be stable if viscous
damping is present even when small variations in the quantities p, h, and/ take place,
though, as we have seen, this is not the case without damping.



224 S. LUBKIN AND J. J. STOKER [Vol. I, No. 3

Figures 3, 4, and 5 show the stable values of / and h (frequency and relative
amplitude h=H /P E of the vibratory part of the load) for the values p=P/PE
= —1.5, —1.0, and 1.0 respectively. The stable regions are shaded.11 These diagrams
have been constructed on the assumption that the amount of viscous damping is
large enough that values of a larger than 10 can be ignored. In other words, Figs.
3, 4 and 5 were constructed by combining the stability regions of Fig. 2, which in-
cludes values of a up to 10 only, for a suitable number of values of n.

The general character of Figs. 3 and 4 is typical for the cases in which p< —1,
i.e.,, in which the steady part of the load is a compression larger than the Euler

load. We note that the shaded stable regions for £ = —1.5 are much smaller than
Fig. 4.
those for £ = —1.0, as was to be expected; for the higher values of the steady

compressive load beyond the Euler load it is necessary to make more accurate

N Without damping, as we have seen, there could be no stable regions though there are stable points.
It would have a certain mathematical interest to investigate the set of stable points in detail in this case.
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adjustments in the frequency and amplitude of the oscillatory part of the load in
order to obtain stability. The full lines which cut through the shaded regions in the
figures are not really curves; they represent, rather, narrow instable regions. How-
ever, the two curves in Figs. 3 and 4 which appear to be straight lines running
near the h-axis indicate narrow stable regions. Fig. 5 is typical for all cases in which
p> —1.0, i.e., for cases in which the steady part of the load is either a tension or
a compression less in value than the Euler load. In these cases the column is stable
for all frequencies when h=o ;it is in fact stable almost everywhere in the neighbor-
hood of the axis h=o.

Fig.5.

It is of some interest to consider the special case in which the amplitude Il of the
oscillatory part of the applied load is very small so that the values of /3, are small
(for n not too large). We note that the natural frequencies/,, of the free lateral oscilla-
tions of the rod under steady load (that is, in this case, for I1—0) are given by
/'n=/a,,l,! as one can readily verify. From Fig. 2 we observe that the rod is instable
for small values of 3when a,, = &/4, k being any integer. Hence instability occurs for
small amplitudes of the oscillatory part of the load whenever

/| = 2fn/k, *=1,2,3,. .-, (5.3)

that is, whenever the load frequency is twice any integral submultiple of a natural
frequency of oscillation. At such frequencies one could expect that heavy oscillations
would be built up.22 However, the most favorable case for the production of oscilla-
tions is, in general, that for which n =k —1. Consider, for example, the case p = 1.
For n=k =\ we find readily that ///ofo12=812=2.83, and one readily sees from
Fig. 5 that this furnishes the most favorable frequency for instability at small am-
plitudes of the oscillatory force.
6. The flexible string under harmonically varying tension. With only slight modi-

fications our preceding results can be used to discuss the problem of the vibrating

PThis problem has been considered both experimentally and theoretically by I. Utida and K. Sezawa
(161,
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string subjected to a harmonically varying tension.is We have only to set 7=0 in
(2.1) to obtain the fundamental differential equation. The tension F(t) in the string
is assumed given by (2.2) and the same independent variables as before are intro-
duced. However, the parameters p and h in (2.3) can obviously not be used here.
Instead, we introduce the quantities

p, — P/EA, h, = H/EA. (6.1)

We may assume for w the expansion (3.2) for a string with fixed ends and will
obtain (3.3) as differential equation for the quantities Fn(&) if we now define anand
/3,,by the equations

«» = o« *HL]* Pn = n*pji,/p. (6.2)

The investigation of stability involves the same considerations as for the column,
and much the same general remarks might be made as were made in the case of the
column. For example, if P >0 and P> |7/], i.e., if the force applied to the string is
never a compression, viscous damping acts in such a way as to cut out the instable
regions of Fig. 2 for sufficiently large values of a. Hence it is possible to construct
a diagram for the determination of the stable values of p, h, and/in the same manner
as for the column. Figure & shows the stable regions (shaded); the quantity f/fop2u~
is taken as abscissa and H/P ="n/an—h,/p, as ordinate.

Fig. 6

It is readily seen that the natural frequencies/,, for the free lateral oscillation of
the string (under constant tension) are given by/,, =/a,, /2, just as in the case of the
column. The string is instable for low amplitudes of the oscillatory part of the tension
when an=kz2/4:;, k=\, 2, 3, e+« In this case we know in addition that/,, = n/i, in
which /i is the fundamental frequency of the string. Hence “resonance,” that is,
heavy oscillations for low amplitudes of the applied oscillatory force, will occur when

BThis problem was first discussed by Lord Rayleigh [11]. The problem was discussed later by
A. Stephenson [12], and [13], and by C. V. Raman [10J
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f=2nfvk, n k= 1-2 3, oo, (6.3)

that is, at twice any rational multiple of the fundamental frequency offree lateral
oscillation of the string. However, the most favorable case for the production of
oscillations is readily seen to be that for which n=k =1 (i.e., that corresponding to
f/fop*in = 2.0). In Melde’s experiment lateral oscillations of a string are produced
in accordance with (6.3) by attaching one end of the string to the prong of a tuning
fork.

There is one marked (though not unexpected) difference between the behavior
of the column and that of the string: it could be shown that the string is never stable
even with viscous damping if the load on it becomes a compression during any part
of the cycle. For stability of the string we must always require PA\H\.

7. The effect of damping. If it is assumed that there is a lateral damping force
acting on the column that is proportional to the velocity dw/dt, the differential equa-
tion (2.1) is readily seen to be modified by the addition of a term s(dw/dt), 5>0, to
its left hand side. With the same notation as before we find as differential equation
for the functions Fn(i?):

dw dF
h 2v [- (@ - Bcosd)F = 0, (7.1)
dr d&
where
v = <Shuw, (7.2)

and subscripts have been dropped.

The general theory of equation (7.1) could be developed in the same way as that
for the Mathieu equation without damping (for a treatment which includes a damp-
ing term, see the papers of G. Gorelik [3]). In particular, the a, /3-plane could be
divided into stable and instable regions. We confine ourselves here to one special
problem, i.e., to a discussion of the behavior of the solutions of (7.1) for a given
value of v and large positive values of a. We assume also that |/3| <a.

Upon making the substitutions

F = e-"G, a'=a-p2 (7.3)
Eq. (7.1) becomes
d-G
T + (cd + f3cosd)G = 0. (7.4)
r

Obviously, if G is bounded, F is not only bounded but approaches zero as$ increases.
Also, even at boundary points (a‘, /3) separating stable and instable regions of
(7.4), the corresponding solutions F tend to zero since no solution G of (7.4) in-
creases faster than t? in this case. If the amount of damping is slight (that is, if v
is small), the boundary curves for (7.1) would lie near those for v=0, but they would
not intersect the a-axis except at the origin since all solutions F of (7.1) are clearly
bounded for /3= 0, a>0. This reasoning makes it seem rather evident that the nar-
row instable regions which occur for large positive values of a when |/3] <a are cut
out when a damping term is added.

We proceed to give a proof of the following statement: if v>0 and |/3| <a, all
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solutions of {7.1) are stable for all values of a which exceed a certain value a0>0. It
was pointed out earlier that there exist two linearly independent solutions Gi and Ga
of (7.4) such that Gi(d+ 2ir) =KGi(d) and KG2{*+ 2t) = G2$) with [ii| > 1 in case
{a’, i3 is in an instable region for (7.4). We know also that K is a real number in this
case. The solutions of (7.1) will, however, remain bounded even in such an instable
case for (7.4) provided that

@ > | IT|, (7.5)

as one sees from (7.3). Consequently our statement will be proved if we can show
that | if | —»las a'—>00. This we prove through the use of thefollowing
formula forkK, valid under our assumptions, which has been given by Strutt [14]:

K+ 1/K = 2cosh Xcosf + 0(1/W ) (7m)
in which
f+ X\/[~T= f (a"+ icost?)™, (7.7)
jo
and 0{\/\/a') means that all terms neglected are of order 1/s/a' or higher. Since
we assume that |/3| <«' the integral in (7.7) is real and A= 0. We have, therefore:

\K+1/K\ <l12cosrl+ 0(1/V?) < 2+ 0(L/VIFI?). (7.8)
Since K is real it is readily seen that
2E£\K + \/K\, (7.9)

equality holding only for jif| =1. From this and inequality (7.8) it follows at once
that

|K|—1 when a'— . (7.10)

" In the case of the column we note from Eqgs. (3.4) and (3.5) that |/3,,| <«,, for
sufficiently large n and that a,,—e> with n. The assumptions under which (7.10)
was derived are thus fulfilled in this case. When damping is present we are therefore
justifiedin neglecting all values of a larger than a certain positive valueao in discuss-
ing the stable values for the column. Our diagrams were drawn under the assumption
that ao=10. In the case of the string, «,, and (3, increase at the same rate with in-
crease of n\ consequently our conclusions regarding the effect of damping in this
case are valid only when P >|F/| (which ensures that |/3,| <a,,,) i.e.,, when P is a
tension and H is such that the total force in the string is always a tension.

Appendix

Sufficient conditions for stability. For stability we required always that the solu-
tion
@
w = 2 ~,(d) sin «£ (AD

of our problems be bounded for arbitrary initial conditions; it is thus necessary to
assume for stability that each F,($) be bounded for o g#< » (# is essentially the

asymp
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time variable). In this appendix we prove a statement made at the end of section (3)
to the effect that the series will converge for all# if it converges for# = 0 and if the
Fn@#) are all stable solutions of the Mathieu equation.

In order to state our theorem precisely we introduce the series

X Dnsin w, X V*sin «£ (A2)

n n

in which Dnand Vn are defined by

0) = (A3)
Dn = Fn{0), Vvn= —
{ dd Go
We assume that the series (A2) are such that
X {PniDn 1+ Pne«n ' [ Vn|} < 00, (A4)

n

in which pnis a certain positive quantity and a,, is one of the two parameters in the
Mathieu equation for the functions A,,(#):

daFn
—#r + (dn + cos #)Tn= 0. (A5)
a -

We assume in addition that the A,,(#) are stable solutions of (A5) for which
| 3,] < kan, 0™ k< 1, (As)
at least for all n>N, say.u# Under these assumptions we show that: the series

’ : »  dFn{X
] .F.(& sin Kf and X df}_)_)"sm

converge for 0g#< °0 in the same sense as the series (A 2), i.e., the convergence relation

dF, m
X {P»|Fn(0) I+ prann ) < « (A7)
da }

holds for o g # < co.

If it were assumed that p,,=1 in (A4) then X«""”) sin would converge, but
its derivative with respect to# would not necessarily converge. If p,, were assumed
to be a]/2, the differentiated series would converge. In our cases a2 is of order n
for the string and of order k2 for the column. To assume pn=a,2 in (A4) would
therefore not seem unduly restrictive when it is considered that the series (Al)
should be assumed to converge when it is differentiated twice with respect to £ in
the case of the string and four times with respect to £ in the case of the column.

We prove our theorem by showing that every stable solution of the Mathieu

equation
dF
— + (a+ #cos#H)F =0 (As)
d#2

U These latter conditions are fulfilled in the stable cases for both column and string. This follows from
(3.4) and (3.5) for the column, and from (6.2) and the fact that \h,\ <p, in the case of the string.
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for which
| B] < ka, 0g k<1, (A9)
and
0 4Ft0) v (A10)
F = D, =
© da  0-0
satisfies the inequality
dF(0) .
|[F@) | + a 12 4 a C{|D\-forl2!'v\ } (Ail)
a
for «>, C being a constant which depends only upon k. Upon réintroduction

of the subscript n in (All) followed by multiplication with pn> 0 and a summation
with respect to n, it is clear that (A7) would result from (A4), since C is independent
of n.

We proceed to establish the validity of the inequality (All). For this purpose it
is convenient to introduce a new independent variable pas well as a new dependent
variable/in (As) as follows:is

m = f Xll2dq, X = « + PcosU, (A12)
Jo
f = XU4F. (A13)

In these variables the differential equation (As) becomes

di / PcosU 5/3sin20)
_A+ (1 + + )/= o (A14)
e\ 4x2 16x3 /
or, as we prefer to write it
+ / = a Iyf, (A15)
e
with
P cos d 5Pz sin2 0\
= -« (i + (A16)
4x2 16x3

From now on we consider f(cp) to be the solution of (A15) which satisfies the
initial conditions

Mo izv=i, (ai7)
ay

It is then readily verified that f(<p) and its derivative satisfy the integral equations

f(<p) — eir — — J'" y(Df(j)e~imMT — e~'vj™ y(r) f(~)e'dT", CA18)
df(<p) : : . :
dp =ie'r+ — e j" y(r)/(r)e "dr —e J y(j)f(r)eirdTA. (A19)

B This transformation is frequently used in the treatment of various questions relating to the asymp-
totic behavior of the solutions of certain types of second order ordinary differential equations.
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From the general theory of the Mathieu equation it is known that every stable
solution F(d) of (As) can be expressed in the form in which H{&) is a periodic
function of period 2ir and a is a real constant. It follows from (A13) that /(<p($))
can be expressed in the form h(d)eu} with h=H xIli}h(d) is thus also periodic of period
2ir in??. Consequently we may write

G=max\m \ = max | h(t?) | = max|™gr|h(& | = max|jlgr |[/(t?) | . (A20)

The validity of (A20) is the essential point in our proof; because of it,bounds forour
guantities in the interval —mrg d ~ r hold also for o g t?< ».
We find from (A16), the definition of x in (A12), and (A9) that

[t |g ¢/4(1 - k2 + 5E£216(1 - hr) = V. (A21)
We note also that
ip(ir) S. tt\/a f- {3s= Tr\/~a\/1 -k, (A22)
as one sees from (A12). Finally we obtain from (A18) the following inequality for
G=max |/($)] :
r»Vi+ k

Gg 1H G. (A23)
\/a

In view of our purpose it is permissible to assume from now on that
a” ao> TV2A1 + k) = ail (A24)
once this is done (A23) may be written in the form

Gg 1/(1 - vW”™0) = GO. (A25)
In a similar fashion we can show that

dm
max ) £ G (A26)
dip
since df/dip satisfies (A19) and, like f(ip) itself, can be written in the form /(?)eid,
with h of period 2ir in $.
Since the function given by (A18) and its complex conjugate are linearly
independent solutions of (A15) it follows that we may write the general real solution
F of (As) in the form

F(d) = Re Cx~Uim |, C—A —iB, (A27)

in which Re means that the real part of what follows is to be taken, and A and B

are real but otherwise arbitrary-constants. The quantity dF/dd is then given by

the expression
dF

A o df
— = Re”™@a+ pcosd){A - iB) ~ + 1/4-————-AI ).l .. (A28)
dd \

dip (a+ o E'os"tz)sm )

We find at once, since
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df
0) = o and =

kp V>0
dF
D =27(0) = (a + fl-U'A, vV — dd = (a + pyi*B, (A29)
from which we obtain
A = (a+ PY"D, B = (a + d)"i/sF. (A30)
For | F(d) | we then have the inequality
T+ iy t4 1
IF(0) % B o - v\ >G
| 0;1/2(1 - Ppyi*
< po\D\ + qooT1121V I, (A31)

in which po and qo depend only upon the constant k introduced in (A9), and Go is
the bound for max |/(t?)| given in (A25). From (A28) we find

< 1/4 ‘ (a —p)-1/41C1Go + (a + jS)I/A1CjCGo
1

g a»*p1\D\'+ ?i| V (A32)

where

and qi is of similar nature. The quantities pi and qi, like po and go in (A31), depend
only upon k. Division of both sides of (A32) by \ia, followed by addition to (A31)

yields
K 1 k
[F|+ a-12 dd \D (A34)

which establishes the validity of (All) and thus completes the proof of our theorem.

Coordinates of Points on the Boundary Curves of Fig. 2.

a «(Co) «(CO «(50 «(50
0.0 0.00000 0.25000 0.25000 1.00000
0.2 -0.01966 0.14525 0.34475 0.99667
0.4 -0.07510 0.03191 0.42796 0.98670
0.6 -0.15836 -0.08872 0.49816 0.97018
0.8 -0.26148 -0.21555 0.55906 0.94724
1.0 -0.37849 -0.34767 0.59480 0.91806
12 -0.50535 -0.48430 0.62006 0.88284
1.4 -0.63942 -0.62480 0.63015 0.84183
1.6 -0.77898 -0.76867 0.62592 0.79529
1.8 -0.92281 -0.91545 0.60857 0.74349

2.0 -1.07013 -1.06480 0.57950 0.68672
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«(C,)

-1.22031
-1.37291
-1.52760
-1.68410
-1.84221

-2.00175
-2.16258
-2.32457
-2.48764
-2.65168

-2.98242
-3.31627
-3.65286
-3.99186
-4.33302

-4.67611
-5.02097
-5.36744
-5.71537
-6.06467

-6.41522
-6.76694
-7.11974
-7.47357
-7.82835

-8.71911
-9.61474
-10.51465
-11.41834
-12.32542

-13.23556
-15.06389
-16.90154

«(Ci)
1.00000

1.01633
1.06171
1.12806
1.20733
129317

«(Ci)

-1.21640
-1.37002
-1.52544
-1.68248
-1.84098

-2.00081
-2.16185
-2.32402
-2.48720
-2.65134

-2.98220
-3.31614
-3.65277
-3.99180
-4.33298

-4.67609
-5.02096
-5.36743
-5.71537
-6.06466

-6.41522
-6.76694
-7.11974
-7.47357
-7.82835

-8.71911
-9.61474
-10.51465
-11.41834
-12.32542

-13.23556
-15.06389
-16.90154

«C3
2.25000

2.25225
2.25808
2.26622
2.27554
2.28515

«(Si)

0.54012
0.49174
0.43554
0.37253
0.30357

0.22938
0.15057
0.06763
-0.01901
-0.10899

-0.29781
-0.49688
-0.70474
-0.92026
-1.14253

-1.37085
-1.60460
-1.84328
-2.08644
-2.33382

-2.58498
-2.83970
-3.09772
-3.35883
-3.62283

-4.29436
-4.98065
-5.67983
-6.39044
-7.11126

-7.84129
-9.32566
-10.83807

«(S3
2.25000

2.25275
2.26203
2.27933
2.30589
2.34258

«(S)

0.62526
0.55938
0.48935
0.41542
0.33785

0.25684
0.17263
0.08541
-0.00468
-0.09734

-0.29009
-0.49171
-0.70124
-0.91787
-1.14088

-1.36970
-1.60383
-1.84271
-2.08607
-2.33353

-2.58478
-2.83955
-3.09761
-3.35875
—3.62277

-4.29434
-4.98064
-5.67982
-6.39043
-7.11126

-7.84129
-9.32566
-10.83807

«(Si)
4.00000

4.00133
4.00530
4.01181
4.02075
4.03192

233
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1.2
14
1.6
18
2.0

2.2
2.4
2.6

3.0

3.2

3.6
3.8
4.0

4.4

52
5.6
6.0

8.0
10.0
120
140

16.0
18.0
20.0
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«(G)

1.38126
1.46860
1.55305
1.63302
1.70727

1.77487
1.83509
1.88745
1.93163
1.96752

1.99517
2.01478
2.02665
2.03118
2.02881

2.00521
1.95947
1.89487
1.81419
1.71968

1.09281
0.28857
-0.63494
-1.64702

-2.72859
-3.86669
-5.05198

«(CO
4.00000

4.00134
4.00538
4.01226
4.02215
4.03530

4.05204
4.07273
4.09776
4.12755
4.16245

4.20283
4.24889

«(G)

2.29429
2.30233
2.30878
2.31323
2.31536

2.31495
2.31175
2.30568
2.29660
2.28448

2.26925
2.25092
2.22950
2.20500
2.17748

2.11356
2.03826
1.95216
1.85589
1.75014

1.09947
0.29018
-0.63452
-1.64690

-2.72855
-3.86668
-5.05198

«CO
6.25000

6.25083
6.25333
6.25750
6.26334
6.27084

6.27999
6.29077
6.30317
6.31714
6.33264

6.34961
6.36800

«(5,)

2.38967
2.44680
2.51308
2.58723
2.66777

2.75314
2.84194
2.93284
3.02467
3.11640

3.20712
3.29604
3.38247
3.46578
3.54547

3.69216
3.81969
3.92636
4.01149
4.07538

412172
3.84895
3.38071
277777

2.07287
1.28641
0.43241

«(50
6.25000

6.25083
6.25333
6.25751
6.26337
6.27094

6.28025
6.29134
6.30427
6.31911
6.33594

6.35487
6.37604
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«(50

4.04512
4.06010
4.07660
4.09433
4.11301

4.13236
4.15212
4.17199
4.19175
4.21115

4.22997
4.24800
4.26507
4.28099
4.29563

4.32053
4.33886
4.34996
4.35338
4.34881

4.20467
3.87349
3.38817
2.78016

2.07367
1.28668
0.43251

«(50
9.00000

9.00057
9.00229
9.00515
9.00915
9.01430

9.02060
9.02806
9.03667
9.04643
9.05735

9.06943
9.08267
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B a{Cf) «(Q «(Ss) (%)
2.6 4.30085 6.38773 6.39956 9.09705
2.8 4.35867 6.40871 6.42560 9.11259
3.0 4.42220 6.43085 6.45432 9.12927
3.2 449121 6.45406 6.48591 9.14707
3.4 4.56533 6.47821 6.52052 9.16600
3.6 4.64406 6.50321 6.55837 9.18603
3.8 4.72688 6.52893 6.59962 9.20714
4.0 4.81318 6.55525 6.64444 9.22930
4.4 4.99383 6.60921 6.74533 9.27671
4.8 5.18127 6.66411 6.86185 9.32798
5.2 5.37113 6.71898 6.99394 9.38281
5.6 5.55951 6.77289 7.14093 9.44078
6.0 5.74803 6.82500 7.30201 9.50150
8.0 6.50217 7.03409 8.23272 9.82875

10.0 6.89864 7.11706 9.16125 10.14742
12.0 6.97136 7.05384 9.87814 10.40143
14.0 6.82083 6.85144 10.30874 10.55621
16.0 6.51561 6.52721 10.48838 10.59848
18.0 6.09463 6.09902 10.48167 10.52959
20.0 5.58132 5.58302 10.33749 10.35813
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ON MOMENT BALANCING IN STRUCTURAL DYNAMICS*

BY

R. E. GASKELL**
Brovin University

1 The method of moment balancing. In recent years several writers in this coun-
try have developed the method of moment balancing in the analysis of continuous
beams and frameworks. Mention should be made especially of the basic paper by
Hardy Cross.1'2 One could also classify as related procedures the method of balancing
angle changes given in a paper by L. E. Grinter,s and the whole field of relaxation
methods being investigated by R. V. Southwell.4 That such interest is taken in these
methods would seem to indicate that their extension to the dynamics of beams and
frameworks might-be desirable, and it is the purpose of this article to provide at least
the beginning of this extension.

We assume that we are dealing with plane structures on which loads are acting in
the plane of the structure. Members of the structure consist of uniform straight
beams; and they meet in stiff joints, which are assumed to be fixed against translation.
All connections to a foundation are either built-in or hinged.

The method of moment balancing depends upon three very simple ideas, namely,
fixed-end moment, stiffness and carry-over factor. We give their definitions here:

The “fixed-end moment” at the end of a member is the moment which would
exist at that end if all joints to which it is connected were fixed against rotation.

If one end of a member is simply-supported, its “stiffness” is the moment re-
quired to produce unit rotation of that end. The other end may be built-in, simply-

supported or free.
The “carry-over factor” is the numerical value of the moment induced at one
end of a member by a unit moment acting at the other end.

Methods of finding these characteristics of beams and other components of a
structure are numerous and well-known. Having determined them for all components

* Received Feb. 3, 1943.

** This paper was prepared under the direction of Professor W. Prager, whose helpful suggestions
and valuable assistance are gratefully acknowledged. The author is a Fellow under the Program of Ad-
vanced Instruction and Research in Mechanics at Brown University.

1H. Cross, Analysis of continuous frames by distributing fixed-end moments, Trans. A.S.C.E. 96,
1 (1932). This paper is followed by discussions, that by L. E. Grinter, pp. 11-20, being particularly in-
formative.

2See also: Hardy Cross and N. D. Morgan, Continuous frames of reinforced concrete, John Wiley
and Sons, 1932, Chapter IV, pp. 81-125; Moment distribution applied to continuous concrete structures,
Portland Cement Association, Second Edition, 1942.

3L. E. Grinter, Analysis of continuous beams by balancing angle changes, Trans. A.S.C.E. 102,
1020 (1937).

4R. V. Southwell, Relaxation methods in engineering science, Oxford University Press, 1940.
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of a framework, we assume that all joints of the framework (in Fig. 1, for example)
are fixed against rotation; and determine the resulting fixed-end moments acting at
the ends of each member. Built-in, simply-

supported or free ends are not considered as

joints. Then at any joint, say D, a moment

E equal but opposite in sign to the sum of its

~ Z5F fixed-end moments is applied, representing the

effect of releasing the joint. This moment is

7X B distributed to the members AD, CD, BD, ED,
meeting at D, in proportion to their stiffnesses,

Fig. 1. since all members meeting at D rotate through

the same angle. The share failing to each mem-
ber is called the“balancingmoment” acting at the end D of this member. The joint
D isnow balanced,but the new balancing moment Mba acting at the end D of AD
will induce an additional moment

M ad = CadM da

at the opposite end A. CAd is the carry-over factor for the member AD, and the mo-
ment Mda is said to be “carried over.” Likewise, moments are carried over to C
and E, but none to B since Cdb = 0. The joint D
is again locked—this time in its balanced posi-
tion—and the process repeated for all joints of B r c
the framework until the balancing moments are T
negligible. The order of choosing unbalanced
joints for balancing is not obligatory, but usu-
ally the joint with the largest total unbalanced
moment at any given stage is balanced. Signs
of the moments are chosen so that a positive
moment acting on the end of the beam tends to
rotate it in a clockwise direction. Likewise, a
rotation in the clockwise direction is consid-
ered positive.

Example 1. As asimple example consider the
rectangular bent formed of uniform and equal
bars, illustrated in Fig. 2. All of the bars are of equal stiffness and the carry-over fac-
tor in each case is 1/2. The only non-vanishing fixed-end moments are —A25PI
and A25PI at the left and right ends of the horizontal bar. The calculations used
in the method of moment balancing are shown in Table I. In a given column, say
that headed Mcb/PI, we find recorded successively the fixed-end moment and the
balancing moment. These are added, and since at this stage M cb+ M Gd =0, the joint
C is balanced. The balancing moment has been carried over to column M Bc/PI, and
the joint B is balanced next. The same steps are followed until after five balancings
the moments to be carried over are negligible. The results obtained agree with those
computed by other methods.

2. Dynamics of a simple beam. It is clear that if we can set up analogous defini-
tions for fixed-end moment, carry-over factor and stiffness for a beam on which an
oscillating force is acting, and if we can find these characteristics for the oscillating

Fig. 2
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beam, it may be possible to use the method of balancing moments just as it is in the
dynamic case. A procedure adapted to this purpose can be found in an article of
W. Prager’s,s the essentials of which will be given here.

Table I

B C
M AB/P | M Ba/P1 M bec/P 1 M cb/P 1 M cd/PI M bc/PlI
.000 .000 -.125 .125 .000 000
-.063 -.062
-.032 -.031
.000 000 -.157 062 -.062 -.031
.078 .079
.039 .040
.039 .078 -.078 102 -.062 -.031
-.020 - .020
010 010
.039 .078 -.088 .082 -.082 -.041
.005 .005
.002 .002
.041 083 -.083 084 -.082 -.041
-.001 -.001
.041 .083 -.083 .083 -.083 -.041

The differential equation for the deflection, y(x, t), of a uniform beam with no
external load is taken as

dy ddy
B—r+ EI—4 =0,

where p. is the mass per unit length of the beam and E |
is its flexural rigidity (Fig. 3). Following a well-known E IsM
procedure we write y(x, t) —u(x) cos wt, u(x) being the
amplitude of the assumed harmonic motion and w its

circular frequency. Hence C
ig. 3.

d*u
b »4m = 0,
dxa
where ni =uP-p/EI\ and from this equation
u(x) = A cosh tix + B sinh nx + C cos nx + D sin nx.

It is convenient to express the four constants of integration in terms of four quanti-
ties of immediate physical importance: the amplitudes of the moments acting on the
ends of the beam, and of the displacements at the ends of the beam. This can be done
by use of the relations

5W. Prager, Die Beanspruchung von Tragwerken durch schwingende Lasten, Ingenieur-Archiv 1, 527
(1930).
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mw=A+C
M = A cosh X+ B sinh X+ C cos X-f- D sin X
dhf]
Mo= - EI —- = - A C}EIn\{
dX- 3e0
dail ) )
MI = EI -d— = {A cosh X+ B sinh X—C cos X —D sin X]EIn2
X

where \ =nl. It can be seen that the amplitudes of the deflection, angle of rotation,
bending moment and shear for any value of g will involve linearly the amplitudes of
the end deflections and end moments. These quantities can be expressed in much
simpler form if the following functions and abbreviations are introduced:

0 (X) = (coth X —cot X)/2X, <EX) —X(coth X+ cot X),

X
— (csch X+ esc X),

iKX) — (csch X —esc X)/2X, p(X)
"= 1/EI.

Then we find the following expressions for the amplitudes of the angles of rotation at
the end points (Fig. 4):

MR | MINX)
uo - - )
tQpivy)  Ul<p())
= = (2)
| |
and for the amplitudes of the reactions:
Xa X4 Mo - Mi
Ro = - Eluo m— o(X)+ M— *00~~*00 - — V'(¥, (3)
: X4 X4 Mo - M i
RX Elui -« — *(X) - mi - — xx) T OX). (4)

If the beam, simply supported at both ends, is loaded at its center by an oscillating
load, P cos cat (Fig. 5),
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M (

Then, from (2) and (4),

(;gT r
=\ A T M) (s) - Fig. S
so that
“(t) = P2/4>(x)’ (5)
= - ¢>ii(A), (6)
where

(¥ = — (tanh - X — tan --X)/4X3, 4(X) = (tanh X+ tan 5X)/12X

Also, from formulas (5) and (s), and with (I)-(4), we find that

m = PI*Q\) = - Ml ()
and
i20= P*(X) = - Ru (8)
where
T'(X) = — (sech £EX —sec 2X)a X2,  Sk(A) = (sech ¢(X+ sec 8A)/4.

Now, if the beam in question is on unyielding supports but has moments acting
on its ends in addition to the load acting at its center, we find by addition of (1) and
(7) that

ul = Mi4>) - JFcWC§ + PII'ty(X); (9)

and, similarly
ul = - 4W (X) + - P«"™*(X). (10)
Obviously, with the equations derived, problems in dynamics of frameworks are

reduced to problems in statics of frameworks. To facilitate this work, tables of the
functions o (A), y(X), \pCK), y(X), 4>(X), 4>(X), T(A) and ~(X) are available.s

3. Dynamic moment balancing. By substituting “moment-amplitude” and “rota-

tion-amplitude” for “moment” and “rotation,” respectively, wherever they occur in
the definitions of fixed-end moment, stiffness and carry-over factor, we arrive at
suitable definitions for thecorresponding dynamic quantities. These three quantities
will give usa basis for theapplication of the moment balancing methodto problems
in dynamics of frameworks.

6 K. Hohenemser and W. Prager, Dynamik der Stabwerke, Julius Springer, Berlin, 1933.
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First let us consider the amplitudes of the moments acting at the ends of a cen-
trally loaded built-in beam (Fig. ). Equa-

, |P . tions (9) and (10) can be applied, and we
Mo[l — - — _ I _ — - f \M . find that
- MAQ) = - PIE(X),
Fig. 6.
and
Moi(\) - = - PZT(X).

fr Then, since 4>Ck)+\pCk) = 2d>(X), the ampli-
tudes of the moment are given by the
relations
PAF(X)
Mo M! (1D
2<b(X)
These quantities give the amplitudes of
the fixed-end moments for a beam loaded
at its center with a load of amplitude P.
/ The problem of finding the dynamic
stiffness is illustrated in Fig. 7. If the far
Fig. 7. end of the beam is built-in (Fig. 7a), we
find from (2) that

- MoW) + =1,

and from (9)
MoEX) —M TEZ(XQ = 0.

Since Mi is by definition the stiffness, K,

<X XP(X)
K = (12)
2{[<KX)]2- [¢(A)]2}

where

B(X) = cosh Xsin X —cos Xsinh X

D(\) = cosh Xcos X— 1L
Tables exist for these functions and for the quotient B(K)/D(K).e

For a beam on two simple supports (Fig. 7b), equation (2) gives

1= M/MNX), so K = U7V(X).
To find the stiffness of the cantilever beam (Fig. 7c), we find from (2) and (3) that

- yf(X) + M/KKX) = 1,
X4 Mi _
wo /2-* (x)- — *(x) = o.
Hence,
i
i = P (13)

r{xa[<kKx)z- [y(x)]12}
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The carry-over factor needs to be found only for the case illustrated in Fig. 7a,
since it is zero in the other two cases.
From equation (1)

M otX(\) - =0

so that the carry-over factor is defined by

M. (%) (14)

We are now equipped to apply the moment balancing method to problems in
dynamics of frameworks.

Example 2. Consider again the bent illustrated in Fig. 2, but now suppose that
the frequency w has a value such that X=3.30 for each bar. Then we have fixed-end
moment-amplitudes of —.169P/and A69PI at the left and right ends of the horizontal
bar, equal carry-over factors of 1.22, and equal stiffnesses for each bar. Table Il
gives the calculations involved in solving this problem. The values obtained from the
12 balancings are correct to two significant figures.

4. Dynamic balancing of angle changes. The application of the results of Sec-
tion 2 to L. E. Grinter’s method of balancing angle changess is not difficult. In
balancing a given joint, the members of the framework meeting at the joint are as-
sumed to be simply-supported and disconnected there. Then rotations are forced by
means of applied moments until the angular discontinuities between the members are
negligible. To work with rotations rather than moments we require two more defini-
tions.

By “angle-change” will be meant the change in slope produced at the end of
a member either by loads or by an applied end moment.

The “angle carry-over factor” is the numerical value of the angle change in-
duced at one end of a member by a unit angle-change imposed upon the other end.

The amplitudes of the angle changes, at the ends of a simply supported beam,
due to a central load of amplitude P are seen from (7) to be

uo

The angle carry-over factor can be found by consideration of a simply supported
beam, one of whose ends is rotated by means of an applied moment-amplitude (Fig.
8). From equations (1) and (2), u{ = —w0 p(K)/(j>(K) so that the angle carry-over
factor is iIKM/<£(X).

Similarly, by consideration of equations (1),
(2) and (4) we can arrive at an angle carry-over
factor for a cantilever beam: Fig. s.

[E(018 - x<[<kx)]2

Since ¢j)@) =y(0) = 1, it is seen that this reduces to unity in the static case.
Continuity is established between a member and a joint by giving the joint a
rotation-amplitude Kidi/XK, where o is the amplitude of the angle change in the ith
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MAL/PI
.000

.166
.166

.166
.062

228

228
.023

251

251
.009
.260

.260

.003

.263

.263

.263

M ba/Pl
.000

.000
136

136

136
.051

187

187
.019

.206

.206
.007

213

213
.002

215

215
.001

.216

R. E. GASICELL

Mbc/PI
-.169

-.103
-.272
136
-.136
-.101
-.237
.050
-.187
-.038
-.225
.019
-.206
-.014
-.220
.007
-.213
-.005
-.218
.003

-.215

-.217
.001

-.216

Table Il

Mcb/PI
.169
-.084
.085
.166
251
-.083
.168
.062
.230
- 031
199
.023
222
-.011
211
.009
220
-.005
215
.003
218
-.001

217

217

Mcd/PI
.000
-.085

-.085

-.085
-.083

-.168

-.168
-.031

-.199

-.199
-.012

-.211

-211
-.004

-.215

-.215
-.002

-.217

-.217
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Mbc/Pl
.000

-.103

-.103

-.101

-.204

-.204
-.038

-.242

-.242
-.014

-.256

-.256
-.005

-.261

-.261
-.002

-.263

-.263
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member, Ki its stiffness, and the summation extends over all bars meeting at the joint;
and at the same time the end of the member itself is given a rotation-amplitude
—[0i—KidifZK]. This is done for each member meeting at the joint, thereby bal-
ancing that joint; then the assigned rotation-amplitudes are carried over, and the
balancing process continues.

After the rotation-amplitudes for all joints have been found with the desired ac-
curacy, the moment-amplitudes can be found from a combination of (9) and (10):

+ u{\p(Y) PM*(X)

0= m<Kx)]2-

1 ¢{le(A))2- hKA)2} 2<§(X) *

Table Il
B C
oba/PU' c/PIP ocb/PW ecd/ pip
.0000 .0625 -.0625 .0000
.0357 -.0268
-.0178
0000 0447 -.0268 - .0268
.0192 -.0225
.0128
.0192 .0192 -.0140 -.0268
-.0073 .0055
.0036
.0192 .0228 -.0213 -.0213
.0016 -.0020
.0010
.0208 .0208 -.0203 -.0213
-.0006 .0004
.0003
.0208 0211 - .0209 -.0209
.0001 -.0002
.0001
.0209 .0209 -.0208 - .0209
-.0001
.0209 .0209 -.0209 - .0209
Mad= -0418 PI Mba= .0836 PI Mcb= .0832 P/

Mdc=—.0419 PI Mbc~ —0832 PI M od——0836 PI
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It is interesting to observe that when A= 0 equations (15) and (16) reduce to the
slope-deflection equations for a centrally loaded beam.7

Example 3. As an illustration let us solve Example 1 by the method of balancing
angle changes. For this method, the stiffness of the horizontal bar will be the moment
required to produce unit rotation of one end while the other end is simply-supported;
while the stiffness of a vertical bar requires the other end to be built-in. Hence the
ratio of the stiffness of the horizontal bar to the stiffness of a vertical bar is 3/4. If
all joints are assumed to be pin-connected, we have angle changes dBc=-0625PU"
and dCB——.0625P1V due to the load P. For simplicity, u{ is replaced by O-.

In Table Il we find the computation used in solving this example. Joint C is
balanced first by rotating the member CB through the angle —(1—M(—.0625)PII’
= .0357PII' and the other members of the joint (that is, CD) through the angle
f(—,0625)PIlI' = —0268P/F. Continuity at that joint is then established, but the
rotation of CD induces a rotation at the other end of the beam, ebhc——A78PU".
This leaves a total unbalance of .0447PI11' at joint B, which is balanced next. These
balancings continue until the angle changes to be carried over are negligible. The
resulting moments, computed from (15) and (16) are also listed, and compare favor-
ably with the results obtained for Example 1 by moment balancing.

Example 4. If, now, w has a value such that \ =3.00, we find angle changes
ebc=.381PU'= —dCB due to the load P coscot. Furthermore the angle carry-over
factor for the horizontal bar is —872, and as to stiffnesses, ifEnc = .549 I', K Ab= Kcd
= 3.102 I'. Table IV gives the computation involved in 12 balancings of angle changes
in this case. The values of the moment-amplitudes obtained are compared with those
obtained by moment balancing.

5. Convergence of the moment balancing process. Convergence of the process of
moment balancing can be assured if the frequency of the forced vibration is smaller
than the first natural frequency of the structure. The first step of the method of mo-
ment balancing leads to the determination of the amplitudes of the unbalanced
moments. For the following steps these unbalanced moments are considered as ex-
terior couples acting on the joints of the structure. In the type of structure considered
here (joints fixed against translation) the amplitudes of displacement and bending
moment of any member are completely determined by the frequency w and the
rotation-amplitudes at the two ends of the member. If a set of values of the rotation-
amplitudes at the n joints of the structure is assumed, it is therefore possible to com-
pute the amplitudes of the periodic couples which must be applied to the joints in
order to produce the assumed rotation-amplitudes. Let O;=u[, (7=1, 2, **+, n),
be the rotation-amplitudes and A { the corresponding amplitudes of the couples.
Furthermore, let B{ be the amplitudes of the exterior couples obtained by the first
step of the method of moment balancing. Then, if the assumed 0- represent the actual
configuration enforced by the loads Bi, Ai —21,= o ;but in general

Ai - Bi = Cn, (7
where Ci is the residual moment-amplitude.

Amongst all possible systems Q- the actual one minimizes the energy function

7See, for example, J. 1. Parcel and G. A. Maney, Statically indeterminate stresses, John Wiley and
Sons, 1936, p. 149.
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Table 1V, .
GalPW Osc/PW 8cb/PW 6cd/PH’
000 381 381 000
307 -.074
-.268
000 113 074 - OT
022 -.091
079
022 022 005 -.074
064 015
055
022 077 059 -.059
011 -.044
038
033 033 021 -.059
030 .008
027
033 060 051 -.051
005 -.022
019
038 038 032 -.051
015 004
013
038 051 047 -.047
003 -.010
008
041 041 039 -.047
006 002
006
041 047 045 -1.045
001 -.005
005
042 042 040 -.045
004 001
003
042 045 044 -~ 044
001 -.002
043 043 044 -.044
Bab = Odc
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Balancing angle changes Balancing moments
Mab/P1 116 118
Mba/P | 134 135
Mbc/P1 -.138 -.135
Men/PI 132 135
Mcd/P1 -.136 -.135
MDc/PI -.119 -.118
n = i E ctitisfik - E B kek. (18)
t,fc-l -1

The first term on the right side represents the internal energy,

\E «W*=Ei-E/ f IWdx - A2 f luHx} , (19)

iJt—1 1

where the right hand sum is to be taken over all members of the structure. The rela-
tion (19) arises from the fact that, for any member, u" and u can be expressed linearly
in terms of the rotation-amplitudes at the ends of this member. Note that a-*=«*m
and N j=E *-ia*®i-

Let us denote the first natural frequency of the structure by wi. The values
au, «22, » » », (Xn then can be shown to be positive as long as w<o>i. Indeed, by Ray-
leigh’s principle

@i Y.EIf I(f)*dx / Emf o u*dx (20)

where the sums are to be extended over all members of the structure. As the function
u in (20) let us take the displacements corresponding to oi= 1, 62=63— mme —sn=0.
From (19) and (20) together with the condition co<coi it is then clear that an>0.
Similarly a22>0,033>0, ¢+ a,,,>0.

Let a first set of values si=d[]) be given and compute the corresponding residual
moment-amplitudes C(1). Suppose the subscripts 1, 2, ¢ ¢ ¢, n to be arranged in such
a manner that |Cjl,| & |C["\, (i=2, 3, «*+,n). We now define a second set of values

which differs from the first one only in so far as the value of oi is concerned:

i+ ™ 91 (i=223-+°,n).
We propose to determine 0 in such a manner that the value of H is decreased:s We
have

H{dm) - H(ea)) = r E «uri" - 5x1 #+ — =cilv+ 2 21
{dm) (ea)) . ; ; (21)
Taking

8See G. Temple, The General theory of relaxation methods applied to linear systems, Proc. R. Soc. of
London, Ser. A, 169, 476, (1938-1939).
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C -
4= (22)
au

we obtain
I(Om) - H(W) = - -Hci’Y An (23)

which is certainly negative as long as w<coi. The residual moment-amplitude C® cor-
responding to the new values ¢{) equals

d 2>= -B l=cll'+ all4 = 0.

k-1
This shows that the choice of 0 according to (22) corresponds precisely to the process
of moment balancing where in each step the greatest absolute residual moment is
“liguidated.” For the next step the subscripts i have to be rearranged, so that C}2
is the greatest absolute residual moment. Continuing in this way we obtain a decreas-
ing sequence of values of Il. If we simplify our notation by writing 111lp) instead of
11{Q('p))} this sequence becomes

/lo> > 7/(2) > > //G» > > Hmin,

with
= _ 1[c”~Y/air’ < 0.

Here a1 has been written instead of the «u of (23), since as a consequence of the re-
arrangement of the subscripts the value of this quantity changes from step to step.
Now af is positive and can assume only a finite number of different values (n at
the most). Furthermore, the sequence JI({> is decreasing monotonically and is
bounded from below by IImj,,.. Therefore

F!i_mm[ciP)] = .

Since Ci»1is the greatest absolute residual moment in the £th step, this means that
ultimately all residual moments will disappear. The structure is then completely bal-
anced.

This convergence may be rather slow, especially if o is near coi. For example, com-
pare the 12 balancings used in Example 2, when A= 3.30, to the 5 needed in Example
1, for the same structure when A= 0. For this structure Ai = 3.55.

The method of balancing angle changes may not always converge when wCcoj,
as will be seen if Example 4 is attempted when A= 3.30. Usually the method of bal-
ancing moments converges more rapidly than the method of balancing angle changes.
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AN APPLICATION OF THE METHOD OF THE
ACCELERATION POTENTIAL*

BY

J. LEHNER (Cornell University) and C. MARK (University of Manitoba)**

In this paper Prandtl’s theory of the acceleration potential is used, in conjunction
with conformal mapping, in order to determine the pressure distribution on a sym-
metrical control surface consisting of a fin and flap separated by a gap of finite width,
under the assumption of a steady irrotational flow of an incompressible perfect fluid.
The method used is essentially that by which M. A. Biot: recently derived the well-
known formulae for lift and moment of a symmetrical airfoil with flap in a remarkably
simple manner. The present problem is considerably more complicated than that of a
single airfoil; but it is still possible to obtain formulae in closed form. In the case where
the gap between fin and flap is large in proportion to the chord of either, the formulae
obtained here for the pressure distribution on the fin, or on the flap, do not differ
materially from thosfe used for a single symmetrical airfoil.

For treatments of this or related problems by the classical velocity-potential
method, see I. Fliigge-Lotz and |. Ginzel, Die ebene Stromung um ein geknicktes Profit
mit Spalt, Ingenieur-Archiv 11, 268-292 (1940), which also contains references to
earlier studies. Fliigge-Lotz and Ginzel do not restrict themselves to the symmetrical
case (fin and flap of equal length) as is done in this paper. The method by which they
obtain the complex velocity potential is essentially the same as the one we use to
derive the acceleration potential. They compute the pressure distribution for an un-
symmetrical split wing rather than the total lift and moment, so that a comparison of
their numerical results with ours is not practicable.

A paper by Kutta in the Sitzber. Bayerische Akad. of 1911 considers the special
case in which the two airfoils have the same angle of attack. Our results agree with
his if we make the identification sin 2a = 2a, where a is the angle of attack.

The first part of the paper gives a description of the methods and results; while
some details of the mathematical methods used are given in the second part.

i. General Description of Methods and Results

1 The acceleration potential. The equation of motion of an incompressible per-
fect fluid of density p is
pd = - grad p, (1.1)

where d denotes the acceleration vector, and p the pressure. According to Prandtl,2

* Received Jan. 18, 1943.

** This paper was prepared at the suggestion of Professor W. Prager while the authors were partici-
pants in the Program of Advanced Instruction and Research in Mechanics at Brown University, Summer
1942. The authors are greatly indebted to Dr. L. Bers for valuable suggestions.

1M. A. Biot, Some Simplified Methods in Airfoil Theory, Journal of the Aeronautical Sciences, 9,
185-190 (1942).

1L. Prandtl, Beitrag zur Theorie der tragenden Flache, Zeitschrift f. angew. Math. u. Mech., 16, 360-
361 (1936).
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the function
- P
P

may be called the acceleration potential, since a=grad s

We shall consider the steady irrotational plane flow around a symmetrical control
surface consisting of a fin and flap separated by a finite gap.Takingtheaxis of *
parallel to the velocity U which prevails at aninfinite distance from the control
surface, we write the components of the velocityvector g as

(1.2)

gz = U+ u, qy= . (1.3)

In the case of a thin profile with a small angle of attack, the terms u and v can be as-
sumed to be small compared with the velocity U of the undisturbed stream.
For a steady flow, the components of the acceleration vector are

dgx dgx dav dqu
x X I Q/d } & — X i Q
y dx dy

dx
Introducing the acceleration potential pon the left sides and the expressions (1.3) on
the right sides of these relations, and neglecting terms of the second order in u and v,
we obtain

dip dil dp  dv

—=U -, —=u— =

dx dx dy dx
According to the condition of incompressibility, du/dx+dv/dy =0, we have du/dx =
—dv/dy. Substituting this in the first of our equations gives

di dv dv
_p = - U -, d:p = U— o (14)
dx dy dy dx
Elimination of v between these two equations leads to
dMp d*ip
dx2 dy2

The acceleration potential tp is thus seen to satisfy the Laplace equation and, conse-
qguently, can be taken as the real part of an analytic function, f(x+iy) =ip(x, y)
+i\p(x, y), of the complex variable x+iy. M. A. Biot has shown that the conjugate
function of the acceleration potential, \f/{x, y), also has an immediate physical
significance. Indeed, from (1.4) and the well-known Cauchy-Riemann relations,
dip/dx =dip/dy, dip/dy = —d\J//dx, it follows that the function may be defined so
as to equal —Uv.

In the rest of this section we shall speak of only one airfoil on the understanding
that what is said applies equally to the fin and the flap.

The undisturbed flow U along the ar-axis involves a normal velocity + Ua at the
surface of a thin straight airfoil having the small angle of attack a. The boundary con-
dition of tangential flow on the surface will be satisfied by a function giving the veloc-
ity —Ua normal to the surface. As is usual in the linear approximation, this boundary
condition is applied at the a>axis instead of at the surface; so that we now take a part
of the ar-axis to represent the airfoil (see Fig. 1). We have, then, v= —Ua; and hence,

t = - Uv = Uaa; (1.6)
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that is, \p is constant on the surface of the airfoil.

The problem of finding the pressures, and hence the lift on the airfoil, may now
be restated. One seeks an analytic function of the.complex variable x-\-iy the imagi-
nary part of which satisfies the condition (1.6) and, since \j/——Uv, vanishes at in-
finity. The real part of this analytic function may then be used as the acceleration
potential from which the pressures may be obtained by (1.2). Taking into account the
properties of harmonic functions, the fact that \p must vanish at infinity in the z-plane
(z=x+1iy) makes it necessary that p have at least one singularity. Aerodynamical
considerations indicate the leading edge of the airfoil as the obvious location of this
singularity, partly by the analogy with the classical thin-wing theory in which the
velocity turned out to be infinite at the leading edge. As in the case studied by Biot,

we assume this singularity to be a source-sink
doublet with axis parallel to the y-axis.

To simplify further the determination of
i, the segment of the x-axis now used to rep-
resent the airfoil is mapped conformally into
a circle in the w-plane.

2. The mapping. We treat only the sym-

1 ) ; X metrical case in which the fin and flap are

A(-1/kO B(-I) C(+D DCI/K]) of equal length.* Let these be represented by
(b): Z-PLANE slits along the real axis: the fin from —\/k’
to —1, the flap from 1 to \/k', (0 <& '<1).
The z-plane exterior to the two slits can be
mapped into the interior of a circular ring in
the w-plane, as indicated in Fig. 1. The radius
of the outer circle may be taken as unity, the
other radius, R, being then fixed. The slits
transform into the boundary circles of the
ring. The function giving the required map-
ping can be written in closed form using ellip-
tic functions (see 8s).
In the mapping, the upper edge of the slit
AB (Fig. 1) goes into the upper semicircle
A 'B"', the lower edge of the slit into the lower

Fig. 1. The actual fin and flap are indi- semicircle. Moreover, points such as G and H
cated in (a); the slits used to represent them on AB, G being on the Upper edge of the slit
in (b): it is on these slits that the condition and H on the lower edge immediately be-

(1.6) isactually met. (c) shows the circles into low G, map into points such as G'(R, s) and
which (b)lis mapped. It is convenient to use H /™R _ g) fof which the values of Q" j
temporarily several sets of polar coordinates . . . . r _

in the ui-plane: (r, ), with origin at center of but opposite in Sign. Similarly for CD. For
circles; (n, 00. with origin at C* (r2 03, with uniqueness, we define the coordinate d in the
originat A w-plane so that |0]i=T. The point z= %

maps into g'{y/R, ir).

*The unsymmetrical case could be handled just as easily at this stage. Any fin-fiap arrangement
could be mapped into the symmetrical case by a preliminary linear transformation of the type
z' = (az+b)/(cz-\-d)\ subsequent steps being the same as here. It is in meeting the condition ”(«)=0
that the symmetrical case is notably easier to treat; unsymmetrical cases might require numerical han-
dling from that point on.
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The radius of the inner circle (transform of the fin) is given by
j? = e2wk'/k (2.1)

where K and K" are the complete elliptic integrals of the first kind (modulus k), k be-
ing the complementary modulus to k' (&-f-£2=1). The relation between the coordi-
nate zof a point on one of the slits in Fig. 1(b) and the coordinate ¢ of the corresponding
point in Fig. 1(c) is

[ i  Mho, VR)
+ = 7= ;

—= ; (2.2)
dn(KO/ir, k) VV 9i(i9 VR)

in which the plus sign holds for z on the flap. The notation of the elliptic and $-func-
tions is that used in Whittaker and Watson, Modern Analysis (Cambridge Univ.
Press, 4th Ed., 1927; Chap. XXI and XX11).

3. The potential. The problem now is to find a potential which will vanish at in-
finity and have a singularity of the doublet type at the leading edges of fin and flap
(the points A* and C' in the w-plane), and of which the imaginary part \p will satisfy
condition (1.6) separately for each airfoil; namely,

p=Uaonr=R, and onr= 1% (3.1)

In addition, corresponding to the Kutta-Joukowski condition in the classical theory,
the acceleration potential must be continuous at the trailing edges of fin and flap.

We place a plane doublet of strength a\ at C' and one of strength a2 at A', the axis
of each doublet being perpendicular to the real axis. The values of as and a2 will be
determined later by (3.1). The complex potential at the point £, in the plane of a com-
plex variable u, due to a doublet of strength m at the point u =0 whose axis makes
an angle ?with the real axis is

Thus the potential due to the doublet at A*, for example, is given by (see Fig. 1(c))
<Irrki(rl2e> = apT1lsin 02+ ia”~rflcos 02

The imaginary part of this potential, opricos 02 has the constant value as/2R on the
circle r=R, but is not constant on r = 1. Similarly, mutatis mutandis, for apT1 cos s\
The function airfi cos fli+a2?T1 cos 02 will not, then, serve as the p function, but it
may be modified as follows.

We obtain the harmonic function F{r, d) which, to within an additive constant,
takes the values —apTicos 9ion r=R, and —a3V cos 020on r = 1. Then the function

\p = airficos 0i + apTicos 02+ F(r, s) + ¢, (3.2)
where a3 a2 and the available constant c are chosen so that (3.1) and
*(«>") = =0 (3.3)

are satisfied, will be the imaginary part of the potential required.
Equations (3.1) and (3.3) are satisfied (see §7) when

*When (r, 9) is the map of s we shall use <(s) and ~(r, 9) indiscriminately where no misunderstanding
can arise. The variable indicates the plane (and the point in the plane) at which the ~ function is to be
considered. Similarly for other functions with a physical significance.
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[k 3\ a2iK

— «| (e Eeeen ) ) | — =m

\ 2t 4/ R \2ir

2K a - sy - + je)
ai = Zn» , (3.4)
\Y/ Kl + V) 1
02 M N 2k'K(a —R) + T{a + 0)\
R ~ Vv K@ + k") /"

(The apparent difference between the ways in which a\ and a2 appear in (3.4) is due
to the fact that a2 is on a circle of radius R.)
The function F(r, s) in (3.2) was obtained in the form of a Fourier series:
®
F(r, 6) = X (yl»m + Bnr~n) cos nd.
1

The conjugate harmonic function may then be written immediately as:

0]
— X (Anrn — Bnr~n) sin ne.
1
The conjugate function to
Oirficosoi + opTicoso2 is —optisindx+ azr2lsino2

(the minus sign being due to the fact that di, as defined in Fig. 1(c), is measured in the
negative sense). In this way the acceleration potential is obtained to within an addi-
tive constant b (which disappears in evaluating the lift). Dropping the auxiliary co-
ordinates, we have finally (see §7)

he f o —R2 s2 fli 7/
on the fin:  >p(Ri 0) = ---------m-m--- RR ) - R R) + b,
PRI O) 2R bz( ) 2 di ( )
(3.5)
a1 di a 203
on the flap: p(l,0 = - — — (0, R) - — m— (0, R) + b\
2 Vi 2 Rds
in which di /t?,(R R) is written for
1 d
OMR R)).
t»-(Rr) dm
4. The lift and moment. From (1.2) we have p = —p<p. The lift on the air-foil at

such a point as G is given by
I(z) = p(H) - p(G) = p(H') - p(G') = P[*(0) - * (- 0)] = 2p(<p(d) -b )= 1(8).
Thus, on the fin,
| 10 di _diR*\ )
(R, 0) =P e T4 (lo,R) - alra( ))J> (4-1)

on the flap,

/ Jd{ azd{ \
7,0 = p - ai— (R R)y- —— (|o, R)); (4.2)
\ dx Rd )

3
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in which ai and a2 are given by (3.4).
The total lift (on the flap, say) would then be given by

ik’ ¢z
I(z)dz — 1(6)— ds. (4.3)
1 Jo dd

The moment of the flap about the point s=0 is

1ik'
/ 1(z)zdz; (4.4)

I/k
/ I(z)(z —z{)dz = 4l 2(0) — ZyLi. (4.5)

and about any point zlt it is

The functions involved in these integrals are found in (4.2) and (2.2). It will be ob-
served that the ~-functions appearing have different parameters.

5. Results. The above integrations can be carried out exactly. The method is de-
scribed in 88, and the results are:

@ 8
P-HT-Z2= - [t —k) + 2KK'= B (1K) (wor 4K2K),

2ir

P~1 = - x - ix - k‘
0) (1 ) [2€ (1 )& )
Trk'™> 8
lir—wW {KE'+E-£ tt « - k') }+ (Kk'- E)2], (5.1)
p~lU~Li— [2(E—K&?2 —(1—")2KA —T71)]
+ e [tt(ZE — K (l+ A2} —"¢0 — ¢ )(2Kjr—Tr)(2K+7r)],
2irk’

where Z2, 4/ 2(0) have the meanings given in 84, L\ is the total lift on the fin, E is the
complete elliptic integral of the second kind modulus k, and 5=/3 —a.

As a limiting case we consider the situation where the gap between fin and flap
is so large in proportion to the chord of the fin (or flap) that they may be expected to
act as independent airfoils. In this case & =1, ; = 0. Reference to tables of elliptic
integrals (e.g., Jahnke, Emde, Tables of Functions, Teubner, 2nd Ed., 1938) or direct
integration gives K = £ = 7t/2 ;so that, from (2.1) we haveR = 0. As an approximation,
we neglect powers of R, and our formulae become (Whittaker, Watson, p. 489)

a1 = —23U2 az/R = 2aU2

1(1, o) = 2/SpZr2cot \e. (5.2)

The expression in (5.2) is the usual one for the lift on a single straight wing with
angle of attack /3. For example: when the gap between fin and flap equals 8 times the
chord of either, i?=0.0008; and evaluating (4.2) we get, in this case,
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1(1, 0) = pU2(2A B- 0.1 < cot 10, (5.3) ,

which differs only slightly from (5.2) unless |[3—a| is large; while for /3=a, (5.3) re-
duces to (5.2):

Some numerical examples are given in the table which follows. CL, Ch, Cp are the
usual lift and moment coefficients: lift coefficient,
Cl=L/p(U-/2)c, c being the total chord from
leading edge of fin to trailing edge of flap; mo-
ment coefficient of the flap about its leading edge,
Ch= M«i(l)/p(U'1/2)c-', moment coefficient of flap
about P, Cp= Ch—CI1JIP/c where HP is the dis-
tance from the leading edge of the flap to P (see
Fig. 2). The subscripts 1 and 2 indicate fin and
flap, respectively, while L indicates lift on either.
In the table HP is expressed as a fraction of c', the chord of the flap; and 5= /3—a
and a are expressed in radians.

Fig. 2.

Table
(a and 5in radians)

s/c' 0.1 0.2 0.3 0.4 0.5

Lift Coefficients

Fin: Ci, 457« +2.50* 4.19« +2.055 3.88« +1.6/5 3.63« +1.426 341« +1.235

Flap: CI, 141« +2.055 151« +2.185 1.58« +2.226 1.61« +2.216 .1.62« +2.186
HP Moment Coefficients

0; Ch 0.21« +0.286 0.20« +0.266 0.19« +0.256 0.18« +0.245 0.17« +0.226

0.1c"; C, 0.15« +0.185 0.13« +0.166 0.12« +0.155 0.12« +0.145 0.11« +0.145

0.2¢"; Cs 0.080«+0.0S05 0.065«+0.0645 0,056«+0.0586 0.053a+0.0525 0.044a+0.0495

0.25¢"; C« 0.046«+0.0326 0.031«+0.0155 0.022«+0.00945 0.017a+0.00605 0.012«+0.00485

Finally, it might be of interest to note that one can locate a point about which the
moment on the flap would be proportional to 5. Although, if hinged at this point, the
flap would not remain in the position s = 0 without some restraint, still, when in this
position, the moment on it would be zero. Thus if:

= 0.5, HP
0.1, HP

0.270c', C.2r0o = - 0.0145;
0.313c¢c", C313 - 0.0365.

s/c

s/o

1. MATHEMATICAL APPENDIX

The following references will be used:
W = Whittaker and Watson, Modern Analysis, Cambridge, University Press, 4 ed.,
1927.
J=Jahnke and Ernde, Tables of Functions, Leipzig, Teubner, 3 ed., 1938.
6. The mapping. (See §82.) The mapping is accomplished in two steps. First, we
map the slit s-plane into the interior of a rectangle in the ("'-plane by the function
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f=f [(1- »nya - A2¥J]-12/* (6.1)

jo
This rectangle has vertices at +K'(A) £fK(A), the elliptic integrals being expressed as
functions of the modulus Acomplementary to A". The correspondence is: z=1— =K/,

z=k'~1— =K'tiK, (plus, for the upper boundary of the cut), etc. The integral be-
ing multiply valued, the mapping is repeated infinitely often in the f-plane, covering
the plane without gaps by a net of congruent rectangles.

The second stepof the mapping is

w = exp [*(f - KOIK], (6.2)

This is periodic withperiod 2iK, hencew takes both horizontal sides of the rectangle
into the part of the real «/-axis between —1 and —7?, (7?=exp (—27TKVK)), i-e-. into
the segment D'A" (Fig. 1(c)). The vertical sides are mapped into the circles |w\ =R,
\w\ =1. Because of the periodicity of the exponential function, the full network of
rectangles in the f-plane is mapped into the ring 7?”~|w| gl, congruent points of
different rectangles going into the same point of the ring. Thus the mapping between
the z- and w-planes is one-to-one.
The inverse mapping is, with w =reie, (W, p. 492),

z =sn (f, k") = sn*—logw+ K', A = sn {id+ logr) + K', A",

For the two important cases, r = 1, r=R, the last formula reduces to (2.2) if we trans-
form the elliptic function to one having a real argument (W, pp. 500-506). Note that
when the elliptic function is expressed in terms of ~-functions, the parameter, g, of
the ~-functions is exp (—tK'/K) = 7212 (W, p. 479, ex. 3).

7. The potential. (See 83.) The function F(r, s), assumed as a Fourier series

co

F{r, 0) = 2 (A,,rn+ Bnr~n) cos nd, (7.1)
1

must, to within an additive constant, satisfy the boundary conditions
«i(l —R cos d)
1+ 72— 2R cosd
—a{R + cos d)

1 +.T22+ 2R cosd

F{R, d) — — airficos di
(7.2)

F(l, d = —a2r21 cos d2

the expressions on the right being obtained from Fig. 1(c). But

1—7cosd 1 "
= 97— = 2 /77" cos nd,
1+ 72—27?cosd 1 —Rew -
7+ cosd e~ie “
9? = (— 1)nr?* cos (« + 1)o,
1+ 72+ 27?cosd 1+ Re-*

where 9i denotes the real part; and hence, substituting the last two expressions in
(7.2) and comparing with (7.1), we get

A,Rn+ BmMR~n- ~ 0i7?n, An+ Bn= - a2(- I)"-~*-1, {n & 1), (7.3)
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with solutions

aiRin + ad - I)Mmn-1 axR2n+ a2(- I)MmR3n~-1

= > : : .
An 1 _ R2n Br= i - i?72n (74)

On substituting these values for A,,, Bn, or, more conveniently Eqgs. (7.3), in the
definition (7.1) of F{r, 9), we find

F(R, 6) — — flirficos 0i + ah F{1, 9 = —azr2' cos 02; (7.5)

so that F{r, 9) satisfies the required conditions. The constant cin (3.2) must be chosen
so that vanishes at the infinite point of the z-plane; i.e., (see (3.3)),

<A(i?1/2, ) = [—airficos dy+ azr2l cos th]-«»™ «»-
®
+ El (~ Dn('Ini?,/2n + BnR-W") +C = o.

The value of the bracket is obtained from Fig. 1(c);and using (7.4) we find

aj az ” i?73"2(1 - RN
c = + AN e + oxZ (- 1)-
1+ R12 i? I - 221/2 i 1- 72
v ) (7.6)
a2 i?73n/2(1 - 770
2 i 1- i?7n

For the evaluation of the infinite sums in (7.6) we need certain formulae from the
theory of elliptic functions. These are

gn K 1

E — P4 — 7 W, p. 511, ex. 1),
il+ gn 2r 4 W. p )

» (_Dhn.n KA1

E = (ibid., ex. 2).
, 1+ 22" 2t 4
Using R=gq2 (cf. end of 8 ), and making some obvious algebraic reductions, we find
for ¢ the value given in (3.4).
The values of ai and a2 are found from (3.1) which with (3.2) and (7.5) give the
equations
\a2R - -Fc = Uz, 2aiT ¢ ~ U2}

The solutions of these are contained in (3.4); and thus is completely determined.
The acceleration potential g is now obtained as the harmonic conjugate to the
function ip. We have, (see 8§3)

[00]
<= —airfisin 0i + azr2lsinm2 —E (4 /n— B,,r~n sin nd + b,
1

where b is an arbitrary constant; or, in termsof r and 9,

—air sind axsin d
<(r, d)
1+ r2—2r cos d R2+ r2+ 2rR cosd
(7.7)

00

—E — Bnr~n) sin nd + b.
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For the purpose of evaluating the lift we need only 0(7?, ) and <p(l, ). These are given
in (3.5); we establish the expression for <p{l, ¢), that for <p(R, s) being obtained in a
similar way.

If, in (7.7), we set r=1, use (7.4), and collect terms we find

a ( 5 R2n ) )
P, 6) = —-- <cotwo + 4E ---mmm- sin nd >

2 1 71 *“ R2 )

az | —R sin 0 ?
< E (~ D"7?nsin nd

R Il + 72+ 2R cos0 I

(- D)non
+ 2 B - sinnd>+ h. (7.8)
i 1- 772 ]
But
— 7?sin ( Re-io

\
14 7224 272 cos 0 “3 (1T N~ )= Ti-D-Ji-si” «»,

where 3 denotes the imaginary part. Using this in (7.8) we obtain

cii ( D 7n )
1,0) = - <cot |0 + 4E -------meeea- sin nd >
2 1 i o1- 772" )
(7.9)
az (7 (=T
N sin nd> + b.
2?7 1 T 1- 7 J

Finally, the terms in the brackets in (7.9) may be expressed by means of 72-functions.
Making use of the results of W, p. 489, ex. 12, we get

Ui t?/ a2 i?3
A(l,O) = - —2 I—/I- (|O, 7’)) - —ZVE (lO, 77)+ 6, (710)

as stated in (3.5). It is worth pointing out that the parameter of the ~-functions met
here is 7?2, whereas in equation (2.2) the parameter is 7?1/2.

8. Some definite integrals. (See 8§4.) The integrals in 84 aie combinations of the
following eight integrals:
Td’m{& R) dzd (8.11)
— ,R) — de, :
/ dd
0
dz
— (10, 7z — dd, (m=1,2,3, 4), (s.12)
0o dm dd

where z and ¢ are connected by (2.2). For their evaluation we can make use of the
following formulae:

d d 10 A2
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¢ d 0, R A B 8.23
- —_ *0, = — 4+ , )
dd $3 ( ) 14 kz ( )
d $1 Az
- = , R) = — + B, (8.24)
dd $4 zT 1
where
1
(8.25)
dn(Ko/x, k)
A = - KeAIx2 5 = K(K- E)/x2 (8.26)

We shall prove only (s.21), the others being established in exactly the same way.

From the quasi-periodic properties of the ~-functions (W, p. 465, ex. 4) we see
that the left member of (s.21) is a doubly periodic function with periods 2x, 27rr,
where « = 2fK'/K. We may restrict ourselves to a single period rectangle, say the one
having the origin as the southwest vertex. Here the left member of (s.21) is regular
except for a pole with principal part —2/02 (W, p. 466, p. 489, ex. 12, and the Laurent
series for the cotangent). But, using (8.25) and W, p. 504.

/ k- K22 V1 A
1H K202+ oo,
2X2
(8.3)
Az 2A X2 2
= (t + 0O(02) = b const. + o me.
2- 1 ( KD2 02

Furthermore, Az/(z—1) is regular at points in the period rectangle other than 0=0,
for z is an elliptic function of order 2 and (8.3) shows that it takes the value 1 twice
ato=o.

We see, therefore, that the difference

d of Az
W o ),

is a doubly periodic function without singularities; thus it is a constant, B, which we
evaluate at 0=x. Using W, p. 489, ex. 12, we have

d d{ “ jiR2n cos nO
and at o = X,
A iL (m,,,), _ i+ 4f 1 - »m*«"
do r 1- Rin
It 1-s- A T

The sums are evaluated by reference to W, p. 535, ex. 57, and p. 512, second formula
differentiated. We obtain
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Also, by (8.25), z=k'~1when 9=ir. Hence,

Kr , K
B=—1[- Kk'- E+ Ktfk'-Kk-1- D"l = —(K - E), K-+ k2=1)

as in (8.26).
As before, we shall evaluate only one of the integrals, say I\ in (8.11). This is ac-
complished by an integration by parts.

(8.5)

In the extreme right member of (8.5) both the integrated part and the integral are
infinite, but their difference, considered as the limit

lim
«>0
is finite.

The integration can now be carried out without difficulty. In the integral in the
right member of (8.5) use is made of (8.21), while dd/dz is obtained from (8.25), the
result being then expressed as a function of z. It is necessary to show that the singular
contributions from the two terms of the right member of (8.5) cancel. This is done
conveniently by employing their Laurent expansions. The integrals which present
themselves are at worst elliptic integrals of the first two kinds, and can be found in J,
pp. 52-56. In this way we obtain the results of 85.
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PERIODIC PROPERTIES OF THE SEMI-PERMANENT
ATMOSPHERIC PRESSURE SYSTEMS*

H. J. STEWART
California Institute of Technology

The outstanding features of the general circulation of the atmosphere are the
belts of westerly winds and, on the equatorial side of these, the system of semi-
permanent sub-tropical high pressure areas. In a previous paper: the author has dis-
cussed the problem of the formation of such high pressure systems. In particular, it
was shown that these systems probably represent dynamically stable concentrations
of vorticity similar to the Karman “vortex street” which is formed behind any two-
dimensional bluff body over a wide range of values of the Reynolds number. It now
appears that a further examination of the periods of the characteristic oscillations of
such systems is of considerable interest. It is seen that the period of these oscillations
is of the order of magnitude of years. This indicates that oscillations of this type may
be of importance in the calculation of the long period displacements of the Pacific or
Azores high pressure systems.

It is believed that this is the first time that atmospheric motions have been dis-
cussed which have a period of the order of magnitude of, but different from, a year.
Since the weather shows large variations from one year to another, it is apparent that
such motions must exist; and, since the non-seasonal variation of the only external
parameter, the solar energy input, is very small, these long period motions must be
explainable in terms of the free oscillations of the earth’s atmosphere.

It seems that the horizontal field of motion is of primary importance in determin-
ing the motion of these large scale systems; so it is assumed that the atmosphere can
be treated as a single layer of fluid of constant density with the vertical velocities
being of small importance so that the pressure can be determined from the hydro-
static equation. It is also assumed that the apparent acceleration is negligible when
compared to the Coriolis acceleration. In addition the effects of friction and of the
variation of the Coriolis parameter with latitude are neglected. This latter factor
means that the fluid motions considered are those taking placeon a rotating disc
rather than on a rotating sphere.

The notation used in the discussion is as follows:

x, y = Cartesian coordinates on a rotating disc, u = velocity in x direction, v—veloc-
ity iny direction, to= angular velocity of the disc, h = depth of the fluid, g==accelera-
tion due to gravity.

If the motion could have been started from rest with a uniform depth ho, the
principle of conservation of the absolute vorticity states that

dv dil 2w

e a-}-/: - (h — ho). (1)

* Received August 4, 1943.
1Stewart, H. J., Proc, Nat. Acad, of Sci., 26, 604 (1940).
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If the velocity components are eliminated from this equation by means of the geo-
strophic wind equations,
dh dh
—2m = —g— j 2c0u = — g— , (2)
dx dy
an expression determining the depth of the atmosphere (i.e. the sea-level pressure)
is obtained. This is
d-h d2h  4w2
I (//' —ho) = 0. 3)
dx2 dy2 gho
This equation can be further simplified by the introduction of dimensionless variables,
X = 2wx/\Zgho, Y =2uy/y/gho and ij= (h—ho)/ho. With these new variables, Eq. (3)
becomes
daj o]
+ —

— - V=0 4
dXx2 dy2 @)

In terms of the dimensionless depth and dimensionlessvelocities defined by
U=u/\/ghoandV=v/y/ghO the geostrophic wind equation can berewritten as
dt] dt]

—= —_— = — (5)

dx ' dy
The only solution of Eq. (4) which vanishes at infinity and which represents flow
in circles about the origin and thus corresponds to a simple vortex is

V= «ffo(r) (6)

where a is an arbitrary constant, r —\/X 2+ Y2 and K o(r) is a modified Bessel function2
of the second kind. If a is positive the motion is anticyclonic; if a is negative the
motion is cyclonic. All of the motions considered in the present investigation are built
up through superposition of vortices of this type. From Eq. (5), this vortex has a di-
mensionless tangential velocity, ue, given by

ue= - akK,{r) = — = @)
dr
The geostrophic wind equations used in the above development can be shown to be
valid unless r«l.

Based on a homogeneous atmosphere having a mean sea-level pressure and density
of 1.013 X10s dynes/cmz2and 1.22 X10~3gm/cm’ respectively, the same as the stand-
ard atmosphere, the characteristic velocities and distances used above to produce di-
mensionless variables are y/gho=2.87 X IO4cm/sec and V ghj2<x= 1.97 X10scm. At a
distance of 2000 km. from the center of the Pacific or Azores high pressure systems,
the characteristic velocity is of the order of 10 meters/second. Since Afi(l) =0.602,
this indicates that these anticyclones have a strength such that a is approximately
0.06.

If the interaction between the northern and southern hemispheres is neglected,
the ring of subtropical anticyclones can be roughly represented by N equal anti-
cyclones of the type given by Eq. (5) which are placed on a ring of radius a and spaced

1Grey, Mathews and MacRobert, Bessel Functions, Macmillan and Co., London, 1931.
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at equal anglest = 2tt/n as shown in Fig. 1. In the northern hemisphere, the Pacific
and Azores high pressure regions are well defined. They are about 120° of longitude
apart. There is some evidence of a third such system over India and equidistant from
the other two; however this evidence is far from conclusive due to the low level inter-
ference from the monsoon. In the southern hemisphere there are also three such sys-
tems. The best model is thus obtained with N =3.

The surface deflection for such a system in its equilibrium state is

7 = a”2 Ko[az+ r- —2ar cos (0 — Mn)]I/2 (8)
n-1

From Eqg. 5 the dimensionless velocities in the radial and
tangential directions, ur and m respectively, are given
by

1 dv cb,

U = Ue 9
' r do' dr ©) O

The velocity of any vortex is the velocity at that point
due to all of the remaining vortices. From the second of
the expressions of Eq. 9, the system shown in Fig. 1 is

seen to have a dimensionless angular velocity 12 given
by Fig. 1L Ring system of

anticyclones.
N -

U= — 23 Ki[z2a sin \nr\ sin \nr. (10)

ani
In Table 1are given the values of 22and of aU\Zgh0, the linear velocity of the vortices,
fora =0.06, N=3, and a=3.0 and
3.5. The values of 0=3.0 and 3.5
correspond to the ring of subtropi-

Table 1.

Angular Velocities of Vortex Systems,

=0.06, 2V= - .
a=006, 3 cal anticyclones being placed at
a 7 ailVghti Iatltude.37° and. 2.9° respectively.
From this result it is seen that such
3.0 -.000112 —9.6 cm/sec a vortex system would have a slow
3.5 -.000037 —3.7 cm/sec precession to the west. In the at-

mosphere, there is also a region of
distributed cyclonic vorticity to the north of the westerly winds. It is easily seen that
this cyclonic vorticity tends to produce an eastward displacement of the subtropical
highs. It appears that these two displacements cancel one another so that the sys-
tems are practically stationary, a condition which is undoubtedly also imposed by
the thermodynamic and topographical factors. Since the westward drift shown in
Table 1is very small, no attempt will be made to correct the vortex system shown
in Fig. 1in order to take into account the polar cyclonic vorticity.
If the wth vortex is displaced by a distance Arnin the radial direction and by an
angle Asn in the tangential direction, the surface deflection in the displaced condi-
tion is

T — <*23 Aio[(a + Ar,)2+ r2—2(a+ Arnr cos (0 —nr —AQ,,)] v2 (1D
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The velocities of the vortices may be calculated as before by Eq. (9). If the displace-
ments are small, the changes in velocity of the iVth vortex from the equilibrium value
indicated by Eqg. (10) may be written as

a A

'd
AUr = p (Arif) = — ArnK o(Rn) sin (nr)
a 2

N 'Ki
+ «2C a(AOn—Adif)(< (&) 4 K dYR4) coSZHhT)>
ni | Rn >
d at-i B m) (12)
Aiia = a — (A9f) + UArv = aAry23 i KqR,,) sinz\m — —cos (nr) >
dt mi | Rm )
If- 1 K m )
+ <07 Ar,,<|Ko(Rn) sinz\m + ; > + laA9,,Ko(Rn) sin (nr)

n-1 Rn >
where

Rn = 2asin -¢nr.

It should be noted that the tin Eq. (12) is a dimensionless time. If the actual time is

t*, then
[ = 2wt*, (13)

Expressions similar to Eq. (12) for the velocities of the other vortices could be written
from symmetry. These would form a set of simultaneous differential equations for the
displacements.

If the N equations in each of the two sets indicated in Eq. (12) are added, it is seen
that

g (14)
ot | A0,j = aj 2ZAr,|j 23 jCAToi-R,) sinz2 ¢nr 4--——--Ki(Rn) sin ¢nr | .

From this it is seen that if a mean value of a is chosen so that 23n-i*?»= 0 initially,
then from Eq. (14) both YIn~Arnand 23«-1Awill remain constant. These results
correspond to similar equations for two dimensional line vortices which state that
the impulse of a system having no external forces remains constant.s

The disturbed motion of the vortex system as described in Eq. (12) can best be
discussed by considering the normal modes of oscillation. From the symmetrycondi-
tions, the displacements in each normal mode must be of the form Arn=ArNeinfand
AO0,,=A9xeinv where <pcharacterizes the normal mode and is a member of the series
2ir/N, a7rfiV, * o« 2tt(N —1)/N, 2it. With this notation, Eq. (12) can be written as"

I d ad
— — (Arv) = d Ar/f —B aAdif, — — (Aoy) = CArv 4" d <A0e, (15)
a dt a dt

where

3Lamb, H., Hydrodynamics, 6th edition, Cambridge University Press, London, 1932, 220.
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J V-l
A —— 22 Ko(Rn)ein%sin (nr)
2 n=l
"1
B = 22 @a-~ e"|v)$q< HK o(Rn) cosz\m 3> (16)

C = %2 fKo(Rn) (1 + e'nv) sin2\m -)—-E--Ml(l —2cos (nr) + e,nr) )>.
ni ( Rn )

If the amplitudes ArN and Asn are assumed to vary like eipt and p is the dimen-
sionless normal frequency, then from Eq. (15),

p=af{-iAz VBC). 17

From Eq. (16), it can be seen that for tp=2ir, A =B =0 and there are thus two zero
normal frequencies. These two zero frequencies are those shown in Eq. (14). It can
also be seen that for the specified values of 9 A is always a purely imaginary quantity,
B is always real and not less than zero. From Eq. (17), the condition that the frequen-
cies be real is that C be real and non-negative. Complex frequencies, of course, charac-
terize systems in which the amplitudes increase with time and are thus unstable. Now
C is always real and is always positive for N < 7. If N= 7, Cis always positive ifa> 71.
For N> 7, C is negative for one or more of the given values of 9 A value of a>71
corresponds either to disturbances of such great wave lengths or to motions of such a
shallow layer of air in the earth’s atmosphere that it probably is of no significance.
The vortex system is thus stable if N is less than or equal to six.

The frequencies and modes of oscillation will be discussed in some detail for the
cases where iV=3 and a= 3.0 and 3.5. From Eq. (13) it may be seen that the period
of an oscillation is given by

T = — sidereal days. (18)
2p

The normal mode of oscillation, from Eq. (15), is given by

aAo,, aAdt,’ A —ip/a

(19)
Arn ArN B

The results for a= 3.0 and 3.5 are given in Tables 2 and 3, respectively. The two nor-
mal modes thus show a short period (2000 days to 5000 days) and a long period oscil-
lation (70,000 days to 250,000 days). The path of the vortex is in each case an ellipse.
For the short period oscillation the vortices are east of their mean position when
traveling south and west when traveling north. For the long period oscillation the
sense of the rotation is reversed.

Conclusion. The present calculations cannot be considered as a quantitative theory
of the oscillations of the semi-permanent high pressure systems; they must be con-
sidered rather as an existence proof. Since the essential features of the model, vorticity
concentrations at distances of roughly 10,000 km., are also found in the atmosphere,
motions of this type must exist in the atmosphere. It might be expected that the
effects of coupling between the systems of the Northern and Southern Hemispheres
and of any cyclonic vorticity concentrations on the polar sides of the westerly winds
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Table 2.
Normal Modes of Oscillation for N=3, a - 3.0,a=0.06.

2ir/3 44/3
—iA 0.002248 -0.002248
B 0.00414 0.00414
C 0.001182 0.001182
p 0.000268 0.000002 -0.000268 -0.000002
T-days 1,865 2.5X106 1,865 2.5X105
f;?/y -0.53» +0.53» +0.53» -0.53"
Table 3.
Normal Modes of Oscillation for 7V=3, a=3.5, <=0.06.
2x/3 4n/3
—iA 0.000859 -0.000859
B 0.001467 0.001467
C 0.000375 0.000375
P 0.000096 0.000007 -0.000096 -0.000007
T-days 5,200 7.1X10* 5,200 7.1X10*
Qv -0.51» 0.51» 0.51» -0.51»"
ArN

would be to decrease the period of the shortest oscillation and to introduce additional
natural frequencies. No attempt has as yet been made to estimate the magnitude of
these effects or of the errors involved in using velocity distributions corresponding to
vortices on a rotating disc rather than to vortices on a rotating sphere and in neglect-
ing the seasonal variations in the strength of the semi-permanent high pressure sys-
tems. It is suggested that the present calculations may prove useful as a guide for
the statistical analysis of empirically obtained data.
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— NOTES—

ON HERZBERGER’S DIRECT METHOD IN
GEOMETRICAL OPTICS*

By J. L. SYNGE (Ohio Slate University)

1. Introduction. In recent papers M. Herzbergerl'2 has developed a “direct
method” for analytical ray-tracing through an instrument of revolution. At the end
of the first paper he refers to Hamilton’s method, which he says “leads to an elimina-
tion problem, hitherto unsolved.” Nevertheless the question arises: What is the
connection between Herzberger’s approach and that of Hamilton? This question
is best answered by attacking Herzberger’s problem by the method of Hamilton.
As we shall see, this is quite feasible. Indeed, if we combine Herzberger’s “direct
method” with Hamilton’s character function we obtain a very powerful technique.

Section 2 contains the formulation of the problem of determining the Herzberger
transformation when Hamilton’s angle-characteristic is known for the instrument in
question. Herzberger’s identity (AD —B C =\) is obtained immediately.

In Section 3 the case of a single surface (refracting or reflecting) is considered. It
is found that the coefficients are connected by a new relation.

In Section 4 | show how the problem of the sphere may be treated, Herzberger’s
geometrical approach being replaced by a more systematic analytical method.

2. The Herzberger transformation. To facilitate comparison with Herzberger’s
work, I shall use his notation. The following table shows the correspondence between
the notations of Herzberger and Hamilton:

Herzberger Hamilton
Coordinates of point on incident ray y, Z Xy, 7
Components of incident ray 1, V. f
Coordinates of point on final ray y,* X, VY, S
Component of final ray v, r' a r u

According to the method of Hamilton there exists an angle-characteristic T, a
function of £, 77, £', 77", such that the equations of the incident and final rays ares

* - zflr = Tt, X' - z2'Ztt' = - zy,
y - znli = zy y - zVIT = - zy.
The subscripts denote partial derivatives.

Now suppose that the instrument is of revolution and that the axes Oz, O'z' lie
along its axis. Then T is a function of the quantities

* Received May 21, 1943.

1 M. Herzberger, Trans. Amer. Math. Sex. 53, 218-229 (1943).

5M. Herzberger, Quarterly of Applied Mathematics, 1, 69-77 (1943).
3J. L. Synge, Geometrical optics, Cambridge, 1937, p. 31.
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B= *{*+ V), «i=&+W, =W 2+ V2 (2.2)

Let us write dT/dus= T3 etc. Then, by (2.1), the intersections of the rays with the
planes s=o0, z'= 0, satisfy

x=TE + Ttf, af = - - TE,
y —Ts)  TI], y — — Tai — Ta].

These equations involve the eight quantities

X'y, v’ X, Y, £ v-

The basis of the Herzberger method is to express the first set in terms of the second
set. To do this, we introduce

M= hx2+ y2), ih = xi, + yv- 249
Let usmultiply the x,y equations in (2.3) by £, rj, respectively, and add; this gives
M = 2jHM - Ti'lla. (2.5)

Rearranging the x, y equations in (2.3), squaring and adding, we get
TaM = W\ —Tsus T Tslks. (2 -6)

Supposing T known as a function of n8 m4, nb, we have in (2.5), (2.6) twoequations
to determine uit ubin terms of U\, n2 «3;suppose the solutions are

Ui = /(«1, «2 Ms), Ms = g («i, Ms, Ms). (2.7)

Making this substitution, we may express r3, Tt, T$ as functions of uu n2, n8
Now let us rearrange (2.3) into the Herzberger form:

Xx'=Ax T Byy —Cx -J Dy

y =Ay +Bdy =Cy  + D (2:8)
The coefficients are as follows:
A= - TtTr\ B = TzTtTri- Tt, C=Trg D= - T3TyK (2.9)
We immediately deduce Herzberger’s identity
AD - BC =1 (2.10)

To sum up: Given the angle-characteristic T(u3 ui} uf) of an instrument of revolution,
“we obtain the coefficients A, B, C, D of the Herzberger transformation in two steps:
(i) We solve (2.5), (2.6) for u\, usin terms of M, n2, nB
(ii) We substitute these values in (2.9), and so obtain A, B, C, D in terms of U\, n2 n8B.
For future reference, let us solve (2.9) for T3 Tit T6:

T3= - DC~\ Ti=C-\ Ts= - AC-1 (2.11)

3. An identity satisfied by the Herzberger coefficients for a single surface. Con-
sider a surface of revolution

z = f(r), rz= x2+ y2 (3.1)
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For refraction or reflection at this surface, the angle-characteristic is4 (if we take the
origins 0, O' coincident)

t=(F- y)x+ (- Vv)y+ (r- nz, (3.2)
from which x, y, z are to be eliminated by the relations
£—y dz X m—T
(3.3)
f-r ax Jv'r f-r
It is clear that F will be a function of the two quantities
* = *[(€-0* + (U- *). N=o[ —r,
or, in the notation of (2.2),
0=«w- m+ M * = (e - 2my 12 - O(«2- 2md L2 (3.4)
Here n, n' are the refractive indices of the initial and final media, and 0, O are * 1,
for refraction we have ss'= 1, and for reflection ss'= —1. If we take refraction with
the rays proceeding in the positive sense, we have
8=6= 1 (3.5)

If we take reflection with the incident rays in the positive sense, we have
=1, 9= —I1t n=n. (3.6)
By (3.4) we have
T3= r* - T+d(n2- 2«3-12
F4= —Ty, (3.7)
Fé=r*+ 7 W 2- 2mf-12

Hence
Ts+ Ta (n'2 - 2my) 12
— K - :'172'1 (38)
Ta+Ts (m2 — 2«3
where
&= 1 for refraction,
) (3.9)
k = —1 for reflection.
Let us substitute from (2.11) in (3.8); this gives
D- 1_ (Mm2- 2usyiz
(3.10)
1 (m2 — 2w3 12
and so
/d - iy
b= B2 — k»2— 2m3 i — -3, (3.11)

When we substitute this value in (2.6), and at the same time substitute for F3 T\
from (2.11), we get

4Synge, op. cit., 33.
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(D L2 )
n'*- (2- 2m3i J = 2(C2m + CDu2 + Duzuf). (3.12)

To sum up: For refraction or reflection at a surface of revolution, the coefficients A, C, D
are connected by the identity (3.12).
If B —0, then A =D~I, and (3.12) simplifies to

n2 - n2D2 = 2C(Cu! + Duf). (3.13)
As an alternative procedure we may use the fact that T is of the form

F=(f- mx), (3.14)
where

x = [(*- yy + 0?2- v)2Q/(r - yy. (3.15)

This is evident from (3.2) and (3.3); the form of the function F depends on the form
of the surface. On differentiating (3.14) we obtain three equations analogous to (3.7),
but containing F and its derivative on the right hand sides. If we eliminate these
guantities we obtain (3.8) and hence the identity (3.12).

4, The Herzberger transformation for a sphere. Let us take the origins 0, O'at
the center of a sphere of radius |r\. The angle characteristic for refraction or reflection
at the sphere ise

r == |r| [(E—yy + (v-yy + (r- n 2]i/2- 4.1
If we suppose the rays incident in the positive sense, all ambiguities of sign are re-

moved by writing

F=rkn —n)pl2 (4.2)
where

P= 14— \knn' —ua — k(n2 — 2uf)ilz{n'2 — 2«5 1/2]. (4.3)

Here r is positive if the rays are incident on the convex side, and negative if they are
incident on the concave side; k =\ for refraction and k=>—1 for reflection. All roots
are positive.

We have then
(»2 - 2ufy12

Fz = kr(kn' —W)-1p_1/2 -=-===mnm-==-- —
3 r(kn W)-1p_1/2 3 2K3)1'2>
Ta= - r{kn' - m)-V12 (4.4)
»2- 2m3 12
Fs = kr(kn' —n)~Ip 1/2L ™ Lt
(a - 2u,yi2
It is evident that
T\ = F3F5 (4.5)
and so, by (2.9) and (2.10),
B=0 A=DK (4.6)

8Synge, op. cit., p. 36.
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We now solve (4.4) for uit us in terms of T3, Tt, obtaining
[}
T r-
«4 = k(n2—2m3 ---——--- ) — + §m'2+ nd,

Ta 2]
, 71 4.7)
M= \n'2—\{n2 —2ii§ —
Substitution of these values into (2.5), (2.6) gives
«ra=K»2+ n2T\ + «2rsra- W,
«i = «2r3+ i»,2ra- i»orj. Ca-8)
These are two equations for T3, T\\ they may be written
Tz = »*«* - \{n2+ n'2)T, + |rar41], (4.9)
r¥y - n'2Q2+ 4jH[p2- \r2(n2+ n'2 ]+ r4= 0, (4.10)
where (in Herzberger’s notation)
p2 = 2«i — «2- (4.11)
Solving (4.10) we get, after some simple reductions,
C = Trl=r-"jflIKs2- Brays2+ o2»2- "2r2ilz], (4,12

where Oi and 02are each + 1, for the moment undetermined. We remove the ambiguity
of sign by considering the case £= 7= 0, so that by (2.8) £'= Cx, 77'—Cy. It is evident
from elementary considerations that C has the same sign as (n —kn')/r. Therefore
oi=1, $2= —k, and so in general

C = r~"[{n2- parzuz- k(nz- p2ra2y'2]. (4.13)
By (2.11) and (4.9) we have
D = n~2[p2/r2+ k(nz - p2/r2Y'\n'2 - p2/r2¥n - u"Cl]. (4.14)

We verify that if x=y =0, then D=kn'/n, as it must be by (2.8) from elementary
considerations. It is easy to check that (3.13) is satisfied by (4.13), (4.14).

For the case of refraction (&= 1) the formula (4.13) agrees with Herzberger’s
equation (36)b except for a reversal of sign.
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ON THE FORCE AND MOMENT ACTING ON A
BODY IN SHEAR FLOW*

By YUNG-HUAI KUO (California Institute of Technology)

Recently, H. S. Tsien solved the problem: of a Joukowsky airfoil in a steady, two-
dimensional flow of constant vorticity distribution. It is interesting to note that the
hydrodynamical forces can be expressed in a form similar to the well known Blasius’
theorem, involving contour integration of the complex potential function. The follow-
ing derivation of the formulae is believed to be simpler than that of Tsien.

1. Equations of motion. Let u and v be the velocity components parallel to the
x- and y-axis, respectively. In the case of two-dimensional steady motion, the Eulerian
dynamical equations are:

du dv (dv  du\ 1dp ,
u—=1V J( = > (1-1)
dx dx \dx dy pdx
du dv (dv  du\ 1dp /
u h® b « (-------- e > (1-2)
dy dy dx dy) pdy

where p is the pressure and p, the density of the fluid. The equation of continuity is

du dv
—+ — = 0. (1.3)
dx dy
For the type of shear flow considered by Tsien,1 the vorticity is constant every-
where in the field and equal to —k. Thus

____________ :-E,l (J>0 (14)

At the first sight, it seems that the problem might not be definite as one has four
equations for three variables. By eliminating p between Eqgs. (1.1) and (1.2), however,
the result can be reduced toEq.(1.3) by means of Eq.(1.4). This shows that any solu-
tion which satisfies Egs. (1.3) and(1.4) is consistent with Eqgs. (1.1) and(1.2).

To simplify the problem, the solution is written in the following form:

u=Kky + (1.5)
v =V, (1.6)
Then Egs. (1.3) and (1.4) reduce to

du' L dv' - 0 W
dx dy o '
dv' dlr’

= 0. (1.8)
dx dy

* Received June 21, 1943.
1H. S. Tsien, Symmetrical Joukowski airfoils in shear flow, Quarterly Appl. Math., 1, 129 (1943).
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These equations are satisfied by

d d
" P (1.9)
dy dx
or
di di
lp, V' = —p; (1.10)
3X dy

where i and are the imaginary and real parts of the complex potential F(z) ; namely,
ip+ ip = F(2), z =X+ iy; (1.11)

and
u' —iv't = w'(z). (1.12)

For a givenproblem the function F(z) is so determined that the velocity component
normal to the contour of the body is zero.

By virtue of Eqgs. (1.4), (1.5), and (1.6), Egs. (1.1) and (1.2) give
p = -—q2—pku'y + pkp, (1.13)
where gq'2=u'2-\-v'2 and the constant of integration is absorbed in p.

2. Force and moment. If the motion is two-dimensionaland steady, the comp
nents of the hydrodynamical force and momentz acting on the body are given by

X = —() pdy —p(@) u{udy —vdx), (2.1)
Y = (j) pdx + p(£ v(vdx — udy), (2.2)
M, =J) p{xdx + ydy) —pf (—vdx —u2ydy + uvydx + uvxdy), (2.3)

where the contour integrals are taken along a closed curve containing the body. Using
Egs. (1.5), (1.6) and (1.13), the above equations can be written as:

X = =9 [(«2—V'Ddy —2u'vidx\ —pk (j) [(™~+ u'y)dy — vydx], (2.4)
[(m2 —v'2dx + 2u'v'dy] + pk<p [(® —u'y)dx —ilydy], (2.5)
M — —Re zu;,2"sJ

+ pk() [(™ —u'y)(xdx + ydy) — (v'yx —2u'y?ddy + v'yadx]. (2.6)

*W. F. Durand, Aerodynamic theory, vol. 2, Springer, Berlin, 1935, pp. 31-33.
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If only bodies with closed boundary are considered, no sources can exist within the

field of flow. Then the stream function ip is single-valued, and

£  ipdx <) x{y'dx —u'dy),

nooydy = 9) y(vidx —u'dy).

From these relations, it is not difficult to deduce
() [w2—v'2dy —2u'vidx],
i

YT [(«2—V'2dx + 2u'v'dy\
F- ~ i

+ pk () W(xdx — ydy) —u'(ydx + xdy)\,

M= - R\ 1tf w2z

4 () [—u'[(xz2—y3dy + 2xydx} + tt'{(a2 —y2dx — Ixydy\\.

These at once suggest the following alternative expressions:

X —iY = w'Adz + i Im j-pk(j) w/zdzj,
and

M = - Re s(w'

2.7)

(2.8)

(2.9)

(2.10)

Egs. (2.10) and (2.11) may be regarded as an extension of Blasius’ theorem. They
can be easily identified with the expressions given by Tsien.1 The calculation of force
and moment, however, can be simplified to a certain extent by using these new ex-

pressions.

The writer wishes to thank Dr. H. S. Tsien for the use of his paper before publica-

tion and for his helpful discussions.
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A CHART FOR PLOTTING RELATIONS BETWEEN
VARIABLES OVER THEIR ENTIRE REAL RANGE*

By L. H. DONNELL {lllinois Institute of Technology)

The following simple method of graphical respresentation, covering the entire real
range, seems rather obvious and the writer has found it useful for many years; how-
ever he has never seen it described in the literature. It consists of an ordinary Car-

,00 -/ /
—A
m-I
V
/ >/ Lo
r
1
-f
>i-,'06/-
y{o y{o rrim 0y
f-
i?
S
&4
- .y T
£
-00 o -
X
-00 X Ny o D
Fig. L

tesian plot over the range —1 to +1 of each variable, with adjoining Cartesian plots
of the reciprocals of the variables from o to — 1 and from +1 to o, arranged as shown
in Fig. 1. This is evidently equivalent to a plot over the range —» to + °° for each
variable. It is also evident that curves and their slopes will be continuous over the
dividing lines between the two kinds of plots if the functions represented and their
first derivatives are continuous at these points.

* Received March 22, 1943.
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To illustrate the method, the power relation x —yn has been plotted in Fig. 2 for
values of x and y between —°0 and + «s, and for various values of n.

Fig. 2. Plot of x=y".

In many applications only a part of such a chart would be required. For instance
only the upper right hand quarter would be needed to cover all positive real values
of the variables.

In some cases a change of variable will make the resulting plot much more useful.
For instance a plot of the relation x = 10ey3 (see Fig. 1) follows the coordinate axes
closely and would be nearly indistinguishable from many other functions, such as
a= lowysor # = 101w0)5. On the other hand, a plot of x=yn, where y' = 100y, gives a
much more illuminating and characteristic picture of the function. Any change of
variable which makes the resulting curve pass through or near such points as (1, 1),
(1, —1), (—1, 1) or (—1, —1) would accomplish this purpose in most cases.



THE LINES OF PRINCIPAL STRESS IN THE PLANE
PROBLEM OF PLASTICITY*

By W. S. AMENT (Brown University)

Consider a state of plane strain in an incompressible plastic body yielding under a
constant maximum shearing stress. J. Boussinesqlhas shown that the lines of prin-
cipal stress then form an “equiareal pattern,” i.e. from the two families of lines of
principal stress individuals can be selected so as to render equal in area the meshes
formed by these lines. In a recent paper2M. A. Sadowsky has stressed the importance
of this result and has coined the term “equiareal pattern.” The present note aims at
establishing the relation between Boussinesq’s result and a theorem concerning the
lines of principal curvature on certain Weingarten surfaces.

If the lines of curvature are chosen as parametric curves and kand k' denote the
principal curvatures corresponding to the directions of v=const, and u =const, re-
spectively, the Mainardi-Codazzi relations take the form3

! fog o) = 2. BK

oil K—K Gil

0 P & M
— (log E) = — =

ov K—K O/

Consider now the Weingarten surfaces for which the difference of the principal curva-
tures has a constant value. Elimination of k and k' between the equations (1) then

leads to
a2
(log EG) = 0.
dv

Hence EG=f(u)g{v). A transformation of the type « = «(«), v=v(v) only relabels the
parametric curves but does not affect their geometric properties. Define u and v by

du dv

i VI(«), y =Vg(v).

For these new parameters EG= 1, i.e. the meshes formed by the parametric curves
corresponding to two sets of equidistant values of u and v are equal in area. The lines
of principal curvature on a Weingarten surface with k—k'=const, therefore form an
equiareal pattern.

The relation between this theorem and Boussinesq’s result is immediate. Intro-
duce rectangular Cartesian coordinates 0, x, y, z, the plane 0, x, y having the orienta-
tion of the plane of strain. The normal stresses <x, 9v and the shearing stress r then
can be derived from a stress function F according to

* Received Nov. 6, 1942.

1C. R. Ac. Sci. Paris, 74, 242 (1872).

s Trans. Am. Soc. Mech. Eng. 63, A-74 (1941).

3See for instance C. E. Weatherburn, Differential geometry, vol. 11, Cambridge 1930, p. 52.



W.S. AMENT 279

dx ) dF dF
By2 3x2 dxdy

The yield condition
(ffi —av2 + 4.2 — const,
furnishes the following differential equation for F:

[d2F  d2F\2 [ dF \2
— )+ 4(— J = const. 2
\3-r-  By2 Vdxdy,

Consider the surface 5 defined by z(x, y)=aF(x, y), where a is an arbitrary small
constant rendering small the slope which the tangential planes of 5 have with respect
to the plane 0, x, y. If terms of the second order in dF/dx and dF/dy are neglected,
the difference of the principal curvatures of 5 is seen to equal the square root of the
left hand side of (2) multiplied by a. The surface S therefore is a Weingarten surface
of the type considered above. The orthogonal projections of its lines of principal
curvature on the plane 0, x, y are the lines of principal stress.



CONSERVATION OF SCHOLARLY JOURNALS

The American Library Association created in 1941 the Committee on Aid to Li-
braries in War Areas, headed by John R. Russell, the Librarian of the University of
Rochester. The Committee is faced with numerous serious problems and hopes that
American scholars and scientists will be of considerable aid in the solution of one of
these problems.

One of the most difficult tasks in library reconstruction after the first World War
was that of completing foreign institutional sets of American scholarly, scientific, and
technical periodicals. The attempt to avoid a duplication of that situation is now the
concern of the Committee.

Many sets of journals will be broken by the financial inability of the institutions
to renew subscriptions. As far as possible they will be completed from a stock of
periodicals being purchased by the Committee. Many more will have been broken
through mail difficulties and loss of shipments, while still other sets will have disap-
peared in the destruction of libraries. The size of the eventual demand is impossible
to estimate, but requests, received by the Committee already give evidence that it
will be enormous.

With an imminent paper shortage attempts are being made to collect old periodi-
cals for pulp. Fearing this possible reduction in the already limited supply of scholarly
and scientific journals, the Committee hopes to enlist the cooperation of subscribers
to this journal in preventing the sacrifice of this type of material to the pulp demand.
It isscarcely necessary to mention the appreciation of foreign institutions and scholars
for this activity.

Questions concerning the project or concerning the Committee’s interest in par-
ticular periodicals should be directed to Dorothy J. Comins, Executive Assistant to
the Committee on Aid to Libraries in War Areas, Library of Congress Annex, Study
251, Washington, 25, D. C.

American Library Association,
Committee on Aid to Libraries in War Areas.



SUGGESTIONS CONCERNING THE PREPARATION OF
MANUSCRIPTS FOR THE QUARTERLY OF
APPLIED MATHEMATICS

The Editors will appreciate the authors’ cooperation in taking note of the
following directions for the preparation of manuscripts. These directions have
been drawn up with a view toward eliminating unnecessary correspondence,
avoiding the return of papers for changes, and reducing the charges made
for “author’s corrections.”

Manuscripts: Papers should be submitted in original typewriting on one side
only of white paper sheets and be double or triple spaced with wide margins.
The papers submitted should be in final form. Only typographical errors may.
be corrected on proofs; if authors wish to add material, they may do so at
their own expense. *

Titles: The title should be brief but express adequately the subject of the
paper. The name and initials of the author should be written as he prefers;
all titles and degrees or honors will be omitted. The name of the organization
with which the author is associated should be given in a separate line to
follow his name.

Mathematical work: Only very simple symbols and formulas should be type-
written. All others should be carefully written by hand in ink. Ample space
for marking should be allowed above and below all equations. Greek letters
used in formulas should be designated by name in the margin. The difference
between capital and lower-case letters should be clearly shown; and care
should be taken to avoid confusion between zero (0) and the letter 0, between
the numeral one (1) and the letter | and the prime (0, between alpha and a,
kappa and k, mu and u, nu and v, eta and n. All subscripts and exponents
should be clearly marked, and dots and bars over letters should be avoided
as far as possible. Square roots of complicated expressions should be written
with the exponent § rather than -with the sign v/ . Complicated exponents
and subscripts should be avoided. Any complicated expression that reoccurs
frequently should be represented by a special symboh

Cuts: Drawings should be made with black India ink on white paper or trac-
ing cloth. It isrecommended to submit drawings of at least double the desired
size of the cut. The width of the lines of such drawings and the size of the
lettering must allow for the necessary reduction. Drawings which are unsuit-
able for reproduction will be returned to the author for redrawing. Legends
accompanying the drawings should be written on a separate sheet.

Bibliography: References should be given as footnotes. Only in longer exposi-
tory articles may references be grouped together in a bibliography at the end
of the manuscript. The arrangement should be as follows: (for books)—au-
thor, title, volume, publisher, place of publication, year, page referred to;
(for periodicals)—author, title, name of periodical, volume, page, year. All
references should be complete and thoroughly checked.
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