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ON COMBINED FLEXURE AND TORSION, AND THE 
FLEXURAL BUCKLING OF A TWISTED BAR*

BY

J. N . G OO DIER  

Cornell University

1. Introduction. W hen a s tra ig h t uniform slender bar is tw isted, the s tra ig h t 
form becomes unstable a t  a  certain  value of the tw isting couple, and th e  center line 
of the  b a r becomes a space curve. E lem ents of the  b a r are ben t ab o u t bo th  principal 
axes of section, and the buckled form thus possesses stra in  energy of flexure as well 
as of torsion. If the bar is tw isted to  the  critical configuration, and  its  end sections 
then held against fu rth e r ro tation , the  jum p to the buckled form m eans the appear
ance of flexural energy a t  the expense of the torsional energy. T h e  occurrence of the  
flexure  m ust therefore produce some relief of the  torsion, th a t  is, i t  m ust m odify the 
am ount of twist.

I t  proves to  be impossible to account for th e  transference of stra in  energy from 
th a t  of torsion to  th a t of flexure if the strain  energy is represented in the accepted 
form of th e  theory  of small bending and torsion of th in  bars—

1 C 1
—  ( E l m " 2 +  E I 2v " 2 +  GC$'-)dz,
2 J  o

w here E l i, E l t ,  GC  are th e  flexural and torsional r ig id ities, u, v th e  com p on en ts o f  
d eflection  parallel to  th e  principal axes o f th e  section , and /3 th e  torsion al ro ta tion , 
as fu n ction s of th e  ax ia l co -ord in ate  z. C oin cid en ce o f sh ear cen ter  an d  centro id  is 
assu m ed , an d  secon d ary  effec ts o f non-un iform  to rsio n1 are d isregarded, for s im 
p lic ity . If for in sta n ce  th is  form  is used  in th e  p o te n tia l en ergy , and th e  d ifferentia l 
eq u a tio n s <5f th e  bar b uckled  from  a s ta te  o f sim p le  torsion  b y  cou p les M 3 are found  
b y  m ean s o f th e  theorem  o f s ta tio n a r y  p o ten tia l en ergy , th e  correct eq u a tio n s2

Eliii" +  M 3v' =  0 , Elm" -  M 3u' =  0 , Ms =  GC\3'

are no t obtained. The term s M 3v', M 3u '  in the  first two fail to appear. These equations 
are nevertheless easily derived directly  as conditions of equilibrium .

T he com parison w ith the  corresponding problem  of the  b ar under th ru s t is useful. 
T he b a r is compressed to  the critical sta te , and the  ends held against fu rth e r ap 
proach. T he b ar jum ps over to  th e  ben t form, and  energy of bending appears. B ut

* Received March 24, 1944.
1 J. N . Goodier, (i) The buckling of compressed bars by torsion and flexure, Cornell U niversity Engi

neering Experiment Station, Bulletin 27, 1942; (ii) Flexural torsional buckling of bars of open section, 
Bulletin 28, 1942.

2 S. Timoskenko, Theory of elastic stability, McGraw-Hill, 1936, p. 168, or (1) (ii) equations 2, 3 , 7 .
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the  transition  to  the ben t form involves a  lengthening of the bar, and  some of the 
compressional stra in  energy is thus released to  supply  the energy of- flexure. T he 
E uler problem  has been analysed from this po int of view by  R. V. Southw ell.3

This lengthening of the  bar is of the  second order in the derivative of the bending 
displacem ent w ith respect to  the  axial coordinate. I t  can be disregarded in w riting 
down the differential equation of equilibrium , b u t no t in energy m ethods. I t  is 
na tu ra l to  look for som ething analogous in the  torsional problem  by  investigating 
the  na tu re  of com bined torsion and flexure to a higher order of small quantities than  
formerly. T his is done in w ha t follows and the  required new term s in the  strain  
energy are found. A t the  sam e tim e the na tu re  of combined torsion and flexure is 
clarified, and the  energy m ethod is m ade available for more difficult problem s of 
buckling from a tw isted  s ta te  such as those of non-uniform  bars.

2. F inite bending and  torsion of a th in  bar. L et the axis (of centroids) of the 
undeform ed stra ig h t bar lie along the  s-axis of fixed cartesian axes u, v, z. T he b ar is 
now subjected  to  small bending and tw isting. I ts  axis becomes a space curve, con
sisting of poin ts of co-ordinates u, v, z. Even if the  deflection (u, v) is small, the 
geom etrical torsion of this curve is no t small. T he bending m ay be in one plane (the 
osculating plane) a t  one point, and in a perpendicular plane a t  another.

T he geom etrical torsion r c of the curve is d istinc t from the  torsion r  of the bar. 
W hen the deflection (w, a) is prescribed the  space curve of centroids is definite, w ith

definite cu rvature and torsion. T he cross sec
tions of the bar m ust be in the norm al planes of 
this curve, b u t the torsion of the bar rem ains 
indefinite until the  orientations of the principal 
axes in these planes are specified.

In Fig. 1 the tangent, norm al and binormal 
a t  P  are indicated by t, n, b f  As the origin of the 
triad  moves along the curve with unit speed, it 
has a com ponent t c of angular velocity abou t t, 
and a  com ponent k (the curvature) abou t b, 
right handed ro tations looking along the posi

tive axes being reckoned positive. Define an angle y  such th a t  r e = d y / d s  (s being arc 
length increasing in the  sense of t) and 7  =  0 a t  some chosen reference section s = s 0, 
as for instance one end of the bar.

L et /  be the angle which one principal axis p  (Fig. 1) of the  cross section a t  P  
m akes w ith  th e  principal norm al n, positive when th is axis is obtained from n  by  
positive ro ta tion  abou t t. L e t / 0 be its value a t  s  = s0. T hen the ra te  of ro ta tion  of the 
/pg-triad abou t t is given by r c+ d f / d s  or ( d y / d s ) +  (d f/ds)  and  th is is by  definition 
the  torsion of the  b a r .6

A ccordingly if the bar is ben t b u t no t tw isted, 7 + /  is a  constan t along the  bar 
and  in fact 7 + /  =/o, o r ' / = / 0—7 . From  this s ta te  we m ay derive a tw isted form of the

3 Introduction to the theory of elasticity, 2nd ed., Oxford University Press, 1941, p. 443.
‘ T he notation and conventions are those of C. E. YVeatherburn, Differential geometry, vol. 1,

Cambridge University Press, Cambridge 1939, p. 15.
6 The discussion thus far, except for the introduction of the angle y, corresponds w ith that of A. E. H. 

Love, Mathematical theory of elasticity, 4th ed., Cambridge U niversity Press, 1934, .Ch. X V III . The  
further developm ent is different.
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ben t bar by introducing an angle of tw ist <j> w ith <¡5=0 a t  s = s0, so t h a t / = / o — 7 + 0 .
T he torsion of the  b ar is now d<f>/ds. T he ben t and  tw isted  form of the  b ar is com
pletely  specified by  the curve of centroids, which defines y, and the angle/o+<£ which 
can be assigned independently.

In  the elem entary  theory  of bending, the  curvatu re is related  to the bending 
m om ents by  means of com ponents along the principal axes of cross sections. If xi, x2 
denote these com ponents along p  and q (Fig. 1), we have (x can be regarded as an 
angu lar velocity ab o u t b)

Xl =  X Sin / ,  X2 =  x cos /  (1)

or

Xi =  x sin (/o — y +  4>), x2 =  x cos (/o — y +  </>). (2)

W e have also

r  = d(j>/ds. (3)
B ut

x =  (« "2 +  v"2 +  s "2) 1' 2, (4)

prim es denoting differentiation w ith respect to  s. Also y  is defined through d y /d s  = Tc 
and we have

u' v' z'

Tc =  X 2 It" v" z" (5)
v!" v'" s '"

W ith these form ulas the bending and  torsion of the b a r are com pletely specified by 
the deflection (u , v as given functions of z) and  the angles f 0 and <£. T he orientations 
of the principal norm al and  binorm al are defined by  the deflection curve, and  the  
orientations of the  principal axes relative to  these are defined by  fo  and  </>. T he 
formulas (2) and  (3) m ay be used to  specify no t only the  deform ed s ta te  of the bar, 
b u t also an initial “ben t and tw isted ” b u t unstressed sta te . T he differences between 
the  values of Xi, x2 and r  then represent the changes of curvatu re and torsion to 
which the com ponents of bending m om ent, and the  tw isting m om ent, will be respec
tively  proportional.

T o illustra te  this, and  also the  significance of /<>, let the  b a r be circular and in a 
horizontal plane, w ith the  principal axis p  of all cross sections also in th e  horizontal 
plane. T hen we m ay take  for the  initial s ta te  y  = / 0= < £ = r= x 1 =  0, x2= x = l / r  where 
r is the  radius of the  circle. L et each cross section now be ro ta ted  by the sam e angle 
a  abou t t. For the deform ed s ta te  f 0 = a  and

xx =  r~l sin a, x2 =  r~l cos a, r  =  0 .

T he changes of the com ponents of cu rvatu re are

r~x sin a, r_1(cos a. — 1).

W hen a  is small, the  second, the  change in x2, is negligible. T he bending m om ent 
induced is proportional to  r~1a,  and corresponds to  Xi, th a t  is, its axis is n, in the 
plane of the ring .6

6 This problem is analysed from first principles in Tim oshenko, Strength of materials, Part II, 2nd ed., 
Van Nostrand, 1941, p. 177.



3. Small bending and torsion of a straight bar. T he formulas (2) and (3) m ust 
yield such expressions as d 2u / d z 2, d 2v/dz-, d<p/dz as their principal p a rts  for small 
deform ation. T he object of the  present investigation is to  obtain  term s of higher 
order as well.

L et u ' , v ',  4> be small com pared with 1, and let I be a suitable length such as the
length of the bar, or the  w avelength of a periodic deflection. T he form ulas (4) and (5)
involve u " , v " ,  u " ' ,  v " ' .  If the  g reatest absolute value of u " ‘ and  v ' "  is denoted 
by 17/ f 2, u "  and  v "  do no t exceed tj/1 and u ' , v' do n o t exceed 77, which is small. Let 
e denote the largest absolute value of rj and </>. Q uantities n o t exceeding e, e/l, etc., or 
quan tities differing from them  only by  term s involving higher powers of e, will be 
denoted by 0(e) ,  0 ( e / l ), etc.

T he relation w '2+ i / 2+ z ' 2 =  1 yields z ' 2 =  l —0 (e2) and so z ' =  l  — 0 ( e 2). I t  yields 
also

z"  = -  W i t ” +  v'v”) ( l  -  m'2 -  i /2) - 1' 2 =  0(e2/ l )  (6)

and
z”'  =  0(e2/ l 2). (7)

Then (4) yields x =  [zi"2+ i ; " 2 +  0(e4/72) ] 1/2. Since u " 2, v " 2 are 0 ( e 2/ l 2) we have as an 
approxim ation

x =  W ' 2 +  v"2) 112 (8)

in which the error is of order e2, re la tive to  the p a rt retained.
T he determ inan t of (5) yields u " v " '  — u " ' v "  w ith an error of order e2. Then (5) 

becomes
t c =  (m 'V" -  u" 'v”) W n  +  v"2) - 1 (9)

w ith an  error or order e2.
Now the  right of (9) m ay be identified as (d /d s ) tan -1 (ii " / u " )  and, in view of the 

equations defining 7  (d y /d s  = r c, 7  =  0 when s =  io) we have

v" v0"
7 =  tan-1 —— — tan -1 , (10)

II il 0

where u " , v "  are the values of i t" ,  v "  a t  5 = i 0. T he inverse tangen ts are principal
values. T he values of sin 7  and cos 7  are required. From  (10)

tan 7  =  M ' v ” -  v { 'u " ) ( u i 'u ” +  W v”) - '

and therefore
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sin 7 =
r ,"  r , "V  f l o

U

0
1 , *°COS 7 =  11 +

Ho /  /  i>o"2 V 1/2/  V 2\ _1/2

, 'V 'N  X 0  +  ^ )  W W  ■ (11)

T h e  a m b ig u ity  o f sign  in v o lv ed  in o b ta in in g  th e  sin e an d  cosin e from  th e  ta n g e n t is  
d isposed  o f b y  th e  con sid eration  th a t  if v " / u "  s lig h t ly  exceed s v "  ¡ i t " , b o th  b ein g  
p o sitiv e , 7 m u st b e a  sm all p o sit iv e  angle.

4. Expressions for sm all curvature and torsion. E xp an d in g  th e first of (2) in the  
form
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ki =  /c-j(sin /o cos 7  — cos /o sin 7 ) ^1 — ^

+  (cos /o cos 7  +  sin f 0 sin 7 ) ^  ^  j-

and substitu ting  for k, c o s  7 , sin 7  from (8), ( 11) we find

ki =  u "  sin (/o +  5) — v"  cos (Jo +  5) +  <t>[u" cos ( / 0 +  0) +  v" sin ( /0 +  5) ] +  • • • (12)

and sim ilarly

^  = u "  cos (/o +  5) +  v" sin ( / 0 +  5) — <j> [u" sin ( / 0 +  ¿>) — v" cos (/o +  5) ] +  • • • (13)

where cos 8 — u ô ' ( u i n  + » o ,z)~1/2, sin 5 = ^ 0' («o//2 2)w"1/2_ j n these developm ents
the  errors are of order e2 re lative to the  leading term s. T hey  are therefore accurate 
as far as explicitly carried.

Since d z /d s  = 1 — 0 ( e 2), replacem ent of differentiation w ith respect to  5 by  differ
en tiation  w ith respect to  z, to  any  order, will involve errors of order e2. T hus the 
prim es in the term s set ou t in (12) and (13) m ay be taken to  indicate differentiation 
w ith respect to 2, and th e  developm ents rem ain correct to  this order. In  the  same 
w ay the  torsion dxp/ds m ay be replaced by  dj>/dz w ith an  error of order e2.

T he angle f 0, while significant of course when the axis of the  bar is appreciably  
deflected, tends to  become m erely a  rigid body ro ta tion  when the  b a r is nearly  
s tra igh t. In  order to  elim inate such a rigid-body ro tation , we observe th a t there is 
as y e t no connection between the w-axis and the  principal axis p. If these axes coincide 
when the  b a r is undeform ed, sm all torsion and  bending, free of large rigid body ro ta 
tions, will re s tric t the  angle between them  to be of the  sam e order as 0. T hen  the  direc
tion cosines of p, re lative to the u, v, z axes m ust be 1 —0 (e2), 0(e) ,  0 (e)  a t  most.

T he direction cosines of n, the principal norm al, are  u " / k, v" / k, z " / k so th a t, if n  
is the un it vector along n, i , j ,  and k  un it vectors along the axes of u, v and z,

n  =  K - l ( u " i  +  v " j  +  z " k ) .

T he direction cosines of b, th e  binorm al, are used as the  coefficients of i, j ,  k  in

b  = ^ [ ( i / z "  -  z 'v")i  +  (z 'u"  -  u 'z”) j  +  (u'v" -  v 'u " )k]

where b  is the  un it vector along the binorm al.
Since the  principal axis p  (Fig. 1) is in the plane of b and  n, and is derived from n

by a ro tation  /  tow ards b, the  un it vector along it is given by n  cos f + b  sin /  or

k~ 1 [u "  cos / +  (v'z" —  z'v") s i n / ] /

+  cos/  +  (z 'u" — u 'z")  s i n / ] /  (14)

+  k~1[z"  cos /  +  (u'v"  — v'u") sin /]ic

and the coefficients of /, / ,  k  give the direction cosines of p.
T he first of these is of order 1 w ithou t restric tion on / .  T he second m ay be repre

sented as

0(l/e) 0(e / l)  cos /  +  0 ( l ) 0 ( e / l )  sin /  -  O(£)O(e2/0  sin /
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from which it is app aren t th a t  these direction cosines will not be small of order e unless

k' (v"  cos /  +  u "  sin / )

is small of th is order. T his expression m ay be developed, by  the processes which led 
to  (12) and  (13) as

K-*v"iu” cos (Jo +  5) -f- v"  sin (/o -f- 5) — <f>[«” sin (/o + 5 )  — v"  cos (/o +  5)] H~ ■ • ■ } 

+  k~2u" \ u"  s in (/0+  5) — v" cos (/o +  5 )+  4>[u" cos ( / 0 +  5 )+  v" sin (/o + 5 )] +  ■ • • }

and will be small of order e only i f / 0+ 5  is small of this order.
T his result simplifies (12) and (13) to

Kl =  — v +  u"(4> + /o + 5), K 2 +  v"(4> +  fa +  5), (15)

and with t = < £ '  these constitu te  approxim ations to K i ,  k 2 ,  and r  w ith errors of order e 2  

relative to the leading term s. I t  is now implied of course th a t  one principal axis (p ) 
coincides w ith th e  «-axis in the  undeform ed s ta te , and th a t in the deform ation it ro
ta tes  from it by  an  angle of the same order as « ',  v' and 4>. This is the case if one sec
tion of the bar is fixed aga inst ro tation , or against ro tation  of the  type 4> only.

T he th ird  direction cosine in (14) is of order e w ithout fu rther conditions.
5. An alternative torsional co-ordinate. T he angle <f> represents a ro ta tion  of the 

cross section abou t /, from the torsionless configuration associated with the deflec
tion «, v. T his torsionless s ta te  is far from being geom etrically obvious, and the
term inal values of <fi and /  corresponding to  various types of simple end constrain ts
are no t im m ediately obtainable.

A representation of the  torsion and flexure to  the  second order which does not 
suffer from these d isadvantages is desirable. A stra ig h t bar (initially  along the 2-axis,

Fig. 2) m ay be imagined brought to a bent
and tw isted s ta te  by supposing it cu t into
thin discs. L et a typical disc be translated  
w ithout ro tation  so th a t  its centroid is 
brought to its final position P  on the de
flected curve and the principal axes are 
brought to  xi, parallel to x , y.  I t  m ust 
now be ro ta ted  so th a t the tangen t a t  P  to 
the deflection curve is norm al to it, in accord
ance w ith  the theory  of flexure of thin bars. 
L et this ro tation consist of a ro tation  abou t yi 
bringing xi to x 2 in the norm al plane a t  P ,  fol
lowed by a  ro tation  abou t x 2 bringing to y 2 

in the norm al plane. T he configuration so produced is evidently  a possible s ta te  of 
bending and torsion. T he principal axis x 2 is still parallel to the plane xz. This configu
ration is to be used as a  reference from which to m easure the torsional ro tation  of cross 
sections. T o  the first order the torsion is zero, b u t to the second order it is not.

To determ ine its value, let the x, y  axes in Fig. 2 correspond w ith the  «, v axes, 
and let x 2 be th e  principal axis p. T hen , in the  proposed configuration, p  is everywhere 
norm al to  the y, or v, axis. T hus the coefficient of j  in (14), which represents th e  direc

F i g .  2.
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tion cosine of p  w ith the  v axis, m ust vanish, so th a t  the value of /  is determ ined by 
the equation

v"
/ i  =  tan-1 —--------------- - (16)

u'z"  -  z 'u"

T he torsion of the bar is Tc+ d f i /d s ,  t c being given by  (5), and is thus expressed in 
term s of the  derivatives of u  and  v. W hen expanded in powers of these derivatives 
its leading term  is m ' V .  T his is an  approxim ation to  the  torsion w ith error of order e . 

T hus if 4>i is the  value of d> corresponding to  th is configuration <f>{ =  m 'V [1  +  0(c)]. 
Also, f 0 is obtained from (16) by  p u ttin g  u 0, v0 for u, v and it is easily found th a t 
t a n / 0=  — (v o ' /u o  )-j-0(e2). Since tan  5 = Vo / u i ‘ it follows th a t  / 0 +  <5 =  O(e2). This 
being so / 0 +  5 in (15) ceases, for th is particu la r configuration, to be significant, since 
its products w ith u " ,  v "  are of the order of the term s neglected.

Now consider an a rb itra ry  s ta te  of (small) flexure and torsion specified by u, v, <f>. 
I t  m ay be derived from the reference s ta te  ju s t defined sim ply by  ro ta ting  cross-
sections abou t t in order to  convert <f>i to  cj>. L et ft be the am ount of such ro tation . T hen
<p—<t>i=P, ancj t = 0 '  =  /3/+(^i , th a t  is

r  =  /S' -t~ m'V  (17)
with error of order e2.

L et i  now be m easured from one end of the bar so th a t  s0 =  0. T hen d>i like 4> is 
zero a t  5 =  0 and <pi— f'0u " v 'd s .  T hus <t>={i-\-J’0u " v 'd s  and the integral is of order e2. 
M oreover/o + 5 is no t altered  by  the  ro ta tion  ¡3 so th a t it is still of order e2. T he first 
of (15) becomes in consequence

J ' u ' V d s ^ .ki =  — v -f- u” 1/3 +

T he first term  is or order e/7, w"/3 is of order e2/ l  and u " f ‘u " v 'd s  is of order e3/ l .  
Therefore, w ith an error of order e2 the new formulas for the com ponents of cu rvature 
are

K l =  —  v" f i l l " , «2 —  l l "  “f "  fiv". (18)

These w ith (17) give an a lte rna tive  representation of the torsion and flexure, con
venient because/o  and 5 have been elim inated, and  /3 is relatively easily envisaged- 
being the  angle by  which the cross section m ust be ro ta ted , abou t the deflected, ta n 
gent, to  bring p  from the position parallel to  the axial plane in which it originally 
lies, to  its  final position. A t fixed ends ¡3 is clearly zero.

6. Energy considerations. T he stra in  energy is given by

1 f  1
—  ( E I lK 1
2 J  o

+  E I 2k\ +  GCr2)dz. (19)

T he in tegration w ith respect to  z ra th e r th an  s will involve an  error of o rder e2.
Consider now the problem  referred to  in the in troduction— the stra ig h t b a r tw isted 

until it  buckles. L et the  s ta te  ju s t p rior to  buckling be

P — B, u =  0, v =  0,

and afte r buckling
P = B  +  f3i, ii =  «1, v = Vi.
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Then B  is small in the  sense of 4> in the preceding analysis. B ut f t ,  Mi, V\ are to  be 
tru e  infinitesim als, since we seek a buckled form which comes to  the stra ig h t form as 
a  lim it. T hus th ey  are to approach zero afte r a fixed value has been assigned to B .

T he expressions (17) and  (18) are now used in (19), and term s to  the second order 
in Mi, vi, f t  and their derivatives, w ithout regard to B ,  are retained. T he result is

j  f  [ E h ( u { ' ! +  2 B u ! 'v { ' )  +  E h ( v l ' 2 -  2 B u [ 'v [ ' )

+  G C (ft2 +  2 B'0{ +  f t '2 +  2B u[ 'v[ )]dz .  (20)

L et M i  be the  critical torsional couple G CB'.  On buckling, some work is done by  
this couple, b u t exactly  how much, in term s of f t ,  m1( vx depends on the end constrain ts 
of the bar.

If  the  ends are in bearings which constrain the  axis of the b ar to rem ain fixed in 
direction a t  the  ends— i.e., the  ends are “bu ilt-in” w ith respect to  flexure— the ro tation  
of one end m ay be set as zero, and th a t of the o ther abou t the axis is then the  value of 
f t  a t  th a t  end. 'H ie potential energy of M z  in the buckled form is — flf t/’ft' dz  referred 
to  the  tw isted b u t unbuckled form as zero. T he to ta l po ten tial energy is thus this 
term  together w ith (20), om itting  %f0G C B ll2dz  which is the energy of the unbuckled 
tw isted form.

If the po ten tial energy is now varied by  varying u x to Mi +  e^ ift) the coefficient 
of cj in the variation  of the  po ten tial energy is

f  [ -  E U B v l '  +  E h i u l  +  B v l ' )  + G C B 'v { ]v {dz
J  0

and  th is m ust vanish if the buckled s ta te  is a  possible s ta te  of equilibrium . Since 
B v{ '  is small com pared w ith u { ' , on account of the smallness of B,  the conclusion 
is th a t  the equation

E l  lU{ '  +  M sv { = 0  (21)

m ust be satisfied. Sim ilarly variation of vx yields

E h v l '  -  MiUI  =  0.. (22)

V ariation of f t  yields G C B ’-\-GC(d{ — M 3 = 0, th a t  is f t ' = 0 . E quations (21) and
(22) are identical w ith th e  equations obtainable by  d irect equilibrium  considerations.
T hey  are derived in this m anner here in order to  show th a t  th e  term s M 3v{ , — M iii(  
arise from term s in the  strain  energy of torsion which are of higher order than  the 
term  | / 0GC(3'2dz h itherto  accepted. I t  is to  be expected therefore th a t in (17) and (18) 
the term s of the second order will be required in energy calculations in o ther prob
lems where torsional loads cause, or contribute to, buckling.

W hen the equilibrium  of the  s tra ig h t tw isted  form is neutral, the work done by  M 3 
during buckling is equal to  the gain of s train  energy. Then

M i [ ‘ p id z  = f  [ E l i t e 1* +  2B u i ' v i ' )  +  E I i ( y l ’2 -  2 B u [ 'v l ‘ )
0 2 J  0

- f  G C (2ftft' +  ft'* +  2 B ’u i ' v l )  ]dz. (23)
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T he term  B u i ' v i '  in the flexural term s is small com pared w ith u['2 or v['2 and  will be 
dropped. In troducing  M 3 = G C B '  the  resulting equation yields

1 ¡ ¿ (E h u { '*  +  E h v l ' t  +  G C p n d z
M 3 =  -   ------------------------------   (.24)

2 / 0« i » i  dz

Now equations (21), (22) (after one differentiation) together w ith (3/ = 0  are the 
Euler differential equations for the  functions u ij Vi, m aking the  righ t of (24) a 
m inim um . Since /3f' = 0  the term  G Cfil2 in the  num era to r of (24) m ay be dropped. 
T he critical M 3 is the least value of the righ t of (24) with or w ithou t this term . W ith
ou t it the equation m ay be in terp re ted  as showing th a t  the  energy of flexure which 
appears when buckling occurs is accounted for by  a  decrease of torsional energy of 
am ount M 3f 0u { 'v {d z .

T he sam e equation is suitable for the  approxim ate determ ination of the critical 
to rque by the Rayleigh m ethod— assum ing simple plausible forms for ui and  v3 and 
ad justing  the param eters of these forms to ob tain  a least value of M 3. This m ethod 
is applicable to non-uniform  bars.

E quation  (23) would in general require m odification if the ends are no t “bu ilt-in ,” 
for instance if th ey  are a ttach ed  to  H ooke’s jo in ts. F o r then  th e  w ork of M 3 is no t 
done m erely on a  ro ta tion  / 0/3( dz. C ertain term s of higher order m ust be added to  (3i, 
and  these can be of the  sam e order as u l ' v l . Such term s would be significant in (24). 
N evertheless (24) is ap p ropria te  in th e  Rayleigh m ethod w hatever th e  end con
stra in ts , for its minimizing conditions are the differential equations of equilibrium  
which m ust be satisfied irrespective of end constraints.

T here are  expressions o ther than  the righ t of (24) which yield the  critical M 3 as 
a  m inim um  value. I f  (21) and  (22) are m ultiplied respectively by  u [ ' , v[ ' , in tegrated  
along the  bar, and  added, the  resu lt yields ano ther in the  form

/ '( E / i « / /2 +  E I 3v { '2)dz 

/ '( « i t ) / '  — vl u l ' ) d z
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MEMBRANE STRESSES IN SHELLS OF CONSTANT SLOPE*

V L A D IM IR  M ORKOV IN l 

Brown University

1. A surface 5  of constan t slope m ay be generated by a  stra igh t line L  sliding 
along a  plane curve Co (say, in the x y  plane), m aintaining a  righ t angle w ith the ta n 
gent to Co and a constan t angle 6 w ith its binorm al (i.e., w ith the  z axis). W hen a 
closed curve Co is chosen, the surface is an obvious generalization of a circular cone2

(see Fig. 1). Since “near-conical” shells occur 
often in practice,3 it m ay be of in terest to dis
cuss such effects as fall w ithin the scope of the 
m em brane theory  of shells.

W e introduce the following no tations: 
i , j ,  k, unit vectors in fixed rectangular 

directions x, y , z;
X, p., V, un it tangent, norm al, and binor

mal of curve C0; 
t, length along generators L ;
s t, Pt, arc length and radius of cu rva

tu re  of a horizontal section C l of 
the surface S'; subscripts 0 and 
1 will designate corresponding 
quantities in the end sections C0 
and Ci of the shell; 

f = f ( s 0), vector equation of curve C0;
<P, angle between the positive # axis

and the outw ard normal of Co;
E , v, G, Y oung’s modulus, Poisson’s ratio, 

and shear m odulus; 
h, thickness of shell having the su r

face 5  for middle surface;
F ig . 1. N „  A7), norm al forces per un it length of

sections of the shell which are per
pendicular to s- and ¿-directions respectively (Fig. 3);

Arsi, shearing force in 5-direction per un it length of shell section perpendicular 
to ¿-direction;

* Received Oct. 16, 1943.
1 The author wishes to  express his appreciation to Professor W . Prager for proposing the problem

and for other valuable suggestions,
3 Non-circular cones (for which the generators m eet in one point while their “slope” varies) have

been considered recently by A. Pfliiger, Z. angew. M ath. M ech. 22, 99-116 (1942).
3 The fuselages of som e aeroplanes, for instance, can be approximated by one or several shells of

different slopes connected by stiff bulkheads. The construction of models is relatively sim ple because each
portion forms a developable surface.
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e**, «¡i, esh strains corresponding to  N „  N  t, and N , t, respectively.
W e note some simple relationships:

i f
 =  X; v =  k; (1.1)
i s  o

X =  — i  sin ip +  J  cos <f>\ j.l = — I cos <p — j  sin (1.2)

Since po—dso/dip, we obtain from (1.2) the  F renct-Serret form ulae for a plane
curve:

d \ /d s  o =  jx/po] dp/dso = — X/po- (1.3)

T he vector equation of the surface of constan t slope S  has the fo rm :

R (s0, I) =  r(s0) +  sin 6 +  V cos 6). (1-4)

For a  constan t value of (1.4) is the vector equation of the horizontal section Ct. 
Then, d R / d s t is the un it vector tangen t to  Ct. Since d R / d s t = \(po — t sin d)dso/podst, 
Ct is parallel to C0 a t  corresponding points (see Fig. 2), and

dst/dso =  (po — I sin 0)/po. (1-5)

F i g . 2 . F i g . 3 .

Hence, for corresponding points, the centers of cu rvatu re  of C0 and Ct coincide, and

Pi =  po I sin

If the  shell is long, it  m ay happen th a t  a t  some point pi =  0. A t such a  point the ta n 
gent to  Ct ceases to  tu rn  continuously (see points P , P '  in Fig. 2). W e shall discuss 
only the  portion of the shell where t sin 9<po, i.e., the  open shell w ithou t the “tail 
edge.”

2. An elem ent of a shell of thickness h having the surface S  for m iddle surface is 
shown in Fig. 3. According to  the usual assum ptions of the m em brane theory  of 
shells,4 the bending stresses as well as effects of cu rvatu re of S  are disregarded and

* See for instance S. P. Tim oshenko, Theory of plates and shells, McGraw-Hill Co., N ew  York, 1940,
p. 356; also the first chapter of W. Flügge’s Statik und D ynam ik der Schalen, J. Springer, Berlin, 1934.



one has N , t = N t,. T he to tal forces acting on the faces hdst and hdt of the elem ent are 
respectively:

— {N t(p sin 8 +  v cos 6) +  IV.iX} (po — t sin 6)d<p, - (2. la)

— {N , \  +  N at(p sin 9 +  v cos 6 )} dt. (2. lb)

L et P  =  P SX + P , (ju sin 0-fp  cos <?)+P„(p cos d —v sin 6) represent the load per un it 
area of the surface. T hen  the condition of equilibrium  of the elem ent of the shell is:

— { [A)(p sin 6 +  v cos 6) lV,iX](po — t sin 6) }dtd<p
dt

H   {ArjX +  N , t(p sin 6 +  V cos 6) \dtdip =  (po — t sin d)Pdtd<p. (2.2)
dtp

E quating  the  com ponents of these forces in the n, s, and t directions, we obtain  three 
equations for the determ ination  of the three stress com ponents:

N ,  — (po — I sin 6)Pn sec 6, 
d . , d N $

— 1 N,t(p0 — t sin 0) —N sl sin 6 =  (p0 — t sin d ) P , ---------- >
dt dtp (2.3)

d . . d N al
—  {A7i(po — t sin d) } = ------------b (po — t sin 6)P t —N ,  sin 6.
dt dtp

We proceed to solve equations (2.3) w ith the  sim plifying assum ption th a t the load 7  
does n o t vary  along the generators L ,  and obtain :5

N , — (po — t sin B)P„ sec 6, 

f(ip) sin 0
N , t =    5 esc d(po — t sin 6)(P, — P„; sec 6) +  |p 0'P „  esc 6 sec 6,

(p o — t sin dy-

- 1 r  f ( v )  i '
^  = -------—    ■ / .  -  s b )  (2.4)po — /sin  d Lpo — ¿sin 6 J

t CSC d
H------------ :—  lipc P* — |po P„ sec d — \ p " P n sec d)

Po — t sin d

— |  esc 9(po — t sin d) [P ( — P„ tan 6 — \ P "  esc d sec 0 +  fP ,' esc 0],

where f(tp) and g(<p) are a rb itra ry  functions of <p and the prim e denotes differentia
tion w ith respect to <p. If the curve Co is closed the continuity  of stresses dem ands 
th a t  /  and g '  have a period of 2tt.

W hen the load on the shell is applied only through the  end sections Co and Ci the 
stress system  becom es:

/
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f  sin 0 —1
N ,  =  0; N . t = —   — - ; N t =

.po — ism
(2.5)

(po — / sin 6)2 (po — t sin (?)

S ubstitu ting  (2.5) into (2.1a) and in tegrating  between 0 and  27r, we obtain  the re
su ltan t force Ft acting on the section Ct ; the expression for F t simplifies readily by 
v irtue of (1.2):

4 In the case of cylindrical surfaces, 0 = 0  and integration of (2.3) leads to the special solution: 
N,=pP„-, N ,t =  f(s )  + t ( P , - d N . / d s ) ; iY, =g(.v)- t d f /d s + tP ,+ ty 2 ( d - N ,/d P - d P , /d s ) - ,  w h er e /(j)  and g(s) 
are arbitrary functions of the arc length 5. In this connection see pp. 66-76 of Fliigge’s book.



Fi =  f  <f — i" — (fi sin 0 +  v cos 0)1 +  g'(fi sin 0 +  F cos 0 ) 1 ^
J  o I Lpo — t s in d  J  J

sin 0 g' cos <P dtp +  j  J  g' sin <P ¿<p| +  k cos 0 {g(2x) — g(0)}. (2.6)
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=  — sin

T he resu ltan t m om ent M t  ab o u t the origin due to  the forces on the  section Ct is 
found sim ilarly:

M t = f  R x \ — [" — (/I sin 0 +  P cos 0)1 +  g'(/i sin 0 +  ? cos 0 ) ld ^ .
•J o v Lpo — /s in 0  J  )

I t  follows by integration by  parts th a t

/• 2r /* 2r
fd<p +  cos 0 I (i  cos <p + j  sin tp)f dtp

0 0

— J*  X X ^  J '  g'O* sin 0 +  F cos 0)</^| (po — t sin 0)dtp. (2.7)

T he results (2.6) and (2.7) will form the basis of analysis in la ter sections.
3. L e t the vector of infinitesimal displacem ent be

D = u \  +  »(p sin 0 +  V cos 0) +  w(p cos 0 — F sin 0). (3.1)

T he strains in the surface are given by the following scalar products between the rates 
of change of the displacem ent D  and the unit vectors in the  t and s directions:

dR dD 

dt dt

dR  dD ( d R  dD dR  d D )
— ----------- j e,t =  <-------------1---------------- . (3.2)

dst dst I dst dt dt d s t )

W e evaluate (3.2) and substitu te  the results into H ooke’s Law :

1 , , 0 0
—  {N t — vN , } =  — ,
E h  1 ’ dt

1 , , 1 {N , — v N t } = -------------- {u' — (o sin 0 +  w  cos 0)}, (3.3)
E h  po — t sin0
2(1 +  v) 1 { du

-N .t  =  '  ' '
1 ( du )

 { (po — t sin 0 )-----1- u  sin 0 +  o' > .
I sin 0 ( dt JE h  po

E quations (3.3) are easily in tegrated  to  yield expressions for the displacem ents:

~  f ( N t  -  vN.)dt  +  A{p), 
,h J

v
Eh

2 ( i  +  «0 . . r  * N.t J
u  =  --------------(po — t sin 0) I   —  dt

Eh J  po — t sin 0
(3 4)

(p0 -  t sin 0) r  ‘ J ‘(N l  -  vN ()d t
-I —   — -—  dt — A'(tp) esc 0 +  (po — t sin d)B(tp),

Eh J  (po — t sin 0)2

1
w =  u' sec 0 +  v tan 0 --------- (p0 — t sin 0)(iV, — v N t) sec 0,

Eh
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where A(<p) and B{<p) are a rb itra ry  functions. W hen the stresses have the  form (2.5), 
the displacem ents can be expressed directly  in term s of the functions /  and g:

csc 0
v = ——- { -  J'pT1 +  l /p 'p r2 -  g' In Pi} +  A ,

E h  

csc2 6
u - {(1 +  v) f  p r1 sin2 e +  i f p r 1 -  K/p" +  3 /V )p r2 +  1 / p 'V 3

E h

+  k 'p 'p T 1 +  g"(ln P, +  1)} -  A '  CSC 0 +  ptB, 

sec 0 csc2 0
(3.5)

w - {sin2 e [ -  | / p 'p r 2 +  2f ' p r 1 +  / ( I n  Pt +  v)] +  h f" p T l
E h

-  H /p '" +  4 /p" +  6 /V )p r2 +  A (1 5 /p '2 +  io/p 'p")pr3

-  t / p '3p r4 +  H /p "  +  3g"p')pr1 -  k 'p 'V r 2 +  «"(in  p < +  l ) }
-  tan 0(yl .4" csc2 6) -f- 2Tp( sec 9 +  Bp' sec 6.

Expressions for displacem ents D x, D y, D z in the x , y ,  z  (or any  other) directions are 
best derived by  tak ing  a  scalar product between a u n it vector in the given direction 
and D  of (3.1). For instance,

D z = ic-D — v cos 6 — w sin 0. (3.6)

4. T he curren t lite ra tu re  on shells contains very  little  on the  boundary  conditions
in the m em brane theory  of shells. We recall th a t  local bending of the shell was dis
regarded according to  the sim plifying assum ptions of the theory. T hus we cannot 
expect to  satisfy all of the  usual boundary  conditions. For instance, we cannot ask 
th a t  the  heavy end bulkhead be considered rigid; in bending of the shell as a  whole 
this would entail ess = N t = 0 in the end section which could consequently tran sm it 
no bending m om ent. B y allowing deform ations in the  plane of the end sections we 
rem ove the restric tion on N t  and the problem  of bending has a solution (see section 5). 
One has to  decide in every particu lar problem  which boundary  conditions correspond 
more nearly  to  the assum ption of no local bending.

A casual reader m ight be tem pted to in te rp re t the contribution of A  and B  to
the  displacem ents in (3.4) as th a t  of rigid body m otion since i t  is present when the
stresses vanish. However, i t  is conceivable th a t  a given s ta te  of stress induces inex- 
tensional displacem ents o ther th an  those of a rigid body as necessitated by  the  shape 
of the shell. T hus, in the case of a non-circular cylindrical shell under torsion, A  ac
counts for the w arping of the cross-sections.6

In  general, these inextensional deform ations are accom panied by local bending 
stresses which m ust be small to be neglected in accordance w ith our assum ptions. One 
would expect th a t  no energy is expended in the inextensional deform ations. T he strain  
energy in shells loaded through the end-sections is

1 r 11 r 2r /iVt N l \  , N
F  =  W  i  —  + — )ptd<pdt, (4.1)

2h J  o J  o \ E  G )

6 Specifically, ¿4 —(T /2 A 0Gh) {/ f  /xhp — (1 /2 .4 0)/ / {xp c o s^ + y p s in  v ) d v } .  This expression is found by
the method indicated in section 8.
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or
t—ii1 r-

- i l i N
V — — I (N stu  +  N tv)pidip (4.2)

Substitu ting  (2.5) and the contribution due to A  and B  into (4.2) and in tegrating  by 
parts, we find th a t our expectation is verified. T he accom panying local bending, how
ever, absorbs energy and, therefore, places lim itations on the inextensional displace
m ents according to  the principle of m inim um  strain  energy. T he m inim um  expendi
tu re  of energy in bending occurs when the inextensional displacem ents reduce to  rigid 
body displacem ents.

One can easily verify th a t  the m ost general functions A  and B  corresponding to 
rigid body displacem ents have the form

A  =  — a x sin 8 cos <p — ay sin 6 sin <p +  az cos 0 +  a xy 0 cos 6

— avx o cos 9 +  a z sin 6(yo cos <p — x 0 sin <p), (4.3)

B  =  otx cot 9 cos +  ocy cot B sin <p +  a!,

where a x, ay, a z represent the infinitesimal translations in the x, y , z  directions; 
a x, a y, a.z the infinitesim al ro tations abou t the x, y ,  z axes; and Xa, y o the coordinates 
in the base section Co-

Instead  of imposing conditions on the displacem ents, one m ay prescribe a  sensible 
d istribution of stresses a t  the boundary. We note th a t  by (2.5) the s ta te  of stress in 
the whole shell is determ ined as soon as the stresses N t and N , t are given a t  one end- 
section. T hus two different stress d istributions which are statically  equivalent over 
an end-section will determ ine d istinctly  different stress d istributions in the  rest of 
the  shell.7

5. We shall stu d y  first the effects of tap er8 as exhibited in a conical shell of circu
lar cross-section ; later, we shall discuss the influence of a variable radius of curvature 
pi of the section Ct.

L et M  represent the bending m om ent (causing tension for # ¡> 0 ) applied to  the 
shell through the end-sections Co and Ci. We shall try  to  satisfy the conditions th a t 
the end-sections (bulkheads) rem ain plane, i.e.,

D z =  0 for t =  0; D z =  P(x0 — h  sin 9) for t = h \  (5.1)

where is the (undeterm ined) angle of bending, and th a t  the displacem ents due to  A  
and B  reduce to  rigid body displacem ents (4.3). By v irtue  of (3.6), (3.5), and (4.3), 
we obtain  for. the first of conditions (5.1)

sec u esc

12r
(2 / '( l  +  sin2 9) +  /'" )

E h  f 2r

+  (s' +  g'") In r  +  vg' sin2 6 +  g"'j- — ayr cos =  0. (5.2)

1 This is the price that has to  be paid for the simplifications due to  the assum ptions of the membrane 
theory. A “disturbance” of the state  of stress on one end-section (the difference between the equivalent 
stress distributions) “propagates” itself along the generators w ithout “dying o u t.” T he general theory of 
thin shells would lead to differential equations of higher order; for these one can find solutions representing 
disturbances that die out with the distance from the end-section.

8 All the results of sections 5 -9  sim plify to the corresponding expressions for a  cylinder as the taper 
approaches zero.



By sym m etry, the functions g' and f  are odd in x 0; let their Fourier expansions read
00 CO

g' == Z  (2w +  I)fl2n+1 cos (2m +  l)p , / '  =  Z  (2« +  l)&2n+i cos (2» +  1)̂ 5. (5.3)
0 0

Since the resu ltan t force F 0 on Co m ust vanish, one concludes from (2.6) th a t  a i =  0. 
E quation  (2.7) yields if /i= jx 6 i cos 6 or b i=  —(1 / i r ) M  sec 9. I t  follows from the co
efficient of cos <p in (5.2) th a t

ay — (1 /2 irEhr-) sec2 6 esc 0(1 +  2 sin2 0)M. (5.4)

S ubstitu ting  (5.4) and (5.3) into the second of conditions (5.1) and equating  coeffi
cients of cos (p in the two members, we obtain

M  sin 0(2 +  esc2 0) ( 1 11
0 =    --------------------------- >■ (5-5)

2irE h  cos2 0 l ( r  — h  sin 0)2 r 2 j

For the coefficients a2„+i and ¿>2n+i, h  >  0, one obtains a system  of two homogeneous
equations w ith a non-vanishing determ inant. Therefore O2n+i =  52n+i =  0, « > 0 ,  and

M  sec 0 cos <p M  tan 0 sin <p
N t = -------------------- » N tt = ----------------- :------- i (5.6)

ir(r — t sin 0)2 x(r — t sin 0)2

M  sin 0(2 +  esc2 0) ( 1 11
D x = -------------------------------------------  } x t. (5.7)

2ttE h cos2 0 I (r — t sin 0)2 r2 )

If we designate by I t  the  m om ent of inertia, ir (r—t sin 6)3, of Ct abou t the neu tra l axis, 
we can w rite N t = ( l / I t ) M x t sec 0. Essentially the stresses in the z direction fol
low the classical beam form ula; the influence of taper is m anifested by  the presence 
of the x  com ponents of stresses N t which have to be balanced by  N at. From  (5.7) we 
see th a t all sections C t rem ain plane. T he ra te  of change of the angle of bending 
increases as the shell grows narrow er:
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d[3 M ( 1 +  2 sin2 0) _  M(1 +  2 sin2 0)

dz irEh cos3 0(r — t sin 0)3 E h h  cos3 0

F u rth er effects of taper are app aren t in the o ther displacem ents:

M  tan 0 ( 2  esc2 0 1
1 cos tp

(5.8)

( 2 esc2 0 1 1
/ ----------------------- (2 esc2 9 — v)> , (5.9)
( r  — / sin 0 r )2 x E h

M  sec 0 ( esc2 0 — 2 — 2v 1
u =  ------------ sin tp<-------------------------------- (2 esc2 0 — v)

2t EH ( r — / sin 0 r

H (r — / sin 0)(csc2 0 +  2) V , (5.10)
r2

M  sec2 0 ( esc2 0 — 4 1
w — ------------ cos -----------------------cos2 0(2 esc2 0 — v)

2irEh l r  -  / sin 0 r

-}— -  (r — / sin 0) (esc2 0 +  2)  ̂ , (5.11)

M  sec 0 (2 — esc2 0 +  2v sin2 tp 1
D x = ------------ 2 -------------------------------+  — (2 esc2 0 — v)

2irEh ( r — t sin 0 r

 (r — / sin 0)(csc2 0 +  2) J-. (5.12)
r 2 >}■
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If we take for X ,  the fictitious displacem ent of the axis of the  cone, the average of D x 
over Ct (by analogy w ith  a cylinder or prism ), we obtain  for the slope of the deformed 
axis

d X  M  sin 0 (2 +  v — esc2 0 1

dz lirEh  cos2 0 ( (r — / sin 6)

(2 +  v -  esc2 9 1 1
<   1------ (2 +  esc2 0) } .
\  (r — / sin 0)2 r2 J

(5.13)

Comparison w ith  equation (5.7) shows th a t the axis is n o t perpendicular to  the sec
tions Ci as one m ight expect. N or is the increm ent in slope equal to /3, the angle be
tween the  end sections. In  fact, for esc2 9 = 2-f-r, a large taper, the axis rem ains a lto 
gether s tra ig h t despite the angle between C0 and C\. This is due to  a slipping effect 
caused by  an in terp lay  of the shearing forces N , t and the a: com ponents of N t. F inally, 
le t us check (5.5) by the  custom ary9 application of Castigliano’s Principle, d V / d M =]3. 
S ubstitu ting  (5.6), (5.9), and (5.10) into (4.2), we have

. M 2 sin 0 2v
V  („o = -------------------- j (5.14)

1 AxElt  cos2 0 r2

iW2 sin 0(2 +  csc20 +  2v) ( 1
V  =  : ----------- -■[--------------------------------------------(5.15)

AirEh cos2 0 l ( r  — sin 0)2 r}’
M  sin 0(2 +  esc2 0 +  2v) j  1

2irEh cos2 0 l ( r  — t\ sin 0)2' ~ ' h — <*• »«

T he discrepancy between (5.5) and (5.16) is negligible in practical applications, b u t 
is in teresting theoretically. I t  springs from a loose in terp re ta tion  of C astigliano’s 
Principle above, which is stric tly  true  only for a concentrated couple M .  Since M  is 
d istribu ted  over the end sections, i t  does work no t only in bending the shell b u t 
also in deform ing the end-sections w ithin their planes, as seen from (5.14). W hen 
the end-sections are alike as in a  cylinder or prism, as m uch energy is spent in the def
orm ation of one end as is gained a t  the o ther end; then , C astigliano’s Principle holds 
even for a d istribu ted  m om ent. B ut to obtain  the correct angle of bending in the case 
of a cone, one m ust deduct from the to ta l strain  energy (5.15) the net energy absorbed 
in the plane deform ation of Co and Ci, nam ely

M 2v sin 0
{  1 i l .
(( r  — H sin 0)2 r 2 j2t E h cos- 9 {(r — h  sin 0)

6. We derive easily the expressions for the stresses in a  cone tw isted by a torque T  
by  m aking either D z = 0 or iV( =  0 a t  C0 and Ci and using (2.6) and (2.7),.

T
N .,  = -----------------------, JVi =  0. (6.1)

2ir(r — t sin 0)2

From  the displacem ents or the  strain  energy we obtain  the  to ta l angle of tw ist y  and 
the angle of tw ist per u n it length of the cone

9 See for instance Timoshenko, Strength of materials, vol. 1, D . Van Nostrand, New York, 1940, 
p. 312.
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T  esc 8 ( 1 1 "I dy T  sec 0
 \  l ,  — =   ;   (6.2)
4irGh (( r  — t\ sin 0)2 r2 j dz 2xGh(r — t sin 0)3

Here, the effects of tap er as m anifested in (6.1) and (6.2) are no t unexpected.
M ore interesting is the case of a  cone supported a t  Co and ben t by  a force R  (in 

the  x direction) d istribu ted  over Ci. We learn from (2.6) th a t  the function f(<p) and
hence the shear stress N , t do not actually  contribu te to  the resu ltan t R  acting on
any section Ct. Expressions (2.6) and (2.7) show th a t  the term  in cos tp of g' alone in
fluences the resu ltan t force as well as m om ent on Ct. We superpose a s ta te  of stress 
given by  (5.6) w ith M  = R  cot 6(r — h  sin 0) in order to  bring the m om ent across C\ to 
zero, and obtain  the final result

— R(ti  — t) cos ip — R{r — h  sin 6) sin tp
N t  = ----------------------------------------------> N , i  = -------------------------------------------  —  • ( 6 . 3 )

x(r — t sin 6) 2 x(r — t sin 0)2

7. L et us now consider shells w ith non-circular cross-sections Ct. T he coordinates 
of points on C t are expressed in term s of p t and <p

/» v n v
pt sin <p dtp, y t — I p, cos <p dtp. (7.1)

0 J o

I t  is clear from (7.1) th a t  pt cannot contain any  term s in cos <p or sin <p, if the shell is 
closed. If only cosine term s appear in the Fourier expansion

P t = rt -  rn cos n<p, (7.2)

the section C< is sym m etric w ith  respect to the x  axis. The simple section, for which 
rn =  0 if n?^3,  approxim ates the cross-section of m any a fuselage:

Xt =  r, cos <p +  \ r z cos 2<p — r3 cos 4<p;

*‘(°) “  +  T  * 'w  =  - r ' +  7  : (7.3)

y ,  = ft  sin tp — \ r 3 sin 2<p — -J-r3 sin 4<p; y<(ir/2) =  rt.

T he neu tra l axis of the sections coincides w ith the y  axis (i.e., is independent of t)
if x t contains no constan t term  and if

X ” r„(rn+1 -  r„_0
xopod<p =  —  2_, ----------------------= 0 .  (7.4)

2 2 »

In  bending* only sections satisfying (7.4) will be considered.
8. T he stresses in a shell of constan t slope under torsion are determ ined from the 

conditions th a t the load is applied in such a m anner th a t  only shearing stresses 
are generated a t  the end-sections. T he conditions iV( =  0 a t  / =  0 and t — ti yield 
f  = kpo(po — h s m  6) and g = k(po — h  sin 0). S ubstitu ting  the expression f o r / in to  N . t, we 
find the torque T  on Co



which reduces to

T  =  k sin 6 {2A o — tiLo sin 0} =  k  sin 6 {A  o +  A  i — irtl sin2 9 }. (8.1)

Here the A ’s represent the areas of the sections and L 0 is the length of Co, all q u an ti
ties easily m easurable. T hen,

N et =    — » (8.2)
'(A o +  A i — irt\ sin2 6) p2

N  =  ^_T_ t _ ( P i V  ~  T  sin 0 t(h  -  t)p' ^

(Ao +  A i  — x/? sin2 6) pt \  pt)  (A 0 +  A i  — xf? sin2 9) p3

1944] S H E L L S  O F  C O N S T A N T  S L O P E  111

T he effect of the variable radius of curvature of Ct is observed in the expression for N t ) 
tensile stresses increase directly  w ith p' and inversely w ith pf.

T he expression (4.2) for strain  energy takes the form

/I c,n2 fl 2s- /  n'\ 2k 2 csc 6 ( h  sin2 0 r  2t (  p ' \ 2
V  =  ———— ■! b ( l  +  r) sin3 6(Lo +  Li)  -] — I ( - )  dtp

2 E h  t  12 J  o \  P t/

f 2T M - + - )  dp ~  f " Tp '2 l n ( - ) ^ } ,  (8.4)
J  o \  Pi P o/ A o \  P o/ j

t\ sin

2

and the angle of tw ist is 

T

E h (A 0+ A i - i r t 2 sin2 d)2

r  r 2r [t\ sin2 9 / I  1 \
) (£ .+ i 0 + c s c . . J i ( ^ - p / - - - )

( 8 ' 5 )

/i sin 6
  —  p-

T he q u an tity  in the braces is of the  order of sin6 9. Also, each of its term s contains the 
factor p '2. In the common case of small taper and nearly circular shell we m ay use as 
a good approxim ation

^  +  LÙ .

y 'ip>’ 2Gh(A0 +  A i  — x^  sin2 0)2

N eglecting the term s in the braces of (8.5) is equivalent to  disregarding the effect of 
the stress N t ‘, see (4.1).

T he inextensional displacem ents given by A  and B  in (3.5) can be determ ined 
from the  tw ist of the end-sections (centers of tw ist along z axis)

u — 0, t = 0; u  — y ( x i  cos <p +  y i sin tp), t =  lx. (8.7)

These displacem ents include w arping.10 T he actual process of solving (8.7) is quite 
tedious even when a definite section is given.

9. W e conclude w ith a sho rt discussion of stresses in a general shell of constan t 
slope ben t by couples M  as in section 5. W e assum e th a t  the m om ents a t  the end-sec-

10 For a treatm ent of warping along similar lines see R. V. Southwell, On the torsion of conical shells, 
Proc. Royal Soc. London, (A) 163, 337-355 (1937).
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tions Co and Ci are applied in such a m anner th a t  the stress N t  a t  these sections is 
proportional to the d istance from the neutral axis:

N t =  e0x 0 for 1 = 0 ;  N t = eiXi for I = h. (9.1)

Conditions (9.1) and the  fact th a t  the m om ents across Co and Ci are alike lead us to 
the following expressions:

Mpopi (Qo CM M  ( poQo PiQi)
f  =  , . „------------ r  ('< g =  7 ~~  •: T S T  (9-2)It sin 8 cos 6 (7o

where the J ’s are the m om ents of inertia abou t the neutra l axis of the full respective 
sections and Qt = f^X tp td<p the variable first m om ent (about the same axis) of the sec
tion included between 0 and <p. T he expressions for the stresses them selves read:

" - - r r 2? # - ? } -  ( 9 ' 3 )hp] cos 8 Uo h )
M ( h  — l)t sin 6 p '(Q o Qi(Qo _ CM

I/o  h iN ‘ = 11 cos 8 p”

M (l\  — /)xo po M l Xip\
-I------------------------- 1-------------—  . (9.4)

, T n "  •  «  1- 2  V ’¿i/o cos 8 p] ti cos 8 h p

T he corresponding expressions for s train  energy and  displacem ents are very  cum ber
some and can hardly be useful in practical applications.



113

NON-HOMO GENEOUS STRESSES IN VISCO-ELASTIC MEDIA*
B Y

T . A LFR EY  
Monsanto Chemical Company

1. Introduction. T he purpose of this paper is the extension of the theory  of elas
tic ity  to include visco-elastic media. T he m aterials considered in this paper are 
istropic  and incompressible, and are characterized by  linear relations between the 
com ponents of stress, strain , and their derivatives w ith respect to  time. As in the 
classical theory  of elasticity, only small strains will be considered. Body forces, in 
particu lar inertia  forces, will be neglected.

In  the following, <jik (i, k = l , 2 ,  3) and ea denote the com ponents of the tensors of 
stress and strain  w ith respect to  a  system  of rectangular axes x,-. ffn, crw, 0-33 arc the 
norm al stresses, 0 -12  = 0 -2 1,  0 2 3  =  cr32, 0 3 1  =  0 4 3  the shearing stresses. Sim ilarly, £u, £ 2 2 ,  £ 3 3  

are the norm al strains, £ 1 2  =  £ 2 1 ,  £ 2 3  =  £32, £ 3 1  =  £ 1 3  the shearing strains. If U i  are the com
ponents of the displacem ent vector,

£.'fc =  \{Ui ,k +  Uk,i), (1 )

where the index afte r a com m a denotes differentiation w ith  respect to the correspond
ing coordinate x, i.e., «,-,* =  cbii/dx*; Uk,i = duk/dxi.

Irrespective of the mechanical properties of the m aterial, the  stresses m ust satisfy 
the equilibrium  conditions

> Oik.k =  0, (2)

where the sum m ation convention of tensor calculus has been used .1 Similarly, the 
stra in  com ponents m ust satisfy the conditions of com patibility,

¿ik.lm d-  Clm.ik “  CiZ.jfcm d~ Ckm.il, (3)

where £a,zm = d 2£,-fc/dxi3x,n, etc. W hile there are obviously three equations of equilib
rium  (corresponding to  the  three values which the subscript i  in (2) can assum e), it 
m ay a t  first glance appear th a t there are 3* equations of com patibility . On account 
of the  high degree of sym m etry  in (3), the num ber of equations of com patib ility  re
duces, however, to  six; three equations of the type obtained from (3) when e.g., 
i  = k — 1 and l — rn—2, and three equations of the type obtained from (3) when e.g., 
i  = k = 1, 1 = 2, m  = 3.

By themselves, Eqs. (2) and (3) are no t sufficient to  determ ine the sta tes  of stress 
and strain  in a body subject to  given surface stresses. A further necessary set of equa
tions are those relating the stress com ponents to the strain  com ponents in the general

* Received Dec. 21, 1943. This paper was presented at the m eeting of the Society of Rheology on 
October 29, 1943. 4 he author wishes to express his gratitude to Dr. W. Prager for his help in the prepara
tion of the present manuscript. M uch of the material presented in this paper will appear, in modified form, 
in the book: The mechanical behavior of high polymers. B y T . Alfrey. Interscience Publishing Co. 1944.

1 According to this convention rnt.k stands for the sum of all the terms obtained by giving k the  
values 1, 2, 3. In general, whenever a subscript appears tw ice in the sam e monomial, this subscript is to
be given the values 1, 2, 3 and the resulting terms are to be added. Such a repeated subscript is called a 
dum m y subscript.



case of combined stresses. I t  is through these stress-strain relations th a t the properties 
of the m aterial en ter the problem.

In the case of an incompressible m aterial, 6,̂  =  611+ 622+633 =  0 . T he stress-strain 
relations are m ost easily discussed when the following decomposition of the stress 
tensor is introduced. Define the mean normal stress as

v — a =  $(cn  +  cr 22 +  C33)i (4)

and the deviatoric part  of the stress tensor as

Sik = <Tik — 0-5,■ k, (5)
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where
(0  if i 7^ k,

l l  if i =  k.

T he stress-strain  relations of an isotropic, incompressible elastic m aterial can then be 
w ritten  in the form

s ik =  2 Gtik, (6)

where G denotes the modulus of rigidity.
In  view of (5), the equilibrium  condition (2) yields

Sik.k +  <r,k8ik = Sik.k +  cr,< =  0 . (7)

B ut, according to (6) and (1),

Sik.k =  2Gtik,k =  G(tii,kk +  Uk.ik) — Gui,kk, (8)

since for an incompressible m aterial «*,* =  0 and, consequently, Uk,ik — Uk,ki~0- Com
paring (7) and (8), we find

<r,i =  — Gui,kk■ (9)
Hence

°\it =  — Gui,kkt =  0, (10)

on account of the incom pressibility of the m aterial.
According to (5),

<Tik.u = Sik,11 +  a.uSik — Sik.n,

on account of (10). M aking use of (6), (1) and (9), we transform  this in the following 
m anner:

(Tik.u — 2Geik.ii — G(ui,ku +  Uk,ni) =  — 2a,ik.
T hus

<r ijt.n +  2<r,ik =  0. (11)

In th e  case of an incompressible elastic body in equilibrium  the  boundary  condi
tions m ay be given in the form of three functions /<(*) which define the com ponents 
of the forces (per un it area) applied to  the surface of the body. T he forces / ;  m ust,
of course, be in equilibrium , i.e., the  surface integral o f/,(x ) m ust vanish for 7 =  1 ,2 , 3.
If Uk denotes the un it vector directed along the exterior norm al of the surface of the 
body, the stress com ponents a t  the surface m ust then satisfy the conditions

vikhk =  (12)

T he values of the surface stresses, in conjunction w ith Eqs. (2) and (11), define the 
stress distribution in the body and, consequently, also the strain  d istribution and, to 
w ithin a rigid body displacem ent of the entire body, the displacem ent com ponents.
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On the o ther hand, the displacem ent com ponents m ay be given on the surface 
of the body. These given surface displacem ents m ust, of course, be com patible w ith 
the assum ed incom pressibility of the m aterial, i.e., the surface integral of the normal 
displacem ent com ponent m ust vanish. E lim ination of tr from (9) furnishes 
Ui,kki~ui,tki = 0, or, after a change of subscripts,

U{,kii — Uk.m =  0. (12a)

Eqs. (12) in conjunction w ith  the condition of incom pressibility, u i j  — 0, and the given 
surface values determ ine the displacem ent com ponents.

2. S tress-s tra in  relations of visco-elastic m aterials. E quations sim ilar to (11) and 
(12a) m ay be derived for visco-elastic m aterials characterized by  linear relations be
tween the com ponents of stress, strain  and their derivatives w ith respect to time.

In  the case of an incompressible m aterial of the type considered by  V oigt2 we have 
the stress-strain  relations

S ik  =  2 G t i k  +  2/iêifc, (1 3 )

where n  is the coefficient o f  viscosity.
In  the case of an incompressible m aterial of the Maxwell type, we have

=  +  <14>

where dots denote differentiation w ith respect to tim e, and r  is the relaxation tim e?
Generalizing, we m ay consider incompressible m aterials characterized by  stress- 

s train  relations of the  form

/  d m 3 m_I \  /  dn 3n_1 \
(  h a-m-1   +  ■ • • +  ffo ) Sik — ( bn --------b bn~ i ----- : +  • • • +
\ d t m d tm~l )  \  d tn d r - 1 /

(15)

where am- 1, ■ • • , a 0, bn, bn- 1, • ■ • , b0 are constan ts characteristic of the m aterial.
For such m aterials two types of boundary value problems m ay be considered. In 

the first case the  surface forces/,-(x, t) are given as functions of the position # and the 
tim e £; for £ =  0 these surface forces and their m  — 1 first derivatives are supposed to 
vanish as well as all stress com ponents and their derivatives up to  the order m  — 1. 
M oreover, a t  any  given tim e the fo rce s /; m ust be in equilibrium . If, for £ S 0, the 
forces are analytic functions of tim e, this implies th a t  the surface integral of any 
derivative d f f i / d t ” m ust vanish for, say, £ =  0. T he f irst boundary value problem calls 
for the determ ination  of the  stress d istribu tion  cr ,■*,(»:, £) fulfilling these boundary con
ditions and initial conditions.

In  the second case the surface displacem ents Ui{x, t) are given as functions of the 
position x  and the  tim e £; for £ =  0 these surface displacem ents and their n — 1 first 
derivatives are supposed to  vanish, as well as the displacem ents in the in terior of the

1 W. Voigt, Abh. G ottingen Ges. W iss. 36 (1899), 47 pp.
3 R. Sirnha has recently used the stress-strain relations which are obtained from Eqs. (14) b y  sub

stituting the stress tensor <ru for its deviatoric part Jn  [j. Appl. Phys. 13, 201 (1942)]. Such stress-strain 
relations im ply that, a t constant strain, the stress decays exponentially with a relaxation tim e r which is 
independent of the geometrical nature of the stress. This treatm ent ignores the fact that viscous flow, 
which is the cause of relaxation, is a response to  shearing stresses only. In an incompressible material a 
uniform hydrostatic pressure does not produce viscous flow, and, hence, does not tend to relax. Contrary 
to Sim ha’s stress-strain relations, our Eqs. (14) reflect this behavior.
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body and their derivatives up to  the order n  — 1. M oreover, on account of the assum ed 
incom pressibility of the m aterial, the surface integral of the norm al displacem ent 
com ponent u o n  m ust vanish for any time. If, for ifeO, the displacem ents are analytic 
functions of tim e, this m eans th a t the surface integral of all expressions of the form 
(dpUi/div) m  m ust vanish for, say, ¿ =  0. T he second boundary value problem calls for 
the determ ination of the displacem ents «¿(x, t) in the  interior of the body, fulfilling 
these boundary  conditions and initial conditions.

L et us rewrite the stress-strain  relation (15) in the form

Psik -  2Qea , (16)

where P  and Q denote the linear differential operators

d m d m~l d
P —  b am-1    + ■ • • + ffi b Oq,

d tm dl”' - 1 dt

d" d " - 1 3
Q  — bn  b ¿«-i b ■ ■ ■ + ¿i   b ¿o-

dtn d t" -1 dt

(16a)

S ta rting  from the stress-strain  relations (16) and repeating the various steps which 
led to  the Eqs. (11) and (12a), we obtain

P(<rikM +  2cr,,-fc) =  0 (17)
and

Q {ui,m  — Uit,m) =  0 (18)

as the equations governing the solution of the first and  second boundary  value prob
lem, respectively.

For example, consider the first boundary  value problem for an incompressible m a
terial of the Voigt type. Com paring Eqs, (13), (16) and (16a), we see th a t  for this 
m aterial

P =  1, 9  =  m —  +  G.
d t

Eq. (17) consequently takes the same form as for an incompressible elastic m aterial 
(see Eq. (11)). T his m eans th a t, in  the case of the f irs t  boundary value problem, the 
stress distribution in  an  incompressible, material o f  the Voigt type is  identical with tluit 
in  an  incompressible elastic material under the same instantaneous surface forces. This 
stress d istribution does not depend on the past stressing history, although, of course, 
the displacem ents do.

T his result is readily extended to  the case of an incompressible visco-elastic m a
terial characterized by a stress-strain  relation (16). Consider, for instance, the first 
boundary value problem for a given set of surface forces/¿(x, t) which, in addition to 
fulfilling the  conditions stipu la ted  above, are supposed to be ana ly tic  functions of 
tim e for i^ O . If <j,i(x, t) denotes the static4 stress d istribu tion  in an incompressible 
elastic body of the same shape which is subjected to  the surface fo rces/,(x , t), the 
required stress d istribu tion  in the  visco-elastic body is given by

V,fc(x, t') ^  3,'fc(x, /).
4 T he term “sta tic” is used here to  indicate that, though the stresses <X;t depend on I as do the forces 

no inertia effects should be taken into account in com puting these stresses. In fact, a s  far as this elastic 
body is concerned, t plays the role of a parameter which need b y  no m eans be identified with the tim e.
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Indeed, by definition, the stresses tr,-* satisfy the conditions (2), (11) and (12) for any 
value of t. Since, like the surface forces, these stresses are analytic functions of time, 
this m eans th a t  they  also satisfy the condition (17). The result formulated above fo r  
the f irs t  boundary value problem of an  incompressible material o f  the Voigt type applies, 
therefore, to a n y  visco-elastic material characterized by stress-strain relations of the fo rm  
(16).

A sim ilar result is obtained in the case of the second boundary value problem for 
an incompressible visco-elastic m aterial obeying stress-strain relations of the form 
(16), if the prescribed surface discplacem ents u,(x , t) fulfill the conditions form ulated 
above and, in addition, are analy tic  functions of tim e for ¿SO. The displacem ents 
Ui{x, t) then equal the  static displacem ents u f x ,  t) of an incompressible elastic body
of the sam e shape, subjected to  the  given surface displacem ents u,{x, t).

3 .’ D eterm ination  of the  displacem ents in the  first boundary value problem  of 
visco-elasticity. L et us first consider the particularly  simple case, where the given 
surface forces can be factored into the form:

f i  = fi{x)g{t). (19)

According to w hat has been said above, the stress d istribu tion  which these surface 
forces produce in the visco-elastic body has then  the form

<rik(x, I) =  aiifx)g(t), (20)

where Hufx) denotes the stresses which the surface forces f f x )  produce in an incom
pressible elastic body of the same shape. In troducing the stresses (20) into the stress- 
strain  relation (16), we see th a t the strains in the visco-elastic body can be w ritten 
in the form

Uk{x, t) =  uk(x)h{t), (21)

where hit) satisfies the differential equation

Qh =  Pg, (22)

while h and its  derivatives up to  the  order n — 1 vanish for t =  0. As regards the quan
tities iihix), th ey  are related to  the stresses ff,k{x) by

Sih =  2 t ik, • (23)

where $ik denotes the deviatoric p a r t of the stress tensor i«,. In  o ther term s, the quan
tities iifc are the strains in an incompressible elastic body of the same shape and of 
u n it modulus of rigidity, which is subjected to  the  surface forces f i ( x ) .  W e shall call 
these strains the equivalent elastic strains. In  order to obtain the function h(t), all we 
have to do is to  consider the response of the visco-elastic m aterial under consideration 
to  a simple shearing stress 5 varying according to s — 2g{t). T he shearing strain  pro
duced by this stress equals h(t). T he strains produced in the visco-elastic body by  the 
surface forces/,•(*) g(t) are then obtained by m ultiplying the equivalent elastic strains 
by the response function h(t).

Since the differential equations for stresses and  strains are linear, solutions of this 
type m ay be superim posed on each other. L et us, now, assume th a t our result holds 
good even if, contrary  to the assum ption m ade above, the surface forces are not an a 
lytical functions of tim e for ¿SO. In  particu lar consider the  case w hen/,- = fi(x )g (^ ,  t), 
where g(£, t) is H eaviside’s un it step function defined by
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g(Z, t)
/o , if t <  £, 

U , if t ^  |.

L et /¿(£, 0  denote the response of the visco-elastic m aterial under consideration to  a 
simple shearing stress s = 2g(%, t). Since the surface forces/¿(x, t) can be represented 
in the form

/;O r t) = f  /.■(*» ?)g(£. 0 ^ -  (24)
•/ o

the following formal integral representation of the strains produced by these surface 
forces in the  visco-elastic body suggests itself:

/ » 00
«<*(x, £)£(£, t)d%, ■ (25)

0

where ««(x, £)d£ are the equivalent elastic strains corresponding to  the surface forces 
f i (x ,  £)d£. I t  can be shown th a t  (25) indeed furnishes the strains of the visco-elastic 
body whenever the surface forces can be represented in the form (24). M oreover, to 
w ithin a rigid body displacem ent the displacem ents of the visco-elastic body are 
given by

/ » oo

«,(x, £)/;(£, t)dt, (26)
0

%
where w;(x, £)d£ are equivalent elastic displacements produced in an incompressible 
elastic body of the same shape and of un it modulus of rigidity, by the surface forces 
/ ,(x , £)d£.

L et us consider the following example: A  th in  cantilever beam of length Z  and 
cross sectional m om ent of inertia I  is clamped rigidly a t the  end x =  0. T he beam con
sists of an incompressible visco-elastic m aterial of the Voigt type (stress-strain rela
tions (13)), and is subjected to  the transverse load

K *

per un it of length, c being a  constant. A t first sight, it  m ay seem th a t  the problem 
of determ ining the bending m om ents and transverse displacem ents of the beam  is 
outside the scope of our theory, since a t  the clamped end we have prescribed de
form ations ra th e r than  prescribed forces. However, the system  being statically  de
term inate, the transverse reaction and the bending m om ent a t  the clamped end are 
com pletely determ ined by the given loads. Consequently, the problem m ay be con
sidered as a  first boundary  value problem, if we m ake the usual assum ption th a t 
the distribution  of stresses over the end section is irrelevant as long as it leads to  the 
resu ltan t and the resu ltan t m om ent required by the equilibrium  of the beam. The 
displacem ents of an incompressible elastic cantilever beam  of un it m odulus of rigidity, 
loaded by  /(x )  = c ( l  — x / L ) ,  are

CX“
w(x) = ------------------ (10Z3 -  10Z2x +  5 Z x2 -  X 3) ,

360I L  • .
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where account has already been taken  of the fact th a t  the Young's modulus equals 3G 
for an incompressible elastic m aterial.

Now, in accordance with (13), the  response hit) of Voigt’s m aterial to  a simple 
shearing stress s =  2t2 is found from

2t2 =  2 Gh +  2 nh, h{ 0) =  0.

One obtains
t2 M M2 rhit) = -------- 2 — t + 2  —  [1 — -Gib
G G2 G3 

T he deflection of the  visco-elastic beam  is, therefore, given by

C X “

u ix ,  t) = ------------ [lOL3 -  10Z,2* +  5L x 2 -  x3]
360GIL

t2 -  2 —  t + 2  —  ( 1 -  e-i“10) 
G G2 ]'

T he sta tically  determ inate bending m om ents are com pletely determ ined by the given 
loads.

4. Determ ination, of the  stresses  in  the  second boundary value problem  of visco
elasticity. A sim ilar procedure leads to the determ ination of the stresses in the second 
boundary  value problem  of visco-elasticity. Consider first the case when the  given 
surface displacem ents can be factored into the form m  = Uiix)git), and denote by 
¡Tikix) the equivalent elastic stresses, i.e., the sta tic  stresses set up in an  incompressible 
elastic body by the  surface displacem ents «¿(x). F urtherm ore, determ ine the response 
func tion  hit), i.e., half the shearing stress produced in the visco-elastic m aterial under 
consideration by a simple shearing strain  git). T he required stress d istribution in the 
visco-elastic body is then given by  (Tikix, t) = Biix)hit).

In  the general case, the stresses in the second boundary value problem  m ay be 
represented in the form

/% oo
(Tikix, t) =  I ffikix, £)/«(£, t)d£, (27)

where Okiix, £)d£ are the equivalent elastic stresses corresponding to  the surface dis
placem ents Uiix, £)d£, and 2/i(£, t) is the response of the visco-elastic m aterial to a
simple shearing strain

(0, if t <  £,

l l ,  if t ^
t)

5. Sum m ary. T he solution of the first and second boundary  value problem s of 
visco-elasticity is reduced to  the  solution of equivalent boundary  value problem s of 
elasticity , and the determ ination of the response of the  visco-elastic m aterial under 
consideration to  a simple shearing stress or a simple shearing strain . I t  rem ains to  be 
seen in how far the technique developed here can be applied to the solution of the 
th ird  (mixed) boundary  value problem  where the surface forces are prescribed on 
p a rt of the surface of the body, and the surface displacem ent on the rest of this 
surface.
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THE INTRINSIC THEORY OF THIN SHELLS AND PLATES 
PA RT III.— APPLICATION TO T H IN  SHELLS*

BY

W EI-ZA N G  C H IE N  

Department of A pplied  Mathematics, University of Toronto

10. D efinitions and m ethod of approxim ation. T he m ethod of approxim ation used 
below is essentially the same as in the case of thin plate theory. We define e to  be 
the average reduced thickness of a shell. (We m ay recall th a t  the reduced thickness 
of a shell is the  ratio  of its  thickness to  a selected lateral dimension of its middle sur
face). T hen for a  th in  shell, e is a small quan tity . T his definition of a  thin shell is in 
agreem ent w ith  th a t  of a th in  p late given in P a rt II.

A th in  shell is said to  havefi?iite  curvature when the sm allest radius of curvature 
of its  middle surface and the  selected lateral dimension are of the same order of m ag
nitude. Furtherm ore, a  th in  shell is said to  have small curvature of order b when the 
ra tio  of the selected lateral dimension to  the sm allest radius of curvature of its  middle 
surface is of the same order of m agnitude as e6, where 6 Si 1. T hus a  th in  plate m ay be 
regarded as a th in  shell of small cu rvatu re  of order °o.

We consider a  family of «=1 shells of the sam e m aterial w ith  dim inishing reduced 
thickness, each in a s ta te  of stress under (i) external forces applied a t  the edge,
(ii) surface forces and (iii) uniform body forces. We assign to  each shell a value of a 
param eter e (0 < e < e i)  denoting,the average reduced thickness, so th a t  the thickness is

2h  =  2eh(x\ x2). (10.1)

T he q u an tity  ei is sdpposed to  be small, b u t the basic idea of the m ethod is th a t  we 
seek solutions valid for all e in the range 0 < e < e i .  In this theory, e is the  only small 
quan tity . All quan tities occurring (except Poisson’s ratio  <r) are functions of e. No 
q u an tity  is small unless it tends to  zero with e.

For the g reatest generality  suppose all quantities to  be power series in e. Thus, 
supposing the m iddle surface itself to  depend on e, we have

oo oo

& a ß  v  ^ ( s ) a $ € S j  fo a ß  ^  ^  ,  ( 10 . 23. ,  b )

where b is either zero or a positive integer. a^s)aß and b Waß are functions of x“, inde
pendent of e. For £> =  0, we are dealing w ith th in  shells of finite cu rvatu re, while for 
£>Stl we are dealing w ith th in  shells of small cu rvatu re  of order b.

F urtherm ore, we shall represent Q \  P \  A[0], T aß, T a0, L aß, p aß, q aß by  power series 
as in P a rt I I ;

' * Received June 12, 1943. Parts I and II of this paper appeared in this Quarterly^ 1, 297-327 (1944),
and 2, 43-59  (1944).
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x L  =  E  X x am  = E (10.3c)

( 1 0 . 3 b )

f «fl =  W  P “* =  E  ¿ (S f ,
s = u

co

=  X/ dfiiJaS6*-P a f l  —  E P ( ' ) « Î ê
j=j>

f “° =  E  ?~7.)e’> (10.4a, b .c )
<-i

(10.5a, b)

H ere k, ko, n , n 0, j , j o, t, u, I, p  are integers g reater than  zero, and g is zero or a posi
tive integer. T he case g =  0 corresponds to  problem s of finite deflection. T he quantities 
(?(!)> (?(“)> P 0W el-c - are functions of x “, independent of e.

p-values

1 -va lues

F ig. 4. Classification of problems of thin shells with finite curvature (6 = 0). 
p = order of extension of middle surface. 
g=order of change of curvature of middle surface.
6 = order of initial curvature of middle surface.

T hen the problem s of thin shells can be classified by assigning integral values to 
p, q and b. W ith p, q , b given, the values of k 0, k, n 0, n , j 0, j  in (10.3) are fixed by the 
condition 1 h a t X ^ )l0], X ^ [0], P “„5), P “B), Q°^)t Q“k) should contribute to  the principal 
p arts  of (6.34), (6.35), w ithout dom inating these equations to  the exclusion of p ap 
and q ag. T he values of t, u, I of T “P, L ° e, T a0 are im m ediately fixed through the  ex
pressions (6.29), (6.30), (6.31). W ith p, q, b, k, k 0, j , j o ,  n, no fixed, the  equations of
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equilibrium  and com patibility  in the first approxim ation are im m ediately obtained 
by substitu ting  (10.1)—(10.5) into (6.34), (6.35), (6.43), (6.44), and picking ou t the 
principal term s in e from the resulting equations. This gives us six differential equa
tions in six unknowns Pc„)ap and q(Q)ae- For the  various com binations of values of 
p, q, b, the forms of these differential equations fall into several types. T he classifica
tion of these types will be given below.

11. Classification of all th in  shell problem s. The classification of the problems of  
thin shells with fin ite  curvature (b = 0 ). T he following is a complete classification of the  
problems of thin shells w ith finite curvature (b =  0) based upon assigned values of p , q. 
The classification is shown graphically in Fig. 4.

I t  is found th a t the (p , g)-points in the diagram  (g^O , p ^ l )  are broken up into 
eight groups by the  division lines A B ,  OC  and the p-axis. For q — 0, the  principal p a r t 
of (6.34) or (6.35) takes three different forms depending on the position of the point 
on the p-axis relative to  the point A ,  while the principal p arts  of (6.43) and (6.44) 
are the same for all values of p. For gg: 1, the principal p a r t of (6.34) or (6.35) takes 
three different forms depending on the position of the (p, g)-point relative to  the line 
A B ,  and th a t  of (6.43) or (6.44) takes three different forms depending on the position 
of the (p, g)-point relative to the line OC\ each of these forms is different from th a t  
for g =  0. I t  follows th a t the (p, g)-points are divided into eight groups and so the 
com plete classification of all problem s of th in  shells of finite cu rvatu re involves con
sideration of eight types (Types S F 1 -S F 8 ) .  (The le tter ' S ’ denotes shell, while ' F' 
denotes f in ite  curvature.)

In  order to  save space, we shall not discuss these types in detail. T he results for 
these types are sum m arized together with those for thin shells w ith small curvature 
in the tables in the Appendices. T he principal p arts  of the equations of equilibrium  
and com patibility  are shown in Table I I I ,  and orders of m agnitude of the external 
forces and  the principal parts of the macroscopic tensors in T able IV.

The classification of the problems o f th in  shells with small curvature (6 S: 1). T he 
following is a com plete classification of the problems of thin shells w ith small cu rva
tu re  based upon the assigned values of b, p, q. T he classification is shown graphically 
in Fig. 5 (for b = 4 ), Fig. 6 (for b =  2), Fig. 7 (for b = 1). T he case 6 =  4 is typical of the 
cases 3 5  b <  « .

W e shall now explain Fig. 5. We see th a t the (p , g)-points are broken up into 
27 groups by the division lines and the p-axis. Of these division lines, the line B ' B B "  
(i.e.,g  =  6 =  4) is the m ost im portan t. I t  divides the {p, g)-plane into three m ain re
gions. For any  point on B ' B B " ,  the curvatu re in the unstrained sta te  and the change 
of cu rvatu re  during the strain  are of the same order of m agnitude (g =  6 = 4 ) . For any 
point on the left of B ' B B " ,  the m agnitude of the curvatu re in the unstrained s ta te  
is smaller than  the m agnitude of the change of cu rvatu re  (g < 6 = 4 ) ,  while for any 
point on the righ t of B ' B " , the m agnitude of the curvatu re in the unstrained s ta te  
is greater th an  the m agnitude of change of cu rvatu re ( q > b =  4).

For g =  0 (i.e., on the £-axis) in Fig. 5, the  principal parts of (6.34), (6.35) take three 
different forms depending on the  position of the  points on the  p-axis relative to  the 
point A ,  while the principal p arts  of (6.44), (6.43) are the sam e for all points on the 
p-axis. For 1 ¿ q < b  = 4 (i.e., in the region between the  p-axis and B 'B B " ) ,  the  p rin
cipal parts of (6.34) or (6.35) or (6.44) take  three different forms depending on the 
position of the  (p , g)-point relative to  the division line A  C or A  B  or OD respectively,
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while the principal p a r t of (6.43) is the sam e for all the (p , g)-points in this region. 
I t  follows th a t  the (p , g)-points in the region on the left-hand side of B ' B "  are divided 
into 11 groups (Types 5 5 1 -5 5 1 1 ). (The letters ‘5 5 ’ denote the shell w ith small cu rva
ture.)

0 1 2 3 4 5  6 7 8 9

 ►
q . - v a l U 0 3

F ig. S. Classification of problems of thin shells with small curvature (6=4). 
p = order of extension of middle surface. 
g=  order of change of curvature of middle surface.
6=order of initial curvature of middle surface.

For q —b =  4 (i.e., on B ' B " ) ,  the principal p arts  of (6.34) or (6.35) or (6.44) take 
three different forms depending on the position of the (p , g)-point relative to  C or 
B  or D  respectively, while the principal p a r t of (6.43) is the sam e for all points on this 
line. Furtherm ore, f o r g > 6 = 4  (i.e., the  region to the righ t of B ' B " ) ,  the  principal 
p a rts  of (6.34) or (6.35) or (6.43) or (6.44) take three different forms depending on
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the position of the (p , g)-point relative to the division line CG or B E  or B 'F I  or D F  
respectively. I t  follows th a t the (p , <?)-points on the right-hand side of B ' B "  are di
vided into 9 groups (Types 5519-5526 , 5510). I t  should be noted th a t, as far as the 
principal p a rts  of (6.34), (6.35), (6.43), (6.44) are concerned, the (p , g)-points lying 
between the  lines I D F  and IC G  are regarded as one group (Type 5510). Therefore,

0 1 3 3 4 5 6 7 8 9

q-valuea

F ig . 6. Classification of problems of thin shells w ith small curvature (6 =  2). 
p = order of extension of m iddle surface. 
g =  order of change of curvature of middle surface. 
ft =  order of initial curvature of middle surface.

together w ith the groups on the left-hand side of B ’B " , we have in all 25 groups of 
(P< <z)-points in Fig. 5. And consequently the com plete classification of all problem s 
of th in  shells w ith small cu rvatu re of order b — 4 involves consideration of 25 types 
(Types 5 5 1 -5 5 1 1 , 5513-5526).

T he general appearance of the classification diagram s for any  b satisfying 3 ^  b <  
is the same as for 5 = 4 . An increase of b makes the line B ' B "  sh ift to  the right, while 
a decrease of b m akes it shift to the left. On exam ining the various groups of (p, q)- 
points in these diagram s (for any  integral value of b in the range of 3 ^ b <  <»), i t  is 
found th a t the corresponding groups occupying the same relative positions w ith  re
spect to the division lines possess the same set of equations of equilibrium  and com 
patib ility  in the  first approxim ation, and so belong to  the  sam e type of problem.
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Therefore the  com plete classification of all problems of thin shells w ith sm all curva
tu re  of order 3 i£ 6 <  co involves consideration of 25 types only.

For 6 =  2 (Fig. 6), the situation is alm ost the same as in Fig. 5, b u t w ith the groups 
559, ¿'511 missing. T he o ther groups are the  sam e as those shown in Fig. 5 for 6 = 4 , 
and so no ex tra  types arise.

For 6 =  1 (Fig. 7), the situation  is only slightly different from |h o se  in Figs. 5 and 6. 
Instead  of the  two separate division lines F D F an d  IC G  for Eqs. (6.34) and (6.43) in 
Figs. 5 and 6, we have one common division line D 'F '  for both  equations. F u rth er
m ore, the triangle formed by the division lines ID ,  D C, I C  in Figs. 5, 6 collapses into

p-values BM E F’

0 1 2 3 4 5 6 7 8

q-values

F i g .  7. Classification of problems of thin shells with small curvature (6 =  1).
p  =  order of extension of middle surface.
2 =  order of change of curvature of middle surface.
6 =  order of initial curvature of middle surface.

an isolated po in t D '  in Fig. 7. T hus instead of 25 groups in Fig. 5, or 23 groups in 
Fig. 6, we have only 15 different groups. Among these groups, 13 belong to  the types 
already m entioned in the case 3 £ 6 <  »  (Types ¿ ¿ 1 -5 5 3 , ¿513, ¿5 1 6 -5 5 2 1 , 5 5 2 4 - 
5526); the o ther two are Types 5512, 5527.

On com paring the classification of (p , g)-points on the left-hand side of B ' B "  in
Figs. 5, 6, 7 w ith th a t  in the corresponding region of Fig. 3, it is found th a t  they 
are identical w ith  each other. In  fact, for these types, the  equations of equilibrium  
and com patib ility  in the first approxim ation are identical w ith those sta ted  in T able I 
(P a rt II) for the corresponding types of th in  p late  problems. Therefore, we have the
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following im portan t co n c lu sio n :^  problem of a thin shell with small curvature o f order b 
is effectively equivalent to a problem of a th in  plate in  the first approximation, i f  q< b ,
i.e., if the change of cu rvatu re is greater th an  the curvature of the shell in the un
strained state.

I t  should be noted th a t  for 6 =  °o, Fig. 5 becomes exactly Fig. 3 for the  thin plate 
problem.

T he results are summed up as follows:
(i) The com plete classification of the problem s of th in  shells w ith small curvature 

of order 6 2:1 involves the consideration of 27 types (Types 55 1 -5 5 2 7 ).
(ii) Among these 27 types, 11 are equivalent to problems of th in  plates; the char

acteristic  of these types is q <b.
(iii) W hen b — 1, these are two types (Types 5512, 5527) of particu lar interest.
W e shall no t discuss all these types in detail. T he discussion of T ype 5512 will

serve as an example. The results for all types are sum m arized in tables in the Ap
pendices. T he principal parts of the equations of equilibrium  and com patib ility  are 
shown in T able I I I ,  and the orders of m agnitude of the external forces and the prin
cipal p arts  of the macroscopic tensors in Table IV.

Before entering on the detailed discussion of T ype 5512, a useful result for small 
cu rvatu re (62: 1) will be m entioned. On substitu ting  a a$, b ap from (10.2a, b) into 
(6.39b), it is found th a t  the lowest power of e in the resulting expression is e°. T he 
corresponding coefficient gives rise to  the equation

R(0)paßy — 2(a (0)pT,o(3 "f" a (0)a/3,p')' a (0)p/ä,aY a (0)ay,ßp)

+  a (o){ [pT> ir]p0[a/5> 6]o0 — [p/3, ^ « J a y ,  S]p0} =  0, (11.1)

where the Christoffel sym bols are calculated for a Waß- Eq. (11.1) expresses the fac t 
th a t  in the case of small curvature, the curvatu re tensor vanishes in the first approxi
m ation. H ence the order of the operations of covariant differentiation w ith respect 
t o a (0)a|3 is im m aterial; this result will be found very  useful later.

12. D etailed  discussion of type 5512 (6 = g  =  1, p = 2) and its  applications. General 
equations. By the condition th a t  in the first approxim ation, (6.34), (6.35) receive sig
nificant contributions from P ^ ,  P “n), Ay,)(0l, Ary);0], (??*.)> (?<*>, we m ust have

no = 4, j 0 =  3, ko — 2, ^

n  =  3, j  — 2, k =  3.

By substitu ting  the e series into (6.34), (6.35), (6.43), (6.44), it  is found th a t  the 
lowest powers in e occurring in the resulting equations are  respectively e*, e3, e1, e2. 
T he corresponding coefficients give rise to  the following equations:

A(Jl) 5(1)ptP(2)i-x6 2j4(oi) q WpyP<,2) ,J l  -f- 3-A(qi) (qf(l)xXÄ3) Ipt

.  _ , _ 2(1 -  2cr)
+  P(4) +  2Zp)(0ih +  (<2(3)A) |\ -j   H (i)Q{2)h

&0 1 O’

+  — 9 (i)xXa(o)Q(2}6 =  0 , ( 1 2 . 2 a)
1 — IT

2A ^ ( p mTJi) „  +  Pg) +  2*S)tof t  +  — ,, =  Ö, (1 2 .2b)
ao 1 —  O' a o



nfo)9(l)a0lT — 0| (12.2c)
a0

2 n (o )« m P (2 )p T l« f l  +  n (o)n ?o)(2 ( i ) p 7 (7 ( i ) o 3  +  (b( i )  — l f f ( i ) a ° o ) ) g ( i ) « i  =  0 ,  ( 1 2 . 2 d )
fl0

where a 0 under stroke indicates covarian t differentiation w ith respect to  the  tensor 
a (o)a/3 and x “. T he o ther sym bols represent

< ) X =  ~ ” T (<ra(o)a (o) +  (1 -  < « < > ) .  (12 • 3a)1 — <J

n“o) =  ^ ( a 0) - 1/2, a 0 =  det. ( a (0,xx), e11 =  i 22 =  0, e12 =  -  e21 =  1, (12.3b)

b $  =  H w  = |a($£>(i)Tx. (12.3c)

T he macroscopic tensors (6.29)-(6.31) can be w ritten  as

T°? =  { 2  A t f p m r J i  +  a ^ Q y ^ P  +  0(e<), (12.4a)

L°* =  W f a m ryA ^ q W xShh* +  0(<5), (12.4b)

T a0 =  {U m ( q ^ f c )  [r +  0(3,6} ̂  +  0(e3). (12. 4c)
“0

E quations (12.2a, b, c, d) are six equations for the six u n k n o w n sp (2,xx and q (i)xx- 
Since by (11.1) the  order of the  operations of covarian t differentiation w ith re

spect to a (o)tx is im m aterial, (12.2c) implies the existence of w (i> such th a t

<?(i)c,|9 =  W(i)|c3. (12.5)
a0

T hus the determ ination of <j(i)ap is reduced to  th e  determ ination  of the single func
tion w (i ) .  Furtherm ore, instead of using p (2 ) K / 3 as the  rest of the  unknowns, we m ay 
use T ^ y  By definition, T ^ e 3 is the principal p a r t of the  macroscopic tensor T “?, 
nam ely, by  (12.4a),

2 $  =  2 A $ $ p m i J i  +  a tQ l ) h .  (12.6)
1 — cr

This is a sym m etrical tensor; so it has only th ree independent com ponents. S u b stitu t
ing (12.5), (12.6) in to  (12.2a, b, d ), we have

— r (> (l) ,x X  ~  2&U)txT(3> +  §^»l)X(W(l)|rx63)|p7 +  P\i) 
ao a© ao

+  2 +  (0(3,6) | x +  222(1,0(2)6 +  W(i)|xxafox0(2,6 =  0, (12.7a)
«0 aQ
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r (3“|x +  P(3, +  2X?m h =  0, (1 2 .7b)
«0

n(o,nfo) {(1 +  ff)a(o)xpa(o)Ts — <ra(o)Pyam*s} Tjj) f |a/s +  <ra (o)0 (°2)|xx
\ h  ) a0 ao

+  +  (£“/j — 4ff(i)a"o^)w(i)|a)s =  0. (12.7c)
ao a 0 ao

E quations (12.7a, b, c) form a set of four equations for the  four unknow ns w (d 
and r $ .

Special case. T he following special case is interesting. If



P(3) =  X%M  =  0, (12.8)

then by (12.7b) there exists a stress function X(3, such th a t

— n“o)nfo)X <3)i tx. (12.9)
a0

H ere %<s) is a  function of x°, having properties sim ilar to  those of the Airy function
in the th in  plate theory. Substitu ting  (12.8), (12.9) into (12.7a, c), we have

—  2 n (o)n ( o ) ( 2 w ( i ) | l 8  +  b ( i )  x s ) x  (3 )  |Xp +  l -d ( o i i) X( w ' ( i ) | i x 6 3) | p 7
aQ a0 aQ flf>

+  -P(4) +  2Z(03)[0]/i -f- 2 H w Q°2)h +  a[o)W(i)|rx0 (2)6 =  0, (12.10a)
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{<ra(o)a (o) “  (1  +  ^ ( o W o ) }  i y  X(3)|ixl |x P +  <ra(o)0(°2)lV. tl a0 / ao a
)UX

a0 a0

+  nfo)nfov)W(i)|p7w (i) |xi +  (Z>[() — 4 ir (1)a(^)w(1) |rx =  0. (12.10b)
ao ao ao

E quations (13.10a, b) are two equations for the  two unknowns X(3) and w (i). These 
equations are valid in general for a  shell of non-uniform  thickness. For the case of 
uniform  thickness, (12.10a, b) are im m ediately simplified to  the  forms

— 3tî ojn(o)(2w (i) | ts +  b  <i)x5)x(3)|Xp +  P a '0)a(Q)W(i)|I1.xj 
a0 a0 a0

+  Pm +  2X(3)[o)6 +  2H(1)Q(°jli +  a ^ iv (i) |TxQ(2)/i =  0, (12.11a)
a(I

a[o)a (o)X(3)|T7X5 ~  cr/ia$Q(2)ir\  +  6n'o)nXo)W(i)|pyiV(i)|,.xao a0 a0 a,j
+  /2(4iicl)a(o) ~  bd))wa ) |xx =  0, (12.11b)

a0
where D  is the reduced flexural rigidity, as given in (9.14). Applications of these two 
equations will be discussed below.

A  circular cylindrical th in  shell with small curvature and uniform  thickness under  
end thrust and  normal pressure. W e shall assume th a t  the  external forces and th e  edge
loading are such th a t the problem  is of T ype 5512. Furtherm ore let us assum e th a t

T(°3)[o| =  0(2) =  0. (12.12)

W e have in mind the case where body force is negligible and where the  shell is loaded
norm ally on one side only. A num ber of term s disappear from the equations of equi
librium and com patib ility  (12.11a, b) for T ype 5512. T hus if we w rite these equations 
in term s of the small principal p arts  instead of in term s of the finite coefficients of the 
lowest power in e, we have

— 2nfoinM(2w | r 8 +  6 t j)xixp +  D a TTa X5W|T7x3 +  P° == 0, (1 2 .13a)a a a
a rTa XixiT7Xj +  An[o]n^W|P7w iT8 +  h ( 4 H a rX — 5 ,rX)w |xx =  0. (1 2 .13b)a a a a

Here a under a stroke indicates covarian t differentiation w ith respect to the tensor aa(3 
and x a; also

2 A3
D  =  , 4#  =  (12.14)

3(1 -  cr2) **
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L et us choose the set of intrinsic rectangular C artesian coordinates on the  middle 
surface so th a t x  =  x1 is the distance measured along the  generators of the cylinder and 
y  = x2 is the d istance m easured perpendicular to  the generators. T hen we have

a n  =  a 11 =  a 22 =  a 22 =  1, 

b v =  b u  =  b u  =  b 12 =  0,

a n  =  a 12 =  0, 

b 22 = b 22 = 2 /R ,
(12.15)

where R  is the radius of cu rvatu re of the cylindrical middle surface. In these coordi
nates, Eqs. (12.13a, b) become

DAAw -f  {2w,XyX.xy — w.xxX.vv ~  w .vvX .xx )  “ X .»
K

+  P° =  0, (12.16a)

AAx +  2 h ( w tXXw ,v w.xyW.xv) +  2h  -~rwiXX
R

0, (12.16b)

where subscripts preceded by a  com m a denote partia l differentiation. If we let R  
tend to  infinity, we get the von K arm an equations for a flat plate. T he equation 
(12.16b) was recently  obtained by von K árm án and Tsien [ l]  in their trea tm en t of 
buckling of a thin-walled circular cylindrical shell under compression on the two ends. 
If we apply the operators AA to (12.16a) and (1 / R ) d - /d x 2 to (12.16b) and add the re
sulting equations, we obtain

2h 2h  .
jDAAAAW d--------W.XXZX H------- (w.XxW.yy — W,XyW,Xy) ,«

R 2 R

= AA (P° +  2 w ,xyX,xy — w .xxX .n  — w.yyX.xx). (12.17)

This is the equation of equilibrium  used by  von K árm án and Tsien, except th a t  they  
om it the term

(w( tyy W' xyW, xy) , n< (12. 18)
R

This term  is im portan t when the deflection is 
com parable with thickness. However, i t  seems 
sim pler to  tre a t the problem  directly  by means 
of (12.16a, b) instead of using the higher-order 
equation (12.17). E quation (12.16a) appears 
to  be new.

A  small segment o f  a thin spherical shell u n 
der external pressure. We shall assume th a t  the 
solid angle of the segm ent is small, so th a t the 
curvature is small ; we shall assume it to  be of 
the same order as the thickness, so th a t  0 =  1 
(cf. section 10). We shall use spherical polar 
coordinates as in Fig. 8, so th a t  on th e  middle 
surface in the unstrained s ta te  we have

ds2 =  R 2d62 +  R 2 sin2 9 d<p2. 

Since 9 is small, we write

(12.19)



ds2 =  i ? W  +  R 262dv \  (12.20)
If  we p u t

x1 =  8, X 2 =  ,?, (12.21)

the com ponents of the first and second fundam ental tensors are given by 

a u  = R \  a M = R 28 \  a  12 =  0, a 11 =  1/i? 2, a 22 =  l / i? 202, a 12 =  0 , (12 . 22)

b n = 2 R ,  b M = 2 R 8 2, 6 “  =  2 /i?3, A22 =  2 /R W ,  b n  = A12 =  0. (12.23)

Futherm ore, we have from (12.22), (12.23)

H  =  1/i?, a = R i92. (12 . 24)

All the Christoffel sym bols are equal to zero, except

{ 2 *2 }  -  -  *■ { i 22}  r 1/#- (12' 25)

We shall assum e th a t  the problem is of T ype 5512. Substitu ting  (12.21)—(12.25) into 
(12.13a, b), we have

— ^ 7  j  +  R )(x .w  +  8x.t) ~  2 ( x ,„  -  —

+  (w,w  +  R6~ +  6>w,9)x,«9|  +  DAAw  +  P° =  0, (12.26a)

AAx + 6w^  ~  (^'■ev — j w ‘* )  |

+  2h  W j ,  +  (w.w +  8w,s) | = 0 . (12 .26b)

Here A is the Laplace operator

i s 2 1 a2 1 a 1 a a 1 a 2
A  ----------- f - -------------- b  = --------- 8 ------1------------------------(12.27)

i ?2 ae2 i?2a2 dv 2 R 2e de R 2e dd de R 2e2 a<?2

E quations (12.26a, b) are  tw o nonlinear partia l differential equations for two un
knowns x, w.

W e suppose th a t  the problem  has ro ta tional sym m etry. T hen  w, x  are independent 
of <p, and (12.26a, b) reduce to  the form

d d 1 d dw  I d  ( d w  dx \  R  d /  dx \  -P°0i?4
_ _ 0 ------------ e ------------------( ----------- ) ------------ ( e  ----- ) + ---------- =  0 , (12.28a)
de de e de de d  d e \ d e  d e )  d  d e \  d e )  d

d' d  1 d dx  d f  dw \ 2 d /  d w \
—  6 ------------ 8 -------+  h — ( ----- ) +  2iii? — ( 8 ------1 =  0. (12.28b)
de de e de de d e \ d e /  d e \  d e )

T he equations can be in tegrated  once giving
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d i d  dw  1 dw dx R  d% P°62R *
0 --------- — 0 ----------------------------------0 ------- 1-------------=  constant,

de o de de d  de de d  de i d

d

de

'd w X 2 dw
 ) h  +  2 h R 6  =  constant.
de /  de

(12.29a)

(12.29b)
I d  dx (d

 e  ]- ( -
e de de V'

Since d w /d 9  vanishes for 0 =  0, the  constants are zero. If we introduce the quantities

(12.30)
1 dw  

a  =  —----— +  0,
R  d6

1 dx
ß = -------- ;

R 2 de

the equations can be fu rther simplified to  the form

d2a da

de2 +  de

a

e

R 2 P °R 3 
aß  +

D 2D
=  0, (12.31a)

d2ß dß 1-----
de2 de e

+  h ( a 2 -  e2) =  0. (12.31b)

T he q u an tity  a  is the slope of the m eridian line 
in the strained s ta te  (Fig. 9). T he significance of 
the q u an tity  ¿3 is th a t  ¿3/0 is the  radial m em brane 
stress (tension). E quations (12.31a, b) are the 
fundam ental equations for the determ ination 
of the buckling pressure of a  small segm ent of 
spherical shell.

If we assume th a t the first and second term s 
in (12.31b) are negligible in com parison w ith the 
o ther term s, then we can solve (12.31b) im medi
a te ly  for /3. S ubstitu ting  the resulting expression 
for ¿3 into (12.31a), we have F i g . 9 .

d2a da

~dë2 +  7ë

a

e

h R 2

D
■6a{a2 — 02) —

P W R 3 

2D
(12.32)

T his is the equation used by von K arm an and Tsien [2] in their trea tm en t of buckling 
of spherical shells by external pressure. I t  should be noted th a t  the  neglect of the first 
two term s in (12.31b) is a  rough approxim ation. A ctually  the first three term s in 
f 12.31b) are of the  same order of m agnitude.

Furtherm ore, if we introduce
r =  R0,

Eqs. (12.28a, b) can be w ritten  in the  form 

d d i d  dw  1 d /  dw dx.
   . ) . .  1 - 0 ,

dr dr r  dr dr D  dr \  dr d r )  R D  dr \  d r )  D

d d 1 d

dr dr r dr

dx d ( d w  V  2h  d (  dw \
—  +  h —  ( ---- ) + -------- - i r  —  ) = 0.
dr d r \ d r )  R  dr \  dr )

(12.33)

(12.34a)

( 1 2 . 3 4 b )
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T he q u an tity  r is the radial distance measured along the m eridian line from the center 
of the shell. W e see th a t these two equations are the same as the corresponding von 
K arm an equations for the  circular p late under sym m etrical loading [3], with the ex
ception of th e  term s proportional to  1 /i?; this is evident if we m ake R  infinite in 
(12.34a, b).

A sum m ary of the whole paper was given a t  the end of the first section (P art I).

A P P E N D IC E S
(iii) Table III.— Table of the equations of equilibrium and com patibility of thin shell problems.

Types 5 S' P
(6.34) (6.35) (6.44) (6.43)

tî 7° 7° 4 3lï 7°4a 7°A 7°7°J9 a / /3a l î A A  A A J a l Ja 2
551 SI 0 1 X XX X XX X X552 S I 0 2 XXXXX XXXX X X553« S I 0 >2 XXXX XXX X X554 S2 i S « < i 1 X XX X X X X5S5 S2 l 2 XX XX X X XX X
556* S2 l ûq<b 29+1 X X X X X X557* S2 léq<b 2s+2 X X * XXXX X X5S8* S2 1 èq<b >29+2 X X XXX X XS59 S3 2éq<b 2 XX XX X X X X
5510 ̂ S3 2£q<b 2<p <2q

S 2 S5 2+9 —5 <9 <9+5 X X X X X X
5511 S3 2 ¿q<b 2 9 X X X X XX X5512 1 1 2 XX XXX X X X XX X X5513 s i b 1 X XXX X X X X X5514 S2 b 2 XX XXX X X X X » X5515 S2 b 25 X X X X XX X X
5516* SI b 25 + 1 X X X X X X X5517* si b 25+2 X X XXXXXX X X X5518* si b >25+2 X X XXXXX X X X5519* S I > b A •Q 1 O* X X X X X X X5520* si > b q - b X X X X X X X X
S521* si > b Q - b  + 1 X X X X X X X5S22 S2 > b q — b + 2 X X X X X X X XS523 S2 > b q + b X X X X X X X5524* SI > b q + b + l X X X X X X5S25* SI > b q  +6 +2 X X X X XX X X
5S26* SI > b ><Z+&+2 X X X XX X X5527 1 > b q + 1 X X X X X X X X X
551 0 0 1 X XXX X X XX X X X X552 0 0 2 XXXXXXXXX XXXXXX X X X553* 0 0 >2 XXXX XXX XXXXX X X X554 0 SI Q X X X X X X X XX X X555 0 Si q + i X X X X X X X X
556 0 si q + 2 X X XX X X X XX X X557* 0 si > Q +  2 X X X X X XX X X558 0 S2 < q X X X X X X X X X

In  this table, the following notation  is used:
T he term s occurring in the first equation of equilibrium  (6.34) are 

/?■=■_ 2A ^ q „ p wJ i ,  l l  =  I t  =  A ^ sq ^ g pyq xsh \



72 =  P° +  2X[°01A +  (Qxti) ix, I t  =  ^  a,xq**Q°h, A  = -  A ^ b p-,prXh,
a  1 —  cr

I °1 = -  ? A ff i“™bpyb x Sq TJ i \  I t  = A f f i* , q „ b „ q u h \  A  = 277<2%.
1  —  cr

T he term s occurring in the second and th ird  equations of equilibrium  (6.35) are

I t  =  2A ffix( p rJ i )  |P, 7? =  ■ fa« 9 ,T4 # , (<a«A*) „ -  i„
a a a

I t  =  P -  +  2X|o]/i +  — a«' (Q%) |p, 7 / =  ( a ^ q rXa°y +  2 a " q , T)QTA,
1 —  cr a

76“ =  ,p +  %AJff a aTb ry(q \shs) 7“ =  (277a“ +
a a

T he term s occurring in the first equation of com patibility  (6.44) are 

A  =  2nj^n[o]Pp7|a(s, J°2 = nMnfo|9pT9«i,
a

J t  = 2a ^ P a tK ,  A  = -  (4Efa“0 -  6 ^ )^ -
T he term s occurring in the second and th ird  equations of com patibility  (6.43) are

•7orl =  2nj(jj<J„0|7, j  a2 — n[0}bpraT̂ (j3a\ |7 "T PyX|a Pi>7|x).
a  a  a  a

On account of the conditions which hold in the  various types of problems, some of 
these term s m ay be negligible in com parison w ith others. Table I I I  shows by the 
symbol ‘x ’ those term s which are to be retained in the first approxim ation for the 
various types. (The over-determ ined problem s are denoted by  *.) T hus for example, 
for problem s of type 551 , we have the following equations of equilibrium  and com
patib ility  in the first approxim ation:

7? +  A  +  A  =  o, 7f +  I t  +  A  =  0 , / 2° =  0 , j al =  0 .

These equations are w ritten  in term s of the small principal p arts  instead of in term s 
of the finite coefficients of the lowest power in e.

(iv) In  T ab le  IV, the following notation is used:
T he term s occurring in the expresion (6.29) for the m em brane stress tensor T al> 

are denoted by

T f  =  2A f f p rXh ,  T f  =  -  A f f u q r„qxih 3,

T f  =  — a <*Q %, T f  =  A f f xsb Xiq T„h*.
1 — o-

T he term s occurring in the expression (6.30) for the bending m om ent tensor L°P 
are denoted by

L f  =  |n  ̂ a TpA f f q xsh 3,

L f  5= 2x ^ a rfAâ b xiPpyh 3

+ - 4X”  ~ 2 « ) -  * » ■ } * ■ .

1944] I N T R I N S I C  T H E O R Y  O F  S H E L L S  A N D  P L A T E S  133



134 W E I-Z A N G  C H IE N [Vol. I I ,  N o . 2

Table IV.— Table of the external force system  and the macroscopic tensors 
for various types of thin shell problems.

Typea «1 n i» j ko *
2<tfi LC& j-a 0

t aBTx T f r f T«e a L?* I r ? t? r 3a

2 2 1 1 1 1 2 X X 3 X 2 X551 f 2 2 1 1 1 2 2 X X 3 X 3 X X
552 3 3 2 2 2 2 3 X X X 3 X 3 X X
553 3 3 2 2 2 2 3 X X 3 X 3 X X

/ 5+2 2 5 + 1 1 1 5+1 2 X X «+3 X 9+2 XSS4 \ 5+2 2 5 + 1 1 1 5+2 2 X X 9+3 X 9+3 X X
553 4 3 3 2 2 3 3 X X 4 X 4 X X
556 5+3 25+2 5+2 25 + 1 25+1 5+2 25+2 X X 9+3 X 9 +3 X X
SS7 5+3 25+3 25+2 5+2 5+2 25+2 25+3 X X X 9+3 X 9+3 X X
SS8 5+3 25+3 25+2 5+2 5+2 25+2 25+3 X X 9+3 X 9+3 X X
559 5+3 3 5+2 2 2 5+2 3 X X 9+3 X 9+3 X X
5510 5+3 0+1 5+2 0 0 5+2 0 + 1 X X 9+3 X 9+3 X X

5511 5+3 25+1 5+2 25 25 5+2 25 + 1 X X 9+3 X 9+3 X X
5S12 4 3 3 2 2 3 3 X X 4 X 4 X X

/ 6+2 2 6 + 1 1 1 6 + 1 2 X X 6 +3 X 6+2 X•SiSl 3 s 6+2 2 6 + 1 1 1 6+2 2 X X 6+3 X 6+3 X X
SS14 6+3 3 6+2 2 2 6+2 3 X X 6+3 X 6+3 X X
5515 6+3 26 + 1 6+2 26 26 6+2 26 + 1 X X 6+3 X 6+3 X X
S516 6+3 26+2 6+2 26 + 1 26 + 1 6+2 26+2 X X 6+3 X 6+3 X X
5517 6 +3 26+3 6+2 26+2 26+2 6+2 26+3 X X X X 6+3 X 6+3 X X
5S18 6 +3 26+3 6+2 26+2 26+2 6+2 26+3 X X X 6+3 X 6+3 X X

I6+0 + 1 0+1 6+0 0 0 6+0 0 + 1 X X 6+P+3 X 6+p+l X
5519 6+0 + 1 0+1 6+0 0 0 6+0 + 1 0+1 X X 6+Î+3 X 6+P+2 X

| 6+0 + 1 0+1 6+0 0 0 6+0+2 0+1 X X 6+Î+3 X 6+P+3 X X
[ 6+0 + 1 0+1 6+0 0 0 6+0 0 +1 X X Ô+p+3 X X 6+i + l X

5520 | 6+0 + 1 0+1 6+0 0 0 6+0 + 1 0 + 1 X X 6+P+3 X X 6+P+2 X
I 6 +0 +1 0+1 6+0 0 0 6+0+2 0+1 X X 6+P+3 X X 6+P+3 X X X

CCO1 ' 6+0 + 1 0+1 6+0 0 0 6+0 0 + 1 X X b+p+2 X 6+i + l XOozl ^ 6+0 + 1 0+1 6+0 0 0 6t 0+1 0+1 X X 6+Î+2 X 6+P+2 X X
5522 5+2 5 —6+3 5+2 5-6+2 5-6+2 5+2 5 —6+3 X X 9 +3 X 9+3 X X
5523 5+3 5+6 + 1 5+2 5+6 5+6 5+2 5+6+1 X X 9+3 X 9+3 X X
5524 5+3 5+6+2 5+2 5+6+1 3+6+1 5+2 5+6+2 X X 9+3 X 9+3 X X
5525 5+3 5+6+3 5+2 5+6+2 5+6+2 5 +2 5+6+3 X X X 9+3 X 9+3 X X
5526 5+3 5+6+3 5+2 5+6+2 5+6+2 5+2 5+6+3 X X 9+3 X 9+3 X X
5527 5+3 5+2 5+2 5 + 1 5 + 1 5+2 5+2 X X 9+3 X 9+3 X X

r 2 2 1 1 1 1 2 X X 3 X 2 X5F1 < 2 2 1 1 1 2 2 X X 3 X 3 X X
5F2 3 3 2 2 2 2 3 X X X X 3 X 3 X X
5F3 3 3 2 2 2 2 3 X X X 3 X 3 X X

f 5 + 1 5+1 5 5 5 5 5 +  1 X X 9+3 X X 9+1 X
5F4 | 5 + 1 5+1 5 5 5 5+1 5 + 1 X X 9+3 X X 9+2 X

1 5 + 1 5+1 5 5 5 5+2 5 + 1 X X 9+3 X X 9+3 X X X
/ 5+2 5+2 5+1 5 + 1 5 + 1 5+1 5+2 X X 9+3 X 9+2 X5F5 \ 5+2 5+2 5+1 5 + 1 5+1 5+2 5+2 X X 9+3 X 9+3 X X

5F6 5+3 5+3 5+2 5+2 5+2 5+2 5+3 X X X 9+3 X 9+3 X X
5F7 5+3 5+3 5+2 5+2 5+2 5+2 5+3 X X 9+3 X 9+3 X X

0 + 1 0 + 1 0 0 0 0 0 + 1 X X i>+3 X p+1 X
5F8 0 + 1 0+1 0 0 0 0 + 1 0 + 1 X X ¿>+3 X P +2 X

0 + 1 0 + 1 0 0 0 0+2 0 + 1 X X p+3 X P +3 X X

T he term s occurring in the expression (6.31) for the shearing stress tensor T a0 are 
denoted by

T? = Q°h, T% =  ! ^ £ f W i 3) u ,
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T f  =  2 A \f?” {buP„h*)\T  +  1(4H P «  +  haTP ')h *  +  i H X ^
a

+ w ^ > { [ a' i r ^ HQ’~4X|S') - H**}:-
Furtherm ore,
Wo =  order of sum of the norm al forces acting on the upper and lower boundary  

surfaces, or order of P°, 
w =  order of sum of the tangential forces acting  on the upper and lower boundary  

surfaces, or order or P a, 
jo  =  order of norm al com ponent of body force, or order of X (o], 
j  =  order of tangential com ponent of body force, or order of -STg],
¿o =  order of difference of norm al forces acting on the upper and lower surfaces,

or order of <2°,
k =  order of difference of tangential com ponents of forces acting on the upper and 

lower boundary surfaces, or order of Q“, 
t =  order of m em brane stress tensor T a
u  — order of bending m om ent tensor L aff,
I =  order of shearing stress tensor T a0.
T his table gives (a) the values of n 0, n , j 0, j ,  ko, k, t, u, I, (b) the principal term s in 

the  expressions for T a&, L a$, T a0 (denoted by ‘x ’). T he term s not m arked w ith ‘x’ are 
negligible in com parison those principal term s. I t  will be noted th a t there are two 
lines in the tab le  for 551 , 554, 5513, 5521, 5F 1 , SF 5 ,  and three lines for 5519, 
5520, 5F4, SF8.  T his is because, in each case, k m ay have two or three values.

For example, in the case of T ype 551 , we have for T a&,

T°f> =  T f  +  T f ,  L *  =  L f ,

while for T a0,
T “° =  77 (if k — 1),

T °o =  T f  +  T f  (if 4 =  2).
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THE AERODYNAMICS OF A RING AIRFOIL*
B Y

H. J. ST E W A R T
California Institute of Technology

A bstract. T he downwash required to  produce a  given vortic ity  d istribu tion  is com 
puted  for a  ring airfoil and the results are com pared w ith the corresponding tw o-' 
dimensional case. From  this it appears th a t  if the curvature of the chord plane is 
small, as is the  case w ith norm al am ounts of dihedral, the  effect of this curvatu re  on 
the chordwise lift d istribu tion  of a  wing is extrem ely small. If the radius of cu rvatu re  
is small com pared to  the chord, as it is near the  vertex  of a cranked wing, it is seen 
th a t  this cu rvatu re m ay cause com paratively large changes in the lift d istribution.

1. Introduction. A t the present tim e, the steady  s ta te  two-dim ensional airfoil th e 
ory is a highly developed subject; and, subject to the  usual lim itations of perfect 
fluid theory, solutions m ay be obtained with alm ost any desired degree of accuracy. 
T he steady  s ta te  three-dim ensional airfoil theory is, however, in a much lower sta te  
of developm ent. For m ost engineering problem s the  “lifting line” theory  as developed 
b y  P rand tl and others is adequate to  provide satisfactory  results; however, for certain  
o ther problems, such as the  flow near a wing tip, the  effects of sweepback or of yaw,
or the lift of a  low aspect ratio  wing, the lifting line theory  cannot be used. A t this
tim e there have been only a fairly small num ber of solutions of finite wing problem s 
in which lifting surfaces ra th e r than  lifting lines have been used and which m ay thus 
be used to  throw  light on these essentially more com plicated problems. T he best 
known of these lifting surface theories are those due to B lenk,1 K inner,2 K rienes,3 and

Bollay.4 As th e  num ber of such solutions is so 
lim ited alm ost any  special solution involving a 
lifting surface is of interest.

From  an analytical viewpoint, probably  the 
sim plest lifting surface problem which has not 
yet been investigated is th a t  of the axially sym 
m etric flow past a  ring airfoil as shown in Fig. 1. 
This flow is especially simple as the vortex lines 
in the lifting surface are circular rings and there 
are thus no trailing  vortices. T he particu lar 
purpose of the  present paper is to  discuss the 
differences between th is problem and the cor
responding two dim ensional problem. In addi
tion to  its intrinsic in terest in the theory  of the 

“an ti-d rag ” cowl, the ring airfoil problem possesses a general in terest insofar as it 
dem onstrates, a t  least qualitatively, some of the  effects of dihedral on the lift dis
tribu tion  of a wing.

* Received Feb. 19,1944.
1 Blenk, H., Zeit. f. angew. M ath. u. M echanik, S, 36 (1925).
* Kinner, W ., Ingenieur Archiv, 8 , 47 (1937).
3 Krienes, K ., Zeit. f. angew. M ath, u. M echanik, 20, 65 (1940).
* Bollay, W ., Zeit. f. angew. M ath, u. M echanik, 19, 21 (1939); also J. Aero. Sci., 4, 294 (1937).
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2. T he vector potential. T he m athem atical analysis of this problem  m ay be con
veniently  carried o u t by the  m ethod of the vector potential. Since the equation of
continuity  in an incompressible fluid is sim ply

div q  =  0, (1)

the velocity vector q  m ay be w ritten  as the curl of a vector potential A  or

q  =  curl A. (2)

By the H elm holtz decomposition theorem  the  vector potential m ay be subjected to  
the restriction th a t

div A  =  0. (3)

T he differential equation for the determ ination of the vector potential is found by 
curling Eq. (2). T his gives

V2A =  — curl q = — £2. (4)

If the vorticity  £2 is a given function, th is is a Poisson equation for the determ ination
of the  vector potential. T he solution of this equation, which is well-known and m ay
be obtained by  the use of G reen’s theorem , is

= r f47T J £2
dv

(5)

where the volum e integral covers the entire region where the vorticity  exists and rx 
is the  distance from the point a t  which the vorticity  exists to  the point P  a t  which 
the vector potential is being com puted. If the vortic ity  is in the form of a single 
vortex filam ent of strength  T then

r  C 1A  =  —  I — ds, (6)
4t  J  rx

where ds  is an infinitesimal d istance vector along the vortex  filament. If  there are 
several vortex  filam ents the  contribution from each one m ay be found by Eq. (6), and 
these results m ust then be sum m ed to obtain the vector potential.

3. T he vector potential for a vortex ring. As the vortex  filam ents are all circles 
for the  axially sym m etric flow p ast a ring 
wing, the  com plete vector po ten tial can easily 
be obtained if the vector potential of a single 
filam ent is known. For such a  filam ent of 
s trength  T and lying in the  plane z = 0 (see 
Fig. 2), it is obvious th a t  the vector potential 
is no t a function of the m eridian angle 0, and 
i t  m ay be calculated a t  points in the plane 
0 =  0. Since d s  is in the plane 2 =  0, the vector 
potential can have no s-component. F u rth e r
more, by considering two vortex elements, 
one having  the negative of the o th er’s 9 co
ordinate, it is evident th a t  the vector poten
tial can have no radial com ponent. T he vector potential has thus only the com ponent 
A s  which is perpendicular to  the m eridian planes. By Eq. (6), this is
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oT r  x cos 0 dO
A t =   t  r — • (7)

2ir J  o [o2 +  r 2 +  s2 — 2ar cos 0]112

W ith the  vector potential expressed in this form as an elliptic integral, i t  is ra ther 
difficult to  superim pose the vector potentials for a band of vorticity  of radius a  and 
of chord c in order to represent the ring wing. A m uch more convenient form can 
be obtained by the use of the Fourier integral. For an even function /(z ) , the  Fourier 
integral theorem  sta tes th a t

cos £z<j J '  /( i)  cos k t d t ^ d k .  (8)

Since A$ is an even function of z, it follows th a t

° r  f "  T f ” i  C T cos 0 dO I I
Ag =  —  I co siz  I cos kt { I  ---------------------------------- -— > d i\d k .

ir2 J  o L J o  W o  [a2 +  r2 — 2ar cos 0 -f- I2]1/2i  J
(9)

Since6

/“ “ cos (kt)
7 T— dt =  Ko(kx), (10)

0 [a:2 + I 2] '/2

the inner two integrals of Eq. (9) become, after inversion of the order of integration,

I  — f  K 0[ k V a 2 +  r2 — 2ar cos 0] cos 0 dO. (11)
J  o

T he addition theorem  for the modified Bessel functions of the second kind (see Ref. 5, 
p. 74) sta tes th a t

/ 00
1 Io(ka)Ko(kr) +  2 2^  I„ (ka )K n(kr) cos nO if r  >  a. 

K 0[ k V a 2 +  r 2 -  2or cos 0] =  |  "“ 1 (12)

l l 0(k r )K 0(ka) +  2^2, I n(.kr)Kn(ka) cos nO if r <  a.
' n-l

Since the trigonom etrical functions are orthogonal over the range 0 ^ 0

tirI i(ka )K i(kr)  if r >  a.
I  =  s (13)

lir/i(^r)iri(A a) if r  <  a.

T he vector po tential for th e  vortex  ring in the  outer range where r > a  can thus be 
w ritten  as

a r  r  ”
Ae — ----  I I i{ka)K i{kr)  cos (kz)dk  (r >  a). (14)

IT J  0

For the inner range it is necessary to  interchange the argum ents of th e  two Bessel 
functions.

4. The vector potential for a ring airfoil. A ring airfoil m ay be considered to be a 
system  of ring vortices of radius a  and d istribu ted  over the chord c from z =  —c/2
to  z = c /2 .  If the streng th  of this vortex  sheet is y { z 0), then  the vector potential
for r > a  is

s Grey, M athews and M acRobert, Bessel functions, M acmillan and Co., London, 1931, p. 52.
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A 0 =  — f  7 (20)-( f  h ( k a ) K i ( k r )  cos k(z — z0)^|<£zo- (15)
7*" J  —c/2 I J  0 /

If the vortex strength  is known, Eq. (15), afte r inversion of the order of integration, 
can conveniently be used to com pute the vector potential or the radial or axial velocity 
com ponents, u r and u z respectively. From  Eq. (2),

dAe 1 3
u r = --------- 1 h , = -------- (rAo). (16)

dz r dr

T he radial velocity is of the m ost in terest as i t  corresponds to  the downwash velocity 
in the  ordinary  two-dim ensional airfoil theory. T he downwash a t  the ring airfoil, 
r —a, is

ur = — f  k h (k a )K i( k a )  -I f  7 (s0) sin k(z — za) d z X d k .  (17)
ir J  0 { J  -c /2 /

5. Comparison with tw o-dim ensional flat plate airfoil. If the airfoil shape is given, 
the downwash u r is known, and Eq. (17) m ay be considered as an integral equation 
for the determ ination of the vortex strength  t(zo)- I t  is, however, an integral equation 
of a difficult type. T he im portance of the  curvature of the  chord plane m ay be esti
m ated by  com paring the downwash for some given vortex d istribution w ith the cor
responding two dim ensional result. T his process will be carried ou t for the vortex 
d istribu tion

/  c — 2z0
7 (zo) = A A /  — ——  ■ (18)

V C +  AZq

In  the  two-dim ensional case, th is vortic ity  d istribu tion  corresponds to  a flat p late 
airfoil w ith  its leading edge a t  za = — c/2 .  The downwash is then  constan t over the 
airfoil and equal to A ¡2. For th is vorticity  d istribution it can easily be seen by use 
of the transform ation 2z0 =  c sin 8 th a t

I

c/2 T
7 (z0) sin k(z — zo)dzt> =  — Ac[J<,(\kc) sin kz +  J\{%kc) cos kz}. (19)

-c/2 2

T he downwash velocity is thus

ur =  \A c a  f  k I i ( k a )K i(k a )[ J 0(hkc) sin kz +  J i{ \kc )  cos kz]dk. (20)
j  0

I t  is of in terest to  note th a t the two-dimensional result can be obtained directly 
from th is by considering the lim iting form as the radius of the ring becomes infinitely 
large; for

lim {x h { x ) K \{ x ) } =  5 ; (21)

so the downwash in the two-dimensional case is given by

uT = \A c  f  [Jo{\kc) sin (kz) +  J i ( \k c )  cos (kz)]dk. (22)
J  0
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T a b l e  I

Comparison of F(x) and

X F(x) * < * ) F ( x ) - F l(x)

0 . 1 0.0493 0.0132 0.0361
0 .5 0.2132 0.2000 0.0132
1 0.3402 0.3637 - 0 .0 2 3 5
2 0.4450 0.4571 - 0 .0 12 1
3 0.4762 0.4800 - 0 .0 0 3 8
4 0.4873 0.4885 - 0.0012
5 0.4921 0 .4926 - 0 .0 0 0 5

T he first integral vanishes on the airfoil where s2i£c2/ 4 and the second is equal to 2/c 
on the airfoil (see Ref. 5, p. 65); so in the two-dimensional case, for this vortic ity  dis
tribution

ur =  i d  (z2 ^  c2/ 4). (23)

An exact evaluation of the integral of Eq. (2,0) is ra th e r difficult; however, an ap 
proxim ate evaluation, valid for large values of a /c ,  m ay be obtained quite easily. If

F(x)  =  x h ( x ) K , ( x ) ,  

a very  close approxim ation to  F{x ) is given by

z2/2
F  i(*) =

3/8  +  z2

(24)

(25)

I t  m ay be noted th a t  the  asym ptotic expansions for F(z) and Fi(x)  are the sam e up 
through term s of order (z~2). I t  is shown in T able I and Fig. 3 th a t F 1(x) is a good 
approxim ation to  F{x) even for small values of x.

Since

0 /  2 x  1  *

F i g . 3. Comparison of F(x) and

3/16
F  i(z)

3/8  +  z 2
(26)

an approxim ate expression for Au,  the  difference between the  ring airfoil downwash 
of Eq. (20) and the corresponding two-dimensional case is given by



dk

3/8 +  a2k2

/ » 00

[/oM&c) sin kz +  J \{ \kc )  cos k z ]
o

L et \ = k c / 2, a  =  \ /3 /3 2 c /a  and /3 =  2z /c .  Then

/» co
[7o(X) sin /3X +  7i(X) cos /3X] - 

o X2 +  a 2

On the airfoil where /32i= l, th is gives (see Ref. 5, p. 78)

Au  =  \ A  [a cosh (aff)K i(a ) — a  sinh (a^)ito(Q:) — l].
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dX

(27)

(28) 

(29)
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T he ratio  of the change in downwash to  the tw o dimensional downwash is 
2 (A u ) /A .  For a  =  0.02 and 0.20 corresponding to  a /c  =  15.3 and 1.53 respectively, 
this ra tio  is given in Table 2 for the leading edge (j3= — 1), the center of the airfoil 
(]3 =  0), and for the trailing  edge (/3 =  1).

Table 2
Values of 2 (&u)/A for the ring airfoil

oc 0.02 0.20

a /c IS .3 1.53

(3= —1 0.0009 0 .0451
0 =  0 - 0 .0 0 0 9 - 0 .0 4 4 8
0 =  1 -0 .0 0 2 3 - 0 .0 9 6 3

7Pvo D/M£NSIO/VAi-
a/c = cd A/KZ-O/L

a/c = /S J

F ig. 4. Airfoil profiles having the same 
vorticity. See Eq. (18).

As the  downwash velocity is determ ined by the  slope of the cam ber line, the  airfoil 
cam ber required to  produce the lift d istribu tion  of E q . (18) m ay be com puted by  in
tegrating  the downwash velocity. T he cam ber lines 
for a /e  =  1.53 and for the two dimensional case are 
shown for comparison in Fig. 4.

6. Conclusions. From  Table 2, it is apparen t 
th a t  the effects of the curvature of the chord plane 
of the ring airfoil are negligibly small if a /e  =15.3 
while they  are fairly large for a /c  =  1.53. From 
Fig. 4 it  appears th a t the lift of a ring airfoil having 
a constant angle of a ttack  across the chord would be som ewhat more th an  th a t of 
the corresponding two dimensional airfoil and the lift is shifted aw ay from the leading 
edge tow ard the center of the airfoil.

I t  seems reasonable to  suppose th a t the changes a t  any  given section of the  ring 
wing are caused prim arily by  the vortex elem ents near th a t  section. These results 
m ay thus be applied in estim ating the effects of the  dihedral of a wing on the  lift 
d istribu tion  over the  w ing’s surface. This indicates th a t  if the  curvature of the  chord 
plane is small, as is norm ally the case, no appreciable changes in the lift d istribution  
need be expected ; however, if the radius of curvature of the chord plane is of the same 
order as the chord, fairly large effects m ay be expected. This should be particularly  
noticeable near the vertex of a  cranked wing.
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Syracuse University

1. Introduction. T his paper aim s a t  m aking more readily available the results of 
a  s tu d y  of the m athem atics of weir forms, a subject in H ydraulics to  which higher 
m athem atics can be applied. Section 2 covers the general application of A bel’s in
tegral equation to  the forms of weirs by  B renke.1 Section 3 deals w ith sectionally 
ana ly tic  weir forms, particu larly  the S tout-Sutro  weir. T he w riter believes he has 
m ade the original application of A bel’s integral equation to  this corrected weir form. 
Section 4 deals w ith cases when the q u an tity  of flow can be expressed as a conver
gent series.

2. Abel’s in tegral equation. One m ethod of solution of the problem  of weir forms 
involves A bel’s integral equation. T he natu ra l conditions found in the  flow of w ater 
through weirs satisfy  all the requirem ents of this integral equation, so it proves a 
superior m athem atical tool in handling the  general problem . In  1922 Brenke studied 
the  problem  of the  weir form when the flow was proportional to  some pow er of the 
depth . He m ade the original application of A bel’s integral equation. T his equation 
has the form

/’1 f(s)ds

.  0 < x < 1  (1)

T H E  M A T H E M A T I C S  O F  W E I R  F O R M S *

sin Xx C* <t>'(.s)ds
/(* ) = ---------  I ^ (2)

X  J  a (  X  —  5 ) 1 X

and  its solution is, under certain  conditions,

sin Xx ("1 <t>'(.s)ds

(x  -  s)1

To obtain  (2) from (1) use is m ade of two fundam ental formulas, nam ely2,3 

x C ‘ dx
  =   > 0 <  X <  1 (3)
sinXx J  , (2 — a:)1-x(a; — i)x

1 r z <b'(s)ds
(4)

<(>(s) is assum ed to be continuous and have a continuous derivative in the closed

r *  r z <p'(s)dx r z 1 r z <i>'(s)ds

J  a J  i  (2 a;)1-x(a; — s)x J  „ (2 — x ) 1~x J a (x  — s)x

* Received January 8 , 1944. This paper constitutes part of a thesis subm itted in partial fulfillment 
of the requirements for the degree of M aster of Arts at the University of Nebraska.

1 W . C. Brenke, A n  application of Abel’s integral equation, Am. M ath. M onthly, 29, 58 (1922).
2 E. T . W hittaker and G. N . W atson, Modern analysis, 4th Ed., Cambridge U niv. Press, London, 

1927, pp. 211, 229.
3 M axim e B 6cher, A n introduction to the study of integral equations, Cambridge T racts in M ath, and 

M ath. Physics, N o. 10, Cambridge U niv. Press, London, 1926, p. 8.
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interval, a to  b. Form ula (4) is known as D irichlet’s generalized form ula.4 M ultiply (3) 
by <p'(s)ds and in tegrate  from a to  z, ( a g z g 6 ) ,  which gives

sin Xir

If (4) is applied to the righ t hand m em ber of (5), we have

4>(z) -  <t>(a)
sinXir r *  1 r x 4>’(s) 

IT J  a (Z — X)1~XJ  a (X —

<l>'(s)ds

(x  — s)x

Then, if $(o) = 0  and if we replace the inner integral on the righ t of (6) by  its value 
from (2), we see th a t  (6) becomes (1). Hence (2) is a  solution of (1).

T he weir is ac tua lly  sym m etrically  constructed as in Fig. 3, b u t for purposes of 
the  present calculation a half section is used (Fig. 1). L etting  y = f ( x ) express the

F ig . I. F ig. 2.

distribu tion  of w idth  over depth , h  the depth  of flow, Cd the  coefficient of discharge 
(approxim ately 0.6), and  assum ing th a t  the q u an tity  of flow is proportional to the  
with power of the depth  of stream , we have

C* f  [2g(/* — x )] 1/2f ( x ) d x  =  bhm, 
J  0

or, le tting  K  = b/Cd(2g)112,

L

h
(h -  x )1,2f ( x ) d x  =  K h *

0

D ifferentiating w ith respect to  h, we have

,A f ( x ) d x

(h  -  x )1' 2
2 K m h m-K  (8)

T his equation has the form of A bel’s integral equation.
T o  find the equation of the weir form when the flow is bhm, we have

* W. A. H unvitz, Note on certain iterated and multiple integrals, Annals of M ath., 9, 183 (1907).
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sin 71-/2 r  
f ( x )  =  -------

X  j  0

sin x /2  ( ' x 2Km{m  — l) / im_2 

o {x -  h )112
or

2Km{m  — 1) r :
/ ( a 0 _  C9) 

B y the  use of G am m a Functions,6

2tfr(iK +  1)
/(* ) = --------- ------- n  •'cra’'3/2’ w =  2‘ (10)7T1/2r  {m — f)

L et n  be a  positive integer ^ 2 .  T hen the G am m a Functions become sim ple products
when m  — ti or m  = n Jr \ .  W hen m —n,

K  2nn\
f i x )  =  -  ---------JZ-^7 ^ - 3/2: « ^  2. (11)x 1 • 3 - 5 - • • • (2n — 3)

W hen m  —
1-3-5- • • • (277+ 1)

f i x )  =  K ----------------------------- as—1; n  2. (12)
2 " ( » - l ) !

3. Sectionally analytic weir form s. W hen m  is equal to  or g reater than  § one 
gets continuous forms of weirs (Fig. 2). W hen m  is g reater th an  |  and less th an  f  the 
weir forms have an  infinite w idth  a t  the  bo ttom , the  curve f i x )  approaching the 
AT-axis asym ptotically . As this is impossible in practice, the necessary correction due 
to  lim iting the  w idth  of the  w eir furnishes an  in teresting  m athem atical problem  which 
has been studied in the case where m = 1.

X

F ig . 3. Copy of S tout’s drawing in 1S97. F ig. 4.

T he weir in which the  flow is proportional to  th e  depth  is of engineering value. 
One of the  first records of it is in an  artic le by  0 . V. P. S to u t.6 A pproxim ate correction 
was m ade by  circular openings (Fig. 3). A weir of this type was also constructed  by 
Sutro  and  it  is referred to  in som e tex ts as the  Sutro weir. T he m odern w ay to  correct

5 F. S. W oods, Advanced calculus, Ginn & Co., 1926, p. 164.
• O. V. P. Stout, A new form  of weir notch, Trans, of the Nebraska Engineering Society, 1, 13 (1897).



the S tou t-Su tro  weir is to s ta r t  w ith a rectangular cross section of dep th  a  and 
w idth w  (Fig. 4). T he upper section is then designed to  give a  flow proportional to 
the  first power of th e  depth  when th e  depth  of flow equals or exceeds a.

T he calculations of E . A. P r a t t7 by  series solutions gave a  m athem atically  correct 
form of weir w here hs^a .  In  this solution a rectangular section of depth  a  and w idth 
w  is first assum ed. Soundings are  m ade w ith the zero po int f a  from the  bottom ,

Q = bH = b(h +  fa).

T he q u an tity  of w ater discharged through the  rectangular portion of the weir is

<2o =  ^ w K [{ h  +  a)3/2 -  A3' 2].

Therefore

Q =  $ w K [ (h  +  a )372 -  A3'2] +  2K  f  (A -  x)172/(x)AT =  b(h +  fa).
J  o

As this equality  m ust hold for A =  0, %wKazl2 = %ab and b = 2 w K a 112, so
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f

h
(A -  xy i 2f ( x ) d x  =  §w[fAa1'2 +  a372 -  (A +  a )372 +  A372].

0

Instead  of solving by  the  use of series, as P ra t t  did, one m ay differentiate w ith 
respect to A to p u t the equation  in the  form of A bel’s integral equation; thus

1 h f ( x ) d x

(A -  x)172
2w [a172 -  (A +  a )172 +  A172].

For the  solution of A bel’s integral equation  the  righ t hand  m em ber m ust be a  con
tinuous function, equal to  zero when A =  0. These conditions being satisfied,

sin tt/2  r  [ -  §(A +  « )"1/2 +  U ~ U2]
 dh

sin 7t/2 r
y » / ( * ) =  ------------2W \

7r  J 0 \ X  — A ) 172

w r  r z dh r x dh

7T L o  [xh — A2]172 Jo 1/2

or

[xh — A2]172 J o  [ax +  h(x  — a) — A2]

w w a — x
— -----1----- sin-1 -------- , (13)

2 ir a -j- x

2w /  x \ in
y  =  w  tan-1 1 — ) . (14)

7r \  a /

T his solution can also be w ritten

tt(w -  y)
x  =  a tan2---------------   (15)

2 w

In  th e  design of the S tou t-Su tro  weir i t  is now necessary to  choose an  a  for sub
stitu tio n  in the  above formulas. One will generally know the  average depth  of flow

7 E . A. Pratt, Another proporlional-Jlow weir, Sutro weir, Engr. News, 72, 462 (1914).
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expected through the  weir. I t  is felt to  be b e tte r  to  keep the curve of (13) as close to 
the  curve of the uncorrected weir derived from (10), y  = 2K x ~1I2/ tc, as possible. T he 
scheme is to  m ake th e  rectangular section of the  S tou t-Su tro  weir have the  sam e 
dim ensions as if the uncorrected weir of (10) were corrected for the  average depth  of 
flow by  th e  addition of a  rectangular section a t  the bo ttom , below the F-axis, to 
com pensate for lim iting its w idth  to 2w.

One substitu tes y  = w  in the uncorrected form ula (10) above and solves for a;. 
T his value and th a t  of the h assum ed to be average are  substitu ted  in

h h — 2x 2 irh 2
— s in - '----------- 1-------- (h  +  r ) 3/2------------ (hx  -  s 2) 1' 2 ------------(h -  *)3/2 =  0,
2 h 3 x 112 4 3 x 112

which is solved for r. One then m akes a, the  depth  of the rectangu lar section, equal 
to  x + r .  I t  m ust be appreciated  th a t  (10) can be corrected for one depth  of flow by 
the addition  of a  rectangu lar opening a t  the  bottom , b u t would no t be correct a t  
any  o ther depth  of flow. Form ula (13) is correct a t  an y  depth , I I> % a  (Fig. 4).

4. Series solutions of weir form s. We consider now the forms of weirs when fhe 
q u an tity  of flow can be expressed as a  convergent series in powers of h. Assume 
th a t the q u an tity  of flow, Q(h), can be w ritten

Q{h) =  !> „ & "+ " . (16)
n ™  0

a  convergent series no t having a  constan t term , and assum e the  form of weir to  be 
given by

/(* ) =  L /»(*). (17)
n«= 0

each term  of (17) giving rise to  one term  of (16).
T he general equation is

C«(2g)>'2 f \ h  -  xy i* f (x )d x  = Q(h).
J  0

I ts  solution will involve a series of integral equations of the  form

Cd(2g)1/2 f  (A -  x y % ( x ) d x  =  a„/i"+“ n  =  0, 1, 2, • • • ; a  >  }
J  o

which can be solved by  the  use of (10), giving

r («  +  a  +  1)
/ ,(* )  =  Can   - f  (18)

r ( »  +  a — -J)
where

2

“  Cd(2gir)1/2 '

Substitu tion  of this in (17) gives the formal solution

T (n  +  a  +  1)
/(* )  =  C X) a« — — ; —  x n+a- zl-. . (19)

n—0 r ( t t  +  a  — I )



T he first term  of this series

M x )  = Ca0 7 7 ^ - 7 7  xa~m  WF(a -  f)

will be discontinuous a t  x  =  0 if § < a < f  and continuous if a ^ f .
T he series formed by all the term s a fte r the first will converge and represent a 

continuous function of x.  T his m ay be proved as follows. By hypothesis the  series
Z n  Z ?anh*+° converges since it is the series for Q(h), (16), with the  first term
om itted . L et

r ( »  +  a  +  1)
Tin +  a - \ ) '  “  >  2

=  ( ,  +  „)(»  +  „ -  o r e «  +  « - ! ) , r ( f  +  i) -  p r(p ) ,
T(n +  a  — V  

= (n  +  a )(n  +  a — 1 ) c j

where = T ( « + a —l ) / r ( n + a —'§) and 0 <c„' < 1  since r (£ )  increases m onotoni-
cally for p >  1.46. N ow 8 if the se r ie s5 2 « -ro^ n+a converges, so also will the series

n*»eo w**oo n=ao
52 Cn anh n+a, 52 a-nhn+a and 52 n ' c» a J tn+a.
n==l n=l n*® I

B u t the series 52"Zi cna nh n+a is a simple com bination of these three series, hence it 
also converges. In  each case th e  function represented b y  the series is continuous. 

We have then  the form of weir given by

/(* ) =  /o(z) +  g(*)> (21)

where fo (x )  is given by  (20) and
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g(x) =  C 52 cnanx n+a~3 /2

the quan tities a , C and  c„ being as specified above. T he solution f ( x )  is discontinuous 
a t  x  =  0 if |  < a  < f .  I t  is continuous for f .

8 F . S. W oods, Advanced calculus, Ginn & Co., 1926, p. 47.
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THE NUMERICAL SOLUTION OF LAPLACE’S AND 
POISSON’S EQUATIONS*

BY

D A V ID  M OSKOVITZ  
Carnegie Institute of Technology

1. Introduction . A quite common m ethod of solving num erically the Laplace dif
ferential equation

d W  d*V
 +  = 0  (1.1)
d x 2 d y 2

with the boundary  values of V  prescribed on some contour T bounding a region R  
is to  approxim ate V  by  the solution u of the Laplace difference equation:

4u(x, y) =  u (x  +  h, y) +  u (x  — h, y) +  u(x, y  +  h) +  u(x, y  — It). (1 .2)

Briefly, the m ethod of procedure, com m only called the Liebm ann procedure,1 is to 
cover the region R  w ith a rectangular netw ork of lines a t  distances It apart, and to as
sume values a t  the in terior lattice points of th is netw ork. Using these assum ed values 
and the known boundary values, we traverse the region R  moving in some definite 
geom etrical p a tte rn  from lattice point to lattice point, replacing the assum ed values 
of u  a t  each lattice poin t by  the arithm etic  average of the values of u  a t  the four 
neighboring lattice points. We then repeat the traverse moving in the same pattern  
to  obtain a second im proved value of u  a t  each lattice point; and so on until a con
vergent stage is reached when the values of u  are no longer changed m aterially  by 
continued traversing.

T he purpose of th is paper is to  present a  process which yields precisely the con
vergent values of u  obtained by infinitely m any traverses of the region. In  more 
precise language, if u k is the £th approxim ation of the value of u  a fte r k traverses, 
our process yields the value u  = lim fĉ 00 u k.

2. N otation and se t up of the problem . E quation  (1.2) can be transform ed to

4u(x , y) =  u(x, y  +  1) -f- u{x, y  — 1) +  u{x  +  1, y) +  u (x  — 1, y) (2.1)

by  a  simple transform ation, and we shall concern ourselves w ith  the solution of equa
tion (2.1), w ith  the values of u  prescribed on the boundary  lines

x  =  0, x = n, y  — 0, and y  =  m

of the rectangle R .
Unless otherw ise s ta ted  the num bers m  and n  are fixed positive integers, and i  and 

j  will be used as variable positive integers w ith the range of values

i  =  1, 2, • • • , n  — 1; j  =  1, 2, • • • , m  — 1.

W e shall denote the  value of it a t  the po int (i, j )  by  Uj(i), and  we desire to  distinguish 
the known prescribed values of u  on the boundary  (which values are precisely the

* Received Jan. 7, 1944,
1 For a fuller description of the process and for references to the literature on the subject, see 

the paper by Shortley and W eller in J. App. Phys. 9, 334-348 (1938).



same as those of V  on the boundary) from the unknown values of u  a t  the interior 
lattice points. Accordingly, we denote the  prescribed values of u  on the  boundaries 
as follows:

by fij(0) a t (0, j ) ; by «,<«) a t («, j ) ;

by iio(i) a t  (i, 0); by u m{i) a t (i, m ) ;

and agree th a t
2i,(0) =  Uj («)■= 2io(f) =  u m{i) =  0

wherever these term s appear in our equations.
A t each interior lattice poin t we can w rite

4Uj(i) =  u , ( i  +  1) +  Uj(i  -  1) +  Uj i i(i) +  Ui-i(i) +  (2.2)

where

4>](i) =  5i,iJ<,-(0) +  Si,n-lM/(») +  Sj^U0(i) +  5/,m-l«m(f), (2.3)

and 5,-y (or Si.,-) is the K ronecker delta  defined by

5,-j =  1, if i =  5,y =  0, if i  ^  j .  '

3. A special system  of difference equations. W e consider the solution of the sys
tem  of equations

L cUj(i) =  CMy(i) -  « #( t  +  1) -  Uj{i  -  1) =  M ,+ l( i)  +  ^  ^

( i  =  1, 2, • • ■ , » — 1; j  =  1, 2, • • • , m  — 1), 

in which c and the (m — 1)(» — 1) constan ts <pj(i) are prescribed.2 We assum e th a t

«,•(0) =  u,(n) = uo(i) =  u m(i) =  0,

and seek the values of the ( m —-l)(n  — 1) unknowns
T he system  (3.1) represents (m — 1) difference equations in the (w — 1) functions 

Uj(x),  ( j =  l ,  2, • ■ • , m  — 1), whose values are desired for integral values of the argu
m ent # from 1 to  (n — 1). I t  can be readily shown th a t  system  (3.1) has a unique solu
tion, and of course this solution can be w ritten  down by  C ram er’s Rule, b u t we shall 
give the solution in another form.

An im m ediate p roperty  of the operator L c defined by (3.1) is given by

L c+au ( i ) =  (Lc +  a)u(i) , (3.2)

where a is any  constant. We define the inverse operator L r l and integral powers L * 
of the operator L c in the usual m anner.

From  (3.2), we obtain
{Lc +  a ] -1 =  L :la (3.3)

and
£ .[ £ + .]  =  1 -  £ + «  (3-4)

where 1 is used as the iden tity  operator. T he la tte r is established as follows:

A[f-c-i-a] = [A+a a] [A+a] = A+aA+a flA+a = 1 ®A+a-
1 W e assum e that at least one of the 4>i(i) is different from zero; otherwise the system  (3.1) has only

the trivial solution «,•(*) = 0.
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The solution of system (3.1) will be given symbolically in terms of the inverse 
operator Lr1, and the interpretation of the symbolic solution will depend on the con
stants Dc(k) and defined below. To apply the solution obtained to the solution
of the Laplace difference system (2.2), we have merely to observe tha t (2.2) is a spe
cial case of (3.1) in which c — 4 and 4>j(i) has the value given in (2.3).

Let vc and pc be the roots of the characteristic equation

c f - t 1. -  1 =  0. (3.5)

We define Dc(k) and \ c,k(i) by

k k 
Gc Pc

Dc(k) =  - ,  (3.6)
<*C —  Pc
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,  -  W )
Xc,/.(i) =  — -—- Dc(n — i) when k JS i, 

Dc(n)
Dc(n — k)

K,k(i) = ------------- Dc(i) when k ^ i.
Dc{n)

(3.7)

The identities

D e(n) =  D c(t)Dc(n - i +  1) -  Dc(i -  1 )D,(n -  i) (3.8)

and
Dc(i +  1) =  cDe(i) -  Dt(i -  1) (3.9)

with D c{0) = 0 , Z?«(l) =  1 are easily established. In terms of the operator Lc, we may 
write (3.9) in the form

LcDc(i) =  0. (3.10)

Also if a is any constant, we have

LcDc+a( l) [-A+a il]i9c+a(f) “  Lc+aDc+a(,l) A-jDc-fa(i) i

hence
LcDc+a(i) = 0Dc+a{.i)- (3.11)

We shall show that
LcKk(i) =  Sik. (3.12)

To establish (3.12) we have three cases to consider:
1) When k — 1, we have

W )
Lc\c,k(i) =  — —— LcD c(n — i) =  0, by (3.10).

Dc{n)

2) When ¿ ^ ¿ + 1 ,  we have

D c(n — k)
Lc\,k(i) =  — — —— LcDc{i) =  0, by (3.10).

D c(n)
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3) When k = i ,  we have 

A c X c , i ( f )  =  c X C | j ( f )  X c , , * ( f  " h  1 )  X C l i ( f  1 )

= [cDc{n -  i )Dc(i) -  D c{n -  i -  1 )Dc(i) -  D c( i  -  1 )Dc(n -  i) ] / D c(n)

= [Dc(i) {cDc{n — i) — D c{n — i — 1)} — D c( i  — \ )DJji  — i) ] / D c(n)

= [Dc( i )Dc(n -  i  +  1) -  D c( i  -  1 )Dc(n -  i ) ] / D c(n), by (3.9),
=  D c{n ) / D c(n) =  1, by (3.8).

Also useful is the relation

A c X c - f a , A - ( f )  =  &i,k f l X c 4 - a , f c ( f ) ,  ( 3 . 1 3 )

which is a consequence of (3.2) and (3.12).
4. The special cases m  =  2 and m  =  3. As an introduction to the symbolic solution,

we consider first the simplest case, wt = 2 , in which case there is only one equation
in the system (3.1), since by hypothesis u 0(i) = u m(i) =0. This equation is

Ac«i(f) =  <Mi). (4-1)

Its solution is given by

wi(0 =  Z) (4.2)
k~  i

We also write the solution of (4.1) in the symbolic form

ux{i) = (4.3)

where the expression on the right side of (4.3) is to be interpreted as being equal to 
the right side of (4.2). Explicitly,

Lr1 [<i>i(f)] =  23 Xc.*(i)<£i(£). (4-4)
*—i

To make actual use of the solution given in (4.2), it is necessary to have a table 
of values of the constants \ c . k { i ) .  In order not to complicate unduly the notation, 
the dependence of these constants on n  has been om itted from our notation. A com
plete tabulation of these constants would require a great deal of space, since, with m 
fixed, they still depend on four parameters c, k, i, and n.  However, for the application 
to the solution of (2.2), we have c = 4, and abridged usable tables requiring only 
tabulations for i  —  1 , 2 and varying k and n are given in Tables 1 and 2 of §9.

The entries in Table 1 give the multipliers to be applied to each of the boundary 
values in the calculation of U\{ 1). As an example let us consider a 2 by 10 rectangle. 
M ultiply each boundary value of the first column by the multiplier which appears 
opposite it in the column w = 10 ; add these products, and the sum is the value of 
Mi(l). Likewise, by interchanging the arguments (n —i ) and i ,  the same multipliers 
can be used to calculate «i(9). Next using Mi(l) and 2<i(9) as known boundary values 
and the 2 by 8 rectangle which has the points (1, 1) and (1, 9) on its ends, use the 
multipliers in column n = S to calculate iii(2) and mj(8); and so on.

The number of points a t  which the values of u  are to be calculated by this process 
can be cut in half by using Table 2. W ith the entries in this table, using again a 2 by



10 rectangle, the values mi(2) and « 1(8) can be calculated using the multipliers in 
column k = 10; then in the 2 by 6 rectangle with points (2, 1) and (8, 1) as ends, 
and using multipliers in column n = 6, calculate wi(4) and mi(6). The values 
Mi(l), tti(3), • • • , Wi(7) can then be obtained by the Liebmann formula, each being 
the average of its four neighbors. For example,

«i(5) =  J[mi(4) +  « 1(6) +  «o(5) +  «2(5 )].

In the case m=3,  system (3.1) reduces to the following:

LcU\(i) =  Ui{i) -f- 0i(f), Lcui{i) = iti(t) +  02(f), (4.5)

with two unknown functions u\ and 112.
Treating the operators in (4.5) as algebraic multipliers, and solving for wi and U2, 

we obtain symbolically
Lc . 1

«1 (f) =  77 7 0 i(f) +  —:-----702(f),
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L\ — 1 L\-  1

1 . Lc
«2 (f) =  —---~ 0 l(f) +  —2-----7 02(f).

Le 1 Lr 1

(4.6)

The following interpretation of the operators in the right members of (4.6) produces 
actual solutions. W rite the operators of the right members in their partial fraction 
expansions, obtaining

t  - *  [ z ~ h :+ x t i ]  - 1 [L7ii+ ir+li]-

L: - 1  ’L-i X c + i ] - " ^ 711 L* l]'

The last step in each line follows from (3.3). Consequently, the explicit solution of 
(4.5) is given by

«—I n—1

Mi(f) =  X  [a *(f)0 i(&) +  /3*.(f)0i(^)], k2(f) =  X  [/3*(f)0i(£) +  cik(i)4>2(k)]\ (4.7)
*¡=1 fc-i

where

«*(*) =  2 [Xc_i,fc(f) +  Xc+i,*(i)], ^¿(f) =  £[Xc-i.*(f) — V fi.*(*’)]• (4.8)

To verify th a t (4.7) is the solution of (4.5), we use

Lcotk(i) —  S.t +  (3*(f), Lcf}k(i) =  a*(i), 

which follow from (4.8) and (3.13). Consequently,
n—1

LcUi(i) =  'Yj { [Lcak(i)](t>i(k) +  [LcPk(i)](t>2(h)}
ik»i
n—1 n—1

= X  5a-0i(A) + x  [0*(f)0 i(£) + ai(f)02(̂ )]
¿«1 Jfc-1

= 0 l(f) + «2(f)-
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Tables 3 and 4 of §9 are useful in calculating values of «i(l) and mi(2) for the case 
wz =3, again using c — 4 which is appropriate for the Laplace equation.

These tables are used in a similar manner as Tables 1 and 2. However, for each 
value of n, there are two numbers side by side, and also two boundary values in the 
first column. The interpretation is to multiply the left one of the two boundary values 
of each line by the left one of the two multipliers of the same line in the appropriate 
n column.

For a given n, calculate ui{ 1) using multipliers of Table 3; then interchanging the 
subscripts 1 and 2 and the subscripts 0 and 3, calculate %(2) using multipliers of 
Table 4. The value ui{ 1) is then obtained by the Liebmann formula

« 2( 1 ) =  I  [«2(0) +  « 3( 1 ) +  « i ( l )  +  « 2(2 )] .

As in the case m  = 2, we can also calculate from the end x = n  of the rectangle.
5. The general case. We now consider the general system (3.1) for any value 

of m,  and show that its solution can be written symbolically in terms of the poly
nomial operators defined by

P o - 0 ,  P i = l ,  Pk — LcPk-i — Pk-z for ¿ > 1 .  (5.1)

The operator Pk is a polynomial in Lc of the (k — l)st degree, which is precisely the
same function of Lc as D c(k) is of c. From this observation, the following analogue of
(3.8) can be seen to be valid,

P n = (5.2)

By solving the system (3.1) treating L c as an algebraic multiplier, we obtain sym
bolically

J  p  p ,  m— 1  p  p
“ ;■(*) =  Z) — r -—  <bk(t) +  Z) <t>k(i), (y =  1 , 2 , • • • , m -  1 ), (5 .3)

fc— l  -4 m k—j+1 Pm

in which the operators of the right member are to be interpreted similarly to those 
of (4.6); that is they are to be expanded into partial fractions. Since each of the opera
tor coefficients in the right member of (5.3) is a proper fraction, their expansions will 
have the form

PjPk rgbfU.k)
— Z /  T — Z /  ¿ ¡ 0 .  k )LC—ai! (5 .4 )

P  m 1— 1 Pc U j  1 »  1

where 01, <22, • • • . am-i  are the roots of P m( 0  =0 and the numbers bt(J, k) are uniquely 
determined. The actual solution of (3.1) is thus given in terms of the operators L~2ai 
which have the meaning given in (4.4).

That the foregoing actually yields the solution of (3.1) can be established by oper
ating on each side of (5.3) with the operator Lc and using the relations (5.1) and (5.2).

6. Application to solutions of Laplace’s equation. We have already observed that
(2.2) is a special case of the system (3.1) in which c = 4 and <pj(i) has the value given 
in (2.3). To apply the preceding results, it becomes necessary to calculate the coeffi
cients of in the solution of (3.1) for various values of rn. The polynomial opera
tors P m must be factored, and the operators appearing in (5.3) must be written in the 
more useful form (5.4).
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We have already considered in detail the cases m = 2, m = 3  in §4. We now par
ticularize the general solution of §5 to the case m — 4.

From (5.3) we have symbolically:

P iP 3 P 1P 2 P 1P 1 
«1 —  —  <j)i  —  cf>2 "1--------- 03,

«2 =

« 3  =

where

P  i

PiPt
Pi

P 1P 1

Pi

P 2P 2
4> 1 H  — 0 2 +

P  i

P i

P 1P 2

P i

.  P 1P 2 , PiPz
0i H- — 4>2 H —— 03 ,

Pi Pi

(6.1)

P 1P 1 1
P i L l - 2LC

P 1P 2 L,

P i L I  2 \LC

PlPz LI - - 1
P i L \ - 2 Le

P 2P 2 L\1

P i L \ ~ 2 Lc

\ /2  +  V2

- * y
1

V2 £* +  V 2  L, 
1

V 2  Lc +  y/2J  

The explicit form of the solution is given by
n—1

- y \  = \ [ L 7 l^ + L 7 lr 2 - 2 L r '} ,
X'C-I

]  = l [L 7 l^ + L 7 +1̂ + 2 L r '} ,  

Hirivs +  iT+v?].

(6.2)

[Qk(i)<f>l(k) +  Sjc(i)(l)2(k) +  Rk(i)<l>z(k)]t
k -l 
n— 1

tl2(l) =  [$k( i) (<Al(^) +  <t>s(k)} +  Tk{Í)<¡>2(^)],
A-l
n—1

«3(f) =  [2?*(í)0 i(¿) +  S k { ï)4>i(k) +  Qk(i)<t>s(A)]i

(6.3)

where

and

Qfc(f) =  i  [Xc-V2,fc(f) +  Xc+V2,*(í)+ 2Xc,fc(f)], 
P k (i)  =  l[^c-V2,i(f) +  ^c+V2,i(f)— 2XCli(f)],

1  r • - n
S k (i)  =  2 ^ / 2  ~  Ae+V2,t(0 Ji

T  k(i) =  §[Ae-Vï,i(i) +  Xc+V2,fc(î)]j

(6.4)

0l(&) — 5k, iMi(O) -f- 5k,n-llïx(w) +  tto(i)i'
0s(*) c= S*,i“s(0) -F 5jt.n-iM2(M), (6.5)
<t>z(k) — 5k, iù3(0) +  5k,n-iM3(n) +  ü4(k).

Multipliers for calculating «2(1 ), w2(2), and îîi(2) are given in Tables 5, 6, and 7.
For a 4 by 11 rectangle, calculate «2(1 ) using Table 5, «i(2) using Table 7, u%{2) using
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Table 7 with subscripts 0 and 4 and subscripts 1 and 3 interchanged. Then calculate 
Mi(l), «3(1 ) by the Liebmann Formula. Then using known values wi(l), «2(1 ), «3(1 ) 
and treating them as known boundary values for the rectangle one unit shorter, calcu
late «2(3) using Table 6; w2(2) can then be obtained by use of the Liebmann Formula. 
Then calculate wi(4), m3(4) using Table 7; and so on. Of course, as in the case m — 2 
and m = 3, we can also calculate from the end x  = n of the rectangle. By this process 
the value at only every other point on each line is calculated by the use of the tabu
lar values.

For values of m larger than 4, it is only convenient to use composite values of m .  
It can be easily shown that when m is composite having q for one factor then P m con
tains P q as a factor. However, for larger values of m, the necessary tables occupy more 
space and require a tremendous amount of time in their preparation. Theoretically the 
complete solution for any value of m  is given by (5.3), but practically it is sufficient to 
use tables with m — 4. A given rectangle can be covered by a lattice 4 units wide and 
the values of the function u  at the interior lattice points calculated by the methods 
indicated. When the values of u at these lattice points are obtained, each rectangle can 
then be subdivided again by a finer network and the first calculated values are then 
used as approximate values for the finer network, and can in turn be improved either 
by traversing or by the use of the tables given here.

7. The Poisson Equation. The preceding methods and results can be extended 
with slight modification to apply to the numerical solution of the more general Pois
son equation

d W  d2F  , %

; p + v “ F(‘ ' 5,)' < 7 ' 1)

in which F(x, y ) is defined in the interior of the region R. The approximating differ
ence equation in this case is

4u(x, y) = u(x  -f- h, y) +  u(x  — h, y) +  u(x , y +  h) +  u(x, y — h) — h2P(x, y). (7.2) 

Employing our former notation, we can write at each interior lattice point

4 « j( t)  =  Uj ( i  +  1) +  Uj ( i  — 1) +  4- U j - i ( i )  — It2F j ( i )  -}- 5,-,i«/(0) 4- 8,-,„_!«,(»)

4- §j.i«o(i) 4- 5;-,m_iMm(f), ( ¿ = 1 , 2 , - - - ,  11 — 1; j  =  1, 2, • • • , m — 1), (7.3) 

and again consider
m,(0) =  Uj(n) -  «0(0 =  u m{i)  =  0.

The system (7.3) is again a special case of system (3.1) in which the known func
tion is now given by

<#>,'(!) = 5,m«,(0) 4- 5i,„_iii,(«) 4- 5j,i«o(f) 4- — h2Fj(i). (7.4)

Consequently, the general solution given in §5 applies at once.
In the case m = 2, for example, we have

n—1
ui(i) = Xi,t(i) [5fc,i27i(0) -p 5k,n-iU\{n) 4- tia(k) -f- — h2Fi(k)]. (7.5)

*-1

To apply Tables 1 and 2 to obtain the values of tti(l) and mj(2), first calculate 
h2Fi(k), k = l , 2 ,  ■ ■ ■ , n — 1, at each interior lattice point. Then apply to these values



156 D A V I D  M O S K O V I T Z [V ol. I I , N o .  2

the same multipliers as are applied to u 0(k) and ih(k). If Table 2 is used to calculate 
Wi(2), the value wi(l) can be obtained from the associated Liebmann equatiop

Mi(l) = ik ( 2 )  +  wi(0) +  flo(l) +  fi,(l) -  MF^l)]. (7.6)

For the case ?w=3, multiply h2Fi(k) and h2F3(k), respectively, by the same multi
pliers as are used for u 0(k) and u 3 (k).

For the case m  = 4, additional tables are required. The explicit solution in this case 
is formally the same as that given in (6.3), but <f>i(k), and <f>3(k) have the fol
lowing values:

<t>i(k) =  5 * , i « i ( 0 )  +  5 * , n _ i « i ( » )  +  u0(k)  —  h2F x(k),  x

4>t{k) = h .M O )  +  St,„-iu2(n) -  h*F2(k), i  (7.7)
^s(^) =  5*,i^s(0) +  8k,n-iu3(n) -f- fti(k) — h2F3(k). '

The multipliers <2/.-(2) and R k(2) appear in Table 7 and are respectively those
multipliers applied to «0(£) and *74(&) in the calculation of «i(2). The multipliers S k( 1) 
appear in Table 5 and are those multipliers applied to both u0(k) and w4(&) in the 
calculation of «2(1 ). The multipliers S k(2) are those multipliers in Table 6 which are 
applied to both fio(k) and it^ k )  in the calculation of m2(2).

The multipliers T k( 1) and T k(2) which must be applied to h2F2(k) in the calcula
tion of u2( 1) and «2(2) appear in Tables 8 and 9 respectively.

8. Irregular cases and non-rectangular boundaries. The preceding solutions both 
in the case of the Laplace equation and the Poisson equation apply only to rectangu
lar boundaries whose dimensions are integral multiples of the lattice unit h. To apply 
Tables 5, 6, and 7 in the solution of the Laplace equation for a rectangular boundary, 
divide the smaller dimension of the rectangle by 4 to obtain the lattice unit h. If the 
longer dimension of the rectangle is an integral multiple of h, the process here outlined 
for the solution applies directly. We call this the regular case. If the longer dimension 
is not an integral multiple of h, we call this the irregular case, and a modification of 
the process here outlined is required. We need an analogue of the Liebmann Formula 
to express the value of a harmonic function approximately in terms of the values of 
the function at four non-equidistant neighbors.

Let H(x, y) be an arbitrary harmonic function whose value H 0 at (#0, y 0) is to be 
expressed approximately in terms of Hi, IF, I I 3 , H\ which are the values of II{x, y) 
at the points (xo+rji, y 0), (x0 — rzh, y 0), (*0, yo+r 3h), (x 0, yo — rjt) where n, r2, f», n, 
and h are positive. When ri — r3 = r3 — ri = \, and II(x, y) is approximated by its T. S. 
(Taylor Series) expansion about (xo, yo) up to terms including those of the third de
gree in h, Ho is found to satisfy the Liebmann equation

Ho =  K H i  +  H 2 +  I I 3 +  HI). (8 .1)

When ri, r2, r3, and r4 are not equal, and H(x, y) is approximated by its T.S. up to 
terms including those of the second degree in h, we find3

IIo — Q1I I 1 -J- cliHo -f- 113H 3 -}- a 4Hi (8 . 2)
where

5 T h i s  re la t io n  is  a ls o  g iv e n  b y  S h o r t le y  a n d  W e lle r ,  ib id .;  b u t  t h e ir  m e th o d  o f  d e r iv a t io n  is  s l ig h t ly  

d iffe re n t  f r o m  o u rs .
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= r2r3r4/  {rx +  r 2) ( r s  2 +  r3r4), a2 = r t f t f j ^ i  +  r2)(rir2 +  r3r4),
(8.3)

a3 = rtf tf.\/(r% +  r 4) (r tf 2 +  r3r4), a4 = rtf2r3/ (r 3 +  r4)(rtf2 +  r3r4).

If H(x, y ) is approximated by its T.S. up to terms of the first degree in h, we find
4

Ho = £  bkHk with bt = rrV(rfl + rr1 + r f1 + rr1). (8.4)
*-1

Either (8.2) or (8.4) expresses I I 0 as a weighted average of its four neighbors, and 
although (8.4) is easier to use, presumably (8.2) gives a better approximation to the 
value of H 0. However in the application to the irregular case of the rectangle, we 
require only the simpler forms to which (8.3) and (8.4) reduce when three of the 
Tk (k = 1, 2, 3, 4) are equal to unity.

To determine the values of a harmonic function at the interior lattice points of a 
rectangle whose dimensions are 4h by (n-\-r)h where n  is an integer and 0 < r < l ,  
let x, y, z, etc. be the values of the harmonic function at the points indicated in Fig. 1. 
By means of Tables 5, 6, 7 we can express u, v, and w as linear functions of y, z

X y z

n

u V w

4h -------------------

Fig. 1.

and the boundary values. Then by means of (8.2) or (8.4) or any other approximation 
method determine x, y, and z in terms of u, v, w, and the boundary values Bu 
{k = 1, 2, 3, 4, 5) at the indicated points of the figure. This process leads to three linear 
algebraic equations for the determination of x, y, and z. When these values are de
termined, the values of the harmonic function at the other interior lattice points can 
be obtained as the problem is now reduced to the regular case.

A similar method can of course be used for the Poisson equation. In this case the 
analogue of (8.2) is

Ho == diH 1 a2772 T a3£73 T  o,4H4 — doFo (8.5)
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where

a0 = 5 A2 ( --------------},
Vir2 +  r3r j  (8 .6)

Fo denotes F(xo, >'o), and ah a2, a3, are given by (8.3).
The foregoing method applies equally well if the top and bottom boundaries of 

the figure are not straight. We postpone for a later paper the procedure which can 
be applied for non-rectangular boundaries in general. In this subsequent paper we 
shall also show the application of our methods to an extension of the Liebmann 
process in which the values at certain of the interior lattice points are calculated 
from the arithmetic average of the values at their four normal neighbors while the val
ues at the other lattice points are calculated from the values at their four diagonal 
neighbors.

9. Tables. The entries in the following tables were rounded off to four decimal 
places from calculations carried out to a higher number of decimal places. In the 
tables, the decimal points are not printed but are to be understood to be present just 
before the first digit. In the compilation of these tables, the values of Dc(k), defined 
in (3.6), were required for the values c - 4, 3, 5, 4 — y / l ,  and 4 +  \/2 . These were cal
culated from the recurrence relation (3.9), and are integers only when c is an integer.

The values X4.a(1) and X4,*(2), defined in (3.7) are the entries in Tables 1 and 2, 
respectively. The entries in Tables 3 and 4 are the values a k(i) and (3k(i) for i  = 1 and 2, 
respectively; these were calculated from X3,/..(i) and X5,fc(f) for i = 1 and 2 using the 
relations (4.8). The entries of Tables 5 to 9 were calculated from the relations (6.4).

As one convenient check on the accuracy of Tables 1 to 7, the sum of the multi
pliers used on all of the boundary values must be equal to unity; this check was 
applied. The author would be happy to know that no errors were made in the many 
calculations required in the preparation of these tables.
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T a b l e  1.— T o  c a l c u la te  k i ( 1 ) ;  m =  2

B o u n d a r y

v a lu e s
n  =  3 « = 4 m  =  5 n = 6 n = 7 «  =  8 « ê  9

fli(O ) 2 6 6 7 2 6 7 9 2 6 7 9 2 6 7 9 2 6 7 9 2 6 7 9 2 6 7 9

W û(l) T # 2( l ) 2 6 6 7 2 6 7 9 2 6 7 9 2 6 7 9 2 6 7 9 2 6 7 9 2 6 7 9

«o(2 ) + iJî (2 ) 0 6 6 7 0 7 1 4 0 7 1 8 0 7 1 8 0 7 1 8 0 7 1 8 0 7 1 8

“ o(3) + « - j (3 ) 0 1 7 9 0 191 0 1 9 2 0 1 9 2 0 1 9 2 0 1 9 2

$o(4 ) + « 2 ( 4 ) 0 0 4 8 005 1 0 0 5 2 0 0 5 2 0 0 5 2

« o( 5 ) + ! Î2 ( 5 ) 0 0 1 3 0 0 1 4 0 0 1 4 0 0 1 4

î îo (6 ) + « î (6 ) 0 0 0 3 0 0 0 4 0 0 0 4

«o(7 ) + î Î î (7 ) 0001 0001
“ 0(8) + « 2(8) 0000

« i (» ) 0 6 6 7 0 1 7 9 0 0 4 8 0 0 1 3 0 0 0 3 0001 0000

T a b l e  2 .— T o  c a l c u l a t e  « i ( 2 ) ;  m —  2

B o u n d a r y

v a lu e s
»  =  4 «  =  5 re =  6 »  =  7 n  =  8 «  =  9 « è i o

0 7 1 4 0 7 1 8 0 7 1 8 0 7 1 8 0 7 1 8« , (0) 0 7 1 8 0 7 1 8

r lo ( l)  + « 2(1) 0 7 1 4 0 7 1 8 0 7 1 8 0 7 1 8 0 7 1 8 0 7 1 8 0 7 1 8

«o(2 ) + 2J î(2) 2 8 5 7 2 8 7 1 2 8 7 2 2 8 7 2 2 8 7 2 2 8 7 2 2 8 7 2

“ o(3) + « 2(3) 0 7 1 4 0 7 6 6 0 7 6 9 0 7 7 0 0 7 7 0 0 7 7 0 0 7 7 0

“ o(4) + « 2(4) 0 1 9 1 0 2 0 5 0 2 0 6 0 2 0 6 0 2 0 6 0 2 0 6

t t o ( 5 ) + « 2(5 ) 005 1 0 0 5 5 0 0 5 5 0 0 5 5 0 0 5 5

« 0(6) + « 2(6) 0 0 1 4 0 0 1 5 0 0 1 5 0 0 1 5

ôo (7 ) + )Z î( 7 ) 0 0 0 4 0 0 0 4 0 0 0 4

« 0(8) + w s (8) 0001 0001
«o(9 ) +172(9) 0000

£ l ( « ) 0 7 1 4 0 1 9 1 0 0 5 1 0 0 1 4 0 0 0 4 0001 0000

T a b l e  3 .— T o  c a l c u la te d  « i ( l ) ;  m —  3

B o u n d a r y

v a lu e s
» ==4 « == 5 11 = 6n  == 2 n  == 5

fJi(0) « 2(0) 2 6 6 7 0 6 6 7 2 9 1 7 0 8 3 3 2 9 4 8 0861 2 9 5 3 0 8 6 6 2 9 5 3 0 8 6 6

« o ( l ) « j (1) 2 6 6 7 0 6 6 7 2 9 1 7 0 8 3 3 2 9 4 8 086 1 2 9 5 3 0 8 6 6 2 9 5 3 0 8 6 6

« o (2) M2 ) 0 8 3 3 0 4 1 7 0 9 3 2 0 4 9 7 0 9 4 5 0 5 0 9 0 9 4 7 0 5 1 1

M 3 ) M3 ) 0 2 8 2 0 1 9 5 0 3 1 8 0 2 2 7 0 3 2 3 0 2 3 2

“ o(4) 03(4) 0100 0 0 8 2 0 1 1 4 0 0 9 5

ûo(5) ô 3(S ) 0 0 3 7 0 0 3 3

tti(n ) M n ) 2 6 6 7 0 6 6 7 0 8 3 3 0 4 1 7 0 2 8 2 0 1 9 5 0100 0 0 8 2 0 0 3 7 0 0 3 3
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T a b l e  3.— (continued)

[V ol. I I , N o .  2

B o u n d a r y

v a l u e s
n - = 7 11 == 8 n == 9 n — 10 n à l l

« i (0) % ( 0) 295 3 0 8 6 6 2 9 5 3 0 8 6 6 2 9 5 3 0 8 6 6 2 9 5 3 0 8 6 6 2 9 5 3 0 8 6 6

« o ( l ) «3(1) 2 9 5 3 0 8 6 6 2 9 5 3 0 8 6 6 2953 0 8 6 6 2 9 5 3 0 8 6 6 2 9 5 3 0 8 6 6

«» (2) « 3 ( 2 ) 0 9 4 7 0 5 1 2 094 7 05 1 2 0 9 4 7 0 5 1 2 0 9 4 7 0 5 1 2 0 9 4 7 0 5 1 2

«» (3 ) «3(3) 0 3 2 4 0 2 3 3 0 3 2 4 0 233 0 3 2 4 0 2 3 3 0 3 2 4 0 2 3 3 0 3 2 4 0 2 3 3

«o(4) « 3(4) 0 1 1 6 0 0 9 7 0 1 1 6 0 0 9 7 0 1 1 6 0 0 9 7 0 1 1 6 0 0 9 7 0 1 1 6 0 0 9 7

«o (5 ) « 3 ( 5 ) 0 0 4 2 0 0 3 8 0 0 4 3 0 0 3 9 0 0 4 3 0 0 3 9 0 0 4 3 0 0 3 9 0 0 4 3 0 0 3 9

« 0(6) « 3( 6 ) 0 0 1 4 0 0 1 3 0 0 1 6 0 0 1 5 0 0 1 6 0 0 1 5 0 0 1 6 0 0 1 5 0 0 1 6 0 0 1 5

**o(7) «3 (7 ) 0 0 0 5 0 0 0 5 0 0 0 6 0 0 0 6 0 0 0 6 0 0 0 6 0 0 0 6 0 0 0 6

iîo (8) « 3(8) 0002 0002 0002 0002 0002 0002
«o(9) “3(9) 0001 0001 0001 0001
f io (10) 03( 10) 0 0 0 0 0 0 0 0

1( i(h ) ü2{n) 0 0 1 4 0 0 1 3 0 0 0 5 000 5 0 0 0 2 0 0 0 2 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0

T a b l e  4 .— T o  c a l c u l a t e  « i ( 2 ) ;  m —3

B o u n d a r y

v a l u e s
n = 3 n =  4 11 =  5 jt =  6 n =  l

« i (0) * ( 0) 0 8 3 3 0 4 1 7 0 9 3 2 0 4 9 7 0 9 4 5 0 5 0 9 0 9 4 7 0 5 1 1 0 9 4 7 0 5 1 2

t t o ( l )

« o ( 2 )

«o (3 )

« '«(4)

«o(5)

« 0(6)

« 3( 1)

« = ( 2 )

* ( 3 )

«3(4)

0 3 ( 5 )

« 3(6)

0 8 3 3

2 9 1 6

0 4 1 7

0 8 3 4

0 9 3 2

3 2 3 0

0 9 3 2

0 4 9 7

1 056

0 4 9 7

0 9 4 5

3 2 7 1

1045

0 3 1 8

0 5 0 9

1093

0 591

0 2 2 7

0 9 4 7

3 2 7 7

1061

0 3 6 0

0 1 1 4

0 511

1 09 8

0 6 0 6

0 2 6 5

0 0 9 5

0 9 4 7

3 2 7 7

1063

0 3 6 6

0 1 2 9

0 0 4 2

0 5 1 2

109 9

0 6 0 8

0 2 7 1

0 1 0 9

0 0 3 8

«1 (« ) « 2( 71)  . 2 9 1 6 0 8 3 4 0 9 3 2 0 4 9 7 0 3 1 8 0 2 2 7 0 1 1 4 0 0 9 5 0 0 4 2 0 0 3 8

T a b l e  4 .— (c o n t in u e d )

B o u n d a r y

v a l u e s
n - = 8 n  == 9 n  = 10 n  = 11 3 3 ^ 1 2

« i( 0 ) M O ) 0 9 4 7 0 5 1 2 0 9 4 7 0 5 1 2 0 9 4 7 0 5 1 2 0 9 4 7 0 5 1 2 0 9 4 7 0 5 1 2

« o ( l ) « 3(1) 0 9 4 7 0 5 1 2 0 9 4 7 0 5 1 2 0 9 4 7 0 5 1 2 0 9 4 7 05 1 2 0 9 4 7 0 5 1 2

u0( 2) « 3(2) 3 2 7 7 109 9 3 2 7 7 1 099 3 2 7 7 109 9 3 2 7 7 1 09 9 3 2 7 7 1099

«o(3) «3 (3 ) 1063 0 6 0 9 1063 0 6 0 9 1063 0 6 0 9 1063 0 6 0 9 1063 0 6 0 9

«o(4 ) « s(4 ) 0 3 6 7 0 2 7 2 0 3 6 7 0 2 7 2 0 3 6 7 0 2 7 2 0 3 6 7 0 2 7 2 0 3 6 7 0 2 7 2

“ o(5) «3(5) 0 1 3 1 0 1 1 2 01 3 2 0 1 1 2 0 1 3 2 0 1 1 2 0 1 3 2 0 1 1 2 0 1 3 2 0 1 1 2

« 0(6) ü 3(6) 0 0 4 8 0 0 4 4 0 0 4 9 0 0 4 4 0 0 4 9 0 0 4 5 0 0 4 9 0 0 4 5 0 0 4 9 0 0 4 5

M D «3(7) 0 0 1 6 0 0 1 5 0 0 1 8 0 0 1 7 0 0 1 8 0 0 1 7 0 0 1 8 0 0 1 7 0 0 1 8 0 0 1 7

M S ) 113(8 ) 0 0 0 6 0 0 0 6 0 0 0 7 0 0 0 7 0 0 0 7 0 0 0 7 0 0 0 7 0 0 0 7

« 0(9) «3(9) 0 0 0 2 0 0 0 2 0 0 0 3 0 0 0 3 0 0 0 3 0 0 0 3

«-»(10) « 3(10) 000 1 000 1 000 1 000 1

« o ( l l ) «3 (11 ) 0 0 0 0 0 0 0 0

M n) M>Û 0 0 1 6 0 0 1 5 0 0 0 6 0 0 0 6 0 0 0 2 0 0 0 2 000 1 000 1 0 0 0 0 0 0 0 0
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T a b l e  5.— T o  c a lc u la te  « 2(1) ;  > » = 4

B o u n d a r y

v a lu e s
1 1 = 2 11=  3 11 =  4 21 =  5 2» =  6 n  =  l 2 2 = 8 21 =  9 2 1 = 1 0 22=  11 22=  12 2 2 ^ 1 3

* ( 0 ) 2 8 S 7 3 2 3 0 3 3 0 4 3 3 2 0 3 3 2 3 3 3 2 4 3 3 2 4 3 3 2 4 3 3 2 4 3 3 2 4 3 3 2 4 3 3 2 4

f l i ( 0 ) + * ( 0 ) 0 7 1 4 0 9 3 2 0 9 8 2 09 9 3 0 9 9 6 0 9 9 7 0 9 9 7 0 9 9 7 0 9 9 7 0 9 9 7 0 9 9 7 0 9 9 7

« p ( l)  + « i ( l ) 0 7 1 4 09 3 2 0 9 8 2 09 9 3 0 9 9 6 0 9 9 7 0 9 9 7 0 9 9 7 09 9 7 0 9 9 7 0 9 9 7 0 9 9 7

«o (2 ) + 22,(2 ) 04 9 7 0 6 2 5 0 6 5 4 0661 0 6 6 2 0 6 6 3 0 6 6 3 0 6 6 3 0 6 6 3 0 6 6 3 0 6 6 3

« o (3 )+ « < ( 3 ) 0 2 6 8 0 3 3 2 0 3 4 6 0 3 4 9 0 3 5 0 0 3 5 0 0 3 5 0 0 3 5 0 0 3 5 0 0 3 5 0

wo(4) + « , ( 4 ) 0 1 3 3 0 1 6 4 0 171 01 7 2 01 7 3 0 1 7 3 0 1 7 3 0 1 7 3 0 1 7 3

« o (S ) + 22,(5 ) 0 0 6 4 0 0 7 9 00 8 2 00 8 3 0 0 8 3 0 0 8 3 0 0 8 3 0 0 8 3

2J0(6) + 22,(6) 0031 0 0 3 8 0 0 3 9 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4 0

«o (7 ) + 22, (7) 0 0 1 5 0 0 1 8 0 0 1 9 0 0 1 9 0 0 1 9 0 0 1 9

« 0(8) + « 4(8) 0 0 0 7 0 0 0 8 0 0 0 9 0 0 0 9 0 0 0 9

«o (9 ) + « i ( 9 ) 0 0 0 3 0 0 0 4 0 0 0 4 0 0 0 4

« » (10) + 21, (10) 0002 0002 0002
« o ( l  1) + 21, (11) 0001 0001
2! 0 ( 12 ) + 21, (12) 0000

2î l ( » ) + 2lj (« ) 0 7 1 4 0 4 9 7 0 2 6 8 0 1 3 3 0 0 6 4 0031 0 0 1 5 0 0 0 7 0 0 0 3 0002 0001 0000

2*2(2») 2 8 5 7 1 056 0 4 4 6 0 2 2 6 0 0 9 3 0 0 4 4 0021 0010 0 0 0 5 0002 0001 0000

T a b l e  6.— T o  c a lc u la te  « 2(2);  222 =  4

B o u n d a r y

v a lu e s 2 2 = 3 22 =  4 22 =  5 22 =  6 22 =  7 22 =  8 22 =  9 22=10 22=  11 22=12 2 2 = 1 3 2 2 = 1 4 2 2 ^ 1 5

* ( 0) 105 6 1250 1292 1301 1303 1304 1304 1304 1304 130 4 1304 1304 130 4

« i (0) + « 3(0) 0 4 9 7 0 6 2 5 0 6 5 4 0 6 6 1 0 6 6 2 0 6 6 3 0 6 6 3 0 6 6 3 0 6 6 3 0 6 6 3 0 6 6 3 0 6 6 3 0 6 6 3

« o ( l )  +  22, (1) 0 4 9 7 0 6 2 5 0 6 5 4 0 661 0 6 6 2 0 6 6 3 0 6 6 3 0 6 6 3 0 6 6 3 0 6 6 3 066 3 0 6 6 3 0 6 6 3

«o (2) + 12, (2) 0 9 3 2 1 250 1325 1342 134 6 1 347 1347 1347 1347 1347 1347 1347 1347

2<o(3) + 1 2 ,(3 ) 0 625 0 7 8 8 0 8 2 5 0 8 3 3 083 5 0 8 3 5 0 8 3 5 0 8 3 5 0 8 3 5 0 8 3 5 0 8 3 5 0 835

« o (4 ) + 1 2 ,(4 ) 0 3 3 2 0 4 1 0 0 4 2 8 0 4 3 2 0 4 3 3 0 4 3 3 0 4 3 3 0 4 3 3 0 4 3 3 0 4 3 3 0 4 3 3

12o(5)+ 1 2 ,(5 ) 0 1 6 4 0202 0210 0212 0212 0212 0212 0212 0212 0212
« 0(6) + 12, (6) 0 0 7 9 0 0 9 7 0101 0102 0102 0102 0102 0102 0102
« » ( 7 ) + « , ( 7 ) 0 0 3 8 0 0 4 6 0 0 4 8 0 0 4 8 0 0 4 9 0 0 4 9 0 0 4 9 0 0 4 9

« 0(8) + 12, (8) 0 0 1 8 0022 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3 0 0 2 3

« o (9 ) + 1 2 ,(9 ) 0 0 0 8 0010 0011 0011 0011 0011
l ïo (10) + 22, (10) 0 0 0 4 0 0 0 5 0 0 0 5 0 0 0 5 0 0 0 5

12o ( l l ) + 12, ( l l ) 0002 0002 0002 0002
22-o(12) + 12, (12) 0001 0001 0001
22-o(13)+ 2 2 ,(1 3 ) 0000 0001
22o(14)+ 2 2 ,(1 4 ) 0000

121(22) + « 3(22) 0 9 3 2 0 6 2 5 0 3 3 2 0 1 6 4 0 0 7 9 0 0 3 8 0 0 1 8 0 0 0 8 0 0 0 4 0002 0001 0000 0000

12.(22) 3 2 3 0 125 0 0 5 3 9 0 2 4 5 0 1 1 4 0 0 5 4 0 0 2 5 0012 0 0 0 6 0 0 0 3 0001 0001 0000
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T a b le  7.— T o  ca lcu la te  « i(2 )  ; m = 4

[V o l. I I ,  N o .  2

B o u n d a r y
v a lu e s n = 3 n = 4 n -= 5 n = 6 n-= 7 n - = 8

* ( 0 ) 0 4 9 7 0 6 2 5 0 6 5 4 0661 0 6 6 2 0 6 6 3

t2i(0) «3(0) 0 8 6 1 0 1 9 5 0 9 8 2 0 2 6 8 1005 0 2 8 7 1010 0 2 9 2 1011 0 2 9 3 1011 0 2 9 3

« o ( l ) «3(1) 086 1 0 1 9 5 0 9 8 2 0 2 6 8 1005 0 2 8 7 101 0 0 2 9 2 1011 0 2 9 3 1011 0 2 9 3

«o(2 ) «4(2) 2 9 4 8 0 2 8 2 3 3 0 4 0 4 4 6 3 3 6 5 0 4 9 4 3 3 7 7 0 5 0 6 3 3 8 0 0 5 0 8 338 1 0 5 0 9

M 3) «4 (3 ) 0 9 8 2 0 2 6 8 112 9 0 3 6 4 1 158 0 3 8 9 1 164 0 3 9 4 1165 0 3 9 6

i 7d(4 ) “4(4) 0 3 6 5 0 1 7 4 0 4 2 9 0 2 2 4 0 4 4 2 0 2 3 6 0 4 4 5 0 2 3 9

•7o(5) « 4(5) 0 1 4 8 0 0 9 7 0 1 7 7 0 1 2 2 0 1 8 3 0 1 2 8

i70(6) « 3(6) 0 0 6 4 0 0 5 0 0 0 7 7 0 0 6 2

M l ) «4(7) 0 0 2 9 0 0 2 5

iZi(jî) M n) 2 9 4 8 0 2 8 2 0 9 8 2 0 2 6 8 0 3 6 5 0 1 7 4 0 1 4 8 0 0 9 7 0 0 6 4 0 0 5 0 0 0 2 9 0 0 2 5

17j (m ) 0 9 3 2 0 6 2 5 0 3 3 2 0 1 6 4 0 0 7 9 0 0 3 8

T a b l e  7.— ( c o n t in u e d )

B o u n d a r y

v a lu e s
n == 9 n = 10 n = 1211 n = 11 = 13 « â  14

« î (0 ) 0 6 6 3 0 6 6 3 0 6 6 3 0 6 6 3 0 6 6 3 0 6 6 3

17.(0) * ( 0 ) 1011 0 2 9 3 1011 0 2 9 3 1011 0 2 9 3 1011 0 2 9 3 1011 0 2 9 3 1011 0 2 9 3

« o ( l  ) « r ( l  ) 1011 0 2 9 3 1011 0 2 9 3 1011 0 2 9 3 1011 0 2 9 3 1011 0 2 9 3 1011 0 2 9 3

«o(2) « .(2 ) 338 1 0 5 0 9 3 381 0 5 0 9 3 381 0 5 0 9 3 3 8 1 0 5 0 9 3 3 8 1 0 5 0 9 3 3 8 1 0 5 0 9

t7o(3) M3) 116 6 0 3 9 6 1166 0 3 9 6 116 6 0 3 9 6 1 166 0 3 9 6 116 6 0 3 9 6 116 6 0 3 9 6

«o(4 ) i?,(4 ) 0 4 4 6 0 2 4 0 0 4 4 6 0 2 4 0 0 4 4 6 0 2 4 0 0 4 4 6 0 2 4 0 0 4 4 6 0 2 4 0 0 4 4 6 0 2 4 0

«o(5 ) •7,(5) 0 1 8 4 0 1 2 9 0 1 8 5 0 1 2 9 0 1 8 5 0 1 3 0 0 1 8 5 0 1 3 0 0 1 8 5 0 1 3 0 0 1 8 5 0 1 3 0

« 0(6) 17,(6) 0 0 8 0 0 0 6 5 0 081 0 0 6 6 0 0 8 1 0 0 6 6 0 08 1 0 0 6 6 0081 0 0 6 6 0 081 0 0 6 6

M2 ) M2) 0 0 3 5 0031 0 0 3 6 0 0 3 2 0 0 3 6 0 0 3 2 0 0 3 7 0 0 3 3 0 0 3 7 0 0 3 3 0 0 3 7 0 0 3 3

M S) 17,(8) 0 0 1 3 0 0 1 2 0 0 1 6 0 0 1 5 0 0 1 7 0 0 1 6 0 0 1 7 0 0 1 6 0 0 1 7 0 0 1 6 0 0 1 7 0 0 1 6

M 9) 17,(9) 0 0 0 6 0 0 0 6 0 0 0 7 0 0 0 7 0 0 0 8 0 0 0 8 0 0 0 8 0 0 0 8 0 0 0 8 0 0 0 8

tïo(lO ) « -,(10) 0 0 0 3 0 0 0 3 0 0 0 3 0 0 0 3 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4

« o ( l  1) •7,(11) 0001 0001 0 0 0 2 0 0 0 2 0 0 0 2 0 0 0 2

« o ( l 2) « ,(1 2 ) 0 001 000 1 000 1 000 1

*ïo(13) « ,(1 3 ) 0 0 0 0 0 0 0 0

« i( » ) M n) 0 0 1 3 0 0 1 2 0 0 0 6 0 0 0 6 0 0 0 3 0 0 0 3 0001 0 001 0001 000 1 0 0 0 0 0 0 0 0

«2 (h ) 0 0 1 8 0 0 0 8 0 0 0 4 0 0 0 2 0001 0 0 0 0
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T a b l e  8 .— V a lu e s  o f T i t( l)

k «  =  2 «  =  3 « = 4 «  =  5 «  =  6 n  — 7 «  =  8 «  =  9 «  =  10 »  =  11 «  =  12 «  =  13 « à  14

1 2 857 3 2 3 0 3 3 0 4 3 3 2 0 3 3 2 3 3 3 2 4 3 3 2 4 3 3 2 4 3 3 2 4 3 3 2 4 3 3 2 4 3 3 2 4 3 3 2 4

2 1056 125 0 1292 1301 1303 1304 1304 1304 1304 1304 1 304 1304

3 0 4 4 6 0 5 3 9 0 5 6 0 0 5 6 4 056 5 056 5 0 5 6 6 0 5 6 6 0 5 6 6 0 5 6 6 0 5 6 6

4 0201 0 2 4 5 0 2 5 5 0 2 5 7 0 2 5 8 0 2 5 8 0 2 5 8 0 2 5 8 . 0 2 5 8 0 2 5 8

5 0 09 3 0 1 1 4 0 1 1 9 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0

6 0 0 4 4 0 0 5 4 0 0 5 6 0 0 5 6 0 0 5 6 0 0 5 7 0 0 5 7 0 0 5 7

7 002 1 0 0 2 5 0 0 2 6 0 0 2 7 0 0 2 7 0 0 2 7 0 0 2 7

8 0 0 1 0 0 0 1 2 0 0 1 2 0 0 1 3 0 0 1 3 001 3

9 0 0 0 5 0 0 0 6 0 0 0 6 0 0 0 6 0 0 0 6
10 0 0 0 2 0 0 0 3 0 0 0 3 000 3

11 0001 000 1 0001

12 0 0 0 0 0001

13 0 0 0 0

T a b l e  9 .— V a lu e s  o f  T k{ 2)

k 11=3 «  =  4 i i= 5 «  =  6 «  =  7 n  =  8 11 =  9 «  =  10 « = 1 1 «  =  12 «  =  13 «  =  14 « £ 1 5

1 1056 1 250 1292 1301 1303 130 4 1304 1 304 1304 1304 130 4 130 4 1304

2 3 2 3 0 3 7 5 0 3 8 5 9 3 8 8 3 3 8 8 8 3 8 9 0 3 8 9 0 3 8 9 0 3 8 9 0 3 8 9 0 3 8 9 0 3 8 9 0 3 8 9 0

3 1 250 1493 154 6 155 8 1561 1561 1562 1562 1562 1562 1562 1562

4 0 5 3 9 0 6 5 3 0 6 7 8 0 6 8 4 0 6 8 5 0 6 8 6 0 6 8 6 0 6 8 6 0 6 8 6 0 6 8 6 0 6 8 6

5 0 2 4 5 0 2 9 9 0311 0 3 1 4 0 3 1 4 0 3 1 4 0 3 1 4 0 3 1 4 0 3 1 4 0 3 1 4

6 0 1 1 4 0 1 4 0 0 1 4 5 0 1 4 6 0 1 4 7 0 1 4 7 0 1 4 7 0 1 4 7 0 1 4 7

7 0 0 5 4 0 0 6 6 0 0 6 8 0 0 6 9 0 0 6 9 0 0 6 9 0 0 6 9 0 0 6 9

8 002 5 0 0 3 1 0 0 3 2 0 0 3 3 0 0 3 3 0 0 3 3 0 0 3 3

9 ► 0 0 1 2 0 01 5 0 0 1 5 0 0 1 5 0 015 0 0 1 5

10 0 0 0 6 0 0 0 7 0 0 0 7 0 0 0 7 0 0 0 7

11 0 0 0 3 000 3 0 0 0 3 0 0 0 3

12 0 00 1 0 0 0 2 00 0 2

13 0001 0 001

14 0 0 0 0
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A M ETH O D  FOR TH E SOLUTION OF CERTAIN NON-LINEAR  
PRO BLEM S IN  LEAST SQUARES*

B y  K E N N E T H  L E V E N B E R G 1 ( F ra n k fo rd  A rs e n a l)

The standard method for solving least squares problems which lead to non-linear 
normal equations depends upon a reduction of the residuals to linear form by first 
order Taylor approximations taken about an initial or trial solution for the parame
ters.2 If the usual least squares procedure, performed with these linear approxima
tions, yields new values for the parameters which are not sufficiently close to the ini
tial values, the neglect of second and higher order terms may invalidate the process, 
and may actually give rise to a larger value of the sum of the squares of the residuals 
than that corresponding to the initial solution. This failure of the standard method 
to improve the initial solution has received some notice in statistical applications of 
least squares3 and has been encountered rather frequently in connection with certain 
engineering applications involving the approximate representation of one function 
by another. The purpose of this article is to show how the problem may be solved 
by an extension of the standard method which insures improvement of the initial 
solution.4 The process can also be used for solving non-linear simultaneous equations, 
in which case it may be considered an extension of Newton’s method.

Let the function to be approximated be h(x, y, z, • • • ), and let the approximating 
function be H(x, y, z, • • • ; a, j3, y, ■ ■ ■ ), where a, /3, y, ■ • • are the unknown param
eters. Then the residuals at the points, (x,-, y it Zi, ■ • ■ ), i — 1, 2, • • • , », are

fii&i 7i ’ * ' ) n (x i , yt, Z{j ' , (x, ft, y j * * * ) //(x,‘, y , ,  Zit * * ), (1)

and the least squares criterion requires the minimization of
n

s(a, /3, y , • • • ) =  X  f i  ■ (2)
1

(It is assumed that the weights of the residuals are unity. If not, consider the func
*  T h i s  p a p e r  w a s  re a d  b e fo re  th e  A n n u a l  M e e t in g  o f  th e  A m e r ic a n  M a t h e m a t ic a l  S o c ie t y  in  C h ic a g o ,  

111., o n  N o v .  26, 1943 . M a n u s c r ip t  re c e iv e d  F e b .  2, 1944.

1 T h e  w r it e r  w ish e s  t o  t h a n k  D r .  J .  G . T a p p e r t ,  u n d e r  w h o s e  d ir e c t io n  t h e  m e th o d  o f  d a m p e d  le a st  

s q u a re s  w a s  d e v e lo p e d ,  a n d  D r .  H .  B .  C u r r y ,  f o r  v a lu a b le  s u g g e s t io n s  a n d  g u id a n c e .

* E .  T .  W h it t a k e r  a n d  G .  R o b in s o n ,  T h e  ca lcu lu s o f  observations, B la c k ie  a n d  S o n ,  L o n d o n ,  1937, 

p . 214.

5 E .  B .  W i l s o n  a n d  R .  R .  P u ffe r,  L e a s t  sq tia res an d  law s o f po p u la tio n  grow th , P ro c .  A m e r .  A c a d .  A r t s  

a n d  S c i.  ( B o s t o n ) ,  68, 2 8 5 -3 8 2  (1 9 3 3 ).

4 A n o t h e r  e x te n s io n  o f  t h e  s t a n d a rd  m e th o d ,  w h ic h  r e q u ire s  th e  u se  o f  se c o n d  p a r t ia l  d e r iv a t iv e s ,  

is  g iv e n  b y  W i l s o n  a n d  P u f fe r  (I.e.).

A  d iffe re n t  k in d  o f  a p p ro a c h ,  n o t  b a se d  u p o n  th e  s t a n d a rd  m e th o d ,  is  g iv e n  b y  C a u c h y ,  M éthode  
généra le p o u r la  réso lu tio n  des systèm es d ’ équations s im u lta n ées , C .  R .  A c a d .  S c i.  P a r is ,  25, 5 3 6 - 5 3 8  (1 8 4 7 ).  

S e e  a ls o  a  p a p e r  b y  H .  B .  C u r r y ,  n o t  y e t  p u b l ish e d ,  (a b s t r a c t  in  B u l l .  A m e r .  M a t h .  S o c .^ 4 9 ,  8 5 9  (1 9 4 3 ),  

a b s t ra c t  N o .  2 7 8 ).
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tion f i  to be the product of the residual and the square root of the corresponding 
weight.) Choosing an initial solution, po = (oco, do, To, • • • ), at which it is assumed 
that 5 docs not have a stationary value, the first order Taylor expansions of the 
residuals are taken about p0, giving a set of linear approximations to the residuals,

{ *1 f f
Met, d, 7, • • ' ) S F ,(o , d, 7, ■ • • ) = Mpo) +  —  Aa +  — -  Ad +  —- Ay +  • • • , (3)

da d/3 dy

where A a=a —<x0, A/3=d~do, ■ • • , and the partial derivatives are evaluated at p<>. 
Now, the standard method consists of minimizing

S (a ,d , 7, • • • )  = ¿1*1 (4)
1

by setting the partial derivatives of 5 with respect to the various parameters equal 
to zero, yielding the usual linear normal equations,

1 dS
 =  [a a ]A a  -f- [ad]A d +  [ay]A y +  ■ • ■ +  [aO] =  0 ,
2 da

1 d $  r i  r  i  r  ,  r  i  ( 5 ) = [da] A« +  [ddjAd +  [d7]Ay +  ■ • • +  [d0] = 0,
2 d/3

where the notation [ ] is a symbol of summation, so that, e.g.,

m - t(£-f> Mi -
However, as pointed out above, the values of the increments, Aa, Ad, Ay, • • - , ob
tained by solving equations (5), may be so large in absolute value as to invalidate the 
approximations (3) so that the decrease in 5  may not correspond to a decrease in s.

In such cases, it would seem advisable to limit or “damp” the absolute values of 
the increments of the parameters in order to improve the first order Taylor approxi
mations (3) and to minimize simultaneously the sum of the squares of the approximat
ing residuals (4) under these damped conditions. In order to make both the incre
ments and the residuals small in absolute value, the least squares idea can be em
ployed. The sum of the squares of both the residuals and the increments may be 
minimized. More precisely, the expression to be minimized will be

S(a, d, 7, • • ■ ) = v>S(a, d, 7, ' ’ ' ) +  «(Aa)2 +  6(Ad)2 +  c(Ay)2 +  ■ • ■ , (6)

where a, b, c, ■ ■ ■ are a system of positive constants or weighting factors expressing 
the relative importance of damping the different increments, and w is a positive 
quantity expressing the relative importance of the residuals and increments in this 
minimizing process. If we denote the point at which S  takes its minimum, for any 
positive value of w, by pK = {aw, (3W, y w, • • ■ ), and set

<2(a, d, 7- ' ■ ’ ) = «(Aa)2 +  ô(Ad)2 +  c(Ay)2 +  • • • , (7)

it is seen, under the assumption that 5 is not stationary at po, that



wS(pw) < wS(pw) +  Q{pw) = S(pw) < S(po) = wS(po) +  Q(po) = wS(p0),
whence S(pw) < S(p0). (8)

Also, denoting the standard least squares solution by p„ (the reason for the notation
is discussed later), we have

wS(pw) +  Q{pw) -  S(pw) < S(p„) = wS(p„) +  Q(px) < wS(pw) +  Q(px), 
whence Q(p„) < Q(pJ . (9)

Inequality (8) shows that the minimization of (6) will diminish the sum of the squares 
of the approximating residuals, S, and (9) shows that the increments given by the 
standard least squares solution will be improved in the sense that the weighted sum
of their squares, Q, will be reduced. That the sum of the squares of the true residuals,
5, can be diminished, will be proved shortly.

To minimize (6) and obtain pW) the partial derivatives of 5 with respect to the 
various parameters are put equal to zero, and we get

dS dS dS dS
 =  w  b  2 a A a  =  0 ,   = -w --------[- 2 bA(3  =  0 ,  • • • .
d a  d a  dp df}

When we divide through by 2w, and substitute the expressions for the partial deriva
tives of 5  from (5), the “damped normal equations” become

( [ a a ]  +  a w - 1 ) A a  -f- [a/3]A/3 +  [ a y ] A 7  +  • • • +  [ a O ]  =  0 ,

[pa]Aa +  (\fip] +  bu r ' )  Ap  +  [ py ) A y  +  • • • +  [00 ] =  0, (10)

166 N O T E S  [V ol. I I ,  N o .  2

These equations are seen to be the same as the ordinary normal equations (5), except 
for the coefficients of the principal diagonal, which are increased by quantities pro
portional to the weighting factors a, b, c, ■ • • , respectively. Since the symmetry 
of the matrix of the coefficients of equations (5) is preserved, simplified methods of 
solution of linear simultaneous equations, which take full advantage of such sym
metry,5 may be used to solve equations (10). It is to be noted that the standard 
method of least squares corresponds to a»—» , and is thus a special case of the method 
here given, which may be termed the method of “damped least squares.”

If we denote the number of parameters by k, it is seen from the determinantal 
solution of equations (10) that, in the neighborhood of w = 0,

— [a0]w1-,:6cd ••■ +  •••
A a  =  a w —  a o  =    =  —  [ o 0 j a _ I w  +  • • • ,

w~kabc • • • - ) - • • •

whence (~T~) ~  ~  [«0]a—l, (11)
' w- 0\ d w  / „

similarly for the other parameters. Now

d s ( p j )  d s  d a  d s  d p
=  +  (12)

d w  d a  d w  d p  d w

5 P . S .  D w y e r ,  Th e  so lu tio n  o f  s im u ltan eou s equa tion s, P s y c h o m e t r ik a ,  6, 1 0 1 -1 2 9  (1 9 4 1 ).
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and, from the definition of the summation symbols, we find that the partial deriva
tives of 5 at po are given by

ds . d s
— =2[«0], — = 2[/30], • • • .  (13)
da dp

Hence the substitution of (11) and (13) in (12) yields

( r ~ )  = -  2{ M 2«“1 +  [/30]2*-1 + • • • } .  (14)\dw  /

This derivative is negative since the partial derivatives in (13) are not all zero, by 
the assumption that 5 does not have a stationary value at p0. Therefore, s(pw) is de
creasing at w = 0, thus insuring that values of w can be found for which the sum of the 
squares of the true residuals (2) will be reduced.

The best value of w to use may theoretically be determined directly by solving

^  -  0; (15)
dw

however, this equation is generally complex in practice. By writing

s(/>„.) =  s(p0) + w (~r~) > (16)\dw  / K_o

and setting the left side of (16) equal to zero on the assumption that po was chosen 
so that the decreased value s(pw) will be small, the approximate formula,

*(Po) hs(po) j (.t/;
d s /d w ^  o [aO]2a_I +  [|S0 ]**-» +  • ■ •

is obtained.6 If necessary, this value may be improved by calculating s{pw) for several 
different trial values of w, so that an approximate minimum may be located graphi
cally. Experience with the method, especially in connection with fitting a particular 
function H(x, y, z, ■ ■ • ; a, 0, y , ■ ■ • ), enables one to get an idea of the general order 
of magnitude of the best value of w so that very few trial values of w should suffice. 
If so desired, the improved set of values of the parameters may be further improved 
(if the true minimum has not already been reached), by a repetition of the process, 
considering this improved set as a new initial solution.

So far, the weighting system a, b, c, ■ ■ • has been left arbitrary, the only restric
tion being that the weighting factors be positive. If we set the criterion that these 
factors be chosen so that the directional derivative of s, taken at w = 0 along the curve 
a = or„, yS =/3ir> • • • , should have its minimum value, namely, the negative gradient, 
we have

Avhere the derivatives are taken a t w = 0. Substitution of (14), (11), (13) in (18) 
gives us

e T h i s  t y p e  o f  a p p ro x im a t io n  w a s  u se d  b y  C a u c h y  (I.e.).
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{ [aO]2a-‘ +  [WY-b-' +  • • • } {a[0]V-2 +  [/SO]2*“2 +  • • • j“1'2
= {[a0]=+  [P0Y-+ ■ ■ ■ }'l\ (19)

and this is satisfied when the factors a, b, c, ■ ■ • are all equal. Without loss of gen
erality, they may be taken equal to unity. For this weighting system, the formation 
of the damped normal equations (10) may be thought of as being accomplished simply 
by the addition of a positive constant, 1 /w, to the coefficients of the principal diagonal 
of the standard normal equations (5). Another weighting system which has been used 
successfully is, a=[o;a], ¿>=[/3/3], • • • ; in this case the damped normal equations 
are formed by multiplying the principal diagonal coefficients of the standard normal 
equations by a constant greater than unity, 1 +  1/w.

The nature of the damping which we have imposed upon the parameter variables 
can be given a simple geometric interpretation. For instance, if the unity weighting 
system is considered, the “overshooting” of the solution is prevented by damping the 
distance (k dimensional) from the initial solution point, since Q is then the square 
of this distance. By this restriction of k dimensional distance (which would appear 
to be a natural way to prevent overshooting), we are not obliged to decide on an ar
bitrary preassigned procedure restricting the variables individually, as is done, for 
example, by the method of Cauchy (I.e.). The greater freedom given the individual 
variables by the method of damped least squares may account for the fact that it 
has solved, with a comparatively rapid rate of convergence, types of problems which 
are of much greater complexity than those to which the principle'of least squares is 
ordinarily applied.

ON TH E DEFLECTION OF A CANTILEVER BEAM*

B y  H .  J. B A R T E N  ( W ash ington  N a vy  Y a rd )

In spring theory it is sometimes necessary to compute the deflection of a cantilever 
beam for which the squares of the first derivatives cannot be neglected as is done in 
classical beam theory. This problem is thus placed in the same category as the prob
lem of the elastica.

The solution given in this note can be applied to a cantilever of any stiffness. The 
difference between the deflection as found by the classical beam theory and that 
found by the present method is, however, noticeable only in the case of beams of 
low stiffness.

The clamped end of the beam is taken as the origin of coordinates and downward 
deflections are considered as positive. A point on the beam may be identified by four 
quantities of which only one is independent. These four quantities are the two rec
tangular coordinates a; and y, the arc length 5 measured from the origin of coordinates, 
and the deflection angle 6 which is the angle between the tangent to the curve at the 
point under discussion and the horizontal. We may thus identify this point by the 
symbol (x, y, s, 6). The subscript L  is used to identify the value of these quantities 
at the free end of the beam. Before deflection a vertical load P is applied at the point 
(L , 0, L,  0). The beam has a uniform cross section of moment of inertia I  and is com

* R e c e iv e d  F e b . 2 1 , 1 9 4 4 .



posed of a material whose modulus of elasticity is E. The problem is to find the de
flection of the end-point of the beam due to the vertical load P.

The bending moment induced at the point (x , y, s, 0) by_the vertical load P  is

M  = P(xl — x).

Therefore
d6/ds = a(xL — »0, (1)

w'here a = P /E I .  Using the relation

dO dO dx dO
— = -------- = cos 0 — )
ds dx ds dx

we obtain
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J  cos 0 dO = J  a(xL — x)dx

oi-
sin 0 = ci(xlx — -I»2) +  C. (2)

The boundary condition at the clamped end of the beam, namely, 0 = 0 when x = 0,
reduces Eq. (2) to

sin 0 = a(xLX — (3)

Thus 2
sin 0L = \a x L. (4)

Combining the latter expression and Eq. (3) wre obtain

sin 0L — sin 0 = \a{xt  — a;)2. (5)

Thus
Xl — x — |2a-1 (sin 0L — sin 0) ]1/2.

Substituting this expression into Eq. (1), wre obtain

dO dO d y  dO .
— = -------- = sin 0 — = [2a (sin Ol — sin 0)]1/2,
ds d y  ds d y

or
sin 0 dO

- S .
Therefore

W ith the transformation

[2a(sin Ol — sin 0) ]1/2 

sin 0 dOr sin 0 dO 

' L J 0 [2a(sin Ol — sin 0) ]1/2

cos
/ t r  0 \  f i r  0 L \  .
( ------------) =  cos-I -------------1 sm <f> =  k sin <f>,
\ 4 2 /  \  4 2 /

Eq. (6) becomes
r*^2 (2/fe2 sin2 <i» — 1 ) ^
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C 0 S 7 t / 4  f i r  6l
sin 5 = ---------- 1 k = cos I  —

k \  4 2

Eq. (7) is a combination of incomplete and complete elliptic integrals1 and may be 
written

y l = a-w*[F(A) -  F(k, 8) -  2E(k) +  2E(k, 5)], (8)

where F(k) and E(k) are the first and second complete elliptic integrals respectively 
and F(k, 5) and E(k, S) are the first and second incomplete elliptic integrals respec
tively.

As Eq. (8) stands it is useless unless we find 6l as a function of a and L. This rela
tionship may be obtained in the following manner. From Eq. (1) we get

Ol = I a(xL — x)ds.
J  o

Integrating by parts we obtain

zl r L dx C Lr zL r L dx r L
Ol = I as dx = I as— ds = I as cos 0 ds.

•J 0 d  0 ds d  0

Differentiating this latter integral with respect to its upper limit, we have

ddtfdL = aL cos 6l- 

The solution to this differential equation is

aL2
sin 6l = tanh • (9)

2

This completes the solution to the problem.
In order to compare our results with those of Gross and Lehr2 we must express 

our solution in the same dimensionless factors that they employed. By dividing the 
actual deflection of the beam by the “small deflection” aL3/3  they obtain a deflection
factor which is a function of the dimensionless quantity aL2. We shall call this deflec
tion factor Fy. Thus, from Eq. (8)

Fv = —  = 3(aL2) - 3i2[F(k) -  F(k, 8) -  2E(k) +  2E(k, «)]. (10)
aL3

In order to find the maximum bending stress at the clamped end of the beam we 
must know the length of the moment arm x l■ Combining Eqs. (4) and (9) we find that

,  2 aL2
xl = — tanh   (11)

a 2

Gross and Lehr use the dimensionless contraction factor xl / L  an an aid in find
ing x l . We shall define this factor as Fx. Thus

1 J a h n k e  a n d  E m d e ,  F u n k tio n en ta fe ln  m it  F o rm e ln  u n d  K u rv e n , D o v e r  P u b l ic a t io n s ,  1943 .

! G r o s s  a n d  L e h r ,  D ie  Fed e rn , V .  D .  I.  V e r la g ,  1938.
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2 aL2
Fl =  tan h   (12)

aU  2

Computations show th a t Gross and Lehr’s values of Fy have a constantly increas
ing error which deviates about 4%  from our results when aL2 —  1.

1.00

.95

9 0

8 5

The two factors Fx and Fy are very im portant to the designer. For this reason 
curves of these two factors with aL2 as the independent variable are given in Fig. 1. 
The values of Fv were computed from Jahnke and Emde.

ON WAVES IN  BENT PIPES*

B y  S .  A .  S C H E L K U N O F F  ( B e l l  Te lephone La b o ra to rie s)

In a recent issue of this Q u a r te r ly ,1 Karlem Riess obtained expressions for the 
fields of electromagnetic waves in bent pipes of rectangular cross section by the 
perturbation method. While it is true tha t in a bent pipe the waves cannot be classi
fied into transverse electric and transverse magnetic types because in general both 
E  and H  have components in the direction of wave propagation, a different classifica
tion into two types is possible. This permits another method which yields the general 
solution in terms of Bessel functions.

In the one wave type, the plane of the electric ellipse is normal to the axis of 
bending (the F-axis in Figure 1, p. 329 of Riess’ paper); these waves have been called 
electrically oriented (EOm,n wave type) and the fields of these waves are obtainable from 
H y which may be expressed as the product of Bessel and sine (or cosine) functions.

s V
Fx

AND

Fxx

N
S

aL2
0  5 0  LOO L50 2 .0 0

F i g . 1.

*  R e c e iv e d  F e b .  18, 1944.

1 V o l.  1, N o .  4, pp . 3 2 8 -3 3 3 .
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In the other wave type, the plane of the magnetic ellipse is normal to the axis of 
bending; these waves are magnetically oriented (M 0 m,n wave type) and their fields are 
obtainable from E y. In each case the order of Bessel functions is equal to the angular 
phase constant.

For a berit pipe formed by the intersection of two concentric spheres and two 
coaxial cones emerging from the center there is also a solution in terms of known func
tions. In one wave type, EOm,n type, the plane of the electric ellipse is normal to the 
radius; in the other, MOm,n type, the plane of the magnetic ellipse is normal to the 
radius. The fields of EO-waves are calculable from I I r and the fields of MO-waves 
from Er; H r and E r themselves can be expressed in terms of Bessel and Legendre 
functions. These waves may be called spherically oriented in order to distinguish them 
from the plane oriented waves described earlier. The letters 5  and P  in front of EO  
and MO may be conveniently used in the abbreviations.

C O R R E C T IO N S  TO  M Y  P A P E R

A STRAIN ENERGY DERIVATION OF TH E TORSIONAL- 
FLEXURAL BUCKLING LOADS OF STRAIGH T COLUM NS  

OF THIN-W ALLED O PEN  SECTIO NS

QUARTERLY OF APPLIED MATHEMATICS, 1, 341-345 (1944).

B y

N .  J .  H O F F

In the last term of the right hand side member of Eq. (3) on page 343, n  should 
be raised to the second power and not to the fourth power.

The following equation defining T  should be added:
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