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Q U A R T E R L Y  OF A P P L I E D  M A T H E M A T I C S
V o l .  I I  O C T O B E R ,  1 9 4 4  N o .  3

TH E NUM ERICAL SOLUTION OF PARTIAL 
DIFFERENTIAL EQUATIONS*

BY

H O W A R D  W .  E M M O N S  

H a rva rd . U n iv e rs ity

1. Introduction. Through a consideration of the fundamental aspects of the uni
verse Newton was led to the invention of fluxions. The physical idea of “rate of 
change,” the geometric idea of “slope of a curve” together with his newly invented 
mathematics proved to be very powerful in describing and predicting a wide range 
of phenomena of nature. Since Newton’s day, an enormous number of physical phe
nomena have been described in terms of a few “laws of nature.” Very often these 
laws make use of the calculus, especially when applied to a specific problem. Thus 
large sections of the phenomena of the physical universe are described by the solutions 
of differential equations for the appropriate boundary conditions.

The engineer in his attempt to make nature work his way is continually presented 
with problems to be solved. These problems, even when very technical in nature,' 
usually contain an element not present in problems considered by mathematicians or 
physicists. A “solution” of an engineer’s problem is often a numerical answer or a 
graph obtained in a specified time. A poor answer which meets the deadline date is 
far superior to a precise answer a tveek later. Thus the engineer, or any applied sci
entist, should, when choosing the method of attack on a problem, keep in mind the 
time when the answer is due.

The following methods of solution are available:
1) the answer can be guessed;
2) some experiments can be run;
3) the result can be computed from the basic laws of nature, by use of whatever

mathematical methods are needed.
Obviously the first method has one certain and everlasting superiority over the 

second and third; it is quick. It can meet any deadline set at a future time. It, of 
course, has one big disadvantage. The solution is always of doubtful quantitative 
value even though it is of immense qualitative value. In fact, the guessing process 
should always be used as a guide to correct results by methods 2 or 3.

If time permits, the answer may be sought by experiment or computation, or both. 
At the present time computational methods, when applied to real physical systems 
to obtain solutions of sufficient accuracy, are often so cumbersome that the vast 
majority of engineering problems are solved primarily by experiment. Usually com

*  A n  in v it e d  a d d re s s  p re se n te d  b e fo re  th e  A m e r ic a n  M a t h e m a t ic a l  S o c ie t y  a t  N e w  Y o r k ,  F e b .  25, 

1944. M a n u s c r ip t  re ce ive d  M a r c h  15, 1944.
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putations are confined to one dimensional approximations to the real problem, or to 
certain simple two or three dimensional approximations.

In the field of partial differential equations, which includes the key to a vast 
number of practical problems, the present day need is for methods of solution speedier 
and more general than the m ajority of analytical methods thus far discovered. N u
merical methods of solution aim a t securing an approximate quantitative answer to a 
given problem as directly as possible from the statem ent of the problem, so as to 
reduce the time required for solution. An advantage of this more direct approach is the 
possibility of injecting into the solution any facts known (or supposed known) by the 
computer. Thus, physical “facts” of any nature can be made use of, and if some of the 
“facts” are wrong the solution will indicate this. Obviously, this has an enormous 
advantage-over analytical methods where generally little use can be made of detailed 
physical observations, except as a check on the final result.

2. An elementary problem. By way of illustrating the methods involved, let us 
consider the transient flow of heat in a two-dimensional homogeneous, isotropic solid 
for which the physical law of the conservation of energy yields the familiar differential 
equation

dT (d2T d2T\

dt a\dx- +  dyV ’ . ^

where T  denotes the tem perature, x and y space coordinates, t the time, a the ther
mal diffusivity (a property of the material, assumed constant). The numerical m eth
ods considered here are based upon a finite difference approximation to the differential 
equation. The simplest of these may be obtained as follows.

By definition

dT(x, y, t) T(x, y, t +  St) -  T(x, y, t)
--------------  = lim   (2)

dt ji—o St

and similar expressions hold for the derivatives with respect to x and y. As an ap
proximation, the limit operation may be omitted. If this is done the following expres
sions are obtained

d2T _ T(x - Sx, y, t) -  2T(x, y, t) +  T(x +  Sx, y, t) Tz -  2T0 +  Tx
dx2 ~  Sx2 ~  Sx2 ^

and

d2T T{x, y - Sy, t) -  iT(x, y, t) +  T(x, y +  Sy, t) T , -  2T0 +
dy2 Sy2 Sy2

(4)

where the last expressions on the right follow the notation of Fig. 1. Substitution of 
these approximations into Eq. (1) gives, after some rearrangement,

aSt aSt /  2aSt 2aSt \
t{x, y,t +  8t) = —  (T3 +  r , )  +  —  ( r ,  +  TO +  ( 1 -  —  K  (5)

Sx- Sy2 \  Sx2 Sy2 /

which relates the tem perature a t a given point 0 a t time i+ S i to the temperatures 
which existed in the neighborhood of 0 a t time t. Since the only restriction on S t, Sx, Sy



is that they be small enough to render the finite difference approximation sufficiently 
accurate, we set

4aSt =  8x2 = dy2 =  52, (6)

whence
T(x, y, t +  8t) = l (T i  + T 2 + T s +  Tt). (7)

This same equation can be derived directly from the physical problem by making
physical assumptions only. Such an approach is very valuable, since many more or
less vague physical assumptions are always made before any engineering problem can
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be set up mathematically. Let us assume that the material of the solid body is divided 
up into three sets of overlapping squares (or rectangles if desired). One set represents 
all heat conduction of the body in the x-direction, as indicated by the dotted square 
between points 0 and 1 of Fig. 1. The second set of squares represents the conduction 
in the y-direction and finally the third set, surrounding each point, represents all the 
material as far as heat capacity is concerned. The thermal energy <2i_o which is con
ducted in unit time to point 0 along the rod 1—0 is obtained from Fourier’s heat 
conduction equation

dT
q =  ~  k —~  (8)

dx
in the form

Qu- o = kb{Tx - T o ) ,  (9)

where b is the thickness of the two dimensional body considered. The energy arriving
at the point 0 from all the surrounding points is thus

Qo = kbiTi + T 2 +  T s + T 4 -  4To). (10)

This heat will result in an increase of temperature of the material associated with 
point 0, whence

T(x, y, t +  8t) — To
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We equate (10) and (11) and rearrange terms. Thus,

kSt /  4 kSt\
T{x, y, t +  U) = ----   (r , +  r 2 +  T s +  T<) +  1 ---------   To, (12)

cpb2 \  cpS- /

which reduces to (7), since the thermal diffusivity a= k/cp ,  and bt, 5 are related by (6).
The method of use of Eq. (7) for the solution of a transient heat flow problem 

expressed by the differential Eq. (1) is direct. The space domain is divided into a 
square net of points. (The exact relationship between the required net spacing and the 
desired accuracy of solution has not yet been studied, to the author’s knowledge.) 
The initial values (at ¿ = 0) of temperature are attached to each point and the values 
at successive times are computed by the averaging process. Figs. 2 illustrates such a 
solution.

F i g . 2a. (S e e  le ge n d  b e lo w  F ig .  2c.)

By the nature of the process it is clear that the shape of the domain and the 
boundary conditions (generally some relation between the boundary value and the 
normal derivative) cause no special difficulty, such as occurs in the analytical ap
proach, since they can be treated numerically as required for the points nearest (or on) 
the boundary. Boundary conditions and net spacing should be chosen of comparable 
accuracy as judged physically (in the absence of rigorous methods). Experience indi
cates that it is seldom worth the trouble to derive special boundary formulas, since 
generally linear extrapolation or a simple plot on graph paper will give the same ac
curacy much more speedily.

Let us return to Eq. (1) and the attendant physical problem. It is known that if 
the thermal conditions at the physical boundaries are held fixed (in time), the in
terior temperature will (after a sufficient period) reach a steady value (to any given
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degree of approximation). In the present problem, this means that with a sufficiently 
large number of applications of Eq. (7) the solution of Laplace’s equation will be 
obtained for the given domain and boundary conditions. The process proposed above, 
the one closely followed by nature, is numerically very slow unless an elaborate com
puting machine is used [l].*

Several schemes have been proposed for speeding up this process. By starting 
with Laplace’s equation and making the finite difference approximations, by starting 
physically with Eq. (10) and <2o = 0, or by observing that for steady conditions 
T{x, y, t+  5t) — T 0 in Eq. (7), one obtains

To = \ (T i  +  To +  To +  Ta). (13)

When Eq. (13) is written for each of n points of a square net covering a given 
domain, n linear equations result. Several iteration processes have been devised for 
solving such a system [2, 5, 6], and the convergence of some of these has been

TEM PERA TU RE, °F.

F i g . 2 b .

discussed [3, 4, 7, 8], All of these methods propose computations on the values of T  
by a specifically stated iteration process which can be shown rigorously to converge 
and can be performed by a completely automatic computing machine. In no case 
is it possible to add physical information after the values guessed initially are at
tached to each net point, without upsetting the scheme of solution.

A new scheme for solving Eq. (13) for the n points of a two-dimensional domain 
is given by the relaxation method [9]. This method is so superior to others in point 
of the time required to reach a solution of given accuracy that it will be discussed in

*  T h e  n u m b e r s  in  s q u a re  b r a c k e t s  re fe r  to  th e  b ib l i o g r a p h y  a t  th e  e n d  o f  th e  p ap e r.
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detail. Again, the physical problem will be considered as one of heat conduction, 
although any other-phenomena leading to Laplace’s equation would serve as well. 
R. V. Southwell [10], who developed the relaxation method from a consideration of 
problems of statics, generally speaks in terms of a tension net as an approximation 
to a soap film or membrane.

HC
s
U.
o
aH<H'Si
S< çy a V h IIC/3
5 «

luO

TIM E, HOURS

F ig . 2c.

F ig s . 2 a -c .  T r a n s ie n t  h e a t in g  o f fu rn a c e  w a l l ( F ig .  5 ). A t  t im e  0 w a ll a t  u n if o r m  te m p e ra tu re  

T — 100° F  h a s  in n e r  s u r fa c e  te m p e ra tu re  ra ise d  to  5 0 0 °  F .  W a l l  t h e rm a l d i f f u s iv i t y  a  =  .01 ft s/h r. 

S i  =  .2 0 8  ft. T h e re fo re  S i =  1 .083  h rs .  T h e  6  te m p e ra tu re s  s h o w n  a t  e a ch  p o in t  a re  a t  t im e  in te r v a l s  of 

1.083  h rs .  E a c h  te m p e ra tu re  is  th e  a v e r a g e  o f  th e  te m p e ra tu re s  a t  th e  4  s u r r o u n d in g  p o in t s  a t  th e  p re 
ceding  t im e . H e a t  lo s s  is  Y L Q '  a lo n g  in n e r  su rfa ce .

( F r o m  Th e  n u m erica l so lu tion  o f  heat conduction  prob lem s. B y  H .  W .  E m m o n s ,  T r a n s .  A . S . M . E . ,  

65, 6 0 7 -6 1 5  (1 9 4 3 )) .

Instead of focusing attention on the values of T  and the averaging process of 
Eq. (13), let us return to Eq. (10). To solve a problem the domain is drawn and the 
net points chosen. Values of T  are then attached (by guess or any information avail
able from experiment, special solutions, prior work, field mapping, etc.) to each point. 
From these values the residuals

Q = Qo/kb = Ti +  T, +  T 3+ T i -  4To (14)

are computed and recorded. The Q, thus computed, can be thought of as interior heat 
sinks which must be removed. Now, instead of setting up a specific iteration process, 
we merely observe that if the temperature at one point (0) is altered, all others re
maining fixed, the residuals will change according to the pattern in Fig. 3, the “relaxa
tion pattern.” Each change of T, at any point, effects a redistribution of the residuals,
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<2, among the net points, and such changes of T  are desired which will move all the 
sinks to the boundary.

These “operating instructions” may appear vague. Indeed they 
are vague. Their vagueness is the source of their great power be
cause the computer may without any effort alter the procedure to 
attain more rapid approach to the final answer (of no residuals).
There is only one way to appreciate fully the meaning of these re
marks and that is to do a problem.

Let us consider the extremely simple problem of Fig. 4, where 
the solution of Laplace's equation is desired with zero boundary values. For illustra
tions of the various methods, only three interior points are used and the ridiculous 
trial solution indicated in Fig. 4 is assumed. In this simple problem all the methods are

equally easy. The real time-saving advantages 
of the relaxation process only appear with more 
net points. In Table IA the transient solution 
[differential equation (1)] is carried out by use 
of the difference equation (7). In Table IB 
Liebman's method [2] is used, Eq. (13). In both 
cases, each value after the first at any point is 
obtained by adding four numbers and dividing 
by 4. This process cannot (for say 4 digit num
bers) be carried out mentally. Fifteen and ten 
changes respectively were needed to make the 
error less than unity.

Tables IC, D, E show applications of the 
relaxation method and these will be followed in 
detail to illustrate various “tricks” which serve 
to speed up the elimination of residuals. In 
T  and the subsequent corrections are shown at 

the right of each field, the values of the residuals (heat sinks) are shown to the left. 
The largest heat sink occurs in the vicinity of the greatest deviation of the assumed 
values from the correct solution, so changes are first made at this point. For purposes 
of illustration, each time any change is made in Tables IC, D, E a space is left at all 
unaffected points, so that the work can be followed. (Generally this is not done.)

Let us consider Table IC. To eliminate exactly a residual of —420 at point 3 
would require a change in T3 of —105. The making of this change is equivalent ex
actly to the averaging process. But why do we bother with three digit numbers? 
Since our residuals are very large, let us make simple large changes of about the right 
size. Therefore, let us change T3 by —100. By the relaxation pattern of Fig. 3 the 
residuals become Q3= —420+4(100)= —20, Q2= - 8 0 - 1 0 0 =  —180. Now Q% is larg
est. Accordingly, we change T2 \ a change of —50 was chosen and the third residuals 
at each point computed. We notice that the residual at the point 3, muchpmproved 
at the first step, has been spoiled again by the following change at point 2. This al
ways happens when a point is surrounded by other points with residuals of the same 
sign. We would have done better to overshoot zero at point 3 on the first change. On 
the next change, at point 1, we overshoot the zero and make the residual positive. The 
residual at point 2 changes from +20 to —20 and the previous change might well

F ig . 4.

Tables IC, D, E the initial value of

F ig . 3.
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have been larger. By not overshooting enough or by overshooting too much we do 
no harm except that some time is lost. A little practice improves one’s guessing.

In Table ID the block relaxation
T a b l e  I

A )  S o lu t io n  b y  E q .  (1 7 ) ;  I S  ch a n ge s .

B )  S o lu t io n  b y  E q .  (1 3 ) ( L ie b m a n ’s  m e th o d ) ;  10 

ch a n g e s .

C )  I l lu s t r a t e s  o v e r s h o o t in g ; 5 ch a n g e s ,  ( t  = o v e rsh o t ,  

* =  s h o u ld  h a v e  o v e rsh o t ) .

D )  I l lu s t r a te s  b lo c k  re la x a t io n ;  6  c h a n g e s  m ade , 

f ir s t  3 a t  once.

E )  I l lu s t r a t e s  u se  o f  p r io r  k n o w le d g e ;  3 ch a n ge s .

process is used, i.e., a block of points 
is changed simultaneously. This is de
sirable since all the residuals are nega
tive. So large a change is made that their 
average resultant residual is about zero 
(or overshot if desired). A change of 50 
was chosen. If one computes by the 
relaxation pattern [Eq. (14)] directly 
there is no gain by block relaxation. 
Instead let us consider the physical ar
rangement. If the temperatures at two 
adjacent points are both changed by the 
same amount there will be no change 
of heat flow along the connecting rod. 
Thus the relaxation pattern —1, 1 as 
given by Eq. (9) is used for each rod 
independently, and at the points of 
Table ID, the residuals change by <2i = 
-100+3(50) =50, C?2= -80+2(50) =20, 
(?3 = —420 +  3(50) = — 270. From this 
point the solution is continued as before.

Of course we know the solution in 
the present case is zero everywhere. This 
knowledge is used in Table IE immedi
ately and the solution obtained in three 
steps. Naturally one would not have 
started this problem with so poor an 
assumed set of initial values. Also the 
prior knowledge is never as extensive as 
in the present trivial problem, but ob
servation of trends in the solution often 
gives a clue to the way in which values 
should be changed.

It is not possible to judge the speed 
and ease of the relaxation method com
pared to the averaging methods by 
comparison of the various procedures 

illustrated in Table I. The relaxation method is far superior when a large number of 
points are.used because of its flexibility (possibility of overshooting), its use of Simple 
large numbers when the residuals are large and simple small numbers when they have 
become small,’ and the fact that the most difficult operation is to multiply a simple 
number by 4 and add the result to or subtract it from another, all of which can easily 
be done mentally.

Figs. 5 illustrate the solution of a somewhat more difficult problem. It should be

P o in t 1 2 3

4 0 60 120

IS 4 0 15

A 10 7 .5 10

1 .4 5 1 .4

1 .2 .7 1 .2

.2 .6 .2

4 0 60 120

15 3 3 . 8 8 . 4

B 8 . 4 4 . 2 1 .0

1 .0

.1

.5 .1

- 1 0 0  4 0 -  8 0  6 0 - 4 2 0  120

— * - 1 8 0 -  2 0  - 1 0 0

C - 1 5 0 2 0  - 5 0 -  70

10 — 4 0 1 -  2 0  * —

— -  4 0 10 -  20

0 0  - 1 0 0

- 1 0 0  4 0 -  8 0  6 0 - 4 2 0  120

5 0  - 5 0 2 0  - 5 0 - 2 7 0  -  50

D — -  50 10 -  70

4 0 -  10 - 1 0 0

0  + 1 0 0 —

- 1 0 0  4 0 -  8 0  6 0 - 4 2 0  120

E — - 2 0 0 6 0  - 1 2 0

- 1 6 0 6 0  - 6 0 0

0  - 4 0 0 —
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noted that the solution is started with a few points only. Then, for greater accuracy 
more points are added. These need not be added everywhere but only where greater 
accuracy is desired, or where some variable changes rapidly. In the illustration the 
points were doubled in number by adding one point at the center of each four points. 
The resultant net is square but diagonal to the first. Since Laplace’s equation is in
variant on rotation of the axes, the same average formula applies to values on the new 
net. Guessed values for starting the finer net are obtained by averaging the surround
ing four values. If a fine net is used locally, as might have been done near the reentrant 
corner in the illustration, it can always be connected with the coarser net through use 
of the diagonal formula where the two nets meet.

F i g . 5a. F u rn a c e ,  s h o w in g  se c t io n  u n d e r  c o n s id e ra t io n .

The results of computation of the furnace wall conduction problem are sum
marized in Table II. We note particularly the time required for a solution and the

T a b l e  I I

N u m e r ic a l  S o lu t io n  o f  H e a t  C o n d u c t io n  

P ro b le m  o f  F ig .  5

N u m b e r  o f 

p o in t s  

u se d

C a lc u la te d

th e rm a l

re s is ta n c e

D e v ia t io n  f r o m  

e x p e r im e n ta l 

s o lu t io n

H o u r s  

re q u ire d  fo r  

c a lc u la t io n

.0735
b y  a r ith m etic  m ean  area

kb
1 5 . 3 % .05

.0806
12

kb
5 % .75

.0825
19

kb
2 . 8 % 1 .75
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F ig .  5b . S t a r t  s o lu t io n  w it h  l in e a r  te m p e ra tu re  d is t r ib u t io n ,  re la x  Q ' to  g e t  f in a l te m p e ra tu re . H e a t  

t ra n sfe r re d  is  @ = £ f > [ 2 3 2 + 2 0 8  +  (4 .5 / 5 )2 0 2 ]  = 6 2 2  kb . T h e r m a l  re s is ta n c e  R = A 7 Y 8 ( ?  =  4 0 0 / (8  X 6 2 2 & 5 )  

=  .0806/&6. S u p e r s c r ip t s  in d ic a te  s te p  o f  c a lc u la t io n .  ° =  o r ig in a l  v a lu e s ,  =  su c c e s s iv e  ste p s.
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F ig . 5c. S t a r t  w it h  s o lu t io n  o f  c o a rse  n e t  F ig .  3a. R e la x  Q ' to  g e t  f in a l te m p e ra tu re . H e a t  t ra n sfe r re d  

< 2 = * & [ l 9 5 / 2 + 2 X U l + 2 X 1 0 2 + ( 4 / 5 ) 1 0 2 ] = 6 0 6  kb . T h e r m a l  R e s is t a n c e  R = A r / 8 ( ?  = 4 0 0 / ( 8 X 6 0 6 * 6 )  

=  .0 8 2 5 /k b .

( F r o m  T h e  n u m erica l so lu tion  o f  heat conduction  prob lem s. B y  H .  W .  E m m o n s ,  T r a n s .  A . S . M . E . ,  

65, 6 0 7 - 6 1 5  (1 9 4 3 )) .
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corresponding error. This same problem took 11 hours when solved by the averaging 
process.

Another problem, still more difficult, is illustrated in Fig. 6. This is the problem 
of the water tube of a boiler, and the boundary conditions are varied. The water in
side the tube is assumed to maintain a constant wall temperature T  = 0. The lower 
half of the tube is embedded in insulating material, so the normal gradient of tempera-

F i g . 6. H e a l  t ra n s fe r  b y  r a d ia t io n  t h r o u g h  fu rn a c e  w a te r  w a l l tube.

ture is there assumed to be zero. On the upper half of the tube heat is transferred by- 
radiation in such a way that the heat input is constant per unit projected area. The 
normal gradient of temperature is thus proportional to sin 6. This problem was easiest 
to solve by a transformation from the x, y-plane to the z, 0-plane, where 0 = tan-1y/.r, 
z = log r = |  log (x2+ y 2). The net points used are indicated in the x, y-plane by the in
tersection of the radial lines and circles. The numerical solution checked “exactly” 
with the analytical solution, as observed by superposing the graphed results. From 
an engineering point of view this solution is “exact,” since it deviates much less from 
the analytical solution than the uncertainty of the boundary conditions.
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So far we have dealt at length with the relation between the well known averaging 
process and the relaxation process. Indeed, it may appear that we have wasted time 
with trivialities of arithmetic but the author’s conversations with many have indi
cated that it is just these minor details in point of view that make the relaxation 
process about five times as rapid as the iteration processes. To appreciate fully the 
power of the flexibility of the relaxation method, one must take pencil and paper and 
carry out the numerical process in all its uninteresting details. In fact, for the comp- 
puter (as opposed to those who think only about the logic behind the computation 
methods) the relaxation method has a spirit lacking entirely from the iteration proc
esses. The former challenges one’s intellect at each step to make the best possible 
guess, while the latter reduces one to the status of an automatic computing machine 
(without the advantage of no computational errors). It should not be inferred that the 
relaxation process requires high intellectual powers. If changes are chosen in a specifi
able way it reduces exactly to the iteration process. The computer can then vary from 
this completely specified process by whatever amount fits his own skill.

3. Other types of equations solved by the relaxation method. After the essential 
idea of the relaxation method is grasped, other problems may be solved by rather ob
vious steps. The differential equation is converted into a difference equation, some 
quantity (to be zero for'the solution) is chosen as the residual, and the relaxation pat
tern is set up. Changes which make the residuals smaller are then made. We notice 
that no question of convergence can occur in the general relaxation process, since no 
specific instructions are given. If, after some steps, the residuals get worse, the intelli
gent computer goes back and makes changes in the opposite direction. These remarks 
oversimplify the problem somewhat because of two facts; first, the computer may 
become confused as to whether or not the residuals are really better, and secondly 
there is always a question of whether or not a solution with zero residuals exists 
(see [8]).

The following is a partial list of types of problems solved, with some brief details 
of their solution.

A. Poissofi’s equation,
A  ip =  <f>zx T  'fii/v =  / ( • * ’ > y)'  ( 1 5 )

(Subscripts denote partial differentiation.) In finite difference form, for a square
net of points the approximating difference equation is (see Fig. 1 for notation)

<Pi +  2̂ +  <Pz +  <fi — 4̂ o — f(%, y)8x2 = Q, (16)

where the residual Q is to be zero at each net point. Since/(x, y) has a known numeri
cal value at each net point, it enters into the value of the residuals at the start of the 
computation, and in no way affects the relaxation pattern used for Laplace’s equation, 
Fig. 3. Thus the solution of Poisson’s equation is precisely as easy as that of Laplace’s.

B. Biliarmonic equation,
d4w d4w d4w

AA w = ----+ 2 ----------- b  = 0 . (17)
dx4 d2xd2y dy4

The finite difference equation for a square net of points is most simply derived by 
converting the two A forms separately. Thus

Awi +  Awi -f- Aii>3 -f A1V̂  — 4Awo = 0 (18)
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Fig. 7. D e f le c t io n  o f  a  p la te  w ith  c la m p e d  defle cted  edges. N o  lo ad . AAif =  0, 

w  g iv e n  a t  edge, w „ = 0  a t  edge. R e c o rd e d :  A A w w .  S o lu t io n  t im e : 12 h o u rs .  1st s o lu 

t io n :  6  h o u rs .  C h e c k in g  a n d  e l im in a t in g  m is t a k e s :  6  h o u rs .

computed, since the exact solution of the differential equation is not known for these 
boundary conditions. However, one’s confidence in its precision is increased by ob
serving that the finite difference solution of a square plate under uniform load is in 
error less than 1% in maximum deflection when only 9 interior points are used [11 ], 
rather than the present 22.

C. The equation of natural modes of a membrane,

Aw +  \w  — 0. (19)

In problems of the vibration of two-dimensional systems, the information sought 
concerns the natural frequencies and the characteristic functions. In the equation, 
it is required to find the permissible values of X, which is the square of the frequency 
times certain physical constants. The relaxation method can be applied to this prob
lem in several ways. For example, a value of X could be estimated by Rayleigh’s 
principle from an assumed deflection w,

X _ z : g  +  - B , ' m
2A W

where the summation extends over all the net points. This value could then be in
serted into Eq. (19) in the finite difference form,

from which, by expansion of the remaining A’s, one obtains the relaxation pattern 
shown on Fig. 7, where the solution of a problem of the deflection of a plate with 
clamped deflected edges is also shown. The accuracy of the present solution cannot be

n>i +  W2 -f- wz +  Wt — (4 — \52)wo = Q, (21)
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and the relaxation process used to reduce the Q. Periodically during the solution X 
would be reevaluated and reinserted into Eq. (21). Thus new residuals would appear, 
which could again be reduced, the process being repeated until Eqs. (20) and (21) are 
satisfied with sufficient accuracy. This method of solution, as used by Southwell [12], 
imagines that at each net point there is a force Q applied and that these forces are to 
be removed by changes of the amplitudes w, and the “frequency” A.

Another method which seems to be superior in some respects has been worked out 
by Dr. A. Vazsonyi, and will be published shortly.* Equation (19) is written in the form

Aw / s
A = --------- • (22)

w

At each net point a value of the amplitude w is assumed and the corresponding values

0 0 O 0 0 -

0 4 54  
900

761
896

815
894

568
902

0 \
0 646

895
1092
898

1200
897

945
903

440
904

0

0 460
899

780
895

870
899

720
898

4 18 
901

135
905

0 \
0 O 0 0 0 0 0 0 ol

F i g . 8. L o w e s t  f r e q u e n c y  a n d  n a t u ra l  m o d e  o f  q u a d r a n g u la r  m e m b ra n e .  

S e c o n d  a p p ro x im a t io n .

*Av H v =  0 , f  =  0  o n  edges,a
*  Xv&v a ±

5 = 1 ,  a — 24, \ m — ----- ~  =  .8984, X  =  X m.
Xv2 5-

F i r s t  c h a ra c t e r is t ic  v a lu e :  X  = 2 1 . 5 6 2 .

R e c o rd e d : I  —  !

j -  1 0 0 0 - ^ - ( =  1 000X *) j

*  J . A p p l .  P h y s ic s ,  15, 5 9 8 - 6 0 6  (1 9 4 4 ).
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of Aw and X recorded. These assumed amplitudes constitute the solution to the prob
lem of the vibration of a membrane of non uniform mass distribution. For a uniform 
mass distribution the value of X should be the same at each point. The values of w 
are changed to equalize the values of X. Whenever a w is changed the changes of Aw 
are immediately computed by the Laplace relaxation pattern, Fig. 3. New values of X 
need not be computed every time. At any stage of the solution the correct X lies be
tween the highest and lowest value at the net points. Finally a value of X is computed 
as an average of those at aU the net points. The best theoretical way to compute 
this “average” is by the use of Eq. (20) in the form

y  w/\w
X =

w
(23)

Fig. 8 shows the solution for the lowest frequency of a quadrangular membrane.

0 0 0 0 0 \
0 460

1 65
463
166

32
162

-29 0 
171

0

0 641
166

586
163

-97
167

-696
169

-580  
1 65

0

0 4 4 4
169

3 84  
1 70

-148
163

-638
165

-652
170

-282
169

0

0 0 0 0 0 0 0 0 o]

F i g . 9. S e c o n d  f r e q u e n c y  a n d  n a tu ra l  m o d e  o f  q u a d r a n g u la r  m e m b ra n e .  

S e c o n d  a p p ro x im a t io n .

A r  H v =  0, v =  0  o n  edges
a

*  SrAt» a *
6 =  1, a =  24, X „  =  1 .6 7 1 6 , X  =  - X m.

S e c o n d  c h a ra c te r is t ic  v a lu e  X  = 4 0 .1 1 8 .

R e c o rd e d : f v )
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To compute higher modes, the procedure is exactly the same as outlined above 
for the lowest mode. The assumed amplitudes should of course include one or more 
nodal lines, depending upon the mode sought. All of one’s information about the vi
bration of membranes should be used in selecting the amplitudes, and generally it is 
convenient to make use of the orthogonal properties of the characteristic functions. 
Thus, it is always possible to use any arbitrary amplitudes w and remove the portion 
of these arising from the first mode Wi (obtained at the end of the first mode computa
tion), to obtain the amplitudes wn of the higher modes only;

wn
where

a

The second mode of the quadrangular membrane is shown in Fig. 9, while Table III 
compares the results. We note the good accuracy obtained with a few points in the 
square. By the use of symmetry, the 9 point approximation for the square required 
only 10 minutes.

T a b l e  I I I  

C h a r a c t e r is t ic  v a lu e s  o f  m e m b ra n e s

C h a r a c t e r iz a t io n  o f  p ro b le m
S q u a r e  m e m b ra n e ;  

lo w e st  m o d e

M e m b r a n e  a c c o rd ,  to  F ig s .  8, 9; 

lo w e st  m o d e  se c o n d  m o d e

O r d e r  o f  a p p ro x im a t io n firs t se co n d e x a c t f ir s t se co n d f irs t se c o n d

D e g re e s  o f  f re e d o m  o f  a p p ro x .  

s y s t e m 9 4 9 — 7 15 7 15

C h a r a c t e r is t ic  v a lu e 1 8 .7 5 1 9 .5 0 8 2 tt2 =

1 9 .7 3 9

2 0 .6 1 2 1 .5 6 2 3 7 . 1 0 4 0 . 1 1 8

N u m b e r  o f  m o d if ic a t io n s  u se d 5 35 — 12 35 16 65

A c c u r a c y 5 % * 1 - 2 %

It should be noted that the solution of a forced vibration problem is best carried 
out by the first method outlined above.

D. Equations of the type,

Pxx T  /(.%i y> Pi Pxt Py)Pvv ~  &(Xi )'i Pi Pxi Pv) • (26)

Equations of this type are of frequent occurrence in engineering problems, but
because of their non-linear aspects only limited assistance is offered by conventional 
mathematical methods. For so complicated an equation, there are many possible ways 
of applying the relaxation process. Only one will be mentioned here. We obtain a 
finite difference equation by transforming the second derivatives only;

Pi +  Pi +  foP3 +  fopi — 2(1 +  fo)po — go52 = Q, (27)

for which the relaxation pattern is shown in Fig. 10. Thus the pattern is different

w — awi,

y ,  wiw

Z  Wl
(25)



The domain of the problem to be solved is drawn and a 
solution is guessed at a net of points. From this set of values I •f*l
of 4>, f 0 and g0 and then the Q are computed at each point, t - j—1 U /| [ r  M

By the relaxation process carried out exactly as described *----*■—*—f— ^  '----*
for Laplace’s equation, except that the influence coefficients | -f2|
of Fig. 10 are used instead of ( —4, 1, 1, 1, 1), the residuals Fig 1Q
Q are reduced somewhat. Before bothering to eliminate
the Q completely, we compute new values of /o and go and hence corrected values of 
the residuals attached to each net point. This process of reduction and correction is 
continued until sufficient accuracy has been attained. Just as in previous problems, 
a finer net can be added for greater accuracy.

As an illustration, let us consider the distribution of electric potential in the space 
between two parallel planes, one of which has, standing normal to it, a right circular, 
cylindrical post with a hemispherical top. Fig. 11 shows the problem and the solution.

Fig. 11. A x ia l l y  s y m m e t r ic  e le c tr ic  p o te n t ia l d is t r ib u t io n .

d2(p 1 d2(p
— -  4 *  —  — - =  0, w here  y  — lo g  r, <p c o n s ta n t  o n  boundarie s.

for each net point and varies during the course of solution. The luxury of an investiga
tion of the classification of equations of the type of (26) (as to whether they are ellip
tic, parabolic, or hyperbolic, if such a classification is possible), of the nature of 
solutions, of the permissible boundary conditions, etc., is denied during war time by 
the urgency to get numerical results. Only casual observations have been made to 
date, and will not be discussed. However, it is certain that for/>0  [Eq. (26) of elliptic 
type] the process of solution described is quite easy and quick to carry out.
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If cylindrical coordinates are used with the z-axis along the axis of the post and the 
origin at the base of the post, the potential is described by the equation

d2<f> 1 d (  d(f>\
—  +  [r —  ) = 0 (28)
dz2 r d r \  dr)

with the boundary conditions ip = 0 on the base plane and post, and <p=100 on the 
parallel plane. Again, several alternative procedures are possible. For example, Eq. 
(28) can be written

tyzz “1“ <Prr — W, (29)
r

and the solution can be carried out as described above for the general case.
In the case of the present problem it was decided to make the substitution

y = log r, (30)

thus converting Eq. (28) into

<p2Z T  ”  H* (31)
r-

Hence the finite difference equation becomes

<pi +  <p3 +  B{tp2 +  <p\) — 2(1 +  B)<p o = Q, (32)

where B — bz2/ r 2by2, by and bz being the net spacing in the y and z directions, re
spectively. The net spacing was chosen so that bz=4by. In this way sufficient points
appear where they are needed, i.e., near the post. In Fig. 12 the transformed plane is 
shown, together with the influence coefficients at the top of each column of points.

E. Equations of the type,

d d
—  W J  +  — (wv) = g(x, y, v, <px, <pv)< (33)dx dy

where ju=/x (x , y, <p, <px, <py). This equation is of very general occurrence in physical 
problems. For example, in the case of a soap film with large deflections w under con
stant excess pressure p, we have [14]

1 p
<P=W,  M = ~j~r~r— 8 , «'».% » g = — = constant; (34)(1 +  wl  +  w \ \ 112 2

in the case of the plane irrotational flow of a compressible fluid with velocity poten
tial <p, we have
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I 7 — 1 p2') 1
H = p = density = Po< 1    ------- , g = 0;

(. 1 s0l 7 ~  1
(35)

in the case of a steady magnetic field (<p = magnetic potential) in a non current carry
ing medium, we have

¡X = magnetic permeability = f(<p\ +  <p2v), (36)

where the function /  is given by experimental data on the material.
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The flow of oil in the film lubrication of a bearing, when the viscosity is assumed 
independent of temperature, is described by an equation of this type [see Eq. (39)]. 
In general, physical problems which lead to Laplace’s equation when physical param
eters are constant, give equations similar to (33) when the physical properties vary. 
The properties may be known functions of x, y  because the material is non-homo- 
geneous, or of <p, <px, (p„, etc., because of the nature of the material itself.

For the numerical solution of these problems it has been found convenient to 
use the form

<Pxx +  <PVV = g — (log fi)x<pz — (log m)vV>v  (37)

In finite differences this becomes

<Pl +  <P2 +  <(>i +  <pA —  4 ^ 0

= gob2 +  (<pi — ¥>3) (log M3 — log Ml) +  (<p* — ^2) (log M2 — log Ml)} +  Q- (38)

The relaxation pattern used is that used for Laplace’s equation. The Q is to be elimi
nated. The variable terms on the right of Eq. (38) are computed periodically as cor
rections. This method is well adapted to the equation as long as Eq. (33) remains of 
elliptic type. The “correction” terms on the right contain <pxx and <pvv through the 
relation (34). When these variations are such that Eq. (33) becomes hyperbolic, the
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F i g . 13. S o a p  f ilm  w ith  la rg e  d e f le c tion s.

d d 1
—  0 % )  +  —  (jtw y)  =  0, w here  n  =  — — — — — — -  •
d x  dy  (1 -f- w-x +  w f)112

R e c o rd e d :  d e f le c tion  w . T im e  to  c o rre c t  s m a l l  d e f le c tion  s o lu t io n  ( s h o w n  b y  b ro k e n  

lin e s ):  3 h rs.

compared with the largest dimension of 160 units for the xy projection of the bound
ary. We note the deflection as given by Laplace’s equation and show it for comparison 
by dotted contours. In solving this problem, the Laplace equation solution was taken 
as the first approximation. Correction terms had to be computed only twice. This 
solution required 3 hours.

F. A more general type of equation which arises in the flow of oil in a bearing has 
been solved by Christopherson [13], He solves the system of equations

d r t f3 dP "I d r t f3 dP'L M  J dr] L M  dt] _

r ir- dP d r  r ir- dP~ r m  dP i
1 M ~d£_

... 
1

1 
*=• 

1 ^
+

M dr] .
= A ------ b 3 ----

. IP d£ .

where H is  a given function of £, t] and M is a given function of T, P; P  is the pressure 
in the lubricant, T  is the temperature of the lubricant.

relaxation process becomes confusing unless a great deal of physical knowledge is 
available to assist the computer.

The solution of a problem of this kind is shown on Fig. 13, which shows the shape 
of a soap film with large deflections (Eq. 34). The maximum deflection is 100 units,
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G. Another very general system of non linear, integral, differential, difference equa
tions arises in the problem of the thermal equilibrium of a nest of A  coaxial, conduct
ing cylinders of length 2b, between which a hot gas flows. The temperature T  of 
the cylinders varies with the number n of the cylinder and with the axial position z 
of the point under consideration. The temperature of the gas varies with the number n 
of the stream, and the position x. The equations to be solved are

/i(x, n)T4(x, n) +  a f  {T4(y ,  n +  1 ) /2(x, n, y )  +  T4(y, n — l) /3(x, n, y ) \ d y  
J  - b

+  b{T,{x, n) +  T,{x, « — 1) — 2 T(x, n) j +  c -----——— = 0, (41)
dx2

dT ,(x ,n ) ( n +  1 2» +  1 )
+  T(x,  n) H T(x,  n +  1 )--------------T.(x, n ) \d  = 0,

1 « 11 )dx
(42)

where a, b, c, d are constants
/ n / 2 , / 3  are known functions of the variables indicated. The solution of these equa

tions, which required about 30 hours, is shown in Fig. 14. The temperature contours 
show only the distribution of cylinder temperatures. This analysis was actually used 
as the basis for redesign of the instrument involved.

c
N E S T  O F  C Y L I N D E R S

F i g . 14. T h e r m a l  e q u i l ib r iu m  o f  a  n e s t  o f  c y l in d e r s  in  a  h o t  g a s  s t r e a m  in c lu d in g  

ra d ia t io n ,  c o n d u c t io n  a n d  c o n v e c t io n .  G a s  te m p e ra tu re :  1700°  F  a b s.  S u r r o u n d in g  

d u c t  t e m p e ra tu re :  1500°  F  a b s.  S e c t io n  o f  n e s t  o f  c y l in d e r s  s h o w in g  c y l in d e r  te m p e r

a t u re  d is t r ib u t io n .

4. General remarks on finite difference approximations. In this paper only the 
simplest approximations for rectangular nets of points have been mentioned. There 
is no reason why higher order approximations cannot be used, or why triangular or 
other point arrangements should not be considered. Indeed both of these possibilities 
have been used [9, 10, 13]. There is no sure way of deciding at the present time just
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what net should be used with a given problem. The ultimate requirement is a suffi
ciently accurate answer in the shortest possible time. The author's experience to 
date favors the simplest possible formula, the simplest possible relaxation pattern, 
with accuracy obtained by extra points on a finer net where needed. Southwell and 
Christopherson [9, 10, 13] have occasionally found other formulas to be advantageous. 
Until a person is thoroughly acquainted with the details of the several processes 
of solution, the “bookkeeping,” it is impossible to judge the relative merits in the 
matter of time required to reach a given accuracy.

This is particularly true in the matter of boundary conditions. Every new com
puter “discovers” the possibility of deriving special formulas to apply to points near 
(or on) the boundary of the domain, especially when the boundary itself wanders 
among the net points. In many cases such formulas are admirable from the point of 
view of accuracy for a given net size, but fail miserably when compared with linear 
interpolation (or extrapolation) together with a somewhat finer net (used locally). 
By far the best general procedure for fitting “queer” boundaries or boundary condi
tions is to sketch a graph for the last few points approaching the boundary and thus 
compute the boundary point graphically.

5. Conclusions. This paper stresses particularly the practical aspects. The finite 
difference approximations to partial differential equations are well known; only the 
detailed steps in carrying out the solutions are not yet general knowledge, and these 
are discussed step by step. The relaxation method, first conceived by R. V. Southwell, 
is the underlying process in the solution of most of the problems discussed. Once the 
basic idea is grasped by actually solving a problem, it is capable of enormous extension 
to a great many kinds of problems with only the most meagre knowledge of the 
current methods (if any) for solving them. From an engineering point of view this is 
of enormous importance, because the practical man would like to do something better 
than guess, and yet he cannot afford the time required to become versed in analytical 
procedures, procedures which too often cannot supply a numerical answer to the real 
physical problem with reasonable accuracy and speed.
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S T U D I E S  I N  O P T I C S  

I .  G e n e r a l  C o o r d i n a t e s  f o r  O p t i c a l  S y s t e m s  

w i t h  C e n t r a l  o r  A x ia l  S y m m e t r y *

BY

M .  H E R Z B E R G E R  

C om m unica tion  N o . 960 fro m  the K o d a k  R esearch  La bo ra to rie s

In previous papers1-2 the author has proposed an approach to geometrical optics 
different from that developed by Hamilton and his successors.

The purpose of the present paper is to generalize the formulas in these papers, 
and to find the most general treatment of systems with central (point) symmetry and 
with axial symmetry. By leaving the coordinates general, subject only to the sym
metry conditions of the problem, we retain the symmetry in the formulas up to the 
point where we desire to draw conclusions for a special problem. We can then intro
duce special coordinates adapted to the problem in question, and find the particular 
answers.

The fundamental invariants of geometrical optics show no preference for either 
object or image side, nor for point or angle coordinates as variables. The different 
approaches suggested by Hamilton, as well as the direct approach just mentioned, are 
special cases of the methods developed here corresponding to special choices of co
ordinates. Several different choices of coordinates will be given as examples.

The fundamental formulas (A, B, B', C below) are based only on symmetry con
ditions and on the validity of the Lagrange invariant (A). They are therefore not 
restricted to optical problems,3 but are also valid for problems in mechanics, hydro
dynamics, and electron optics.

1 . Ray tracing formulas, the Lagrangian invariant. Let us assume a ray travers
ing a number of optical media with refractive indexes n, tin, w23, • • • , n'. Let a(x, y, z), 
a'Oc'’, y ' , z') be a vector from an arbitrary origin to a point on the object and image 
rays, respectively. Let a.k(xk, yk, Zt) be the vector from the same origin to the inter
section point of the ray with the &th surface. Let s*,*+!(£*,*+1, 77*,*+!, ¿Tt+i) be a vector 
along the ray in the medium between &th and (¿ +  l)th surface, a vector of length 
equal to the refractive index nk,k+i of the medium.

Let Oj. be a vector perpendicular to the &th surface at the intersection point. Its 
length may remain arbitrary, for the moment. The refraction law then reads:

sk.k+i X ok = Sk-i.k X Oa,, (1)

where the multiplication sign indicates vector multiplication. Equation (1) shows 
that Sk,k+i—Sk-i.k has the direction of the surface normal 0*, or

*  R e c e iv e d  J a n .  24, 1944.

1 M .  H e rz b e rg e r ,  D ire c t  m ethods in  geom etrical o p tics , T r a n s .  A m .  M a t h .  Soc ., 53 , 2 1 8 - 2 2 9  (1 9 4 3 ).

2 M .  H e rz b e rg e r ,  A  d ire ct im age e rro r theory, Q u a r t e r ly  o f A p p l ie d  M a t h e m a t ic s ,  1, 6 9 - 7 7  (1 9 4 3 ).

3 F o r  th e  c o n n e c t io n  o f  th e  L a g r a n g ia n  in v a r ia n t  w it h  d if fe re n t  b ra n c h e s  o f  m a th e m a t ic s  a n d  p h y s ic s ,  

see  M .  H e rz b e rg e r ,  T h eo ry  o f  tra n sve rsa l cu rves a n d  the connections between the ca lcu lu s  o f  v a ria tio n s  an d  the 
theory o f p a r t ia l d iffe re n tia l equations, P ro c .  N a t .  A c a d .  S c i.  U . S .A . ,  24 , 4 6 6 - 4 7 3  (1 9 3 8 ).
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S*,Jt+X — Sk- l ,k — </>kOk. (2)

We now can describe the path of the ray through the system by means of the vector 
equations

ai = a +  Xs, S12 = s +  <f>iO\, a2 = ai +  XuSn,

(3)
s' = s„_i,v -f 4>vo y, a' = a* +  X's'.

The geometrical significance of X and <f> can be seen by multiplying (3) scalarly by
Si,jt+i and 0*, respectively, keeping in mind that, by definition,

s t,*+i =  wJr,t+i- (3a)
We then find that

X*_i,* = (a* — a«:_i) -Sk-i.k/nk-i.k, (3b)

4>k =  (Sjt,i+1 — S * _ i,x )-Ok/ol, (3c)

i.e., the X’s are proportional to the distance between the two surfaces along the ray, 
and the 0 ’s are proportional to what might be called the power of the surface for the 
individual ray.

Since Eqs. (3) are valid for every ray, we now consider a two-dimensional mani
fold of rays, i.e., we assume the a’s, o’s, and s’s to be vector functions of two variables
¿i and h- From the definition of sktk+i and okl we find

Sk.h+i - (dsk,k+i/dt») = 0, ok-(da.k/dh) = 0, (n = 1, 2). (4)

We now differentiate (3) with respect to h and multiply scalarly by dsk,k+1 /dh  and 
dak/dt2, respectively. Then we differentiate with respect to h and multiply scalarly 
by dsk,k+i/dt\ and dak/dh ,  respectively. Subtraction of the two sets of equations yields 
the “Lagrangian invariant”:

3a ds da i d Si ,2 da' ds'
dti dti dh dt\ d t\
da ds dai dSi,i da' ds1
dt2 dt2 dh dh dh dh

This formula was introduced by Lagrange in his astronomical investigations. It is 
known by the name of the Lagrangian bracket in the theory of partial differential 
equations. Herzberger3 used it in his theory of transversal curves, as the starting 
point. Let us now see what conclusions can be drawn if the system in question fulfills 
certain conditions of symmetry.

2. Centrally symmetric systems. In this case all refracting surfaces are concentric 
spheres with radii jt, • • • , r„. It is therefore appropriate to consider the common 
center as the coordinate origin, and to choose concentric spheres as the object sur
face a and the image surface a'. All the surface normals pass through the common 
center. We shall give them the length rk from center to surface, with a positive sign 
if the surface is convex towards the incident light. In other words, we make ofc = a*. 
Under these conditions, Eqs. (3) become



ai = a +  Xs, S12 = s +  0iai,
(5)

s' = s„_i,n +  0„a „, a' = a„ +  X's'.

From Eqs. (3) we can find an invariant vector, namely,

a X s = a! X s = ai X Sn = ■ • • = a' X s' = p. (6)

Therefore, in a concentric system, both object and image rays lie in a plane through
the center, and the optical length p of the perpendicular from the center (the length
of the invariant vector) remains constant.

Equations (4) can be combined into

a' = oa +  bs, s' = ca +  ds, where ad — be = 1. (B)

The invariant relation, ad — bc = 1, is found by substituting (5) in (6). It is possible to 
calculate a, b, c, and d as functions of the X’s and 0 ’s, if we use “Gaussian brackets.”4 
We find

a = [01, X12, • • • , X'], b = [X, 0i, • • • , X'],
C — [01, Xl2, , 0n], d [X, 01, , 0n]>

In the case of central symmetry, the 0 ’s and X’s, and therefore a, b, c, and d, can
be considered as functions of a single variable, and p can be taken as this variable,
as shown in (9) and (10). Now

(airs*,t+i)2 -f- (a* X Sfc.t+i)2 = a2s2it+i, (8)
or___________________________________ __________

a*-s*,it+1 = Vr2«2^ , -  p \  (8a)

Thus we find from (3) that

• Xjr.t+i =  [^^r+i^r.t+i — P~ T̂'itwit.t+i — P2 ]
nk,k+i

-— V 1 - (— )!■ (9)M r - . i t + i  L  Y V i t + i W j i . j h + i /  Y \  rkni!,k+1 /  J

and that

4>k = — [^^«It+i -  P2 ~  ^rin l-ijc  ~  P2]- (10)
rk

Equations (B) correspond to the direct equations of our theory. A more general 
representation is given by choosing two arbitrary vector functions, 1 and m, in terms 
of which the object and image vectors can be expressed. Equations (B) may then be 
written,

a = al +  Jm, a' = a'l +  ¿>'m,
s = cl +  dm, s' = c'l +  d'm; (B')

a d - b e  = a'd' -  b'c'.
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4 In v e n t e d  b y  L .  E u le r  in  1776. Se e  M .  H e rz b e rg e r ,  G a u ss ia n  o p tics an d  G a u ss ia n  bracke ts, J .  O p t .  

S o c .  A m e r .  3 3 ,  6 5 1 - 6 5 5  (1 9 4 3 ).



a, b, c, d, and a ', b', c ', d' are still functions of a single variable, which can be taken as

x = (1 X m)2 = l2m2 -  (1-m)2. (11)

It is obvious that under these conditions the image formation described by (11) fulfills 
all the conditions mentioned, and that the last condition in (B) is equivalent to the 
validity of the invariant (6).

Formulas (B) are a special case of Eqs. (B') if we choose l = a, m = s, which corre
sponds to a= d  = 1 , & = c = 0.

The connection between a, b, c, d and o', b', c', d' becomes clearer if we introduce 
some auxiliary angles. Let us write

<£ (a, m) = a, <£ (1, a) = /S, (s, m) = 7 , £  (1, s) = 5,
<£ (1, m) = 0, £  (a, s) = <r, <£ (a', s') = o'.

From (B), if we write r for the absolute value of vector a, we find that

a = (m /x) sin a, b = (r//x) sin ¿3,
c = (mn/ir) sin y, d = (nl/x) sin 5,
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(12)

(13)

with analogous expressions for the primed quantities. Moreover, we find from (12) 
that

a +  J9 = y  +  S = 0 = a' +  f t  = V +  
a — 7 = 5 — /3 = cr, a' — 7 ' = 5' — /S' = cr', (14)

where cr and cr', according to (9), are connected by

p — nr sin <r = «V sin cr', x = Zm sin 0 . (15)

If we write
ad — be = a'd' — b'c' = D, (16)

we have finally
p — Dir.

Thus, for a given system of coordinates I, m, and 0 , and given object and image 
spheres (radii r and r'), we can calculate all the functions a, b, c, d, a', b \  c', d', if
only one of them is given on each side. For instance, let us assume 7  and 7 ' to be
given. We then find cr and cr' from (15), and obtain

(17)
a = c r + 7 , /9 = 0 — a — 7 , 7 = 7. 5 = 0 — 7 ,

a = a' +  7', /S' — 0 — o — 7', 7 ' = 7', S' = 0 — 7 '.

Thus, according to (13), we determine c, 6, c, ¿, o', 6', c', and d'.
Let us now consider some special cases.
o) The direct method. We choose l = a, m = s. This means that

0 = cr, /S = 7 = 0, a = 5 = cr,

a = d = 1, b = c = 0, (18)

a' = cr' +  7', (S' = cr — cr' — 7', 7 ' = 7 ', 5' = cr — 7 ',

where nr sin cr = n'r' sin cr'.



b) Hamilton's point coordinates. We choose l = a, m = a', or a — 1, ¿> = 0, a ' = 0, 
b' = 1. This means that

a =  f ,  >3 = 0, y  =  p  -  o, 8 =  o,

a' = 0, (S' = p, y' — — <*', b' = p +  o ' ,

or, since 1 = r, m = r',

a = 1, 6 = 0, c = [nr' sin (p -  <r)]/ir, d = ^/ir,
a' = 0, 6' = 1, o' = /»/ir, d' = [»V sin (  ̂+  o')]/ir,

where
nr sin o = n'r' sin- o' = p , rr' sin \p = it. (18')

We note especially that c' — d =0.
c) Hamilton’s angle characteristic. We choose 1 = s, m = s', or c = l, d = 0, c' = 0, 

d = l. We find from (B') that
ad — be = a'd' — b'c' (19)

or — b = a ' = D = p / i t .  For the auxiliary angles( we obtain

a = o +  p, p = -  o, y = P, 8 = 0 ,
a' = o', P' = P ~  *', y' = 0, 8' = P,

or

a = (n'r/ir) sin (  ̂+  <r), b = — a' = — p/ir, b' = (n^/ir) sin (p — o'), (21)

where
tr = ««' sin p, p = '«r sin tr = «V sin a7.

d) We take as coordinates the intersection points of the ray with two spheres in 
the object space: the object sphere (radius r), and a second sphere (radius R, and A, 
the vector to the intersection point on this sphere). We define

2 0 0  M . H E R Z B E R G E R  ■ [V o l. I I ,  N o .  3

1 = a, m = A,
and

a = a, a' = a' a +  b'A,
(22)

s = — ca +  dA, s ' = c'a +  d'A,

where a'd' — b'c' =c and
c = [«22 sin (\p — <r)]/x = — [nr sin cr]/ir = — p/rr. (23)

We find that
sin o' = [«r sin o]/n'r', sin (p — o) = [n sin o]/nR,

and, finally that

a' = [r’R sin (o' +  y ')]/x, c' = [n'R sin y'\/ir,
b' = [rr' sin (p — o' — y')]/v, d' = [n'r sin (\p — y ')]/x.

These are the equations for the image formation.

( 2 4 )
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3. Systems with rotational symmetry. Let us now assume that the system has sym
metry only around an axis, the unit vector along which we shall designate by k. 
In this case, all the surface normals intersect the axis, and we shall give to the vector 
Ok in (3) the length r̂ , which is the distance along the normal between its inter
section points with the axis and the surface.

We now project all the vectors on a plane perpendicular to the axis, and define 
the projected vectors b*. and tjt.t+i by the equations

3-k —  bj; +  z*k, Sk,k+i = tt.jfc+i +  ik, Ok = bj; -j- (zfc — ZA’*)k, (25)

where zn is the quantity known in geometry as the subnormal, and

tk , 4 + 1  =  —  —  v'k,k+ \ !

ffc,fc+i is the (optical) cosine of the angle between the ray and the axis.
Let us now assume that object and image origins lie on two planes perpendicular 

to the axis. We can then replace all the vectors in (3) and (A) by their projections 
in these planes, and find, instead of (A), for a two-dimensional manifold of rays 
(parameters tu'h),

(26)

3b 3t 3b' at'
3/i 3/i 3/i

3b 3t 3b' 3t'

3/2 3/2 3/2 <3/2

and instead of (B),

b' =  a'b +  V  t, t ' =  c'b +  d% (27)

where b ' X t ' = b X t and therefore a 'd’ —b'c' = 1. The functions a', b', c ', d' are given
by formula (7), where <£ and X have the same meaning as before.

Moreover, a ’, b', c', d' are no longer functions of a single variable, but are func
tions of the three symmetric functions and b and t, namely,

« = b2, v =  b t , w t2. (28)

Equation (27) corresponds to the formulas of the direct image error theory. The 
most general choice of coordinates might be described as follows (t and m, as well 
as the other vectors, lie in a plane perpendicular to the axis) : let

where

or

b =  a\ -f bm, 
t = cl +  dm,

b X t

ad — be -

V

t'
a' 1 +  i'm , 
c'l -f d'm,

= b' X t',

a'd' -  b’c1.

(29)

(30)

Let us assume that a, b, c, and d are functions of the symmetric functions of 
1 and m; that is,

l2, v = 1-m, w  =  m‘ (31)

b, t, b ', t' must fulfill Eq. (26), if we set and /2 alternatively equal to u, v, and w. 
Thus, we find the following equations for a, b, c, and d. Let us write
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A = au +  bv, 
B = av +  bw,

C = cm  +

I? = cv +  dw,

[V o l. I I ,  N o .  3

( 3 2 )

and introduce the abbreviation A for the difference of an expression in the object and 
image spaces. An easy computation then gives

1 dA dA dB dB da da db db \
) dti dti

+
dh dh

+
dh dh

+
dh dh 1

j dc dc dd dd dc dC dD dD (
\ dh dh dh dh dh dh dh dh /

= 0, (C)

A (ad — be) = 0.
These are the necessary and sufficient conditions that (29) describe an axially sym
metric image formation. We repeat that Eqs. (29) and (C) demand only the validity 
of Lagrange’s invariant (26), and axial symmetry. Their application is therefore not 
restricted to optical problems.

Let us now again investigate what forms the fundamental formulas assume for 
special choices of coordinates.

a) Hamilton's (Bruns ') point characteristic. Hamilton (Bruns) chose as variables 
the coordinates of a point in the object and image spaces. That corresponds to taking 
l = b, m = b'. Equations (29) become

or

b = b,
t = cb +  dW, 

a = b' = 1,

b' = b',
t ' = c'b +  d'W,

b = a' = 0.

(33)

These are conditions for the coefficients. Equations (32) now become 

A = u, C = cu +  dv, A ' = v, C' = c'u +  d'v,
B = v, D = cv +  dw, B' = w,

and we find instead of (C) that

D' = c'v +  d'w,

d = c ,

du du dv dv dc' dc' dd' dd'

dh dh dh dh dh dh dh dti
+ + +

dc dc dd dd dv dv dw dw

dh dti dh dh dh dh dh dh

= 0.

(34)

(35a)

(35b)

Equation (35b) stands for three equations, which we can obtain by replacing t\ 
and h  in (35) by u and v, u and w, v and w, respectively. This yields

dc' dd' 
dw dv

--------------- (35c)dc dd dc' dc dd' dd
dv du. du dw du dw

Equations (35a) and (C), when integrated, lead to a function V(u, v, w) such that

dV
du

d v

dv
d =

dV
dv

dV
d’ = -  2 ------ (36)

dw
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V  is the characteristic function of Hamilton, the “eiconal” of Bruns. Formulas 
(36) agree with Hamilton’s formulas, except that he used l2/2  and m2/2 as variables. 
Our choice of variables simplifies the form of the general formulas (C).

b) The angle characteristic. Hamilton chose as coordinates the direction cosines 
of the object and image rays. This means that l = t, m = t, or

or

b = at +  it, 
t = t,

c = 1, d — 0, 

Equations (29) now give 

C = u,

and (C) becomes

b' = a't +  i't', 
t' = t',

c' = 0, d' = 1.

C' — v, D = v,

db
du

da
dv

da' 
du

i  +  a' = 0, 
da db' 
dw du

D'

db
dw

w,

da' db' 
dw dv

(37)

(38)

(39)

(40)

Equation (4) is solved if we introduce the angle characteristic T{u, v, w), and set

1 dT
2 du

a = —
dT
dv

b =
dT
dv

1 dT
2 dw

(41)

We see that this also agrees with Hamilton’s theory.
c) The direct method. In the papers mentioned,1,2 we took as variables the object 

point and the direction of the object ray, i.e., we chose l = b and m = t. This gives

b = b, 
t = t,

That is, we put
a = d = 1,

b' = a'b +  i't, 
t' = c'b +  d't.

b = c = 0.

Equations (27) then give

A = u,

and Eqs. (C) give

C = v, B v, D = w,

(42)

(43)

(44)

a'd' -  b'c' = 1,
dA' dA' dB' dB' da! da' db' db'

dtx dh dh dh dh dh dh dti
+ + +

dc' dc' dd' dd' dC' dC' dD' dD'

dti dt2 dh dh dh dh dh dh

0. (45)

If we denote the sum of the four determinants in (45) by I '  when h = u, h  = v, by 
I I '  when h = u, h = w, and by I I I '  when h = v, h= w ,  we can write (45) in the form
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Again, if we disregard the fact that the variables u and w differ by a factor of 
two from those used previously1'2 we find Eqs. (46) to be identical with those given 
before.

d) Object and stop coordinates. To analyze image errors, we investigate the manner 
in which the image ray changes with the position of the object point and the position 
of the intersection with the diaphragm plane, for which we frequently substitute the 
entrance pupil of the system. If we choose these as the coordinates of the ray, assum
ing that the distance between object and entrance pupils is equal to k, we find that

b = b, b' = a'b +  b'bp,
t = 7(b -  bp), t' = c'b +  d'bp,

where

(47)

y  = ------- r = , • (48)
\ /  k2 +  (b -  bp)2 V k 2 +  u -  2v +  w

From (48) we conclud« that
1 l w

7« =  7r = 7 » =    = :  • (49)
2 2 a/ (^! + h -  2h+ w)3

Thus Eq. (29) gives

A  =  ti, B  = v, C = y(u  — v), D = y{v — w). (50)

The fundamental equations (C) become
n

a ' d ' - b '  c' = ........... :■■■--— = ,
+  n ~  2j> +  w 

] (51)
1 M

I' =  -  II' = III'
2 (k2 +  « — 2v +  w) 3 /2
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L A T E R A L  B E N D I N G  O F  S Y M M E T R I C A L L Y  

L O A D E D  C O N I C A L  D I S C S *

BY

K .  E .  B I S S H O P P  .

F a irb a n k s , M o rse  &? C om pany , B e lo it , W isco n sin **

1. Introduction. The general theory of lateral bending for thin circular plates of 
variable thickness is given in Timoshenko’s book,1 “Theory of plates and shells,” 
where also may be found numerous references to the literature of the subject. Of 
particular interest is a reference to Foppl who indicated the analogy existing between 
the rotating disc problem and that of lateral bending in a circular plate of variable 
thickness. Comparison of the solution for the rotating conical disc problem with the 
corresponding one for lateral bending shows that the basic differential equations in
volved, and the expressions for the stresses, are analogous. Therefore, previously de
scribed methods2 for obtaining solutions of the former problem in terms of hyper
geometric functions are applicable to the latter problem. It will appear later that the 
special type of hypergeometric differential equation associated with the lateral bend
ing problem has solutions which give the stress coefficients with less labor than in the 
case of the rotating conical disc.

The stress coefficients have been arranged conveniently for numerical calculation 
of conical discs, which are component parts of a wide variety of engineering struc
tures. The head of a large poppet valve provides a particular example where the 
principal stress member can be approximated by a system of incomplete conical 
discs. In order to illustrate an application of the theory, stress coefficients for conical 
discs subject to lateral bending as well as for rotating conical discs will be used to 
estimate stress distributions in a steel valve head of constant weight and various 
proportions. Since the coefficients are obtained from solutions of differential equa
tions for thin discs, the approximate method breaks down in the neighborhood of the 
valve stem. These limitations have little effect near the periphery, which makes it 
possible to calculate valve proportions corresponding to approximately uniform stress 
distribution throughout the head. The description of the illustrative example at the 
end of the paper explains the method of calculation in detail.

2. Derivation of differential equation. Let M r and M t denote radial and tangential 
bending moments per unit length acting on an element of a circular plate at distance 
r from the center; then if <2 is the corresponding circumferential shearing force per 
unit length, the equation of equilibrium is

Mr +  rdMJdr -  M t = -  Qr. (1)

If w denotes downward deflection of the middle surface, then

* R e c e iv e d  J a n .  29, 1944.

* *  N o w  a t  A r m o u r  R e s e a r c h  F o u n d a t io n ,  C h ic a g o ,  111.

1 T im o s h e n k o ,  Th eo ry  o f  p la tes an d  sh e lls , M c G r a w - H i l l ,  1 st  E d i t i o n  1940, A r t .  54, p. 282. 

s K .  E .  B is s h o p p ,  S tre ss  coefficients f o r  ro ta ting  d isc s  o f  con ica l p ro file , J o u r n a l  o f  A p p l ie d  M e c h a n ic s ,  

V o l.  11, N o .  1, M a r c h  1944, pp . A 1 - A 9 .
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(d2w a dw \  / dtp a \^+7ir)-nT+7 ')■
/  1 dw d2w \  /  ip dip\

M t = -  D (  +  <7----) = D ( —  +  cr — ),
\  r dr dr2 )  \ r  dr)

(2)

where <r is Poisson’s ratio, ip = —dw/dr and D = £ /t3/12(l — a2), E  being Young’s 
modulus and h the thickness of the plate; D is called the flexural rigidity.

In the case of a conical profile, h is a linear function of r, so that substitution 
from Eqs. (2) in Eq. (1) gives

d  /  d ip  ip \  d D  /  dip ¡p \DTt + 7) + ̂ t + '7).--e' (3)
In order to reduce this equation to non-dimensional form, we introduce the radius R  
to the knife edge of the disc and the thickness h0 at the center. If r / R =x ,  then 
h = h0(l —x),  and Eq. (3) becomes

p  f t + f i  3 y -  e  , v  n Q R V - s )
dx2 \ x  1 — x )  dx \ x 2 a:(l — x)J Ehl( 1 — a;)3

For any particular type of symmetrical loading the shearing force <2 is a function 
of a- alone. The maximum radial and tangential bending stresses Sr and S t are ob
tained from the general solution of Eq. (4) with the aid of Eqs. (2) and the relations

Sr = 6 Mr/h2, S, = 6Mt/ h \  (4a)

The problem of a conical disc supporting a concentrated vertical load P  at the 
center has some interesting practical applications. In this case <2 = P/2irr = P /2 kRx , 
and Eq. (4) becomes

d2ip dip / l  — x \
x(l ~  x) —  +  (1 -  4x)   I  b 3(7 )

dx2 dx \  x /
d2<p ^  dip — x \  6Pi?(l — c72)

ip = — ------------------   (5)
TvEh\{ 1 -  x)2

It can be verified by substitution that a particular integral of Eq. (5) is

2PR(1 +  a) /  2 -  3<r 1 1 \
ip3(x) = ...................  - ( ------------+  — + --------). (6)

irEhKI -  3.7) \(1  -  x)2 x 1 -  x )

The auxiliary equation, the solutions of which are independent of the type of loading, 
is obtained by setting the right hand side of Eq. (5) equal to zero. After making the 
substitution tp=xF, we obtain

d2F dF
*(1 ~  x) —— +  3(1 — 2x) — 3(1 +  a)F = 0, (7)

dx2 dx

which is recognized to be of hypergeometric type.
3. Complementary functions. Equation (7) is of the form



where c = 3, a +  6 = 5, and o6 = 3(l+(r). The first solution can be represented by a 
power series; the integral exponent difference3 1 — c= — 2 shows that the second solu
tion contains a logarithm.* In the notation of the hypergeometric function, the first 
solution is

ab a(a +  1)6(6 +  1)
P\(x) = F(a, 6, c, x) = 1 +  -—  x -i  ———— *2 +  • • • , (8)

1 c l-2-c(c +  1)

which converges absolutely and uniformly when |* | <1. The asymptotic behavior of
the hypergeometric function in the neigborhood of its poles is given by4

F(a, 6, c, x) ~  ^ —f) Q _  xy-a-bi (9)
x - . i  r(o)r(6)

whenever c — a — b is an integer less than zero, T(z) being the well known gamma 
function. Thus Fx{x) has a second order singularity at x — 1 such that,

T(3)r(2) 2(1 -  x)~2 sin axFi(x) ~  (i _  x)-2 =      , (10)
*-»i r(a)r(6) x(a -  l)(a -  2)(a -  3)(a -  4)

which may be used to approximate the function for values of x near unity. The 
presence of singularities of lower order in the remainder term for Fx(x) makes this 
method unsuitable for accurate numerical work. Better approximations for similar 
functions with second and third order singularities are given in Ref. (2).

The logarithmic solution6 of Eq. (7) isf

(ab — 4)(a6 — 6) 1 ab — 6
Pi{x) =  Fi(x) log, x +  —  g(x), (11)
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x2 x

where

and

, ( , )  -  ±  ( » + «  — 3 ) - - - ( ‘» ~  2X<. +  i - 3 ) . . ; ( f r - 2 )  (i2)
n—2 ■»!(»— 2)!

= 'P(,n — 3 +  a) -f — 3 +  6) — ^(«) — ^{n — 2)
1 1 1  1    -p     . . . -f.

a — 2 a +  « — 3 6 — 2 6 +  « — 3

1 1 1 . 1_ !   1 _      . (13)
2 n 2 n — 2

The principal part of expansion (11) shows that F3(x) has a second order singularity 
at the origin. The nature of the singularity at x=  \ can be recognized by observing

3 W h itta k e r and W atson, A course o f modern analysis, Cam bridge, En g lan d , 4th Ed itio n , 1927f 
p. 198.

* W hen cr =  1/3 both solutions can  be expressed in term s of rational a lgebraic functions.
4 T itch m a rsh , Theory o f functions, Oxford, En g lan d , 1932, p. 224.
5 F o rsy th , Theory o f differential equations, Cam bridge, En g lan d , 1902, vol. 4, p art 3, p. 147.
f  T h e  num erical va lu e  of c is used since it  is independent of Poisson’s ratio  <r.
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the limiting form of the wth term of g(x) which is proportional to that of Fi(x) pro
vided lim„,M remains finite. That this is the case can be shown with the aid of the 
logarithmic derivative6 of the Gamma function, which gives

/ l  1 1 \
lim $ „ = 2 1 ---------1----------- 1------1 — 2y — 2'f'{a) — ir cot dir,
n-+w \ iZ  — 2 d — 1 d J

(14)

where ^ (a ) = r '( a  +  l ) / r ( a  +  l) and y  is Euler’s constant. Thus F2(x) has a second 
order singularity at x = 1 of magnitude

sin dir /
F2(x) ~  -  lim $ „ ------- / ( I  -  x)\  (15)

x—*1 n — » w  7 T  /

The slow convergence of the power series near the singularities of Fi(x) and F2(x) 
makes numerical evaluation of the stress coefficients for all values of x between zero 
and unity exceedingly difficult, in spite of available asymptotic approximations. One 
scheme for removing this difficulty would be to construct from the transformed differ
ential equation (7) two new solutions of argument 1 —x and combine them linearly 
with Fi(x) and F*(x), as described in Ref. (2). This differential equation is invariant 
under transformation by 1 —x, which brings about added convenience of calculation; 
however, considerable further reduction in computation can be accomplished by ex
pressing Fi(x) and F2(x) in terms of symmetrical hypergeometric functions.

4. Solutions in terms of even and odd functions. Whenever 2c = a+& +  l, which 
condition is satisfied by Eq. (7), the transformation (1 — 2x)2 = f reduces the standard 
form of the hypergeometric equation to

d2F r 1 ( a  b \  -
« 1 - 0  —  +  Lt - ( t  +  T  +  1) ' .

dF ab
—  F = 0. (16)
dt 4dF

The solutions of this equation as functions of x are7

F{\d, \b, | ,  (1 -  2x)2} =  Gi(x), (1 -  2x)F{h(a +  1), \{b +  1), f , (1 -  2x)2} =  G2(x).

This shows that Gj(x) = Gi(l —x) and G2(x) = — G2(l —x). Since only functions of x are 
involved,

G t( x )  = CiFx{x) +  C 2F 2( x ) ,

G 2( x )  =  D f ^ x )  +  | 2F 2( x ) ,

where Ci, C2, D i, £>2 are constants; Gi(x) and G2(x) are respectively even and odd 
relative to the point x = §. The series for Gi(x) and G2(x) are very convenient for 
computation when .25^x^ .50 , while those for Fi(x) and F2(x) are equally so when 
0 ^ x ^ .2 5 . Since the G’s ’are symmetrical it is necessary to compute only one half as 
many fundamental values for constructing tables of stress coefficients as would be 
required with the F’s. From this point on therefore, the F’s are subordinated to the 
role of “helping functions,” while the G’s form the basis of all subsequent calculations.

Returning to Eq. (17), we employ the familiar method of comparison of singulari
ties for evaluation of the linear factors. I t is apparent from the character of the F’s 
that the G’s have second order singularities a t zero and unity whose values may be 
deduced from Eq. (9). After some reduction, we obtain

6 R ef. 3, p. 246.
7 R e f. 3, p. 297, Ex a m p le  7.
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\/jr  r(a)r(6) f" sin 071-"
Ci = -----------------  1 +  lim 4>n -------  ,

32r(-|o)rG6)L 7T J

c 2 = V i / [ i 6 r  ( i« )r( ii)]f

 ______ V tt r(a)V(b) r  ̂ sinoir"
64r{A(o +  i)}r{K& +  1)} L <1>n 7r J ’

d 2 = V ^ /[3 2 r{ i(a +  i)} r{ i(6  +  1)}].

The functions Gi(x), G2(x), and their derivatives are tabulated in Table 1.
Since the F’s and G’s are linearly dependent, xGi(x) and xG2(x) are fundamental 

solutions of Eq. (5), from which, by use of Eqs. (2) and (4a), the stress coefficients 
follow immediately.

5. Determination of the deflection functions. The deflection w(x) can be expressed 
in the form

w(x) = i?[iOi(x) +  zv2(x) +  Wi{x) ], (18a)

where W\(x) and w2(x) arise from the complementary functions respectively, and 
W3(x) arises from the particular integral. The calculation of w2{x) presents no diffi
culty, since only elementary functions with known integrals are involved. Direct in 
tegration of Eq. (6) gives

r  2PR(l +  a) V2 -  3cr x "
w3(x) = -  <p3(x)dx =   —    b log,-  . (19)

J  rEhl(l — 3<t) LI — x 1 — x_

The construction of the deflection functions w\(x) and i^2(x) is considerably more diffi
cult, since it is necessary to evaluate integrals of the type JxGi(x)dx (¿ = 1, 2), which 
involves additional infinite series. For purposes of computation, a convenient proce
dure, that also has the advantage of being easy to check, is to use a combination of 
analytical and numerical methods. A prerequisite for this calculation is a fairly ex
tensive and accurate tabulation of the G’s.

A straightforward step by step numerical integration process is seen to fail near 
the poles of the G’s, due to the presence of ordinary singularities in the integrands. 
The procedure for constructing the functions wi(x) and w2(x) in tabular form con
sists of removing these singularities analytically and integrating the resulting func
tions numerically.

6. Removal of singularities from the integrands of JxGi(x)dx and JxG2{x)dx. Let 
us consider a “substracting off” function JIi(x) which has the property that 
Gi(x) — Hi{x) is bounded uniformly, i.e., without finite jumps, throughout the in
terval of existence of Gi(x). I t is necessary that F/i(x) be continuous except for poles 
which are of the same order as, and coincide with, those of Gi(x). This specification 
is not sufficient however, since a t every point of the interval the difference 
Gi(x) — Hi(x) is finite, which requires the principal parts of Gi(x) and Hi(x) to be 
identical. The principal parts of Gi(x) at zero and unity are readily obtainable from 
Eqs. (11) and (17) together with the relation Gj(x) =G i(l — x). Since G2(x) 
= — G2(l —x) and the F’s and G’s are linearly dependent, the corresponding principal 
parts of G2(x) may be found by the same process.



The integral parts' of Gi(x) and G2(x) can be approximated by polynomials of 
low degree, which makes it possible to reduce the differences Gi(x) —Hi(x) and 
G2(x) —H 2(x) to uniformly small values throughout the interval by an intelligent 
choice of the “subtracting off” functions. Incidentally this process provides a con
venient check on the accuracy of the tabulated values of the G’s. After some manipu
lation a pair of suitable “subtracting off” functions were found to be

Hi(x) = C2[ — 7 +  ab — g(0) +  Ci/C2 — 2(a& — 4)(a6 — 6) log, *(1 — x)
+  1/x2 +  1/(1 -  x)2 -  (ab -  6)/x -  (ab -  6)/(l -  #)], (20)

/ /2(x) = D2[(l — ab — g(0) +  Di/D2)(1 — 2x) — \(ab — 4)(a5 — 6) log, {x /(l — x)}
+  1/x2 -  1/(1 -  x)2 -  (ab -  6)/x +  (ab -  6)/(l -  *)]. (21)

These functions have the added property that

lim {Gx(x) -  I h ( x ) } = lim {G2(x) -  H 2(x) } = 0.
x—*0, x—*1 x—+0, x—*1

Integrals of the type JxG(x)dx now can be evaluated directly from the identity

xG{(x)dx =  f  x[G<(x) -  IIi(x)]dx +  J  xHi(x)dx, (i = 1, 2). (22)

The second integral on the right-hand side is expressible in terms of elementary func
tions, while the first one behaves like a polynomial which can be computed easily 
with any numerical integration formula having a suitably small remainder depending 
on the magnitude of the differences of x[G,(x)— Hi(x)]. Evaluation of the second 
integral of Eq. (22) with cr = .3 gives, with the constant of integration chosen so that 
wi(£) =w2(i) =0,
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J  xHi(x)dx = .060,042,741.082,589,7s2 +  .052,500,0x -  2.103,471

-1-----1----- f- loge x -  1.047,500,0 loge (1 -  x) -  .052,500,Ox2 log, x(l -  x ) l , (23)
1 — x J

J  xth(x)dx = .040,784,501 .080,308,8x3 -  .060,231,6x2 +  4.147,500x +  1.349,471,6

1 1 -  x)
+  log, X +  1.0475,000,0 log, ( 1 -  x)+  .052,500,Ox2 lo g ,  ̂ . (24)

x J1 — X

7. Deflection and stress coefficients. It is convenient to state the actual deflec
tion in the form

2i22(l -  <r2) r
w  — -------------------  [ A w i  +  B w 2 +  ( P / h o ) W i  +  C], (25)

E h 0

where, from Eqs. (18a) and (19),

1 T2 -  3<r x 1
w’3 = —-------- —--------------     b log,- ,

7r(l — 3<r) ( 1 — cr) L 1 — x 1 — x j

and Wi  and w2 are non-dimensional functions of x defined by Eq. (22). w x, w 2, w 3
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are deflection coefficients, and are tabulated in Table 2. The constants A, B, and C 
are seen to have the dimensions of stress.

The bending stresses can be stated in a form entirely analogous to that obtained 
for the rotating disc problem. With the aid of Eqs. (4a), (2), and (25), we have

Sr = A p l + B p t + ( P / ® p h

St = Aqi +  Bq2 +  (P /h20)q3,
where

pi = (1 — x) \xdGi/dx +  (1 +  <r)Gj], 
qi = (1 — x) [axdGi/dx +  (1 -f- <r)Gi];

a similar pair of relations apply to p2 and §2; when cr = .3, p3 and q3 can be computed 
directly from the formulas

1 -  * T.63 +  2.27* -  ,7s2 .71
p3 = -  4.547 284----------- ,

* L a - * ) -  * J
1 -  x ["2.1 -  2.14* +  .7x2 .7 "|

L (1 -  xY h T j ‘
q3 = -  4.547 284

pi, pi, p3, 2i> iu  23 are the stress coefficients, and are tabulated in Tables 3 and 4.
The tables of coefficients arc especially convenient for approximating a plate of 

variable thickness with a system of conical profiles. Calculations in this type of prob
lem show that it is necessary that the coefficients be accurate to six significant figures 
in order to obtain four significant figures in the final results. Consequently the tables 
have been calculated accurately to five parts in two million. Their general usefulness 
can be extended considerably with the aid of an auxiliary table of interpolation 
coefficients. It was found that such a table based on Bessel’s central difference 
formula8 for six ordinates gives interpolated values of the coefficients as accurately 
as the tabulated ones, except near the ends of the table where the values are seldom 
used. In such cases a knowledge of the singularities of the tabulated functions indi
cates the necessary procedure for applying an interpolation formula.

I l l u s t r a t i v e  E x a m p l e

Stress distributions in a steel valve of constant weight and various proportions 
were estimated by an approximate method based on thin conical disc stress coeffi
cients tabulated for both the lateral bending and rotating cases. The valve head is 
represented by a system of truncated conical shells of variable thickness, whose apex 
angles are nearly 180° as shown in Fig. 1. The angle of the seat determines the direc
tion of the reaction which imposes two independent stress systems on the valve head. 
An approximation to these stresses can be made on the assumption that the mem
brane and bending stresses correspond to those in an equivalent system of conical 
discs. This assumption is admissible, since it has been demonstrated9 for conical shells 
of constant thickness, that the stress distribution has the same character as that in a

8 J . B . Scarborough, Numerical mathematical analysis, T h e  Joh ns H op kin s Press, Baltim ore, M d ., 
1930, p. 64.

' R ef. 1, p. 4 7 7 .'
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circular plate whenever the apex angle of the shell is between 168° and 180°. The 
loads on the composite disc shown in Fig. 2 are determined by resolving the valve 
seat reaction (of which the axial force is a component) into two perpendicular com
ponents, one of which produces pure compression on a section normal to the middle

F ig . 1. H a lf  se c tio n  of v a lv e .

Cos 0

surface a t the periphery, and the other of which produces pure bending.* The 
peripheral forces per unit length are proportional to the resultant vertical force 
acting on the valve, so that the force resolution in Figs. 1 and 2 has been made in 
terms of the axial force P, which is considered as a concentrated load, such as would

be imposed on the valve by impact against its seat. I t is safe to assume a concentrated 
axial load since the impact forces are proportional to the total valve weight, of which 
approximately 50% is in the stem.

The next step in the calculation is to represent the valve head by a system of 
equivalent conical discs in the usual manner. The tabular solution for the bending 
stresses is obtained from the calculation procedure described in Ref. (2), except that

* V ariation  in  the slopes of corresponding generators of m iddle surfaces belonging to the conical discs 
of the equivalent system  is not considered.
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the p's and q’s now refer to lateral bending coefficients and pRlw2 is replaced by 
P/h%T h e  solution for the membrane stresses is unchanged with the exception that 
the coefficients of p3 and g3 are zero, which corresponds to a static stress distribution

F ig . 3.

in a rotating disc. If Sr and S t refer to the corresponding membrane stresses respec
tively, then the appropriate boundary conditions are: at the boundary between valve 
stem and head, S t — aSr, S t = Sr; at the periphery Sr = 0, Sr assigned.

F ig . 4.

The dimensions of the valve head and the results of the stress calculations are 
shown in Figs. 3 and 4 respectively.
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T a b l e  1.*— Fun dam enta l so lutions of hypergeom etric equation, <r =  .30.
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X G ,( * ) = G 1( 1 —* ) G,' ( * )  =  - G [  (1 - x ) G2( x ) =  — G2( 1 — x ) G j (*) =*Gj (1 - x )

.00 00 — 00 00 — 00

.01 613.258 - 1 2 1 ,3 4 6 .7 416.297 - 8 2 ,4 2 6 .1

.02 1 5 6 .63 1 ,5 - 1 5 ,3 2 5 .9 4 1 0 6 .1 2 6 ,0 - 1 0 ,4 1 0 .6 2

.03 7 1 .1 3 7 ,6 - 4 ,5 8 7 .6 3 4 8 .0 5 0 ,0 - 3 ,1 1 6 .5 5

.04 4 0 .9 0 0 ,5 - 1 ,9 5 5 .0 0 5 2 7 .5 0 7 ,5 - 1 ,3 2 8 .3 2 7

.05 2 6 .7 6 2 ,0 - 1 ,0 1 0 .9 4 6 1 7 .9 00 ,0 4 - 6 8 7 .0 7 7

.06 1 9 .0 05 ,0 2 - 5 9 0 .7 7 5 1 2 .6 2 7 ,1 6 - 4 0 1 .6 8 3

.07 1 4 .2 82 ,0 2 - 3 7 5 .6 1 3 9 .4 1 5 ,0 2 - 2 5 5 .5 4 3

.08 1 1 .1 8 7 ,2 4 - 2 5 4 .0 0 2 7 .3 0 8 ,7 6 - 1 7 2 .9 4 8 ,9

.09 9 .0 4 5 ,6 2 - 1 8 0 .0 3 4 ,7 5.849^83 - 1 2 2 .7 1 7 ,7

.10 7 .4 9 9 ,7 7 - 1 3 2 .4 2 1 ,0 4 .7 9 5 ,4 6 - 9 0 .3 8 7 ,7

.11 6 .3 4 5 ,8 9 - 1 0 0 .3 5 4 ,8 4 .0 0 7 ,2 2 - 6 8 .6 1 9 ,0

.12 5 .4 6 0 ,7 4 - 7 7 .9 4 8 ,5 3 .4 0 1 ,3 9 - 5 3 .4 1 2 ,3

.13 4 .7 6 6 ,1 8 - 6 1 .8 0 4 ,5 2 .9 2 4 ,8 9 - 4 2 .4 5 9 ,9

.14 4 .2 1 0 ,7 0 - 4 9 .8 6 7 ,4 2 .5 4 2 ,7 2 - 3 4 .3 6 5 ,6

.15 3 .7 5 9 ,1 8 - 4 0 .8 4 2 ,7 2 .2 3 1 ,01 - 2 8 .2 5 0 ,3

.16 3 .3 8 6 ,9 8 - 3 3 .8 8 7 ,3 1 .9 7 3 ,04 6 - 2 3 .5 4 1 ,2

.17 3 .0 7 6 ,4 4 - 2 8 .4 3 5 ,8 ! .7 5 6 ,7 9 7 - 1 9 .8 5 4 ,1 6

.18 2 .8 1 4 ,5 6 - 2 4 .0 9 8 ,7 1 .5 7 3 ,4 4 6 - 1 6 .9 2 4 ,9 5

.19 2 .5 9 1 ,6 7 - 2 0 .6 0 2 ,3 1 .4 1 6 ,39 7 - 1 4 .5 6 7 ,5 0

.20 2 .4 0 0 ,3 8 - 1 7 .7 4 9 ,8 6 1 .2 8 0 ,63 9 - 1 2 .6 4 8 ,2 5

.21 2 .2 3 5 ,01 - 1 5 .3 9 7 ,5 3 1 .1 6 2 ,30 0 - 1 1 .0 6 9 ,5 7

.22 2 .0 9 1 ,1 2 - 1 3 .4 3 8 ,5 5 1 .0 5 8 ,35 6 - 9 .7 5 8 ,9 8

.23 1 .9 6 5 ,1 9 6 - 1 1 .7 9 2 ,4 4 .9 6 6 ,4 10 - 8 .6 6 1 ,8 7

.24 1 .8 5 4 ,43 3 - 1 0 .3 9 7 ,7 4 .8 8 4 ,5 47 - 7 .7 3 6 ,5 5

.25 1 .7 5 6 ,56 2 - 9 .2 0 6 ,9 6 .8 11 ,215 - 6 .9 5 0 ,8 3

.26 1 .6 6 9 ,7 3 8 - 8 .1 8 2 ,9 7 .7 4 5 ,1 49 - 6 .2 7 9 ,5 6

.27 1 .5 9 2 ,44 5 - 7 .2 9 6 ,4 8 .6 8 5 ,3 09 - 5 .7 0 2 ,9 0

.28 1 .5 2 3 ,42 9 - 6 .5 2 4 ,1 1 .6 30 ,829 - 5 .2 0 5 ,0 8

.29 1 .4 6 1 ,64 5 - 5 .8 4 7 ,1 0 .5 80 ,987 - 4 .7 7 3 ,4 3

.30 1 .4 0 6 ,2 2 0 - 5 .2 5 0 ,2 1 .5 35 ,174 - 4 .3 9 7 ,7 1

.31 1 .3 5 6 ,4 1 6 - 4 .7 2 1 ,0 2 .4 92 ,874 - 4 .0 6 9 ,5 5

.32 1 .3 1 1 ,6 0 8 - 4 .2 4 9 ,2 7 .453 ,647 - 3 .7 8 2 ,1 3

.33 1 .2 7 1 ,26 7 - 3 .8 2 6 ,4 9 .417 ,115 - 3 .5 2 9 ,8 0

.34 1 .2 3 4 ,9 3 9 - 3 .4 4 5 ,5 8 .3 8 2 ,9 50 - 3 .3 0 7 ,8 8

.35 1 .2 0 2 ,2 3 6 - 3 .1 0 0 ,6 0 .3 5 0 ,8 69 - 3 .1 1 2 ,4 8

.36 1 .1 7 2 ,82 4 - 2 .7 8 6 ,5 2 .3 20 ,623 - 2 .9 4 0 ,3 3

.37 1 .1 4 6 ,4 1 7 - 2 .4 9 9 ,0 5 .291 ,994 - 2 .7 8 8 ,7 0

.38 1 .1 2 2 ,76 7 - 2 .2 3 4 ,5 3 .2 6 4 ,7 88 - 2 .6 5 5 ,2 9

.39 1 .101 ,661 - 1 .9 8 9 ,7 8 1 .2 3 8 ,8 34 - 2 .5 3 8 ,1 5

.40 1 .0 8 2 ,91 5 - 1 .7 6 2 ,0 6 7 .2 1 3 ,9 76 - 2 .4 3 5 ,6 5

.41 1 .066 ,371 - 1 .5 4 8 ,9 8 0 .1 9 0 ,0 7 6 ,6 - 2 .3 4 6 ,4 0

.42 1 .0 5 1 ,89 3 - 1 .3 4 8 ,3 9 7 .1 6 7 ,0 0 7 ,9 - 2 .2 6 9 ,2 5

.43 1 .0 3 9 ,36 7 - 1 .1 5 8 ,4 3 4 .1 4 4 ,6 5 4 ,6 - 2 .2 0 3 ,2 0

.44 1 .0 2 8 ,69 5 - .9 7 7 ,3 9 4 .1 2 2 ,9 0 9 ,6 - 2 .1 4 7 ,4 6

.45 1 .019 ,795 - .8 0 3 ,7 4 2 .1 0 1 ,6 7 3 ,3 - 2 .1 0 1 ,3 4

.46 1 .0 1 2 ,6 0 0 - .6 3 6 ,0 6 8 .0 8 0 ,8 5 2 ,4 - 2 .0 6 4 ,3 1

.47 1 .0 0 7 ,0 5 8 - .4 7 3 ,0 6 3 .0 6 0 ,3 5 8 ,2 - 2 .0 3 5 ,9 4

.48 1 .0 0 3 ,1 2 8 - .3 1 3 ,4 9 4 .0 4 0 ,1 0 5 ,8 - 2 .0 1 5 ,9 0

.49 1 .0 0 0 ,7 8 0 - .1 5 6 ,1 8 6 ,3 .0 2 0 ,0 1 3 ,2 - 2 .0 0 3 ,9 6

.50 1 .0 0 0 ,0 0 0 0 0 - 2 .0 0 0 ,0 0

* T h e  tables were com piled w ith  the aid  of the staff of the C a lcu la tio n  D ep artm en t of F a irb a n k s  
M orse & C o ., B e lo it, W is ., to whom acknow ledgem ent hereby is made.
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Table 2.— Deflection coefficients for lateral bending of conical discs, o=>.30.
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r/R Wi Wi Wi r /R Wi Wt Wi

.00 00 CO — CO .50 0 0 10.00402

.01 .341490 .1727156 - 1 5 .8 4 2 7 8 .51 -.0 0 5 0 5 1 3 2 .0000506834 10.39010

.02 .298578 .1436068 -1 2 .5 9 3 1 2 .52 -  .01021073 .000205606 10.78484

.03 .272917 .1262435 - 1 0 .6 5 0 0 9 .53 - .0 1 5 4 8 6 8 0 .000469405 11.18891

.04 .254305 .1136970 - 9 .2 4 1 0 8 .54 - .0 2 0 8 8 8 7 .000847188 11.60306

.05 .239546 .1037962 -8 .1 2 3 9 2 .55 - .0 2 6 4 2 6 3 .001344576 12.02809

.06 .227215 .0955742 - 7 .1 9 0 7 2 .56 - .0 3 2 1 1 0 1 .001967757 12.46484

.07 .216551 .0885157 -6 .3 8 3 9 0 .57 - .0 3 7 9 5 1 6 .00272355 12.91425

.08 .207102 .0823131 - 5 .6 6 9 0 8 .58 - .0 4 3 9 6 3 2 .00361945 13.37730

.09 .1985728 .0767682 - 5 .0 2 4 0 4 .59 - .0 5 0 1 5 8 2 .00466373 13.85508

.10 .1907641 .0717460 -4 .4 3 3 6 1 .60 - .0 5 6 5 5 1 4 .00586555 14.34880

.11 .1835327 .0671501 - 3 .8 8 6 9 5 .61 - .0 6 3 1 5 8 8 .00723498 14.85973

.12 .1767727 .0629098 - 3 .3 7 6 0 4 .62 -  .0699978 .00878323 15.38931

.13 .1704034 .0589712 -2 .8 9 4 7 6 .63 - .0 7 7 0 8 7 9 .01052271 15.93909

.14 .1643621 .0552928 -2 .4 3 8 3 5 .64 -.0 8 4 4 5 0 1 .01246720 16.51082

.15 .1585986 .0518418 - 2 .0 0 3 0 0 .65 - .0 9 2 1 0 8 3 .01463208 17.10641

.16 .1530724 .0485919 -1 .5 8 5 6 5 7 .66 - .1 0 0 0 8 8 4 .01703454 17.72799

.17 .1477501 .0455217 -1 .1 8 3 7 7 7 .67 - .1 0 8 4 1 9 7 .01969381 18.37793

.18 .1426040 .0426135 - .7 9 5 2 4 8 .68 - .1 1 7 1 3 4 9 .0226315 19.05890

.19 .1376105 .0398528 - .4 1 8 2 8 4 .69 - .1 2 6 2 7 0 6 .0258720 19.77389

.20 .1327494 .0372275 - .0 5 1 3 5 8 7 .70 - .1 3 5 8 6 8 1 .0294430 20.5263

.21 .1280035 .0347271 .306849 .71 -  .1459743 .0333756 21.3199

.22 .1233577 .0323431 .657492 .72 - .1 5 6 6 4 2 4 .0377057 22.1591

.23 .1187984 .0300681 1.001586 .73 - .1 6 7 9 3 3 3 .0424741 23.0488

.24 .1143140 .0278957 1.340034 .74 -.1 7 9 9 1 7 1 .0477280 23.9948

.25 .1098938 .0258206 1.673648 .75 -  .1926744 .0535219 25.0038

.26 .1055282 .0238382 2.00316 .76 - .2 0 6 2 9 9 .0599190 26.0833

.27 .1012084 .0219446 2.32924 .77 - .2 2 0 9 0 1 .0669937 27.2424

.28 .0969264 .0201366 2.65250 .78 - .2 3 6 6 1 0 .0748334 28.4918

.29 .0926748 .01841116 2.97352 .79 - .2 5 3 5 7 8 .0835418 29.8439

.30 .0884466 .01676613 3.29283 .80 - .2 7 1 9 9 0 .0932430 31 .3139

.31 .0842354 .01519954 3.61092 .81 - .2 9 2 0 6 5 .1040868 32 .9200

.32 .0800348 .01370985 3.92829 .82 - .3 1 4 0 7 4 .1162557 34.6842

.33 .0758391 .01229585 4.24537 .83 -  .338347 .1299744 36.6339

.34 .0716426 .01095665 4.56262 .84 -  .365296 .1455227 38 .8030

.35 .0674398 .00969164 4 .88046 .85 - .3 9 5 4 4 3 .1632539 41.2345

.36 .0632252 .00850050 5.19930 .86 -  .429454 .1836207 43.9833

.37 .0589937 .00738318 5.51956 .87 - .4 6 8 1 9 7 .207213 47 .1212

.38 .0547400 .00633986 5.84165 .88 - .5 1 2 8 2 8 .234815 50.7436

.39 .0504589 .00537098 6.16596 .89 - .5 6 4 9 1 5 .267491 54.9800

.40 .0461453 .00447722 6.49292 .90 -  .626646 .306728 60.0115

.41 .0417938 .00365951 6.82293 .91 - .7 0 1 1 6 9 .354663 66.0987

.42 .0373993 .00291902 7.15642 .92 - .7 9 3 1 9 0 .414495 73.6312

.43 .0329561 .00225716 7.49380 .93 - .9 1 0 0 7 9 .491227 83.2197

.44 .0284588 .001675592 7.83553 .94 -1 .0 6 4 0 7 2 .593171 95.8789

.45 .0239016 .001176243 8.18206 .95 - 1 .2 7 7 1 1 2 .735232 113.4294

.46 .01927865 .000761311 8.53386 .96 - 1 .5 9 2 9 2 6 .947112 139.5018

.47 .01458362 .000433277 8.89143 .97 - 2 .1 1 3 1 5 1.297850 182.5406

.48 .00981010 .000194922 5 9 .25528 .98 - 3 .1 4 1 5 4 1.993762 267.798

.49 .00495128 .000049349 5 9 .62595 .99 - 6 .1 9 0 3 6 4.06209 521.097

.50 0 0 10.00402 1 .0 0 -- 00 CO 00
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T a b l e  3.— Stress coefficients for latera l bending of conical discs, <r =  .30.
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r/R Pi — pt pi r/R Pi - P i pi

.00 — 00 QO 00 .50 .650000 .500000 - 5 1 .4 7 5 3

.01 - 4 1 2 .0 6 9 280.244 31209 .9 .51 .676528 .513539 -5 3 .6 2 9 3

.02 - 1 0 0 .8 3 9 9 68.8436 7638.76 .52 .704200 .528194 - 5 5 .8 7 8 8

.03 - 4 3 .7 9 5 6 30.1006 3318.31 .53 .733152 .544032 - 5 8 .2 3 4 7

.04 - 2 4 .0 2 8 4 16.67837 1821.085 .54 .763534 .561125 - 6 0 .7 0 9 4

.05 -1 4 .9 6 8 8 6 10.52962 1134.831 .55 .795506 .579561 - 6 3 .3 1 5 9

.06 - 1 0 .0 9 5 5 7 7.22454 765.640 .56 .829243 .599438 - 6 6 .0 6 8 5

.07 - 7 .1 8 5 4 5 5 .25310 545.144 .57 .864938 .620867 - 6 8 .9 8 3 1

.08 - 5 .3 1 4 5 9 3 .98776 403.367 .58 .902803 .643975 - 7 2 .0 7 7 0

.09 -4 .0 4 3 8 8 3.13023 30 7 .05 0 .59 .943074 .668906 - 7 5 .3 6 9 7

.10 - 3 .1 4 3 1 6 2.52420 238.760 .60 .986012 .695824 - 7 7 .8 8 2 8

.11 - 2 .4 8 2 5 5 2.08145 188.6601 .61 1.031911 .724915 -8 2 .6 4 0 2

.12 - 1 .9 8 4 2 7 7 1.749150 150.8584 .62 1.081101 .756391 - 8 6 .6 6 9 4

.13 - 1 .5 9 9 5 3 8 1.494168 121.6581 .63 1.133955 .790495 -9 1 .0 0 1 0

.14 - 1 .2 9 6 4 6 5 1.294864 98.6451 .64 1.190896 .827503 - 9 5 .6 6 9 8

.15 -1 .0 5 3 5 5 3 1.136640 80.1902 .65 1.252404 .867734 - 1 0 0 .7 1 5 7

.16 - .8 5 5 8 7 4 1.009365 6 5 .1626 .6 6 1.319031 .911553 - 1 0 6 .1 8 4 0

.17 - .6 9 2 8 1 2 .905838 52.7577 .67 1.391409 .959381 -1 1 2 .1 2 7 1

.18 - .5 5 6 6 4 9 .820830 4 2 .3909 .68 1.470270 1.011709 -1 1 8 .6 0 5 3

.19 - .4 4 1 6 7 4 .750472 33.6293 .69 1.556461 1.069105 - 1 2 5 .6 8 8 7

.20 - .3 4 3 5 8 6 .691855 26.1469 .70 1.650971 1.132236 -1 3 3 .4 5 9 2

.21 - .2 5 9 0 9 8 .642759 19.69457 .71 1.754958 1.201882 -1 4 2 .0 1 2 4

.22 - .1 8 5 6 6 1 8 .601468 14.07923 .72 1.869789 1.278967 - 1 5 1 .4 6 1 6

.23 - .1 2 1 2 8 0 5 .566640 9.14940 .73 1.997083 1.364585 -1 6 1 .9 4 0 6

.24 - .0 6 4 3 6 9 2 .537215 4.78487 .74 2 .13878 1.460047 - 1 7 3 .6 0 9 6

.25 - .0 1 3 6 5 7 2 3 .512346 .889247 .75 2.29719 1.566925 - 1 8 6 .6 6 1 0

.26 .0318840 .491353 - 2 .6 1 5 5 2 .76 2.47513 1.687126 - 2 0 1 .3 2 7

.27 .0730951 .473684 - 5 .7 9 3 2 5 .77 2.67604 1.822974 - 2 1 7 .8 9 3

.28 .1106690 .458889 - 8 .6 9 6 5 8 .78 2.90412 1.977330 - 2 3 6 .7 0 7

.29 .1451814 .446599 - 1 1 .3 6 9 2 8 .79 3.16461 2.15375 - 2 5 8 .2 0 3

.30 .1771155 .436510 - 1 3 .8 4 8 0 8 .80 3 .46408 2 .3 5 66 9 - 2 8 2 .9 2 6

.31 .206879 .428369 - 1 6 .1 6 4 0 4 .81 3.81084 2.59179 - 3 1 1 .5 6 6

.32 .234821 .421968 - 1 8 .3 4 3 6 5 .82 4 .2 1 55 8 2.86631 - 3 4 5 .0 0 7

.33 .261238 .417132 - 2 0 .4 0 9 7 .83 4 .6 9 21 8 3.18967 - 3 8 4 .4 0 2

.34 .286390 .413718 - 2 2 .3 8 2 0 .84 5.25895 3 .57432 - 4 3 1 .2 7 0

.35 .310503 .411605 - 2 4 .2 7 7 8 .85 5 .94048 4 .0 3 69 6 - 4 8 7 .6 5 2

.36 .333776 .410694 - 2 6 .1 1 2 5 .86 6 .77038 4 .6 0 04 0 - 5 5 6 .3 3 7

.37 .356387 .410903 - 2 7 .8 9 9 6 .87 7.79558 5.29653 - 6 4 1 .2 2 3

.38 .378496 .412167 - 2 9 .6 5 1 6 .88 9.08323 6 .17096 - 7 4 7 .8 8 5

.39 .400248 .414431 - 3 1 .3 7 9 6 .89 10.73220 7.29083 - 8 8 4 .5 3 7

.40 .421777 .417655 -3 3 .0 9 4 1 .90 12.89286 8.75831 -1 0 6 3 .6 7 2

.41 .443208 .421806 - 3 4 .8 0 4 8 .91 15.80318 10.73501 - 1 3 0 5 .0 6 6

.42 .464658 .426865 - 3 6 .5 2 0 8 .92 19.85801 13.48915 -1 6 4 1 .5 4 1

.43 .486239 .432816 - 3 8 .2 5 1 0 .93 25.7521 17.49263 - 2 1 3 0 .8 6

.44 .508060 .439656 - 4 0 .0 0 4 0 .94 34.8021 23.6398 - 2 8 8 2 .5 3

.45 .530227 .447386 - 4 1 .7 8 8 1 .95 49.7595 33.7997 - 4 1 2 5 .4 1

.46 .552846 .456017 - 4 3 .6 1 1 7 .96 77.1990 52.4381 - 6 4 0 6 .5 6

.47 .576023 .465566 - 4 5 .4 8 3 5 .97 136.2744 92.5655 - 1 1 3 2 0 .0 3

.48 .599866 .476057 - 4 7 .4 1 1 9 .98 304.461 206.807 - 2 5 3 1 5 .3

.49 .624487 .487522 - 4 9 .4 0 6 1 .99 1209.305 821.430 -1 0 0 6 4 7 .9

.50 .650000 .500000 - 5 1 .4 7 5 3 1 .0 0 OO OO -- OO
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T a b l e  4 . — S t r e s s  c o e f f ic ie n t s  f o r  l a t e r a l  b e n d i n g  o f  c o n i c a l  d iscs ,  cr =  .30.
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r / R 2i 22 - 2 s r / R 2i 2s - 2 s

. 0 0 00 CO oo . 5 0 . 6 5 0 0 0 0 - . 1 5 0 0 0 0 0 5 0 . 2 0 2 0

.01 4 2 8 . 8 6 3 2 9 0 . 9 6 8 3 2 4 7 7 . 1 .51 . 6 4 9 2 0 6 - . 1 6 2 9 8 5 8 5 0 . 2 1 2 8

.0 2 1 0 9 . 4 3 2 0 7 3 . 9 9 0 1 8 2 8 5 . 6 8 .5 2 . 6 4 9 4 2 6 - . 1 7 5 9 7 6 5 5 0 . 3 0 3 5

.0 3 4 9 . 6 5 4 5 3 3 . 3 8 3 6 3 7 5 8 . 7 4 .53 . 6 5 0 6 6 4 - . 1 8 9 0 2 4 7 5 0 . 4 7 4 8

.0 4 2 8 . 5 2 2 2 1 9 . 0 2 7 0 6 2 1 5 8 . 4 8 .5 4 .6 5 2 9 3 5 - . 2 0 2 1 8 2 5 0 . 7 2 8 2

.05 1 8 . 6 4 5 0 9 1 2 . 3 1 5 7 0 1 4 1 0 . 5 9 0 .5 5 . 6 5 6 2 5 8 - . 2 1 5 5 0 4 5 1 . 0 6 5 4

. 0 6 1 3 . 2 2 8 2 2 8 . 6 3 3 9 1 1 0 0 0 . 4 6 6 . 5 6 . 6 6 0 6 6 2 - . 2 2 9 0 4 4 5 1 . 4 8 9 1

.0 7 9 . 9 3 1 2 4 6 . 3 9 2 0 0 7 5 0 . 8 7 3 .5 7 . 6 6 6 1 8 6 - . 2 4 2 8 6 3 5 2 . 0 0 2 6

. 0 8 7 . 7 7 1 5 8 4 . 9 2 2 5 7 5 8 7 . 4 0 2 . 5 8 .6 7 2 8 7 5 - . 2 5 7 0 2 3 5 2 . 6 0 9 7

. 0 9 6 . 2 7 7 5 2 3 . 9 0 5 1 8 4 7 4 . 3 3 1 .5 9 .6 8 0 7 8 5 - . 2 7 1 5 8 9 5 3 . 3 1 5 4

.1 0 5 . 1 9 9 3 6 3 . 1 7 0 2 2 3 9 2 . 7 5 1 . 6 0 .6 8 9 9 8 4 - . 2 8 6 6 3 5 5 4 . 1 2 5 3

.11 4 . 3 9 4 7 7 2 . 6 2 1 0 1 3 3 1 . 8 8 3 .61 .7 0 0 5 5 3 - . 3 0 2 2 3 7 5 5 . 0 4 6 2

.1 2 3 . 7 7 7 6 7 2 . 1 9 9 0 9 2 8 5 . 2 1 0 .6 2 . 7 1 2 5 8 3 -  . 3 1 8 4 8 1 5 6 . 0 8 5 9

.1 3 3 . 2 9 3 5 2 1 . 8 6 7 3 8 5 2 4 8 . 6 0 2 .6 3 . 7 2 6 1 8 5 - . 3 3 5 4 6 3 5 7 . 2 5 3 5

. 1 4 2 . 9 0 6 3 6 1 . 6 0 1 4 7 2 2 1 9 . 3 3 6 . 6 4 .7 4 1 4 8 6 - . 3 5 3 2 8 7 5 8 . 5 5 9 8

.1 5 2 . 5 9 1 6 6 1 . 3 8 4 6 9 7 1 9 5 . 5 5 5 9 .6 5 . 7 5 8 6 3 4 - . 3 7 2 0 7 2 6 0 . 0 1 6 9

. 1 6 2 . 3 3 2 2 5 1 . 2 0 5 3 8 7 1 7 5 . 9 6 0 8 . 6 6 .7 7 7 8 0 0 - . 3 9 1 9 5 0 6 1 . 6 3 9 3

.1 7 2 . 1 1 5 7 9 1 . 0 5 5 1 5 7 1 5 9 . 6 1 6 7 .6 7 .7 9 9 1 8 5 - . 4 1 3 0 7 4 6 3 . 4 4 3 5

.1 8 1 . 9 3 3 2 3 3 . 9 2 7 8 5 6 1 4 5 . 8 3 8 6 . 6 8 .8 2 3 0 2 1 - . 4 3 5 6 1 5 6 5 . 4 4 9 0

.1 9 1 . 7 7 7 8 1 6 .8 1 8 8 8 5 1 3 4 . 1 1 4 6 . 6 9 . 8 4 9 5 8 3 - . 4 5 9 7 7 1 6 7 . 6 7 8 3

.2 0 1 . 6 4 4 3 9 9 . 7 2 4 7 4 8 1 2 4 . 0 5 5 6 . 7 0 .8 7 9 1 8 9 -  . 4 8 5 7 7 3 7 0 . 1 5 8 1

.21 1 . 5 2 9 0 1 8 . 6 4 2 7 5 0 1 1 5 . 3 6 1 7 .71 . 9 1 2 2 1 6 - . 5 1 3 8 8 7 7 2 . 9 1 9 5

.2 2 1 . 4 2 8 5 7 7 .5 7 0 7 8 0 1 0 7 . 7 9 8 5 .7 2 . 9 4 9 1 0 6 - . 5 4 4 4 2 5 7 5 . 9 9 9 3

.2 3 1 . 3 4 0 6 2 9 .5 0 7 1 7 2 1 0 1 . 1 8 0 8 .7 3 .9 9 0 3 8 9 - . 5 7 7 7 5 6 7 9 . 4 4 1 3

.2 4 1 . 2 6 3 2 1 5 . 4 5 0 5 8 8 9 5 . 3 6 0 5 .7 4 1 . 0 3 6 6 9 3 - . 6 1 4 3 1 6 8 3 . 2 9 7 7

.2 5 1 . 1 9 4 7 5 7 .3 9 9 9 5 0 9 0 . 2 1 8 1 .7 5 1 . 0 8 8 7 7 4 - . 6 5 4 6 2 9 8 7 . 6 3 1 2

.2 6 1 . 1 3 3 9 6 7 .3 5 4 3 7 7 8 5 . 6 5 6 3 .7 6 1 .1 4 7 5 4 8 - . 6 9 9 3 2 2 9 2 . 5 1 7 6

.2 7 1 . 0 7 9 7 9 0 . 3 1 3 1 4 5 8 1 . 5 9 5 1 .7 7 1 . 2 1 4 1 2 6 - . 7 4 9 1 6 1 9 8 . 0 4 9 2

.2 8 1 .0 3 1 3 5 1 .2 7 5 6 5 2 7 7 . 9 6 8 5 .7 8 1 . 2 8 9 8 7 6 - . 8 0 5 0 8 1 1 0 4 . 3 3 9 4

. 2 9 .9 8 7 9 2 4 . 2 4 1 3 9 6 7 4 . 7 2 1 5 .7 9 1 . 3 7 6 4 9 2 - . 8 6 8 2 4 1 1 1 1 . 5 2 8 7

. 3 0 .9 4 8 8 9 7 .2 0 9 9 5 3 7 1 . 8 0 7 9 .8 0 1 . 4 7 6 0 9 2 -  . 9 4 0 0 8 2 1 1 9 . 7 9 2 6

.31 .9 1 3 7 5 7 .1 8 0 9 6 4 9 6 9 . 1 8 9 0 .81 1 . 5 9 1 3 5 2 - 1 . 0 2 2 4 3 2 1 2 9 . 3 5 3 3

.3 2 . 8 8 2 0 7 0 .1 5 4 1 2 6 6 6 6 . 8 3 1 9 .8 2 1 . 7 2 5 7 0 1 - 1 . 1 1 7 6 2 4 1 4 0 . 4 9 5 2

.33 .8 5 3 4 6 3 .1 2 9 1 7 5 1 6 4 . 7 0 8 6 .8 3 1 . 8 8 3 5 7 8 - 1 . 2 2 8 7 0 9 1 5 3 . 5 8 6 8

.3 4 .8 2 7 6 2 2 .1 0 5 8 8 4 3 6 2 . 7 9 5 1 .8 4 2 . 0 7 0 8 3 - 1 . 3 5 9 5 7 3 1 6 9 . 1 1 3 4

.3 5 . 8 0 4 2 7 4 .0 8 4 0 5 7 4 6 1 . 0 7 1 2 .8 5 2 . 2 9 5 2 7 - 1 . 5 1 5 6 2 1 1 8 7 . 7 2 3 6

.3 6 . 7 8 3 1 8 6 .0 6 3 5 2 2 6 5 9 . 5 1 9 7 .8 6 2 . 5 6 7 5 6 - 1 . 7 0 4 0 6 2 2 1 0 . 3 0 2

.3 7 .7 6 4 1 5 7 .0 4 4 1 2 9 0 5 8 . 1 2 3 9 .8 7 2 . 9 0 2 5 1 - 1 . 9 3 4 9 7 2 2 3 8 . 0 8 0

. 3 8 .7 4 7 0 1 4 .0 2 5 7 4 3 4 5 6 . 8 7 2 3 .8 8 3 . 3 2 1 2 8 - 2 . 2 2 2 7 2 2 7 2 . 8 1 4

.3 9 . 7 3 1 6 0 6 .0 0 8 2 4 7 2 8 5 5 . 7 5 3 2 .8 9 3 . 8 5 4 8 8 - 2 . 5 8 8 3 8 3 1 7 . 0 8 0

.4 0 .7 1 7 8 0 5 -  . 0 0 8 4 6 5 3 5 5 4 . 7 5 6 9 .9 0 4 . 5 5 0 3 4 - 3 . 0 6 3 8 7 3 7 4 . 7 8 6

.41 .7 0 5 4 9 7 -  . 0 2 4 4 8 9 8 5 3 . 8 7 4 9 .91 5 . 4 8 1 7 9 - 3 . 6 9 9 6 0 4 5 2 . 0 9 5
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K R O N ’S M E T H O D  O F SUBSPACES*

BY
B A N E S H  H O F F M A N N  

Queens College, Flushing, N. Y.**

Introduction. Gabriel Kron has introduced new and powerful methods of applying 
tensor analysis to complicated engineering problems, presenting his major contribu
tions in the field of electrical engineering. The manner of presentation, and the rarity 
of a simultaneous knowledge of the hitherto almost unrelated subjects of electrical 
engineering and tensor analysis, have unfortunately served to limit his audience. 
Recent experimental confirmation of some of his investigations dealing with equiva
lent circuits, however, has attracted the serious attention of a wider engineering 
following.

In view of the growing importance of the whole subject, and of the controversy 
which has surrounded it, it has seemed desirable to present some particular aspect 
of Kron’s work in a form which may appeal to a less highly specialized audience. To 
avoid complications as far as possible, the present paper must ignore such important 
topics as electrical networks, electrical machines, and equivalent circuits. I t  confines 
itself to purely dynamical problems, and to that particular idea of Kron’s which may 
be called the method of subspaces.]

Much discussion has arisen over Kron’s claim that he uses tensor analysis. I t is 
the considered opinion of the present writer that Kron does indeed make a full and 
proper use of tensor analysis. Possibly the belief that Kron employs only matrices 
may have arisen from the fact that, in- order to present his actual mathematical 
procedure in a form that may be understood and used by those not familiar with the 
intricacies of the tensor calculus, he often presents this procedure in matrix form. 
However, he is always careful to point out that the underlying concepts are wholly 
tensorial in character. In the present paper the method of subspaces will first be pre
sented in terms of a simple example, and in purely matrix form, merely as a set of rules 
of procedure, the essentially tensorial significance of the procedure being discussed 
only after the actual procedure has been brought before the reader. The theoretical 
discussion will then be followed by three simple, related examples illustrative of 
various aspects of the method.

Scope of the method of subspaces. Let us consider a system, which may be dy
namical, electrodynamical, or otherwise, containing several standard parts, such as a 
fly-wheel, a governor, a pair of synchronous machines, a system of levers, etc. The 
equations of performance of the individual parts are usually well known, but the 
equations of performance of the complex whole will depend on the manner in which 
they are interconnected. Usually it is extremely difficult to trace out the full influ
ence of each interconnection in setting up the equations of performance. The method

* R eceived F e b . 9, 1944.
** O n leave of absence; now a t  Fed era l Te lephone and R ad io  Lab oratories, N ew  Y o r k  C ity ,  
t  P u re ly  d yn am ica l exam ples of the m ethod of subspaces have been given b y  K ro n  in an unpub- 

ished m anuscript.
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of subspaces suggested by Kron yields the equations of performance by a routine and 
quite straightforward manipulation of the known equations of performance of the 
constituent parts of the system, a brief inspection sufficing to yield all needed informa
tion as to the manner of interconnection.

Simple dynamical example. To illustrate the actual mathematical procedure in 
its simplest form, we shall first consider a quite trivial dynamical problem. Naturally 
it will not reveal the power and economy of the method any more than it would the 
peculiar virtues of, say, the Hamilton-Jacobi equation, were that applied to it. But 
it will serve to bring the routine mathematical procedure before us without unneces
sary distraction from complexities which are merely incidental.

Let us consider the dynamical system 5 consisting of three particles free to move 
on a line, the masses being m x, mi,  m 3, the coordinates1 x l , x 2, x3, and the forces f i , f i , f 3. 
The equations of motion are

f i  = mi*1, f t  = m 2x2, f t  -  m 3x3. (1)
Let us consider now the new dynamical system 5 which arises when the particles

2 and 3 are made to coalesce. Its equations of motion may be written down at once:
f  i = m ix 1, f t  +  f 3 = («! +  m 3) x 2. (2)

Let us suppose, though, that it had been a highly complex system of interconnected 
simple parts. We would then welcome a routine method of obtaining (2) from (1) 
which required no detailed thought and avoided constant preoccupation with the 
effects of the interconnections. The method of subspaces would be applied to the 
present problem in the following routine manner:

The first step is to write equations (1) of system S  in matrix form,
F = M X ,  (3)

i.e.,

(4)

where, it will be noted, the masses form a square array rather than a single row or 
column such as one might at first expect.

Next, a relationship is set up between the coordinates x 1, x 2, x3 of .S’ and the co
ordinates x 1, x 2 of 3?. This relationship can be taken to be

(5)

~ m i 0 o - -  a;1 ~ - / 1 -
0 m i 0 X 2 = f i

-  0 0 m 3 - -  x 3 -

x 1 = x l x3 = x2 (not £3).

From this is obtained the matrix C defined by
X  = C X .

It is

C =
-  l O n  

o l
-  o 1

(6)

(7)

1 W e use the tensor practice of placing the indices of co n travarian t q uantities above the sym bol.

i 1, xl, Xs do not stand for x, x-squared, x-cubed.
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If we denote the transposed matrix by C‘r, then the new forces /i, / 2 are given by the 
routine matrix multiplication

r 1 0 0 1 ^ 1
F = ClTF =

L 0 1 1 J
h

- f t  +  fa -
(8)

The new masses are given by routine matrix multiplications as follows:

— r  i 0 o 1
M  = C ‘tM C  =

L o 1 1 J

T wti 0 0 “I
L 0 m 2 niz J

nil 0 0 -
0 niz 0

-  0 0 m 3 -
- 1 0 - 1  

0 1 
-  0 1 J

r  1 0  n  
0 l 

L o l

mi 0
_ 0 niz +  m3 ]■

Finally the new equations of motion are

F = M l ,

(9)

(10)
i.e.,

mi
0 niz T  

This yields the two equations

0 f m = rT niz J  L i ! J  L / 2 +f t +  fa -

mix1 — fi, ( n i z  +  n i z ) x 2 = / 2 +  f z ,

which are equivalent to (2) above.
The tensor form of the problem. Using Latin indices for the range 1, 2, 3, and 

Greek for the range 1, 2, we may write the various expressions and equations above 
in the familiar index notation of the tensor calculus.

The equations of motion of S  may be written2

the matrix C may be written
f a  =  n i a b x b ,

a  dxa
Ca =  I

dxa

and the relations between the forces, etc., in 5  and S may be put in the form

dxa
/* = — / 0, (S');dxa

dxa dxb 
mafi =    niab, (9') ;

dxa dxP

Also the equations of motion of 5 are

f a  ~  7 H a p X ^ .

dxa
xa =  xa

dxa

(10

(70

(60-

(100
Provided we interpret the time derivatives as absolute derivatives, or alterna-
1 A ccord ing  to the sum m ation  convention of the index notation, a  repeated index in a  single ex

pression indicates sum m ation over its  w hole range of values.
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tively, as is permissible in the present simple case, provided we avoid non-linear 
coordinate transformations, the above have the form of tensor equations and ten
sor transformations. The mere fact that the work can be expressed in the tensor 
notation does not, in itself, imply tensorial character. The essential criterion of tensor 
character is the tensor law of transformation. In view of (7'), equations (8'), (9'), 
and (6') are tensor transformations, and equation (UT) is the result of transforming 
the tensor equation (1'). The fact that C is singular does not destroy the tensor 
character of the transformations; its significance will appear shortly.

The tensor theory. Since tensor equations have objective significance we may 
look for a geometrical picture of the process described above. Naturally this will be 
sought in configuration space. The basic tensorial and geometrical significance of 
Lagrangean dynamics being quite familiar, the corresponding significance of Kron’s 
method may be explained here quite briefly.

As is well known, in Lagrangean dynamics the motion of the dynamical system 5  
is represented by the motion of a point in a three dimensional configuration space, K, 
having x a as coordinates and mab as metrical tensor. When particles 2 and 3 coalesce, 
the system S  loses one degree of freedom and becomes the system S. Thus the 
trajectory of S belongs to a two dimensional configuration space, A°, which is in fact 
a subspace of K, for it is defined by a relation (in more general cases, by a set of 
relations) between the coordinates of K. Specifically, the subspace here is defined by 
the relation

£2 = 23.

In parametric form this subspace is given by the relations (5) above, which represent 
the three coordinates x a as functions of the two variables xa. (Compare with the rela
tions x = cos 9 cos tp, y — cos 9 sin <p, z = sin 6 which express the Cartesian coordinates 
x, y, z as functions of the two parameters 9, <p. This defines the two dimensional sub
space of ordinary three dimensional space constituting the surface of a unit sphere.)

By the well known theory of subspaces, the projections of the covariant tensors 
f a, mab, are given by the singular transformations (8'), (9')- Thus the equations of 
motion of S are the projection on K of the equations of motion of S. And, since the 
initial conditions of 51 and 5 coincide in K, the trajectory of S is the projection on K 
of the trajectory of 5.

There are two ways of viewing the relationship between the systems S  and S: 
(a). We may regard 5  as the same physical system as S, the forces between 

particles 2 and 3 which keep them together being included explicitly in the force 
vector f a- The trajectory of 5  in K  is then identical with that of S in A.

Q3). We may regard S  as a different physical system from S inasmuch as 
particles 2 and 3 are not united in S. The forces in S  are the same as those in S  
except for those forces in S  which tend to separate particles 2 and 3. These 
latter forces have components in K  which are normal to the subspace K, and thus 
have zero projection on K.

Both viewpoints are of significance, and more will be said about them later.
A formal proof. A formal proof will now be given that the transition to a sub

space and the tensor transformations that go with it, are justified in the general case. 
This proof will thus also justify the general procedure given by Kron, of which the 
above example was a particular illustration.
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The proof will be made brief by basing it on certain standard results in dynamics 
and tensor analysis.

Let us consider a rigorous proof of the validity of the Lagrangean equations, such 
as is given, for instance, in Whittaker’s Analytical Dynamics, third edition, starting on 
page 34. We are concerned here with the case in which t does not enter explicitly, 
and we shall use the tensor notation. The dynamical system under consideration in 
Whittaker has n degrees of freedom, and n generalized coordinates. Let us denote 
the latter by xa, using the Greek indices a, y  for the range 1 to n. We denote the 
number of individual particles in the system by N/3, so that their combined coordi
nates number N  and we denote these N  coordinates by xx, using A, /u, v for the range 
1 to N. In this notation, the proof of the Lagrangian equations has the following out
line:

The equations of motion of the N/3  individual particles, in a self-explanatory 
notation, have the form .. _

mxpX“ =  f\. (11)

These N  equations are not independent, since the N  coordinates xx are related, as 
are the N  forces/x. The relations between the coordinates xx are defined by equations

xx = xx(xa) (12)

which express them in terms of the n generalized coordinates of the system. (These
correspond to Whittaker’s equations xf=/,(gi, q2, ■ ■ • , qn, t), etc., with t omitted.)
From (12) may be computed the quantities 3xx/d s “. The equations of motion (11) 
of the individual particles are multiplied individually by such quantities and then 
added in groups, the process being precisely that described by the equation

die* .. dxx ~
—  m/x*  = —-/x , (13)
dxa dxa

where the summation convention is employed, as usual. After some manipulation, 
the left-hand side is then reduced to the standard Lagrangean form, and the right- 
hand side is interpreted as a set of generalized forces in the familiar manner.

Later, on page 39, Whittaker gives an explicit form of the Lagrangean equations 
for the case in which t does not enter explicitly. This reveals that the left-hand side 
has the form of a covariant derivative with respect to ihag as metrical tensor. The 
equations, in fact, may be written

magxB.yky = /„. (14)

Since, in the original form (11), the coordinates were Cartesian for each individual
particle, the ordinary derivatives there coincided with the covariant derivatives; thus
(11) may be written as

= f\, (15)

the subscript preceded by a comma here denoting the covariant derivative with re
spect to as metrical tensor.

I t will be observed that the initial step, represented by the equation (13), is a 
transition to a subspace, complete with a singular transformation matrix dxx/dxa
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of the type which, for some reason, excites the critics of Kron when it is used by him. 
The relations between and map, and between f x and f a, follow from the analysis 
and are the usual tensor transformations, with singular transformation matrix.

Now Lagrange goes from an initial configuration space of N  dimensions to a final 
subspace of n dimensions in one step. Kron’s idea is, in theory, simply to make this 
transition in more than one step, using subsidiary subspaces as resting places when 
the mathematics tends to become too complicated. For example, he would, in theory, 
go from the first space having coordinates P  to an intermediary subspace having 
coordinates x a and then to the final subspace having coordinates xa which is also a 
subspace of the intermediary subspace. In practice, of course, as is also the case in the 
Lagrangean method, the initial space having coordinates rtx is entirely neglected, 
having served its sole purpose in providing the theoretical basis for the equations and 
procedures actually used.

Since3
dP  dxa dxy
dxa dxa dxa

the transition in several steps will yield the same result as the transition in one step, 
the various tensors involved being transformed according to the standard tensor law.

Thus the proof of Kron’s theory and procedure is a direct corollary of the proof 
of Lagrange’s equations and the tensor theory of subspaces.

The proof given in Whittaker is based on viewpoint (a), since the forces /* be
tween the individual particles are regarded as the forces actually existing between 
them in the ultimate system. The trajectory in the N  dimensional space is actually 
confined to the n dimensional subspace.

It is important to note, though, that the proof is equally valid for viewpoint (/3). 
For those forces which do no work do not contribute to the values of the generalized 
forces of the ultimate system. Since they do not affect the ultimate system, it is clear 
that, for the purpose of setting up the equations of that system, they may be omitted 
from the N  basic equations of the individual particles. When these forces are ignored, 
however, the forces between the individual particles are very much changed, espe
cially in the case of inelastic bodies. The system of individual particles is then no 
longer physically equivalent to the ultimate system. It has a quite different motion 
(for instance, the particles of a rigid body here move in divergent directions) and its 
trajectory, in general, spans the whole IV dimensional space. Nevertheless, according 
to the above reasoning, the projection of its trajectory on the n dimensional sub
space coincides with the trajectory of the ultimate system.

Non-linear transformations. Since Kron has made the widest application of his 
method of subspaces to electrical networks and other electrodynamical problems in 
which the interconnection transformation is very often linear, the impression has 
sometimes arisen that the method is applicable only to situations in which this 
linearity is present. The following examples of the method involve non-linear trans
formations. They are simple enough so that the more usual methods of solution are

3 W hen the transform ations are  non-singular, th is is  the basis of the im portant “group p ro perty” of 
tensor transform ations. In  the absence of inverses the term  “group” is inappropriate here, b ut provided  
the succession is a lw ays to a  subspace of the preceding space or subspace, as it  a lw a ys is here, the 
usual com bination properties of tensor transform ations are preserved.
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hardly more complicated than those by Kron’s method, but this is inevitable in simple 
problems. The power of Kron’s method begins to be felt when the systems in question 
involve a larger number of interconnections, and of more complicated mechanisms 
than the simple rods of the examples below.

2 Illustrative example I. We begin with
a system consisting of two rods hinged 
together without friction, one rod being 
suspended by its free end from a fixed 
point 0  (Fig. 1). We denote the masses 
of the rods by vi\, m2, their lengths by 
2ai, 2a2, and their moments of inertia 
about their centers of gravity, which we 
shall assume to coincide with their mid
points, by h ,  I 2. In addition to gravity, 
let us consider a force F, not necessarily 
conservative, which acts horizontally and 
to the right at the mid-point of the lower 
rod. The system has two degrees of free
dom, and we may take as the generalized 
coordinates the angles 6, <p which the 
rods make with the vertical.

The problem is to set up the equations 
of motion. From previous experience with Lagrangean dynamics, we may regard a 
single rod as a known system, in the sense that we can instantly write down its equa
tions of motion, or have already tabulated them for quick reference. The present 
system consists of two of these 
known systems interconnected. We 
therefore begin by considering the 
system consisting of the two rods 
not interconnected, the forces being 
the same as those acting externally 
on the original system.4 Kron calls 
this system the primitive system.
I t is shown in Fig. 2, and has here 
four degrees of freedom. We may 
take the four generalized coordi
nates to be the angles 6, <p above 
together with the coordinates y, z 
of the center of gravity of the lower 
rod. We let Latin indices refer to 
the primitive system, and Greek
to the actual system under discus-

, r i G .  2.  P rim itiv e  system  of system  I.sion. hor the primitive system the
metrical tensor and the force vector can be written down at once. They are

4 In  general one m u st include a ll forces th at do w ork, including d issip ative  forces.
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mab =

0 <P y z

0 I  y +  niyd * 0 0 0

V 0 0 0

y 0 0 m 2 0

z 0 0 0 »*2

(16)

and

U  =

0 — nilgai sin 0

<p 0

y F

z -  m2g

(17)

The restraint arising from the interconnection of the two rods imposes the following 
two conditions on the four coordinates x a of the primitive system:

y  = 2ai sin 0 +  02 sin <p, 2oi cos 0 —o2 cos <p. (18)

These two equations define the subspace of the configuration space of the primitive 
system to which the given system is confined. We may express them in the form of a 
transformation, that is to say, in parametric form, by writing

0 = 0, <p = <p, y =  2oi sin 0 +  o2 sin ip, z = — 2<ii cos 0 — a2 cos p, (19) 

which is of the form
xa = xa(xa).

The transformation matrix C“, or dxa/d£a, is (in the form CiT)

dxa
dxa

(20)

\  xa 
xa \

0 <p y z

0 1 0 2di cos 0 2dy sin 0

V 0 1 02 cos Ip a2 sin cp
(21)

Thus the metrical tensor for the given system, namely the projection ma$ of is 
given by

dxa dxb
T f ta f l  —  IT l  a  b i

dxa dxP
i.e.,

m ais - P  °Lo l
1 0 2«1 cos 0 2ai sin 01 

«2 cos <p Û2 sin <pj

I \  +  7Yl\d\ 0 0 o -
0 h 0 0
0 0 m 2 0
0 0 0 m 2_

r  l 
o

2ai cos 0 
_2ai sin 0

0 “1 
1

dz cos 7p 
&2 sin ip __
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r / i  +  Wi«i 0 2a\vii cos d laim-i sin 0' 
L 0 12 a2m2 cos ip a2m2 sin Ip.

|"/i +  m\a\ +  4?»2ai 2m2axa2 cos (0 — ip)' 
L2m2aia2 cos (0 — ip) / 2 +  m2a\

Likewise, the force vector is given by

d x a

r  i
o

2a-i cos 0 
_2a.\ sin 0

«2 cos ip 
Ü2 sin <p_

0

1

(22)

fa
dxafa,

or

f
. r i  0 2ai cos 6 2ax sin 0~1 

LO 1 a2 cos <p a2 sin Tpj

- [

— niiga-i sin 
0 
F

-  niig

— (mi +  2m2)ga1 sin 0 +  2aiF cos 0 ' 
a2F cos ip — a2m2g sin ip ']■

(23)

The kinetic energy function of the given system is

T  = %m„pxaxP

— \ { h  +  mia\ +  4fn2a2i)0i +  2m2aia2 cos (6 — <p)0ip +  | ( / 2 +  i>haf) ip2- (24)

The Lagrangean equations for the given system may now be written in the usual 
form.5 They are, on dropping the bars over 6 and <p, but without simplification,

— {{I i +  mxa\ +  4?«20i)  ̂+  2m«aia2 cos (0 — <p) <p } — { — 2in^a^ai sin (0 — <p)0 ip} 
dt

— — {nii +  2.mZ)ga\ sin 0 +  2.a\F cos 6,

— {2nhaia2 cos {0 — <p)6 +  ( /2 +  m2a2) <P ) ~  {2«42ai02 sin {0 — ¡p)6 <p } 
dt

= a2F cos <p — (hvtig sin <p.

Since no forces were introduced a t the points A, A '  of the primitive system, the 
latter was physically different from the given system, for in the given system opposite 
forces acted at the hinge A. Thus we have been using viewpoint (/3). To make the 
two systems physically equivalent, it would be necessary to impose appropriate initial 
conditions on the primitive system and to introduce the proper opposite forces at 
A and A ' corresponding to the reactions at the hinge in the given system. This,

5 K ro n  has suggested another m ethod having  advantages w hen the system  and its  interconnections  
are  com plicated.
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however, would entail a knowledge of the reactions at A, and the advantage of the 
(/3) viewpoint, which makes it the more appropriate viewpoint for the Kron method 
here, is that it enables one to proceed without bringing in the reactions a t all, except 
indirectly insofar as they imply the equations of constraint. It is possible to use view
point (a) by introducing unknown opposite reactions at A and A '  in the primitive, 
denoting them by some symbol, say R and —R ; they will automatically cancel when 
the transition is made to the subspace.

To give some indication of the flexi
bility of the Kron method and its ability 
to extract cumulative dividends from 
such calculations as may previously 
have been performed, we conclude with 
a brief and sketchy discussion of two 
further systems.

Illustrative example II. Let us con
sider the system illustrated in Fig. 3.
It is the same as system I above except 
that the end of the lower rod is con
strained to move without friction on a 
fixed vertical line distant 2c from 0.

System I has already been investi
gated. I t  is now a known system. In
stead, therefore, of taking the primitive 
of system II to be the same as the 
primitive of system I, we may take it to be system I itself.

The new constraint reduces the number of degrees of freedom to one and may be 
represented mathematically by the condition

d  sin 6 +  a* sin <p~= c. 

The subspace now can be written parametrically as

( c — sin
= e,

lc — a\ sin 0)
<p = sin-1<---------------? ,

I o2 )

The transformation matrix C is given by

k ;v dtp
dd \ /  o;

— Oi cos 0
(c — Oi sin 0)2

By implicit differentiation of (25) we may also obtain the useful relation

d  cos 0 +  o2X cos <p = 0.

(25)

(26)

(27)

(28)

The new metrical tensor (which here has only one component) may be obtained 
by the usual transformation formula, or the new expression for T  may be obtained 
directly from (24) by substituting for <p and <p in terms of 0 and 0 by means of (26),
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the latter method being the simpler in this particular problem. The generalized force is 

{nil +  ^nii)ga\ sin 0 +  2aF cos 5"_ T— {mi +  ïnii)ga\ sin 0 +  2aF cos 0~|
/„ = [1 XJ

L arf cos <fi — annig sin <p J

= — {nil +  2 n h )ga i sin 0 +  2a iF  cos 0 +  Xff2F  cos ¡p — X a 2w 2g sin <p

chniigU — ax sin 6) cos 0
= — {mi +  2.niï)gai sin 0 +  aiF cos 0 H    > (29)

V a — (c — ai sin 0)2

the terms in impartially cancelling in view of (28). The equation of motion may now 
be written down in the usual manner. Solving it is another matter!

Illustrative example III. The preceding example made use of system I in the role 
of a known system, and essentially dealt with the imposition of a constraint on that 
system. One may, however, join several known systems together by the Kron method, 
and this is, in fact, the procedure of principal importance in practical problems. To 
illustrate the idea, let us outline the method of attack on the system shown in Fig. 4,

the points 0, D being fixed, and motion being confined to a vertical plane. This 
system may be regarded as system I interconnected with another system of the same 
type. Thus the primitive may be taken to consist of two systems of the type I, as 
shown in Fig. 5. For each system of type I the metrical tensor and force vector are 
known, being of the form (22) and (23). For brevity, we denote them in shape only 
by the following symbols:

j" a )  j  j  j- g o  j .  j \  (2) j  j  |- (20 j

Then for the whole primitive system the corresponding quantities are
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(1) i 0 : 0 “ r  d o  ~i
I 0 | 0

0 ; 0 (2) !
1

(20.
0 : 0

which, of course, may be written down at once. The configuration space of the present 
primitive system is the direct product of the configuration spaces of the two systems 
of type I. ,

The interconnection of the two systems at B introduces a single constraint, and 
by the method of subspaces the equations of motion of system III may be obtained 
in a routine manner.

The problems discussed above involved only very simple interconnections. When 
the interconnections are numerous and complicated, and the elements interconnected 
are themselves known complex dynamical, electrodynamical, or hydrodynamical sys
tems, Kron’s method of subspaces assumes the highest practical importance. In con
cluding the author wishes to thank Mr. Kron for many stimulating discussions of his 
work extending over several years.

Added April 12, 1944. While the general mathematical theory underlying Kron’s 
method of subspaces as applied to dynamical systems is implied in the “Formal Proof” 
of the present paper, it is not there given in explicit detail. Professor Synge of the 
Ohio State University has suggested that a more explicit proof be included which 
goes directly to the mathematical basis of the method, and has kindly communicated 
the following outline of a method of proof from a different point of view which will 
be of interest to mathematicians wishing to see clearly what is fundamentally in
volved mathematically.

Let (a, b) («,/). (i, j)  take three different ranges of values, with the usual summa
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tion convention for each. Let there be two independent holonomie dynamical sys
tems:

I. Coordinates: xn,
K. Energy: T w = $mttbx axh, 
Generalized forces: X„.

II. Coordinates: x‘,
K. Energy: T (2) = \m e!xcxt, 
Generalized forces: X e.

Let us define, with D=d/dt,

Then the equations of motion of I and II are S a = X a, S, = X e.
Now establish constraints between I and II, the reactions of constraint being 

workless. These constraints may be written

where x* are the generalized coordinates of the system III resulting from the combina
tion. Write

Let X'a, X't be the reactions due to the constraint. We have

for any displacement satisfying the constraints, i.e., for

Now the equations of motion of I and II under the constraint are

We have for system III: 
Coordinates: x',
K. Energy: T (3) = \m ijXix \  
Generalized forces: X {.

Let us define

Sa = D(dT{i)/dxa) — d r (1)/<5xa, 
S,  = D(dT ( 2)/ôxe) — ô r ( 2)/dxc.

(A)

x °  = x“(x‘), Xe = x'(x'),

C“ = dxa/d x l, C( = â x '/â x ’.
We have then

It is easy to prove that

DCÎ  = dxa/d x ‘, D C \ =  ()%'■/ d x‘, 

Cl  = dxa/dx \  ‘ C‘ = dxe/  dx‘.
(B)

Xtfx*  +  X'5x* = 0

oxa = C“5 x1, Sx* = C\Ł X*.
Hence

X'aCÏ +  X'eC\ = 0.

= X0 +  X', S . = X s +  Xe',
and hence

SaC\ +  S tC\ = X aC\ -f X.CJ. (C)

= D(dT(3)/dx*) -  dTm /d x \
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Our problem is to show how Si, X i  are to be computed in terms of the elements of I 
and II. (We know from dynamical theory that Si = X it but we can forget this knowl
edge, as we prove it incidentally below.)

We have
T m — T  ( i )  +  T  (2 ),

and hence
mu = ma t C? C) +  me!CxC!y (D)

It is ea'sily seen by direct transformation that

Si = S X t  +  S 'C l  (E)

By considerations of work we have
Xi 8x' = X adxa +  X,dxe,

and so
Xt = XaC; +  x  , c i  (F)

Hence by equation (C), we have, as equations of motion of III, 5, = X,-, where Si and 
Xi  are given by (E) and (F). The transformation of the metric is given by (D).

We may sum up essentially by saying: Metric and force transform by (D) and (F) 
when two systems are linked by workless constraints. The extension to the linkage of 
any number of systems is immediate.
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R IG O R O U S  SO L U T IO N S F O R  T H E  SPA N W ISE  L IF T  
D IS T R IB U T IO N  O F A C ER TA IN  CLASS O F 

A IRFO ILS*

O T T O  L A P O R T E  

University of Michigan

1. Introduction. The problem of the spanvvise lift distribution of an airfoil in a 
uniform stream of air leads, as was shown by Prandtl,1 to the following integro- 
differential equation for the circulation T(y):

- fÎ t t V  J  — b

• + bi2 d ÿ  d r 2r---------  j---------
4t tV J - b /2 y  — y'  dy '  m c (y )V■I 7TT7 = «■ i1)

In this equation y  is the span coordinate, and —? b ^ y ^ $ b ;  V is the velocity of the 
air at infinity, its direction being parallel to the x-axis; c{y) is the chord function de
termining the shape or planform of the airfoil; m is a numerical constant, which the 
theory of wings of infinite span fixes a t 2-7t but which seems to have an experimental 
value in the vicinity of 5.5; a  is the geometric angle of attack, which for flat wings 
is a constant but for twisted wings is a given function of y. For a derivation, the reader 
is referred to the papers mentioned in footnote 1; we only wish to note here that the 
downwash velocity w is essentially the first term of (1) and has the form

1 2 /•+>
’ (2)

■+1 dr]' d r

V  ¿ 7

where r] = 2y/b  is a dimensionless span coordinate. Because of the singular integrand, 
the Cauchy principal value must be taken both in (1) and (2). Of fundamental im
portance, furthermore, is the elliptic wing of chord distribution

c(y) =  coVT — n2 (3)

for which T(y) is also of elliptic shape while w(y) is constant.
In the extensive literature dealing with solutions of (1) for a given planform c(y), 

the following procedure is used almost always: the substitution r] =sin 6 is introduced, 
and the chord function c{y) is developed in a Fourier series. I t is assumed that T is 
also of this form, whence equation (1) is satisfied a t a discrete number of y  values. This 
leads to a system of linear equations for the Fourier coefficients, the solution of which 
is usually extremely laborious.

In contrast to this method, the point of view adopted by Trefftz2 seems to me 
more powerful. This author considers the potential flow in the complex y-\-iz plane

* R eceived  F e b . 28, 1944.
1 L .  P ra n d tl, G ö ttin g er N achrich ten , 1918, 451, and 1919, 107. A lso  N .A .C .A . R ep o rt 116, 1921. 

See also  the presentation in  M ises and F rie d rich s ' Fluid dynamics, B ro w n  U n iv e rs ity  m im eographed  
lecture notes, 1941, p. 108 and foil.

! E .  T refftz , Ze itsch r. f. Angew . M a th , und M echan ik , 1, 206 (1921).
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at a large distance behind the wing. The wake, stretching along the y-axis from 
— b/2 to +&/2 becomes a line of discontinuity along which the velocity potential 
suffers a jump determined by the circulation. The integro-differential equation (1) 
reveals itself as a boundary condition which the velocity potential has to obey along 
the line — b /2 ^ y £ b /2 .  “With the aid of conformal transformation the field is brought 
into relation with the field outside of a circle of unit radius; then the potential is ap
proximated by a trigonometric expression and an approximate fulfillment of the 
boundary condition is sought.”3

In the present paper the point of view which was used by Trefftz is extended, but 
instead of “seeking an approximate fulfillment of the boundary condition” for an 
arbitrary chord function c(y), a simultaneous choice of the function and of a con-
formal mapping function transforms the problem into a boundary value problem of
classical type, which can be solved rigorously and in every detail. The resulting 
formulae lend themselves readily to numerical computation.

The family of planforms to which one is led in this fashion is represented by the 
equation

< y )  = co[(i-u*)(l - k V ) ] 1'2. (4)
For

0 S « g l ,  (4')
this results in airfoils of taper greater than in the elliptic case (3), while for

0 g  k g  i, (4")
airfoils blunter than the elliptic ones are obtained. Fig. 1 shows the entire family for 
a fixed span and aspect ratio.4

F i g .  1: i A =  8.

To be sure, for a given planform elaborate approximate methods, such as the 
Fourier series method described above, will probably always have to be used. How-

k - 3 - 1 8 -

3 v . K d r m in  and Burgers, in  vo l. I I  of D u ra n d ’s Aerodynamic theory, Springer, B erlin  1935, p. 171.
4 T h e  aspect ratio  is defined as b'-/S, where 5  is the area of the wing. F o r  the ca lcu lation  of 5  

a s a  function  of k, see (22).
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ever, we shall now show that at least for one planform family, which depends on two 
parameters, the problem can be completely solved. I t is hoped that the method used 
here will be generalizable so as to furnish perhaps other chord functions in the future. 
At any rate, for a planform which is close to one of family (4) a method of successive 
approximations can be readily set up.

I t seems that a comparison with the methods used in the theory of wings of infi
nite span is not superfluous. Here rigorous solutions are available for certain families 
of simple profiles, the simplest one of which is that of Joukowski. Although the de
signer will probably not be satisfied with such a simplification and will turn to more 
elaborate methods, there is an advantage in having easily derived formulae in closed 
form—both as far as quick estimates and classroom presentation are concerned. In 
lectures it is standard procedure to present the flow around the Joukowski and per
haps also around the Karman-Trefftz profiles before turning to more general meth
ods; on the other hand, when dealing with wings of finite span, the derivation of 
Prandtl’s equation (1) is usually followed only by a detailed discussion of the elliptic 
case and then by a mere description of the Fourier series methods. The formulae 
given below are intended to fill this gap.

2. Prandtl’s equation as a boundary condition in the complex plane u= y+ iz .  A 
brief recapitulation of Trefftz’s work2 is necessary following the presentation of Mises 
and Friedrichs.1 In the y-\-iz plane there exists a flow derivable from a potential 
4>(y, z). This potential is everywhere continuous except on the projection of the airfoil

s = 0, -  6/2 £  y g  +  6/2, (5)

where, because of the existence of a circulation, <f> is discontinuous. Assuming that the 
values of d> a t opposite points of the slit (5) are equal and opposite, we have

r(y) = 4<6(y, 0). (6)

The downwash velocity w becomes

„ w  -  Q .  m

The problem is therefore to find a solution of the Laplace equation

A$= 0 (8)

which on the upper side of the slit (5) satisfies the boundary condition

( - VVds/o
8«6(y, Q) 
mc{y)

= -  Va(y). (9)

This condition results from substituting (2), (6) and (7) into (1). The corresponding 
condition on the lower side of the slit differs from (9) in that the sign of the second term 
is opposite.

Condition (9) characterizes the present problem as a boundary value problem of 
the third kind. As mentioned earlier, Trefftz now maps the region outside slit (5) into 
the interior of the unit circle by means of
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Through the introduction of polar coordinates / = r(cos 0-f-i sin 6) he is then led to ap
proximate solutions having the form of a Fourier series in 6.

I t  is evident that, because of the occurrence in (9) of the function c(y) in the co
efficient of q>(y, 0), exact solutions of the problem will in general be difficult to obtain. 
But let us also examine the effect of a conformal mapping upon (8) and (9). While 
the former is invariant under arbitrary conformal transformations the latter is not, 
because of the occurrence of the first derivative. One may say that each conformal 
transformation causes a new variable coefficient to appear both in the <f> term on the 
left and on the right side of (9).

We propose to let these two effects counteract one another and to choose both ap
propriate conformal transformations and appropriate chord functions c(y) so as to 
arrive a t a boundary condition with constant coefficients which lends itself to treat
ment by classical methods. An example will best serve to illustrate this procedure.

Instead of introducing real polar coordinates within the circle into which the slit 
(5) is mapped by (10), we shall map the interior of the circle onto the strip bounded 
by the points 0, +  =o, -{- oo -\-2iri, 2ici of a X plane by means of

6
t = e \ tf - — ch X, (11)

2

where X=/i+iV. The potential must be a solution of the Laplace equation in X and p., 
and must satisfy the following boundary condition along the imaginary axis onto 
which the circle |/ | =1 is mapped:

46 sin v . , ,
 —-------   (6(0, v) = *- \bVa sin v. (12)
i ?»c(§6 cos v)

In order that the coefficient of <j> be a constant we must choose c(|6 cos v) proportional 
to sin v, whence, by virtue of (11), we have the elliptic chord distribution (3).

3. A transformation mapping the interior of the circle |/ | =1 into that of a rec
tangle. We now replace the function (11) by others which map the interior of the unit 
circle into various other regions. Each time, in order to have a boundary condition 
with constant coefficients, an appropriate chord function must be chosen. When 
mapping the unit circle of the / plane into a rectangle in the usual Schwartzian way 
such that four arbitrarily chosen points on the periphery correspond to the corners, 
a chord function results which possesses singularities at those points of the span 
which are the images of the corners. I t is, however, possible to map a rectangle onto 
the unit circle, such that two opposite sides of the rectangle become two opposite 
semicircular arcs while each of the two other sides of the rectangle map onto a slit 
protruding radially part way into the circle.5 This is illustrated in Fig. 2. The mapping 
function which accomplishes this is

/- 2Kt — \ / k  s n ---- Z, (13)
7r

where the circle is in the /-plane (t = r+is), the rectangle is in the Z-plane (Z = X + iY ) ,

( - )W  /

* G . H o lzm ü ller, Einführung in die Theorie der isogonalen Verwandtschaften, 1882, p. 256 and foil. 
See a lso  C a y le y , Collected papers, vo l. 13, papers N o. 891, 920, and 921.
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k is the modulus of the elliptic function and is between 0 and 1, K  is the complete 
elliptic integral. We now separate real and imaginary parts by means of the addition 
theorem of the sn function and put

Y = ±
x K' 
4 K

In view of the fact that sn(iK'/2) =ik~u2, we obtain readily

r = (1 +  k)
sn 2 KX/ir

1 +  k sn2 2K X /v
s = ±

cn 2KX/% dn 2KX/ir 
1 +  k sn2 2KX/ir

(14)

(15)

Therefore
r2 +  32 = 1. (16)

Thus the upper straight line (14) maps into the upper semicircle, and lower one into 

t- plane z-plane

the lower. If in (15) we set X  = ±£x, we obtain 3 = 0. The four corners of the rectangle 
are hereby fixed. To see what corresponds to the vertical sides, we setZ  = ± ir /2 + iY  
in (13), to obtain

(2 KI „  (1?)2 K \  
r = + V k  nd i  Y, k’Y

where k '2 = l —k 2. The slits protruding into the circle along the real axis therefore 
terminate a t r= ± k l,i.

4. The boundary condition in the Z-plane. For the upper side of the rectangle this 
condition becomes, by use of (9), (10) and (13),

+  —  I — I
/  d4> \  8 /  du \
\dF  /  rK'/iK me \  dZ ) tk.'hk (f)\  ûZ /  rK’/iK

where
du
dZ

h r - /  2K \  2K 2 K
=  —  \ f k  K I 1 — k~l ns2  Z ) cn  Z  dn  Z

2ir \  x /  t x

(18)

(19)

and Z  must be put equal to X-\-iieK'/4K. The chord c(y), now regarded as a func-



tion of X ,  must be chosen proportional to (19). Therefore it becomes necessary to 
express (19) as a function of y in the original u plane. We have at first from (13),
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du b \/k  K

where 11\ =1. Using for the moment the angle v as in (12), this may be written in the 
form

du iby/kK
■—  =  sin v
dZ x

which, since cos v = rj, becomes finally

1 \ ”l1/2
2 cos 2v -K)J

The abbreviation

4^- = — &i^(l +  ¿)[(1 -  ,*)(1 -  kV ) ] 1/!- (20)
dZ 7r

was used, where k is between 0 and 1. We see thus that we are led to the planforms 
(4), (4') which represent wings of taper greater than the elliptic wing.

Before (4) and (20) are substituted into (18), it is convenient to'calculate the area 
S  and the aspect ratio zA=b2/S .  It stands to reason that the area

/bl 2
co[(l -  »2)U -  «Y)3ll2dy

-6/2
is expressible in terms of the complete elliptic integrals E  and K  of k, but in view of 
the fact that (21) is the well known Landen transformation, 5 can also be reduced to 
the complete elliptic integrals of the modulus k. The result is

S = bcMk), (22)
where

1 P  +  6 k + ±  E (k) -  (1 -  ¿)(1 -  3k)K(k)
L l +  k

G(k)
6k

(22,)

G(k) is a purely numerical constant depending on taper. Fpr the aspect ratio we have

G(k)c0 ’ (23)
and for the average chord 5,

c = G(k)c0. (23,)

Substitution of (4), (20) and (23) into (18) gives the final form of the boundary 
condition,

/d<t>\ 8 <vf N /  TT K ' \
(  —  )  + ------------- ( 1  +  k ) G K 4 > [ X , - — )
\ d Y )  k '/ik X m \  4 K )•UK

Vb ^  r  /  2K \  2K 2K *1
\Tk K  a ( 1 — krl ns5  Z 1 cn  Z d n  Z . (24)

2x L \  X /  X X J Y-tK'HK
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Variable coefficients now only occur on the right. I t  should be noted that for 
Z = X + iirK '/4K  the right-hand side represents a real function of X.

S. Solution of the boundary value problem for tapered wings. This solution has 
to satisfy the following requirements:

(1) Inside the rectangle | x |  ^ x /2 , | F| ^irK '/AK ,  it must satisfy Laplace’s equa
tion.

(2) On the top side Y = ttK '/4 K  it must satisfy (24).
(3) On the lower side it must satisfy a similar condition differing from (24) only 

in the sign of the first term.
We shall seek a solution of the form

4(X, F) = £  sh nY(An cos nX  +  Bn sin nX). (25)
71

In this series each term is a solution of the Laplace equation. The sh function of F 
is alone present because of condition (3), or in other words, because we want <f> to 
have equal and opposite values at opposite points on slit (5) in the y-\-iz plane. To 
determine A n and B„ the right-hand side of (24), considered as a function of X,  has 
to be expanded in a Fourier series.

At this moment it should be remembered that for twisted airfoils a  is a function 
of y or T). I t  will be an even function as long as the ailerons are in their normal position. 
Otherwise, a may have an odd component or may even be discontinuous. At the pres
ent time only the case of constant a will be treated.6

To develop the right-hand side of (24) into a Fourier series we begin with the 
familiar series7 for sn:

2IC “ x K'
sn  Z = On sin (2n +  l)Z, a„ =  cosech x(m +  | ) -----  (26)

x n_o  Kk K

This series converges uniformly as long as | I(z) | <irK'/2K, i.e., within a horizontal 
strip whose median line is the real axis and whose width is irK '/K. But since this is 
just twice the vertical dimension of the rectangle of the boundary value problem (see 
Fig. 2), series (26) will certainly converge absolutely anywhere that it is needed a t 
present. We differentiate and put Z=iirK'/AK-YX, to obtain

2K 2K • x “ /  x K' \
cn  Z  d n  Z  = ----- ^  (2m +  l)a„ cos (2n +  1) ( i ---------- b X  ).

x x 2K  n_o V 4 K /  (27)

To get the other part of the right-hand side of (24), we put Z =iirK '/2K-YZ', 
whence

2K 2K
ns Z - k sn -----Z'.

X X

8 M ore general cases of tw isted a irfo ils are  being com puted a t  present and w ill be reported on else
where.

7 See, for instance, W h itta k e r and W atso n , Modern analysis, 4 th  ed., Cam b rid ge U n iv e rs ity  Press, 
p. 510.



The application of (26) with Z ' as the variable gives

2 K  “
k~l n s  Z  = £  an sin (2n +  1 )Z'.

x o

After differentiating with respect to Z  or Z ' , we put Z'  = —iirK '/4 K + X  (which is 
the same as putting Z = -\-iicK'/AK-trX), to obtain

2K 2K t  * {  x  K' \  , x
-  ¿ r1 cs- Z d s  Z = -----£  (2h +  l)o„ cos (2» +  1) ( -  i — —  +  X ). (28)

7T 7T 2A n̂ o ' \  4 A /

The sum of (27) and (28) furnishes the desired series which, because of the second 
formula of (26), may be written in the form

2K \  2K 2K x2 ^  v cos (2n +  1)X
(29)
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/  2K \  2K 2A x 2 “
( 1 — k~l ns2  Z ] cn  Z d n  = --------£  (2n +  1)
V tr /  x x 2A2£ „ ti sh (» +  \)vK '/2K

where it is to be understood that Z=iicK' ¡4K4-X.  This series converges uniformly 
for all real values of X.

The final solution of the problem can now be written down. Introducing (29) and 
(25) into (24) one obtains for the velocity potential,

X Vab -  sh (2n +  1)F cos (2n +  1)X / v
<b(X, F) = —- ------= £  ------------------------------------- > (30)

J 4 K V k  „=o Dn sh (2n +  \)^K'/4K
where

x K' 8 ^ ( 1  +  k)GK f x K'
Dn = ch (2n +  1) — —  + ----------- „ sh (2n +  1) — —  • (31)

4 A. x vi 2n -f- 1 4 K

This series converges uniformly as long as | F| <irK'/2K, which is more than we
need for numerical calculations, since the rectangle only extends to F =  +irK'/4K.

Of greater practical importance than <f> is the sectional lift or the sectional lift 
coefficient ct which may be defined as follows: let I be the lift per unit span,

I = \ PVHd, (32)

where c is the average chord (23i). Since from (6) I is also 4pVcl>(X, irK'/AK), the
following expression results:

zA JL 1
Ci — 2xo! — £   cos (2n +  1)X. (33)

KVkZTi5 Dn
For this rapidly converging series, numerical tests have shown that three or four 
terms suffice to give a result correct to one part in ten thousand. To formula (33) 
should be added the relation between X  and the original span coordinate y. From (15) 
and (10) it is found to be

b sn 2K X / tc
y = — (1 +  k )  — • (34)
* 2 1 +  k sn2 2K X / t

Formulae (33) and (34) give the spanwise lift distribution as a function of y.
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6. Results for the blunt wing. The method of the previous section may readily 
be used to get similar results for wings blunter than elliptic ones. The underlying idea 
is the following: in section 2 we mapped the t circle onto a square such that the semi
circle in the upper half plane became the upper side of a rectangle in the Z  plane, 
and correspondingly for the lower semicircle. Now, the interior of the unit circle in 
the t plane will be mapped so that the right and left semicircles will correspond tô the 
right and left sides of the rectangle, while two slits from ± i  to ± i \ /k will correspond 
to the upper and lower sides. In short, the role on the real and imaginary axes in both 
planes will be reversed. Results will merely be given and formulas will receive the 
same numbers as the corresponding formula of the “tapered” case, except that primes 
wdll be added.

The mapping just described is performed by

_ 2 K
t = i~ly /k  sn  iZ. (13')

x

Upon putting X  = ± ttK '/A K  the point in the /-plane moves on a circle r2+ i 2= l ,

t 'PLANE Z-PLANE

F i g . 3.

while F = ± x / 2  gives the slits along the imaginary axis of t. This is shown in Fig.
3. The interior of the unit circle of the t plane is then mapped by means of (10) onto 
the exterior of the slit (5) in the u plane.

The boundary condition, now along the two vertical sides, becomes

/  d<j> \  8 /  d u \  (  x K' \  /  d u \

XdXjrK'HK +  * iu \dz) .K '/iK *  \ 7  K ’ /  ~ * lVa \dz)rK'HK  ^  }

f d u \  b /  2K \  2K 2K
( ----) = — \Tk  in  1 +  k -1 nss  iZ ) c n  iZ d n  iZ, (19')
\ d Z /  t K ' / A K  2 x  \  X  /  X  X

which is imaginary for Z = irK '/4K + iY .  The determination of the planform results 
from expressing this in terms of tj :
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where

( ^ ]  = -  bK{ 1 -  A)V(1 -  ^2)(1 +  «V ).
\ d Z  /  tK'/^k  tt

k'  2  W k  )

(20')

(21')

The different signs should be noted. The two 
functions k  of k '  of k  are plotted in Fig. 4. 
In this way a planform blunter than the elliptic 
one results, namely (4), (4"). When k' becomes 
greater than one, the chord function has a maxi
mum between 77 = 0 and 1. The bluntest wing 
shape without such a maximum is attained for 
k' = 1 or

VCR V s , (35)

in which case the Iemniscate functions result. 
Thus the formulae of this section, while being 
valid for any k between 0 and 1 have aero
dynamical importance only for k between 0 
and kcR-8

The area of the wing becomes

*5* — 5roG(— k), (22')

where G( — k) is the function in equation (22j) for negative k.9 In the case of (34), 
which interests us especially, the elliptic integral becomes reducible to Gamma func
tions:

G(— kcR) =
T(3/2)r(5/4)

r(7/4)
=  .87 40 2 . (36)

Formulae for zA  and the mean chord c are taken over with G{ — k).
For a constant angle of attack, the only case treated below, the function in (19') 

will be developed in a Fourier series on the vertical sides X  = +irK'/AK  of the rec
tangle. This is readily accomplished, the difference from (29) being that only terms 
in sin (2w+l) Y  occur. The final result for the velocity potential is

where

i- W  " ch (2n +  l )X  sin (2n +  1)F
d ) ( X ,  Y )  — —  ------- — /   —----------------

4 K V k  f o  An Ch (2n +  1)ttK’/4K

8 cvf (1 -  k)G(- k)K

(30')

x K'
sh ( 2 m  + 1 ) -----------------1-

4 K  t  m 2m T  1

K.r
c h  ( 2 m  +  1 )  T  —  • ( 3 1 0  4 K

8 T h e  m apping for k = 3  — \/&  is  studied and illustrated  b y  figures in H o lzm u ller's book (see foot
note 5).

8 H ow ever, E  and K  depend on ly  on k2.
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Convergence properties are the same as before. The sectional lift coefficient (32) is 
given by

“ 1
ci = 2™  — ¿2 — sin (2n +  1)F, (33')

K \ /k  ,,_o A„

while the relation between the variable F and span coordinate y is now

b cn 2KY dn 2KY/ir
y = --------------------------   (34')

2 1 +  k sn2 2K Y /t

7. The elliptic wing as a limiting case. From (20) or (21) it is evident that the
chord function represents an ellipse when k goes to zero. For decreasing k the elliptic
integrals K  and G approach tt/2 and x/4  respectively, while

lim ^K ' — log —^ = 0.

The quotient K ' / K  becomes large and the convergence of the series (33) improves. 
Keeping only the first term we see that

lim j ( Ch) — —  -  = 0.
l \ s h /  4 K )

Thus
4 cos X

Ci = — a m ----------—— > (37)
x 1 +  xvf/w

which is in complete agreement with Durand II, p. 169, since now cos X  — (1 — ??2)1/2.
8. The limiting case of extreme taper, k = 1. This case is of more interest than the 

preceding one, inasmuch as it leads to new and simple formulae in closed form. It 
follows from (20) that the planform is now given by

c = c o ( l -V ) ,  (38)

which represents a parabolic arc or two such arcs joined along the y-axis (see Fig. 1). 
Although the lift distribution can be obtained from (33) by letting k tend towards 1, 
we prefer to derive it afresh.

The transformation
t = tanh Z  (39)

maps the interior of the unit circle in the t plane onto a strip parallel to the X-axis 
and bounded by Y  = ±ir/4. The points t = ±1, where the t circle crosses the real 
axis move, respectively, towards +  oo and — <». Transformations (10) and (39) to
gether map the outside of slit (5) in the u plane on the above mentioned strip, in such 
a way that the upper and lower sides of the slit become, respectively, the upper and 
lower sides of the strip, while the tips (y= ± b /2) move to infinity.

The boundary condition on the upper side is the same as equation (18), except 
that the subscript on the various derivatives now is F  = ir/4. Since the transformation 
from the u to the Z plane is now

u — %b coth 2Z, (40)

as is seen from (39) and (10), we have as the analogue of (19) the equation
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du \
- )  = 6  sech2 2X, (41)

-t/4, dZ Jr.

which, when expressed as function of t], becomes 6(1—?72). Hence the chord is chosen 
as in (38). We note the formulae for mean chord c, area S, and aspect ratio

2 2 3 b
c — — c0; S = — bca; zA = --------   (42)

3 3 2 Co

The final form of the boundary condition on the upper side of the infinite strip is

/  8<f> \  16 zA (  7r \
  H <f> (X ,  — ) = Vab sech2 2X. (43)

\ d Y j T/4 3 m V 4 /

Due to the fact that the range of X  is from — co to +  °°, the right-hand side of (43) 
must now be expanded in a Fourier integral. This can be done by standard methods, 
the result being

1 r x cos f X
sech2 2X = — I — -------—  ■ (44)

4 J  o sh 7r("/4

For the velocity potential <j)(X, Y) we assume a solution of the form

4>(X, Y) = f dtA(t) sh tY  cos fX, (45)
J  o

where the integrand satisfies the Laplace equation. After introducing (45) and (44) 
into (43), -4(f) is easily determined. The final form for <t>(X, Y) is

1 s h f F  cos $X
4>(X, Y) = — Vab --  df, (46)

4 J  o D(f) sh irf/4

where
tv 16 zA sh irf/4

D(f) = c h - r  +  - -------- ;   (47)
4 3 m f

The sectional lift coefficient assumes the form

 ̂ r 00 cos fX
Ci = 2zAa I  df. (48)

Jo Da)

The integral in (46) converges for all X  and Y  within the strip under consideration. 
In order to obtain from (48) the lift distribution as a function of y, we note here that, 
due to (40),

y = 5b tanh 2X. (49)

The above integral may be brought into a rather different and interesting form 
which makes the numerical evaluation very much easier. Let us consider the integral

X
+” rdr  COS r f

 — > (50)
.a, r ch r  +  a sh r

which, except for a simpler notation, is the same as that in (48). On the imaginary r
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axis, the integrand has infinitely many poles, which can be computed as the roots of 
the transcendental equation

a cos a +  a sin c = 0. (51)

Denoting the nth root by cr„, we find from this that

cos cr„ = ( -  l ) ”a(a„ +  sin <rn = ( -  1 )"+1<r„(a2 +  a*)-1'2- (51')

For r  =  0 the integrand is regular. I t now becomes convenient to decompose the cos
in the numerator into two exponentials. Two integrals arise in this way, one contain
ing exp ir£, the other exp ( —«■£). According to a standard argument, the integral with 
the positive exponential tends to zero when integrated along the circumference of a 
large semicircle in the upper half plane, as the radius increases; similarly for the other 
integral and a semicircle around the origin in the lower half plane. Thus the integral 
with the positive exponential, taken along the real axis from — oo to +  «>, is equal to 
the sum of the residues at the poles <r„ which lie in the upper half plane, and the in
tegral with the negative exponentials is equal to the sum of the residues at the poles 
of the lower half plane.

Applying these considerations to (48) we see that the quantity a, which deter
mines the roots of the transcendental equation, has the value

8 v i
a = (51")

3 m

while the sectional lift coefficient is given by

» c \a2 +  u 11/2
ci =  8a v i 'Z  ( -  1)”+I —  —  (52)

n-o +  1) +  o’2

This is a very rapidly converging series, which, although especially convenient near 
the wing tips, may be used to advantage for values of rj as small as .3 or .2. Very near 
the wing tips X  is approaching oo. Hence, using (49) we may write approximately

ffi[a2 +  <ri]1,2 / I  — *lYl/r

which shows that Ci has a vertical tangent a t the tips since cri is between ir/2 and tt.
The only inconvenient region is that of small X ,  especially the point X  = 0. I t 

seems that only graphic integration can be used to find Cj at the center of the wing 
from formula (48).

9. Total lift and total induced drag. For these important quantities rapidly con
vergent expressions are readily derived. The total lift L  is obtained by integrating 
pFT across the span,

/
+ b l  2

<t>(y, o)dy,

and transforming to the Z  plane, to obtain

-b/2
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The two Fourier series for and du/dZ  are then substituted from (30), (19) and (29). 
From the completeness relation it follows that the integral of the product of the two 
series is equal to the sum of the products, of the coefficients. Instead of the for
mula for L, merely the final formula for the over-all lift coefficient Cl , defined by 
L = \p V 2ScL, will be given:10

ir3 zAa. “ In +  1
cl  —  X  -------------------------------   (53)4 K 2k ,(T0 D„ sh (2n + l)irK-'/4K

The abbreviation Dn was defined in (31). In the limit of vanishing k this reduces ex
actly to formula (2.15), p. 169 of Durand, Vol. II.

For wings blunter than elliptic ones the result is

x3 zA  “ 2 n + 1
cl  = -----------X   ’ (53 )4 K 2k An ch (2m +  1)t K'/4K

where An is the coefficient defined in (31 ').
For the parabolic wing treated in section 7, it is necessary to go through the opera

tion just described for the Fourier integrals (44) and (46). The lift coefficient is now

2 J  o Z?(r) sh xf/4
For the induced drag 29,- similarly simple formulae may be obtained. Using (7) 

we have first in the original «-plane {u — y-\-iz)
, 6/2

° l  = — cAa f  „ ,.s* .--- T77 ' (54)
J  o

f 6/2
Di = 4p I * (y ,0 )( —  )dy .

J  —6/2  \ O Z / o-6/2
In the Z plane of the tapered wing this may be written

r  tI2 (  T K! \  (  d<t> \
D i  =  4p I <fi ( X , —  —  )  — ■) d X .

J -t/2 \  4 K )  \ 3 I  J x K ' / i K

Now the completeness relation must be applied to the Fourier series (30) and its 
own derivative. The result is, expressed in terms of the drag coefficient,

x3 a2zA “ 2« +  1 x K'
Cd =  X   c°th (2w + 1 ) -------- ' (55)

4  K 2k n_ 0 D 2n 4  K

while for the blunt wing we have

x3 a2zA " 2m +  1 x K'
cd =  X   tanh (2w + 1 ) ---------’ (55 )

______________  4 K 2k t g  A* 4  K
10 F o r m u la e  (5 3 )  a n d  (5 4 )  m a y  b e  d e r iv e d  in  a  d if fe r e n t w a y  w ith o u t  a p p e a lin g  to  th e  c o m p le te n e s s

r e la t io n . T h e  v e lo c i t y  p o te n t ia l  0 (y ,  z) is  o n ly  th e  rea l p a r t  o f  a  c o m p le x  s tr ea m  fu n c t io n  F(u)  in  te r m s
o f  w h ic h  th e  t o t a l  l i f t  m a y  b e  w r it te n  in  th e  fo rm

L  =  2pVRe (p F(u)du.

W hen transform ed in to  the Z-p lane, th is becomes a  contour integral around the rectangle of F ig . 2. 
T h is  integral can  be carried  out sim p ly  b y  ap p ly in g  C a u ch y ’s theorem . T h e  sam e can  be done for the 
rolling m om ent. T h is  m ethod recalls the B lasiu s theorem in the theory of infinite span.
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and for the parabolic wing

(56)

Formulae (53) to (56) give the dependence of lift and induced drag upon aspect 
ratio zA  and taper k. However, it is not necessary to compute more than cl, for there 
exists the following simple relation between c l  and Cd -

Thus after having plotted a set of curves showing the dependence of cl upon the as
pect ratio, one may obtain cd by graphic differentiation.

Further over-all quantities of practical interest are the rolling moment

but since in this paper we have confined ourselves through out to constant angles of 
attack, they will vanish. However, when ot(y) is assumed to have an odd component

10. Numerical results. All formulae given in the preceding sections for the sec
tional lift coefficients are readily evaluated, due to the fact that the series converge 
rapidly. An exception is Ci for the parabolic wing shape for small or zero span coordi
nate, in which case it is necessary to resort to graphic integration. Following

than Ci itself. In this way it is necessary to vary only the two parameters zA/m  and 
the taper constant k.

(33) and (34) for k = \ / . l  and k = y/.2. In the first column are the values of 2 K X /tt 
which quantity serves as a convenient parameter, in the second X, in the third 77, 
computed by means of the tables by Milne-Thomson11. In the last three columns the 
values of ci/ma are to be found iov<cA/m equal to 1.0, 1.5 and 2.0, corresponding to 
aspect ratios of about 5.5, 9.25 and 11.

Among wings blunter than elliptic only the one with kCR of (35) has been com
puted using formulae (33') and (34'). However, since elliptic functions with k values 
as small as &Cr  were not tabulated by Milne-Thomson, equation (34') was expanded 
in powers of that small constant. Values of ci/ma are given in Table 3.

Finally in Table 4 the same data are given for the parabolic wing of section 7. 
In column 1 are the values of the parameter X,  in column 2 the 77 values obtained from 
it with (49), and in the next three columns the values of a/ma.  For X = 0, .1, .2 they 
were obtained by graphical integration from (48), and for all greater values of X  from

(57)

and the yawing moment

the methods described here still work and the above moments yield formulae of type 
(53) to (56).

v. Karman and Burgers,3 we plot c jm a  as a function of the span coordinate 77 rather

In Tables 1 and 2 values of Ci/ma are given which are computed from formulae

11 L .  M . M ilne-Tho m son , Die elliptischen Funktionen von Jacobi, Springer, B e rlin , 1931.
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(52). The roots of the transcendental equation (51) do not seem to have been calcu
lated before, at least not for the values (51") of the constant a. They were determined 
to five significant figures.

These tables are supplemented by the following figures: Fig. 5 makes possible a

F ig . 5 .

quick determination of the span coordinate associated with a certain coordinate value 
on the side of the rectangle of the boundary value problem. The two curves marked 
¿ = V-1 and k = y/.2 represent plots of equation (34) and go with Tables 1 and 2.

T a b l e  I 

T a p e r e d  W in g  k  =  \ / .  1

Ci/ma

2KX/ir X V zA/m = 1

lOIIs zA/m=2

0 0 0 1.0191 1.1207 1.1807
.1 .09742 .13096 1.0070 1.1068 1.1655
.3 .29225 .37801 .91652 1.0026 1.0527
.5 .48709 .58643 .76447 .82908 .86553
.8 .77934 .80778 .50527 .53846 .55574

1 .1 1.07159 .93247 .28109 .29429 .30021

The third curve is a plot of equation (34') and goes with Table 3. Figs. 6, 7, 8 show the 
dependence of lift coefficient upon aspect ratio and taper. They should be compared 
with Fig. 75 of Durand, vol. II (which was computed by the approximate method de-
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F i g .  7 .  i Ä / m  =  1.5.
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F i g .  8 .  zA/m = 2.0.

Table II 
Tap ered  W ing k =  \/ .2

c¡/ma

2 K X / t X V h 3 II 1—
» zA /m  =  1.5 3 II to

0 0 0 1.0306 1.1365 1.1987
.1 .09465 . 14380 1.0150 1.1184 1.1792
.3 .28394 .41052 .90134 .98667 1.0370
.5 .47324 .62545 .72028 .77905 .81219
.8 .75718 .83613 .44105 .46565 .47700

1.1 1.04113 .94328 .23139 .23804 .24100

T a b l e  I I I  

B lu n t  W ing  k = 3  — \ /8

Ci/ma

Y V o A /m  =  l zA /m  = \.S (v í/ í»  =  2

ir/2 0 .91288 .98248 1.0205
1.2 .30920 .88828 .96045 1 .0006
1 .0 .47438 .84591 .91985 .96191

.7 .70700 .71481 .78512 .82654

.5 .83962 .56705 .62678 .66262

.35 .91816 .42178 .46800 .49601
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T a b l e  IV  

P arab o lic  W in g  k =  1.0

Ci/ma

X V <A/m = \ zA /m  =  1.5 <A /»i =  2

0 0 1.050 1 .164 1.230
.1 .19737 1 .020 1 .130 1 .166
.2 .37995 .9297 1 .029 1.057
.4 .66404 .66568 .71789 .74320
.6 .83365 .42208 .43141 .44003
.9 .94681 .17295 .17296 .17297

scribed in the introduction). The lift coefficient shows, of course, the expected span 
dependence, inasmuch as a more highly tapered wing gives rise also to a more highly 
tapered lift curve. Of special interest is the parabolic case, for which the lift coefficient 
goes to zero with infinite tangent although the chord function c(y) has a finite tangent 
a t the tips.

The author should like to thank Mr. H. Yoshihara for extensive assistance with 
the numerical calculations. A grant from the Faculty Research Fund of the Univer
sity of Michigan is gratefully acknowledged.
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SO L U T IO N  BY R ELA X A TIO N  M E T H O D S  O F PLA N E 
P O T E N T IA L  P R O B L E M S  W IT H  M IX E D  

BO UN D ARY  C O N D IT IO N S*

BY
L. FOX

Imperial College of Science and Technology, London

1. Introduction. The method of relaxation, as originally propounded by South- 
well [l], was used to calculate the stresses in braced frameworks. A physical picture 
of the method, as presented by him in the Wright Brothers Memorial Lecture for 
1941, is the following. At each joint of the structure constraints are applied which 
prevent joint displacements and bear all the load. One constraint is then relaxed, 
thereby transferring some of its load to the members of the framework and some to 
adjacent constraints. Each constraint is relaxed in turn, and more of the load is 
imposed on the framework, until the residual loads (still borne by the constraints) 
may be deemed negligible.

In a series of eight papers [2 :1—VIII], Southwell and collaborators have applied 
relaxation methods to various engineering problems. In some of these the method is 
applied to two-dimensional problems [2:111], and solutions are obtained of the 
equation

V2w = Z (1)

for any boundary on which w is prescribed, Z being a given function of x and y. 
Here Prandtl’s membrane analogy [3] is used, in which w is the displacement of a 
membrane fastened a t its boundary and acted upon by a transverse force Z. The 
membrane is replaced by a mesh of uniformly tensioned strings, the mesh lines 
forming squares or equilateral triangles, and the tension in the strings being propor
tional to the surface tension of the membrane. Initially the mesh is flat and the 
load Z  is taken by constraints acting a t the mesh points. The constraints are relaxed 
one by one, just as in the framework, until the loads are all taken by the strings, and 
the resulting displacements of the mesh points are recorded. Evidently, as the mesh- 
length decreases, the approximation of the mesh to the continuous membrane is im
proved.

In a recent paper [2:VIII], Southwell and Vaisey extend the membrane-net 
analogy to obtain solutions of Laplace’s equation in the case when the normal 
gradient dw/dv, instead of the function w, is given at the boundary. Here dw/dv is 
regarded as a line intensity of transverse loading applied round the boundary of the 
membrane. This load is then integrated and distributed statically to the strings 
which cross the boundary.

There is a mathematical treatment of the above problems, based on finite differ
ences. For Laplace’s problem of the first kind, in which the function is specified on 
the boundary, the finite difference equations have been derived [2:111]. They are in 
general identical with the equations obtained from the analogy of membranes and 
tensioned nets.

* Received May 19, 1944.
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The corresponding mathematical treatment of Laplace’s problem of the second 
kind, however, in which the normal gradient of the function is given on the boundary, 
was not given by Vaisey and Southwell, and it is this treatment with which this 
paper is concerned. The finite-difference equations are substantially different from 
those obtained in their paper.

The technique presented here would seem to be particularly desirable for prob
lems in which the boundary conditions involve both the value of the function and its 
normal gradient. For then the mechanical analogy becomes somewhat complicated, 
especially in the case of solids of revolution, for which the analogy of variably ten- 
sioned nets is not attractive.

2. The finite difference approach to the relaxation method. For square meshes 
(Fig. 1), we have the approximations

dw o d2w
2 a   = w i — w3, a2---- = w3 +  w3 — 2wo,

dx dx2
a2v 2w == wi  +  j02 +  w»3'+ Wi — 4toq.

Similar formulae are easily obtainable for triangular meshes. The order of the error 
in these approximations is known in each case, and decreases with the mesh-length a.

There is a finite-difference equation of type (2) for every mesh point, and the 
solution of these equations gives a numerical value of w a t each mesh point.

At points close to a curved boundary, such as 0 in Fig. 2, we obtain the finite- 
difference equation as follows, in the case when w is given on the boundary. The

F ig  3 .F i g . 2.

arm 01 passes outside the boundary, and a linear interpolation along 01 yields 
iiijs = we +  (wi — u>o)h, from which we obtain for the finite-difference equation at 0

wb /  1 \
Wi +  w3 +  w.{ -\—   i 3 +  — J wo = 0. (3)

All these formulae are reproduced identically by the net analogy, but a more
accurate formula than (3) given by Christopherson (4), and obtained by a parabolic
interpolation, has not been deduced by analogy.

When dw/dv, rather than w, is given on the boundary, the same general equations 
hold as before, but there is a different procedure for points adjacent to the boundary. 
To write down the finite-difference equation a t the point 0 (Fig. 3), we require 
wa and Wb■ For wa, we draw the normal APE and use the approximation
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/ d w \
AE • I  ) = wA — wb. (4)

\  dv ) p

A linear interplation along OG gives

OG -we = OE • wa +  EG • wo, 

and elimination of we between these two equations yields

OE OE / dw \
wA =  wo H wo +  AE ( ----- ] .

OG OG \  dv J P

Similarly, we obtain wb by drawing the normal BQF.
The normal can be terminated on any convenient line. Thus in Fig. 3 we could 

produce AE to K on OD, to obtain wA in terms of wo, u>d, instead of wo, wg■ The 
shorter .the normal, however, the more accurate is the 
approximation (4), so in this case E is the best place 
to stop the normal. On the other hand, the normal 
from B is continued to F, because a termination on 
the diagonal HO would involve the value wh, itself 
fictitious, and the calculation would become more 
cumbersome.

The approximations employed to date have as
sumed w to be linear along any line near the bound
ary. Improvements in accuracy can be made at the 
cost of additional labour. Thus, if the normal is 
stopped so that it is bisected by the boundary (Fig. 4), 
the formula

2

y

5 , \  a )

" 4  0
V -I

It

\

F i g . 4 .

AC
/dw \
V dv ) B

w a  — w c (5)

assumes a parabolic variation of w. The point C in general no longer lies on a diagonal 
or mesh line, but its value can easily be found, by double interpolation, to the approxi
mation of Eq. (5). This procedure yields a higher accuracy, but it is better, except 
when a very high accuracy is required, to use a linear variation together with a finer 
mesh.

3. Problem I. Let us find the function w, harmonic in the circle

x2 +  y- — 2x — 2y +  1 = 0,

and satisfying the boundary condition

dw
dv x2 +  y2

(6)

This is one of the problems attacked by Vaisey and Southwell [2:VIII]. It has the 
exact solution

w = tan-1 y/x,
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o
F i g . 6.

whence we have a guide to the accuracy of our method. The solution is unique, except 
for an arbitrary constant, and we choose the constant so that w = w/4 a t the centre 
of the circle.

First, we take the mesh-length equal to the radius of the circle. The mesh con
tains only five points. Fig. 5 shows this mesh, the finite-difference equations, and the 
values of w multiplied by 1000. External mesh points are denoted by open circles. 
For comparison, the exact values are entered under the approximate values.

When the mesh-length is halved, there are twelve fictitious mesh points and 
thirteen simultaneous equations. The solution is given in Fig. 6.

F i g . 5.

As the form of dw/dv indicates, w is skew-symmetrical about the line x = y . This 
feature was not utilized in construction of Figs. 5 and 6, but it is found useful as a 
labour-saving device in the case of a mesh-length of one-quarter of the radius. The

2(5) + •5(2) + •5(4) -  3(1) - 733 = 0 (1)
2(5) + •5(1) + •5(3) -3(2) + 733 = 0 (2)
2(5) + •5(2) + •5(4) -3(3) + 2333 = 0 (3)
2(5) + ■5(1) + •5(4) -3(4) - 2333 = 0 (4)
(1) + (2) + (3) + (4) - 4(5) = 0 (5)
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results in this case are shown in Fig. 7, and are very close to those for the exact 
solution, the error being greatest at points nearest the origin. This was to be expected, 
since dw/dv changes rapidly in value across the line x = y  when a:2+ y 2 is small. Com
parable errors were found in the treatment by Vaisey and Southwell.

F i g . 7.

An interesting point is the oscillatory nature of the convergence of values of w. 
In the boundary-value-specified problem, values usually converge from one side 
only.

4. Problem II. Let us find the function w, harmonic in the same circle as before, 
but satisfying the boundary condition

( £ - 1 ) «  -  ¿ O ' (7)

where r = V x 2+ y2. The exact solution is again w  =  tan-1 y/x.
Here the boundary condition involves the value as well as the normal slope of
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the function, but only a slight extension of the method of the previous problem is 
needed. As before, fictitious points are eliminated from the governing equation by 
means of the boundary condition.

In order to write down the finite-difference equation 
a t 0 (Fig. 8), we need wA and wB. As before, the normal AF 
yields

/ dw \
AF- ( ----- } = wA — wF,

\  d v  ) q

and linear interpolation on OE and AF gives

F i g . 8.

OF • wF — OF • wE +  FE • wo, 
AF • wq = AP • wf +  PF • wA.

From these three equations and the boundary condition (7), wA can be found in

Fig. 9.
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terms of wo and we. A similar operation yields wB, and hence the finite-difference 
equation for the point 0  can be written down, and the problem solved.

As in the previous problem it was found that decrease of the mesh-length results 
in oscillatory convergence. The oscillation is rather more violent, but the final result 
shown in Fig. 9 is no less accurate, notwithstanding the additional interpolation.

5. Summary. In this paper solutions are obtained of Laplace’s equation with 
boundary condition involving either the normal gradient only, or both the boundary 
value and the normal gradient. The need for a technique for problems of this kind 
has arisen in recent developments of the relaxation method. Two problems are 
solved, both have a known analytical solution, and good results are obtained in 
each case. The method used is independent of the analogy of tensioned nets, and can 
be applied without modification to problems for which analogies may be difficult to 
use.

R e f e r e n c e s

[1] R . V . S o u t h w e l l , P roc. R o y . Soc. L o n . (A ), 151, 59-65 (1935); 153, 41-76  (1935).
[2] Relaxation methods applied to engineering problems-.

I .  K .  N . E .  B r a d f i e l d  and R .  V . S o u t h w e l l , Deflection of beams under transverse loading, 
Proc. R o y . Soc. Lo n . (A ), 161, 155-181 (1937).

I I .  A . N . B l a c k  a n d  R . V .  S o u t h w e l l , Basic theory, with applications to surveying and to 
electrical networks, and an extension to gyrostalic systems, P roc. R o y . Soc. L o n . (A ), 164, 
447-467 (1938).

I I I .  D . G .  C i i r i s t o p h e r s o n  and R . V . S o u t h w e l l , Problems involving two independent vari
ables, P roc. R o y . Soc. Lo n . (A ), 168, 317-350 (1938).

IV .  K .  N . E .  B r a d f i e l d , D .  G . C h r i s t o p h e r s o n  a n d  R . V . S o u t h w e l l , Elastic stability and 
vibrations, P roc. R o y . Soc. Lo n . (A ), 169, 289-317 (1939).

V . R .  W . G .  G a n d y  and R . V . S o u t h w e l l , Conformal transformation of a region in plane 
space, T ra n s . R o y . Soc. L o n . (A ), 238, 453-475 (1940).

V I .  A . P E L L E w a n d  R .  V . S o u t h w e l l , Natural frequencies of systems having restricted freedom, 
Proc. R o y . Soc. L o n . (A ), 175, 262-290 (1940).

V I I .  F .  S . S h a w  and R . V . S o u t h w e l l , Problems relating to the percolation of fluids through 
porous materials, P roc. R o y . Soc. L o n . (A ), 178, 1-17 (1941).

V I I I .  G . V a i s e y  and R .  V . S o u t h w e l l , Plane-potential problems involving specified normal 
gradients, P roc. R o y . Soc. Lo n . (A ), 182, 129-151 (1943).

[3] L .  P r a n d t l , P h y s ik . Z ., 4 ,  758-759 (1903).
[4] D . G . C h r i s t o p h e r s o n , T ra n s . A .S .M .E . ,  62, A 1 -A 4  (1940).



258

— N O T E S —

T H E  M E T H O D  O F S T E E P E S T  D E S C E N T  F O R  N O N -L IN E A R  
M IN IM IZ A T IO N  PR O B L E M S*

B y  H A S K E L L  B . C U R R Y  ( Frankford Arsenal)

1. Introduction. The problem considered here is that of minimizing a function of n 
real variables, G(xh • ■ • , xn). The object is to find a practical method for evaluating, 
approximately a t least, a stationary point for G.

This problem includes as a special case that of solving a set of simultaneous equa
tions

/•■('*i, • • • , x„) = 0 ( ¿ = 1 , 2 , - - - ,  m), (1)

because the function
m

G(xh • • • , *„ )  = Z f l  (2)
fc-1

has a minimum at a solution of (1). I t also includes that of determining the parame
ters *i, of a function/(« ; xi, ■ ■ ■ , xn) so as to get the best approximation,
in a least square sense, to a function F(u) for certain values of «; the G in this case 
is of the form given by

G(xi, • • • , x„j = X) [F(w*) -  /(«*; *i, • • • , x„) ]2. (3)
Jfc-1

Certain engineering applications of the latter sort of problem arose in the work 
of the Engineering Research Section, Fire Control Design Division, at Frankford 
Arsenal. In these applications, the function/(w; x \ , , x n) was sufficiently compli
cated so that the standard method for dealing with non linear least square problems1 
failed to converge. Two techniques for dealing with this situation were developed by 
the section under the direction of J. G. Tappert. One of these was an original sugges
tion of my associate K. Levenberg.2 The second method is the subject of this note.

This method is not new. Levenberg found it set forth in a paper by Cauchy dated 
1847.3 That it has become a standard procedure in analysis is clear from a recent paper 
by Courant.4 Nevertheless it does not appear to be well known to authorities on nu

* R eceived Ja n . 22, 1944.
1 See, for exam ple, W . E .  D em ing, Some notes on least squares, U . S . D ep t, of A g ricu ltu re  G rad uate  

School, 1938, p. 31 ff., or E .  T .  W h itta k er and G . Robinson, The calculus of observations, B la ck ie  and  
Son, London, 1940, p. 214. D em in g ’s  treatm ent is a lso  given in h is book, Statistical adjustment of data, 
John  W ile y  & Sons, N e w  Y o rk , 1943, p. 52 ff.

5 K .  Levenberg , A method for the solution of certain non-linear problems in least squares, Q uarterly  of 
Applied  M athem atics, 2 , 164 (1944).

3 A . L .  C a u ch y , Méthode générale pour la résolution des systèmes d'équations simultanées, Com ptes  
rendus, A c . S c i. P aris , 25 , 536-538 (1847).

4 R . C o uran t, Variational methods for the solution of problems of equilibrium and vibrations, B u ll. 
Arner. M ath . Soc . 49, 1-23 (1943). See especia lly  pp. 17-20. C o u ra n t ca lls  the method the “m ethod of 
g rad ien ts” and ascribes its origin to a  paper published by H adam ard  in  1907.



HASKELL B. CURRY 259

merical computation. It was used for the case of linear equations by G. Temple;5 
but he gave no reference to Cauchy’s work nor indeed to any previous use of the 
method. Accordingly there is room for an exposition of the method with emphasis on 
its practical aspects.

This note also contains an outline of a convergence proof. Cauchy stated that the 
process converged but gave no proof, at least in the paper cited. Temple’s conver
gence proof applied only to the linear case. Courant (I.e.) gives references to papers 
dealing with the method; but some of these were not accessible to me under wartime 
conditions. The convergence proof, as outlined here, is an elementary one and gives 
a weak result.

The argument is, incidentally, capable of generalization to certain cases where 
there are infinitely many parameters, i.e., where G is a function of a vector x belonging 
to a suitable abstract space. The essential point is that there be a vector function 
H(x), the gradient, such that for vectors x, y and scalar /

[G(x +  ty) ] = H(x +  ty) -y,
at

where the dot indicates a scalar product.6 Such generalizations will not be considered 
explicitly.

2. Explanation of the method. The letters x, z will be used to stand for the «-tuples 
(vectors) (*i, ■ • ■ , x n) and (zi, • - • , z„) respectively. I t  will be convenient also to 
think of the vector x as a point and z as a set of direction numbers of a direction, viz. 
the direction z, emanating from x. Superscripts will be used systematically to dis
tinguish different points and their corresponding directions.

Let us suppose, then, that we start at a point x° and determine the direction in 
which G decreases most rapidly. This direction is given by z ,=  —X dG/dxi or, in vec
tor form, z°= —X grad G, where X is an arbitrary positive factor of proportionality. 
(In practice we should either take X = 1 or choose X so that the vector z is of unit 
length.) Then the function g(t) = G(x°+/z°) has a negative derivative at / = 0. I t  will 
therefore be possible to find a ¿>0 such that

g(0  <  g(0). (4)
With such a / we can take x1 = x 0-f/z° as a new starting point and continue. We should 
then have a sequence of points x°, x1, x2, • • ■ such that G(xk+1) <G(x*). Under suit
able restrictions (to be considered later) the sequence will attain or converge to a sta
tionary point of G.

The determination of t can be accomplished by trial. If no other indication is avail- 
ble we can take as first trial value the intercept of the tangent to the curve y —g{t) 
on the /-axis.7 If this fails to satisfy (4), it is too large; we can then take half of it, and 
so on. In this process we can draw a rough graph of g(t), and after a few trials it is

5 G . Tem p le , The general theory of relaxation methods applied to linear systems, P roc. R o y . Soc. 
London (A ) 169, 476-500 (1939). F o r  th is reference I  am  indebted to H . H otelling .

6 E v e n  the case where such a  gradient does not exist, there being on ly  a  total differential, can  prob
a b ly  be handled b y  a  m ethod w hich bears the sam e relation to the present method that T e m p le ’s m ethod 
for gyro sta tic  system s does to h is m ethod of steepest descent.

7 T h is  w as done by C a u ch y  (I.e .). I t  represents the approxim ation b y  N ew ton's m ethod to  the 
sm allest positive zero of g{t). T h is  is a  reasonable guess for a  G given by (2), where the num erical va lu e  is 
zero. In  the least square cases (where G S O )  the guess is often m any tim es too large.
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usually possible to locate a t which is a t or near a minimum of g(t). Experience will 
presumably disclose many ways to shorten the process in individual cases.

If we take for t precisely the smallest positive root of

g'(t) = 0, (5)

the process has the following geometrical interpretation. Starting at x°, we determine 
the direction in which the surface

y = G(x) = G(xi, • • • , xn) (6)

is descending most rapidly. We continue in that direction until we find ourselves
going along a contour (i.e. a horizontal section of the surface). Then we stop, take a
new direction of steepest descent, and so continue. Since the direction of steepest 
descent is always normal to the contour it follows that the directions zk and zk+l are 
at right angles.8 This is important in the convergence proof.

3. Proof of Convergence. Let us suppose now that G(xi, • • • , xn) is defined and 
has continuous first partial derivatives at all points within or on the boundary of a 
region 5. Let x° be a point within 5. Let C be the broken line path starting a t x° and 
going in the direction of steepest descent a t x° until it reaches either the boundary 
of 5  or the next approximation x1 determined as in §3 with t the least positive root 
of (5); in the latter case the broken line goes in the direction of steepest descent at x1 
until it reaches the boundary of 5 or the next approximation x2 determined in the 
same way; and so on. Then G is monotone decreasing along C. There are three possi
bilities: (1) The path C may run into the boundary of S. (2) The path C may termi
nate a t a point where the direction of steepest descent does not exist, i.e. at a sta
tionary point of G. (3) The process may continue indefinitely. The first possibility 
will certainly be excluded if the value of G a t x° is less than a t any point on the 
boundary of S. If the second possibility occurs the case is trivial. I shall make the 
limitation just stated in regard to G(x°) and shall suppose that the process continues 
indefinitely.

Under these presuppositions let x“ be a limit point of x°, x1, • • • . Then it is clear 
that

G(x") <  G(xk) (k = 0, 1, 2, • • • ). (7)

I t will now be shown that x" is a stationary point of G.
Let us suppose the contrary. We write H(x) =grad G, h(x) = |H (x ) |, and let z(x) 

be a unit vector; thus
H(x) = — A(x)z(x). (8)

According to the supposition, /i(xw)^ 0 . Hence it will be possible to find a spherical 
neighborhood U of x°° such that for x in U,

| H(x) -  H(xK) | < €/*(x“).
Then it will follow that | /t(x) — 7i(x°°) | <e/t(x”), |z  — z°°| <2e. Hence, from the fact 
that zk and z*+1 are at right angles, one can conclude that if x* is in U, x*+1 is certainly 
not in U (provided e is not too large).

Next, let K  be the conical sector of U for which
x — x“

cos 6 = ---------- ¡-•z"’ >  (.
___________  | x -  x“ |

* T h is  is  a ls o  e a s ily  p r o v e d  a n a ly t ic a l ly .
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Then it may be shown, by reasonably straight-forward methods, that for x in K,

G(x) < G(x”). (9)

Let V be a subneighborhood of U such that for x in V the ray in the direction z (as 
given by (8)) from x intersects K. Such a V exists if €<-3-. Since x” is a limit point, 
there exists an xn in V. Then the ray in the direction zn from xn will have a point y 
in K. This y cannot be beyond xn+1, since x’,+1 is not in U and U is convex. Hence, 
by the monotonic character of G on C and by (9), G(xt+1) <G(y) <G(x°°), which con
tradicts (7). This contradiction came from the assumption that /i(x”)^ 0 .

The following example shows that we cannot expect a better result without further 
restrictions on G. Let G(x, y) =0 on the unit circle and G(x, y) > 0  elsewhere. Outside 
the unit circle let the surface have a spiral gully making infinitely many turns about 
the circle. Then the path C will evidently follow the gully and have all points of the 
unit circle as limit points.

In a practical problem however we often know in advance that there is a unique 
minimum of G within S ; in these cases convergence is assured. If G is given by (2) 
and the Jacobian of t h e / ’s does not vanish in S, then every stationary point of G 
is a solution of (1); if there is only one such solution the process converges to it.

4. Concluding Remarks. In regard to the practical aspects of the method the fol
lowing points are to be noted: (1) I t does not require any calculation of second deriva
tives. This is important for the application mentioned, where these second derivatives 
are numerous and complicated. (2) I t  involves only direct calculations of G and its 
first derivatives. (3) The approach to the limit, if any, is along a path C consisting of 
straight line segments, adjacent segments being approximately a t right angles.

A comparison with Levenberg’s method in regard to these three respects is now in 
order. In the first respect the two methods are alike. In the second respect Levenberg’s 
method is more complicated because each stage requires the solution of a set of “nor
mal” equations, as in the traditional method of least squares. In the third respect 
Levenberg’s method is like the present one in that it involves approach along a broken 
path C; but the individual pieces of C are curved. There is evidence that in practical 
problems these curves follow the natural valleys of the surface, so that each step 
brings us further toward the goal. As to which of these opposing characteristics is 
the more important is not yet settled.9

Another point is that the process is not invariant under certain elementary trans
formations, e.g., a change of scale of one or more of the Xi. Thus, if the surface (6) (for 
w = 2) is a hemispherical bowl, the direction of steepest descent is along the meridian, 
and the minimum is reached in one step. If, however, the scale on the Xj-axis is 
changed so that the surface becomes ellipsoidal, the direction of steepest descent is 
no longer directed toward the minimum. The suggestions inherent in this lack of in
variance have not yet been fully worked out.

s T h e  e n g in e e r s  a t  F r a n k fo r d  A r se n a l p re fer  th e  L ev e n b er g  m e th o d  fo r  th e  p r o b le m s w h ic h  h a v e  
c o n fr o n te d  th e m ; b u t  I d o  n o t  k n o w  to  w h a t  e x te n t  th e y  h a v e  e x p lo it e d  th e  p r e se n t  m e th o d . S in c e  th e  
L e v e n b e r g  m e th o d  is  c o n fin ed  to  a  G  o f  th e  fo rm  (3 )  a n d  m a k es  u se  o f  th a t  r e p r e s e n ta tio n , i t  w o u ld  n o t  
b e  su r p r is in g  if  i t  sh o u ld  p r o v e  su p er io r  fo r  th a t  c a se . O n  th e  o th e r  h a n d  i t  is  n o t  d if fic u lt to  c o n c o c t  a r ti
fic ia l e x a m p le s  fo r  w h ic h  th e  m e th o d  o f  s te e p e s t  d e s c e n t  is su p er io r  in  th e  th ird  r e s p e c t  a s  w e ll a s  th e  s e c 
o n d , a t  le a s t  fo r  c e r ta in  d e te r m in a t io n s  o f th e  w e ig h t in g  fa c to r s .
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O N T H E  B E N D IN G  O F A CLA M PED  PLA TE*

B y  A . W E I N S T E I N  ( University of Toronto) and D . H . R O C K  (Rhode Island Stale College)

The present paper contains an-application of a recently developed variational 
method1 to the boundary value problem of the bending of a clamped plate of arbi
trary shape. I t will be shown that this problem can be linked to the simpler problem 
of the equilibrium of a membrane by a chain of intermediate problems, which can be 
solved explicitly and in finite form in terms of the membrane problem. In the inter
mediate problems, the deflection converges uniformly in the domain of the plate 
(including the boundary) to the deflection of the clamped plate, and the derivatives 
of all orders of the deflection converge uniformly in every domain completely interior 
to the plate. (In the Ritz method, not even the convergence of the slopes can be 
guaranteed.2) The method yields numerical results for plates of all shapes for which 
the membrane problem (which we shall call the base problem) admits an explicit solu
tion. As an example we shall consider a clamped square plate under a uniform load. 
This problem has been the object of numerous investigations,3 some of which are 
theoretical, while others are purely numerical, use infinite simple and double series, 
and operate with an infinite number of linear equations and an infinite number of 
unknowns.4 An inspection of the general formulae derived in the present paper, for
mulae which become simple in numerical applications, would show how some of the 
numerical methods might be rendered rigorous.5 The convergence of higher deriva
tives is of great practical interest for the approximate computation of the stresses. 
(Cf. Handbuch der Physik, Springer, Berlin, Vol. VI, 1928, pp. 220-221.)

Let us denote the domain of a clamped plate by S' and its boundary by C. The de
flection w(x, y) corresponding to a load q{x, y) and to a flexural rigidity D satisfies 
the differential equation

A A  w  =  q / D  (1 )

with the boundary conditions

w = 0, (2) dw/dn = 0, (3)

on C. I t is well known that w is the solution of the variational problem VP,

J{w) =  J J '  [(Aw)2 — 2qw]dxdy = min.,

* R eceived  F e b . 8, 1944.
1 A . W einste in , M ém orial des Sciences M athém atiques, N o. 88, 1937.
1 C f . R .  C o u ran t, Variational methods for the solutions of problems of equilibrium and vibrations, B u ll. 

A m er. M a th . Soc., 49 , 1-23, 1943, especia lly  p. 11. See also  K .  F rie d rich s , M a th . A nnalen , 98, 217, 1928. 
T h e  m ethod of finite differences does not g ive satisfactory  num erical results for clam ped plates.

3 T h e  b ib liography given in S . T im oshenko, Plates and shells, M cG ra w -H ill, 1940, p. 222 covers 
papers from  1902 to 1939 and show s the persistent interest in th is problem .

* H . W . M a rch , T ra n s . A m er. M ath . Soc., 27 , 307-317, 1925, proves the w eak convergence of the 
approxim ations given b y  his series. C f . I .  S . Sokolnikoff, Mathematical theory of elasticity, B ro w n U n iver
sity , 1941, p. 387.

5 C f . for instance a note b y  C . M iran da, R en d . Sem in . M at. di R om a, 1, 262-266, 1937.
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where q = q/D  and the boundary conditions (2) and (3) are in effect. By withdrawing 
the condition dw/dn=  0, we obtain the variational base problem VPq\ /(w 0)=m in., 
with the condition w0 = 0 on C. The corresponding differential equations problem 
DP0 is: AAwo — q, with the boundary conditions w0 = 0 and Aw0 = 0 on C, the latter 
condition being a natural boundary condition which is automatically satisfied by a 
solution of VPq. I t is well known that DP0 can be solved in terms of the problem of 
the equilibrium of a membrane. In fact, putting Aw0=fo in DP0 (w0 = 0 on C), we 
have A/ 0 = g in the domain 5  and/o = 0 on C.6 Let us denote the solution of the equa
tion Aai0= / 0 with the boundary condition w0 = 0 by w0 = Gf0. Thus we have / 0 = Gg, 
whence w0 = GGq. (The formula w0 = G/ 0 can be written explicitly in the form

Wo J  J  g(x> y> £> v)Mt, y)d&v,

where g(x, y, £, 77) is the Green’s function for the domain S.)
We now link VP0 to VP by a chain of intermediate variational problems 

VPi, VPi, ■ ■ • introduced in the following way. We let pi(x, y), pi(x, y), • • • de
note a complete (but not necessarily orthogonal) sequence of linearly independent 
harmonic functions in G. (It has been shown, I.e.,1 how a sequence of this kind can 
be derived from the solutions of the problem of a vibrating membrane for any do
main S.)

VPm (m = 1, 2, • • • ) is then defined as the problem of finding the solution wm of 
J(wm) =min., with the boundary conditions

r  d w m
wm = 0 on C, I p k  ¿s =  0, k = 1, 2, • • • , m.

J  c  d n

By Green’s formula these conditions can be replaced by the conditions

wm = 0 on C, (pk, Awm) = 0 , k — 1, 2, • • • , m, (4)

where

(pk, Awm) = J  J  pkAwmdxdy.

(Similar notations for the “scalar product” of two function, like pk and Awm, will be 
used throughout this paper.) The corresponding differential problem DPm is given by 
the differential equation

AAw„, = q (5)

with the conditions (4) and the natural boundary condition

Aw„, = am\p\ +  amip2 +  • • • +  a»,mpm on C, (6)

where am\, a-mt, • • • , amm are constants to be determined. The solutions of DPm can 
be easily obtained in terms of solutions of the membrane problem already used to 
solve D P0. In fact, putting Awm = fm (wm = Oon C), we have, in our notation, wm = Gfm. 
Also, we obtain from (5),

A/m =  q,  (7)

‘ F o r  re c ta n g u la r  p la te s  D P o  is  th e  p ro b le m  o f  th e  su p p o r te d  p la te .
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and from the boundary condition (6),

fm — +  a,„2pi +  • • ■ +  ammpm. (8)

These can be written as follows:

A (fm ~  X  amip^j = q in ,5. (70

«1

fm — X  amipi = 0 on C. (80
1-1

Therefore we have in S
7/1

fm 'y Gmipi ~  Gq, (9)
i-l

and since wm = Gfm, it follows that
m

wm = GGq +  X  am\Gpi, (10)
i-l

where GGq=w0 is the solution of the base problem.
The conditions (p k, Awm) = 0  yield, in view of (9), the following system of m linear 

equations for the m constants ami, ami, • • • , am’m:
m
X  dmiipi, pk) = -  (q, Gpf), k  = 1, 2, • • • , m, (11)

which can be solved, since their determinant is Gram’s determinant of the independ
ent functions pi, pi, • ■ • , pm, and is different from zero.

In another paper, based on a previously developed method for the computation 
of frequencies and buckling loads,7 it will be proved that the approximate solutions w m 
and their first derivatives converge to the deflection and slopes of the clamped plate. 
Here we shall apply our formulae to the case of a uniformly loaded square plate. 
The domain 5  will be defined by the inequalities |x\ ^7r/2, |y | ^7r/2. We put 
q = q/D = 1. Since the deflection of a uniformly loaded square plate is symmetrical 
with respect to the coordinate axes, we may use a sequence of even harmonic func
tions pi(x, y ) as given by (12) below.8 All computations can be performed without 
the use of Green’s function for the square. The deflection w0 of the supported plate 
is given by the well known formulae of Navier.

Calculation of wmfor the uniformly loaded square plate.
We use the set of functions

cosh onx cos a,y +  cos onx cosh a.y
Pi(x, y) = ------------------f - ---- — ------------ -1 («,■ = 2i  -  1), (12)

cosh (a,x/2)

7 N . A ro nsza jn  and A . W einste in , On the unified theory of eigen-values of plates and membranes, 
Am er. J . M a th ., 64, 625-645, 1942.

8 F o r  non-uniform  loading, the sequence given I.e. 1, 1Í16 m ust be used.
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and denote Gpi by Then, by the definition of G, wc have Avi^AGpi = i 
Vi = 0 on C.

If we set = where

cos a,y
= v(y)

COS IXiX
cosh (a,x/2) ” cosh (a,7r /2)

then X(x) and Y(y) satisfy the differential equations

X" -  a\X  = cosh tux, Y" -  atY  = cosh cay,

with the boundary conditions

X (+ tt/2) = 0, F (±  tt/2) = 0.

The general solution for X (x ) is

1
X(æ) =  x sinh ctiX +  A cosh aux +  B sinh onx,

2 at

where A and B are determined by the boundary conditions. Hence

1 I" t
X  = ■»— a: sinh a,-.r tanh ia,7r cosh a,-x

2a,- L 2

The solution for Y(y) is given by a similar expression, so finally 

1
Vi =

2a,- cosh (a,7r /2)
x sinh ctiX tanh ionx cosh a,x

2
cos cay

5a,7r cosh aiy j

Using (13), we obtain the general formula for (q, Gpi) = (1,

+  I y sinh a ,y  — tanh cos o

4 sin (a,x/2) r  7T 1
(1, Vi) = ---------------- — sech2 5a,-7T------- tanh §a,-7r

a3 L 2 a,

For (pi, p k) we have

8a,-a*( )'+k
(Pi’ Pk) ~  2 2(a,- +  a t)

* 1 , 1 2— sech2 â,-7r 4 tanh §a<T H  > i = k.
_ 2 a,- J  a2

From (14) we find that

(1, m) = -  2.670644, (1, Vi) =  0.049299, (1, v3) = -  (
(1, »4) = 0.001666, etc.,

and from (15) we get the following table for (pi, pk), (i, k = 1, 2, 3, 4):

i in S, with
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:<*j. (13)

(14)

(15) 

1.006400,



266 NOTES

1
2
3
4

5.665118 -0.240000
1.270836

0.059172
-0.103806

0.708321

The equations for the determination of amt- are then

5.665118tfU = 2.670644, for 
5.665118<z21 -  0.240000a22 = 2.670644)

-  0 .240000a2i +  1.270836a22 = -  0.049299j

fliit

for

-0.022400
0.049941

-0.051132
0.489615

o2i and ö22,

These yield the successive values 

a h = 0.471419,
a2i = 0.473564, a22 = 0.050641,
a31 = 0.473728, %a32 = 0.048762, a33 = -  0.023392,
a4l = 0.473749, a« = 0.048394, au = -  0.022656, aiA = 0.010970,

Then, since the solution for the simply supported plate is given by

(m , n — 1 ,3, 5,
16 „  sin m(x +  ir/2) sin n(y +  x/2)

wo(a;, y) — — 2 , z .  -----------------------------------------
x 2 m „ mn(m2 +  w2)2

the successive approximations to the deflection are:
Wi = wo +  0.471419bi,
w2 = wq +  0.473564»! +  0.050641»2,

The maximum deflection, which occurs at the center of the plate, is found to be 
0.123342 when w3 is used. The next approximation affects only the fourth significant 
figure.

A calculation of the normal derivative of i v m  (m = 0, 1, 2, 3, 4) along x  = -k / 2 for 
values of y  from 0 to tt/2 at intervals of x/16 yields:
m II o x /16 2x/16 3x/16 4x/16 5x/16 6x/16 7x/16 x/2

0 -.41795 -.41087 -  .38954 -  .35409 -.30519 -.24382 -.17095 -  .08839 0
1 -.00763 -  .00686 -  .00445 -.00062 +  .00443 + .00912 + .01221 + .01100 0
2 + .00197 + .00122 -  .00047 -.00189 -.00208 —.00060 + .00216 + .00355 0
3 -.00053 -.00019 + .00044 + .00055 -  .00020 -.00093 -.00018 +  .00151 0
4 +  .00029 -  .00003 -.00031 + .00008 + .00036 -.00021 -.00033 +  .00066 0

The maximum value of the slope in the interior of the plate is found to be about 
— 0.122; this occurs at a: = 5x/16, y = 0. A comparison with the maximum deviation 
of the normal derivative along the edge for m = 4 shows that the latter is less than 1% 
of the maximum slope in the interior of the plate.
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T H E  D Y N A M IC S O F A D IF F U S IN G  GAS*

B y  H E N R I  P U T M A N  ( Université Laval, Québec)

By use of a hydrodynamical approach, Stefan1 derived the following equation 
for the diffusion of two gases:

dpi
P  l £ l  = - - - - - - - - - - - - - - - - - - - d l 2 P l P 2 ( « l  —  uP). ( 1 )

ox

Here pi is the partial pressure of the first gas, pi is its density, Ui, ¿1 are respectively 
the x-components of the velocity and acceleration of one of its particles, u2, p2 refer 
to the second gas, and A n  is a constant. There are two other equations similar to (1) 
corresponding to the y  and 2-components, and a further set of three equations for 
the second gas.

Equation (1) is a simplified form of Maxwell’s equation of diffusion.2 It states that 
there acts on a particle of the first gas a force due to the pressure gradient of the first 
gas, and a force proportional to the difference of the velocities of the two gases.

The ordinary equation of diffusion, or Fick's law,3 was deduced by Stefan1 from 
(1) and the equation of continuity by assuming that £1 wras negligible.

We shall now assume that u2 is negligible. This is the case in which the second 
gas is immobile and the first gas diffuses through it. Some problems involving two 
gases can be reduced to just such a problem.4

If now in (1) we set ux=v, £1 =dv/dt, AnPi—a, pi = p, pi = p, we obtain

dv 1 dp
dt p Ox

The corresponding three dimensional form when there is present in addition a body 
force per unit mass represented by the vector F is

dv VP
—- = F — —- — av, (2)
dt p

where v is the velocity vector. This equation is the equation of motion of a viscous 
fluid with the viscosity terms replaced by a force proportional to the velocity.

We shall now deduce some additional equations which are consequences of (2). 
If we multiply (2) scalarly be an arbitrary virtual displacement 5e, we obtain, 

since 5=V -Se,
dv Sp
—  5e = F -5 e  av-Se. (3)
dt p

* R eceived  F e b . 8, 1944.
1 J . S tefan, B e r. der W ien er A k ad . 63 (2), 63-124 (1871).
= J . C .  M axw ell, P h il. M ag. (4), 35, 185-217 (1868).
3 R . M . B a rre r , Diffusion in and through solids, Cam bridge U n iv e rs ity  Press, Cam bridge, 1941, p. 1.
4 B . Le w is  and G . v . E lb e , Combustion flames and explosion of gases, Cam bridge U n iv e rs ity  Press, 

Cam bridge, 1938, p. 224.



When the expression v -d (8 e ) /d t  = 8(%v2) is added to both sides of (3), we obtain 

d 8p
— (v-8e) =  F -5 e  b 8(%v2) — ov-5e. (4)
dt p

If now we set 8 e = d e ,  where de  follows the natural motion of the system , and assume 
that F has a potential U, then from (3)

dp
d{ 5 D2) =  d U  av-de ,  (5)

P
or

dp
d(hv2) +  av2dt = d U    (6)

P
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If the temperature of the gas is constant, we have

' dp 

P

K  being a constant. Integration of (6) then yields

P  d p
p = Kp, I — =  K  In p,

J  p

%v2 +  K  In p -f- a J "  v -d e  = const. (7)

When the only body force is due to gravity, and the x-axis is vertically downward, 
U = gx  and (7) becomes

K  v2 a r
x  In p  I v - d e  =  const. (8)

g 2g g J

We now return to (3). If there is a straight or curved axis of symmetry such that, 
if s is the arc length of this axis, v, p, p are functions of s, t only, and if we set 5e = u s5s, 
where u, is a unit vector tangent to the axis of symmetry, then (3) becomes

d v  8p
—  u,5s =  g b x ----------- av-u,5s,
d t  p

or, since v-u„ =  t>,

Now

dv d x  1 dp
T  =  i - - - - - - - - - - - - - - - - - - - - - - - av- Wdt ds p ds

dv dv dv dv dv
dv =  — ¿s -| dt, — =  — v H >

ds dt dt ds dt

whence (9) takes the form

d x  1 d p  0 /  v2\  I dv a
--------------------- =  —  ( —  ) d ~ ~ ------- 1--------*• (1 0 )
ds pg ds ds \ 2 g )  g dt g

The equation of continuity is

dp d
o -  +  - ( PfltO =  0 , (1 1 )

dt ds



where ft is the area of the cross section. When the gas is at constant temperature,
p  =  K p , and (10) and (11) become

\  9 /  zA 1 dv a
l n ^ )  =  —  v ’ (1 2 )

)  dsXlg)  g dt g
dp d

ft — H----- (pSlv) =  0. (13)
dt ds
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d (  K
—  I x --------
ds \  - g

K p0 vi Vo a r i  , s
xi — x0 H In— = -------------1----- I vds, (14)

g pi 2 g 2 g g J s o

If the flow is steady, dv /d t  = 0  and ( 1 2 )  becomes

K   ̂ po

g Pi 2 g 2g ' g .

where the subscripts zero and one refer to two cross sections, both viewed at the
same instant. We set P  — i (P o + p i) ,  ir = po — pi, a  = %ir/P, whence

Po =  P  +  =  P ( 1 +  a), Pi =  P - b r =  P(1 -  «).

In —---= -In------ =  2 (a +  f a 3 + • • • ) =  2a(l +  ^a2 + •■ ■ )■
1 — a

When the difference of pressure at these two cross sections is small, f a 2 is much 
smaller than 1 and we have approximately In (po/pi)  =  2a =  7r/P. If w  is the specific 
weight at pressure P , then

K w  K  1 K  ' po po — pi
P  =  K p  =  --------- , —  In  —  = ---------------- ,

g gP i» g pi w
and ( 1 4 )  becomes

, P o -  Pi  £  vl a  p
xi — Xo H--------------= ------------- 1 I vds. (15)

w 2g 2g g J , 0

Let us return once more to ( 2 ) ,  and operate on it with VX and V-, to obtain

R t M H ' - t -

— =  -  ad -  Vr [(Vi-v)v], (17)
at

where w =  VXv, 9 =  V v, \p= U —p /p ,  p is assumed to be a function of p  only, and

1 v—'  / 3 v  5 v \Vr [(vrV )v] =  02 -  2 £ k -  X — j ,

i, j, k being unit vectors along the x, y ,  z-axes, respectively. The equation of con
tinuity is

-  = -  p9, ' (18)
dt

or

— = - V - ( p v ) .  (19) 
dt
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If a is not a constant, but a function of e(x, y , z) for example, we must add the 
term — (vX V a)/p  to the second term in (16).

We shall now examine the propagation of discontinuities in the boundary condi
tions, in the simple case of one dimension without gravity. Equations (2) and (18) 
become

dv dv 1 dp
 1 v -\------------ 1- as =  0, (20)
dt d x  p dx

dp dp dv
 i v +  p — =  0. (21)
dt dx  dx

If the temperature is constant, p  = K p  and these equations become

dv dv K  dp
 ]- v ------1------------ =  — av, (22)
dt dx  p dx

dp dp dv
 \- v  b p  — =  0, (23)

' dt d x  dx

which are a system of two simultaneous quasilinear equations of the first order. These
equations are usually referred to as Hamburger’s equations in two dependent varia
bles. B y standard procedures,5 the ordinary differential equations for the characteris
tics are found in the form

dt
—  =  (v +  dv +  K inp~ldp =  -  av(v +  K ^ ' H x ,  (24)
dx

dt
— = ( ! ) -  K »/*)-!, dv -  K W p - 'd p  =  -  av(v -  K " 2)~ ldx. (25)
dx

If x, t, v are regarded as a rectangular cartesian coordinate system, and x , t, p as 
a second system, the solutions of Eqs. (24) and (25) can be represented graphically 
as surfaces. We may assign boundary conditions as follows:

(a) In both the xv- and the arp-planes, a curve is given.
(b) In the /p-plane, a curve is given; the corresponding curve in the ta-plane must 

be determined by means of the characteristics.
(c) In a plane x =  const. = d  of the .rip-system, a curve is g iven; the corresponding 

curve in the plane x = d  of the x»/-system must be determined by means of the charac
teristics.

Let us consider, for example, a gas for which K  =  13.7 X 104m .2sec.-2 , a  =  2.75 X 109 
sec.-1 , with the following boundary conditions:

(a) In the xv- and .rp-plane, v = v 0 =  0 , p = p 0 = 0.073 kg.m.-4sec.2 This corresponds 
to an initial pressure at rest of 10000 kg.m.-2

(b) In the /p-plane, the curve p = f ( t ) is given.
(c) In the plane x =  2000 m. of the xtp-system , the curve p =  0 is given.
When v = 0, we find from the first of Eqs. (24) that d t /d x  = K ~ 1,2 = 370 m.sec.-1. 

Thus the time that the initial discontinuity requires to cover the distance x  =  2000 m. 
is 5.4 sec.

5 A. R. Forsyth, Theory of differential equations, Cambridge University Press, 1906, vol. 5, p. 435.
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ON THE TREATMENT OF DISCONTINUITIES IN 
BEAM DEFLECTION PROBLEMS*
By ERYK KOSKO (École Polytechnique, Montréal)

In a note on the treatment of discontinuities in beam deflection problems (Quar
terly of Applied M athematics, 1, 349-351) Mr. C. L. Brown suggests the use of 
H eaviside’s unit step function. He thus avoids what he calls the “sectionalizing” 
treatment in the integration of the differential equation for the deflection of a beam 
with discontinuous transversal loading.

Mr. Brown’s method appears to be equivalent to the procedure which seems to 
have been first developed by R. M acaulay1 and has since been included in several 
British textbooks.2'3 In order to establish expressions for moments with discontin
uous variations, Macaulay introduces terms in twisted brackets, such as {* — a }, with 
the convention that these terms be neglected when the quantity within the brackets 
becomes negative. When integrating the term in question, the quantity in brackets 
is to be regarded as the independent variable instead of the indefinite integral of 
{ * — a )  would be § { # —a } 2.

Taking Mr. Brown’s example, the expression for the bending moment of the beam 
(1. c., Fig. 1, p. 349) would be with M acaulay’s notation:

d2y  < >E l  —-  = M  = -  M i ' +  R i x  -  P i x  -  a . 
dx~

The first integration would give

E l  — =  -  M j* +  fi? ,*2 -  | P \ x -  a } 2 +  Ch 
dx

and the second integration

E l y  =  — %Mix2 +  f-Ri#3 — |P {  x  — a ] 3 +  C ix  +  C2.

All the above equations hold at all parts of the span so that there are only two 
constants of integration to be determined from the conditions at both ends of the 
span, instead of having two for each section of the span as in the classical treatment.

It is therefore apparent that Macaulay's twisted bracket is but another symbol 
for the multiplication by the unit step function.

An important remark is to be made about the use of this procedure with regard 
to distributed loads. These must always be made to extend to the right-hand extrem
ity of the beam, introducing negative loads if necessary. An extension of the method

* Received March 27, 1944.
1 R. Macauly, Note op the deflection of beams, Messenger of Mathematics, 48, 129 (1919).
5 R. V. Southwell, An introduction to the theory of elasticity, Oxford, 1936, §§194-196.
3 J. Case, The strength of materials, 2nd edition, Arnold & Co., London, 1932, §169.
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due to H. A. Webb3 covers the effect of a concentrated bending couple applied at an 
intermediate point of the span. As an application, R. V. Southwell suggests (Ex
ample 14, I.e.) the derivation of the theorem of three moments for a continuous beam 
by the same method. The use of the method for a beam with a stepwise variation of 
bending rigidity seems however to be Mr. Brown’s original contribution.

It is hoped that the discussed method, whatever the symbols used, will get more 
attention from engineers on this side of the Atlantic, as it carries with it a very sub
stantial shortening of the computations.

FORMULAS FOR COMPLEX INTERPOLATION*
B y A. N. LOWAN and  H. E. SALZER, {M a th . Tab les P ro ject, N a t. B u rea u  o f  S ta n d a rd s)

A n  a n a l y t i c  f u n c t i o n  o f  z = x - \ - i y  m a y  b e  a p p r o x i m a t e d  b y  a c o m p l e x  p o l y n o m i a l  
o f  d e g r e e  n  p a s s i n g  t h r o u g h  «  +  1 p o i n t s  i n  a c c o r d a n c e  w i t h  t h e  L a g r a n g e - H e r m i t e  
f o r m u l a  o f  i n t e r p o l a t i o n .  F o r  t h e  i m p o r t a n t  s p e c ia l  c a s e  w h e n  t h e  g i v e n  ra +  1 p o i n t s  
a r e  e q u i d i s t a n t l y  s p a c e d  a l o n g  a n y  s t r a i g h t  l in e  in  t h e  z - p l a n e ,  t h e  f o l lo w in g  t a b l e s  
g iv e  t h e  r e a l  a n d  i m a g i n a r y  p a r t s  o f  t h e  c o e f f i c i e n ts  A k ( P )  o f  t h e  i n t e r p o l a t i o n  
p o l y n o m i a l / ( z )  = A k( P ) f ( z k ) ,  w h e r e  P  — { z  — Z o ) / h — p + i q  a n d  h  i s  t h e  c o m p l e x  t a b u l a r  
i n t e r v a l .  T h e  f o r m u l a s  c o v e r  t h e  c a s e s  r a n g i n g  f r o m  c o m p l e x  q u a d r a t i c  (3  p o i n t s )  
t o  c o m p l e x  q u i n t i c  i n t e r p o l a t i o n  (6  p o i n t s ) .

Q u a d r a t i c  i n t e r p o l a t io n  (3  p o i n t s )

R e A ^ (P )  =  \[p {p  -  1) -  q■*], 3 m A . k{P) =  q(p -  .5),

<I{eAo(P) = 1 — p- +  q1, 3 m A 0(P) =  — 2 pq,

P,eAi(P) =  \[P(P  +  1) -  ?*], 3m A x{P) =  q(p +  .5).

C u b ic  i n t e r p o l a t io n  (4 p o i n t s )

ReA-KP) =  -(1- ~  P) [p{p -  2) -  3?*], 3mA*i{P)  =  -i- [?2 -  2 +  3p(2 -  p) J,
6  6

<ReA0(P) =  1 +  %[p(p2 -  2p -  1) +  q*(2 -  3p)], 3m A 0(P) =  ~  [p(3p -  4) -  -  1 j,

%.eAx(P) =  -  h[p(P ~  2)(p  +  I) +  q*(l -  3p)], 3m A ,(P )  =  ~  [p(2 -  3p) +  +  2],

%eAi(P) =  —  -  3q- -  1), 3m A2(P) = — [3f- -  <?2 -  l] .
6  6

* R e ce iv ed  A p ril 17, 1944.



Q u a r tic  in te r p o la t io n  (5  p o i n t s )

H f i A s W  =  “  [ p ( P 2 -  1 ) (P  -  2 ) +  q*(q2 +  1) +  6 i ? 2( l  - / > ) ] .24

3m A -z(P )  =  ̂  [<?2(1 -  2p) +  2p* -  3p> -  p +  1 J,

R ^ _ !(P ) =  -  4  [p(p -  l ) ( i 2 -  4) +  ?V  +  4) +  3 i?2(l -  2p)],
6

3w,4_i(P) =  -  — [4p3 -  3p* -  8p +  4 -  q2( ip  -  1)],
6

‘R.eAo(P) = ~  [ip* -  l)(p* -  4) +  -  6p* +  5)],
4

pq
3m A,{P) = ~  (2p* -  2q* -  5),

%eAx{P) =  -  4  [pip +  D ip 2 “  4) +  ?2( i2 +  4) -  3pq2i l  +  2p)},
0

3w 4,(P) =  -  — [4p* +  3p* - S p -  4 — g2( l  +  4p)],
6

1 r '  ,
% eA,iP)  =  — [ i ( i  +  2 )(^  -  1) +  q*iq* +  1) -  6 p q \  1 +  *)],

3m/t2(P) =  ~  [2p* +  3 p * - p  -  1 -  g2(2/> +  1)].

Q u in t ic  in te r p o la t io n  (6  p o i n t s )

1944] A . N . L O W A N  A N D  H . E . S A L Z E R  273



274 NOTES

% e A x( P )  =  - i [ * ( * + l ) ( * 2 - 4 ) ( * - 3 )  +  ? 2( -  1 0 * 3 + 1 2 * 2 +  2 1 * - 8 )  +  ç < ( 5 * - 2 ) ] ,

3 m A x( P )  =  4  [ ( ç 2 +  4 ) ( g 2 +  3 ) +  * ( 5 * 3 -  8 p* -  2 1 *  +  16) +  pq*(8 -  1 0 * ) ] ,

R ^ P )  =  4  [ ~ * ( * 2-  l ) ( * - 3 ) ( *  +  2 ) - ?2( - 1 0 * 3 +  6*2 +  2 1 * -  l) +  ?< ( l - 5 * ) ] ,  

3m A 2(P) = ~ ~  [5*1 -  4*3 -  21ÿ2 +  2p +  6 +  q*(q* +  7) +  2*?2(2 -  5*)],
Ztc

‘ReAs(P)  =  ^  [(P 2 -  4 ) ( * 2 -  1) +  5ç2(ç2 -  2p* +  3)], 

3 w 4 3( P )  =  4 r  [ ( ? 2 +  4 ) ( ? 2 +  1) +  S f { p * - 2 q *  -  3 ) ] .
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Ten lectures on theoretical theology. By Markus Reiner. Nordemann Publishing Co., 
Inc. New York, 1943. iv + 1 6 4  pp. $4.50.
It is customary to define Rheology as the science of flow and deformation of matter. If this definition 

is taken literally, Rheology becomes practically identical with Mechanics of Continua, and it becomes 
hard to understand why a new term has been coined. It seems that a more adequate definition would state 
Rheology to be a Mechanics of Continua in which the ideal elastic body and the perfect fluid are almost 
as systematically disregarded, as they are over-emphasized in classical Mechanics of Continua. This 
undue prominence which the classical scheme gives to the ideal elastic body and the perfect fluid tends 
to be reflected in textbooks of Mechanics as well as in engineering curricula. The necessity of developing 
and studying the mechanics of other solids and fluids must therefore be stressed, even to the extent of 
creating a new term for this part of Mechanics of Continua which, up to a fairly recent past, has been so 
badly neglected.

There is a definite need for a treatise covering the entire field of Rheology rather than parts, such as 
plasticity or dynamics of (Newtonian) viscous fluids. The present book is in the nature of an introduction 
to such a treatise. Four chapters (1-3, 9) deal with the analysis of stress and strain and the important 
decomposition of the tensors of stress and strain into isotropic and deviatoric parts. The author bows to 
convention in defining the strains as exx = du/dx, • • • , exu = dv/dx+du/dy, ■ ■ • . This procedure, a rem
nant from the time when the tensor character of strain and its geometrical implications was not yet fully 
realized, makes it necessary to denote the components of the strain tensor by exx, • • j  ex„, ■ ■ ■ , and 
deprives many relations of their natural symmetry. Four further chapters (4, 6, 8, 10) are devoted to the 
discussion of certain rheological idealizations, viz. the ideal elastic solid, the (Newtonian) viscous fluid, 
and the materials customarily named after Maxwell (viscous fluid with relaxation of stresses), Voigt 
(visco-elastic solid), Saint-Venant (perfectly plastic solid), and Bingham (viscous fluid with yield limit). 
The remaining two chapters (5, 7) are concerned with the solution of special problems (tension and simple 
flexure of a prismatical bar), Einstein’s law of the viscosity of sols, and rheological models.

Theoretical Rheology is a subject which cannot be treated satisfactorily without using the tool of 
tensor analysis. The author did obviously not want to suppose the reader to be familiar with this tool. 
On the other hand, limitations originally imposed on the time available for his lectures seem to have pre
vented him from presenting even the basic conception of tensors in a precise form. One wonders whether, 
under these circumstances, it would not have been preferable to restrict the discussion to the mechanical 
behavior of solids and liquids in pure shear. As it is, the uninitiated reader cannot fail to get the impres
sion that any nine quantities neatly arranged between double vertical bars constitute a tensor. The laws 
of transformation are touched upon in chapter 9 only, and are nowhere stated to form an integral part 
of the definition of tensor. On the other hand, the reader familiar with tensor analysis might wish to have 
a tensorial expression of the yield condition of plastic materials which is more adequate than the cryptic 
relation po = # (p. I ll , Eq. (4)), where po denotes the stress deviator and t? is defined as “the yield stress.” 
Many other instances could be cited where the clarity of exposition has obviously suffered from the tend
ency to cram too much material into a text which, according to the preface, is intended as a brief intro
duction. In spite of such occasional shortcomings the book, which fills a patent need, will prove very useful.

W. P r a g e r

Table of reciprocals o f  the integers f ro m  100,000 through 200,000. Prepared by the 
Mathematical Tables Project, Work Projects Administration of the Federal 
Works Agency; conducted under the sponsorship of the National Bureau of Stand
ards. Official Sponsor: Lyman J. Briggs; Technical Director: Arnold N. Lowan. 
Columbia University Press. New York, 1943, viii +  201 pp. $4.00.
These tables are a useful supplement to the existing tables of reciprocals. The tabular interval is 

small enough to permit linear interpolation throughout; the differences decrease slowly from 100 to 
25 units of the last place. The arrangement of the tables is very practical. Seven significant figures are 
given (if a number has k figures before the decimal point, its reciprocal has k — \ zeros after the decimal
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point, before the first significant figure). Moreover, the tables indicate the direction in which the last digit 
is rounded; this practical device reduces the relative tabular error to 2 .5X10-8.

W. F e l l e r

Table of the Bessel func tions  / o ( z )  and J\{z) fo r  complex arguments. Prepared by 
the Mathematical Tables Project, Work Projects Administration of the Federal 
Works Agency; conducted under the sponsorship of the National Bureau of 
Standards. Official Sponsor; Lyman J. Briggs; Technical Director: Arnold N. 
Lowan. Columbia University Press. New York. 1943, x iv + 4 0 3  pp. $5.00.
Many problems of mathematical physics and mechanics lead to Bessel functions of various types. 

The most important of these problems are sketched in the foreword to the present tables, written by Pro
fessor H. Bateman of California Institute of Technology. The number of existing tables of Bessel func
tions is also legion. The present tables contain a valuable bibliography listing some 65 tables of Bessel 
functions of orders zero and one. However, the new tables are unique both in range and extent.

The Bessel functions J,{z) are defined by
( -  1 )V+“

A 0 0  = Z -----------------------------
k-ok\T(v + k + l)2y+2k

and satisfy the differential equation
ztu"{z) +  zu'{z) +  (z2 — v5)«(z) = 0.

One has the recurrence formula
-7y-n(z) — Jv-i(s) T 2 vJv{z)fz

which enable  ̂one to compute J,{z) for all integers v given the values of Ja(z) and Ji(z). These are now 
tabulated to ten decimal places. The entries are written in the polar form z = p(cos <f>+i sin <j>). The func
tions are tabulated along the rays 0=0°, 5°, 10°, • • • , 90° for values of p from 0 to 10 in the steps of .01. 
The values of the functions in all other quadrants follow easily by means of simple symmetry relations.

To facilitate interpolation, the book contains also tables of the coefficients in Lagrange’s interpola
tion formula which uses five equally spaced points. The coefficients are tabulated to 10 decimal places, 
the argument varying in steps of .001. These tables will, of course, be useful for many computations and 
are quite independent of the main tables.

W. F e l l e r

The methodology o f  Pierre Duhem .  Armand Lowinger. Columbia Univ. Press, 184 pp., 
1941. $2.25.
The French theoretical physicist Duhem (1861-1916) devoted his life-work to thermodynamics, 

although he is mostly remembered today for his studies in medieval science. He moreover published his 
views on the methods, aims and significance of physics in a few scattered papers and in one connected 
account, a book entitled La Théorie physique, son objet et sa structure (1906). Mr. Lowinger has given an 
excellent presentation of Duhem's ideas. These are challenging, for on the one hand Duhem was an 
eminently “classical” physicist, strongly opposed to atomism, opposed also to Maxwell’s electromagnet
ism, so that from our present point of vantage we can prove him wrong on both these counts; but on the 
other hand, he believed with Kirchhoff that physical theory is a description, not an explanation; with 
Mach, that its purpose is intellectual economy, and so was on the way, with these and other correlated 
ideas, towards present-day scientific pragmatism. Duhem’s opinions on physical method were rooted in 
his metaphysical beliefs, a fact obvious to his readers and critics, but which he was very anxious to deny. 
Mr. Lowinger's presentation of Duhem is faithful and unbiased; he gives us his own views in a last 
stimulating chapter. There is a good bibliography of Duhem and his critics, to which should be added the 
rather important books by A. Rey and P. Humbert mentioned on pp. 15 and 8 respectively.
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