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THE TRANSFORMATION OF PARTIAL DIFFERENTIAL
EQUATIONS*

BY

H. BATEMAN
California Institute of Technology

1 Introduction. In the early stages of the use of partial differential equations for
the solution of problems of mechanics and physics the separation of variables and
construction of simple solutions was the primary aim. The introduction of the idea
of an exact differential by Fontaine and Euler led to the idea of associated differential
equations such as those for the velocity potential and stream function in hydro-
dynamics, the adjoint equations of Lagrange and Riemann, the contact transforma-
tions of Legendre and Ampere, the transformations of Euler and Laplace for the
solution of differential equations by definite integrals and other transformations too
numerous to mention. Another aim which led to the study of transformations was
that of reducing an equation to a canonical form. Laplace’s reduction of a linear par-
tial differential equation of the second order to a form in which only one partial
derivative of the second order occurs led to the study of transformations which pre-
serve this form and of quantities which have a property of invariance. Conditions
were then found that an equation may be reducible by means of a specified type of
change of variables to some particular equations which had been fully studied. The
conditions found by Campbell [I]t (constancy of his two invariants) that Laplace’s
canonical equation may be reducible to the equation of Euler and Poisson, may be
cited as an example.

A classification of transformations may be made by including in group A all
transformations which arise from the condition or conditions that a linear differential
form may be of a specified type (for example an exact differential). Transformations
arising from the study of a number of linear differential forms may be included in this
group. Transformations associated with the Calculus of Variations are also included
because the equations of Euler and Lagrange are closely associated with the condi-
tions for an exact differential. The extension of Legendre’s transformation found by
Caratheodory [2] may be mentioned here. In this article attention will be devoted al-
most entirely to transformations of group A.

Transformations of group B include all those which arise from the conditions that
a quadratic differentia] form may be of a specified type. The transformation of a

* Received March 2, 1943.
f Numbers in square brackets refer to the list of references at the end of the paper.
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linear differential equation to a form in which the variables are separated is thus a B-
transformation. The transformations of group B are not necessarily point transforma-
tions, for instance, if Qia, b, ¢) is a non-negative quadratic form in the real variables
a, b, c transformations from (x,y, z, t, u, v, w) to (X, Y, Z, T, U, V, W) may be con-
sidered in which Q{dx —udt, dy—vdt, dz—wdt) goes over into Q(dX — Udt, d Y — Vdt,
dZ —wdt) the coefficients of Q in the first case being functions of vy, z,t, u, v, w and
in the second case functions of X, Y, Z, T, U, V, W. Since the equation 8= 0 implies
that dx =udt, dy=vdt, dz=wdt it also implies that dX = UdT, dY = VdT, dZ= WdT.
In other words if u, v, w can be regarded as the component velocities of a recognizable
moving particle of fluid then U, V, W can be regarded as component velocities of a
recognizable particle of a corresponding fluid. Such a transformation is of interest
because the density of each fluid can be defined in such a way that the equation of
continuity is invariant under the transformation.

Group C may be regarded as including all other transformations and some trans-
formation of the other group which arise in the reduction of an equation to a canonical
form.

2. Associated equations of the types of Monge and Legendre. In his work on par-
tial differential equations of the second order in two variables x, y which can be re-
garded as independent, Monge [3] used z as dependent variable, p and g as the first
derivatives zx, z, respectively and r, s, t as the second derivatives zzx, zxy, zvy. As we
shall have applications to fluid dynamics in mind, we shall deviate slightly from the
notation of Monge and use u, v in place of p and q so that when z is the velocity po-
tential u and v represent the component velocities as usual. This plan also allows us
to use the symbol p to denote the pressure and g to denote the resultant velocity.

The equations of steady motion of a compressible fluid under no body forces when
the flow is irrotational and the fluid barotropic (density a function of pressure only)
can, as we know, be derived from a variational principle

Ydxdy = 0, Uu—2zxV=s,, 1

in which p is a specified function of g. For greater generality at the outset we shall
suppose, however, that p is a specified function of u and v. Lagrange’s partial differ-
entialequation for thisvariational problem is then derivablefrom Haar's condi-
tion [4]that pvdx—pudy should be an exact differential. When thedifferentiations

are made, the equation has the form

puuf + 2puvs + pwt = 0. 2

When Legendre’s transformation is applied to this differential equation the new de-
pendent variable is
W= ux + vy —z 3)
and since dz =udx+vdy,
du> = xdu + ydv. 4
When u and v can be regarded as independent this equation gives the relations

X = y = w, ()
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and the equation for w is
puutw 2pUWw T pwv/uil ~ 0. (6)

When, however, u and v are related so that they can be regarded as functions of a
single variable r the equation (4) indicates that w is then also a function of r and we
have the equations

wi = xu(t) + yv(r) —s, wi(t) = xur(n +oyv'in), 7
which furnish a solution of (2) if
PuuU,2(t) + 2pUwu’'(t)v'\t) + Pwv'-(t) = 0. (8)
Let us now seek the conditions that 3 quantities
R = R(u, v), S = S(u, v), T — T(u, v), 9)

may be the second derivatives Zzx, Z xy, Z21 of a single function Z(x, y). The required
conditions RV=SX Sy=Tx may be written in the form

R, s T Rwvi —Sur + Sts, S,,s+ Srt= Tur+ Trs. (10)

We now seek the conditions that these two equations arc both satisfied in virtue of
equation (2). This will be the case when

Rv 1Upvwr) Ru wplv~~hy Su wp,,U, Sv. —b IVvpy,

Tu = w'puu, Tt= w'pw+ li'yS,,= h'" —w'puv, Sr = —w'pw. (11)
Equating the different expressions for Ruv, 5 Tuw we obtain the equations
Iyi — Wypyy.  IWp Uy V™ WyiPw >

bu Crpw “ puvy bv — Wipuv W pvt" (12)
The elimination of h and h' yields the two equations
IVuuprv ~ 2wurpur T wwpuu —0, (13)

IVUUpW  2Wyirpny “(~ Wvrpytu — 0

which show that w and w' are solutions of equation (6). The case of chief hydrody-
namical interest is that in which the second derivatives of w and w' are all zero. We
shall, however, look first at a possible alternative case.

Equating the different expressions for Suand Svwe obtain the equations

Wpuu = w'pur + J [», d(pr) —wld{pu)]y

(14)
w'pvv = Wpuv + \J [wud(pr) — wtd(p,,)].
Hence
Wvprv + w'purv = 2wwuv +  Wpuvr~ Wup,.v,
2wl puv — W puu + w'puuv = Wupuu + Wpuuu, (15)

WJprv + w'Purv = Wvpuu + Wpuuv
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These equations lead to the relation
w'Dv = wDu, where D = puwpxw —plv. (16)

This equation is satisfied identically when D is constant but it may also be satisfied
if w=E,,, w" =EUwhere D and E are related. An important case of this second type
occurs when D is a function of g only and w=v, w'=u. In this case

h——pu h= —pv, R=vpv—p, T =upu—p, S — —upv— —vp,, @

and p is a function of g only. If pu= —up, pv= —vp, where p is the density of the fluid
we have
R= —p —pv2 S = puy, T ——p —pu (18)

and so Z is a kind of stress function which satisfies the equation
RT -S 2= p(p + pu2+ pvd = p(p + pqd = F(R +D (19)

since R-\-T =—2p —pq2 The partial differential equation forz isthusof Legendre’s
type [5]
3C(R,5, T) = 0. (20)

In the special case in which —F(R+ T) =K Z—|(i? + 7")2the equation reduces to
one which occurs in Saint Venant’s theory of plastic bodies. This equation has been
discussed by Hencky [6], Prandtl [7] and Caratheodory [8]. Oseen [9] uses the meth-
od of Legendre in which the equation is first solved for R, differentiated with respect
to y and so reduced to an equation

(K2- V%y\WXX- Vyy) + 2VX/ X = 0 (21)

in which
S =VX T = .

It should be remarked that if px—u =zx, pu= ~v——zy,
p + pu2+ pu2= p, 1/p — —p, (22)
we may write
R ——p —pi'2 S = puv, T = —p —pii2 (23)

and the equations RV=SZ Sy—Tx lead to the partial differential equation for the
stream-function z

In the theory of plane waves of finite amplitude equations of Legendre’s type oc-
cur in at least two ways one of which is discussed by J. R. Wilton [10]. In the other
way use is made of the equations

R = p, S = —pu, T —p+ pul (24)

where now y denotes the time and xa co-ordinate in the direction in which the waves
are travelling. The quantities u, v are again the derivatives of a velocity potential
z, p is the density, p the pressure and u the velocity of the fluid. The quantitiesR, S, T
are the second derivatives of a stress-function Z. The additional equations from which
the relation between R, S and T may be derived, are

v+ hiz= f(p), P = /(p) —pf(p)- (25)



1944] TRANSFORMATION OF PARTIAL DIFFERENTIAL EQUATIONS 285

The desired relation is thus
T - R~IS2=1/(R) - Rf'(R). (26)

This equation, like that considered by Wilton, may be solved by the method of
Legendre in which the equation is differentiated with respect to one of the independ-
ent variables (in this case a) so as to reduce it to an equation of the Monge-Ampere
type. The transformation to the new equation can be regarded as a special Backlund
transformation [II] as Oseen [9] observes. If U=2ZX the new equation is

Uyy - 2{UyyUz)Uzy + (UI/UI)Uzz = - Rf"{R)Uzx = c2Uzz * 27)

or
IHHUZ+ 2KUzy + LUyy = 0,

where I1={U 20Zfx)-c 2 K = -(U y/U z), Z= 1 The invariant G is
G=K-—HL —c (28)

and the condition Gt"O is satisfied so long as c-"O.
In the present case

Ru= —pulc2 Rv= —p/c2 Su= p(u2c2 — 1)S, = piilc2 29)
r, = Pu(l- u2cd, Tv= - p(l+ nmdc?.
The two equations (10) are both equivalent to
(U2—cAr + 2us + 1= 0, (30)
and it is readily seen that w——1, w'= —u, g=k4—hl =ct7i §.
It should be noticed that if we solve equations (9) for u and v in the form
u=F(R,S), v=G(S, T), (31)
the equation uy=vz is satisfied on account of Ry=Sx, Sy=Tx if
Fr = Gsi Fs —Gt. (32)

These two equations then are consequences of the single equation 3C(R,S, T) =0. The
expression of such an equation in the two forms (32) may be regardedas a problem of
some interest.

In the case when D is a constant and p is a function of g only

D=ppjqg =Pl ~ (?A)2]- (33)

and the flow is either entirely subsonic (D>0) or entirely supersonic (D <0). In
many cases in which p is a function of g only, D can have either sign and so the flow
is partly subsonic and partly supersonic. It is then of some interest to seek the condi-
tion satisfied by the function 3C(R, S, T) when D >0. For this purpose we write the
equation in the form

0= 3CR,S, T)= [(E- T)2+ 452]112- J{R + T), (34)
where / is a function which is such that

-pf(p) — ~ I[~ 2/(p]. (35)
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Here p=f(p) —pf'(p) is the relation between the pressure p and density p. Now we
find by differentiation that

3C,+ XT- 2= - 2- 2R+ T) = - 4- 2p/"(pP)I'(p) = 4(cV?2~ D- (36)

Hence 3Ci+ 30-—2>0 when c2>g2and 3C«+ 3Cr—2 <0 when c2<qg2 In the case of the
plastic equation J is a constant and so

3c«  3Cr = 0. 37)

The corresponding flow is characterized by the relation g-= 2c- and is consequently
supersonic.
A simple case in which D is constant is obtained by writing

p = an2+ 2cuv + fa2 (38)
where a, b and c are constants. The functions iv, w' both satisfy
bw,,u + aww —2cwW = 0, (39)

and we may write w—bVu, w’=aVyv, where V is a solution of this equation. If a func-
tion W is defined by the equations

Wu= cVu- avy Wv = bVu- cVv,, (40)
we may write h—2bWu and it is readily found that we can write
i?7 =2b(IV + cV), S = - 2abv, T = 2a(W + cV), (41)

where V and W are connected by the foregoing equations. Inthis case the relation
between R, S and T is simply

a3C = aR - bT = 0. (42)

The quantity 3Cb+ 3Ct—2 is now simply —(a+Z>)/a, a constant. There is no change in
sign of the expression. It will be noticed that the equations aR—bT =0 and

ar + 2cs+ bt =0 (43)
satisfy the condition of apolarity
Ab + Ba - 2Cc = 0, (44)

when the first equation is written in the form AR-\-2CS-\~BT = 0.
3. The transformation of the Monge-Ampere equation. If for the equation

hr + 2ks;+ It -Tm + n{rt —s2 = 0, (45)
the expression
g = k2—1lIl f~-mn (46)

is not zero and so the two systems in the methods of Monge and Boole are distinct,
the equation is transformed by a contact transformation

X = X(X, VY, z, u, v), Y = Y(X, Y, Z U, V), Z - Z{X, y,z,u, v), \ 47
U= U{x, vy, z 1,Vv), V= V(X, Y, z it V), dZ = UdX —VdY = a{dz —udx —vdy) j
into an equation

HR + 2KS + LT + M + X(RT - S22 =0 (48)
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for which the quantity G=Ki-liL-{-M N =0.

In a paper published in 1904 Sophus Lic-[I2] remarked that it would be desirable
to have a direct proof of this theorem and Kiirschak [13] gave one based upon a
representation of the equation in the form of a Jacobian

d{a, b)/d{x, y) (49)

where a and b are functions of x, y, z, u, v and d/dx =d/dx-\-u{d/dz) -\-r{d/du)
-\-s{d/dv), d/dy =d/dy+v(d/dz) -\-s{d/du) -)rt{d/dv). When this representation is not
used the proof is algebraically more difficult but the analysis is worth giving on ac-
count of the numerous relations to which it leads. Reference for this type of proof may
be made to a paper by R. Garnier, Sur la transformation des dérivées secondes dans les
transformations de contact et les transformations ponctuelles, Bull, des Sci. Math. (2),
64, 13-32 (1940).

We shall suppose that dz = udx-\-vdy and that consequently dZ= UdX-\-vdY. To
make dU =RdX+SdY, dvV=SdX + TdY consequences of du=rdx+sdy, dv=sdx
f-tdy we shall require that

dU - RdX - SdY = (Uu- RXU- SYf){du - rdx- sdy)
+ (Uv —RXV—SYu)(dv —sdx —tdy),

dv - SdX - TdY =(Vu- SXU- TYu{dn - rdx - sdy) 0)
+ (F, - SX,, - TYV(dv - sdx - tdy).
W ith the notation
Zi —Zi + uZz, Zy+ vZz, etc.,
{uu) = Uu- RXU- SYU {uv) = Uv RXV =mSYYV, (51
{vu) = Vu- SXu - TYu (w) = Vv sxv- TYV,
the equations to be satisfied are
r{uu) + s(uv) + U i- RXi - SYi = 0- rfuv) + s{w) + Vvi- sXi- TYi = 0, (52)
sfuu) + t{uv) + Ui - RX2~ TYi =0, s{vu) + t(w) + F2—SX2—TY 2= 0.
Hence
rA= UWx- UIVv+R{X1Vv- FiIA%)+ 5 (7",+ UxXXv- X xUv- FiF,)
+ T{U\YV- ITUV)+ (RT-S>) {YXX v- ATK.),
tA= UVu- ViUu+R{X W2- X2VU+S{X2Uu+YuV2- X vU2-Y 2Vu)
+ T{Y2Uu- YuUt)+ {RT-S*){X2Yu- XuY2,
SAMNU X U-VIUu+R{XuVi- X tVu)+S{X1tUu+YuVi-XuU1-Y 1Vu)
+ T{UuY1-U 1Yu) + {RT-S*){X1Yu-XuY 1, (53

SA=V2Uv- U2Vv+R{X2Vv- XzV2+S{UX W YiV ,-XtU ,-VtYr)
+ T{U2Yv- Y2UW+ {RT—S2{Y2X V- X 2YV),
A{rt-s2=Uxv2- 7Fi+R(F1A2- F2AT)+ T{U2Yy- UxY2
+5(U2X x- UXX2+VxXY2- V2Yx+ (RT-S(AiIK*- X2Yy,
A-Uuv-UvVu+R{XWu-XuVwW+T{Uwu-UuYyv)
+S{YWu-YuVv+UwWu-UuXl)+ {RT-S"-){XuYv- X vYu).
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The two expressions for s are equivalent on account of the relations
[UV] = [XV] = [YU] = [XV] =0, [ATE] = [YV] = a (54)

which, in addition to the relations [FZ] = [ZX] =0, \UZ] =crU‘[VZ] =aV are satis-
fied because the transformation is a contact transformation. In these relations [AB]
is the Poisson bracket

[AB] = AWBx -At.Bu+ AvB2- A2BV (55)

The relations arc derived by Lie [12] by a clever device. In the book of Cerf [14] the
relations are derived from the equation

€\AB] = [ai] (56)

where A, B are the expressions for a(x, y, z, p, 9), b(x, y, z, p, q) in the new co-ordinates
[AT, Y, Z, P, Q\, while F. Engel [15] obtained them with the aid of the bilinear co-
variant by a development of a method used by G. Darboux.

It is readily seen that the equation hr~Y~ks-\-It-\-ni-\-n(rt—s2 =0 becomes HR+2KS
+LT+M+N(RT-S)=0, where

H = HP, + k(Pb+ Pg + IPa+ mPr+ nPg,

2K = h(Rp+ Cp) + k(Cb+ Rb+ Cqg+ Rq + I{Ra+ C))

+ m(Rr+ Cr) + n(Rc+ Co),

L = hAp-f k(Ab+ Ag -j-1Aa-FtnAr T uAcg,

M = hQp - k{Qb+ Q,) + IQa+ tnQr + nQc,

A = hBp + k(Bb+ Bg -TIBaT-mBrT nBc,

where
Aa= UU2- u2yu, Ai — UuYi - U\YU Ac= U2Yi- UxIT,
Ap= UyYv - UWX Ag= U2Yv- wuqy2 Ar= UWU- ETF,
Ba = X2YU- x uy?2, Bb= XiT« - XPYh Bc= XiY2- ARFx
BP= XvYi - ATF, Bg = XW2- x2yv, Br= XWV- ATIT,
Ca= X2UU- ATU2 cb= XiUu - XuUu Cc= X1U2-x 2uh
Cp = XvUi - XiUy, C, = xvu2- X2UV, Cr= XUUV- x vuu,
Pa = XuVa - X 2Vu, Pb=xul- xtvuy, Pc = X2Vx- XiV2
Pp= ATF, - XwWu Pg= X2Vv- XW2 Pr= XwWu - XuVy,
Qa = U2vU- UW2 = UiV,, - Uuvu Qc= U2Vv2- u2vh
Qp= Uw1l- Ui7,, Qq = Uw2- UiVvy, Qr = UuVv- UvVu,
Ra = YuvV2- y2it, Rb= Yuv1l- YiVu, Rc = Y2vl- FxF2
RP= YiVv- YWi, Rg = Y2Vv- YW2 Rr = YWu- Yuvw

These equations give the relation
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" K2-HL+MN=J(k2-hl+mn), if
1(C&+ i2),-t-Cfl1+ i?ij)2—{Pb-\~Pq){A b~\~Ag) + (@>+ <X&)(Bb~\~Bq) —J |
\r(Rr+Cr)(Rc+Co + (QrBc+QcBr) ~ (PrAc+ P cAr) =7,
1CRp+Cp) (Ra+ Ca)+(QpBa+QaBp) - (PpSla+PaAp) = -/,
TI(Rp+Cp)2+QPBp-PpA p=0, I(Ra+Ca+QaBa-P, A ,=0,
\(Rr+Cry+QrBr-P rAr=0, KRc+ Cy+QcBc-P'Ac=0,
i(-Z?p+C,p)(Cj,+i?i,+Ca+i2s)-f-Qp(5i,-|-3D+5p(Q (,-|-08)

=Pp(Ab+ Ag+Ap(Pb+Pq,
mi{Ra-\-Ca)(Cb-\-Rb-\-Cg-\-Rg)-\-Qa(Bb-{-Bg)-\-Ba{Qb-\-Qq)
=Pa(Ab+ Ag+Aa(Pb+ Pq),
h(Pr + Cr)(C6+ i%,+ Ca+ i?a)+ ()r (BbA-Bq)-\-Br (06 + (?a)
=Pr(Ab+ Ai)+Ar(Pb+ Pq),
KRc+Cc)(Cbh+Rb+Cq+Rq)+QC(Bb+Bq)+Bc(Qb+Qq)
=Pc(Ab+Aqg+Ac(Pb+Pg,
KRP+Cp)(Rr+Cr)+QpBr+QrBp-PpA-,-PrAp=0,
i(RpA-Cp)(RcA-COArQpBcA-QaB p—Pp/lc—PAp=Q,
%(R*+Ca) (Rr+Cr)+QaBr+QrBa~ P aAt- iVI,=0,
f(ia+tc,) ((2c+Co+ "+ <2 A - P0oA-PA.=0.

(58)

These relations may be established by using a parametric representation of the
quantities satisfying Lie’s conditions for a contact transformation, we therefore write

X\ —d\e -f die’, X2=Db\e \~b2', Xu — c\e T c2', Xv=die -T d2e',
Ui =aif+ a¥ , U2 =bif + bX, Up = cif + af, Uv = dif + df, (59)
—Yu =ad f-dip', — Yv=bzp -+ bip', Yi = Cap Cip', Y2= dzp + dip’,
—Vu =azq + digq', — Vv=Dby + b"', Vi = ¢y + Cig, Vi = dzq + diq’,
where the quantities
d o2 & &
bl # M
da @ ca o
d\ 6 dz di
form an orthogonal matrix and the quantities e, p, p', q, q' are such that

(ciB2—XCRi T dpbi —d2bi)(ef T e'f) = {ddi —AABT bzdi — bidz)(pq' —p'q) = a. (60)

It is then found that

- H = eq{13)+ e'q(2, 3) + eq'{\, 4+ e'q'{2 4),

- L=fp (1 3)+fp(2,3)+//(', 4 +1y(2, 4),

2T = («/'- <N)(1,2) + GY - p'g)(@3, 4), (61)
M l¢(1,3)+ A (1, 3) 4)+1Y (2, 4),

ep{13)+ e'p{2, 3) + 4)+ ey'(2, 4),
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where
1,3 = li(dic3 + dibz) — I(bifl3-|- Cydz) -f- k(d\d3 -f-6163 —d\d3—CIC3)
+ n(aid3 —hi.Cz) + m(dia3 — Cib3),
(2,3 = h{dzCz " "3 — I(bzd3 4* c3dz) -|- k(d3d34“;263 —<2B—O3)
4~ ti(d3d3 — bzCz) 4- m(dzdz — c3bz),
1, 4 = h(diCi 4- 014 — I(bidi 4* Cidi) 4- k(didt —bibi —0104—CIC)
4- n(d\d\ —J1C) 4- m(d\d\ — C\bP), (62)
(2,49 = h(dsd\ 4- 024 — lifizdi 4- c->di) 4- k(dzdi 4~b3b\ —204—CC)
4- n(d3d* —;2CG) 4" mAdzdi —QJ49),
(1,2) = h(did3 —dzd\) 4- I(b\Cz — (22D 4- k(diCz —OCl 4-d\bz—zbi)
4~ u(d\bz + €1 4- m{c\dz — diCo),
(3, 4) = h(bzCi —biC) 4” 1(d.\d3 — €34 4" k(c3d3 — QB 4" b3di —hidJ
4- n(d30 — dA3 4- m{bdi — b4CB).
It is readily seen that
MN - 1L = [(1, 3)(2, 4) - (2, 3)(L, 4)](e* - ef)(p'a - pq) (63)
and that, on account of the properties of an orthogonal matrix
(e'f- el)2= {p'q- Pq'Y: (64)

The expression for K also simplifies considerably and the proof may bereadily com-
pleted. The quantity J as in Kurschak’s analysis, is equal to a2and so isnot zero.
Contact transformations are not the only ones in which the condition gp”O is
invariant. In the theory of the steady two-dimensional motion of an inviscid elastic
fluid the equations satisfied by the velocity potential z and stream-function z are
respectively
puur 4- 2puvs 4- pwt = 0, pxivX 4" 2puvs -f- pwi = 0. (65)

In this case dz = udx-{-vdy, dz =ii dx-\-v dy =ptdx —pudy and so
u=py = —pu, g=g=plv—plpw - c2(u2-f i — cl. (66)

Thus g= 0 either when ¢=0 or when gq=c. The supersonic region is characterized by
the condition g>0 and the subsonic region by the condition g<0. The curve for which
c=0is a boundary for the flow just as in the case of the Prandtl-Meyer flow round a
corner. The transformation under consideration is a special Backlund transformation
and is included in the group of Backlund transformations

X = X(X, ¥, U, Vv), y=VY(X Yy, UuvVv), u= UKy uv), v=V(XYU.yV), (67)

for which the Jacobian d(X, Y, U, V)/d(x, y, u, v) is not zero. These transformations
have been studied carefully by Goursat [16]. The requirement that

udx -f-vdy

should be exact leads to an equation of the Monge-Ampere type in which z does not
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occur explicitly. It is shown, however, that the general Monge-Ampere equation of
this type cannot be obtained in this way and a similar result has been found by J.
Clairin [17] in his studies of more general Biicklund transformations. Clairin has
studied in particular transformations of type
x'=fi(x,y, zitv,z), y =/12xY, 1z uyv,z), (68)
u' = f3(x, y,z,u, v, 2'), V' =17i{x, Y,z U V8.

Some of Clairin’s work is summarized in the book of Forsyth [18] and illustrated by
means of examples.
Another transformation of type (67) which preserves the condition 0 is ob-
tained by writing
dU = Rdx + Sdy, dvV = Sdx + Tdy,

where R, S, T are the functions of u and v used in section 2. Making use of the equa-
tions .

@pu+ vpydx = pudz + vdz, (iipu + vpvdy = pvdz —udz, (69)
we find that
(Tn - Sv)dU + (Rv - Stfidv = (RT - S2dz, (70)
(Spu+ TpwdU - (Rpu+ SpwdV = (RT - S2dz.
Hence, if
=u, y =V, u =dz/duU, v =dz/dv, ii'= dz/dU, Vv' = dz/dV, (71)
we have the relations
u' = (Tu - SVv)/(RT - S2, '/ = (Rv- Su)/(RT - 52, 72)
u' = (Spu + Tph/(RT - 52, v'= - (Rpu+ Sp®/(RT - S2

which, in conjunction with the preceding relations define two Backlund transforma-
tions. The transformations considered in my paper on the lift and drag functions are
of this type [19] and are not generally contact transformations as is apparently im-
plied by a statement relating to the correspondence of the supersonic regions in the
two associated types of flow.

In the case in which p is a function of q only the relations between u', v', u, v are

u' = - ulp, vt = —v/p, q' = qlp
and, ifp'- —1lp, p'+p'q'2= —1/(P+pg2d we have
y P
P = s
P + pqg2
dp’/dq' = —qp/(p + pgd = —p'q’,

1—qg'2¢c'2= (1 —q2cd[p/(p + pgd]2 where c'2= dp'/dp".

This transformation may be compared with that obtained by means of Haar’s
adjoint variation problems [20]. In this case

u* =pj(p - Upu~ vpy), Ve =pj(p - upu~ vpy), p* = U(p - Upu- vpv),
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and, when p depends only on g,
u* = - pu/(p + pqgd), v¥= - pv/(p + pad,
P* = + 1/0 + g2, gc='q/(p + ?2-
Defining p* by the equation dp*= —qg*dg*, we have
p* = (p + pad/pp, p* + g*2= 1p,
ptpg*(q2 —c3/(p + pad2[c2Ap + pa2+ p2(q2 - cI],
c*2 g2 =_ pYc2[c2p + pg22+ p2(q2- c2].

c*2

Hence c*2=qg*2 whenc2=0 and ¢*2=0 wheng2=c2 It shouldbe noticed, however,
that
c*2fcx2- g2 = c2(c2- qpPy/(p + pa2[c2Ap + pad2+ p2(q2~ Q]2

This may be compared with Haar’s general relation*

(p*.vp*.v. - ptlv)(puupwv - plv) = prp*-*.

Transformations more general than those of Backlund have been considered by
Gau [21] but so far no hydrodynamical applications have been found for these so far
as | know. Mention should be made, however, of the equiareal transformations from
the Eulerian to Lagrangian co-ordinates in the two-dimensional flow of an incompres-
sible fluid. These transformations have been much used in mapping but the hydro-
dynamical applications are beset with formidable difficulties.

No mention has been made of the use of transformations in the theory of surfaces,
congruences, etc. This is a subject which is well treated in the books of Darboux [22],
Forsyth [18], Goursat [16], Bianchi [23] and Eisenhart [24].

4, Transformation of the linear equation. In the special case in which h, k and 1
are functions of x and y only, n—0 and m is a linear homogeneous function of u, v
and z with coefficients depending only on x and y, the Monge-Ampere equation reduces
to a linear equation. The behavior of this equation in transformations of type

X = X(x,y), Y=Y(x,Y), Z = zF(x, y) (73)

has been studied by Darboux [22], Cotton [25], Rivereau [26], J. E. Campbell after
the case F= 1 had been discussed by Laplace [27], Chini [28] and others [I6].
Campbell uses the equation in a form in which g= 1, a form to which the general equa-
tion can be reduced by multiplying it by a suitable factor. He then shows that there
are two invariants I, / and an absolute invariant J/1 where if suffixes denote partial

derivatives

| haxT k(ayT bx) T IbvT (lixT ky)aT (kx--1vb

+ Ita2.-f- 2kab + b2 —mx, J — ay—bx,
’ (74)

2a I(hx + ky —mu) — k(kx +ly —w,)>
2b = h(kx+ /, —mVv) — k(hx+ ky —mu).

*This is a consequence of the relations
=PP'AP--P), A =P'PKPir - Pi-0.

In the correspondence between the two hodograph planes complications arise on account of the relation
of PwPui  Puv to these Jacobians.
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Laplace's invariants are 1(1—7), ~(1+T). These are used with a different notation,
in Darboux’s Theorie des Surfaces, t.2. Campbellshows that in the case of the equa-
tion of Euler and Poisson the invariants | and 7 are constant. This may be compared
with Cotton’s result. The harmonic equations belong to the group characterized by
the relation 7=0. The equations considered by Burgatti [29] are such that 7 =0.

In mathematical physics the simple solutions of linear equations play an impor-
tant part and the primary problem is that of separability. Even in the case of the
equation with two independent variables there are some unsolved problems. A good
idea of the progress which has been made may be derived from Darboux’s book [22].
The method of Laplace provides an important way of reducing equations by a cas-
cade process which is particularly useful in the treatment of equations arising in the
theory of plane waves of finite amplitude. Reference may be made to a paper of
Love and Pidduck [30], an article by Platrier [31], some papers by Bechert [32] and
to two papers by Oseen [9] in which the transformation and reduction is given for
equations occurring in the theory of earth pressure and in the theory of plasticity.

In the theory of the steady motion of an inviscid compressible fluid the equations
in the hodograph plane are linear. These equations are

PwiVuU  2puvWuc {~puu~rvy —0, pwWHU  2puv™uv “I' Puu&W b)
2= 115+ VW — W= qivgq—W, Z= UM+ VWv—w = qwq — w.
When p is a function of q only the equations u =pv, v——pu take the form
u= —pv= —qgsinr, i'=pu=gqcosr, q = pq, (76)
and the equations become
Wr, + q(qwQq = 0, wTr + q(qWa)g = 0 (g a function of q). 77
These are consequences of simple relations between w and w
wT+ gwr = 0, wr —qw” = 0. (78)
The corresponding relations between z and s are found to be
q% = qzr, g\ = - qzT (79)
and so the equations for z and z are
(?7S)](22?)z5L + Sir = 0, 1
(a.*/a){(a?q)zqh + ZT = o. ]

These are equivalent to the equations obtained by Molenbroek [33] and Tschaplygin
[34] for the case in which the relation between p and p is of the polytopic or adiabatic
type. The symmetrical forms of the equations are easy to remember.

It is sometimes useful to introduce other quantities which satisfy linear relations.
Thus wemay obtain the desired relations between z, z, w, w by writing

w eT = geq, w = eT =— qgeq,

—eT— (a/q)eTh,  z = {q/q)eTT —eT,

z

where
clt “h Mt ~h q
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The literature dealing with the transformation of linear equations in several vari-
ables is very extensive and only a brief summary can be attempted here. Beltrami’s
work on differential parameters [35] was extended by Ricci and Levi-Civita [36],
Cotton [25], Levi-Civita [37] and many other writers. The development of general
relativity, electrodynamics and the theory of elasticity has made this work more or
less known. The work of Lamé on simple solutions of the potential equation [38] was
much developed by later writers and a good summary of results up to 1893 is given in
the book of Bécher [39]. The use of a variational principle for obtaining the trans-
formation of the equation was recommended by Larmor [40], Volterra and others
[41]. Since the advent of the new quantum theory the interest in separable equations
and separable systems has much increased. Mention may be made of the work of
Staeckel [42], Eisenhart [43] and Robertson [44].

In addition to the simple solutions of partial differential equations there are solu-
tions having the form of products in which one or more or the factors satisfies a par-
tial differential equation instead of an ordinary differential equation. Comparatively
little work has been done on this problem. In the case of Laplace’s equation Vxx+ Vwu
+ F*2=0, the aim is to find a solution of form [45]

V =ZF(X,Y), (generalized binary potential)

where F satisfies a partial differential equation of the second order in the variables
X and Y. The problem seems to depend on the formation of a relation of type

(p2+ g2+ r2(dx- + dy2+ dz2 - (pdx + qdy + rdz)2= adX2+ lhdXdY + bdY2

in which a, b and h are functions of X and Y only. There is a similar relation for the
corresponding problem in any number of variables.
5. The transformation of Legendre’s equation. Legendre’s equation

3C(R,S, T) =0
is unaltered in form by a Legendre contact transformation
X' = U, Y' =V, U= X, Vo= Y\ Z'= UX + VY-Z,
which makes
R' — T/(RT — S2, S'= - S/(RT - S2, T' = R/{RT - S2.

In particular, the equation
R'T" - S'2= F{R"' + T
becomes
fR + T\

an equation of the same general type. Again, if a, b and h are constants the contact
transformation

Z'= UaX2+ 2hXY + 5F2 +Z, X' = X, Y' =Y,
u' = ax + hy + U, V = hX + bY + V

makesR'=a+R, S'=h+S, T'=b+ T and so transforms anequation ofLegendre’s
type into another equation of the same type. Equations of the preceding type
usually go into Legendre equations of a slightly different type.
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Other transformations may be found by first transforming the equation to the
Monge-Ampére form by Legendre’s device. If, for instance, the equation is

T =F(R,S)
and we differentiate with respect to x using then the new notation z=U, R = Ux=u,
S=Uy=v, Tx=Sy=t, Rx=r, Sx=s, the new equation is
i = Fu(u, v)r + Fv(u, v)s.
Comparing this with the equation puur+2puws-\-pwt =0 we find that
Fu Puu/Pwt Fv~ 2put’'/pw

Eliminating F we find that the equation for z is not a general equation of the type
considered in 82 because the function p(u, v) satisfies the condition
2
dD/dv = 0 where D — puupw —puv.
An equation for which D is constant satisfies this condition and the equation of
type
X(R,S, T) =0

associated withit by the analysis of section 2 may be regarded as a transform of the
original equation3C(2?, S, T) =0. In the case when D = 1, we may write

puu = easec b, pw = e~asec b, puw = tan b,
where a and b are functions of u and v which must be chosen so that

sec2bbu = e2sec b(af) + e° sec b tan b(bv),

sec2bbv = —e~asec b(al) + e~asec b tan b(b,,).
Also, since Fu= —e2, Fv— —2easin v, we must have the additional equation
2e“ cos b(bu) — 2eu{al) + 2e“sin v(au) = 0

which is seen, however, to be a consequence of the other two. Elimination ofthe
derivatives of a gives the equation

6bw | e buu 2sin bbuv —H or puubw *Epwbuu  2puvbuv —d

and it is readily seen that a satisfies the same equation. The equation 19= 1 is given
as an example in Forsyth’s book, p. 220, Ex. 11.
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THE INTRINSIC THEORY OF THIN SHELLS AND PLATES*
PART |.—GENERAL THEORY

BY

WEI-ZANG CHIEN
Department of Applied Mathematics, University of Toronto

1. Introduction. The development of the theory of thin shells and plates by many
authors [I, 2, 3, 4] can be summarized under the following three main heads:

(1) All theories are based upon certain simplifying unproved assumptions. For
example: (a) the thickness remains unchanged during the deformation, (b) the middle
surface in the unstrained state deforms into the middle surface in the strained state,
(c) the normals of the unstrained middle surface deform into the normals of the
strained middle surface.

(2) All theories involve the use of displacement- to describe the state of deforma-
tion. This plan works well in the theory of small deflection, but presents considerable
difficulty in the case of large deflection.

(3) The various approximations used in the theory of thin shells and plates are
confusing. If one attempts to give a complete picture of the theory, one must be able
to introduce a systematic method of approximation, which not only clears away the
confusion of various approximations, but also leads to a complete classification of all
thin shell and plate problems.

The purpose of this paper is to give a systematic treatment of the general problem
of the thin shell, which includes the problem of the thin plate as a special case. The
work is based on the usual equations of elasticity for a finite body, supposed to be
homogeneous and isotropic. The final equations of Part | are the three equations of
equilibrium, (6.34), (6.35), and the three equations of compatibility, (6.43), (6.44),
for the six unknowns, paB, gak, which represent extension and change of curvature of
the middle surface. When these quantities are found, the strain and stress throughout
the shell or plate can be calculated. The displacement does not appear explicitly in
the argument. Since we deal rather with stress, strain and curvature (all tensors), the
tensor notation proves much more convenient than any other.

In Part Il and I11, we shall discuss the various approximate forms of the equations
arising from consideration of the thinness of the shell or plate and the smallness (or
vanishing) of its curvature. The strain is, of course, always supposed to be small. We
obtain a complete classification of all shell and plate problems. There are found to be
twelve types of plate problems, and thirty-five types of shell problems. To each type,
there corresponds a set of six equations which are simplifications of the equations
(6.34), (6.35), (6.43), (6.44) of Part I, with certain terms dropped on account of
smallness and the uncalculated residual terms omitted. The equations obtained in-
clude all the familiar equations in the field of small deflection and the few equations

* Received May 13, 1943. This paper is part of a thesis submitted in conformity with the require-
ments for the degree of doctor of philosophy in the University of Toronto, 1942.

The work was carried out under the support of a scholarship granted by the Board of Trustees of
the Sino-British Fund.
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already known for large deflection. The new results for finite deflection may prove
particularly interesting.

The author is much indebted to Prof. J. L. Synge who not merely has directed this
work but has actively participated in it.

2. Reduction of force system to reference surface; macroscopic equations
equilibrium. We shall start in this section by reviewing some main results in a previ-
ous paper [5].

All theories of thin shells and plates involve the use of a reference surface. Usually
the middle surface is taken without explicit distinction between the middle surface
in the unstrained state and the middle surface in the strained state. In the present
methodical treatment we shall use a general reference surface in the material in sec-
tions 2-5. In section 6 and later parts we shall use the surface in the strained state
formed by the particles of the middle surface in the unstrained state. To the order
of approximation used there, this is indistinguishable from the middle surface in the
strained state. (This is generally assumed to be the case; cf. E. Reissner [4].)

The following coordinate system will be used: a0at any point A inside the material
of the shell or plate is the perpendicular distance of A from the reference surface SO,
and at A are the values of any Gaussian coordinates on SOcorresponding to the foot
of the perpendicular dropped from A. (Throughout the paper, Latin indices have the
range 0, 1, 2 and Greek indices the range 1, 2; summation over either of these ranges
will be signified by the repetition of an index.) This may be called a normal space co-
ordinate system with respect to So.

Let us denote the line element in space by ds2—gijdx'dx’, where g;is the funda-
mental tensor. Furthermore let g[gj.> be the values of ga at So, then we have in usual
tensor notation

go —g(0oo = g = g[0 = »  soa = g[0a = gW= g(q = O, (2.1)
g[oJaf£ = adf, g[q = a“3. det. (g[oui) = g[o] = det. (ad,) = a, (2.2)

where aapdxadxp is the metric on So.

We shall now consider forces in the shell or plate. Let C be a curve on SOand AO
a pointon C. Let 2 be the unit vector in SOnormal to Cat AQ indicating the posi-
tive side; let be an arbitrary unit vector in So at A 0. We consider the system of
forces acting across an element of area standing on the element dsaof C at A0, and
terminated by the surfaces of the shell or plate. We replace the forces acting on the
element by a statically equipollent system acting at 40 This leads to the following
invariants, which in fact define the macroscopic tensors, Ta0 (shearing stress tensor),
Ta* (membrane stress tensor), Laii (bending moment tensor):

TAnwadso = shearing force normal to SOacross the element ds0,
Tahiio]aA I0]t)dso

component in the direction of Atg of membrane stress across

the element dsQ, (2.3)
Aai«[0]aA(0]0iAc — component in the direction of Afoi of the bending moment

across the element dso.

Similarly, let dSo be an element of area of SOat AQ Consider the external forces
acting on the volume element consisting the normals to So standing on the element

of
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dSo and terminated by the surfaces of the shell or plate. We replace them by a stati-
cally equipollent system acting at A g This leads to the following invariants, which
give the definitions of the external force and external moment tensors, F* Ma:

F°dSo= normal component of the external force on dSo,
FaA[o]ladSo = component in the direction of A“Q] of the external force on dS0,  (2.4)
M aA[o]adSo — component in the direction of A“Qj of the external moment on dSo.

Then from purely statical considerations, we obtain the following six equations of
statical equilibrium ([5], p. 110):

(a) r-|.-iisr*i +f = o,
(b) + latbpyTi* + F° = 0,
(© 1IS*it + + M* = (,
(d) vio]*RTaB —ibakl’f>= 0.
The symbols have the following meanings:
TV = Tad* + Ili‘r‘a;a
TaB\a = TaBa+ ﬂi;\a; aTtB (ira) aTax, (2.6)
baB = (gaR,0).*«-0,
ViojaB = all2eaR, eii = e2 = 0, ei2= —e2i = 1L

The Christoffelsymbols arecalculated for aag The quantities (I/2)baBare the coeffi-
cients of thesecondfundamental form of 50; they vanish if Soisa plane.The radius
of curvature R in the direction of a unit vector jugi (counted positive when So is con-
vexen the sense of x° increasing) is given by

2/R = baBR*0 (2-2)
By eliminating Tao from (2.5) we get a set of three equations,

+ (1/2) aaPoRrijdgja\iL S, T+ F« + =0, (2. 8a)
+F° +a~r"Afry=0. (2.8b)

These equations, rather than the equations (2.5), are fundamental in the later theory.
It should be noted that in the case of repeated covariant differentiation with respect
to aak, the order of the operations cannot be changed unless the total curvature K
of the reference surface So (cf. Eq. (3.13)) is equal to zero.

The above equations are valid for shells and plates of finite thickness. When we
come to deal with approximations based on the smallness of certain quantities, we
must of course consider only the magnitudes of dimensionless quantities. It is
best therefore to work with dimensionless quantities throughout. Let us introduce a
standard length L, a lateral dimension of the shell or plate (e.g. the diameter in the
case of a circular plate). By ds we shall understand the distance between two adjacent
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points, divided by L; this dimensionless ds may be called the reduced distance. Simi-
larly all coordinates x' are supposed to be in reduced or dimensionless form. Conse-
quently the fundamental tensor gy is dimensionless, and all tensor operations (such
as raising or lowering suffixes or covariant differentiation) are dimensionless opera-
tions. We also reduce stress to dimensionless form by dividing by Young’s modulus E,
and body forces by dividing by E/L.

All the relations written above hold equally well for reduced or dimensionless
quantities. We shall carry through the work with these quantities; if we wish to trans-
late conclusions into ordinary dimensional form, we have simply to multiply by that
combination of the form L mE n which restores the required dimensionality. Young’s
modulus will not appear explicitly in our work, since it is eliminated from the stress-
strain relations by the process of reduction.

We also note that a thin shell or plate is defined as one whose thickness is small in
comparison with a lateral dimension L. Customarily, a thin shell is defined as one
whose thickness is small compared with the radius of curvature; this is unsatisfactory
in the limiting case of a plate, and also in the case of a shell whose thickness is small
in comparison with the radius of curvature but of the same order as the lateral di-
mension L.

3. Representation of Ta0, TaR, LaB, FI, M aas power series in the thickness. Let C
be a curve on the reference surface So, and 2 the surface formed by erecting normals

to So along C. Let dsobe an element of C, and ;2
the strip formed by the normals on dso (Fig. 1).
Let ds be the length of the arc of intersection of (2
and the surface x° = constant, passing through any
point A in d2. Let nabe the unit vector normal to
d2 at A, and «[(a the unit vector normal to (2 at
the reference surface SO.
Here we note that there are two distinct classes
of quantities: (1) those defined only on the refer-
ence surface, such as aa& baR, Ta0, TaR LoR M a,
F\ £[E] (normal derivatives of the stress tensor
on So); (2) those defined at any point in the ma-
terial of the shell, such as gy, Ea (stress tensor),
A- (parallel vector field), na. For all space tensors, the change of indices will be effected
by applying gifor gij\and for all surface tensors, the change of indices will be effected
by applyingg[d,yand gfdl [defined as in (2.1), (2.2)].

By the definition (2.3), the shearing stress tensor and the membrane stress tensor

are calculated by the invariant formula:

T ~n loJahoudso = | (Eaina\ ids")dx®, (3.1)
Jh

where X-is any parallel field of unit vectors, X[(i the same vector field at the reference
surface So, and Eai part of the stress tensor E'K The symbol h under the sign of in-
tegrationindicates here (andthroughout the paper) that the integral runs from
x°= —A() tox°= ~hh(+), where both h(+H) and A( } are positive functions of x* (for
thin shells or plates, they are assumed to be small). Furthermore, the bending moment
tensor is caculated from the invariant formula:
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¢[oiaXioj/sMMo = th(gTy'I'lyﬁEaT\Bnads)ijxO, (3.2)

where

700 — g-1/2ea0_ p_ det_ (Pym)_
(3.3)
= 2= 0, = 1
For the external force system, assume that X' Xis
the component of the body for per unit volume in the
arbitrary direction of X; at any point in the shell, and
Z\+H) X(#+)i and Z\_) X()i the components of the given
loads per unit are applied to the upper and lower sur-
faces respectively. Let us consider (Fig. 2) a portion of
the shell or plate obtained by drawing normals to its
reference surface over a surface element dSo The por-
tions of the boundary surfaces of the shell or plate cut
out by these normals are dff(+) and Let dS be the Fig. 2
corresponding element drawn at constant normal dis-
tance from the reference surface So- Then the external force and moment com-
ponents are calculated from the invariant formulae:

Flio]lidSo = f (X'XidS)dx0-j-Z(+)\@)idcr(+)-}-Z1~X ~ida-f-), (3.4)
h

J
M alo]dSo = f (fJRa\aX &S)xodx° + ri™M)Ra™M+)ZBR+)h(+Hd<T(+)
Jh
— 1 BaXtrZM-ihrdx (-m), (3.5)
where i)cha@ tj*aB are the values of rjaB at the upper and lower surfaces of the shell
or plate respectively.

In order to carry out the integrations in (3.1)—3.5), we must express all the quanti-
ties in the integrands as functions of x°. These can be written as follows:

gl Qen baRX® -+ 2GR XR)"t (3.6)
g = af{i + 2Hx° + XT(s02}2

(3.7)
nrndg/a)® = nl0«{l + 2Hx» + K(x<>y}, (3.8)

dso
X0 = X[Clo, Xa = X[0, + "5SaX[0]0 x°. (3.9)

The first relation is well known; aap, (1/2)ba$, (I1/2)c@® are the first, second and third
fundamental tensors of the reference surface So respectively. These tensors are not
independent, but connected by six geometrical conditions of flat space ([5], p. 112).

Three of these read
ca&= ha*xba;hf)\, (3.10)

and the other three are the well known equations of Codazzi and Gauss,

bafi7  bayfl 0, (3.11)
4:Rpelly  bpfbay  bpyball (3.12)
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Here the single stroke indicates covariant differentiation with respect to x*“ and the
tensor aap) R pady is the two dimensional curvature tensor formed from the tensor aa3
(sometimes called the Riemann Christoffel tensor of the surface So, see [6], p. 182,
Eq. (50)).

The relation (3.7) can be obtained by direct calculation from the definition of g.
Here K is the total curvature and Il the mean curvature of the reference surface So-
li Ri, R2are the principal radii of curvature, then

1/1 1\ 1
ff=t 0t/ ¢)' = (3-133)
therefore, in tensor notation,
8K = — b*xbr\, 4H = aTH . (3.13b)

We also note the following relations, which are often used in later calculations,

(a) tav* a T\ —aaaB,
(b) eaTe’xbN — a(41laaB —baB), (3.14)
(c) e**&ctx = 2a{(4//12- K)a°B- Hb°»\.

The proof of the geometrical relation (3.8) is long, but not difficult. The relation (3.9)
is obvious; since A-is a parallel vector field, we have

A1 = 0. (3.15)

Here the double stroke indicates covariant differentiation with respect to the space
coordinates x {and the tensor gij. Putting 7=0, i=a,j =0 in (3.1'5), the relation (3.9)
follows at once.

Besides all the relations (3.6)-(3.9), we also need the following geometrical results:

dS = 7/ Sy /2 dv<+) A * [ g(+)V 12 0 1 /g (-)\1/2
dSso \a) dso [Nl |\ a/ ~ dso ~ |[NU |\ a) ~

the positive root being understood. Here iV)+);, ™ )i are unit normal vectors, drawn
out from the upper and lower boundary surfaces respectively, and g(+), g() are the
values of g on the boundary surfaces.

Substituting (3.8), (3.9) in (3.1), we have

»[oj.Aiow jr-* - f E°y(af + ib®X°) "dx*]

+ H[0]0Ato]o[Ta0 - J £%° (")1 ~ (3.17)

But Wola and X[Qi are arbitrary, and consequently we have for the shearing stress
tensor

T =] dx®, (3.18)

and for the membrane stress tensor
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T* = \] E°y(aB+ X°) (—"'j ' ¢xC. (3.19)

Similarly, substituting (3.6)-(3.9) in (3.2), we obtain the bending moment tensor
L* =vYo}<ng E°v(@;+i b ~ x ~ x A~ Y ' (3.20)

Furthermore, substituting (3.9), (3.16) in (3.3), (3.4), we have for the external
force system

F* = f A~ 7(a? + "byX°)(*p ldx°+ (@? + 85?2A(H) ( N j ¢
ZJ-) IEc-)V 2
T-I7TT - =kes) (— ) .
* 1#» 1 <>)\561/) (3.22)

and for the external moment system

M« = Tid arx| J * T(a7 + *P)(~) ' x0dX

&R R A =AY
e

| r
It should be emphasized that the above expressions are exact, no approximation or

assumption based on the thickness of the shell or plate being involved.
Now we assume that E ij and X {can be expanded in power series in x°:

EP = = --£i£D)(*Om. X“= jt- Ximl(x°)”. (3.24)
o ml 0 m!

We also introducethe abbreviations

= K4Ha* + bB, %= KaB+ IIbB, DB =\KbB, (3.25)

do> = h\4) - h\-h = n) 4 A (0= & I) = < (3.26)
oMi= 34 fm _ ‘T m Q)i = Qi

1A % | | A®)] | y Vv (3.27)

P =TAT P4>+TATT A RW =pi (3'8)

Here H and K are mean and total curvature, asin (3.13), andtisthe thickness of
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the shell or plate, measured normally to 50 We substitute (3.7), (3.24) into (3.18)-
(3.23), and carry out the integrations. This leads to series in t, d (2), P3), d(i), » **

namely,
¢(2) ¢(3)
= £°OV+ (2[EfoQ + £fu) — + VKEft + 4HE& + ES) —
+ P (i>(':uo)l . H
<P2> [<3>
r-H = EfoV + (JW 5 + Eft) — + (2C M + 22?2*£ffi + E%) —
+ Rm {Ef*), ' .

(  dm 1S 1
Aar = o\ fIfIX[Effi — + 2(J2£fJi + £$) — +i?(3)(EM)],

«(2) /(3)
Fe = + (2HXU + x°m) — + (2EX?@ + 4/)JZiu + *?2]) ~

+ P° + 2HQEO+ KPW + Rm(X°),
¢ (2) ¢(3)
F« = Zfo,/ + (B°XJO, + *f,) — + (2g“oi + 2P?X[1+ X°I2]) —
+ P» + £“QAD*+ C“P<2i + D"QWy + R m (X°),

¢(? {w
Ma = o— + 2(BBX?0i + ~1,i)— + Rm W

+ QM + i|P (Qr+ CBQ"y + P?P<4)i-|.

In these series the remainders are as follows:

SU)(&)=E ~ [ P £ A 4 v W73 Im+21 (,(m+5)
m+ 512+ 4! (m+ 3 @+ 2)i}
y 1 f Eg$+* , 2VEtf+2  KEUH]  p

m +4l@2+ 3)! (m+ 2) Om + 1)
. . o BBETYs  CyEfZ+n  DyEiZ+ilj (meg)
Fe ) ( ) _mE+ 5 {én + 4)! * »l + 3) @+ 2)! (& + 1)Ij
a*E?Z+3) BSE#Z+2 CA~ff+u , D'Efo
i +
f» + 4|I(«» + 3)! @2+ 2) @+ 11 H *
P2£S+2  CBRly.

*m(**): Zfz2+/\a(rm I)I! m+ 2 @2+ 1)!1 F}'l

1 (a?£f,L,] [ B fen (m+4)
E e oa@+ 21 @+ 1) mH

1 DyE[Z+1] ™ (m+6)
+ E

2+ 6 (22 + 1)1

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)
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These are accurate expressions, the summations being all for m =0, 2, 4, s+ +. The
remainders R (1).(X°), R (")(Xa), R"(XR) are obtained simply by replacing Ej*j with

X?nj in Rw (Ed0), £f,] with in Rm{ERa), EfJ] with Xfn] in R,3)(EaR) respectively.
In the ordinary case where the body force is the forceof gravity, we can regard X i
as a parallel vector field of constant magnitude. Then by(3.9), we have the
relations:
X?m =0 for m~™ 1 (3.38)
Afi)= ~ iW h XM =0 for m~"2

And consequently the tensor F'j M ain (3.32)-(3.34) can be simplified to the (/tn), d (n))
polynomial of few terms. The most important equations of this section, for future
use, are (3.29)-(3.34)

4. The tensorsT*“’, LaBin terms of the six quantities p,p, gap. We shall devote the
present section to finding expressions for the tensors, (3.29)—3.31), in terms of the
six quantities pad and gal. Here paR represents the extension of the reference sur-
face So and gaBis closely connected to the change of curvature of the reference surface
during the deformation; both were introduced in the paper [5] (p. 114, Eq. (44)),
but will be formally defined below in (4.4).

We shall now proceed to determine £[£], defined in (3.24) in terms of paB
and gap. This is accomplished by means of (i) the equations of microscopic equilib-
rium, (ii) the stress-strain relation, (iii) some geometrical relations, (iv) the conditions
on the upper and lower boundary surfaces. The successive steps are as follows:

(I) By means of (i), we express HiJj successively for m=1, 2, ¢+« in terms of
E[g] and Ef*, where n =0, 1, 2, ¢+, (m—1).

(1) With the aid of (ii), (iii) and the results of step (1), we determine Egjj, £[?],
Effi, E(, ££%, * » » successively in terms of E$], paB3, ga%

(111) Then using (iv) and the results in step (Il),we determine E$], interms
of pap, gap. The surface force system (P‘ QY is supposed tobe given. Thus we have
at once Ep,] and for all m in terms of paRand qgaR.

(IV) Substituting Effj from step (I11) into (3.30), (3.31), we obtain the required
expressions for TaR and LaR The expression for Tao can be found either by substi-
tuting Ej*] from step (111) into (3.29), or by using the equation of macroscopic
equilibrium (2.5c).

The geometry of strain and the definitions of pal and gap. Let us introduce comoving
coordinates [7, 8], The same coordinates are attached to each particle during de-
formation, and the coordinates form a normal system in the strained state. The funda-
mental tensor in the strained state is ga (satisfying (2.1), (2.2)), and in the unstrained
state it is glj. Let So be the surface in the unstrained state which is carried over into
the reference surface So in the strained state (after we reach section 6, we shall define
So to be the middle surface in the unstrained state). The parametric lines of x° are
not in general normal to the reference surface 50 in the unstrained state.

The strain tensor ea is defined as

e>= Kga ~ g'id; (4.1)

this is the definition usually adopted (cf. [7, 8, 9]). For small deformation, the prin-
cipal part of the extension of an element in the direction A'is e=e,,- A Afi
We shall throughout raise suffixes by means of gi!\ thus
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g'm = gmignigl, gdi = g"gU, (4.2a)
emn — gmignie.h — gHejm. (4 .2b)
Now we assume that e*-is expansible in power series in x°, so that

® J
ea ~ 27 (4.3)

Bo ml

Let us define

P = emu, Qd ~ e[ik>  ra ~ eplij] (4.4)

obviously these tensors are symmetric. The six components paB, g,,8 are the basic de-
pendent variables of our theory.

For small strain pi, must be small, yet qgi/, Yij, etc. may be finite in a thin shell or
plate. These quantities are not independent but are connected by certain geometrical
relations. Since space is flat, ga and gy are not arbitrary functions of the coordinates.
They must satisfy the equations

£-i*i = 0, (4.5a)
Rijkl — 0.

(4.5b)
Here Rijki is the curvature tensor for g,

Rijkl = vigil, jk + gjk.il — gik.jl — gjl.ik)
+ gmn{[il, m\a\jk, n\o - [ik, m]o\jl, n},,}, (4.6)
while Riju is the corresponding curvature tensor for di},
Rijkl — Kgil.ik + gjk.il — gik.jl ~ gjl.ik)
+ g'mn\[il,m}0’\jk,n]0 - T[ik,m],,"\jl,n]a>). (4.7)

It should be noted thatRiju is the curvature tensor in space, while R pay is the two
dimensional curvature tensor of So (cf. (3.11)). In (4.7), g'mnby definition denotes the
cofactor of g,nin g', divided by g'; namely,

1 /-,
gm = — 7 emrt grkgti, (4.8)
2\g'
where emkt is the usual permutation symbol, and g' is the determinant of gy,
S = J] tr,tmi,gr<ngUiP- (4.9)
It follows that

3\rimrv nk,grkg'ti
g mro= > (4.10)

e 1 s

where

= tri,g-i/2; (4.11)
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this is a contravariant tensor and satisfies the relation

rir,tvrik = 551 — 5k5{ (4.12)

The equations (4.5a, b) form a set of twelve independent geometrical conditions
for gij and gy. We shall now regard g.yas given, and develop (4.5b) explicitly in terms
of ey by using (4.5a), (4.1). The resulting expressions represent the six independent
geometrical conditions for e,y:

(eil.j'i  €jkil  Cik.jl  Cji.ik)
+ 2emn{[il, m\Q[jk, n]g — [ik, «],,}
- 2gmn{ [il, m\o[jk, n]e+ [il, m\c[jk, n]1Q- [ik, m.],[jl, nJa- [ik, m\o[jl, »].}
(4.13)

This is *polynomial in ey, with linear terms explicitly stated. The other terms pro-
ceed with increasing degree in e, and have the following exact expressions:
4yH — 2e\(entjk + fiyt.ii — Cik.u — eyi«)
+ 49" U [il, m]e[jk, n\, - [fE, »],.}
-f 4(e™er —eme2) {[17, ?»],[/E, «],, — [fA& m\a[jl, n},,]
+ 4(gme; - em) {[t7, »»],,[/E, »], + [t7, w],,[;'¢, w].
— [i¢, WLL;7, «],, — [ik, (4.13a)
— ~ 2(ejei — e’iejj)(et,yi + Bytu —ea,;i — eyeit)
3VSt HUMBBUBVE (i, jk-\~&jK, il

—8(gmre) - em) {[t7, m].[jk, n]. - [ik, .}
— 4vnrvntperteP{ [U, mJo[jk, nla— [ik, m \,[jl, n],
+ [H<m]qQ[jk, n\e— [ik, tn\s[jl, «],,}, (4.13h)
&kl ~sv 1 Puetv&w(.(ilik ‘D eyiil  edyi  eyli), (4.13c)
[ij, k]t = higik.i + gjk.i - gij.k), (4.13d)
[ij, "u ~ é(ed,y fi- Cjki ey.i). (4.13¢)

Three of (4.13) involve only «y, e-y0and their derivatives with respect to x a-
WTen x°=0, these three conditions become the equations of compatibility of the
twelve quantities pa and giy; a detailed formulation of these equations will be given
in section 5.

The other three of (4.13). involve not only ey, e,y,0and their derivatives with re-
spect to xa, but also eQ300- In fact, by these equations, we express eag3ooin terms of ey,
e-yoand their derivatives with respect to xa. When x°= 0, these equations give us the
expression of rap in terms of piy, g,y and their derivatives with respect to xa. Putting
i=a,j=0, &=/3,1=0 and x°=0 in (4.13), and solving for ra$, we obtain
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fa = £2Ja/3 = 20)/5 + 230[a ~ pOO\al + j(~a~R + bRdA)Q\T -j- 5/as200
— %bRbZp\T + %(bRdA + blaB — biRd% — b\a})pxolx
—qwgaB — qlgRr + o maR(p2 pq), (4.14)

where O”al is a residual term, to be explained below.

To find e[3,,0, we have to differentiate ealoo with respect to x0 and put x°=0 in
the resulting equations. By (4.14), this gives e”jaB in terms of pi/, qij, r,0and their
derivatives with respect to xa. To find the other dnj«3, we merely repeat the process
over and over again. Thus we can express e[m]aR in terms of pij, gy, e[nlio and their de-
rivatives with respect to xa, where n <m.

Actually, to obtain the principal parts of the final equations, we only require
explicit calculation for m —2, as in (4.14).

All the above results are of a purely geometrical nature.

The symbol 07){p2 pq) in (4.14) represents the terms which are not explicitly
calculated. The quantities in parentheses indicate order of magnitude of. these terms
for small p and g, which denote the magnitudes of the tensors pij, gij respectively.
If p, £approach zero simultaneously and independently, these terms converge to zero
at least as fast as pg or p2 Symbolically, we may write

OaB(p2 pg) = OaR(pd + OaB(pqg)- (4.14a)

The label “(2)” is to distinguish this O-symbol from later symbols of the same type.
The indices attached to 0 (2 are the tensorial indices of every terms involved. We
assume throughout that differentiation with respect to the coordinates xa does not
change the order of magnitude; i.e., paB, paR.y are of the same order. On the other
hand, we never make any assumption regarding the effect of differentiation with re-
spect to x°.

This O-symbol notation will be used extensively throughout the paper. The nota-
tions used inside the parentheses of O-symbols are given in the following table:

Tensors bR bR e ea 9O A pa PR PR P2 pr o

Symbols for magnitudes b b e i E £0 P =] P P P

Tensors 0: (0:¢ Q Q K, XU

Symbols for magnitudes Q 2 Q Q X X
The expressions of in terms of £[*] and (a=0, 1, see, (m—1)).

We start the process outlined in the beginning of this section by writing down the
microscopic equations of equilibrium under the body force X {:

gx . *+ =0, (4.15)

the double stroke indicating covariant differentiation using g.y. Putting in turn i =0
and i =a, we get three equations which may be written as

£000 = kxX.Of£rX- Kk Txx.0-E®- £'°|r - (4. 16)
*E“°0 = - h rXSr\,oEa0 —galgx\,cEX0 - EaT\T- Xa, (4.17)
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where g under the stroke indicates covariant differentiation using gae,

E'oi,

*x A - /N
EIO.* 4 /X]) £ xo, (4.18)

£ = £7 X+ j(Xirrgg X+ l(x?&;} X (4.19)

This operation should be clearly distinguished from that indicated in (2.6). Putting
x°=0in (4.16), (4.17), we get

£??, = - X?W - -Efonx + iirxSfii ~ 2HEftu (4.19a)
E“i = - ~Tfo] - EtfUr - b“E[*] ~ 2//EfoV (4.19b)

These are the expressions of £][?] in terms of HJj and £{$, the body forces being sup-
posedgiven. To  find £[£], we have to differentiate (4.16), (4.17) with respect to x°
over andoveragain, and put x°=0 in each of the resulting equations. We shall only
write the expressions of £[*] explicitly:

£[2] =— -T[i] + 2HX\a + Xfoiir + £[o]|tx + 2»xEfiX — ar\KE\o]

+ (8//2- 2K)EN +  £7ojlir + 4(//Ep,x, (4.20a)
£[1 =- Xfn + (b° + 2Ha*)X*0] - a?Es$ux + (b* + 2//a?)£[Rix

- K4Hal + b°) xE(oi + (10Hb% + 8E£ 2? - 8£a?)£[(. (4.20b)

This completes Step (I).
Stress-strain relations and expressions for B*m, ££f] in terms of pap, gao0, £[oj-
We shall accept, as the stress-strain relation for an isotropic body, the equation

Eii =“_(_2I.“:l-_“ﬁ_(1 ----- I(;l; I'S'V' + (1' N g '1}«« + ONI(ea, (421)
where a is Poisson’s ratio, and E'> is of course the reduced stress (see section 2); there-
fore Young’ modulus does not appear. For small strain problems, t is small, and
the terms in 0{(t2 are negligible in comparison with the terms linear in €>in (4.21);
in that case, (4.21) becomes the usual linear stress-strain relation for an isotropic
body (in rectangular Cartesians, see [I], p. 102, Eq.(18)). Any modification,such as
replacement of gi! by g'i{, leads to no real change,because the differenceis taken
care of by the O-symbol.

From (4.21), we have

E® =  — T[femmmmm -51-,/\)@\ + (1-'M +07r), (4.22)

A“3 = @+ enl —ir) [vgheoo + k aV x+ (1 - 2a)g"g~le.x} + O#®2, (4.23)

£a0 = 7(11—1:) gaTexo + 0 ). ' (4.24)
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It is evident from (4.21) that all the stress components are small, of at least as high
an order as the largest strain components. The elimination of e0i from the last three
equations gives

Pf> = réEM+ — —  {amp + (1 - <r)rvx} E2 Ee). (4.25)
l1—a 1—a2

When #° =0, the equation (4.25) becomes

£01 = “ESi + A X+ Oft(p\ EI %p),
[ 1 g CES (P op) 4.:0)

where the abbreviation means

4fF)IX = - o {(raa% X+ (1 — omaaxax3}. (4.27)

1 —

Equation (4.26) is the required expression for Efoj.
The substitution of £f® from (4.26) into (4.19a, b) gives

B 21 - 2o)
E?u = - X°I0] - £[o%it - HE\Ix+ \A\X?biyp "
@ —
+ OZ(bp\bE®,bED), . (4.28)
E?i] = - Xfoj ~ KE\0°, - 2HES$ 1 ¢ a“TE[0°iix - X
+ 0% (p\p%, EI). (4.29)

Here XfO]are supposed to be given. These are the required expressions of E“].
Now, differentiating (4.25) with respect to a0and putting a®°=0 in the resulting
equations, we obtain in consequence of (4.26), (4.28)

« a n. & n ( 21 — 22 ) .
£[?) = ~ «“xXY[oi - a“3ffo°, ,, - \ bt> + - i Ha<*f£78,
l1—a l—a l—av (1—a) )
+ (ip - aPA#p- aM>A8Abupry
12(1 — o )
+  A“)Dexx+ Of3, (4.30)
where
0$ =07?I(bp\ bpEo,bEI pg, qEO, pX, XEOQ. (4.31)

Equation (4.30) is the required expression of E#j.
The substitution of £[$, E” from (4.26), (4.30) into (4.20a, b) gives the required
expressions for E$j:
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2(1 - 2o
£[]= — r- BX*m - X°m + Xf0]lr
(1- a
22 e - amme- K\E\I
. . - - -
T 2@ dHze (@ a)
< 22 —3)
+ 1—crA XEE]IXX + -%1 - TrE[0°] |t + (¢ Ef0°)X + AWTrPry”
. 4cr(2 — 3a) . .
—1M42((4_ 3a)llb x-f—-l--:-e-l-- IPa® - (3 - a)Kax)g)}p
+ T2(1T 1- al; + (1 - 0)6x¢?tX+ .0&. (4.32)

E$ = (i? + 2Hal)X\n - Xfq + ) a“xX?2Q|r

a v 2a
+ - a“xte ¢l + ba*E ] IT
l1—a 1—a
2a(2 - 3a)
+ —(1 521— a” (EE[00)|T + (107/5? + 8Wa% - 8KaaE”™ - A~r\ rMi
—a
( ~1—a
i [———— 9 |}aal - cax IsalT
1—oa2(
) mH jla*saTX+ 3(1 - a)H |{a“xa5x)>px\
i —a
1 _ 2tr(1 - 2<)
D Ja(2baSarX + \b*xaai) -] — HaaSaTx
1 —«2( (11 9
+ (1 - a)(2baTaix + a”bix + 2lla°*aix) | +0$. (4.33)
Here
<8 = 0\I(p\ pEo, EI, bpg, bgEQ, bpX, bXEO), (4.34)
09) - O"Abp-, bp%, bEI pqg, q%, PX, XEo). (4.35)

To find ££!], we have to determine pio, g,0 and then ro0 in terms of pag, gap, E3y.
Eliminating eOo from (4.22), (4.24) and solving the resulting expression for e,0 we

obtain A
eao = (1 + a)gaBEd+ 0 {io;a(e2, eE, E2. (4.36)

when a,°= 0, this becomes
pao = (1 + a)aa*E\q + O (io)a("2 pEo, EI). (4.37)

We now differentiate (4.36) with respect to x° and puta®= 0. In consequence of (4.26),
(4.28), (4.29), this gives
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N~ ~ ~ (4-38)
— aXif~ari\ + 0(U)ao(p~, pEo, EO, pg, qEOQ, pX, XEo0).

Similarly, from (4.22), the values of eloand eOooon x°= 0 are, by (4.28), (4.29)

qo= {(1 —<nX[ola+ O\E[S]ja+ 2(1 —a)Ha, "E”} — anp T\a
(¢

poo ——r—(—lr ) £ 40 i--mm-mmmm- g anpr\ + 0(i2oo(i2, pEo, EI), (4.39)
— —o0
@+ o)l —2) C . s 2(1 — 20> # a
goo = - 1 —a -](X01+ E0||x+—1_cr IE ] - 1_«a qT,
|
- {4<r(l —2<r)HaTX+ (1 —cr)"}/»,* + 0(i3)oo, (4.40)
2(1 - a)
where
0(i3)oo = 0 (i3)00(5/>2, bpEo, bEI, pg, gEo, pX, XEOQ. (4.41)

Substituting pio, g,0 from (4.37)-(4.40) into (4.41), we obtain

ra9=r$ (?) + rip(p) + r$ (X) + (£,) +r$ P2+ 0W (4.42)

where the abbreviations represent

>"$(?) = — (fa“}+ bRdl - axba) %%, (4.422)
fakip) = — (aTala} + andJai + arara’j pyrixs

+ HbaBa*x + balbx* - 2(1 - a)b%nr\px, (4.42b)

41 - a( 1- 3 )
r,8\X) = 201 ) {2(1 —o)(XjoJaiB+ X[O]Ma) + (1 — 20)5aiX?0i}, (4.42c¢)
-«
& (Eo) - - 1 —q 1 — nbaBETo;\
1+ o
—2(1 - a)(aaxdd + aRrag)(HE[o{)\\ - 4 + beal
- bBxal - baa$ + (11-" — 5a0a<';1 £]o°i |, (4.42d)
—<

riv(gd = ayraxaj — axarSa j| ?xj?7x (4.42¢)
o sl — o(14).B{p\ p%, El, pg, gEo, PX, XEo, ?X). (4.42f1)

It will be noted that ri'*g) is linear in the g’s, r%(p) is linearin the p’s, and so on.
We now differentiate (4.25) with respect to x° twice, andputa:0=0 in the resulting

equation. In consequence of (4.28), (4.32), (4.42), this gives
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E$ = £$*(?) + E[NaB(p) + E[iI\°B(X) + E "RE0) T'E~V ) + 0%$>, (4.43)
where
0&> = O&ipl pEQEI, pg, qEO, pX, XEo0, gX)\ (4.43a)

the other abbreviations are

EMaB(q) = 20 - @ {aaabrX + 5cr5“aaxX+ 3(1 - <r)(baralx + lAxa°')}gXr, (4.43b)
E\WV]ak(p) = R -{a(aaxafsar>+ aalaPaTX
+ (1 - cn@"s + aaSa™)aTX\pTy\s
1 der2 cr(7 - %)
H--mmmmen- <qaabrH ------------- aranrH - ~mmmmmemmememeeneeen aalKart
1 —e2l 1—@ 1—e)
er(7 - 12<) 1- 49
[ e Tlarybal-H--------------- barbry — J(1 — <j)baThr!1
1- e 4
+ 6(1 - <nN77@“‘x5”™ + baraflr) - (1 - ernl2Xa“xa ™ |pTy, (4.43c)
E[t]“3(X) = 1 —(J {8(6<r - 1)5"3X?0) - aa-#X«w - aa°RXJoUy}
- a’rd0yX[o]x|7 + X[oi7|x), (4.43d)
E~MEO0) = 18er2 - 1der + \)Hb°R
) L )
- der(l - 2en)772<* + 2cr(4 - 5er)
— {aaTalBy + aaalaTy}£°oi |x7 + 2(a"a? + aaiHE"])\y
1—<
+ a’EjSiix+ — -1- —{(er - 1)5% - 4daHa°R)Ef,0,,
| — 21 —a
+ | {a°*bR + aBRTh°® - afber - ES X (4.43e)
E~V ) = A?ix a*alal - alala”j gyiqu. (4.43f)

Equation (4.43) is the required expression of E~.

By similar steps, we can express all the other E*) and E$ in terms of paB, gal
and E[o]. However, for the purpose of the first approximation in the equations of
equilibrium, the knowledge of the required expressions of £$], Efy, E”j is sufficient.
This completes Step (11).

Conditions of the boundary surfaces, and the expressions of E”j in terms of paB
and gaR. We have now succeeded in expressing E|,] in terms of paB, gaB, Eji- Our next
task is to express in terms of paR, gak by applying the following six surface con-
ditions :
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N {HiE{H = 2\+) for a°= - 7g+), (4.44a)
Ni-)kE*xi> =zU for cfi= - (4.44D)

The unit normal vectors N {#)i, iV().-, drawn out

from the shellor plate,are deter-
mined as functions of xa by the equations

X(+)0 = — AI(#)oli(+),0, N ()¢ = (< (4.45a)
X®0 = (- N(HaNa U\ i7THO = (1-iV H ,fff )1/, (4.45D)

the positive roots being understood. Z (+)i, Z*)i are tensor components of the given
loads per unit area applied to the upper and lower surfaces.

Making use of (4.45a, b), we find that (4.44a, b) take the form

EIl, - £&*<+>,, = E(->+ E2>*()« = - T ~J = (4.46)
It (H1 o<
Substituting (3.24) into (4.46), and adding the resulting expressions, we obtain in '
consequence of (3.26), (3.28)

2 18d +j E[2@+ mee
- [E[oV.x + ~ EfiV.e+ ~ +eee] = Q> (4.47a)

1
20 + E2IV + —E'iV() + '

- ovV.r + ~ Etin+ A E&AW +eee] = (4.47b)
Substituting from the results of Step (I1) into (4.47a, b), we obtain a set of three
equations in terms of nine quantities pag, E”j. Solving these equations for £$],
we have
fe«, = ig0 + ~ ~ 2a\ HQ°d + K<37)g- — ar(Q?2x/®),,
503 Q )9 80 —a) (Q7x/®)
1—29

4(1 _ Cr)2 {(2 - 3Cr)2//2' (1 - a)K\QH" - §{(|X+ 2Haf)QHTM}"

i{(#Q"i- - + U?0]i
+ _ 2~y TIXO @ - i(X[0@)lx
2(1 ) 02 2aTlaTX + (l - ab*x)p~rd - \A\M{ply*)\r
1 ( L der2- o3 )
+ - 02—)<1(4 - 30)llb*x + 1 —q IPa*x - (3 - 0)Ka x)}pTAm
1
8(1 2) {4#CrCZXX+ (1 - Cr)GXX}7-|X® + O(y)g), (4483)
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£]0°) = 1Qa+ _4Z17A-_0f; “aT(Q°d),r + 1(5? + 211a°)Q'd

8(1 -cr) aax(Qx@) I 8(1 —er)W’oy T Ta—o //a‘"l} 8V2>JI 7

+ \Xad - — - a"x(X?0U<2) [x
41 - a)

60— {(47aaX+ “YxQ° - (5aX+ 2UaaX)Q°\} @

+ I(577ix + 4/l - 4XaX)Q¥2 + I{X]i, - (5? + 277a?)X|Wj;D
+ U 2v\GA MR + 1420k (Excd)x + K477a? + b“) A A ftxpyit™

. a 292
1— ] (baBaTX -f- \aaRbTy) ----------------- IlaaRaTX
41 + &) -a 1 - en2

_ ppargp. iaarESX)] >}

- Kb+ 211af]A*) p\s\ytm + 0*17). (4.48b)

Here Oq6> 0(?7) stand as usual for terms not explicitly calculated. It is possible to
exhibit their orders of magnitude as in (4.43a), for example, but the expressions are
very long and will therefore be omitted here; the full expressions may be found in the
author’s Ph.D. Thesis, “The intrinsic theory of elastic shells and plates” (University
of Toronto Library). The important fact about these residual terms is that, in the
case of small strain, they are small compared with the terms shown explicitly.

The substitution of from (4.48a, b) into (4.26), (4.28), (4.29), (4.30), (4.32),
(4.33), (4.43) etc., gives the expressions for in terms of pa3and gaR This com-
pletes Step (l11).

Expressions of Ta0, TaR, Lakin terms of paR, qaR. If we substitute the expressions
of E°m\ from the results of Step (I11) into (3.30), (3.31), we immediately obtain the
set of eight quantities TaRand L ak in terms of the six quantities paBand gaB\the quan-
tities X[m, Q* are supposed to be given. Therefore for the membrane stress tensor
TaB and the bending moment tensor L aB, we have

TR= Afoxprd - BafxgTxtim + E {, X0 x/3+ §X $xX@xx|f

- Atr°gryqut™ + ~ -1'\;ad°BA\iy{psy’\)ut

+ CrfIXPxx«@ - (@A $r + axA "y)P ry® + C%rXp ™

+ 12‘{1 —_CFS “a°t+ £u)ftO} + {X}+ T& {Q}+ 0778, (4.49)
Lal = rtlarylUa”pxid™ + B2 p™I™ <+ -jiftxVv *(3)}

+ — 7 ~ )A\\:}y{ZQ>dV+

12(1 — &) H(Ptm - AX%,/W - 2QV 3)

- +02f,, (4.50)
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where Q(io) stand for the residual terms. The other abbreviations are
A = 5aa"arX+ (1 - a)aaTolx\,
5 1- R ’ (4.51a)
1 / "2
AY'EF = e <<gafiaTiatX + (1 — a)aaTaayX - aataryaix
6(1 —<12 | 1—@
aa°raSraix| = I j/1“?xXVx - f (4.51b)
= 77— ~ {dor77aX+ (1 - <nN&*}+*, 4.51c
U - o ¢ (- <&~} (4. 510)
BmX= cr(8//ad3arX - a"bxX- 35“a
12(1 - a2 fer( &%
+ (1 - cr)(&HaaTaPx - 35°VX- Pxa")}, (4.51d)
Bf;x = ———--———-{cr(4//a”arX — 3a“"6xX — ax>oni)
41 —a)
+ (1 — cr)(4//a*xaiX — 2baTaPx — anx5fly) }, (4.51e)
1
£ = — - 1 4<r- 77aaxaxs + (1 - cr)4HaaxXarS — cr(@ax + 5&“r)
6(1 —a? (1 —a
- 21 - aBxaxd + [a0b69)j |, (4.511)
.. a 4a(2 — 3a)
C2f;X = mmmmmmmmmmmee <(4 - 3eN//5X + — - T72axX
O 41 - - o
- (8- crXaxx a7 (4.51g)
1 ( 1— 2r
CofiX = =mommmmmmeee T 21 - cr)//(aa5X + Saxa ) ------------ 5refX
6(1 - a2 | 4
4a2 cr(l — 4a)
- f(1 - cnbax*xH IPaawarX - alla™brX + —---—----- T axX
1 —a l1—a
cr(l — 3a) )
- 8(1 - <r)Kaaraex Xa“OaxM , (4.51h)
1—a )
», > a ( 2(1 - 2) w ) 1 a
o = 77 7 a*x 1Y N e DR o ™ - | oo AY D
T°& le_d;adfjth - BX Wgtt 5 TR X?0d@
{MI - 4<96“iX[0] + 4crFa~X?0i + <ra<*Y?n}/», (4.51i)
6(1 - a
Tfn {x] = - * an(Xlol/@Q)x! - —
{x] s Ly FXIVAN - o

—ra“ra™(X[o]T\ + X[o]x|r"<d). e (4.51))
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SR (e a°$1W + 2UaZ)W> },.f - **QJris>

4(1 —a)

- i{aB*(HQ®)I, + a°*{imu )t~ + - 9° Ado)ITt

a’(QTH) Irum H sHQATU
4(1 - o)a(Q ) Irm 41 - q)zaa> QiTUm

-1 20
+ —gaaalél Br + aPxbar — baXaPr — bRxaal H — addptX
24 1—a

4o — 1 12c ) .
H ab'b°R HaalaXr >(?7*|xiG3). (4.51k)
1—a l1—a ]

Furthermore, by solving (2.5¢), we have
F“°.= MoVxaCLfx + Ms), (4.52)

in which L aB is given by (4.50) and M s by (3.34).

Equations (4.49), (4.50) express TaB and L aR in terms of palsand gaB. When L ak
is known, Ta>is calculated from (4.52). This completes the last step of the procedure
outlined at the beginning of this section.

It should be noted that papand gaR correspond respectively to the extension and
change of curvature of the reference surface So; X[m) is the normal derivatives of the
?2wth order on .Soof the body force, supposed to be given. If the form of the reference
surface So is given (in the strained state), the following quantities are known: aaR,
(1/2)baRr, (1/2)caR are the first, second and third fundamental tensors, H the mean
curvature and K the total curvature. Furthermore, if we know the positions of the
boundary surfaces of the shell in the strained state and also thé surface loads on the
boundary surfaces, then the quantities /<), d (m), Q(m)i, P (m*can be determined by
using (3.26)-(3.28).

5. Equations of equilibrium and compatibility in terms of the six unknowns pa
and gaB. Having now expressed the macroscopic stress tensors in terms of paand gal
we shall substitute these expressions into the macroscopic equations of equilibrium,
(2.8a, b). In consequence of (3.32)—3.34), this gives the following three equations
in terms of the six unknowns pak and aaR:

~ hb,,A\i;xp~t + + hbpyB W xg”tt™
“ + ibpyAd ' RugmgMtm - TAW XygrdW

- \b,,BWxpAiV> + — - a"bpyA\U\pm~ ) At
21- 9

~ + a”rA M) p Tix*<3>
- + \A\i;x{prd<*>), + (2Jfo'xy,x/w)ipt + P°

— HOQ>t+ 2HQ™ + KP™ + Ju{<2r} + /(2){Pr}+ /23){*°}

+ [?2«{*'} =0(*0), (5-1)
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#*01-+ {S'» W 0 - JBSfV*«B}I-*

¥ )X + (W "W ® ),, + (C rprylr)y
| _ga@ AW Kptyrth, - (M) TH
+ (C'STW®) p- fdr""d® )., + P“

H 2 - «@)|xRar + ZIlbyP™ + X(/76? - Kay)PWy + /(){(>}
-

+ 792){X°} + 723){X'} =0 (2. (5.2)

The symbols 4(f)r X A &ryXS, given by (4.51a, b), are functions of aaR; -B($rX, B°${x,
B(£*x, 5°5)rX, given by (4.51c, d, e, f), are linear functions of baR; and C$rX, C("tX
given by (4.51g, h), are quadratic functions of baR. The other abbreviations in (5.1),
(5.2) are listed as follows:

Ja>{QT} = m -- - ;-//{(&( + 2Hal)QH<S},,/ -

- . HQd{l
41 —a 1/'—'5) Qa{lt

A

+ 72@/\_ o 3 i((Q#) Ix - 1—_—E|//0i>§| «® ~ 6(1’\_ " aNQiX/@)ix
(

a dor — 1

1
4 HbXr - 2H2a>X -------------- K aXx} 6Qq{ 6 (3
6 (1 —a l1—a

+ \bI (HQ®|,/« + {Q™ + (Ka* + nbt)Q™ }ix (5.3a)
NPTy ={K4Eal + BNP®Xx+ fOX'XP«»} ix,
d/\

a
™) iX»} = + (277X720, + x°w) — - — —————-a*'(X ?20]*®)Ixx
2 3(1 — @)

(5.3b)

+ e ) {4772+ e6crK)X°[] + 2(1 - cnX°[i] + X?,,}/@

a (» 21 - 22 " ) :
— HAX?, - -V - 3X°WAA - (5-3¢)
21 —a) t 1 )

74, {X'} = i{X-[VWw}x+ I[W k + O)X[Dji® + X'i,/® }x

20 —a) 77(XFO/12) X/ + 3—(1—_3) 77Xfo,|xiid) + i4'xX [0lx|xi<e, (5.3d)
7<»{Or} = (L "_Cr3<'\j[{5x + 2P Q¥»]|x/ + 2QT\Tt

2[((2I77),x--1‘-_7ZrQ]x]«®3 .

- |{ [air (Q“77) x + a-(Qi77),x]/®} ,,
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1 (F r
aaXbBr + alxbal — baXalRT — bBaax-\----------- aallhXx
+ 24 l—@
- e
-1---‘-‘g ------ balRaX x -------------- Haalax
l—@ —a
+ (2Hai + b°)Q™ + (Kb% + 2Wb*“ - 2KHa%)Q™, (5.4a)

12{Z°) = gaT=ay &{[Z'1" 1 _a HX°AUZ

{[KI - 4<r)baBX°[d + 4<rHaalX\o] + era”Xfuli®},
6(1 —a)

BT KOti*")ix (5.4b)

793>{Xx} = X[o\t + |Xfi]d@ - i(277a; + bi)XWd™ +

3 {(Xfoii®),,/},, - — a‘KAlo, ,x*Q)\f
4(1 -er) {()} 6(1-Ier) @)
+ Eb%X?m 1». - |a "V A~ (X [olIT|x + X 10]x|x)i(3)} ~
+ \{2Ha% + 6?)Xrui®. (5.4¢)

Equations (5.1), (5.2) are the three equations of equilibrium in terms of the six un-
knowns paB and gaR. All the other quantities are supposed to be given.

The basic unknowns are the six quantities pat and gaR. To find them, we have to
solve the three equations of equilibrium (5.1), (5.2), together with the three equations
of compatibility, funished by the geometrical conditions.

We shall now convert (4.13) into a form in which paf and gaf are the only un-
knowns. Letus putin turni=o0,j —a, k—R, I=y, and i —p,j =a, k=R, 1=y in (4.13),
and then put rc°= 0; we thus obtain three equations in pa and gy' We now substitute
(4.37)-(4.40) for 70, p ao, ?00, qao, and (4.48a, b) for this gives three equations in
pal and gaR. Two of these, after being multiplied by j% and simplified by using (3.13),
(3.14), can be written as follows:

yjo] '}any\fi 1 go,lnbaBpr\yT bR (pa*\y T Pyr\a pay |X)
T 1- = JV
+ 1+ o)j<33a7 —GalKQy + " ) t>afQy | = 0(2),. (5.5a)

The third equation, after being multiplied by rfoflfo], becomes

2(1 - 3w)
lymvm ppRlay - vmvmgpagay H 1 axXX plIX+ (bxX- 4Hax{qgTX
—a
2(1 + cr)(1 - 2cr)
+ A QOK - (1 + c)(bxX- 47/axy<2xx = 0 (M). (5.5b)

l—a
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Equations (5.5a, b) contain the three equations of compatibility in pafand q«p; these
are to be associated with the three equations of equilibrium (5.1), (5.2) for the solu-
tion of plate and shell problems.

6. The equations of equilibrium and compatibility referred to the middle surface

in the unstrained state. The quantities aag, ba», which occur in (5.1), (5.2), (5.5a, b),
refer to the strained state. But it is usual in elasticity to regard the unstrained state
as given, rather than the strained state, and from this point of view 0a3 ba&are un-
known. We should use, instead of them, the fundamental tensors of that surface SO
in the unstrained state, which passes over into the reference surface Soin the strained
state. So far So has been quite general. Now we shall follow the usual method by
choosing So so that So' is the middle surface of the shell or plate in the unstrained
state. This means that Sois not accurately the middle surface in the strained state.
For the metric in the unstrained state, we have by (4.1)

Sii ~ S'i 2e,; (6-1)
and so, if we define
= (Li)ip—ot  bij = (g>.0) X (6.2)
we have

o)) — dall — 2pali, GO~ ~ 2pali AD — 1 — 200> 6.3)

baR baR 2 (JaRi ba 0 — 2Ca0» boo 2Q00i
where pij and are defined as in (4.4). a8 is the fundamental tensor of So'; we re-
gard it as given. We may substitute in the proceding theory

OB = @B+ 2pab- (6-4)

The tensor b” does not represent the curvature of the middle surface SO in the natu-
ral state; since in general £;j"0 on SO, the parametric lines of x° cuts So' obliquely.
Let us introduce the normalcoordinates x* based on So', choosingx“=xa on So', and
x°normal to SO. Themetric corresponding to the coordinates x:satisfies

$00 = i ;00 = 0. (b-5)
Let us put
&al i bal3 (Leant 6-6
=(¢al ~ . -
(cai) 9 2 ( dx° /X »-0 (6-6)

Now gij and gy are metrics corresponding to the coordinate systems x‘ and x*re-
spectively, for the description of the geometry of the unstrained state. Hence the
tensor ¢jj-determines gy, and vice versa.

It should be noted that the quantities (1/2)baR are the coefficients of the second
fundamental form of So'; they vanish if So' is a plane. The radius of curvature R in
the direction of a unit vector (R counted positive when So' is convex in the sense
of x° increasing) is*given by
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We proceed to find in particular the quantities (6.6). In thefirstplace,since
xa=xaon So', we have

&R daft dal  &®“h 2paR (6.8)

We now follow astraight line normal toSo, starting at the point x“. Sinceit is a
geodesic, we have (cf. 6, p. 301)
dax' (i) dx’ dxk
<> e =0, (6.9)
(dx02 1jk) g=dx” dx°

and so we can develop x| as power series in x°. For x°= 0, we have

_ . dx' g0
xa=x" o x*=0 g0 TGO (6.10)

where gni is the conjugate of gy. The last follows from the fact that the line is nor-
mal to So, and so
dx’ dx’ dx'
‘ai = 0, ii = 1L 6.11
g dx° J dx° dx” ( )

On carrying out the development in power series, and using the transformation

dxm dxn
éij=gmn— — > 6.12
1=9 dx' dx’ ( )
we obtain after a little calculation
baB - 2qak = bal = baR{a’W)W + daoBR+ dBoa+ 2[aR, y]a’a'r/a'™ .(6.13)

where a/i=f,*, for x°=0. The Christoffel symbol is calculated for daB. By (4.10) and
(6.3), we have

am = 1 + 2plo+ 07> (f), 5te= 2P*>+ OG,(ff). (6.14)
Thus (6.13) becomes

baB — 2qa = bal= baB — baBpoo — 2p0a\R ~ 2poR\a + O(26)oR("2), (6.15)

where a under the stroke indicates the covariant differentiation with respect to x*

and aaR.
Let us define p aR, QaR so that

2Q —ba®  baBj  2pal  2pal dal S} (fi* 16)

then the extension and change of curvature of the middle surface So along the direc-
tion of a unit vector yf(] are given by

P «sy“oivfo]i QaRyfoiym- (6.17)
From (6.15), (6.16), we have in consequence of (4.37), (4.39), (4.48a, b) and (6.8)
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a (I + tr)(I — 2a)
PIE R I (J— arxb aRP*\ H balQ® + (1 + <NQW
1 — e 2(1 — en a
+ 1+ <r)QI§a+ 0(27)«0, (6.18)
bo® — 2qaR -j- baR}  daB  2PaB “f'&B, ~ PaB  PaRe (6. 19)

The symbol 0 ~)aR represents the residual terms with the order of magnitude shown
symbolically by

0 (208 =0(27)ak(p\ §P,& ,pd, bpt™, gt™, QH, bQ°tm, bQd, Qt<* qQd,
bx°d, Xd, XtV\ gXed). (6.20)

Let us now denote the thickness of the shell or plate in the natural state by 2h.
Then by (6.10), (4.10), (6.1), we have

r &= dx° r & r (00) w,2, O
h=Jo 7AT77 =J0 "~ e < - (6.21a)
h=f° — = fo - er+ OB)e2]d/. (6.21D)
By (4.3), these become
1)) 2 2 2
h ~ b(+) —p A® + 09 AM), (6.22a)
A= A - p A<, + 0(30)(A2*(-), 2 qplhz-i). (6.22b)

Substituting (4.37)-(4.40) for pm, g<0, (4.48a, b) for £$] and (6.18), (6.19) for gaR, paR,
daR, baB into (6.22a, b), we have two equations for the determination of /i(+) and /z().
We now solve these equations for hl+) and /q_). In deciding what terms to retain ex-
plicitly, we note that, for a thin or plate undergoing small strain, the quantities h,
Z+), AQ), PaB, <2* X[m] are small. We obtain

At = h et ha G0N o b (6.23a)
E N R — A + = 0°h + ,
’ 1— auprx 2(1 — 0) B ' 2
c @+ <na —29?
ACS = A oo app A+ - _TReoon + 0 M. (6.23b)
1% 21 =)

The O-symbols represent the residual terms with orders of magnitude shown symboli-
cally by
p-th, Qh, pQh, ph\ Qh\ Xh\ gh\ (6.24)

Hence from (6.23a, b), we have immediately, in the notation of (3.26),

( 720 % eyl =20) )\

I<») = 21 a*pA + <) + 0(393), 6.25a
) \Y/ 1- o P 211 - &) ) 33) ( )
> = 0 (34), (6.25b)
where
0(33) = 0<33)(pA", Qh n,pQh», Qhn+l, XA"+\ phn+\ ghntl), (6.26a)

0@3>= Om)(Xhnt\Qh™+\ ghnt\p h n+l). (6.26b)
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Similarly, substituting (6.23a, b) into (3.27), (3.28), we get

P<ap<= p'a"+ 0<3),

L= BV + 0(),
where

0;%
0{», = 0-36,(QpA", Qh \ QXhn+lL,Qghnl),

QJX)(Pphn,"PQhn, PXh»+\ Pqhn),

323

(6.27a)
(6.27b)

(6.284)
(6.28b)

where P “and Q' defined by (3.28), represent the sum and difference of the components

of the surface loads with respect to the surface Soin the strained state.

With (6.18), (6.19), (6.25), (6.27) established, the expression for TaR, L aR, Tao0 in
(4.49), (4.50), (4.52) will now be reduced to forms involving p aB, gaB instead of paR,

gaB. The results are as follows:
(i) The membrane stress tensor T aB,

Tf>= 2A&4prxh + A$;yUbxsqryh* - A" ;yUq Tygxih3 + i +08%$

(ii) The bending moment tensor L aB,

L* = n$ax{UaTq™ + 2A AAb x ip Rh*

+ 1 $ja° - 44X - \) - bgQ*\h3+ 0%$>.
<'1)In % o a ZQa) al)J

B(1
(iii) Th-e shearing stress tensor T a0,
Pa0 = 2{A\t)tpyb n P ~ + - ¢ [ifW 3}Ir + Qah
+ \{4HPa+ aalb*yP')h2+ (aTyPa+ aaTPy)qTyh-
(v . ( 4a ” xr \
a“

+ — HQ* - 4*70, + a”quQo
61l —< (L \1 —0 1~4« /

b»<? - 2qaTQ° h=*| i, + J{(4Ha% + b*)X\0) + X\«}**
+ f(a®gq”a? + a-g,x)Z)0A3+ Of0,.
The residual terms in (6.29)-(6.31) are

O0t8 = 0“38)(ApA3 Qh\ pQh\ XQh\ gph\ Xph\Qqgh\ bph\ gh\
bQ>h\ Qhs5,X h ),

0$) = 0&,(p2A, Qh, Qph, ph\ Q*h\ bQh\ gQh\ Xh\ bgph\ g*ph\ gh5,

073,

0?39)(0pA, QQh, Q Xh\ Qgh\ bPph\ gPph\ hPQh\ qPQh2pgh\
bPgh3 Pg3 bPh\ bph\ gh\ b3Q*h\ tf-Qh3 Xh3.

.. (6.29)

(6.30)

(6.31)

(6.32a)

(6.32b)

(6.32¢)
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The abbreviations are as follows:

A“)TX= T {aaafarX + (1 — a)aalaRx}, (6.33a)
A°v7U = ?3(1 ~ ai}*iXA“» 7+ & tAw 7> (6.33b)
A$ruU = -WxA°?2r - - - - - - aTIA(Pix - - AanAffi7,  (6.33c)

2(1 - o
d~rXg7 = i\~:~a ¥r- 2aBA?23- a'M<f7+ a»i4foPTj |, (6.33d)
«toj = (a)_l/2A's, a — det. (a@®, el= e2 = 0, (6.33e)
e= _ =1,
H=\a'xb", (6.33f)

where H is the mean curvature of the middle surface So in the unstrained state. All
these quantities are determined by the geometry of the middle surface (in the un-
strained state) of the shell or plate.

With (6.18), (6.19), (6.25), (6.27) established, (5.1), (5.2) can be reduced by direct
substitution to the form involving p aB and gaf instead of paf and gafl. Thus we have
the following three equations of equilibrium in terms of p aBand qaR:

—AMpb.yPrxh —2Afi)Xqpp T\h + fAE** (q*\h3 |p7

- lAarUbpybnqgrdia+ A"rrUgTagqnbpyh3+ A ~ uUq rugxiqpyh 3

1- 29
+ P° + 2X°mh + {QIh)\r + HQ*h
a 1 — cr
1-2(7
+ . qu\a'DQ"h = 0(0), (6.34)

2A(F;x(prxA),p+ AXrXbug*yh3, + \A}*arbry{g*h3I?

- ApljX(qrygsshd\p + "aalq TyA jA 1 (gkshd IR -f aay(Q°h)IR

1 — (7
+ P“+ 2XA+ (2Hat + K)Q'h
+ (arqgrxaf + 2a”qri)Qh = 0?41 (6.35)

where

O20) = 0°m (Qph, QQh, QXh2 Qgh2 bPh2 qPh2 b2P°h2 q2P°h2gbP°h2
bph3 bQ°h3 gqQ°h3 Qh3 Xh3 qph3 ghH, (6.36a)

Oon, = 0%, (p2A @h,Qph, b*Ph2 bqPA2 qPA2ph3,Qh3xXxh3gph3 qh3.(6.36b
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The abbreviations Aft?*, A[3™™ are given by (6.33a, b, c), while A $ is
given by
- 1 ((9a — Mtr
A\Z) e — <
6(1 —ad ( 1—a

+ 9(1 —<na"araV + (11la - 2)ax‘axa{l]. (6.37)

aPlax‘axi - (2 - 7a)abraX‘aPT

All these tensors are determined by the geometry of the unstrained state.

If we were to substitute (6.18), (6.19), (6.25), (6.27) into (5.5a, b), we would im-
mediately obtain three equations of compatibility forp ap, gap, with certain terms not
explicitly calculated. However it is wiser to adopt an entirely different method, for
the required equations of compatibility can be obtained in an exact form by a purely
geometrical method.

We first introduce the equations of Codazzi and Gauss for the reference surface
So in the strained state,

Maply  bay\fi —~ 0, (6.38a)
Rpafly = ¢(bpfibay  bpybfja"), (6.38b)
and the correspondingequations for the middlesurface Si in the unstrained state,
bapa\y — ba7aii9 =0, (6.39a)
Rpafiy = \{bpfibay — bpybzv). (6.39b)
Here we recall that
baflly  baPy  &"[uiy, p]lg™V3 plo™alr, (6.40a)
¢o/?zlt = ¢ 0B7 —aTf[ay, plabpT—a"f/Sy, plabax, (6.40b)
Rpctfiy  ~(“P7,00 T da@Bpy @pfi,a ay,pff)
+ axX{[py, x]1,.[a/3, X]» — [p/3, 7rla[ay, X]a}, (6.40c)
RpaPy  27py,aP T aapp7 &fday &ay,p(l)
+ axX{[py, 7rla[a/S, XJa — [p/3, 7r]a[<ry, X]a). (6.40d)
Furthermore by definition, we have
a“" = 5 saxj, a = @V {axaarg, (6.41a)
a™ = “en'saxj, a = |exX¢mxjamw (6.41b)
ay — 6y = ie~eaxsapy, a* —5' = ~c™axja,”, (6.41c)

where 5* is the Kronecker delta. Substitution of axj from (6.19) into (6.41a, c) gives,
with (6.41b)

o
l
I

” @rgav j + a™), (6.42a)

1+ Zi07J0!PxiPr7 + 2p Txaxb, (6.42b)
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Sy — — {8y - 2p\yaXr + 2%[0C?io]Pxiap7 -j- 4?7/iolJ7[0]Px5piY }, (6.42c¢)
a

where njj] is given as in (6.33f).

We now multiply (6.38a), (6.38b) respectively by (a/a)ng}, (a/a)nfQn”[, and sub-
stitute aaR, baB from (6.19) into the resulting equations. This gives, in consequence
of (6.42a, b, c) and (6.39a, b), the following three equations in p a? and gaf\

2«fld<BcyST( + 2]lo]Mo]p™pxa + 2a™p*f)

—nft](2qBr + bRX)(@™ -f 2nioXn“0]Px5)(Pc,«|7 + P Mk>—P«tl«) = 0. (6.43)

(1 + 211(0]"roiPxiPxy + 2aTp T7) {2n'[ojn"0]Ppii|a(3
+ nfan% qp,qal + 2a°*palBK - (4Ha* - b**)gaR)
1 *I[O]A[O] (3'|W‘I“2nf0] [quPXi) (p*p [y “l“Pyv\p Pyp |*)(Pa0i |IS“f“P R<a\a PaB\u) 0) (644)
a a a a a a

Equations (6.43), (6.44) are the three equations of compatibility for p a and ga$\ these
are to be associated with the three equations of equilibrium, (6.34), (6.35) for the solu-
tions of plate or shell problems. We note that K is the total curvature of the middle
surface S/ in the unstrained state, and satisfies

K = I(azybTyaub\S— b”b*/). (6.45)

Conclusion. Equations (6.34), (6.35), (6.43), (6.44) are thefinal forms of six
differential equations in the six unknowns p aR and qaB. Here p a®and qgaB, as indicated
in (6.17), represent the extension and change of curvature of 50, the middle surface
in the unstrained state. With p aB and gak known, the macroscopic tensors TaR, T a0,
L aB can be calculated from (6.29)-(6.31).

We recall that the tensors aaR and (1/2)baR are respectively the first and second
fundamental tensors of the middle surface So in the unstrained state; H and K are
the mean and total curvature of SO as in (6.33e), (6.45); < is Poisson’s ratio; 2h is
the thickness of the shell or plate in the unstrained state; P* and Q*‘represent the sum
and difference of the surface forces on the upper and lower surfaces of the shell or
plate in the strained state as in (5.28); are the normal derivatives of the body
force on the reference surface So in the strained state as in (3.24). All these quantities
may be regard as given. The covariant differentiations are calculated for aa and x*“.

We also note that the six equations (6.34), (6.35), (6.43), (6.44) are exact, in the
sense that no terms have been omitted, but of course the residual terms, represented
by O-symbols, have not been calculated explicitly. However, it will be shown in Parts
Il and IIl that in allcases of small thickness and small strain, the residual terms are
small compared with those shown explicitly, and it is legitimate to neglectthem in a

first approximation.
(To be continued)
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ELECTROMAGNETIC WAVES IN A BENT PIPE OF
RECTANGULAR CROSS SECTION*

BY

KARLEM RIESS
Tulane University

The analysis of electromagnetic wave propagation in a bent pipe of rectangular
cross section, (x=R,x=R+a, y=0,y =b), is based on the Maxwell field equations,
expressed incylindrical coordinates (r, 6, y) (Fig. 1). As in the case ofthe straight
pipe,1the time variation is given by the exponential ei", where toisthe angular fre-
quency. The angular variation is given by where 2 is the propagation constant

for the bent portion. The equations may be written
- 2Ev - rdEe/dy + rjup.Hr = 0,
dEr/dy — dEWdr fjwplle — O,
rdEe/dr + E$ + 2Er + rjwpHy = 0,
—21lv—rdllo/dy — rjoieEr — O,

dHr/dy - dHy/dr - jweEe = 0, n
rdlle/dr f- lie T 2//r — rjoieEy = 0,
rdHr/dr + Hr - XHe+ rdEjdy = 0,

rdEr/dr + Er —2Eg f-rdEv/dy = O.

In (HeHt, Hv, Ee, Erand Evare the components of magnetic andelectric field,
e is the electricinductive capacity, and the magnetic inductivecapacity. The elec-
trical conductivity, a, and charge density, p, are assumed to be zero.

The field components Hr, Hy, E rand E vmay be expressed in terms of He and Ee by
various combinations of the equations (1). These give

IriGH) = - 2rdHe/dr - 2H, - rju>tdEe/dy, (2a)
Iy(Gr) = —Urdlle/dy -f- rjueEe + r-jacedEg/dr, (2b)
Er(GH) = - 2rdEe/dr - 2Ee+ rjupdHe/dy, (2¢c)
Ey(Grd = — 2rdEe/dy — rjoeplle — rdwpdHe/dr, (2d)
where
(Grd = 22+ rwpt.
Using the last two of Egs. (1) and Eqgs. (2), Il, Hv, Erand Evmay be eliminated
and equations in He and Ee readily obtained.
3f1 dlrllel IJ_Hg + Q- d2||e+_£10|e dEe_dG—I_ 0) (3a)
drLGr dr J dy2 2 dy dr

* Received June 29, 1943. The paper constitutes part of a thesis submitted in partial fulfillment of
the requirements for the degree of Doctor of Philosophy at Brown University, May, 1943. The author
wishes to thank Professor L. Brillouin of Brown University for his many helpful suggestions.

1This case has been discussed by Lord Rayleigh, Phil. Mag. 43, 125-132 (1897); Brillouin, Rev. Gén.
de Ifilec. 40, 227-239 (1936); Schelkunoff, Proc. Inst. Radio Eng. 25, 1457-1492 (1937); Chu and Barrow,
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_0TJ_ d{rEe dZEe rjoip dHe dG
+ Ee+ G-1 0. (3b)
dr LGr dr J dy?2 2 dy dr
The boundary conditions for this case are
y— 0,y =h Ee =0, Er=
Co _ _ 4)
r= R, r=R+a. Ee —0, Ey=
A more useful form may be obtained from (2d):
y — 0,y =h Ee =0, £r= 0. .
r— R, r —R -fa. Ee =0, d(rHe)/dr = 0 ®)

By considering Ee and He as functions of y and r, these conditions establish the
dependence of Ee on sin kw, and He on cos kyy, where ky=mr/b, n being an integer.
By substituting

Ee(r,y) = Ee(r) sin kvy,

Ile(r, y) = He(r) cos kyy,

in (3) and simplifying, equations in Ee and He as functions of r alone are obtained.

d2He dHe
+ A{r) — + B(r)lle + eC(r)£6 = 0, (6a)
dr2 dr
dZEe e
| + A{r) + B{r)Ee + pC(r)He = 0, (6b)
r2
where the coefficients A(r), B(r) and C(r) have the values
1 222 1 222
Afr) = —-t—= -1
r Grz r r(22+ rawpt)
1 222 1 222
B(r) = G- kg + wde kl +
r2 Gr4 rA22+ rWpt) ()
2j k.jwX 2jkywa<
C(r)
Gr2 (22+ rWpe)

Equations (6a) and (6b) show that Ee

and He are not independent in the bent
pipe. Furthermore, Ee and He do not
vanish in this case, hence the methods
of solution used for the straight pipe
fail. Ee and He are not expressible in
terms of Bessel functions. One possible
method of solution of these equations,
namely to substitute

{py2He + (t)ll2Ee,

(pyiHe - (QlI2EQ,

fa

and thus to obtain separated equations
in <& and 02, is incorrect because the
boundary conditions (4) are not satis-
fied.

Equations (6a) and (6b) have been
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solved completely by a method of approximation, using the theory of the
Schrédinger equation with perturbations. Only the zero order and first order terms
are considered. This does not affect the generality of the solution, because in
practice the radius of curvature of the pipe, R, may be chosen very large compared to
the constants of the equations and to the dimension a of the pipe.

To rewrite (6a) and (6b) in the familiar Schrédinger form, let.’

{rI-h)/IR = B,
r=R+ s=R(1+ s/R), 0 <s<a, (8)
7 = 2/A.
Thus
dR/ds2+ fi(s)dB/ds + g(s)R + h(s)eEe = 0, (9a)

d2Ee/ds2 + f2(s)dEeds + g(s)Ee+ h(s)pHe

0. (9b)
The coefficients, to the first approximation in i?-1, are given by
Ms) = R~K- 1+ 2yak2, Ms) = 1N(1 + 2yak 2,

g(s) = K2 - k\ - 2y2s/R = kl - 2yxs/R,

h(s) = 2jkuvy/RK?2
where

K* = y2+ coVe = kIl + ki
Continuing the approximation, Eg and B may be written as
Ee = (Ee)0O+ RMEe)i +.mmm, B=Ro+ R~'Bi'+mm’, (10)

and the perturbation of the angular coefficient for each case as
kl=k] + R-hi for Ee, k\ = k]+ R”In for R. (12)

By substituting (10) and (11) in (9), the zero order and first order approximations
may be written separately. For Ee these are

A + ti(Ee)o= 0, 12a
e (Ee) (12a)

d2(Eex [ d(Ee),, . .
[1 + 272UT2] + (Ee)ik2
ds2 ds

2j kwo)u(Ho) o )
+ ei(E9, - 2yxs(Ee)o+ ) woju(Ho) = 0. (12b)
RK?2
The zero order equation (12a) has the same form as the equation for the straight
pipe, with the solution
(Ee)o = Em,nsin k,s, (13)

where m and n are integers.
Similar equations may be written for (3, giving
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Eq. (12b) may be rewritten as

dE—e)i+'E': i + 2yX(Ee)0
t -
ds2 i(Ee)i ei(£s)0 yX(Ee)

-(H.wr)jw i-i~n W l. (,»
Ql A2

This is the general form of the Schrodinger equation with perturbations, where the
usual perturbation factor X is equal to 1/i?.

By using the orthogonality condition for the Schrddinger theory, the value of ei
may be readily determined:

I* a I» a

J0 (—dAd+ 2yX)EI,nsin2 kssds —_I0 (1 + 2y2 K2k,Emn cos k,s sin kads
J

»a
/ 2jkywpyK~H mnEm,n cos k,s sin k.sds = o.

Therefore n

c\ —y2a-
By using this value and (13), the first approximation (15) may be solved for (Ee)i.
The solution, satisfying the boundary conditions, is given by
(Ee)i = Emncos £,j[(72))(ff —j)(279)_I]
+ Emnsin ks[(i)(2$-> JT2- 1+ J

— Hmn sin k,s[(jkvswpy)(EjjE,)~1]. (16a)
In like manner, from the j3approximation equations,
hi = y2.

Since ei = /ii, there is no change in the angle variable during the perturbations. The
solution of the 3 equation, satisfying the boundary conditions, and corresponding to
(16a) is

0i = Emncos ¢NM(/¢,SioeyXMArd-1] — Emnn sin kg[(jkyWty)(k]K2-1]
+ Hm.n cos fe,i[(i/2) (] —2y2K 2+ yZ k\)]
+ Hmnsin /fe,s[(2™)-1(—y2as - 1+ yz2j2 + 2y2K 2- y2k2D}. (16b)

The complete solutions of (sa) and (sb), including both the zero order and first
order approximations, may be written as
Ee = {Emnsin £s[l + cii] + Emncos k.s[.2(« — s)c2]
—Hmn sin £3j[/icas]} {sin kvyeiut~™3}, (17a)
He — {Hm,n cos ¢,,s[l + Cii] —H mnsin fe.i[i(a —s)c2 — c4]
— Emnssin k,s[tCe/k,] + Emn cos £ar[ecss]} {cos kyye’a*-™}, (17b)
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yl | yl yl
Q— f Gi= - ;
2R&; 2R RK2 2Rk,

n AL T2 1 72
G 2M 2 ca~ 28 # 28 # i?#2

By using (2) and the approximations (s8) and (10), the components H,, Hv, Er
and Ev are seen to become

—K®Hr=

KHIly =

- KZEr =

—KEy:

{Hmnsin #*[- yk.{\ + cis - s/R + 2y&/RK*)
+ c2(2s —a)y —juneczkys]
+ Hmncos ks[7 {ci + R-1—cX(a —i)#} + yk,Ci\
+ Emnsin k,s\jo3tkv(1 -f- Gs + 2yX/RK2 — k,czyes}
+ Emncos k,s[jwekys(a — s)c2]}cos kvye’ul~se, (18a)
[Emnsin kss\jwt{ci — k,s{a — s)c2+ i?-1} — (c3# 7 «)(#)~1]
+ Emncos k,s\jutk,{\ + Cis + 2yx/RK2 —jut(2s — a)c2+ ¢j,c37 «]
—Hmnsin k,s[j*ntcz + yky{s(a —s)c2 — c4}]
+ cos #s[ —jo>nekscE + 7#(1 + Cis —s/R + 2yX/RK2]}
sin ¢,ye’""-2% (18b)
temnsin KSiy(d—cx(a - s)k, + s-13 — {kyCqu>tit){k,)~I]
+ Emncos k,s[7r,(1 + Cis —s/R + 2yZ/RK2  jwiekwzs —c(2s —a)]
—Hmnsin #s[cara + jwiikv{s(a —s)c2 — c4}]
+ Hmn cos kss\jtoixky(\ + cis + 2yx/RK2 — ¢,c37/js]}
sin kyye’ut~29 (18c)
sin #s[7 &,( + cii —s/R + 2yx/RK2 — c3k,jufits]
+ Emncos k,s[ykws{a —s)c2]
+ Hmnsin kB [—ju/ikEl + GS+ 2yXx/RK2 + jo)nc2(2s — a) — kycXyfi]
+ Hmnncos kB\jun{ci — kB(a —s)c2+ s -1} + junket]}
ecos kvyeiut~z$. (18d)

The solutions for the field components (18) satisfy the Maxwell field equations (1)
within the approximation conditions imposed on the solution of the problem.

For the special cases of Hm,n and Emn when one of the integers m or n is zero,
the components may be obtained from (18). For m —0 and u not equal to zero:

Eg — Ho,n[juid.ykys(a — jJ/jRjSTiidsin kvyeJ'! e,

He =
KIHr =
KIHy =
-KIETr=

Ey ~

HOn[l - s/R - y2Zs22R + 77/327?]cos kvyeiJl~z\

- s)R~I(*ekl/Km + 72]cos ¢,ye"“"-29,
HO«[kwR-'(- triua/KI + R - y2s22 + 7V/3)]sin kyye'r~-\
Ho,n[j*kyR-1{y2a/KIl + R - s - y2as22 + 7V/3)]sin kvyeiu* se,
0,
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where
KI = 0= kl + y*alR.

For m not equal to zero, n = 0:

Ee —o,
He = \Hm,ocos A,i[l + Cis] —H m,0sin —s)cx —c4])cos kvye’u‘~se,
— KIHT= |lim,0 sin kss[ciy(2s —a) —7~,(1 + cs—s/R -f 2yx/RKI)}
+ lImocos ¢S[7 {ci + — Cis(a — i)™} + ¢scar J}cos kwyelul~~g,

Hv = 0, Et= 0,

—KIEy = {Hm,0 sin ¢,s[—jo>nk,(I + Cii + 2y”*s/RKI) + jwixc”*s — a)]
+ IImocos k,s[jun{ci — k,s(a —j)c2 + i?-1} + /ay“T&»]cos kvye *““~xe,
where the ch c2 c3 cs4 are calculated for n vanishing, and
Kl = (A12,,,0 = k2+ y*a/R-

It should be noted that both the E 0,nand Em,o are missing.

A consideration of the continued propagation of E and Ii waves from a straight
pipe into a bent pipe yields some interesting results. A pure or Hmnwave in the
straight pipe will be reflected, partially, at the junction with the bent pipe. After
reflection the amplitudes are proportional to a/R, and intensities to a2 R 2 hence, for
the first approximation, the reflected portion may be neglected. Thus a pure Emnnor a
pure Hmn wave in the straight pipe may be traced into the bent pipe, where it will
become a mixed E and H wave.

For a mixed E and H wave in the straight portion, the intensities are proportional
to a/R and must be considered. A mixed E and H wave in the straight pipe, because
of the reflected portion at the junction, sets up an undetermined condition within the
pipe, not predictable from the results of this paper.

If the propagation constant is measured along the center line, a/2, of the bent
pipe, there is no change in its value from that of the straight pipe.
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AN APPLICATION OF ORTHOGONAL MOMENTS TO
PROBLEMS IN STATICALLY INDETERMINATE
STRUCTURES*

BY

W. M. KINCAID and V. MORKOVIN
Brown University

1. Numerous methods have been devised for determining moment profiles: in
statically indeterminate structures. Most of these can be classified as either approxi-
mate or exact. The approximate methods are usually simple to apply, but when em-
ploying them it is necessary to specify numerical values for the dimensions and stiff-
nesses (or their ratios) of the structure involved. The exact methods consist in solving
systems of linear equations obtained by setting up relations between generalized dis-
placements or by the equivalent means of using Castigliano’s Principle. As the degree
of indeterminacy of the structure increases, the solution of the equations becomes
more laborious. Most of the methods aim at reducing such labor by a suitable choice
of unknowns. This paper is an attempt in that direction.

2. Consider a structure whose degree of statical indeterminacy is N. Denote by
M the true moment profile in the structure under a given load, and by M 0the moment
profile under the same load when the structure has been made statically determinate
by removing N constraints (the so-called basic structure). The effect of the removed
constraints may be replaced by the combined effect of N unknown generalized forces
(couples and forces) Xi, X2 mme+, Xjy. The generalized displacements of the loaded
structure at the points of application and in the directions of X it X2 « « m, Xn, are
assumed to be known and will be denoted by Si, S2 « « m, s#. (If X,-is a couple, 5-is
a rotation; if X,- is an ordinary force, s-is an ordinary displacement.) Let Mi be the
moment profile obtained when the force corresponding to X ,= 1, X~ O forj”i, acts
on the (unloaded)basic structure. Then the moment profile X.-M,-represents the effect
of the fth constraint. Superposing the moment profiles due to the load and the con-
straints yields the true moment profile M:

N
M = Mo+ E XtMt. @
i—
The unknown quantities X; in (1) are to be determined by means of Castigliano’s
Principle.
Disregarding as usual the contributions of shearing stresses and axial forces, we
get for the total strain energy U the following expression:

V=jf Max, (2)

* Received July 1, 1943,

1 By the moment profile of a structure under a given load we understand the magnitude of the
bending moment as a function of position; the graph of this function is commonly called the bending
moment diagram.
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where dx' =dx/El, E is Young’s modulus, I is the moment of inertia of any cross-
section about the neutral axis, and the integraf is taken over the entire structure.
Castigliano’s Principle states that

du
— =i (i=12 ¢, A0
0A({
or, by virtue of (1) and (2),
N r
MoMdx'+ E X, MiMjdx' = 5 (¢=1,2,---, N). (3)
J-t J

It will be observed that (1) and (3) are still valid if each Al- represents a set of
generalized forces (rather than a single force) acting simultaneously at different
points. (See for instance Fig. 2d.) In such a case, each §- would be made up of the
generalized displacements corresponding to the given set of generalized forces.

Previous attacks upon the problem have essentially consisted in choosing the
points of application and lines of action of the unknown forces Xi so as to make the
system of equations (3) as simple as possible. Thus the moment profiles Mi were
completely determined. We propose to reverse this procedure by specifying the mo-
ment profiles Mi first. Let us choose these profiles so that

/ MiMjdx' = 0 (i,j = 1,2, *me N; i j). (4

Then each of the equations (3) will contain only one unknown, and we get at once

5-—fMoMidx'
Xi = (i=12--+,A0 (5
fM*dx'
The true moment profile M may now be obtained by substituting these values X;-
into (1).
It will be recognized that equations (4) require that the moment profiles Mi form
an orthogonal system over the structure. Such a system can
always be constructed by the standard orthogonalization
process from the original set of moment profiles (or any simi-
lar set of linearly independent moment profiles).2 Therefore,
the system of orthogonalized moment profiles and-the corre-
sponding generalized forces which appear in (5) will consist
of linear combinations of the original sets of Mi and Xi, re-
spectively. In most practical applications, the exact form of
these relations, as well as the physical interpretation of the
generalized forces Xi, is immaterial; only the orthogonalized
moment profiles Mi are needed. The simple example that

follows will illustrate the notions introduced in the preceding Fig. 1
discussion.
3. Let us consider the triply indeterminate bent ABCD (Fig. 1), which has un-

dergone a vertical displacement d and a rotation 6at D (as a result of a settlement of

2 A discussion of orthogonal systems, explaining this process, will be found in R. Courant and D.
Hilbert, Methoden der Matliemalischen Physik (Berlin, 1931), vol. 1 p. 40, or in E. T. Whittaker and
G. N. Watson, A Course of Modern Analysis (Cambridge, 1927), p. 224.
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the foundation). The member
AB is subjected to a uniform
horizontal pressure p. The stiff-
(2b) nesses.E/of the membersAB and
CD are assumed to be equal. In
this and succeeding examples,
the positive direction will be
taken as downward in vertical
members and toward the right
in horizontal members.
The solution will be carried
HifTTw out as follows: (1) the construc-
tion of an orthogonal system will
be shown, and (2) this system
(2¢) ud) will be used to obtain the desired
moment profiles.

Figures 2a, 2b, and 2c show
three self-equilibrating systems
of generalized forces and the
corresponding moment profiles;
it is obvious that any set of re-
actions (in equilibrium) can be
built up by superposing these
three in the right proportions.

We note that the moment
profiles Mu and Mu are sym-
metric with respect to a vertical
axis through the midpoint of BC
and would be orthogonal to any
antisymmetric profile. Therefore

Fig. 2 we replace Mu by Mu (Fig. 2d).

It remains to replace Mu by a

linear combination of Mu and Mu, say aMu-\-0Mu, that will be orthogonal to Mu-
The orthogonality condition reads

2/1 VA 21 21

0 =aJ MuMu,dx'+ oJ Mndx'" =.a(V + h") + 0(1' + 2k"), (6)

where I' —1/E Ibc, h1—h/E I AB- Eq. (s) will be satisfied if a = x+2 and j3= —(k +1),
where K=1'/h'. The resulting moment profile Mu is shown in
Fig. 2e. The moment profiles Mu, Mu, and Mu form an orthogonal
system over the structure. From the manner in which this system
was derived,we see that it isindependent of the loading and the
choice ofabasicstructure. This is true not only with respect to
this particular structure but in general.
We choose a convenient basic structure and find the moment
profile Mo due to the load (see Fig. 3). Eg. (1) now takes the
form

Fig. 3. M = Mo + X,BM2+ XzdMid + XuMu )
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Clearly, the quantities X may best be interpreted as mere coefficients by which the
generalized forces in Figs. 2b, 2d, and 2e must be multiplied in order to yield, upon
superposition, the correct reactions at the supports.s As for the interpretation of
5», &d, and S% we recall that these quantities are equal to the partial derivatives,

with respect to the corresponding quantities X, of the work done by the reactions.
For instance,

0 X xd+ K+Dxeds  jldV=e- 2

dXad

Similarly Su——0and 5 = (x+ 1)0.
Next, we evaluate the following important quantities:

J Mlbdx' = h'(K + 2), J Middx' = §*'(*m+ s),
J m ljx ' = JA'Ot + 2)(2k + 1); (8)
J MOMndx':\]MOMdex': - \pWh", \]M(l\/liedx‘=—pkWQn+ 2). 9)

Thus the equations (5) specialize to

-69 + phvi' v 66 - 12d/l + ph2n
Xib — J X2d —
6li'(k T"2) 2hrk T 6)
24(k + 1)0 - 3k + 2)ph*h’
Aze — ) (10)
8 + 2)(2k + 1)

To complete the solution we have only to substitute (10) into (7) and tabulate the
values of M at A, B, C, and D.

4. In the present method, the problem of solving the systeffi (3) is replaced by
that of constructing a set of orthogonal moment profiles. Once such a set is known for
a given structure, the solution M corresponding to any loading is obtained merely
by evaluating the right-hand member of (5) and substituting
into (1).4 This is an advantage of the present method over others
in which the complete system (3) has to be solved anew every
time the load is altered. Thus, for important structures, it may-
be worthwhile to construct an orthogonal set, even in cases
where the orthogonalization itself is fairly complicated.

Fortunately, the rather lengthy standard orthogonalization
process (see footnote 2) seldom needs to be used in its entirety,
as the preceding example indicates. Shortcuts involving the use fig 4.
of symmetry, antisymmetry, and other characteristics of the

3 In most problems displacements at the constraints are zero. In such cases it is altogether un-
necessary to visualize what particular generalized forces generate the orthogonal moment profiles because
that physical notion is needed only for evaluating the S-s.

1 The integrals jM*dx' which appear in the denominator of (5) are also independent of the loading
and therefore can be computed once for all.
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structure arc usually available. For instance, in the case of the triply indeterminate
frame in Fig. 4 (with lab =1lcd and Ibc = lad), we obtain the Mi’s immediately from
symmetry considerations (Fig. 5).

Tpr>n

Fig. 5.

The evaluation of integrals fMoMidx' in (5) presents few difficulties, because
the moments Mi always vary linearly over any member and Mo can be made to vanish
over all but a few members by a suitable choice of the basic structure. Furthermore,
there exist tables of such integrals for the common forms of moment profiles (trape-
zoidal, parabolic, etc.).s

Similarly, the remaining operations can be systematized so that even a person
with little mathematical training can perform them. This is particularly true when
numerical values of the stiffnesses E | are known; then substituting (5) into (1) re-
duces to taking scalar products on a computing machine.

5. We conclude with an example illustrating an efficient arrangement of the work.

Consider the four-legged bent shown in Fig. s ; assume that lab=1cd—lef—I gh

and Ibc=I1cf=1fg, and denote by k the ratio I'/h' =1lab/lil bc, as before.
B F
n,
D H
-At
Fig. 6. Fig. 7.

Since the structure is statically indeterminate of the ninth degree, we obtain nine
orthogonal moment profiles My, Mi, mmes Mo, whose values at different points of the
structure are given-in the first ten columns of Table I. (We understand by Mi(CB)
the value of Mi at the end of C of the member BC, and give a similar meaning to
Mi{AB), Mi(BC), etc.) It will be observed that Mi, Mi, M3 M7 Ms, and Mo are
essentially reproductions of the moment profiles Mn, Mu, and Mu found for the
two-legged bent in section 3. Considerations of symmetry are helpful in constructing
M4, Mo, and M6. The integrals iM\dx' are now computed by means of the tables
referred to in footnote 5, and are given in the eleventh column of our table.

The parts of the table so far discussed can be used to find the moment profile due
to any loading of the bent. Suppose the member BC is subjected to a set of vertical

5See, e.0., H. F. B. Muller-Breslau, Die Craphische Statik der Baukonslruktionen (Leipzig, 1925),
vol. 2, part 2, p. 56.
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loads and moments. By selecting the basic structure as indicated in Fig. 7, we confine
the moment profile Mo to BC.
Defining
Pi = — | MOxdx, Pr=— f Mn{l — x)dx,

I «7BC 12J Bc
we see at once that

J MoMidx' = I'[PMi{BC) + PiMi{CB)} 7=1,2,--- ,9). (11)

The values Xi (twelfth column) are now obtained by dividing the negatives of the
right members of (11) by the corresponding values in the eleventh column.

To find the value of the true moment profile at (say) A, we multiply each term
ilfil(AB) (first column) by the corresponding Xi and add the results, and similarly
for other points. It would ordinarily not be necessary to carry out the algebraic
simplification of these sums, but this has been done for the sake of compactness:

M (AB) :§T {(4k3 - 170k2 - 414k - 225)Pr- 2k + 1)(1ok2- 6k - 3)P;}.
M(BC) = ST {- (64k3+ 628Kk2+ 1188k + 585)Pr+ 2(k+ 1)(16k2+ 102k + 51)P,},
M{CB) - ST {2Kk(16Kk3+ 118k2+ 153k+ 51)Pr— 4 (k+ 1)(16Kk3+ 141k2+ 195k+ 72)P;} i
M(DC) = ST ((20k3 + o96k2+ 233k + 135)Pr+ 2(- 2k3+ sikz2+ 91k + 39)p .3,
M(CF) = ST {k(140k2 + a12k + 237)Pr- 2(se6ks + 3ssk2 + 411k + 144)Pj},

M{FC) = P {- «(124x2+ 228 + 93)Pr+ 2(7ok3a+ 179k2 + 144x + 36)P/},
M(EF) = e {k(36k3 + 260k2 + 377k+ 135)Pr- 2k(1sk3s+ 1252+ 176k + 69)Pi}t
M(GF) = gT { - k(108k2+ 208k + 135)Pr + 2k(54k2+ 73k + 21)P,},

M{FG) = — {ax(s4k2 + 73k + 21)Pr+ 2(- s4k3 - 3sk2+ s1k + 36)P,{,
S

M{I1G) =§ {k(36k3 + 198k2+ 284k + 135)Pr - 2k(18k3 + 90k2+ 104k + 33)P,}.

The arrangement given here is especially adapted to the use of computing ma-
chines in case numerical values of kand the other quantities appearing are known.6

6 After the manuscript of this paper had been completed, our attention was drawn to a work along
similar lines by S. Miiiller (S. Miiller, Zur Berechnung mehrfach statisch unbestimmter Tragwerke, Zentral-
blatt der Bauverw. 1907, p. 23). Miller introduces a “system of forces XT instead of single forces, and
reduces the system of equations to the diagonal form. However, his point of view and emphasis are quite
different from ours, and his procedure is more lengthy than that presented here.



Mi
Mi
Mi
Mi
Mi
Mi
Mi
Mi
Mi

Mi(AB)

-«(3k+7)
2K +8k+5

Mi(BC)

M{(CB) Al»(DC)
1 -(«+D
1 1
-1 -1
13k+12 - Kk-S)
13k+ 12 —k(k—b)
~2(3k+2) 2K”*+9k+5

P=4k’+31«+20,
5=4«!1+41«+36,

Table |
Mi(CF) Mi(FC). Mi(EF) Mi(FG) Mi(GF) Mi(HG)
X X K(k—E) Br+12  —lk KE3K+T)

X -X —(k—b) -(13k+12) « 4*11« - KBk+7)
2kl 2k+1l -(2K+9k+5)  -2(3k+2)  6k+5  -(2K+8k+5)
— — k1 1 1 - (k+1)

- — -1 1 1 1
— — 1 -1 1 1

T =4%410%+5,
A=2(2«+ 1)(*+86)

M i(FE) =3/;(PC)-M i(PG),
Mj(CD) =Mi(CB) —M i(CF),

jM mx' -Xi
V(k+2)(2k+1)/3 3*(Pr+Pi)/(*+2)(2*+I)
h'(K+2) «(Ar+Pl)/(<+2;
A'(k+6)/3 3*%(P,-Pi)/(«+6)
h’ic\R [-IIKPr+(13K+12)P2]/XR
h'AS/3 3[-1IIKPr+(13K+12)PiJA*S
h'RT/3 3k[(6k+S)Pr—2(3k+2)Pi\/RT
*(*+2)(2«+1)/3 0
h'U+1) 0
i'(«+6)/3 0
= -Ai,-(J3C)

Mi(GH) -M i(CF)

NINOXMHON A QW dIVONDA N M
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A STRAIN ENERGY DERIVATION OF THE TORSIONAL-
FLEXURAL BUCKLING LOADS OF STRAIGHT COLUMNS
OF THIN-WALLED OPEN SECTIONS*

BY

N. J. HOFF
Polytechnic Institute of Brooklyn

In the thin-walled open section columns of modern aluminum alloy aircraft tor-
sional buckling and combinations of torsional and flexural buckling are of consider-
able importance. The critical loads corresponding to these types of instability have
been calculated by Wagner,1 Kappus,2 Lundquist and Fligg,3 and Goodier4 through
integrating the differential equations of the problem. In the present paper the tor-
sional-flexural buckling loads are determined with the aid of the Rayleigh-Ritz-
Timoshenko method. This procedure obviates the derivation and integration of the
differential equations as well as the geometric.considerations connected with what
Goodier termed “Wagner’s hypothesis.” e

The equilibrium of a straight bar of a length L and a cross-sectional area A, loaded
axially with a compressive force of a magnitude aA distributed uniformly over the
end section, can be investigated by assuming that each section of the bar undergoes
a virtual displacement. The end sections of the bar are assumed to be restrained in a
manner which precludes translations as well as rotations about any axis perpendicular
to the end section, but which permits rotations about axes in the plane of the end
section and warping of the end section. Barring displacements that would change
the shape of the cross section (such displacements lead to plate- or shell-buckling),
the most general virtual displacement pattern of the bar can be represented by the
following infinite series:

u = T. ansin (tnrz/L), (la)
n=1
®

v = 2 bnsin (tnrz/L), (Ib)
ni
[09)

R = 2 cnsin (nirz/L). (Ic)

* Received July 24, 1943,

1 Wagner, Herbert, Verdrehung und Knickung von offenen Profilen, 25th Anniversary Volume of the
Technische Hochschule, Danzig, 1929, p. 329.

Torsion and buckling of open sections, N.A.C.A. Tech. Mem., No. 807, 1936.

5 Kappus, Robert, Drillknicken zentrisch gedriickter Stabe mit offenem Profil im elastischen Bereich,
Luftfahrtforschung, 14, 44 (1937).

-------- Twisting failure of centrally loaded open-section columns in the elastic range, N.A.C.A. Tech.
Mem., No. 851, 1938.

3 Lundquist, E. E., and Fligg, C. M., A theoryfor primary failure of straight centrally loaded columns,
N.A.C.A. Report No. 582, 1937.

4 Goodier, J. N., The buckling of compressed bars by torsion andflexure, Cornell University Engineering
Experiment Station, Bulletin'No. 27, December, 1941.

-------- Torsional andflexural buckling of bars of thin-walled open section under compressive and bending
loads, Transactions A.S.M.E., 64, A-103 (1942).
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In these equations u is the virtual translation in the x-direction of a section of the
bar at a distance z from the bottom section, v that in the y-direction, and /3 the virtual
rotation of the section about its shear center. The x- and y-axes are parallel to the
principal axes of inertia, and pass through the shear center of each section. The dis-
placements of a section are shown in Fig. 1.

Fig. L.
The increment 617 of the strain energy because of the virtual displacements is

» L /» L
/ (dhi/dz'Ydz + \Elz | {dh/dz2vdz
0 J O

+ hGC f (dp/dzy-dz + \ET f (dP/dz2 Az 2
Jo Jo

In Eq. (2) El1Xand ElVstand for the bending rigidities of the bar when the bending
moment vector is parallel to the ic-axis and the y-axis, respectively, and GC is the
torsional rigidity calculated from the Saint-Venant theory of uniform torsion. The
fourth term is due to the direct stress caused by non-uniform warping, and T is the
warping constant defined in the theory of non-uniform torsion of thin-walled open
sections. This theory is discussed in the previously mentioned references and in a
paper written by the author.s Eq. (2) follows from the theory of non-uniform torsion
of thin-walled open sections and from the Bernoulli-Euler theory of bending, if the
strain energy due to shear associated with bending and that associated with non-
uniform warping are neglected.

6 Hoff, n. J., Stresses in space-curved rings reinforcing the edges of cut-outs in monocoque fuselages,
Journal Roy. Aeron. Soc., 47, 64 (1943).
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Because of theorthogonal properties of the trigonometric functions the integrals
indicated in Eq. (2) can be easily calculated:

® ®
5U = (t*EIV4L3 E n'al + (VEIXAD) X n*ba
n=I n=1
+ (r'er/4z,3 % | n'cl + (®&GC/4-L) E | »«Cj. 3)
n= n=

The decrease —8V of the potential of the external forces is equal to the work SW
done by them during the virtual displacements. The work dbW done by the infini-
tesimal force adAis equal to the force times the shortening of thedistancebetween
the end points ofthe fiber upon which it is acting. Theshortening ALXV of the dis-
tance between the end points of the fiber passing through a point X, y can be calculated
from the equation

ALXV= 2Jf [(dux,vds)- + (dvXt/dz)2]dz. 4)
0
It may be seen from Fig. 1 that for small displacements
Mxv = U —Vy3 (5a)
VXV = » + XP- (5b)

Upon substitution of the expressions of equations (1) and (5) into Eq. (4), integration
yields

r @ ® ®
AL X,y = (x*/4L) R E n2al + E n'bl - 2y~tSancn
7= =1 =
()] ) ) \
+ 2*E ndren+ x2E »*4 + Y2 E . ()
n i = /

The sum 5IF of the work done by all the infinitesimal forces adA is
dw = f aALX\MA, 7
JA

where the integral is extended over the total cross-sectional area. With
JAadA=P, the total compressive force,
JA/dA = yoa, the static moment of the section with respect to the x-axis
passing through the shear center,
JAXdA =X0A, the static moment of the section with respect to the y-axis
passing through the shear center,
fA(x2+y2dA =JAPdA =/,,, the polar moment of inertia of the section with respect
to the shear center, and
P2=h/A
equation (7) can be written as
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According to the principle of virtual displacements the bar is in equilibrium in
its original straight-line form if the change of the total potential 5(17+ V) —8JJ—8W
is zero for any virtual displacement provided that first order small terms alone are
considered. Sinceboth 8U (Eg. (3)) and 8W (Eq.(s8)) contain only second order
terms inthe o,,, bnc,, the original straight-line form isa configuration of equilibrium.
This equilibrium is stable only if the total potential increases, that is 8(U+V) is
positive, for any virtual displacement. With the notation

N = o2 1JL\ . (9a)
Q= t'EIxL\ (9b)
R= «kET/L\ (9¢)

the increment of the total potential can be written in the form

8{U + V) = (tP/4£)E «*{[n\N/P) - 1]az + [n\Q/P) - 1]52

n=1

+ [n\R/P) + (GC/P) - P2]d + 2yOancn - 2x0bncn)\. (10)
With the notation
An=n2(N/P) - 1, Bn = n\Q/P) - 1,

Cn= n\R/P) + (GCI/P) - p2 (11)

En o, Gn yO0.

Xn = Anal + Bnbl + Cnd + 2FnbnCn + 2Grcran (12)
the infinite sum on the right hand side can be written as X X The necessary and

sufficient conditions for its positive definite character are that all X nfor » = 1,2, ***
must be positive definite. Necessary and sufficient conditions for this are

An > o, Bn> o, AnBnCn - AnE\ ~ BG\ > o (13)
or,
n2AN/P - 1) > 0, (14)
n2AQ/P) - 1> 0, (15)
P2[n\N/P) - 1]1W(Q/P) - 1][(T/P) - 1]
- xI[N\N/P) - 1] - yI[n\Q/P) - 1] > O. (16)

Since inequalities (14)-(16)are necessary as well as sufficientconditions of stability,
the bar may buckle if any one of them is not satisfied. Neutral equilibrium prevails,
therefore, if any one of the following “buckling conditions™ is fulfilled:

n\N/P) -1 =0, a7
nKQ/P) -1 = o, (18)

P2[n\N/P) - 1}[n2Q/P) - 1][(T/P) - 1]
- xXI[N\N/P) - 1] - yl[n*(Q/P) - 1] = 0. (19)

It is easy to prove that the original straight-line form of the bar corresponds to
stable equilibrium if the compressive force P is sufficiently small, since by decreasing
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P the first three terms on the right Hand side of Eq. (12) can be made positive and
large as compared to the last two terms. In the investigation of the stability of the
bar under increasing values of P it is to be noted that if any of the inequalities (14)-
(16) is satisfied for n=Xk, it is also satisfied for A= k+p, where k and p are arbitrary
positive integers. Consequently the bar is stable if, and only if, inequalities (14)—16)
are satisfied when n= 1. The smallest critical load can be calculated from Eqs. (17)-
(19) if 1 is substituted for n. This load alone is of practical importance unless geo-
metric constraints (for instance rigid end fixation or additional supports between the
ends of the bar) prevent displacement corresponding to the first terms of the Fourier
series in Egs. (la)-(Ic). In such a case the smallest value of n that is compatible
with the restraints must be used in Eqgs. (17)—19) for the calculation of the buckling
load, for instance w= 2 when the ends of the bar are prevented from rotating and
warping.

Eqgs. (17)—19) permit a discussion of the various types of buckling of bars of
different cross section. With an asymmetric section xo~O and y0”0. In this case
with increasing P a value is reached at which Eq. (19) is fulfilled while the left sides
of Egs. (17) and (18) are still greater than zero. The buckling load P can be calculated
from Eqg. (19) which is a cubic in (1/P). The deflection pattern is flexural-torsional
since it contains the non-vanishing coefficients a,, b, and cnsimultaneously.

If the section has one plane of symmetry, one of the coordinates of the centroid,
say xo, vanishes. Then Eq. (19) reduces to

[PKQ/P) - 1{p2[»W -P) - 1}{T/P) —I] —yi} = o. (20)
Consequently two distinct types of buckling are possible. One is purely flexural and
symmetric. It corresponds to a buckling load which is the solution of Eq. (18). The
other is flexural-torsional since it simultaneously contains displacement components
corresponding to the non-vanishing coefficients an and c,,; it is antisymmetric; its
buckling load P is the (smaller) root of the quadratic in (1/P) that can be obtained
by dividing Eq. (20) by [«2(<3/P) —1]. The smaller of the two distinct buckling loads
is of practical importance. The buckling load according to Eq. (17) is always greater
than the smaller root of the quadratic.
Finally, if the section is doubly symmetric or point symmetric, x0O=yo =0. Then
Eq. (19) reduces to

(TIP) -1 = 0. 1)

Buckling is either purely flexural or purely torsional. Of practical importance is the
smallest of the solutions for P of the three Egs. (17), (18), and (21).
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—NOTES—

USE OF SINE TRANSFORM FOR NON-SIMPLY
SUPPORTED BEAMS*

By A G. STRANDHAGEN (Carnegie Institute of Technology)

The problem of non-simply supported beams is approached by various mathemati-
cal procedures. In certain applications several of the common methods are long and
tedious. By employing the sine transform a certain ease can be claimed for most cases.

The definition of the sine transform of a function y(x) in the interval (0,2) is

S5[y(.-r)] = Jfo y(x) sin (mrx/l)dx = v(n). (0 < Xx<ljn=1,2,009) (1)

Recalling that the expression of a function y(x) in a Fourier sine series is

y(x) = X) bnsin mrx/I, (2)
n»l
where
bn= {2/1) j y{x) sin (nirx/1)dx, O <x<lLn=12 eme) )
Jo

it becomes evident that the connection between the sine transform and the coeffi-
cients of the Fourier sine series is

mSb-(s)] = m)b,, 4
Forms given by Eq. (2) and Eq. (3) are altered for the sake of convenience as follows:
(03]
y{x) = (2/1)"™f(») sin (mrx/l), (5)
where "
v(n) = m[y(a;)] = Jlo y(x) sin (mrx/l)dx. (6)

For example, consider the sine transform of (d%/dx2 in the interval (0, I); by
definition
S[dy/dx2\ = f (dy/dx2 sin (mrx/l)dx. (n = 1,2, ees)
Jo

Integrating formally by parts gives
S[dy/dx2y = - ~  [(- 1)"y() - y(0)] - (n=1,2 mumm) (7

Likewise the sine transform of (d*/dx*) in (0, I) is:

* Received August 9, 1943,
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UX
S[d*y/dxq = - = [(- Dry™(1) - y"(0)]

. 2. G =1,2,000) ()

where v{n) in (7) and (8) is defined by Eq. (1).
Consider a beam fixed at =0 with axial loads P. The intensity of transverse
loading is q(x), Fig. 1. The differential equation and boundary conditions are as

follows:
1. d*y/dx4+ kZdy/dx?d = q(x)/El, 0<x<l

2. y{o)=y(h= o
3. y"() =0 y{0) =0
qx)= 0 when 0 < X <bh,
=6{x) when b<x<cg

where

=0 when ¢ < X <1,
andc> b. Letk2= P/EI, and primes i — G -
indicate differentiation with re- rri.. T p
spect to x. Let 5[y(x)]=tyw). P o T A"
Transforming d*/dx* and d-y/dx2 \_* ____________ 1P e
and Q(X) and substituting y(0) y
=y()=y"(l) =0, there results Fig. 1.

(«7r/f)y"(0) + (mr/t)A(n) — kAmr/l)h'(n) = (L/EI) dfb 0(x) sin (inrx/l)dx.
Solving for v(n), where a2= (kl/ir)2
= - (Mliny'(O -—— f i /1)dx.
v (Any(o) n\n2—a2d * wkEl n\n2—adJb 809 sin (mrx/h)dx ©)
Since y(x) = (2/)X),,“_f(w) sin mrx/l, then
y(x) = - (2/2r3y"(0) E —— - —sin (mrx/I)
i n(n2—a?d
o @ sin (mrx/1) f*c . )
+ 2(13iriEl) E — I dx)sin(iTx'/1)dx(» " a) (10)
wul NAN2—ad J b

The remaining boundary condition y'(0) =0 gives the following:

FOVE whtag® et B airTag Jpt S0 @ 6
Since E>T-il/(w2—a2) =(1/2a2(l —rra cot 7ra), then y,7(0) becomes
(laH/irEI) - 1
y'(0) = r O(x/) sin (mrx'/)dx". (n™a (12

(1 —?racot7ra)»_.i n(n2—a?d Jb
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Further simplifications are possible in Eq. (12). Interchanging formally the integral
and summation sign and summing, the following is obtained for/y*(o):

(I/EI) rc (sin k(I — x) 1 — &)
y (0) = —_— 0(*)2 r o e \dx,
1 —iraQtmra) J b | sin 11 1)
where
“ sin (mrx/l) ir (sin k(I - x) I - Xx)
i ~~éan —aB E—al( s'i:n_ki [ )? - ) (13)
Thus by substitution of (13) in (10),
4a2/3 4>(x) rc
* = - "T77 77— ' '
y() I*7E7| (1 —ira cot |ra3 &e(X )4> ()

213 7 sin (mrx/l) rc
+ —rrr E_ -rr~.---—-- I o(o sin (mrx'/l)dx'. (n7a,0 < x<1) (14
it EI ,,|m(m—a).]b

Knowing the variation of 9(x) it is a matter of integration to obtain the required re-

sults. Now suppose that P =0, i.e., the beam is under no axial loads, and subject to

the same boundary conditions. Thus k =a = 0 in equations (9), (10), and (11) and then
61 A 1

7 (,l nlj‘bOCO sin (n*x'/7jdx".

y"(o) =

7
ITE

Again interchanging formally the integral and summation sign,

y"(0) = —F f BE)x'(x' - D(x' - 2Ldx',
2PEIJ b
where
EI (1/»3 sin (mrx/1) = — {2(x/1) —3(x/1)2+ (x/1)3}. (0 < x/l < 2)
n~| 12

The equation for the elastic line becomes

y(x) = - TZﬁ_I [2(x/T) - 3(x/1)2+ (x/I)3f|JbeD(x')(x' - D(x' - 21)dx’
2P “ sin (mrx/l) rc

H--- E - - I o¢o sin (nrx'/l)dx". O<x<
ir*el , _i il* Jb

To be sure, further summation in finite terms is possible, but this will lead to y(x)
being defined in distinct intervals in (o0, 1), as in the solution furnished by the classical
methods of differential equations; unquestionably, this is a disadvantage in engineer-
ing computations. The above results, however, remain in the desired form, with one
function y(x) in (o, 1) regardless of the discontinuities of transverse loading.

In like manner other boundary conditions may be imposed, and other beam prob-
lems, such as beams on elastic foundations, can be solved.
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THE TREATMENT OF DISCONTINUITIES IN BEAM
DEFLECTION PROBLEMS*

By C. L. BROWN (Purdue University)

The multitude of methods of determining the deflections of beams all stem from
the fundamental differential equation

d2y M
dx2  EI °)
where the abscissa x is measured along the axis of the beam, and y denotes the deflec-
tion, M the bending moment, and E | the bending stiffness. The most obvious method
of determining-y is direct integration of (1). However, in most cases the right hand
side of (1) is but sectionally analytical. A differential equation of the form (1) is then
written for each section of the beam. When these equations are integrated, two con-
stants of integration appear for each section. The evaluation of these constants of
integration, though elementary, is extremely cumbersome.

It is possible to avoid this sectionalizing treatment through the use of Heaviside’s
unit step function, well known from operational calculus. This function is defined as

follows:
o for g < a

S a(x) ) (2)

for X > a
It can readily be seen that

Ha if a >,
EJI, i (3)
-{Hb if a<h.

Furthermore, if u(x) and v(x) are analytic, the continuous solution of

dy
— = u(x) Hav(x a)
dx

is given by

f Zu(E)d(+Ff +C
Jo U( ) ( do V(m “w

where C denotes a constant of inte-
gration.

The use of, the unit step function
in the analysis of beams with concen-
trated loads is best shown by an ex-
ample. The bending moment of the
beam in Fig. 1 can be written as

m 2

dzy .
ElI— =M = - Mi+ RIX HalP{x- a).
dx2

* Received Aug. 26, 1943.
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Integrating according to (4) and taking account of the fact that slope and deflection
vanish for x =0, we find

El — = - Mix + - %HaP(x - a)2 (5)

and
Ely = - \M,x2+ iRIX*- \HaP(x - a)3 ()

Both slope and deflection are zero at x =\. Thus, from (5) and (s)
- MxXd + %lhl2- iPb2= o, - \M-JP + \ExE - \Pb3= o.
Solving for M\ and Ru
Mx = Pab212, Ri = Pb2(3a + b)/I13
The deflection is then given by
Pab2 ) Pb2(Za-\r b) P(x —a)3

Ely = —- — X —— WXz —Ha
212 6P

In order to illustrate the use of the unit
step function in the analysis of beams with sec-
tionally constant moment of inertia, we con-
sider the beam shown in Fig. 2. The reciprocal

i2- 1,/ 2 . . .
h : of the bending stiffness can be written as
1
[+ Ha
P P EE Eh
Fig. 2 and the bending moment as
P x
M = PHb(x - b).
2
Thus,
h % r1 \ b )
E = + Hal —-- PHb(x -
dx2 [ L2 X )J
or, considering (3)
d-y Px P
Eh — = h— [Ha(x - a) + alla\ - PIIb{x - b) - PHa(x - b), @)
dx2 2 2

in which the second term on the right hand side has been written in this particular
form in order to facilitate the application of (4). Integrating (7) we obtain

Pxs3 (x —a)3 (x - a)2

Ehy = + alb
y 12 2 6 1

by
W b Cix + Ci. (8)
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The deflection is zero at x =0 and x =1. The application of these conditions to (s)
yields

P
_________ (6bs - 3ad+ a3, C2= 0.
12b

Ci =

If, in addition to concentrated loads, the beam carries loads which are uniformly
distributed over certain sections, the treatment is similar.

A VARIATIONAL PRINCIPLE FOR A STATE OF COMBINED
PLASTIC STRESS*

By G. H. HANDELMANT (Brown University)

In a recent paper: M. A. Sadowsky has stated a heuristic principle of maximum
plastic resistance which he has applied to several states of combined plastic stress.
The principle states that “among all statically possible stress distributions (satisfying
all three equations of equilibrium, the condition of plasticity, and boundary condi-
tions), the actual stress distribution in plastic flow requires a maximum value of the
external effort necessary to maintain the flow.” W. Prager, in a contribution to the
discussion of this paper2, has shown that the principle can be so interpreted as to lead
to the correct differential equation for a beam under combined torsion and tension.
This note is concerned with an accurate statement of the principle together with a
proof of its validity for the case of a beam in a perfectly plastic state under combined
torsion and bending by couples, the cross-section of the beam having an axis of sym-
metry. Specifically, we shall prove the following variational principle for such a sys-
tem.

Among all statically possible stress distributions in a beam under a given torque
(satisfying the equations of equilibrium, the condition of plasticity, and boundary
conditions), the actual stress distribution when plastic flow occurs is the one for which
the bending moment is stationary.

Let us choose the coordinate axes in the following fashion, y lies along the axis of
symmetry of the cross-section, z passes through the center of gravity of the cross-
section and is parallel to the generators of the cylindrical beam, and x is perpendicular
toy and z. We assume that the strain velocities, vz, vy, v,, are given by the same ex-
pressions as in the case of an incompressible elastic material; i.e.,

VX = —wyz + \dxy,

VU = wxz —|0(x2—y- — 222,

vz = ccw(x,y) —Oyz.

* Received Sept. 9, 1943,

f This note was prepared at the suggestion of Professor W. Prager while the author was a participant
in the Program of Advanced Instruction and Research in Mechanics at Brown University and was pre-
sented to the American Mathematical Society on Sept. 12, 1943 under the title of On a principle of M. A.
Sadowsky.

1 M. A Sadowsky, Journal of Applied Mechanics 10, A-65 (1943).

5 Journal of Applied Mechanics 10, A-238 (1943).
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a) and 6 are constants (« = angle of twist per unit length per unit time) and w(x, y) is
an unknown function. The components of the strain velocity tensor, which are

X | dvj\

2 \dy
etc., will then be

exx ~y, vy Ny, 9y,

w / dw \ o /3® \
TV 1IT+T

0,

The components of the stress tensor will be denoted by <XI, axy, etc. The material
is assumed to be incompressible and perfectly plastic. The stress-strain relations can
therefore be written in the form

(0'xx Vy) ' ("VV &z7)'(jdzz “ Gxx) «Ixy Gyz' &ZX AAN

(fij ow) m{iyy Nz) e (Mzz ExX)e£Exy £yze€zx>
In addition the following yield condition must be fulfilled:
(rll — ityy)2+  (<T,, —<R2y + (2~ <ARS e(crlv+ ffy + cTL) = 6k2, 2

where k is agivenconstant.Eq. (1) willbesatisfied ifthe stress tensorhasthe form

/ dw \
Oxx = Cyy = &y = 0, Iz — [AB( y),
\ dx /
[ dw \
<Az = ( h*), Czz = — 39/xy, ?3)
dy /

H=n(x, y) being an unknown function of x and y. The equations of equilibrium for
such a stress system reduce to
dffxz Aderyz _ N

dy
Consequently we may introduce a stress function ku{x, y) such that
du du

®z—k J (&

k 4
dy dx )

Since the surface of the beam is not stressed, u = const, on the surface. For con-
venience, this constant may be taken as zero. Combining Eq. (4) and the yield con-
dition, Eqg. (2), we have

Tz = ¢V3( —u\ — )12

where ux=du/dx, uv—du/dy. Therefore the function jx must be given by



1944] G. H. HANDELMAN 353

By means of Eq. (3) and Eqg. (4), we can compute dw/dx and dw/dy in terms of the
stress function u. This will yield

dw k dw —k
dx = . uv+ vy, __d_;/: ———[J—F;—ux— X.
Taking cross derivatives and subtracting one finds
d /1 \ d/ 1 \ 2u
dyﬂp uv; H"a_>$\p MI%H—k——o
which becomes by virtue of Eq. (5)
d d 20
Tx [>'«*(1 - u\ - ul)-'<2} + (E [yuv{t - ul - dyl6 = 0. (s)

We shall now determine the Euler equation for the variational principle stated
previously. The bending moment and torque are given by

Bending Moment = J ’J' aZlydxdy = ky/3 JJ"' y(1—u\ — u\)mdxdy,

Torque = 2kJ'J"' udxdy.

The domain of integration is the cross section of the beam. We note that the sym-
metry assumption has been used in writing the bending moment in the form above.
According to the usual procedure, let us form the function
<pU, ux, u¥) = y(1 —u\ —ul)in + X @)

where Xis an unknown constant. The Euler equation can then be written as

d / dip\ d / dip\ dip

o— 1

Tun' T ay\duy)  du

Substituting for o from Eq. (7), one finds

d d
- \yux(1 - ul - + - [yuv(1r - «* - «i)"12]+ X=o. (8)
dx dy

The unknown constant X is determined by the fact that the torque is prescribed. On
the other hand, wand d can not be given arbitrarily but must be found from exactly
the same condition. Consequently Eq. (8) is the same as Eq. (s), which proves the
variational principle.



354 NOTES [Vol. I, No. 4

ON THE ANTENNA PROBLEM*
By S. A. SCHELKUNOFF (Bell Telephone Laboratories)

The following remarks are made apropos to Brillouin’s recent discussioni of math-
ematical difficulties involved in the retarded potential method of solving the antenna
problem. The approximations involved in the actual solution of the final integral
equation may be a source of far greater errors than the approximations in the equa-
tion itself (such as 7A and 7B of Brillouin’s paper). Fig. 1 shows the first maximum
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rig. 1. The first maximum input resistance of center fed cylindrical antennas in free space as a func-
tion of the average characteristic impedance: (1) is Halkn's approximation to the solution of the integral
equation for infinitely thin cylindrical shells, (2) is Schelkunoff’s approximation to the solution of Max-
well’s equations for solid cylinders, (3) is Schelkunoff's approximation to the solution of Maxwell’s equa-
tions for infinitely thin cylindrical shells, (4) is Gray’s recent approximation to the solution of the integral
equation for infinitely thin cylindrical shells. Ka=120 (log 2//a—) =6012—120 chms, where | is the
length of each half of the antenna, 1 is the parameter in Brillouin's paper. The range of Ka in the figure
corresponds to 38<f/0<1080 and s.66 < 2<15.33.

* Received Nov. 20, 1943,
1 Leon Brillouin, The Antenna Problem, Quarterly of Applied Mathematics, 1, 201 (1943).
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resistance of center fed cylindrical antennas in free space. Curves (1), (3) and (4)
refer to infinitely thin cylindrical shells (for which the antenna current vanishes at
the ends); (1) is Hallen’s approximate solution of the integral equation, (3) is
Schelkunoff’s approximate solution of Maxwell’s equations,2 and (4) is Gray’s recent
approximation to the solution of the integral equation.s The difference between (1)
and (4) is due solely to the difference in the methods of successive approximations.
L. V. King’ approximation to the integral equation gives i?m,l,i= 4000 for K a= 420;
this is considerably higher than even Hallen’s approximation. Curve (2) was calcu-
lated by the same method as (3) but for solid cylinders. The “end” or “cap” capaci-
tance was estimated as explained elsewhere;s this estimated capacitance is probably
higher than the actual capacitance and in that region where (2) and (3) diverge the
true curve is likely to be somewhat lower. In the case of hemispherical ends, curve (2)
is raised still further. In all these curves it is assumed that there is no excessive
localized capacitance in the vicinity of the input terminals; the effect of such capaci-
tance is to lower these curves. Incidentally it means that one should never assume a
“point generator” except when the input terminals are tapered to mere points.

" S. A Schelkunoff, Electromagnetic Waves, D. Van Nostrand Co., New York, 1943, Chapter 1L

3 Marion C. Gray, A modification of Hallin’s solution of the antenna problem, Journal of Applied
Physics, 15, No. 1, Jan. 1944.

4 Reference 2, page 465.
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