## QUARTERLY

## OF

## APPLIED MATHEMATICS

EDITED BY

H. L. DRYDEN<br>I. M. LESSELLS

T. C. FRY<br>W. PRAGER<br>J. L. SYNGE

TH. v. KARMAN

1. S. SOKOLNIKOFF

WITH THE COW.ABORATION OF
H. BATEMAN
J. P. DEN HARTOG
K. O. FRIEDRICHS
E. D. MURNAGHAN
R. V. SOUTHWELI.
M. A. BIOT
H. W. EMMONS
I. N. GOODIER
S. A. SCHELKUNOFF
G. I. TAYLOR
L. N. BRILLOUIN
W. FELILER
P. LE CORBEILLER
W. R, SEARS
S. P. TIMOSHENKO

## QUARTERLY

## OF

## APPLIED MATHEMATICS

This periodical is published quarterly under the sponsorship of Brown University, Providence, R.I. For its support, an operational fund is being set up to which industrial organizations may contribute. To date, contributions of the following industrial companies are gratefully acknowledged:
Bell Telephone Laboratories, Inc.; New York, N. Y., Tee Bristol Company; Waterbury, Conn., General Electric Company; Sceenectady, N. Y. Gule Research and Development Company, Pittsburge, Pa.
Leeds \& Northrup Company; Philadelphia Pa.
Pratt \& Whifney, Division Nlles-Bement-Pond Company; West Hartford, CONN.,
Refublic Aviation Corporation; Farmingdaile, Long Island, N. Y., United Aircraft Corporation: East Hartsord, Conm.
Westinghouse Electric and Manufacturing Company; Pittsburgh, Pa.
The Quarteriy prints original papers in applied mathematics which have an intimate connection with application in industry or practical science. It is expected that each paper will be of a high scientific standard; that the presentation will be of such character that the paper can be easily read by those to whom it would be of interest; and that the mathematical argument, judged by the standard of the field of application, will be of an advanced character.

Manuscripts submitted for publication in the QUarterly of Appired Mathessatics should be sent to the Managing Editor, Professor W. Prager, Quarterly of Applied Mathematics, Brown University, Providence 12, R. I., either directly or through any one of the Editors or Collaborators. In accordance with their general policy, the Editors welcome particularly contributions which will be of interest both to mathematicians and to engineers. Authors will receive galley proois only. Seventy-five reprints without covers will be furnished free; additional reprints and covers will be supplied at cost.

The subscription price for the Quarterly is $\$ 6,00$ per volume (April-January), single copies $\$ 2.00$, Subscriptions and orders for single copies may be addressed to: Quarterly of Applied Mathematics, Brown University, Providence, R.L. or to 450 Ahnaip St., Menasha, Wisconsin.

[^0]
# QUARTERLY OF APPLIED MATHEMATICS 

# ON COMBINED FLEXURE AND TORSION, AND THE FLEXURAL BUCKLING OF A TWISTED BAR* 

BY<br>J. N. GOODIER<br>Cornell University

1. Introduction. When a straight uniform slender bar is twisted, the straight form becomes unstable at a certain value of the twisting couple, and the center line of the bar becomes a space curve. Elements of the bar are bent about both principal axes of section, and the buckled form thus possesses strain energy of flexure as well as of torsion. If the bar is twisted to the critical configuration, and its end sections then held against further rotation, the jump to the buckled form means the appearance of flexural energy at the expense of the torsional energy. The occurrence of the flexure must therefore produce some relief of the lorsion, that is, it must modify the amount of twist.

It proves to be impossible to account for the transference of strain energy from that of torsion to that of flexure if the strain energy is represented in the accepted form of the theory of small bending and torsion of thin bars-

$$
\frac{1}{2} \int_{0}^{l}\left(E I_{1} u u^{\prime \prime 2}+E I_{2} v^{\prime \prime 2}+G C \beta^{\prime 2}\right) d z
$$

where $E I_{1}, E I_{2}, G C$ are the flexural and torsional rigidities, $u, v$ the components of deflection parallel to the principal axes of the section, and $\beta$ the torsional rotation, as functions of the axial co-ordinate $z$. Coincidence of shear center and centroid is assumed, and secondary effects of non-uniform torsion ${ }^{2}$ are disregarded, for simplicity. If for instance this form is used in the potential energy, and the differential equations of the bar buckled from a state of simple torsion by couples $M_{3}$ are found by means of the theorem of stationary potential energy, the correct equations ${ }^{2}$

$$
E I_{1} u^{\prime \prime}+M_{3} v^{\prime}=0, \quad E I_{2} v^{\prime \prime}-M_{3} u u^{\prime}=0, \quad M_{3}=G C \beta^{\prime}
$$

are not obtained. The terms $M_{3} v^{\prime}, M_{3} u^{\prime}$ in the first two fail to appear. Thesc equations are nevertheless easily derived directly as conditions of equilibrium.

The comparison with the corresponding problem of the bar under thrust is useful. The bar is compressed to the critical state, and the ends held against further approach. The bar jumps over to the bent form, and energy of bending appears. But

[^1]the transition to the bent form involves a lengthening of the bar, and some of the compressional strain energy is thus released to supply the energy of flexure. The Euler problem has been analysed from this point of view by R. V. Southwell, ${ }^{3}$

This lengthening of the bar is of the second order in the derivative of the bending displacement with respect to the axial coordinate. It can be disregarded in writing down the differential equation of equilibrium, but not in energy methods. It is natural to look for something analogous in the torsional problem by investigating the nature of combined torsion and flexure to a higher order of small quantities than formerly. This is done in what follows and the required new terms in the strain energy are found. At the same time the nature of combined torsion and flexure is clarified, and the energy method is made available for more difficult problems of buckling from a twisted state such as those of non-uniform bars.
2. Finite bending and torsion of a thin bar. Let the axis (of centroids) of the undeformed straight bar lie along the $z$-axis of fixed cartesian axes $u, v, z$. The bar is now subjected to small bending and twisting. Its axis becomes a space curve, consisting of points of co-ordinates $u, v, z$. Even if the deflection $(u, v)$ is small, the geometrical torsion of this curve is not small. The bending may be in one plane (the osculating plane) at one point, and in a perpendicular plane at another.

The geometrical torsion $\tau_{c}$ of the curve is distinct from the torsion $\tau$ of the bar. When the deflection $(u, v)$ is prescribed the space curve of centroids is definite, with definite curvature and torsion. The cross sec-


Fig. 1. tions of the bar must be in the normal planes of this curve, but the torsion of the bar remains indefinite until the orientations of the principal axes in these planes are specified.

In Fig. 1 the tangent, normal and binormal at $P$ are indicated by $t, n, b .{ }^{4}$ As the origin of the triad moves along the çurve with unit speed, it has a component $\tau_{c}$ of angular velocity about $t$, and a component $\kappa$ (the curvature) about $b$, right handed rotations looking along the positive axes being reckoned positive. Define an angle $\gamma$ such that $\tau_{c}=d \gamma / d s$ ( $s$ being arc length increasing in the sense of $t$ ) and $\gamma=0$ at some chosen reference section $s=s_{0}$, as for instance one end of the bar.

Let $f$ be the angle which one principal axis $p$ (Fig. 1) of the cross section at $P$ makes with the principal normal $n$, positive when this axis is obtained from $n$ by positive rotation about $t$. Let $f_{0}$ be its value at $s=s_{0}$. Then the rate of rotation of the $t p q$-triad about $t$ is given by $\tau_{c}+d f / d s$ or $(d \gamma / d s)+(d f / d s)$ and this is by definition the torsion of the bar. ${ }^{5}$

Accordingly if the bar is bent but not twisted, $\gamma+f$ is a constant along the bar and in fact $\gamma+f=f_{0}$, or $f=f_{0}-\gamma$. From this state we may derive a twisted form of the

[^2]bent bar by introducing an angle of twist $\phi$ with $\phi=0$ at $s=s_{0}$, so that $f=f_{0}-\gamma+\phi$. The torsion of the bar is now $d \phi / d s$. The bent and twisted form of the bar is completely specified by the curve of centroids, which defines $\gamma$, and the angle $f_{0}+\phi$ which can be assigned independently.

In the elementary theory of bending, the curvature is related to the bending moments by means of components along the principal axes of cross sections. If $\kappa_{1}, \kappa_{2}$ denote these components along $p$ and $q$ (Fig. 1), we have ( $\kappa$ can be regarded as an angular velocity about $b$ )

$$
\begin{equation*}
\kappa_{1}=\kappa \sin f, \quad \kappa_{2}=\kappa \cos f \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
\kappa_{1}=\kappa \sin \left(f_{0}-\gamma+\phi\right), \quad \kappa_{2}=\kappa \cos \left(f_{0}-\gamma+\phi\right) . \tag{2}
\end{equation*}
$$

We have also

$$
\begin{equation*}
\tau=d \phi / d s \tag{3}
\end{equation*}
$$

But

$$
\begin{equation*}
\kappa=\left(u^{\prime \prime 2}+v^{\prime 2}+z^{\prime \prime 2}\right)^{1 / 2} \tag{4}
\end{equation*}
$$

primes denoting differentiation with respect to $s$. Also $\gamma$ is defined through $d \gamma / d s=\tau_{e}$ and we have

$$
\tau_{c}=\kappa^{-2}\left|\begin{array}{ccc}
u^{\prime} & v^{\prime} & z^{\prime}  \tag{5}\\
u^{\prime \prime} & v^{\prime \prime} & z^{\prime \prime} \\
u^{\prime \prime \prime} & v^{\prime \prime \prime} & z^{\prime \prime \prime}
\end{array}\right|
$$

With these formulas the bending and torsion of the bar are completely specified by the deflection ( $u, v$ as given functions of $z$ ) and the angles $f_{0}$ and $\phi$. The orientations of the principal normal and binormal are defined by the deflection curve, and the orientations of the principal axes relative to these are defined by $f_{0}$ and $\phi$. The formulas (2) and (3) may be used to specify not only the deformed state of the bar, but also an initial "bent and twisted" but unstressed state. The differences between the values of $\kappa_{1}, \kappa_{2}$ and $\tau$ then represent the changes of curvature and torsion to which the components of bending moment, and the twisting moment, will be respectively proportional.

To illustrate this, and also the significance of $f_{0}$, let the bar be circular and in a horizontal plane, with the principal axis $p$ of all cross sections also in the horizontal plane. Then we may take for the initial state $\gamma=f_{0}=\phi=\tau=\kappa_{1}=0, \kappa_{2}=\kappa=1 / \gamma$ where $r$ is the radius of the circle. Let each cross section now be rotated by the same angle $\alpha$ about $t$. For the deformed state $f_{0}=\alpha$ and

$$
\kappa_{1}=r^{-1} \sin \alpha, \quad \kappa_{2}=r^{-1} \cos \alpha, \quad \tau=0 .
$$

The changes of the components of curvature are

$$
r^{-1} \sin \alpha, \quad r^{-1}(\cos \alpha-1)
$$

When $\alpha$ is small, the second, the change in $\kappa_{2}$, is negligible. The bending moment induced is proportional to $r^{-1} \alpha$, and corresponds to $\kappa_{1}$, that is, its axis is $n$, in the plane of the ring. ${ }^{6}$

[^3]3. Small bending and torsion of a straight bar. The formulas (2) and (3) must yield such expressions as $d^{2} u / d z^{2}, d^{2} v / d z^{2}, d \phi / d z$ as their principal parts for small deformation. The object of the present investigation is to obtain terms of higher order as well.

Let $u^{\prime}, v^{\prime}, \phi$ be small compared with 1 , and let $l$ be a suitable length such as the length of the bar, or the wavelength of a periodic deflection. The formulas (4) and (5) involve $u^{\prime \prime}, v^{\prime \prime}, u^{\prime \prime \prime}, v^{\prime \prime \prime}$. If the greatest absolute value of $u^{\prime \prime \prime}$ and $v^{\prime \prime \prime}$ is denoted by $\eta / l^{2}, u^{\prime \prime}$ and $v^{\prime \prime}$ do not exceed $\eta / l$ and $u^{\prime}, v^{\prime}$ do not exceed $\eta$, which is small. Let $\epsilon$ denote the largest absolute value of $\eta$ and $\phi$. Quantities not exceeding $\epsilon, \epsilon / l$, etc., or quantities differing from them only by terms involving higher powers of $\epsilon$, will be denoted by $O(\epsilon), O(\epsilon / l)$, etc.

The relation $u^{\prime 2}+v^{\prime 2}+z^{\prime 2}=1$ yields $z^{\prime 2}=1-O\left(\epsilon^{2}\right)$ and so $z^{\prime}=1-O\left(\epsilon^{2}\right)$. It yields also

$$
\begin{equation*}
z^{\prime \prime}=-\left(u^{\prime} u^{\prime \prime}+v^{\prime} v^{\prime \prime}\right)\left(1-u^{\prime 2}-v^{\prime 2}\right)^{-1 / 2}=O\left(\epsilon^{2} / l\right) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
z^{\prime \prime \prime}=O\left(\epsilon^{2} / l^{2}\right) \tag{7}
\end{equation*}
$$

Then (4) yields $\kappa=\left[u^{\prime \prime 2}+v^{\prime \prime 2}+O\left(\epsilon^{4} / l^{2}\right)\right]^{1 / 2}$. Since $u^{\prime \prime 2}, v^{\prime \prime 2}$ are $O\left(\epsilon^{2} / l^{2}\right)$ we have as an approximation

$$
\begin{equation*}
\kappa=\left(u^{\prime / 2}+v^{\prime \prime 2}\right)^{1 / 2} \tag{8}
\end{equation*}
$$

in which the error is of order $\epsilon^{2}$, relative to the part retained.
The determinant of (5) yields $u^{\prime \prime} v^{\prime \prime \prime}-u^{\prime \prime \prime} v^{\prime \prime}$ with an error of order $\epsilon^{2}$. Then (5) becomes

$$
\begin{equation*}
\tau_{c}=\left(u^{\prime \prime} v^{\prime \prime \prime}-u u^{\prime \prime \prime} v^{\prime \prime}\right)\left(u^{\prime \prime 2}+v^{\prime \prime \prime}\right)^{-1} \tag{9}
\end{equation*}
$$

with an error or order $\epsilon^{2}$.
Now the right of (9) may be identified as $(d / d s) \tan ^{-1}\left(v^{\prime \prime} / u^{\prime \prime}\right)$ and, in view of the equations defining $\gamma\left(d \gamma / d s=\tau_{c}, \gamma=0\right.$ when $\left.s=s_{0}\right)$ we have

$$
\begin{equation*}
\gamma=\tan ^{-1} \frac{v^{\prime \prime}}{u^{\prime \prime}}-\tan ^{-1} \frac{v_{0}^{\prime \prime}}{u_{0}^{\prime \prime}} \tag{10}
\end{equation*}
$$

where $u_{0}^{\prime \prime}$, $\varepsilon_{0}^{\prime \prime}$ are the values of $u^{\prime \prime}, v^{\prime \prime}$ at $s=s_{0}$. The inverse tangents are principal values. The values of $\sin \gamma$ and $\cos \gamma$ are required. From (10)

$$
\tan \gamma=\left(u u_{0}^{\prime \prime} v^{\prime \prime}-v_{0}^{\prime \prime} u^{\prime \prime}\right)\left(u_{0}^{\prime \prime} u^{\prime \prime}+v_{0}^{\prime} v^{\prime \prime}\right)^{-1}
$$

and therefore

$$
\left.\begin{array}{l}
\sin \gamma=\left(\frac{v^{\prime \prime}}{u^{\prime \prime}}-\frac{v_{0}^{\prime \prime}}{u_{0}^{\prime \prime}}\right)  \tag{11}\\
\cos \gamma=\left(1+\frac{v_{0}^{\prime \prime} v^{\prime \prime}}{u_{0}^{\prime \prime} u^{\prime \prime}}\right)
\end{array}\right\} \times\left(1+\frac{\tau_{0}^{\prime \prime 2}}{u_{0}^{\prime \prime 2}}\right)^{-1 / 2}\left(1+\frac{v^{\prime \prime 2}}{u^{\prime \prime 2}}\right)^{-1 / 2}
$$

The ambiguity of sign involved in obtaining the sine and cosine from the tangent is disposed of by the consideration that if $v^{\prime \prime} / u^{\prime \prime}$ slightly exceeds $v_{0}^{\prime \prime} / u_{0}^{\prime \prime}$, both being positive, $\gamma$ must be a small positive angle.
4. Expressions for small curvature and torsion. Expanding the first of (2) in the form

$$
\begin{array}{r}
\kappa_{1}=\kappa\left\{\left(\sin f_{0} \cos \gamma-\cos f_{0} \sin \gamma\right)\left(1-\frac{\phi^{2}}{2} \cdots\right)\right. \\
\left.+\left(\cos f_{0} \cos \gamma+\sin f_{0} \sin \gamma\right)\left(\phi-\frac{\phi^{3}}{6} \cdots\right)\right\}
\end{array}
$$

and substituting for $\kappa, \cos \gamma, \sin \gamma$ from (8), (11) we find
$\kappa_{1}=u^{\prime \prime} \sin \left(f_{0}+\delta\right)-v^{\prime \prime} \cos \left(f_{0}+\delta\right)+\phi\left[u u^{\prime \prime} \cos \left(f_{0}+\delta\right)+v^{\prime \prime} \sin \left(f_{0}+\delta\right)\right]+\ldots$
and similarly
$\kappa_{2}=u^{\prime \prime} \cos \left(f_{0}+\delta\right)+v^{\prime \prime} \sin \left(f_{0}+\delta\right)-\phi\left[u^{\prime \prime} \sin \left(f_{0}+\delta\right)-v^{\prime \prime} \cos \left(f_{0}+\delta\right)\right]+\cdots$
where $\cos \delta=u_{0}^{\prime \prime}\left(u_{0}^{\prime \prime 2}+v_{0}^{\prime \prime 2}\right)^{-1 / 2}$, $\sin \delta=v_{0}^{\prime \prime}\left(u_{0}^{\prime \prime 2}+v_{0}^{\prime 2}\right)^{-1 / 2}$. In these developments the errors are of order $\epsilon^{2}$ relative to the leading terms. They are therefore accurate as far as explicitly carried.

Since $d z / d s=1-O\left(\epsilon^{2}\right)$, replacement of differentiation with respect to $s$ by differentiation with respect to $z$, to any order, will involve errors of order $\epsilon^{2}$. Thus the primes in the terms'set out in (12) and (13) may be taken to indicate differentiation with respect to $z$, and the developments remain correct to this order. In the same way the torsion $d \phi / d s$ may be replaced by $d \phi / d z$ with an error of order $\epsilon^{2}$.

The angle $f_{0}$, while significant of course when the axis of the bar is appreciably deflected, tends to become merely a rigid body rotation when the bar is nearly straight. In order to eliminate such a rigid-body rotation, we observe that there is as yet no connection between the $u$-axis and the principal axis $p$. If these axes coincide when the bar is undeformed, small torsion and bending, free of large rigid body rotations, will restrict the angle between them to be of the same order as $\phi$. Then the direction cosines of $p$, relative to the $u, v, z$ axes must be $1-O\left(\epsilon^{2}\right), O(\epsilon), O(\epsilon)$ at most.

The direction cosines of $n$, the principal normal, are $u^{\prime \prime} / \kappa, v^{\prime \prime} / \kappa, z^{\prime \prime} / \kappa$ so that, if $n$ is the unit vector along $n, i, j$, and $k$ unit vectors along the axes of $u, v$ and $z$,

$$
n=\kappa^{-1}\left(u^{\prime \prime} i+v^{\prime \prime} j+z^{\prime \prime} k\right)
$$

The direction cosines of $b$, the binormal, are used as the coefficients of $i, j, k$ in

$$
b=\kappa^{-1}\left[\left(v^{\prime} z^{\prime \prime}-z^{\prime} v^{\prime \prime}\right) i+\left(z^{\prime} u^{\prime \prime}-u^{\prime} z^{\prime \prime}\right) j+\left(u^{\prime} v^{\prime \prime}-v^{\prime} u^{\prime \prime}\right) k\right]
$$

where $b$ is the unit vector along the binormal.
Since the principal axis $p$ (Fig. 1) is in the plane of $b$ and $n$, and is derived from $n$ by a rotation $f$ towards $b$, the unit vector along it is given by $n \cos f+b \sin f$ or

$$
\begin{align*}
\kappa^{-1}\left[u u^{\prime \prime} \cos f\right. & \left.+\left(v^{\prime} z^{\prime \prime}-z^{\prime} v^{\prime \prime}\right) \sin f\right] i \\
& +\kappa^{-1}\left[v^{\prime \prime} \cos f+\left(z^{\prime} u^{\prime \prime}-u u^{\prime} z^{\prime \prime}\right) \sin f\right] j  \tag{14}\\
& +\kappa^{-1}\left[z^{\prime \prime} \cos f+\left(u^{\prime} v^{\prime \prime}-v^{\prime} u^{\prime \prime}\right) \sin f\right] k
\end{align*}
$$

and the coefficients of $i, j, k$ give the direction cosines of $p$.
The first of these is of order 1 without restriction on $f$. The second may be represented as

$$
O(l / \epsilon)\left[O(\epsilon / l) \cos f+O(1) O(\epsilon / l) \sin f-O(\epsilon) O\left(\epsilon^{2} / l\right) \sin f\right]
$$

from which it is apparent that these direction cosines will not be small of order $\epsilon$ unless

$$
\kappa^{\prime}\left(v^{\prime \prime} \cos f+u u^{\prime \prime} \sin f\right)
$$

is small of this order. This expression may be developed, by the processes which led to (12) and (13) as

$$
\begin{aligned}
& \kappa^{-2} v^{\prime \prime}\left\{u^{\prime \prime} \cos \left(f_{0}+\delta\right)+v^{\prime \prime} \sin \left(f_{0}+\delta\right)-\phi\left[u^{\prime \prime} \sin \left(f_{0}+\delta\right)-v^{\prime \prime} \cos \left(f_{0}+\delta\right)\right]+\cdots\right\} \\
& \quad+\kappa^{-2} u^{\prime \prime}\left\{u^{\prime \prime} \sin \left(f_{0}+\delta\right)-v^{\prime \prime} \cos \left(f_{0}+\delta\right)+\phi\left[u^{\prime \prime} \cos \left(f_{0}+\delta\right)+v^{\prime \prime} \sin \left(f_{0}+\delta\right)\right]+\cdots\right\}
\end{aligned}
$$

and will be small of order $\epsilon$ only if $f_{0}+\delta$ is small of this order.
This result simplifies (12) and (13) to

$$
\begin{equation*}
\kappa_{1}=-v^{\prime \prime}+u^{\prime \prime}\left(\phi+f_{0}+\delta\right), \quad \kappa_{2}=u^{\prime \prime}+v^{\prime \prime}\left(\phi+f_{0}+\delta\right), \tag{15}
\end{equation*}
$$

and with $\tau=\phi^{\prime}$ these constitute approximations to $\kappa_{1}, \kappa_{2}$, and $\tau$ with errors of order $\epsilon^{2}$ relative to the leading terms. It is now implied of course that one principal axis ( $p$ ) coincides with the $u$-axis in the undeformed state, and that in the deformation it rotates from it by an angle of the same order as $u^{\prime}, v^{\prime}$ and $\phi$. This is the case if one section of the bar is fixed against rotation, or against rotation of the type $\phi$ only.

The third direction cosine in (14) is of order $\epsilon$ without further conditions.
5. An alternative torsional co-ordinate. The angle $\phi$ represents a rotation of the cross section about $t$, from the torsionless configuration associated with the deflection $u, \varepsilon$. This torsionless state is far from being geometrically obvious, and the terminal values of $\phi$ and $f$ corresponding to various types of simple end constraints are not immediately obtainable.

A representation of the torsion and flexure to the second order which does not suffer from these disadvantages is desirable. A straight bar (initially along the z-axis, Fig. 2) may be imagined brought to a bent

Fig. 2.
 and twisted state by supposing it cut into thin discs. Let a typical disc be translated without rotation so that its centroid is brought to its final position $P$ on the deflected curve and the principal axes are brought to $x_{1}, y_{1}$ parallel to $x, y$. It must now be rotated so that the tangent at $P$ to the deflection curve is normal to it, in accordance with the theory of flexure of thin bars. Let this rotation consist of a rotation about $y_{1}$ bringing $x_{1}$ to $x_{2}$ in the normal plane at $P$, followed by a rotation about $x_{2}$ bringing $y_{1}$ to $y_{2}$ in the normal plane. The configuration so produced is evidently a possible state of bending and torsion. The principal axis $x_{2}$ is still parallel to the plane $x z$. This configuration is to be used as a reference from which to measure the torsional rotation of cross sections. To the first order the torsion is zero, but to the second order it is not.

To determine its value, let the $x, y$ axes in Fig. 2 correspond with the $u, v$ axes, and let $x_{2}$ be the principal axis $p$. Then, in the proposed configuration, $p$ is everywhere normal to the $y$, or $v$, axis. Thus the coefficient of $j$ in (14), which represents the direc-
tion cosine of $p$ with the $v$ axis, must vanish, so that the value of $f$ is determined by the equation

$$
\begin{equation*}
f_{1}=\tan ^{-1} \frac{v^{\prime \prime}}{u^{\prime} z^{\prime \prime}-z^{\prime} u^{\prime \prime}} \tag{16}
\end{equation*}
$$

The torsion of the bar is $\tau_{c}+d f_{1} / d s, \tau_{c}$ being given by (5), and is thus expressed in terms of the derivatives of $u$ and $v$. When expanded in powers of these derivatives its leading term is $u^{\prime \prime} v^{\prime}$. This is an approximation to the torsion with error of order $\epsilon$. Thus if $\phi_{1}$ is the value of $\phi$ corresponding to this configuration $\phi_{1}^{\prime}=u^{\prime \prime} v^{\prime}[1+O(\epsilon)]$. Also, $f_{0}$ is obtained from (16) by putting $u_{0}, v_{0}$ for $u, v$ and it is easily found that $\tan f_{0}=-\left(v_{0}^{\prime \prime} / u_{0}^{\prime}\right)+O\left(\epsilon^{2}\right)$. Since $\tan \delta=v_{0}^{\prime} / u_{0}^{\prime \prime}$ it follows that $f_{0}+\delta=O\left(\epsilon^{2}\right)$. This being so $f_{0}+\delta$ in (15) ceases, for this particular configuration, to be significant, since its products with $u^{\prime \prime}, v^{\prime \prime}$ are of the order of the terms neglected.

Now consider an arbitrary state of (small) flexure and torsion specified by $u, v, \phi$. It may be derived from the reference state just defined simply by rotating crosssections about $t$ in order to convert $\phi_{1}$ to $\phi$. Let $\beta$ be the amount of such rotation. Then $\phi-\phi_{1}=\beta$, and $\tau=\phi^{\prime}=\beta^{\prime}+\phi_{1}^{\prime}$, that is

$$
\begin{equation*}
\tau=\beta^{\prime}+u^{\prime \prime} v^{\prime} \tag{17}
\end{equation*}
$$

with error of order $\epsilon^{2}$.
Let $s$ now be measured from one end of the bar so that $s_{0}=0$. Then $\phi_{1}$ like $\phi$ is zero at $s=0$ and $\phi_{1}=\int_{0}^{s} u^{\prime \prime} v^{\prime} d s$. Thus $\phi=\beta+\int_{0}^{z} u^{\prime \prime} v^{\prime} d s$ and the integral is of order $\epsilon^{2}$. Morcover $f_{0}+\delta$ is not altered by the rotation $\beta$ so that it is still of order $\epsilon^{2}$. The first of (15) becomes in consequence

$$
\kappa_{1}=-v^{\prime \prime}+u^{\prime \prime}\left(\beta+\int_{0}^{s} u^{\prime \prime} v^{\prime} d s\right)
$$

The first term is or order $\epsilon / l, u^{\prime \prime} \beta$ is of order $\epsilon^{2} / l$ and $u^{\prime \prime} \int_{0}^{s} u u^{\prime \prime} v^{\prime} d s$ is of order $\epsilon^{3} / l$. Therefore, with an error of order $\epsilon^{2}$ the new formulas for the components of curvature are

$$
\begin{equation*}
\kappa_{1}=-v^{\prime \prime}+\beta u^{\prime \prime}, \quad \kappa_{2}=u^{\prime \prime}+\beta v^{\prime \prime} . \tag{18}
\end{equation*}
$$

These with (17) give an alternative representation of the torsion and flexure, convenient because $f_{0}$ and $\delta$ have been eliminated, and $\beta$ is relatively easily envisagedbeing the angle by which the cross section must be rotated, about the deflected, tangent, to bring $p$ from the position parallel to the axial plane in which it originally lies, to its final position. At fixed ends $\beta$ is clearly zero.
6. Energy considerations. The strain energy is given by

$$
\begin{equation*}
\frac{1}{2} \int_{0}^{l}\left(E I_{1} K_{2}^{2}+E I_{2} K_{1}^{2}+G C \tau^{2}\right) d z \tag{19}
\end{equation*}
$$

The integration with respect to $z$ rather than $s$ will involve an error of order $\epsilon^{2}$.
Consider now the problem referred to in the introduction-the straight bar twisted until it buckles. Let the state just prior to buckling be

$$
\beta=B, \quad u=0, \quad v=0
$$

and after buckling

$$
\beta=B+\beta_{1}, \quad u=u_{1}, \quad v=v_{1} .
$$

Then $B$ is small in the sense of $\phi$ in the preceding analysis. But $\beta_{1}, u_{1}, v_{1}$ are to be true infinitesimals, since we seek a buckled form which comes to the straight form as a limit. Thus they are to approach zero after a fixed value has been assigned to $B$.

The expressions (17) and (18) are now used in (19), and terms to the second order in $u_{1}, v_{1}, \beta_{1}$ and their derivatives, without regard to $B$, are retained. The result is

$$
\begin{align*}
\frac{1}{2} \int_{0}^{l}\left[E Y_{1}\left(u_{1}^{\prime \prime 2}+2 B u_{1}^{\prime \prime} v_{1}^{\prime \prime}\right)\right. & +E I_{2}\left(v_{1}^{\prime \prime 2}-2 B u_{1}^{\prime \prime} v_{1}^{\prime \prime}\right) \\
& \left.+G C\left(B^{\prime 2}+2 B^{\prime} \beta_{1}^{\prime}+\beta_{1}^{\prime 2}+2 B u_{1}^{\prime \prime} v_{1}^{\prime}\right)\right] d z . \tag{20}
\end{align*}
$$

Let $M_{3}$ be the critical torsional couple $G C B^{\prime}$. On buckling, some work is done by this couple, but exactly how much, in terms of $\beta_{1}, u_{1}, v_{1}$ depends on the end constraints of the bar.

If the ends are in bearings which constrain the axis of the bar to remain fixed in direction at the ends-i.e., the ends are "built-in" with respect to flexure- the rotation of one end may be set as zero, and that of the other about the axis is then the value of $\beta_{1}$ at that end. The potential energy of $M_{3}$ in the buckled form is $-M_{3} \int_{0}^{i} \beta_{1}^{\prime} d z$ referred to the twisted but unbuckled form as zero. The total potential energy is thus this term together with (20), omitting $\frac{1}{2} \int_{0}^{t} G C B^{1 / 2} d z$ which is the energy of the unbuckled twisted form.

If the potential energy is now varied by varying $u_{1}$ to $u_{1}+\epsilon_{1} \eta_{1}(z)$ the coefficient of $\epsilon_{1}$ in the variation of the potential energy is

$$
\int_{0}^{l}\left[-E I_{2} B v_{1}^{\prime \prime}+E I_{1}\left(u u_{1}^{\prime}+B v_{1}^{\prime \prime}\right)+G C B^{\prime} v_{1}^{\prime}\right] \eta_{1}^{\prime} d z
$$

and this must vanish if the buckled state is a possible state of equilibrium. Since $B v_{1}^{\prime \prime}$ is small compared with $u_{1}^{\prime \prime}$, on account of the smallness of $B$, the conclusion is that the equation

$$
\begin{equation*}
E I_{1} u_{1}^{\prime \prime}+M_{3} v_{1}^{\prime}=0 \tag{21}
\end{equation*}
$$

must be satisfied. Similarly variation of $v_{1}$ yields

$$
\begin{equation*}
E I_{2} v_{1}^{\prime \prime}-M_{3} u u_{1}^{\prime}=0 \tag{22}
\end{equation*}
$$

Variation of $\beta_{1}$ yields $G C B^{\prime}+G C \beta_{1}^{\prime}-M_{3}=0$, that is $\beta_{1}^{\prime}=0$. Equations (21) and (22) are identical with the equations obtainable by direct equilibrium considerations. They are derived in this manner here in order to show that the terms $M_{3} v_{1}^{\prime},-M_{3} u_{1}^{\prime}$ arise from terms in the strain energy of torsion which are of higher order than the term $\frac{1}{2} \int_{0}^{l} G C \beta^{\prime 2} d z$ hitherto accepted. It is to be expected therefore that in (17) and (18) the terms of the second order will be required in energy calculations in other problems where torsional loads cause, or contribute to, buckling.

When the equilibrium of the straight twisted form is neutral, the work done by $M_{3}$ during buckling is equal to the gain of strain energy. Then

$$
\begin{align*}
M_{3} \int_{0}^{l} \beta_{1}^{\prime} d z=\frac{1}{2} \int_{0}^{l}\left[E I_{1}\left(u_{1}^{\prime \prime 2}+2 B u_{1}^{\prime \prime} \nu_{1}^{\prime \prime}\right)\right. & +E I_{2}\left(\nu_{1}^{\prime \prime 2}-2 B u_{1}^{\prime \prime} v_{1}^{\prime \prime}\right) \\
& \left.+G C\left(2 B^{\prime} \beta_{1}^{\prime}+\beta_{1}^{\prime 2}+2 B^{\prime} u_{1}^{\prime \prime} v_{1}^{\prime}\right)\right] d z \tag{23}
\end{align*}
$$

The term $B u_{1}^{\prime \prime} v_{1}^{\prime \prime}$ in the flexural terms is small compared with $u_{1}^{\prime \prime 2}$ or $v_{1}^{\prime \prime 2}$ and will be dropped. Introducing $M_{3}=G C B^{\prime}$ the resulting equation yields

$$
\begin{equation*}
M_{3}=-\frac{1}{2} \frac{\int_{0}^{1}\left(E I_{1} u_{1}^{\prime \prime 2}+E I_{2} v_{1}^{\prime \prime 2}+G C \beta_{1}^{\prime 2}\right) d z}{\int_{0}^{2} u_{1}^{\prime \prime} v_{1}^{\prime} d z} \tag{24}
\end{equation*}
$$

Now equations (21), (22) (after one differentiation) together with $\beta_{1}^{\prime}=0$ are the Euler differential equations for the functions $u_{1}, v_{1}, \beta_{1}$ making the right of (24) a minimum. Since $\beta_{i}^{\prime}=0$ the term $G C \beta_{1}^{\prime 2}$ in the numerator of (24) may be dropped. The critical $M_{3}$ is the least value of the right of (24) with or without this term. Without it the equation may be interpreted as showing that the energy of flexure which appears when buckling occurs is accounted for by a decrease of torsional energy of amount $M_{3} \int_{0}^{t} u_{1}^{\prime \prime} v_{1}^{\prime} d z$.

The same equation is suitable for the approximate determination of the critical torque by the Rayleigh method-assuming simple plausible forms for $u_{1}$ and $v_{1}$ and adjusting the parameters of these forms to obtain a least value of $M_{3}$. This method is applicable to non-uniform bars.

Equation (23) would in general require modification if the ends are not "built-in," for instance if they are attached to Hooke's joints. For then the work of $M_{3}$ is not done merely on a rotation $\int_{0}^{l} \beta_{1}^{\prime} d z$. Certain terms of higher order must be added to $\beta_{1}^{\prime}$, and these can be of the same order as $u_{1}^{\prime \prime} v_{1}^{\prime}$. Such terms would be significant in (24). Nevertheless (24) is appropriate in the Rayleigh method whatever the end constraints, for its minimizing conditions are the differential equations of equilibrium which must be satisfied irrespective of end constraints.

There are expressions other than the right of (24) which yield the critical $M_{3}$ as a minimum value. If (21) and (22) are multiplied respectively by $u_{1}^{\prime \prime}, v_{1}^{\prime \prime}$, integrated along the bar, and added, the result yields another in the form

$$
M_{3}=\frac{\int_{0}^{l}\left(E I_{1} u_{1}^{\prime \prime 2}+E I_{2} v_{1}^{\prime \prime}\right) d z}{\int_{0}^{l}\left(u_{1}^{\prime} v_{1}^{\prime \prime}-v_{1}^{\prime} u_{1}^{\prime \prime}\right) d z}
$$

# MEMBRANE STRESSES IN SHELLS OF CONSTANT SLOPE* 

BY

VLADIMIR MORKOVIN ${ }^{1}$<br>Brown University

1. A surface $S$ of constant slope may be generated by a straight line $L$ sliding along a plane curve $C_{0}$ (say, in the $x y$ plane), maintaining a right angle with the tangent to $C_{0}$ and a constant angle $\theta$ with its binormal (i.e., with the $z$ axis). When a closed curve $C_{0}$ is chosen, the surface is an obvious generalization of a circular cone ${ }^{2}$


Fig. 1. (see Fig. 1). Since "near-conical" shells occur often in practice, ${ }^{3}$ it may be of interest to discuss such effects as fall within the scope of the membrane theory of shells.

We introduce the following notations:
$\bar{z}, \bar{\jmath}, \bar{k}$, unit vectors in fixed rectangular directions $x, y, z$;
$\bar{\lambda}, \bar{\mu}, \bar{\nu}, \quad$ unit tangent, normal, and binormal of curve $C_{0}$;
$t$, length along generators $L$;
$s_{i}, \rho_{l}, \quad$ arc length and radius of curvature of a horizontal section $C_{i}$ of the surface $S$; subscripts 0 and 1 will designate corresponding quantities in the end sections $C_{0}$ and $C_{1}$ of the shell;
$\bar{r}=\bar{r}\left(s_{0}\right)$, vector equation of curve $C_{0}$;
$\varphi, \quad$ angle between the positive $x$ axis and the outward normal of $C_{0}$;
$E, \nu, G$, Young's modulus, Poisson's ratio, and shear modulus;
$h$, thickness of shell having the surface $S$ for middle surface;
$N_{s}, N_{1}$, normal forces per unit length of sections of the shell which are perpendicular to $s$ - and $t$-directions respectively (Fig. 3);
$N_{s t}$, shearing force in $s$-direction per unit length of shell section perpendicular to $t$-direction;

[^4]$e_{s a}, e_{t}, e_{s t}$, strains corresponding to $N_{s}, N_{t}$, and $N_{s t}$, respectively.
We note some simple relationships:
\[

$$
\begin{array}{cl}
\frac{d \bar{r}}{d s_{0}}=\bar{\lambda} ; & \bar{y}=\bar{k} ; \\
\bar{\lambda}=-i \sin \varphi+\bar{\jmath} \cos \varphi ; & \bar{\mu}=-\bar{i} \cos \varphi-\bar{\jmath} \sin \varphi . \tag{1.2}
\end{array}
$$
\]

Since $\rho_{0}=d s_{0} / d \varphi$, we obtain from (1.2) the Frenet-Serret formulae for a plane curve:

$$
\begin{equation*}
d \bar{\lambda} / d s_{0}=\bar{\mu} / \rho_{0} ; \quad d \bar{\mu} / d s_{0}=-\bar{\lambda} / \rho_{0} \tag{1.3}
\end{equation*}
$$

The vector equation of the surface of constant slope $S$ has the form:

$$
\begin{equation*}
\bar{R}\left(s_{0}, t\right)=\bar{r}\left(s_{0}\right)+t(\bar{\mu} \sin \theta+\bar{\nu} \cos \theta) \tag{1.4}
\end{equation*}
$$

For a constant value of $t,(1.4)$ is the vector equation of the horizontal section $C_{i}$. Then, $\partial \bar{R} / \partial s_{t}$ is the unit vector tangent to $C_{t}$. Since $\partial \bar{R} / \partial s_{t}=\bar{\lambda}\left(\rho_{0}-t \sin \theta\right) d s_{0} / \rho_{0} d s_{t}$, $C_{t}$ is parallel to $C_{0}$ at corresponding points (see Fig. 2), and

$$
\begin{equation*}
d s_{t} / d s_{0}=\left(\rho_{0}-t \sin \theta\right) / \rho_{0} \tag{1.5}
\end{equation*}
$$



Fig. 2.


Fig. 3.

Hence, for corresponding points, the centers of curvature of $C_{0}$ and $C_{2}$ coincide, and

$$
\begin{equation*}
\rho_{t}=\rho_{0}-t \sin \theta . \tag{1.6}
\end{equation*}
$$

If the shell is long, it may happen that at some point $\rho_{t}=0$. At such a point the tangent to $C_{t}$ ceases to turn continuously (see points $P, P^{\prime}$ in Fig. 2). We shall discuss only the portion of the shell where $t \sin \theta<\rho_{0}$, i.e., the open shell without the "tail edge."
2. An element of a shell of thickness $h$ having the surface $S$ for middle surface is shown in Fig. 3. According to the usual assumptions of the membrane theory of shells, ${ }^{4}$ the bending stresses as well as effects of curvature of $S$ are disregarded and

[^5]one has $N_{s t}=N_{t s}$. The total forces acting on the faces $h d s_{t}$ and $h d t$ of the element are respectively:
\[

$$
\begin{align*}
& -\left\{N_{l}(\bar{\mu} \sin \theta+\bar{\nu} \cos \theta)+N_{s} \bar{\lambda}\right\}\left(\rho_{0}-t \sin \theta\right) d \varphi  \tag{2.1a}\\
& -\left\{N_{s} \bar{\lambda}+N_{s t}(\bar{\mu} \sin \theta+\bar{\nu} \cos \theta)\right\} d t \tag{2.1b}
\end{align*}
$$
\]

Let $\bar{P}=P_{s} \bar{\lambda}+P_{t}(\bar{\mu} \sin \theta+\bar{\nu} \cos \theta)+P_{n}(\bar{\mu} \cos \theta-\bar{\nu} \sin \theta)$ represent the load per unit area of the surface. Then the condition of equilibrium of the element of the shell is: $\frac{\partial}{\partial t}\left\{\left[N_{t}(\bar{\mu} \sin \theta+\bar{\nu} \cos \theta)+N_{t t} \bar{\lambda}\right]\left(\rho_{0}-t \sin \theta\right)\right\} d t d \varphi$

$$
\begin{equation*}
+\frac{\partial}{\partial \varphi}\left\{N_{s} \bar{\lambda}+N_{a t}(\bar{\mu} \sin \theta+\bar{\nu} \cos \theta)\right\} d t d \varphi=\left(\rho_{0}-t \sin \theta\right) \bar{P} d t d \varphi \tag{2.2}
\end{equation*}
$$

Equating the components of these forces in the $n, s$, and $t$ directions, we obtain three equations for the determination of the three stress components:

$$
\begin{gather*}
N_{s}=\left(\rho_{0}-t \sin \theta\right) P_{n} \sec \theta \\
\frac{\partial}{\partial t}\left\{N_{s t}\left(\rho_{0}-t \sin \theta\right)\right\}-N_{s t} \sin \theta=\left(\rho_{0}-t \sin \theta\right) P_{s}-\frac{\partial N_{s}}{\partial \varphi}  \tag{2.3}\\
\frac{\partial}{\partial t}\left\{N_{t}\left(\rho_{0}-t \sin \theta\right)\right\}=-\frac{\partial N_{s t}}{\partial \varphi}+\left(\rho_{0}-t \sin \theta\right) P_{t}-N_{s} \sin \theta
\end{gather*}
$$

We proceed to solve equations (2.3) with the simplifying assumption that the load $\bar{P}$ does not vary along the generators $L$, and obtain: ${ }^{5}$

$$
\begin{align*}
N_{s}^{\prime}= & \left(\rho_{0}-t \sin \theta\right) P_{n} \sec \theta \\
N_{s t}= & \frac{f(\varphi) \sin \theta}{\left(\rho_{0}-t \sin \theta\right)^{2}}-\frac{1}{3} \csc \theta\left(\rho_{0}-t \sin \theta\right)\left(P_{s}-P_{n}^{\prime} \sec \theta\right)+\frac{1}{2} \rho_{0}^{\prime} P_{n} \csc \theta \sec \theta \\
N_{t}= & \frac{-1}{\rho_{0}-t \sin \theta}\left[\frac{f(\varphi)}{\rho_{0}-t \sin \theta}-g(\varphi)\right]^{\prime}  \tag{2.4}\\
& \quad+\frac{t \csc \theta}{\rho_{0}-t \sin \theta}\left[\frac{1}{3} \rho_{0}^{\prime} P_{s}-\frac{5}{6} \rho_{0}^{\prime} P_{n}^{\prime} \sec \theta-\frac{1}{2} \rho_{0}^{\prime \prime} P_{n} \sec \theta\right] \\
& \quad-\frac{1}{2} \csc \theta\left(\rho_{0}-t \sin \theta\right)\left[P_{t}-P_{n} \tan \theta-\frac{1}{3} P_{n}^{\prime \prime} \csc \theta \sec \theta+\frac{1}{3} P_{:}^{\prime} \csc \theta\right],
\end{align*}
$$

where $f(\varphi)$ and $g(\varphi)$ are arbitrary functions of $\varphi$ and the prime denotes differentiation with respect to $\varphi$. If the curve $C_{0}$ is closed the continuity of stresses demands that $f$ and $g^{\prime}$ have a period of $2 \pi$.

When the load on the shell is applied only through the end sections $C_{0}$ and $C_{1}$ the stress system becomes:

$$
\begin{equation*}
N_{t}=0 ; \quad N_{s t}=\frac{f \sin \theta}{\left(\rho_{0}-t \sin \theta\right)^{2}} ; \quad N_{t}=\frac{-1}{\left(\rho_{0}-t \sin \theta\right)}\left[\frac{f}{\rho_{0}-t \sin \theta}-g\right]^{\prime} . \tag{2.5}
\end{equation*}
$$

Substituting (2.5) into (2.1a) and integrating between 0 and $2 \pi$, we obtain the resultant force $\bar{F}_{t}$ acting on the section $C_{t}$; the expression for $\bar{F}_{t}$ simplifies readily by virtue of (1.2):

[^6]\[

$$
\begin{align*}
\bar{F}_{i} & =\int_{0}^{2 \pi}\left\{-\left[\frac{f}{\rho_{0}-t \sin \theta}(\bar{\mu} \sin \theta+\bar{\nu} \cos \theta)\right]^{\prime}+g^{\prime}(\bar{\mu} \sin \theta+\bar{\nu} \cos \theta)\right\} d \varphi \\
& =-\sin \theta\left\{\bar{i} \int_{0}^{2 \pi} g^{\prime} \cos \varphi d \varphi+\bar{j} \int_{0}^{2 \pi} g^{\prime} \sin \varphi d \varphi\right\}+\bar{k} \cos \theta\{g(2 \pi)-g(0)\} \tag{2.6}
\end{align*}
$$
\]

The resultant moment $\bar{M}_{t}$ about the origin due to the forces on the section $C_{6}$ is found similarly:

$$
\bar{M}_{\iota}=\int_{0}^{2 \pi} \bar{R} \times\left\{-\left[\frac{f}{\rho_{0}-t \sin \theta}(\bar{\mu} \sin \theta+\bar{\nu} \cos \theta)\right]^{\prime}+g^{\prime}(\bar{\mu} \sin \theta+\bar{\nu} \cos \theta)\right\} d \varphi .
$$

It follows by integration by parts that

$$
\begin{align*}
\bar{M}_{t}= & \bar{R}(0) \times \bar{F}_{t}+\bar{k} \sin \theta \int_{0}^{2 \pi} f d \varphi+\cos \theta \int_{0}^{2 \pi}(\bar{\imath} \cos \varphi+\bar{\jmath} \sin \varphi) f d \varphi \\
& -\int_{0}^{2 \pi} \bar{\lambda} \times\left\{\int_{0}^{\varphi} g^{\prime}(\bar{\mu} \sin \theta+\bar{\nu} \cos \theta) d \varphi\right\}\left(\rho_{0}-t \sin \theta\right) d \varphi \tag{2.7}
\end{align*}
$$

The results (2.6) and (2.7) will form the basis of analysis in later sections.
3. Let the vector of infinitesimal displacement be

$$
\begin{equation*}
\bar{D}=u \bar{\lambda}+v(\bar{\mu} \sin \theta+\bar{\nu} \cos \theta)+w(\bar{\mu} \cos \theta-\bar{\nu} \sin \theta) \tag{3.1}
\end{equation*}
$$

The strains in the surface are given by the following scalar products between the rates of change of the displacement $\bar{D}$ and the unit vectors in the $t$ and $s$ directions:

$$
\begin{equation*}
e_{t t}=\frac{\partial \bar{R}}{\partial t} \cdot \frac{\partial \bar{D}}{\partial t}, \quad e_{s t}=\frac{\partial \bar{R}}{\partial s_{t}} \cdot \frac{\partial \bar{D}}{\partial s_{t}}, \quad e_{s t}=\left\{\frac{\partial \bar{R}}{\partial s_{t}} \cdot \frac{\partial \bar{D}}{\partial t}+\frac{\partial \bar{R}}{\partial t} \cdot \frac{\partial \bar{D}}{\partial s_{t}}\right\} \tag{3.2}
\end{equation*}
$$

We evaluate (3.2) and substitute the results into Hooke's Law:

$$
\begin{align*}
& \frac{1}{E h}\left\{N_{t}-\nu N_{s}\right\}=\frac{\partial v}{\partial t}, \\
& \frac{1}{E h}\left\{N_{s}-\nu N_{t}\right\}=\frac{1}{\rho_{0}-t \sin \theta}\left\{u^{\prime}-(v \sin \theta+w \cos \theta)\right\}  \tag{3.3}\\
& \frac{2(1+\nu)}{E h} N_{s t}=\frac{1}{\rho_{0}-t \sin \theta}\left\{\left(\rho_{0}-t \sin \theta\right) \frac{\partial u}{\partial t}+u \sin \theta+v^{\prime}\right\}
\end{align*}
$$

Equations (3.3) are easily integrated to yield expressions for the displacements:

$$
\begin{align*}
v= & \frac{1}{E h} \int^{t}\left(N_{t}-\nu N_{s}\right) d t+A(\varphi), \\
u= & \frac{2(1+\nu)}{E h}\left(\rho_{0}-t \sin \theta\right) \int^{t} \frac{N_{s} t}{\rho_{0}-t \sin \theta} d t \\
& -\frac{\left(\rho_{0}-t \sin \theta\right)}{E h} \int^{t} \frac{\int^{t}\left(N_{t}^{\prime}-\nu N_{s}^{\prime}\right) d t}{\left(\rho_{0}-t \sin \theta\right)^{2}} d t-A^{\prime}(\varphi) \csc \theta+\left(\rho_{0}-t \sin \theta\right) B(\varphi), \tag{3.4}
\end{align*}
$$

$w=u^{\prime} \sec \theta+v \tan \theta-\frac{1}{E h}\left(\rho_{0}-t \sin \theta\right)\left(N_{s}-\nu N_{l}\right) \sec \theta$,
where $A(\varphi)$ and $B(\varphi)$ are arbitrary functions. When the stresses have the form (2.5), the displacements can be expressed directly in terms of the functions $f$ and $g$ :

$$
\begin{align*}
& v=\frac{\csc \theta}{E h}\left\{-f^{\prime} \rho_{t}^{-1}+\frac{1}{2} \int \rho^{\prime} \rho_{t}^{-2}-g^{\prime} \ln \rho_{t}\right\}+A, \\
& u=\frac{\csc ^{2} \theta}{E h}\left\{(1+\nu) f \rho_{\epsilon}^{-1} \sin ^{2} \theta+\frac{1}{2} f^{\prime \prime} \rho_{\imath}^{-1}-\frac{1}{6}\left(f \rho^{\prime \prime}+3 f^{\prime} \rho^{\prime}\right) \rho_{\boldsymbol{t}}^{-2}+\frac{1}{4} f \rho^{\prime 2} \rho_{\mathrm{l}}^{-3}\right. \\
& \left.+\frac{1}{2} g^{\prime} \rho^{\prime} \rho_{t}^{-1}+g^{\prime \prime}\left(\ln \rho_{t}+1\right)\right\}-A^{\prime} \csc \theta+\rho_{t} B,  \tag{3.5}\\
& w=\frac{\sec \theta \csc ^{2} \theta}{E h}\left\{\sin ^{2} \theta\left[-\frac{3}{2} f \rho^{\prime} \rho_{\boldsymbol{\epsilon}} \bar{\epsilon}^{-2}+2 f^{\prime} \rho_{i}^{-1}+g^{\prime}\left(\ln \rho_{t}+\nu\right)\right]+\frac{1}{2} f^{\prime \prime \prime} \rho_{\boldsymbol{t}} \bar{t}^{-1}\right. \\
& -\frac{1}{6}\left(f \rho^{\prime \prime \prime}+4 f^{\prime} \rho^{\prime \prime}+6 f^{\prime \prime} \rho^{\prime}\right) \rho \rho^{-2}+\frac{1}{12}\left(15 f^{\prime} \rho^{\prime 2}+10 f \rho^{\prime} \rho^{\prime \prime}\right) \rho \rho_{t}^{-3} \\
& \left.-\frac{3}{4} \rho \rho^{\prime 3} \rho_{t}^{-4}+\frac{1}{2}\left(g^{\prime} \rho^{\prime \prime}+3 g^{\prime \prime} \rho^{\prime}\right) \rho \rho_{t}^{-1}-\frac{1}{2} \rho^{\prime} \rho^{\prime 2} \rho_{t} \bar{t}^{2}+g^{\prime \prime \prime}\left(\ln \rho_{t}+1\right)\right\} \\
& -\tan \theta\left(A+A^{\prime \prime} \csc ^{2} \theta\right)+B^{\prime} \rho_{l} \sec \theta+B \rho^{\prime} \sec \theta \text {. }
\end{align*}
$$

Expressions for displacements $D_{x}, D_{y}, D_{z}$ in the $x, y, z$ (or any other) directions are best derived by taking a scalar product between a unit vector in the given direction and $\bar{D}$ of (3.1). For instance,

$$
\begin{equation*}
D_{z}=\bar{k} \cdot \bar{D}=v \cos \theta-w \sin \theta . \tag{3.6}
\end{equation*}
$$

4. The current literature on shells contains very little on the boundary conditions in the membrane theory of shells. We recall that local bending of the shell was disregarded according to the simplifying assumptions of the theory. Thus we cannot expect to satisfy all of the usual boundary conditions. For instance, we cannot ask that the heavy end bulkhead be considered rigid; in bending of the shell as a whole this would entail $e_{s s}=N_{t}=0$ in the end section which could consequently transmit no bending moment. By allowing deformations in the plane of the end sections we remove the restriction on $N_{t}$ and the problem of bending has a solution (see section 5). One has to decide in every particular problem which boundary conditions correspond more nearly to the assumption of no local bending.

A casual reader might be tempted to interpret the contribution of $A$ and $B$ to the displacements in (3.4) as that of rigid body motion since it is present when the stresses vanish. However, it is conceivable that a given state of stress induces inextensional displacements other than those of a rigid body as necessitated by the shape of the shell. Thus, in the case of a non-circular cylindrical shell under torsion, $A$ accounts for the warping of the cross-sections. ${ }^{6}$

In general, these inextensional deformations are accompanied by local bending stresses which must be small to be neglected in accordance with our assumptions. One would expect that no energy is expended in the inextensional deformations. The strain energy in shells loaded through the end-sections is

$$
\begin{equation*}
V=\frac{1}{2 h} \int_{0}^{t_{1}} \int_{0}^{2 \pi}\left(\frac{N_{t}^{2}}{E}+\frac{N_{t i}^{2}}{G}\right) \rho_{t} d \varphi d t \tag{4.1}
\end{equation*}
$$

[^7]or
\[

$$
\begin{equation*}
V=\left.\frac{1}{2} \int_{0}^{2 \pi}\left(N_{\mathrm{s}} t u+N_{t} v\right) \rho_{t} d \varphi\right|_{t=0} ^{t t_{1}} . \tag{4.2}
\end{equation*}
$$

\]

Substituting (2.5) and the contribution due to $A$ and $B$ into (4.2) and integrating by parts, we find that our expectation is verified. The accompanying local bending, however, absorbs energy and, therefore, places limitations on the inextensional displacements according to the principle of minimum strain energy. The minimum expenditure of energy in bending occurs when the inextensional displacements reduce to rigid body displacements.

One can easily verify that the most general functions $A$ and $B$ corresponding to rigid body displacements have the form

$$
\begin{align*}
A= & -a_{x} \sin \theta \cos \varphi-a_{y} \sin \theta \sin \varphi+a_{z} \cos \theta+\alpha_{x} y_{0} \cos \theta \\
& -\alpha_{y} x_{0} \cos \theta+\alpha_{z} \sin \theta\left(y_{0} \cos \varphi-x_{0} \sin \varphi\right)  \tag{4.3}\\
B= & \alpha_{x} \cot \theta \cos \varphi+\alpha_{y} \cot \theta \sin \varphi+\alpha_{z}
\end{align*}
$$

where $a_{x}, a_{y}, a_{z}$ represent the infinitesimal translations in the $x, y, z$ directions; $\alpha_{x}, \alpha_{y}, \alpha_{z}$ the infinitesimal rotations about the $x, y, z$ axes; and $x_{0}, y_{0}$ the coordinates in the base section $C_{0}$.

Instead of imposing conditions on the displacements, one may prescribe a sensible distribution of stresses at the boundary. We note that by (2.5) the state of stress in the whole shell is determined as soon as the stresses $N_{t}$ and $N_{s t}$ are given at one endsection. Thus two different stress distributions which are statically equivalent over an end-section will determine distinctly different stress distributions in the rest of the shell. ${ }^{7}$
5. We shall study first the effects of taper ${ }^{8}$ as exhibited in a conical shell of circular cross-section; later, we shall discuss the influence of a variable radius of curvature $p_{i}$ of the section $C_{i}$.

Let $M$ represent the bending moment (causing tension for $x_{t}>0$ ) applied to the shell through the end-sections $C_{0}$ and $C_{1}$. We shall try to satisfy the conditions that the end-sections (bulkheads) remain plane, i.e.,

$$
\begin{equation*}
D_{z}=0 \text { for } t=0 ; \quad D_{z}=\beta\left(x_{0}-t_{1} \sin \theta\right) \text { for } t=t_{1} \tag{5.1}
\end{equation*}
$$

where $\beta$ is the (undetermined) angle of bending, and that the displacements due to $A$ and $B$ reduce to rigid body displacements (4.3). By virtue of (3.6), (3.5), and (4.3), we obtain for the first of conditions (5.1)

$$
\begin{align*}
& -\frac{\sec \hat{\theta} \csc \theta}{E h}\left\{\frac{1}{2 r}\left(2 f^{\prime}\left(1+\sin ^{2} \theta\right)+f^{\prime \prime \prime}\right)\right. \\
&  \tag{5.2}\\
& \left.\quad+\left(g^{\prime}+g^{\prime \prime \prime}\right) \ln r+\nu g^{\prime} \sin ^{2} \theta+g^{\prime \prime}\right\}-\alpha_{y} r \cos \varphi=0 .
\end{align*}
$$

[^8]By symmetry, the functions $g^{\prime}$ and $f^{\prime}$ are odd in $x_{0}$; let their Fourier expansions read $g^{\prime}=\sum_{0}^{\infty}(2 n+1) a_{2 n+1} \cos (2 n+1) \varphi, f^{\prime}=\sum_{0}^{\infty}(2 n+1) b_{2 n+1} \cos (2 n+1) \varphi$.
Since the resultant force $\bar{F}_{0}$ on $C_{0}$ must vanish, one concludes from (2.6) that $a_{1}=0$. Equation (2.7) yields $\bar{M}_{c}=j \pi b_{1} \cos \theta$ or $b_{1}=-(1 / \pi) M \sec \theta$. It follows from the coefficient of $\cos \varphi$ in (5.2) that

$$
\begin{equation*}
\alpha_{y}=\left(1 / 2 \pi E h r^{2}\right) \sec ^{2} \theta \csc \theta\left(1+2 \sin ^{2} \theta\right) M \tag{5.4}
\end{equation*}
$$

Substituting (5.4) and (5.3) into the second of conditions (5.1) and equating coefficients of $\cos \varphi$ in the two members, we obtain

$$
\begin{equation*}
\beta=\frac{M \sin \theta\left(2+\csc ^{2} \theta\right)}{2 \pi E h \cos ^{2} \theta}\left\{\frac{1}{\left(r-t_{1} \sin \theta\right)^{2}}-\frac{1}{r^{2}}\right\} . \tag{5.5}
\end{equation*}
$$

For the coefficients $a_{2 n+1}$ and $b_{2 n+1}, n>0$, one obtains a system of two homogeneous equations with a non-vanishing determinant. Therefore $a_{2 n+1}=b_{2 n+1}=0, n>0$, and

$$
\begin{align*}
& N_{\iota}=\frac{M \sec \theta \cos \varphi}{\pi(r-t \sin \theta)^{2}}, \quad N_{s t}=-\frac{M \tan \theta \sin \varphi}{\pi(r-t \sin \theta)^{2}},  \tag{5.6}\\
& D_{z}=\frac{M \sin \theta\left(2+\csc ^{2} \theta\right)}{2 \pi E h \cos ^{2} \theta}\left\{\frac{1}{(r-t \sin \theta)^{2}}-\frac{1}{r^{2}}\right\} x_{t} . \tag{5.7}
\end{align*}
$$

If we designate by $I_{t}$ the moment of inertia, $\pi(r-t \sin \theta)^{3}$, of $C_{t}$ about the neutral axis, we can write $N_{t}=\left(1 / I_{t}\right) M x_{t} \sec \theta$. Essentially the stresses in the $z$ direction follow the classical beam formula; the influence of taper is manifested by the presence of the $x$ components of stresses $N_{t}$ which have to be balanced by $N_{\mathrm{t}}$. From (5.7) we see that all sections $C_{t}$ remain plane. The rate of change of the angle of bending increases as the shell grows narrower:

$$
\begin{equation*}
\frac{d \beta}{d z}=\frac{M\left(1+2 \sin ^{2} \theta\right)}{\pi E h \cos ^{3} \theta(r-t \sin \theta)^{3}}=\frac{M\left(1+2 \sin ^{2} \theta\right)}{E h I_{t} \cos ^{3} \theta} . \tag{5.8}
\end{equation*}
$$

Further effects of taper are apparent in the other displacements:

$$
\begin{align*}
& v=\frac{M \tan \theta}{2 \pi E h} \cos \varphi\left\{\frac{2 \csc ^{2} \theta}{r-t \sin \theta}-\frac{1}{r}\left(2 \csc ^{2} \theta-\nu\right)\right\},  \tag{5.9}\\
& u=\frac{M \sec \theta}{2 \pi E h} \sin \varphi\left\{\frac{\csc ^{2} \theta-2-2 \nu}{r-t \sin \theta}-\frac{1}{r}\left(2 \csc ^{2} \theta-\nu\right)\right. \\
& \left.\quad+\frac{1}{r^{2}}(r-t \sin \theta)\left(\csc ^{2} \theta+2\right)\right\},  \tag{5.10}\\
& w=\frac{M \sec ^{2} \theta}{2 \pi E h} \cos \varphi\left\{\frac{\csc ^{2} \theta-4}{r-t \sin \theta}-\frac{1}{r} \cos ^{2} \theta\left(2 \csc ^{2} \theta-\nu\right)\right. \\
& \left.\quad+\frac{1}{r^{2}}(r-t \sin \theta)\left(\csc ^{2} \theta+2\right)\right\}, \tag{5.11}
\end{align*}
$$

If we take for $X$, the fictitious displacement of the axis of the cone, the average of $D_{x}$ over $C_{t}$ (by analogy with a cylinder or prism), we obtain for the slope of the deformed axis

$$
\begin{equation*}
\frac{d X}{d z}=\frac{M \sin \theta}{2 \pi E h \cos ^{2} \theta}\left\{\frac{2+\nu-\csc ^{2} \theta}{(r-t \sin \theta)^{2}}+\frac{1}{r^{2}}\left(2+\csc ^{2} \theta\right)\right\} \tag{5.13}
\end{equation*}
$$

Comparison with equation (5.7) shows that the axis is not perpendicular to the sections $C_{t}$ as one might expect. Nor is the increment in slope equal to $\beta$, the angle between the end sections. In fact, for $\csc ^{2} \theta=2+\nu$, a large taper, the axis remains altogether straight despite the angle between $C_{0}$ and $C_{1}$. This is due to a slipping effect caused by an interplay of the shearing forces $N_{s t}$ and the $x$ components of $N_{t}$. Finally, let us check (5.5) by the customary ${ }^{9}$ application of Castigliano's Principle, $\partial V / \partial M=\beta$. Substituting (5.6), (5.9), and (5.10) into (4.2), we have

$$
\begin{align*}
& \left.V\right|_{t=0}=\frac{M^{2} \sin \theta}{4 \pi E h \cos ^{2} \theta} \frac{2 \nu}{r^{2}},  \tag{5.14}\\
& V=\frac{M^{2} \sin \theta\left(2+\csc ^{2} \theta+2 \nu\right)}{4 \pi E h \cos ^{2} \theta}\left\{\frac{1}{\left(r-t_{1} \sin \theta\right)^{2}}-\frac{1}{r^{2}}\right\},  \tag{5.15}\\
& \beta_{V}=\frac{M \sin \theta\left(2+\csc ^{2} \theta+2 \nu\right)}{2 \pi E h \cos ^{2} \theta}\left\{\frac{1}{\left(r-t_{1} \sin \theta\right)^{2}}-\frac{1}{r^{2}}\right\} . \tag{5.16}
\end{align*}
$$

The discrepancy between (5.5) and (5.16) is negligible in practical applications, but is interesting theoretically. It springs from a loose interpretation of Castigliano's Principle above, which is strictly true only for a concentrated couple $M$. Since $M$ is distributed over the end sections, it does work not only in bending the shell but also in deforming the end-sections within their planes, as seen from (5.14). When the end-sections are alike as in a cylinder or prism, as much energy is spent in the deformation of one end as is gained at the other end; then, Castigliano's Principle holds even for a distributed moment. But to obtain the correct angle of bending in the case of a cone, one must deduct from the total strain energy (5.15) the net energy absorbed in the plane deformation of $C_{0}$ and $C_{1}$, namely

$$
\frac{M^{2} \nu \sin \theta}{2 \pi E h \cos ^{2} \theta}\left\{\frac{1}{\left(r-t_{1} \sin \theta\right)^{2}}-\frac{1}{r^{2}}\right\} .
$$

6. We derive easily the expressions for the stresses in a cone twisted by a torque $T$ by making either $D_{2}=0$ or $N_{t}=0$ at $C_{0}$ and $C_{1}$ and using (2.6) and (2.7).

$$
\begin{equation*}
N_{s t}=\frac{T}{2 \pi(r-t \sin \theta)^{2}}, \quad N_{\iota}=0 \tag{6.1}
\end{equation*}
$$

From the displacements or the strain energy we obtain the total angle of twist $\gamma$ and the angle of twist per unit length of the cone

[^9]\[

$$
\begin{equation*}
\gamma=\frac{T \csc \theta}{4 \pi G / 2}\left\{\frac{1}{\left(r-t_{1} \sin \theta\right)^{2}}-\frac{1}{r^{2}}\right\}, \quad \frac{d \gamma}{d z}=\frac{T \sec \theta}{2 \pi G h(r-t \sin \theta)^{3}} . \tag{6.2}
\end{equation*}
$$

\]

Here, the effects of taper as manifested in (6.1) and (6.2) are not unexpected.
More interesting is the case of a cone supported at $C_{0}$ and bent by a force $R$ (in the $x$ direction) distributed over $C_{1}$. We learn from (2.6) that the function $f(\varphi)$ and hence the shear stress $N_{s t}$ do not actually contribute to the resultant $R$ acting on any section $C_{t}$. Expressions (2.6) and (2.7) show that the term in $\cos \varphi$ of $g^{\prime}$ alone influences the resultant force as well as moment on $C_{i}$. We superpose a state of stress given by (5.6) with $M=R \cot \theta\left(r-t_{1} \sin \theta\right)$ in order to bring the moment across $C_{1}$ to zero, and obtain the final result

$$
\begin{equation*}
N_{\iota}=\frac{-R\left(t_{1}-t\right) \cos \varphi}{\pi(r-t \sin \theta)^{2}}, \quad N_{s t}=\frac{-R\left(r-t_{1} \sin \theta\right) \sin \varphi}{\pi(r-t \sin \theta)^{2}} \tag{6.3}
\end{equation*}
$$

7. Let us now consider shells with non-circular cross-sections $C_{t}$. The coordinates of points on $C_{t}$ are expressed in terms of $\rho_{t}$ and $\varphi$

$$
\begin{equation*}
x_{t}=x_{t}(0)-\int_{0}^{\varphi} \rho_{t} \sin \varphi d \varphi, \quad y_{t}=\int_{0}^{\varphi} \rho_{t} \cos \varphi d \varphi \tag{7.1}
\end{equation*}
$$

It is clear from (7.1) that $\rho_{t}$ cannot contain any terms in $\cos \varphi$ or $\sin \varphi$. if the shell is closed. If only cosine terms appear in the Fourier expansion

$$
\begin{equation*}
\rho_{i}=r_{i}-\sum_{2}^{\infty} r_{n} \cos n \varphi \tag{7.2}
\end{equation*}
$$

the section $C_{t}$ is symmetric with respect to the $x$ axis. The simple section, for which $r_{n}=0$ if $n \neq 3$, approximates the cross-section of many a fuselage:

$$
\begin{align*}
x_{t} & =r_{1} \cos \varphi+\frac{1}{4} r_{3} \cos 2 \varphi-\frac{1}{8} r_{3} \cos 4 \varphi \\
x_{l}(0) & =r_{t}+\frac{r_{3}}{8}, \quad x_{t}(\pi)=-r_{t}+\frac{r_{3}}{8}  \tag{7.3}\\
y_{t} & =r_{t} \sin \varphi-\frac{1}{4} r_{3} \sin 2 \varphi-\frac{1}{8} r_{3} \sin 4 \varphi ; \quad y_{1}(\pi / 2)=r_{t}
\end{align*}
$$

The neutral axis of the sections coincides with the $y$ axis (i.e., is independent of $t$ ) if $x_{t}$ contains no constant term and if

$$
\begin{equation*}
\int_{0}^{2 \pi} x_{0} \rho_{0} d \varphi=\frac{\pi}{2} \sum_{2}^{\infty} \frac{r_{n}\left(r_{n+1}-r_{n-1}\right)}{n}=0 \tag{7.4}
\end{equation*}
$$

In bending; only sections satisfying (7.4) will be considered.
8. The stresses in a shell of constant slope under torsion are determined from the conditions that the load is applied in such a manner that only shearing stresses are generated at the end-sections. The conditions $N_{t}=0$ at $t=0$ and $t=t_{1}$ yield $f=k \rho_{0}\left(\rho_{0}-t_{1} \sin \theta\right)$ and $g=k\left(\rho_{0}-t_{1} \sin \theta\right)$. Substituting the expression for $f$ into $N_{s t}$, we find the torque $T$ on $C_{0}$

$$
T=\int_{0}^{2 \pi} \bar{R} \times N_{s t} \bar{\lambda}_{\rho_{0}} d \varphi=k \sin \theta\left\{\oint \bar{R} \times \frac{d \bar{R}}{d s_{0}} d s_{0}-t_{1} \sin \theta \int_{0}^{2 \pi} \bar{R} \times \bar{\lambda} d \varphi\right\}
$$

which reduces to

$$
\begin{equation*}
T=k \sin \theta\left\{2 A_{0}-t_{1} L_{0} \sin \theta\right\}=k \sin \theta\left\{A_{0}+A_{1}-\pi t_{1}^{2} \sin ^{2} \theta\right\} \tag{8.1}
\end{equation*}
$$

Here the $A$ 's represent the areas of the sections and $L_{0}$ is the length of $C_{0}$, all quantities easily measurable. Then,

$$
\begin{align*}
N_{s t} & =\frac{T}{\left(A_{0}+A_{1}-\pi t_{1}^{2} \sin ^{2} \theta\right)} \cdot \frac{\rho_{0} \rho_{1}}{\rho_{t}^{2}},  \tag{8.2}\\
N_{t} & =\frac{-T}{\left(A_{0}+A_{1}-\pi t_{1}^{2} \sin ^{2} \theta\right)} \cdot \frac{t}{\rho_{t}}\left(\frac{\rho_{1}}{\rho_{t}}\right)^{\prime}=\frac{-T \sin \theta}{\left(A_{0}+A_{1}-\pi t_{1}^{2} \sin ^{2} \theta\right)} \cdot \frac{t\left(t_{1}-t\right) \rho^{\prime}}{\rho_{t}^{3}} . \tag{8.3}
\end{align*}
$$

The effect of the variable radius of curvature of $C_{t}$ is observed in the expression for $N_{t}$; tensile stresses increase directly with $\rho^{\prime}$ and inversely with $\rho_{i}^{3}$.

The expression (4.2) for strain energy takes the form

$$
\begin{align*}
& V=\frac{k^{2} \csc \theta}{2 E h_{2}}\left\{t_{1}(1+\nu) \sin ^{3} \theta\left(L_{0}+L_{1}\right)+\left.\frac{t_{1}^{2} \sin ^{2} \theta}{12} \int_{0}^{2 \pi}\left(\frac{\rho^{\prime}}{\rho_{t}}\right)^{2} d \varphi\right|_{0} ^{t_{1}}\right. \\
&\left.-\frac{t_{1} \sin \theta}{2} \int_{0}^{2 \pi} \rho^{\prime 2}\left(\frac{1}{\rho_{1}}+\frac{1}{\rho_{0}}\right) d \varphi-\int_{0}^{2 \pi} \rho^{\prime 2} \ln \left(\frac{\rho_{1}}{\rho_{0}}\right) d \varphi\right\} \tag{8.4}
\end{align*}
$$

and the angle of twist is

$$
\begin{array}{r}
\gamma=\frac{T}{E h\left(A_{0}+A_{1}-\pi t_{1}^{2} \sin ^{2} \theta\right)^{2}}\left[t_{1}(1+\nu)\left(L_{0}+L_{1}\right)+\csc ^{3} \theta \int_{0}^{2 \pi}\left\{\frac{t_{1}^{2} \sin ^{2} \theta}{12} \rho^{\prime 2}\left(\frac{1}{\rho_{1}^{2}}-\frac{1}{\rho_{0}^{2}}\right)\right.\right. \\
 \tag{8.5}\\
\left.\left.-\frac{t_{1} \sin \theta}{2} \rho^{\prime 2}\left(\frac{1}{\rho_{1}}+\frac{1}{\rho_{0}}\right)-\rho^{\prime 2} \ln \left(\frac{\rho_{1}}{\rho_{0}}\right)\right\} d \varphi\right] .
\end{array}
$$

The quantity in the braces is of the order of $\sin ^{5} \theta$. Also, each of its terms contains the factor $\rho^{\prime 2}$. In the common case of small taper and nearly circular shell we may use as a good approximation

$$
\begin{equation*}
\gamma_{a p p}=\frac{T t_{1}\left(L_{0}+L_{1}\right)}{2 G h\left(A_{0}+A_{1}-\pi t_{1}^{2} \sin ^{2} \theta\right)^{2}} \tag{8.6}
\end{equation*}
$$

Neglecting the terms in the braces of (8.5) is equivalent to disregarding the effect of the stress $N_{t}$; see (4.1).

The inextensional displacements given by $A$ and $B$ in (3.5) can be determined from the twist of the end-sections (centers of twist along $z$ axis)

$$
\begin{equation*}
u=0, \quad t=0 ; \quad u=\gamma\left(x_{1} \cos \varphi+y_{1} \sin \varphi\right), \quad t=t_{1} \tag{8.7}
\end{equation*}
$$

These displacements include warping. ${ }^{10}$ The actual process of solving (8.7) is quite tedious even when a definite section is given.
9. We conclude with a short discussion of stresses in a general shell of constant slope bent by couples $M$ as in section 5 . We assume that the moments at the end-sec-

[^10]tions $C_{0}$ and $C_{1}$ are applied in such a manner that the stress $N_{l}$ at these sections is proportional to the distance from the neutral axis:
\[

$$
\begin{equation*}
N_{\iota}=e_{0} x_{0} \text { for } t=0 ; \quad N_{\iota}=e_{1} x_{1} \text { for } t=t_{1} . \tag{9.1}
\end{equation*}
$$

\]

Conditions (9.1) and the fact that the moments across $C_{0}$ and $C_{1}$ are alike lead us to the following expressions:

$$
\begin{equation*}
f=\frac{M \rho_{\rho} \rho_{1}}{t_{1} \sin \theta \cos \theta}\left\{\frac{Q_{0}}{I_{0}}-\frac{Q_{1}}{I_{1}}\right\} ; \quad g=\frac{M}{l_{1} \sin \theta \cos \theta}\left\{\frac{\rho_{0} Q_{0}}{I_{0}}-\frac{\rho_{1} Q_{1}}{I_{1}}\right\} \tag{9.2}
\end{equation*}
$$

where the $I$ 's are the moments of inertia about the neutral axis of the full respective sections and $Q_{t}=\int_{0}^{\varphi} x_{t} \rho_{d} d \varphi$ the variable first moment (about the same axis) of the section included between 0 and $\varphi$. The expressions for the stresses themselves read:

$$
\begin{align*}
N_{t t}= & \frac{M \rho_{0} \rho_{1}}{t_{1} \rho_{t}^{2} \cos \theta}\left\{\frac{Q_{0}}{I_{0}}-\frac{Q_{1}}{I_{1}}\right\}  \tag{9.3}\\
N_{t}= & -\frac{M\left(t_{1}-t\right) t \sin \theta}{t_{1} \cos \theta} \cdot \frac{\rho^{\prime}}{\rho_{t}^{3}}\left\{\frac{Q_{0}}{I_{0}}-\frac{Q_{1}}{I_{1}}\right\} \\
& +\frac{M\left(t_{1}-t\right) x_{0}}{t_{1} I_{0} \cos \theta} \cdot \frac{\rho_{0}^{2}}{\rho_{t}^{2}}+\frac{M t}{t_{1} \cos \theta} \cdot \frac{x_{1} \rho_{1}^{2}}{I_{1} \rho_{t}^{2}} . \tag{9.4}
\end{align*}
$$

The corresponding expressions for strain energy and displacements are very cumbersome and can hardly be useful in practical applications.

## NON-HOMOGENEOUS STRESSES IN VISCO-ELASTIC MEDIA*

BY<br>T. ALFREY<br>Monsanto Chemical Company

1. Introduction. The purpose of this paper is the extension of the theory of elasticity to include visco-elastic media. The materials considered in this paper are istropic and incompressible, and are characterized by linear relations betwcen the components of stress, strain, and their derivatives with respect to time. As in the classical theory of elasticity, only small strains will be considered. Body forces, in particular inertia forces, will be neglected.

In the following, $\sigma_{i k}(i, k=1,2,3)$ and $\epsilon_{i k}$ denote the components of the tensors of stress and strain with respect to a system of rectangular axes $x_{i} . \sigma_{11}, \sigma_{22}, \sigma_{33}$ are the normal stresses, $\sigma_{12}=\sigma_{21}, \sigma_{23}=\sigma_{32}, \sigma_{31}=\sigma_{13}$ the shearing stresses. Similarly, $\epsilon_{11}, \epsilon_{22}, \epsilon_{33}$ are the normal strains, $\epsilon_{12}=\epsilon_{21}, \epsilon_{23}=\epsilon_{32}, \epsilon_{31}=\epsilon_{13}$ the shearing strains. If $u_{i}$ are the components of the displacement vector,

$$
\begin{equation*}
\epsilon_{i k}=\frac{1}{2}\left(u_{i, k}+u_{k, i}\right) \tag{1}
\end{equation*}
$$

where the index after a comma denotes differentiation with respect to the corresponding coordinate $x$, i.e., $u_{i, k}=\partial u_{i} / \partial x_{k} ; u_{k, i}=\partial u_{k} / \partial x_{i}$.

Irrespective of the mechanical properties of the material, the stresses must satisfy the equilibrium conditions

$$
\begin{equation*}
\sigma_{i k, k}=0 \tag{2}
\end{equation*}
$$

where the summation convention of tensor calculus has been used. ${ }^{1}$ Similarly, the strain components must satisfy the conditions of compatibility,

$$
\begin{equation*}
\epsilon_{i k, l m}+\epsilon_{l m, i k}=\epsilon_{i l, k m}+\epsilon_{k m, i l} \tag{3}
\end{equation*}
$$

where $\epsilon_{i k, t m}=\partial^{2} \epsilon_{i k} / \partial x_{l} \partial x_{m}$, etc. While there are obviously three equations of equilibrium (corresponding to the three values which the subscript $i$ in (2) can assume), it may at first glance appear that there are $3^{4}$ equations of compatibility. On account of the high degree of symmetry in (3), the number of equations of compatibility reduces, however, to six; three equations of the type obtained from (3) when e.g., $i=k=1$ and $l=m=2$, and three equations of the type obtained from (3) when e.g., $i=k=1, l=2, m=3$.

By themselves, Eqs. (2) and (3) are not sufficient to determine the states of stress and strain in a body subject to given surface stresses. A further necessary set of equations are those relating the stress components to the strain components in the general

[^11]case of combined stresses. It is through these stress-strain relations that the properties of the material enter the problem.

In the case of an incompressible material, $\epsilon_{i i}=\epsilon_{11}+\epsilon_{22}+\epsilon_{33}=0$. The stress-strain relations are most easily discussed when the following decomposition of the stress tensor is introduced. Define the mean normal stress as

$$
\begin{equation*}
\sigma=\frac{1}{3} \sigma_{i i}=\frac{1}{3}\left(\sigma_{11}+\sigma_{22}+\sigma_{33}\right), \tag{4}
\end{equation*}
$$

and the deviatoric part of the stress tensor as

$$
\begin{equation*}
s_{i k}=\sigma_{i k}-\sigma \delta_{i k}, \tag{5}
\end{equation*}
$$

where

$$
\delta_{i k}=\left\{\begin{array}{lll}
0 & \text { if } \quad i \neq k, \\
1 & \text { if } & i=k .
\end{array}\right.
$$

The stress-strain relations of an isotropic, incompressible elastic material can then be written in the form

$$
\begin{equation*}
s_{i k}=2 G_{\epsilon_{i k},} \tag{6}
\end{equation*}
$$

where $G$ denotes the modulus of rigidity.
In view of (5), the equilibrium condition (2) yields

$$
\begin{equation*}
s_{i k, k}+\sigma_{, k} \delta_{i k}=s_{i k, k}+\sigma_{i i}=0 . \tag{7}
\end{equation*}
$$

But, according to (6) and (1),

$$
\begin{equation*}
s_{i k, k}=2 G \epsilon_{i k, k}=G\left(u_{i, k k}+u_{k, i k}\right)=G u_{i, k k}, \tag{8}
\end{equation*}
$$

since for an incompressible material $u_{k, k}=0$ and, consequently, $u_{k, i k}=u_{k, k i}=0$. Comparing (7) and (8), we find

Hence

$$
\begin{gather*}
\sigma, i=-G u_{i, k k}  \tag{9}\\
\sigma, i i  \tag{10}\\
\sigma u_{i, k k i}=-
\end{gather*}
$$

on account of the incompressibility of the material.
According to (5),

$$
\sigma_{i k, l l}=s_{i k, u}+\sigma_{. l u \delta_{i k}}=s_{i k, l u},
$$

on account of (10). Making use of (6), (1) and (9), we transform this in the following manner:

Thus

$$
\sigma_{i k, l l}=2 G \epsilon_{i k, l l}=G\left(u_{i, k l l}+u_{k, i l l}\right)=-2 \sigma_{, i k}
$$

$$
\begin{equation*}
\sigma_{i k, l l}+2 \sigma_{, i k}=0 . \tag{11}
\end{equation*}
$$

In the case of an incompressible elastic body in equilibrium the boundary conditions may be given in the form of three functions $f_{i}(x)$ which define the components of the forces (per unit area) applied to the surface of the body. The forces $f_{i}$ must, of course, be in equilibrium, i.e., the surface integral of $f_{i}(x)$ must vanish for $i=1,2,3$. If $n_{k}$ denotes the unit vector directed along the exterior normal of the surface of the body, the stress components at the surface must then satisfy the conditions

$$
\begin{equation*}
\sigma_{i k} n_{k}=f_{i} \tag{12}
\end{equation*}
$$

The values of the surface stresses, in conjunction with Eqs. (2) and (11), define the stress distribution in the body and, consequently, also the strain distribution and, to within a rigid body displacement of the entire body, the displacement components.

On the other hand, the displacement components may be given on the surface of the body. These given surface displacements must, of course, be compatible with the assumed incompressibility of the material, i.e., the surface integral of the normal displacement component $u_{i} n_{i}$ must vanish. Elimination of $\sigma$ from (9) furnishes $u_{i, k k i}-u_{l, k k i}=0$, or, after a change of subscripts,

$$
\begin{equation*}
u_{i, k l l}-u_{k, i u l}=0 \tag{12a}
\end{equation*}
$$

Eqs. (12) in conjunction with the condition of incompressibility, $u_{l, l}=0$, and the given surface values determine the displacement components.
2. Stress-strain relations of visco-elastic materials. Equations similar to (11) and (12a) may be derived for visco-elastic materials characterized by linear relations between the components of stress, strain and their derivatives with respect to time.

In the case of an incompressible material of the type considered by Voigt ${ }^{2}$ we have the stress-strain relations

$$
\begin{equation*}
s_{i k}=2 G \epsilon_{i k}+2 \mu \dot{\epsilon}_{i k}, \tag{13}
\end{equation*}
$$

where $\mu$ is the coefficient of viscosity.
In the case of an incompressible material of the Maxwell type, we have

$$
\begin{equation*}
\dot{\epsilon}_{i k}=\frac{1}{2 G} s_{i k}+\frac{1}{2 G \tau} s_{i k}, \tag{14}
\end{equation*}
$$

where dots denote differentiation with respect to time, and $\tau$ is the relaxation time. ${ }^{3}$
Generalizing, we may consider incompressible materials characterized by stressstrain relations of the form

$$
\begin{equation*}
\left(\frac{\partial^{m}}{\partial t^{m}}+a_{m-1} \frac{\partial^{m-1}}{\partial t^{m-1}}+\cdots+a_{0}\right) s_{i k}=\left(b_{n} \frac{\partial^{n}}{\partial t^{n}}+b_{n-1} \frac{\partial^{n-1}}{\partial t^{n-1}}+\cdots+b_{0}\right) \epsilon_{i k} \tag{15}
\end{equation*}
$$

where $a_{m-1}, \cdots, a_{0}, b_{n}, b_{n-1}, \cdots, b_{0}$ are constants characteristic of the material.
For such materials two types of boundary value problems may be considered. In the first case the surface forces $f_{i}(x, t)$ are given as functions of the position $x$ and the time $t$; for $t=0$ these surface forces and their $m-1$ first derivatives are supposed to vanish as well as all stress components and their derivatives up to the order $m-1$. Moreover, at any given time the forces $f_{i}$ must be in equilibrium. If, for $t \geqq 0$, the forces are analytic functions of time, this implies that the surface integral of any derivative $\partial^{p} f_{i} / \partial t^{p}$ must vanish for, say, $t=0$. The first boundary value problem calls for the determination of the stress distribution $\sigma_{i k}(x, t)$ fulfilling these boundary conditions and initial conditions.

In the second case the surface displacements $u_{i}(x, t)$ are given as functions of the position $x$ and the time $t$; for $t=0$ these surface displacements and their $n-1$ first derivatives are supposed to vanish, as well as the displacements in the interior of the

[^12]body and their derivatives up to the order $n-1$. Moreover, on account of the assumed incompressibility of the material, the surface integral of the normal displacement component $u_{i} n_{i}$ must vanish for any time. If, for $t \geqq 0$, the displacements are analytic functions of time, this means that the surface integral of all expressions of the form ( $\partial^{p} u_{i} / \partial t^{p}$ ) $n_{i}$ must vanish for, say, $t=0$. The second boundary value problem calls for the determination of the displacements $u_{i}(x, t)$ in the interior of the body, fulfiling these boundary conditions and initial conditions.

Let us rewrite the stress-strain relation (15) in the form

$$
\begin{equation*}
P_{s_{i k}}=2 Q \epsilon_{i k} \tag{16}
\end{equation*}
$$

where $P$ and $Q$ denote the linear differential operators

$$
\begin{align*}
& P=\frac{\partial^{m}}{\partial t^{m}}+a_{m-1} \frac{\partial^{m-1}}{\partial t^{m-1}}+\cdots+a_{1} \frac{\partial}{\partial t}+a_{0} \\
& Q=b_{n} \frac{\partial^{n}}{\partial t^{n}}+b_{n-1} \frac{\partial^{n-1}}{\partial t^{n-1}}+\cdots+b_{1} \frac{\partial}{\partial t}+b_{0} \tag{16a}
\end{align*}
$$

Starting from the stress-strain relations (16) and repeating the various steps which led to the Eqs. (11) and (12a), we obtain

$$
\begin{align*}
& P\left(\sigma_{i k, l l}+2 \sigma_{, i k}\right)=0  \tag{17}\\
& Q\left(u_{i, k l l}-u_{k, i l}\right)=0 \tag{18}
\end{align*}
$$

and
as the equations governing the solution of the first and second boundary value problem, respectively.

For example, consider the first boundary value problem for an incompressible material of the Voigt type. Comparing Eqs. (13), (16) and (16a), we see that for this material

$$
P=1, \quad G=\mu \frac{\partial}{\partial t}+G
$$

Eq. (17) consequently takes the same form as for an incompressible clastic material (see Eq. (11)). This means that, in the case of the first boundary value problem, the stress distribution in an incompressible.material of the Voigt type is identical with that in an incompressible elastic material under the same instantaneous surface forces. This stress distribution does not depend on the past stressing history, although, of course, the displacements do.

This result is readily extended to the case of an incompressible visco-elastic material characterized by a stress-strain relation (16). Consider, for instance, the first boundary value problem for a given set of surface forces $f_{i}(x, t)$ which, in addition to fulfilling the conditions stipulated above, are supposed to be analytic. functions of time for $t \geqq 0$. If $\bar{\sigma}_{i k}(x, t)$ denotes the static ${ }^{4}$ stress distribution in an incompressible elastic body of the same shape which is subjected to the surface forces $f_{i}(x, t)$, the required stress distribution in the visco-elastic body is given by

$$
\sigma_{i k}(x, t)=\bar{\sigma}_{i k}(x, t)
$$

[^13]Indeed, by definition, the stresses $\bar{\sigma}_{i k}$ satisfy the conditions (2), (11) and (12) for any value of $t$. Since, like the surface forces, these stresses are analytic functions of time, this means that they also satisfy the condition (17). The result formulated above for the first boundary value problem of an incompressible material of the Voigt type applies, therefore, to any wisco-elastic material characterized by stress-strain relations of the form (16).

A similar result is obtained in the case of the second boundary value problem for an incompressible visco-elastic material obeying stress-strain relations of the form (16), if the prescribed surface discplacements $u_{i}(x, t)$ fulfill the conditions formulated above and, in addition, are analytic functions of time for $t \geqq 0$. The displacements $u_{i}(x, t)$ then equal the static displacements $\bar{u}_{i}(x, t)$ of an incompressible elastic body of the same shape, subjected to the given surface displacements $u_{i}(x, t)$.
3. Determination of the displacements in the first boundary value problem of visco-elasticity. Let us first consider the particularly simple case, where the given surface forces can be factored into the form:

$$
\begin{equation*}
f_{i}=f_{i}(x) g(l) \tag{19}
\end{equation*}
$$

According to what has been said above, the stress distribution which these surface forces produce in the visco-elastic body has then the form

$$
\begin{equation*}
\sigma_{i k}(x, t)=\bar{\sigma}_{i k}(x) g(\ell) \tag{20}
\end{equation*}
$$

where $\bar{\sigma}_{i k}(x)$ denotes the stresses which the surface forces $f_{i}(x)$ produce in an incompressible elastic body of the same shape. Introducing the stresses (20) into the stressstrain relation (16), we see that the strains in the visco-elastic body can be written in the form

$$
\begin{equation*}
\epsilon_{i k}(x, t)=\bar{\epsilon}_{i k}(x) h(t) \tag{21}
\end{equation*}
$$

where $h(t)$ satisfies the differential equation

$$
\begin{equation*}
Q h=P g \tag{22}
\end{equation*}
$$

while $h$ and its derivatives up to the order $n-1$ vanish for $t=0$. As regards the quantities $\bar{\epsilon}_{i k}(x)$, they are related to the stresses $\bar{\sigma}_{i k}(x)$ by

$$
\begin{equation*}
\bar{s}_{i k}=2 \bar{\epsilon}_{i k}, \tag{23}
\end{equation*}
$$

where $\bar{s}_{i k}$ denotes the deviatoric part of the stress tensor $\bar{\sigma}_{i k}$. In other terms, the quantities $\bar{\epsilon}_{i k}$ are the strains in an incompressible elastic body of the same shape and of unit modulus of rigidity, which is subjected to the surface forces $f_{i}(x)$. We shall call these strains the equivalent elastic strains. In order to obtain the function $h_{h}(t)$, all we have to do is to consider the response of the visco-elastic material under consideration to a simple shearing stress $s$ varying according to $s=2 g(t)$. The shearing strain produced by this stress equals $h(t)$. The strains produced in the visco-elastic body by the surface forces $f_{i}(x) g(t)$ are then obtained by multiplying the equivalent elastic strains by the response function $h(t)$.

Since the differential equations for stresses and strains are linear, solutions of this type may be superimposed on each other. Let us, now, assume that our result holds good even if, contrary to the assumption made above, the surface forces are not analytical functions of time for $t \geqq 0$. In particular consider the case when $f_{i}=f_{i}(x) g(\xi, t)$, where $g(\xi, t)$ is Heaviside's unit step function defined by

$$
g(\xi, t)=\left\{\begin{array}{lll}
0, & \text { if } & t<\xi \\
1, & \text { if } & t \geqq \xi
\end{array}\right.
$$

Let $h(\xi, t)$ denote the response of the visco-elastic material under consideration to a simple shearing stress $s=2 g(\xi, t)$. Since the surface forces $f_{i}(x, t)$ can be represented in the form

$$
\begin{equation*}
f_{i}(x, t)=\int_{0}^{\infty} \dot{f_{i}}(x, \xi) g(\xi, t) d \xi \tag{24}
\end{equation*}
$$

the following formal integral representation of the strains produced by these surface forces in the visco-elastic body suggests itself:

$$
\begin{equation*}
\epsilon_{i k}(x, t)=\int_{0}^{\infty} \bar{\epsilon}_{i k}(x, \xi) h(\xi, t) d \xi, \tag{25}
\end{equation*}
$$

where $\bar{\epsilon}_{i k}(x, \xi) d \xi$ are the equivalent elastic strains corresponding to the surface forces $\dot{f}_{i}(x, \xi) d \xi$. It can be shown that (25) indeed furnishes the strains of the visco-elastic body whenever the surface forces can be represented in the form (24). Moreover, to within a rigid body displacement the displacements of the visco-elastic body are given by

$$
\begin{equation*}
u_{i}(x, t)=\int_{0}^{\infty} \bar{u}_{i}(x, \xi) h(\xi, t) d \xi, \tag{26}
\end{equation*}
$$

where $\bar{u}_{i}(x, \xi) d \xi$ are equivalent elastic displacements produced in an incompressible elastic body of the same shape and of unit modulus of rigidity, by the surface forces $\dot{f}_{i}(x, \xi) d \xi$.

Let us consider the following example: $A$ thin cantilever beam of length $L$ and cross sectional moment of inertia $I$ is clamped rigidly at the end $x=0$. The beam consists of an incompressible visco-elastic material of the Voigt type (stress-strain relations (13)), and is subjected to the transverse load

$$
f(x, t)=c\left(1-\frac{x}{L}\right) t^{2}
$$

per unit of length, $c$ being a constant. At first sight, it may seem that the problem of determining the bending moments and transverse displacements of the beam is outside the scope of our theory, since at the clamped end we have prescribed deformations rather than prescribed forces. However, the system being statically determinate, the transverse reaction and the bending moment at the clamped end are completely determined by the given loads. Consequently, the problem may be considered as a first boundary value problem, if we make the usual assumption that the distribution of stresses over the end section is irrelevant as long as it leads to the resultant and the resultant moment required by the equilibrium of the beam. The displacements of an incompressible elastic cantilever beam of unit modulus of rigidity, loaded by $f(x)=c(1-x / L)$, are

$$
\bar{u}(x)=\frac{c x^{2}}{360 I L}\left(10 L^{3}-10 L^{2} x+5 L x^{2}-x^{3}\right)
$$

where account has already been taken of the fact that the Young's modulus equals $3 G$ for an incompressible elastic material.

Now, in accordance with (13), the response $h(t)$ of Voigt's material to a simple shearing stress $s=2 t^{2}$ is found from

$$
2 t^{2}=2 G h+2 \mu \dot{h}, \quad h(0)=0 .
$$

One obtains

$$
h(t)=\frac{t^{2}}{G}-2 \frac{\mu}{G^{2}} t+2 \frac{\mu^{2}}{G^{3}}\left[1-e^{-G t / \mu}\right] .
$$

The deflection of the visco-elastic beam is, therefore, given by

$$
u(x, t)=\frac{c x^{2}}{360 G I L}\left[10 L^{3}-10 L^{2} x+5 L x^{2}-x^{3}\right] \cdot\left[t^{2}-2 \frac{\mu}{G} t+2 \frac{\mu^{2}}{G^{2}}\left(1-e^{-\mu / / \sigma}\right)\right]
$$

The statically determinate bending moments are completely determined by the given loads.
4. Determination of the stresses in the second boundary value problem of viscoelasticity. A similar procedure leads to the determination of the stresses in the second boundary value problem of visco-elasticity. Consider first the case when the given surface displacements can be factored into the form $u_{i}=u_{i}(x) g(t)$, and denote by $\vec{\sigma}_{i k}(x)$ the equivalent elastic stresses, i.e., the static stresses set up in an incompressible elastic body by the surface displacements $u_{i}(x)$. Furthermore, determine the response function $h(t)$, i.e., half the shearing stress produced in the visco-elastic material under consideration by a simple shearing strain $g(t)$. The required stress distribution in the visco-elastic body is then given by $\sigma_{i k}(x, t)=\bar{\sigma}_{i}(x) h(t)$.

In the general case, the stresses in the second boundary value problem may be represented in the form

$$
\begin{equation*}
\sigma_{i k}(x, t)=\int_{0}^{\infty} \bar{\sigma}_{i k}(x, \xi) h(\xi, t) d \xi \tag{27}
\end{equation*}
$$

where $\bar{\sigma}_{k i}(x, \xi) d \xi$ are the equivalent elastic stresses corresponding to the surface displacements $\dot{u}_{i}(x, \xi) d \xi$, and $2 h(\xi, t)$ is the response of the visco-elastic material to a simple shearing strain

$$
g(\xi, t)=\left\{\begin{array}{lll}
0, & \text { if } & t<\xi \\
1, & \text { if } & t \geqq \xi .
\end{array}\right.
$$

5. Summary. The solution of the first and second boundary value problems of visco-elasticity is reduced to the solution of equivalent boundary value problems of elasticity, and the determination of the response of the visco-elastic material under consideration to a simple shearing stress or a simple shearing strain. It remains to be seen in how far the technique developed here can be applied to the solution of the third (mixed) boundary value problem where the surface forces are prescribed on part of the surface of the body, and the surface displacement on the rest of this surface.

# THE INTRINSIC THEORY OF THIN SHELLS AND PLATES PART III.-APPLICATION TO THIN SHELLS* 

BY<br>WEI-ZANG CHIEN<br>Department of Applied Mathematics, University of Toronto

10. Definitions and method of approximation. The method of approximation used below is essentially the same as in the case of thin plate theory. We define $\epsilon$ to be the average reduced thickness of a shell. (We may recall that the reduced thickness of a shell is the ratio of its thickness to a selected lateral dimension of its middle surface). Then for a thin shell, $\epsilon$ is a small quantity. This definition of a thin shell is in agreement with that of a thin plate given in Part II.

A thin shell is said to have finite curvature when the smallest radius of curvature of its middle surface and the selected lateral dimension are of the same order of magnitude. Furthermore, a thin shell is said to have small curvature of order $b$ when the ratio of the selected lateral dimension to the smallest radius of curvature of its middle surface is of the same order of magnitude as $\epsilon^{b}$, where $b \geqq 1$. Thus a thin plate may be regarded as a thin shell of small curvature of order $\infty$.

We consider a family of $\infty^{1}$ shells of the same material with diminishing reduced thickness, each in a state of stress under (i) external forces applied at the edge, (ii) surface forces and (iii) uniform body forces. We assign to each shell a value of a parameter $\epsilon\left(0<\epsilon<\epsilon_{1}\right)$ denoting the average reduced thickness, so that the thickness is

$$
\begin{equation*}
2 h=2 \epsilon \bar{h}\left(x^{1}, x^{2}\right) \tag{10.1}
\end{equation*}
$$

The quantity $\epsilon_{1}$ is sùpposed to be small, but the basic idea of the method is that we seek solutions valid for all $\epsilon$ in the range $0<\epsilon<\epsilon_{1}$. In this theory, $\epsilon$ is the only small quantity. All quantities occurring (except Poisson's ratio $\sigma$ ) are functions of $\epsilon$. No quantity is small unless it tends to zero with $\epsilon$.

For the greatest generality suppose all quantities to be power series in $\epsilon$. Thus, supposing the middle surface itself to depend on $\epsilon$, we have

$$
\begin{equation*}
a_{\alpha \beta}=\sum_{s=0}^{\infty} a_{(s) \alpha \beta \epsilon^{s},} \quad b_{\alpha \beta}=\sum_{t=b}^{\infty} b_{(s) \alpha \beta \epsilon^{t}}, \tag{10.2a,b}
\end{equation*}
$$

where $b$ is either zero or a positive integer. $a_{(s) \alpha \beta}$ and $b_{(s) \alpha \beta}$ are functions of $\mathrm{x}^{\alpha}$, independent of $\epsilon$ For $b=0$, we are dealing with thin shells of finite curvature, while for $b \geqq 1$ we are dealing with thin shells of small curvature of order $b$.

Furthermore, we shall represent $Q^{i}, P^{i}, X_{[0]}^{1}, \tilde{T}^{\alpha \beta}, \tilde{T}^{\alpha 0}, \tilde{L}^{\alpha \beta}, p_{\alpha \beta}, q_{\alpha \beta}$ by power series as in Part II;

$$
\begin{equation*}
Q^{0}=\sum_{s=k_{0}}^{\infty} Q_{(0)}^{0} \epsilon^{\prime}, \quad Q^{\alpha}=\sum_{t=k}^{\infty} Q_{(\nu)}^{\alpha} \epsilon^{\epsilon}, \tag{10.3a}
\end{equation*}
$$

[^14]\[

$$
\begin{align*}
& P^{0}=\sum_{s=n_{0}}^{\infty} P_{(s)}^{0} \epsilon^{s}, \quad P^{\alpha}=\sum_{s=k}^{\infty} P_{(s)}^{\alpha} \epsilon^{s},  \tag{10.3b}\\
& X_{[0]}^{0}=\sum_{s=j_{0}}^{\infty} X_{(s)[0]}^{0} \epsilon^{n}, \quad X_{[0]}^{\alpha}=\sum_{s=j}^{\infty} X_{(s)[0]}^{\alpha} \epsilon^{s} \text {, }  \tag{10.3c}\\
& \widetilde{T}^{\alpha \beta}=\sum_{s=t}^{\infty} \widetilde{T}_{(s)}^{\alpha \beta} \epsilon^{\varepsilon}, \quad \tilde{L}^{\alpha \beta}=\sum_{s=u}^{\infty} \tilde{L}_{(s)}^{\alpha \beta} \epsilon^{\varepsilon}, \quad \bar{T}^{\alpha 0}=\sum_{s=1}^{\infty} \tilde{T}_{(s)}^{\alpha 0} \epsilon^{s}, \quad(10,4 \mathrm{a}, \mathrm{~b}, \mathrm{c}) \\
& p_{\alpha \beta}=\sum_{s=p}^{\infty} p_{(s) \alpha \beta} \epsilon^{n}, \quad q_{\alpha \beta}=\sum_{s=q}^{\infty} q_{(s) \alpha,} \epsilon^{n} . \tag{10.5a,b}
\end{align*}
$$
\]

Here $k, k_{0}, n, n_{0}, j, j_{0}, t, u, l, p$ are integers greater than zero, and $q$ is zero or a positive integer. The case $q=0$ corresponds to problems of finite deflection. The quantities $Q_{(s)}^{0}, Q_{(s)}^{\alpha}, P_{(s)}^{0}$ etc. are functions of $x^{\alpha}$, independent of $\epsilon$.


Fig. 4. Classification of problems of thin shells with finite curvature ( $b=0$ ).
$p=$ order of extension of middle surface.
$q=$ order of change of curvature of middle surface.
$b=$ order of initial curvature of middle surface.
Then the problems of thin shells can be classified by assigning integral values to $p, q$ and $b$. With $p, q, b$ given, the values of $k_{0}, k, n_{0}, n_{,} j_{0}, j$ in (10.3) are fixed by the condition that $X_{\left(y_{0}\right)[0]}^{0}, X_{(n)[0]}^{\alpha}, P_{\left(n_{0}\right)}^{0}, P_{(n)}^{\alpha}, Q_{\left(k_{0}\right)}^{0}, Q_{(k)}^{\alpha}$ should contribute to the principal parts of (6.34), (6.35), without dominating these equations to the exclusion of $p_{\alpha \beta}$ and $q_{\alpha \beta}$. The values of $t, u, l$ of $T^{\alpha \beta}, L^{\alpha \beta}, T^{\alpha 0}$ are immediately fixed through the expressions (6.29), (6.30), (6.31). With $p, q, b, k, k_{0}, j, j_{0}, n, n_{0}$ fixed, the equations of
equilibrium and compatibility in the first approximation are immediately obtained by substituting (10.1)-(10.5) into (6.34), (6.35), (6.43), (6.44), and picking out the principal terms in $\epsilon$ from the resulting equations. This gives us six differential equations in six unknowns $p_{(p) \alpha \beta}$ and $q_{(q) \alpha \beta}$. For the various combinations of values of $p, q, b$, the forms of these differential equations fall into several types. The classification of these types will be given below.
11. Classification of all thin shell problems. The classification of the problems of thin shells with finite curvature ( $b=0$ ). The following is a complete classification of the problems of thin shells with finite curvature $(b=0)$ based upon assigned values of $p, q$. The classification is shown graphically in Fig. 4.

It is found that the ( $p, q$ )-points in the diagram ( $q \geqq 0, p \geqq 1$ ) are broken up into eight groups by the division lines $A B, O C$ and the $p$-axis. For $q=0$, the principal part of (6.34) or (6.35) takes three different forms depending on the position of the point on the $p$-axis relative to the point $A$, while the principal parts of (6.43) and (6.44) are the same for all values of $p$. For $q \geqq 1$, the principal part of (6.34) or (6.35) takes three different forms depending on the position of the $(p, q)$-point relative to the line $A B$, and that of ( 6.43 ) or (6.44) takes three different forms depending on the position of the ( $p, q$ )-point relative to the line $O C$; each of these forms is different from that for $q=0$. It follows that the $(p, q)$-points are divided into eight groups and so the complete classification of all problems of thin shells of finite curvature involves consideration of eight types (Types $S F 1-S F 8$ ). (The letter ' $S$ ' denotes shell, while ' $F$ ' denotes finite curvature.)

In order to save space, we shall not discuss these types in detail. The results for these types are summarized together with those for thin shells with small curvature in the tables in the Appendices. The principal parts of the equations of equilibrium and compatibility are shown in Table III, and orders of magnitude of the external forces and the principal parts of the macroscopic tensors in Table IV.

The classification of the problems of thin shells with small curvature ( $b \geqq 1$ ). The following is a complete classification of the problems of thin shells with small curvature based upon the assigned values of $b, p, q$. The classification is shown graphically in Fig. 5 (for $b=4$ ), Fig. 6 (for $b=2$ ), Fig. 7 (for $b=1$ ). The case $b=4$ is typical of the cases $3 \leqq b<\infty$.

We shall now explain Fig. 5. We see that the ( $p, q$ ) -points are broken up into 27 groups by the division lines and the $p$-axis. Of these division lines, the line $B^{\prime} B B^{\prime \prime}$ (i.e., $q=b=4$ ) is the most important. It divides the ( $p, q$ )-plane into three main regions. For any point on $B^{\prime} B B^{\prime \prime}$, the curvature in the unstrained state and the change of curvature during the strain are of the same order of magnitude ( $q=b=4$ ). For any point on the left of $B^{\prime} B B^{\prime \prime}$, the magnitude of the curvature in the unstrained state is smaller than the magnitude of the change of curvature ( $q<b=4$ ), while for any point on the right of $B^{\prime} B^{\prime \prime}$, the magnitude of the curvature in the unstrained state is greater than the magnitude of change of curvature ( $q>b=4$ ).

For $q=0$ (i.e., on the $p$-axis) in Fig. 5, the principal parts of (6.34), (6.35) take three different forms depending on the position of the points on the $p$-axis relative to the point $A$, while the principal parts of (6.44), (6.43) are the same for all points on the $p$-axis. For $1 \leqq q<b=4$ (i.e., in the region between the $p$-axis and $B^{\prime} B B^{\prime \prime}$ ), the principal parts of (6.34) or (6.35) or (6.44) take three different forms depending on the position of the ( $p, q$ )-point relative to the division line $A C$ or $A B$ or OD respectively,
while the principal part of ( 6.43 ) is the same for all the $(p, q)$-points in this region. It follows that the $(p, q)$-points in the region on the left-hand side of $B^{\prime} B^{\prime \prime}$ are divided into 11 groups (Types $S S 1-S S 11$ ). (The letters ' $S S$ ' denote the shell with small curvature.)


Fig. 5. Classification of problems of thin shells with small curvature ( $b=4$ ).
$p=$ order of extension of middle surface.
$q=$ order of change of curvature of middle surface.
$b=$ order of initial curvature of middle surface.
For $q=b=4$ (i.e., on $B^{\prime} B^{\prime \prime}$ ), the principal parts of (6.34) or (6.35) or (6.44) take three different forms depending on the position of the $(p, q)$-point relative to $C$ or $B$ or $D$ respectively, while the principal part of (6.43) is the same for all points on this line. Furthermore, for $q>b=4$ (i.c., the region to the right of $B^{\prime} B^{\prime \prime}$ ), the principal parts of (6.34) or (6.35) or (6.43) or (6.44) take three different forms depending on
the position of the ( $p, q$ )-point relative to the division line $C G$ or $B E$ or $B^{\prime} H$ or $D F$ respectively. It follows that the $(p, q)$-points on the right-hand side of $B^{\prime} B^{\prime \prime}$ are divided into 9 groups (Types $S S 19-S S 26, S S 10$ ). It should be noted that, as far as the principal parts of $(6.34),(6.35),(6.43),(6.44)$ are concerned, the ( $p, q$ )-points lying between the lines $I D F$ and $I C G$ are regarded as one group (Type $S S 10$ ). Therefore,


Fig. 6. Classification of problems of thin shells with small curvature $(b=2)$. $p=$ order of extension of middle surface.
$q=$ order of change of curvature of middle surface.
$b=$ order of initial curvature of middle surface.
together with the groups on the left-hand side of $B^{\prime} B^{\prime \prime}$, we have in all 25 groups of ( $p, q$ )-points in Fig. 5. And consequently the complete classification of all problems of thin shells with small curvature of order $b=4$ involves consideration of 25 types (Types SS1-SS11, SS13-SS26).

The general appearance of the classification diagrams for any $b$ satisfying $3 \leqq b<\infty$ is the same as for $b=4$. An increase of $b$ makes the line $B^{\prime} B^{\prime \prime}$ shift to the right, while a decrease of $b$ makes it shift to the left. On examining the various groups of $(p, q)$ points in these diagrams (for any integral value of $b$ in the range of $3 \leqq b<\infty$ ), it is found that the corresponding groups occupying the same relative positions with respect to the division lines possess the same set of equations of equilibrium and compatibility in the first approximation, and so belong to the same type of problem.

Therefore the complete classification of all problems of thin shells with small curvature of order $3 \leqq b<\infty$ involves consideration of 25 types only.

For $b=2$ (Fig. 6), the situation is almost the same as in Fig. 5, but with the groups $S S 9, S S 11$ missing. The other groups are the same as those shown in Fig. 5 for $b=4$, and so no extra types arise.

For $b=1$ (Fig. 7), the situation is only slightly different from those in Figs. 5 and 6. Instead of the two separate division lines $I D F$ and $I C G$ for Eqs. (6.34) and (6.43) in Figs. 5 and 6, we have one common division line $D^{\prime} F^{\prime}$ for both equations. Furthermore, the triangle formed by the division lines $I D, D C, I C$ in Figs. 5, 6 collapses into


Fig. 7. Classification of problems of thin shells with small curvature ( $b=1$ ).
$p=$ order of extension of middle surface.
$q=$ order of change of curvature of middle surface.
$b=$ order of initial curvature of middle surface.
an isolated point $D^{\prime}$ in Fig. 7. Thus instead of 25 groups in Fig. 5, or 23 groups in Fig. 6, we have only 15 different groups. Among these groups, 13 belong to the types already mentioned in the case $3 \leqq b<\infty$ (Types $S S 1-S S 3, S S 13, S S 16-S S 21, S S 24-$ $S S 26$ ); the other two are Types $S S 12, S S 27$.

On comparing the classification of $(p, q)$-points on the left-hand side of $B^{\prime} B^{\prime \prime}$ in Figs. 5, 6, 7 with that in the corresponding region of Fig. 3, it is found that they are identical with each other. In fact, for these types, the equations of equilibrium and compatibility in the first approximation are identical with those stated in Table I (Part II) for the corresponding types of thin plate problems. Therefore, we have the
following important conclusion: A problem of a thin shell with small curvature of order $b$ is effectively equivalent to a problem of a thin plate in the first approximation, if $q<b$, i.e., if the change of curvature is greater than the curvature of the shell in the unstrained state.

It should be noted that for $b=\infty$, Fig. 5 becomes exactly Fig. 3 for the thin plate problem.

The results are summed up as follows:
(i) The complete classification of the problems of thin shells with small curvature of order $b \geq 1$ involves the consideration of 27 types (Types $S S 1-S S 27$ ).
(ii) Among these 27 types, 11 are equivalent to problems of thin plates; the characteristic of these types is $q<b$.
(iii) When $b=1$, these are two types (Types $S S 12, S S 27$ ) of particular interest.

We shall not discuss all these types in detail. The discussion of Type $S S 12$ will serve as an example. The results for all types are summarized in tables in the Appendices. The principal parts of the equations of equilibrium and compatibility are shown in Table III, and the orders of magnitude of the external forces and the principal parts of the macroscopic tensors in Table IV.

Before entering on the detailed discussion of Type SS12, a useful result for small curvature ( $b \geqq 1$ ) will be mentioned. On substituting $a_{a \beta}, b_{a \beta}$ from ( $10.2 \mathrm{a}, \mathrm{b}$ ) into ( 6.39 b ), it is found that the lowest power of $\epsilon$ in the resulting expression is $\epsilon^{0}$. The corresponding coefficient gives rise to the equation

$$
\begin{align*}
R_{(0)_{\rho \alpha \beta \gamma}}= & \frac{1}{2}\left(a_{(0) \rho \gamma, \alpha \beta}+a_{(0) \alpha \beta, \rho \gamma}-a_{(0) \rho \beta, \alpha \gamma}-a_{(0) \alpha \gamma, \beta \rho}\right) \\
& +a_{(0)}^{\pi \delta}\left\{[\rho \gamma, \pi]_{a_{0}}[\alpha \beta, \delta]_{a_{0}}-[\rho \beta, \pi]_{a_{0}}[\alpha \gamma, \delta]_{a_{0}}\right\}=0, \tag{11.1}
\end{align*}
$$

where the Christoffel symbols are calculated for $\mathbf{a}_{(0) \alpha \beta}$. Eq. (11.1) expresses the fact that in the case of small curvature, the curvature tensor vanishes in the first approximation. Hence the order of the operations of covariant differentiation with respect to $a_{(0) \alpha \beta}$ is immaterial; this result will be found very useful later.
12. Detailed discussion of type $S S 12(b=q=1, p=2)$ and its applications. General equations. By the condition that in the first approximation, (6.34), (6.35) receive significant contributions from $P_{\left(n_{0}\right)}^{0}, P_{(n)}^{\alpha}, X_{\left(g_{k}\right)[0]}^{0}, X_{(\mu)[0]}^{\alpha}, Q_{\left(k_{0}\right)}^{0}, Q_{(k)}$, we must have

$$
\begin{array}{rrr}
n_{0}=4, & j_{0}=3, & k_{0}=2  \tag{12.1}\\
n=3, & j=2, & k=3 .
\end{array}
$$

By substituting the $\epsilon$ series into ( 6.34 ), ( 6.35 ), ( 6.43 ), ( 6.44 ), it is found that the lowest powers in $\epsilon$ occurring in the resulting equations are respectively $\epsilon^{4}, \epsilon^{3}, \epsilon^{1}, \epsilon^{2}$. The corresponding coefficients give rise to the following equations:

$$
\begin{align*}
& -A_{(01)}^{\rho \pi \lambda \lambda} b_{(1) \rho \gamma P_{(2) \pi \lambda}} \bar{h}-2 A_{(01)}^{\rho \gamma \pi \lambda} q_{(1) \rho \gamma} \boldsymbol{p}_{(2) \times x} \bar{h}+\frac{2}{3} A_{(01)}^{\rho \gamma \pi \lambda}\left(q_{(1) \pi \lambda} \tilde{h}^{3}\right)_{a_{0}} \\
& +P_{(4)}^{0}+2 X_{(3)[0]}^{0} \bar{h}+\left(Q_{(3)}^{2} \bar{h}\right)_{a_{0}}+\frac{2(1-2 \sigma)}{1-\sigma} H_{(1)} Q_{(2)}^{0} \bar{h} \\
& +\frac{1-2 \sigma}{1-\sigma} q_{(1) \pi \lambda} a_{(0)}^{\pi \lambda} Q_{(2)}^{0} \bar{h}=0,  \tag{12.2a}\\
& 2 A_{(01)}^{\alpha \pi \lambda}\left(p_{(2) \pi \lambda} \bar{h}\right)_{\left.\right|_{a_{0}}}+P_{(3)}^{\alpha}+2 X_{(2)[0]^{\sigma}}^{\alpha} \bar{h}+\frac{\sigma}{1-\sigma} a_{(0)}^{\alpha p}\left(Q_{(2)}^{0} \bar{h}\right)_{1_{a_{0}}}=\dot{0}, \tag{12.2b}
\end{align*}
$$

$$
\begin{align*}
& n_{(0)}^{\beta \gamma} q_{(1) \alpha \beta \mid \gamma}^{a_{0}}=0,  \tag{12.2c}\\
& 2 \mathbf{n}_{(0)}^{\rho \alpha} n_{(0)}^{\beta \gamma} p_{(2) \rho \gamma \mid \alpha \beta}^{a_{0}}+n_{(0)}^{\rho \alpha} n_{(0)}^{\beta \gamma} q_{(1) \rho \gamma} q_{(1) \alpha \beta}+\left(b_{(1)}^{\alpha \beta}-4 H_{(1)}^{a_{(0)}^{\alpha \beta}}\right) q_{(1) \alpha \beta}=0, \tag{12.2~d}
\end{align*}
$$

where $\boldsymbol{a}_{0}$ under stroke indicates covariant differentiation with respect to the tensor $\mathbf{a}_{(0) \alpha \beta}$ and $\mathbf{x}^{\alpha}$. The other symbols represent

$$
\begin{align*}
A_{(01)}^{\alpha \beta \pi \lambda} & =\frac{1}{1-\sigma^{2}}\left(\sigma a_{(0)}^{\alpha \beta} a_{(0)}^{\pi \lambda}+(1-\sigma) a_{(0)}^{\alpha \pi} a_{(0)}^{\beta \lambda}\right)  \tag{12.3a}\\
n_{(0)}^{\alpha \beta} & =\epsilon^{\alpha \beta}\left(a_{0}\right)^{-1 / 2}, \quad a_{0}=\operatorname{det} .\left(a_{(0) \pi \lambda}\right), \quad \epsilon^{11}=\epsilon^{22}=0, \epsilon^{12}=-\epsilon^{21}=1  \tag{12.3b}\\
b_{(1)}^{\alpha \beta} & =a_{(0)}^{\alpha \pi} a_{(0)}^{\beta \lambda} b_{(1) \pi \lambda}, \quad H_{(1)}=\frac{1}{2} a_{(0)}^{\pi \lambda} b_{(1) \pi \lambda} . \tag{12.3c}
\end{align*}
$$

The macroscopic tensors (6.29)-(6.31) can be written as

$$
\begin{align*}
& T^{\alpha \beta}=\left\{2 A_{(01)}^{\alpha \beta \pi \lambda} p_{(2) \pi \lambda} \bar{h}+\frac{\sigma}{1-\sigma} a_{(0)}^{\alpha \beta} \sum_{(2)}^{0} \bar{h}\right\} \epsilon^{3}+O\left(\epsilon^{4}\right),  \tag{12.4a}\\
& L^{\alpha \beta}=\frac{2}{3} n_{(0)}^{\gamma \beta} a_{(0) \pi \gamma} A_{(01)}^{\alpha \pi \lambda \delta} q_{(1) \lambda \delta \delta} \bar{h}^{3} \epsilon^{4}+O\left(\epsilon^{6}\right), \tag{12.4b}
\end{align*}
$$

Equations (12.2a, b, c, d) are six equations for the six unknowns $p_{(2) \pi \lambda}$ and $q_{(1) \times \lambda}$.
Since by (11.1) the order of the operations of covariant differentiation with respect to $a_{(0) \pi \lambda}$ is immaterial, (12.2c) implies the existence of $w_{(1)}$ such that

$$
\begin{equation*}
q_{(1) a \beta}=w_{(1)[)_{a} \beta} . \tag{12.5}
\end{equation*}
$$

Thus the determination of $q_{(1) a \beta}$ is reduced to the determination of the single function $w_{(1)}$. Furthermore, instead of using $p_{(2) \alpha \beta}$ as the rest of the unknowns, we may use $T_{(3)}^{\alpha \beta}$. By definition, $T_{(3)}^{\alpha \beta} \epsilon^{3}$ is the principal part of the macroscopic tensor $T^{\alpha \beta}$, namely, by (12.4a),

$$
\begin{equation*}
T_{(3)}^{\alpha \beta}=2 A_{(01)}^{a \beta \lambda} p_{(2) \pi \lambda} \bar{h}+\frac{\sigma}{1-\sigma} a_{(0)}^{a \beta} Q_{(2)}^{0} \bar{h} . \tag{12.6}
\end{equation*}
$$

This is a symmetrical tensor; so it has only three independent components. Substituting (12.5), (12.6) into (12.2a, b, d), we have

$$
\begin{align*}
& T_{\substack{(3) \mid \pi_{0} \\
a_{0}}}^{\alpha}+P_{(3)}^{\alpha}+2 X_{(2)|0|[0]}^{\alpha} \bar{\pi}=0, \tag{12.7a}
\end{align*}
$$

Equations (12.7a, b, c) form a set of four equations for the four unknowns $w_{(1)}$ and $T_{(3)}^{a \beta}$.

Special case. The following special case is interesting. If

$$
\begin{equation*}
P_{(3)}^{\alpha}=X_{(2)(0)}^{\alpha}=0, \tag{12.8}
\end{equation*}
$$

then by (12.7b) there exists a stress function $\chi_{(3)}$ such that

Here $\chi_{(3)}$ is a function of $x^{\alpha}$, having properties similar to those of the Airy function in the thin plate theory. Substituting (12.8), (12.9) into (12.7a, c ), we have

$$
\begin{align*}
& -\frac{1}{2} n_{(0)}^{\pi \lambda} n_{(0)}^{\delta \rho}\left(2 W_{(1) \mid \pi \delta}^{a_{0}}+b_{(1) \pi \delta}\right) \chi_{(3) \mid \lambda_{\lambda_{0}}}+\frac{2}{3} A_{(01)}^{\rho \gamma \pi \lambda}\left(W_{(1) \mid \pi \lambda}^{a_{0}} \bar{h}^{3}\right)_{a_{a_{0}}} \\
& +P_{(4)}^{0}+2 X_{(3)[0]}^{0} \bar{h}+2 H_{(1)} Q_{(2)}^{0} \bar{h}+a_{(0)}^{\pi \lambda} W_{(1) \mid \pi \lambda} a_{0} Q_{(2)}^{0} \bar{h}=0, \tag{12.10a}
\end{align*}
$$

Equations (13.10a, b) are two equations for the two unknowns $\chi_{(3)}$ and $w_{(1)}$. These equations are valid in general for a shell of non-uniform thickness. For the case of uniform thickness, $(12.10 \mathrm{a}, \mathrm{b})$ are immediately simplified to the forms

$$
\begin{align*}
& +P_{(4)}^{0}+2 X_{(3)[0]}^{0} \bar{h}+2 H_{(1)} Q_{(2)}^{0} \bar{h}+\mathbf{a}_{(0)}^{\pi \lambda} W_{(1) \mid \pi \lambda}^{a_{0}} Q_{(2)}^{0} \bar{h}=0, \tag{12.11a}
\end{align*}
$$

$$
\begin{align*}
& +\bar{h}\left(4 H_{(1)} a_{(0)}^{\pi \lambda}-b_{(1)}^{\pi \lambda}\right) W_{(1) \mid \pi \lambda}^{a_{0}}=0, \tag{12.11b}
\end{align*}
$$

where $D$ is the reduced flexural rigidity, as given in (9.14). Applications of these two equations will be discussed below.

A circular cylindrical thin shell with small curvature and uniform thickness under end thrust and normal pressure. We shall assume that the external forces and the edge loading are such that the problem is of Type $S S 12$. Furthermore let us assume that

$$
\begin{equation*}
X_{(3) \mid 01}^{0}=Q_{(2)}^{0}=0 . \tag{12.12}
\end{equation*}
$$

We have in mind the case where body force is negligible and where the shell is loaded normally on one side only. A number of terms disappear from the equations of equilibrium and compatibility ( $12.11 \mathrm{a}, \mathrm{b}$ ) for Type $S S 12$. Thus if we write these equations in terms of the small principal parts instead of in terms of the finite coefficients of the lowest power in $\epsilon$, we have

Here a under a stroke indicates covariant differentiation with respect to the tensor $a_{\alpha \beta}$ and $x^{\alpha}$; also

$$
\begin{equation*}
D=\frac{2 h^{3}}{3\left(1-\sigma^{2}\right)}, \quad 4 H=a_{4 ;} b^{\alpha \beta} . \tag{12.14}
\end{equation*}
$$

Let us choose the set of intrinsic rectangular Cartesian coordinates on the middle surface so that $x=x^{1}$ is the distance measured along the generators of the cylinder and $y=x^{2}$ is the distance measured perpendicular to the generators. Then we have

$$
\begin{array}{lc}
a_{11}=a^{11}=a_{22}=a^{22}=1, & a_{12}=a^{12}=0  \tag{12.15}\\
b_{11}=b^{11}=b_{12}=b^{12}=0, & b_{22}=b^{22}=2 / R
\end{array}
$$

where $R$ is the radius of curvature of the cylindrical middle surface. In these coordinates, Eqs. (12.13a, b) become

$$
\begin{gather*}
D \Delta \Delta w+\left(2 w_{, x y} \chi_{, x y}-w_{, x x} \chi_{, y y}-w_{, y y} \chi_{, x x}\right)-\frac{1}{R} \chi_{, x x}+P^{0}=0  \tag{12.16a}\\
\Delta \Delta \chi+2 h\left(w_{, x x} w_{, y y}-w_{, x y} w_{, x y}\right)+2 h \frac{1}{R} w_{, x x}=0 \tag{12.16b}
\end{gather*}
$$

where subscripts preceded by a comma denote partial differentiation. If we let $R$ tend to infinity, we get the von Kármán equations for a flat plate. The equation (12.16b) was recently obtained by von Kármán and Tsien [1] in their treatment of buckling of a thin-walled circular cylindrical shell under compression on the two ends. If we apply the operators $\Delta \Delta$ to $(12.16 \mathrm{a})$ and $(1 / R) \partial^{2} / \partial x^{2}$ to $(12.16 \mathrm{~b})$ and add the resulting equations, we obtain

$$
\begin{align*}
D \Delta \Delta \Delta \Delta W+\frac{2 h}{R^{2}} W_{, x x x x}+\frac{2 h}{R} & \left(W_{, x x} W_{, y y}-W_{, x y} W_{, x y}\right)_{, x x} \\
& =\Delta \Delta\left(P^{0}+2 w_{, x y} \chi_{, x y}-w_{, x x} \chi_{, y y}-W_{, y y} \chi_{, x x}\right) \tag{12.17}
\end{align*}
$$

This is the equation of equilibrium used by von Kármán and Tsien, except that they omit the term

$$
\begin{equation*}
\frac{2 h}{R}\left(W_{, x x} W_{, y y}-W_{x y} W_{, x y}\right)_{, x x} \tag{12.18}
\end{equation*}
$$

This term is important when the deflection is comparable with thickness. However, it seems simpler to treat the problem directly by means of ( $12.16 \mathrm{a}, \mathrm{b}$ ) instead of using the higher-order equation (12.17). Equation (12.16a) appears to be new.

A small segment of a thin spherical shell under external pressure. We shall assume that the solid angle of the segment is small, so that the curvature is small; we shall assume it to be of the same order as the thickness, so that $b=1$ (cf. section 10). We shall use spherical polar coordinates as in Fig. 8, so that on the middle surface in the unstrained state we have

$$
\begin{equation*}
d s^{2}=R^{2} d \theta^{2}+R^{2} \sin ^{2} \theta d \varphi^{2} \tag{12.19}
\end{equation*}
$$

Since $\theta$ is small, we write


Fig. 8.

$$
\begin{equation*}
d s^{2}=R^{2} d \theta^{2}+R^{2} \theta^{2} d \varphi^{2} \tag{12.20}
\end{equation*}
$$

If we put

$$
\begin{equation*}
x^{1}=\theta, \quad x^{2}=\varphi \tag{12.21}
\end{equation*}
$$

the components of the first and second fundamental tensors are given by
$a_{11}=R^{2}, \quad a_{22}=R^{2} \theta^{2}, \quad a_{12}=0, \quad a^{11}=1 / R^{2}, \quad a^{22}=1 / R^{2} \theta^{2}, \quad a^{12}=0$,
$b_{11}=2 R, \quad b_{22}=2 R \theta^{2}, \quad b^{11}=2 / R^{3}, \quad b^{22}=2 / R^{3} \theta^{2}, \quad b_{12}=b^{12}=0$.
Futhermore, we have from (12.22), (12.23)

$$
\begin{equation*}
H=1 / R, \quad a=R^{4} \theta^{2} \tag{12.24}
\end{equation*}
$$

All the Christoffel symbols are equal to zero, except

$$
\left\{\begin{array}{c}
1  \tag{12.25}\\
2
\end{array} 2\right\}=-\theta, \quad\left\{\begin{array}{c}
2 \\
1
\end{array} 2\right\}=1 / \theta
$$

We shall assume that the problem is of Type $S S 12$. Substituting (12.21)-(12.25) into (12.13a, b), we have

$$
\begin{align*}
-\frac{1}{R^{4} \theta^{2}}\left\{( W _ { , \theta \theta } + R ) \left(\chi_{, \varphi \varphi}\right.\right. & \left.+\theta \chi_{, \theta}\right)-2\left(W_{, \theta \varphi}-\frac{1}{\theta} W_{, \varphi}\right)\left(\chi_{, \theta \varphi}-\frac{1}{\theta} \chi_{, \varphi}\right) \\
& \left.+\left(W_{, \varphi \varphi}+R \theta^{2}+\theta W_{, \theta}\right) \chi_{, \theta \theta}\right\}+D \Delta \Delta W+P^{0}=0  \tag{12.26a}\\
\Delta \Delta \chi & +\frac{2 h}{R^{4} \theta^{2}}\left\{W_{, \theta \theta}\left(W_{. \varphi \varphi}+\theta W_{. \theta}\right)-\left(W_{, \theta \varphi}-\frac{1}{\theta} W_{, \varphi}\right)^{2}\right\} \\
& +2 h\left\{\frac{1}{R^{3}} W_{, \theta \theta}+\frac{1}{R^{3} \theta^{3}}\left(W_{. \varphi \varphi}+\theta W_{, \theta}\right)\right\}=0 \tag{12.26b}
\end{align*}
$$

Here $\Delta$ is the Laplace operator

$$
\begin{equation*}
\Delta=\frac{1}{R^{2}} \frac{\partial^{2}}{\partial \theta^{2}}+\frac{1}{R^{2} \theta^{2}} \frac{\partial^{2}}{\partial \varphi^{2}}+\frac{1}{R^{2} \theta} \frac{\partial}{\partial \theta}=\frac{1}{R^{2} \theta} \frac{\partial}{\partial \theta} \theta \frac{\partial}{\partial \theta}+\frac{1}{R^{2} \theta^{2}} \frac{\partial^{2}}{\partial \varphi^{2}} . \tag{12.27}
\end{equation*}
$$

Equations (12.26a, b) are two nonlinear partial differential equations for two unknowns $\chi$, w.

We suppose that the problem has rotational symmetry. Then $w, \chi$ are independent of $\varphi$, and $(12.26 \mathrm{a}, \mathrm{b})$ reduce to the form

$$
\begin{array}{r}
\frac{d}{d \theta} \theta \frac{d}{d \theta} \frac{1}{\theta} \frac{d}{d \theta} \theta \frac{d W}{d \theta}-\frac{1}{D} \frac{d}{d \theta}\left(\frac{d W}{d \theta} \frac{d \chi}{d \theta}\right)-\frac{R}{D} \frac{d}{d \theta}\left(\theta \frac{d \chi}{d \theta}\right)+\frac{P^{0} \theta R^{4}}{D}=0 \\
\frac{d}{d \theta} \theta \frac{d}{d \theta} \frac{1}{\theta} \frac{d}{d \theta} \theta \frac{d \chi}{d \theta}+h \frac{d}{d \theta}\left(\frac{d W}{d \theta}\right)^{2}+2 h R \frac{d}{d \theta}\left(\theta \frac{d W}{d \theta}\right)=0 \tag{12.28b}
\end{array}
$$

The equations can be integrated once giving

$$
\begin{gather*}
\theta \frac{d}{d \theta} \frac{1}{\theta} \frac{d}{d \theta} \theta \frac{d w}{d \theta}-\frac{1}{D} \frac{d w}{d \theta} \frac{d \chi}{d \theta}-\frac{R}{D} \theta \frac{d \chi}{d \theta}+\frac{P^{0} \theta^{2} R^{4}}{2 D}=\text { constant }  \tag{12.29a}\\
\theta \frac{d}{d \theta} \frac{1}{\theta} \frac{d}{d \theta} \theta \frac{d \chi}{d \theta}+\left(\frac{d w}{d \theta}\right)^{2} h+2 h R \theta \frac{d w}{d \theta}=\text { constant. } \tag{12.29b}
\end{gather*}
$$

Since $d w / d \theta$ vanishes for $\theta=0$, the constants are zero. If we introduce the quantities

$$
\begin{equation*}
\alpha=\frac{1}{R} \frac{d w}{d \theta}+\theta, \quad \beta=\frac{1}{R^{2}} \frac{d \chi}{d \theta} \tag{12.30}
\end{equation*}
$$

the equations can be further simplified to the form

$$
\begin{equation*}
\theta \frac{d^{2} \alpha}{d \theta^{2}}+\frac{d \alpha}{d \theta}-\frac{\alpha}{\theta}-\frac{R^{2}}{D} \alpha \beta+\frac{P^{0} R^{3}}{2 D} \theta^{2}=0 \tag{12.31a}
\end{equation*}
$$

$$
\begin{equation*}
\theta \frac{d^{2} \beta}{d \theta^{2}}+\frac{d \beta}{d \theta}-\frac{\beta}{\theta}+h\left(\alpha^{2}-\theta^{2}\right)=0 \tag{12.31b}
\end{equation*}
$$

The quantity $\alpha$ is the slope of the meridian line in the strained state (Fig. 9). The significance of the quantity $\beta$ is that $\beta / \theta$ is the radial membrane stress (tension). Equations (12.31a, b) are the fundamental equations for the determination of the buckling pressure of a small segment of spherical shell.

If we assume that the first and second terms in (12.31b) are negligible in comparison with the other terms, then we can solve (12.31b) immediately for $\beta$. Substituting the resulting expression for $\beta$ into (12.31a), we have


Fig. 9.

$$
\begin{equation*}
\theta \frac{d^{2} \alpha}{d \theta^{2}}+\frac{d \alpha}{d \theta}-\frac{\alpha}{\theta}=\frac{h R^{2}}{D} \theta \alpha\left(\alpha^{2}-\theta^{2}\right)-\frac{P^{0} \theta^{2} R^{3}}{2 D} \tag{12.32}
\end{equation*}
$$

This is the equation used by von Kármán and Tsien [2] in their treatment of buckling of spherical shells by external pressure. It should be noted that the neglect of the first two terms in (12.31b) is a rough approximation. Actually the first three terms in (12.31b) are of the same order of magnitude.

Furthermore, if we introduce

$$
\begin{equation*}
r=R \theta, \tag{12.33}
\end{equation*}
$$

Eqs. $(12.28 \mathrm{a}, \mathrm{b})$ can be written in the form

$$
\begin{array}{r}
\frac{d}{d r} r \frac{d}{d r} \frac{1}{r} \frac{d}{d r} r \frac{d w}{d r}-\frac{1}{D} \frac{d}{d r}\left(\frac{d w}{d r} \frac{d \chi}{d r}\right)-\frac{1}{R D} \frac{d}{d r}\left(r \frac{d \chi}{d r}\right)+\frac{P^{0} r}{D}=0 \\
\frac{d}{d r} r \frac{d}{d r} \frac{1}{r} \frac{d}{d r} r \frac{d \chi}{d r}+h \frac{d}{d r}\left(\frac{d W}{d r}\right)^{2}+\frac{2 h}{R} \frac{d}{d r}\left(r \frac{d w}{d r}\right)=0 \tag{12.34b}
\end{array}
$$

The quantity $r$ is the radial distance measured along the meridian line from the center of the shell. We see that these two equations are the same as the corresponding von Kármán equations for the circular plate under symmetrical loading [3], with the exception of the terms proportional to $1 / R$; this is evident if we make $R$ infinite in (12.34a, b).

A summary of the whole paper was given at the end of the first section (Part I).

## APPENDICES

(iii) Table III.-Table of the equations of equilibrium and compatibility of thin shell problems.

|  |  |  |  | (6.34) | (6.35) | (6.44) | (6.43) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{array}{llllllllllll}0 & I_{2}^{0} & I_{3}^{0} & I_{4}^{0} & I_{5}^{0} & I_{6}^{0} & I_{7}^{0} & I_{8}^{0} & I_{0}^{0}\end{array}$ | $I_{1}^{\alpha} I_{2}^{\alpha} I_{3}^{a} I_{4}^{\alpha} I_{8}^{\alpha} I_{6}^{\alpha}$ | $J_{1}^{0} J_{2}^{0} J_{3}^{0} J_{1}^{0}$ | $J_{\alpha 1} \quad J_{\alpha 2}$ |
| SS1 | $\geq 1$ | 0 | 1 | $x$ x $x$ | $x \quad x \quad x$ | x | x |
| SS2 | $\geq 1$ | 0 | 2 | $x \quad \pi \quad x \quad x \quad x$ | $x \quad x \quad x \quad x$ | I | x |
| SS3* | $\geq 1$ | 0 | $>2$ | $\times \times \times \mathrm{x}$ | $\times \times \mathrm{x}$ | X | X |
| SS4 | $\geq 2$ | $1 \leq q<b$ | 1 | $x$ x $x$ | $x \quad x$ | $x$ | x |
| SS5 | $\geqq 2$ | 1 | 2 | $x \times x$ | $x \quad x$ | $x \quad x$ | x |
| SS6* | $\geqq 2$ | $1 \leqq q<b$ | $2 q+1$ | $x \quad x$ | $x \quad x$ | $x$ | x |
| SS7* | $\geq 2$ | $1 \leq 2<b$ | $2 q+2$ | $x \quad x$ | $\boldsymbol{x} \times \mathrm{x} \times \mathrm{x}$ | , $\mathbf{x}$ | $x$ x |
| SS8* | $\geqq 2$ | $1 \leq q<b$ | $>2 q+2$ | $x$ x | $x \times \mathrm{x}$ | X | x |
| SS9 | $\geq 3$ | $2 \leqq 2<b$ | 2 | $x \quad x \quad x$ | $x \quad x$ | $x$ | x |
| SS10 | $\geq 3$ | $2 \leqq p<b$ | $2<p<2 q$ |  |  |  | E1IP 9 ¢1] |
| SS10 | $\geq 2$ | $\geq b$ | $2+q-b<q<q+b$ | $x \quad x$ | $x \quad x$ | x | x |
| SSII | $\geq 3$ | $2 \leq q<b$ | $2 q$ | $x$ x | $x \quad x$ | $x \quad x$ |  |
| SS12 | 1 | 1 | 2 | $x \quad x \quad x \quad x \quad x \quad x$ | x | $x$ x $\quad$ x $\quad x$ | $x$ |
| SS13 | $\geq 1$ | $b$ | 1 | $x \quad x \quad x \quad x \quad x$ | X | $\mathbf{x}$ | x |
| SS14 | $\geq 2$ | $b$ | 2 | $x \quad x \quad \begin{array}{llllll}x & x & \pi\end{array}$ | $x$ x | $x \quad 1$ | $x$ |
| SS15 | $\geq 2$ | $b$ | $2 b$ | $x \quad x$ | $x \quad x$ | $x \quad x \quad x$ | $x$ |
| SS16* | $\geq 1$ | $b$ | $2 b+1$ | $x \quad x$ | $x \quad x$ | $218 x$ | $x$ (tr |
| SS17* | $\geq 1$ | $b$ | $2 b+2$ | $x$ | $x \times x \times x$ | $x \quad x$ | x |
| SS18* | $\geq 1$ | $b$ | $>2 b+2$ | $x \quad x$ | $\begin{array}{llllll}x & x & x & x\end{array}$ | $x \quad x$ | x |
| SS19* | $\geq 1$ | $>b$ | $<\mathrm{a}-\mathrm{b}$ | $x \quad x \quad x$ | $x \quad x \quad x$ | $x$ | $x$ |
| SS20* | 】1 | $>b$ | $q-b$ | x x x | x $\quad$ x | x | $x \quad x$ |
| SS21* | $\geq 1$ | $>b$ | $q-b+1$ | $x \quad x \quad x$ | $x \quad x$ | $x$ | x |
| SS22 | $\geq 2$ | $>6$ | $a-b+2$ | $x \quad x \quad x$ | $x$ x | x | $x$ |
| SS23 | $\geq 2$ | $>b$ | $a+b$ | $x$ x | $x \quad x$ | $x \quad x$ | $x$ |
| SS24* | $\geq 1$ | $>b$ | $a+b+1$ | x | $x$ x | $x$ | x |
| SS25* | $\geq 1$ | $>b$ | $a+b+2$ | $x \quad x$ | $x \quad x \quad x$ | $\mathbf{x}$ | x |
| SS26* | $\geq 1$ | $>8$ | $>0+b+2$ | $x \quad x$ | $x \quad x \quad x$ | 61: $x$ | x |
| SS27 | 1 | $>b$ | $8+1$ | $x \quad x \quad x \quad x$ | x $\quad$ x | $\boldsymbol{x}$ x | $\pi$ |
| SF1 | 0 | 0 | 1 | $x \quad x x^{x}$ x $x$ | $x \quad x \quad x \quad x$ | $x \quad x$ | $x$ |
| SF2 | 0 | 0 | 2 | $\begin{array}{llllllllllll}x & x & x & x & x & x & x & x & x\end{array}$ | $\boldsymbol{x} \quad \mathrm{x} \quad \mathrm{x} \quad \mathrm{x} \quad \pi \quad \mathrm{x}$ | $x \quad x$ | x |
| SF3* | 0 | 0 | $>2$ | $x \times \times \times x \times$ | $x \times \times \times x$ | $x \quad x$ | $x$ |
| SF4 | 0 | $\geqq 1$ | $q$ | $x \quad x \quad x$ | $x$ x $x$ | $x \times x$ | $x \quad x$ |
| SF5 | 0 | $\geq 1$ | $g+1$ | $x$ x $x$ | x x x | $\times$ | $x$ |
| SF6 | 0 | $\geqq 1$ | $0+2$ | $x \quad \mathrm{x}$ x x x $\quad$ x | $x$ x $\quad x \quad x$ | $x$ | $x$ |
| SF7* | 0 | $\geqq 1$ | $>q+2$ | $\mathbf{x}$ x $\quad$ x $\quad$ x | $x \quad x$ x | x | I |
| SF8 | 0 | $\geqq 2$ | $<9$ | $x$ I $x$ | $x \quad x \quad x$ | $\boldsymbol{x} \quad \mathrm{x}$ | X |

In this table, the following notation is used:
The terms occurring in the first equation of equilibrium (6.34) are

$$
\begin{array}{lll}
I_{4}^{0}=P^{0}+2 X_{[0 \mid}^{0} h+\left(Q^{\lambda} h\right)_{\mid \lambda}, & I_{5}^{0}=\frac{1-2 \sigma}{1-\sigma} a_{\pi \lambda} q^{\pi \lambda} Q^{0} h, & I_{6}^{0}=-A_{(1)}^{\rho \gamma \pi \lambda} b_{\rho \gamma} p_{\pi \lambda} h, \\
I_{7}^{0}=-\frac{1}{2} A_{(4)}^{\rho \gamma \pi \omega \lambda \delta} b_{\rho \gamma} b_{\lambda \delta} q_{\tau \omega} h^{3}, & I_{8}^{0}=A_{(6)}^{\rho \gamma \pi \omega \lambda \delta} q_{\pi \omega} b_{\rho \gamma} q_{\lambda} h^{3}, & I_{9}^{0}=\frac{1-2 \sigma}{1-\sigma} 2 H Q^{0} h .
\end{array}
$$

The terms occurring in the second and third equations of equilibrium (6.35) are

$$
\begin{aligned}
& I_{1}^{\alpha}=2 A_{(1)}^{\rho \alpha \pi \lambda}\left(p_{\pi \lambda} h\right)_{\mid \rho}, \quad I_{2}^{\alpha}=\frac{2}{3} a^{\alpha \pi} q_{\pi \gamma} A_{(1)}^{\gamma \rho \lambda \delta}\left(q_{\lambda \delta} h^{3}\right)_{\mid \rho}-A_{(3)}^{\alpha \alpha \pi \omega \lambda \lambda}\left(q_{\pi \omega} q_{\delta \lambda} h^{3}\right)_{a \rho} \\
& I_{3}^{\alpha}=p^{\alpha}+2 X_{[0 \mid}^{\alpha} h+\frac{\sigma}{1-\sigma} a^{\alpha \rho}\left(Q^{0} h\right)_{\mid \rho,} \quad I_{4}^{\alpha}=\left(a^{\pi \lambda} q_{\pi \lambda} a_{\gamma}^{\alpha}+2 a^{\alpha \pi} q_{\pi \gamma}\right) Q^{\gamma} h, \\
& I_{5}^{\alpha}=A_{(4)}^{\rho \alpha \pi \omega \lambda \delta}\left(b_{\lambda \delta} q_{\pi \omega} h^{3}\right)_{\mid \rho}+\frac{1}{3} A_{(1)}^{\gamma \beta \lambda \delta} a^{\alpha \pi} b_{\pi \gamma}\left(q_{\lambda \delta} h^{3}\right)_{\mid \rho}, \quad I_{6}^{\alpha}=\left(2 H a_{\gamma}^{\alpha}+b_{\gamma}^{\alpha}\right) Q^{\gamma} h .
\end{aligned}
$$

The terms occurring in the first equation of compatibility (6.44) are

$$
\begin{array}{ll}
J_{1}^{0}=2 n_{[0]}^{\rho \alpha} \mathrm{n}_{[0]}^{\beta \gamma} p_{\rho \gamma \mid \alpha \beta}, & J_{2}^{0}=\mathbf{n}_{[0]}^{\rho \alpha} n_{[0]}^{\beta \gamma} q_{\rho \gamma} q_{\alpha \beta} \\
J_{3}^{0}=2 \mathbf{a}^{\alpha \beta} p_{\alpha \beta} K, & J_{4}^{0}=-\left(4 H a^{\alpha \beta}-b^{\alpha \beta}\right) q_{\alpha \beta} .
\end{array}
$$

The terms occurring in the second and third equations of compatibility (6.43) are

$$
J_{\alpha 1}=2 n_{[0 \mid}^{\beta \gamma} q_{\alpha \beta \mid \gamma,} \quad J_{a 2}=n_{[0 \mid}^{\beta \gamma} b_{\beta r} a^{\Gamma \lambda}\left(p_{\alpha \lambda \mid \gamma}+p_{\gamma \lambda \mid \alpha}-p_{\alpha \gamma \mid \lambda}\right) .
$$

On account of the conditions which hold in the various types of problems, some of these terms may be negligible in comparison with others. Table III shows by the symbol ' $x$ ' those terms which are to be retained in the first approximation for the various types. (The over-determined problems are denoted by *.) Thus for example, for problems of type $S S 1$, we have the following equations of equilibrium and compatibility in the first approximation:

$$
I_{1}^{0}+I_{4}^{0}+I_{5}^{0}=0, \quad I_{1}^{\alpha}+I_{3}^{\alpha}+I_{4}^{\alpha}=0, \quad J_{2}^{0}=0, \quad J_{\alpha I}=0
$$

These equations are written in terms of the small principal parts instead of in terms of the finite coefficients of the lowest power in $\epsilon$.
(iv) In Table IV, the following notation is used:

The terms occurring in the expresion (6.29) for the membrane stress tensor $T^{\alpha \beta}$ are denoted by

$$
\begin{array}{ll}
T_{1}^{\alpha \beta}=2 A_{(1)}^{\alpha \beta \pi \lambda} p_{\lambda \lambda} h, & T_{2}^{\alpha \beta}=-A_{(3)}^{\alpha \beta \pi \omega \lambda \delta} q_{\pi \omega} q_{\lambda \delta} h^{3}, \\
T_{3}^{\alpha \beta}=\frac{\sigma}{1-\sigma} a^{\alpha \beta} Q^{0} h, & T_{4}^{\alpha \beta}=A_{(4)}^{\alpha \beta \tau \omega \lambda \delta} b_{\lambda \delta} q_{\tau \omega} h^{3} .
\end{array}
$$

The terms occurring in the expression (6.30) for the bending moment tensor $L^{\alpha \beta}$ are denoted by

$$
\begin{aligned}
L_{1}^{\alpha \beta}= & \frac{2}{3} n_{[0]}^{\alpha \beta} a_{\pi \rho} A_{(1)}^{\alpha \pi \lambda \delta} q_{\lambda \delta} h^{3}, \\
L_{2}^{\alpha \beta}= & 2 n_{[0]}^{\alpha \beta} a_{x \rho} A_{(5)}^{\alpha \pi \lambda \delta \gamma} b_{\lambda \delta} p_{\rho \gamma} h^{3} \\
& +\frac{\sigma}{6(1-\sigma)} n_{[0]}^{\lambda \beta}\left\{a_{\lambda}^{\alpha}\left(\frac{4 \sigma}{1-\sigma} H Q^{0}-4 X_{[0]}^{0}-2 Q_{i \gamma}^{\gamma}\right)-b_{\lambda}^{\alpha} Q^{0}\right\} h^{3} .
\end{aligned}
$$

Table IV.-Table of the external force system and the macroscopic tensors for various types of thin shell problems.


The terms occurring in the expression (6.31) for the shearing stress tensor $T^{\alpha 0}$ are denoted by

$$
T_{1}^{\alpha}=Q^{a} h, \quad T_{2}^{\alpha}=\frac{2}{3} A_{(1)}^{\pi \alpha \lambda \delta}\left(q_{\lambda \Delta} h^{3}\right)_{\mid \pi}
$$

$$
\begin{aligned}
& T_{3}^{\alpha}=2 A_{(5)}^{\pi \alpha \delta \rho \gamma}\left(b_{\lambda \delta} P_{\rho \gamma} h^{3}\right)_{\left.\right|_{\pi}}+\frac{1}{2}\left(4 H P^{\alpha}+b_{\pi}^{\alpha} P_{\pi}\right) h^{2}+\frac{4}{3} H X_{10}^{\alpha} h^{3} \\
& +\frac{\sigma}{6(1-\sigma)}\left\{\left[a^{\alpha \pi}\left(\frac{2 \sigma}{1-\sigma} \Pi \bigotimes^{\varrho}-4 X_{101}^{0}\right)-b^{\alpha \sigma} Q^{0}\right] h^{3}\right\}_{a} x^{\circ} .
\end{aligned}
$$

Furthermore,
$n_{0}=$ order of sum of the normal forces acting on the upper and lower boundary surfaces, or order of $P^{0}$,
$n=$ order of sum of the tangential forces acting on the upper and lower boundary surfaces, or order or $P^{a}$,
$j_{0}=$ order of normal component of body force, or order of $X_{\text {[0 }}^{0}$,
$j=$ order of tangential component of body force, or order of $X_{[0]}^{\alpha}$,
$k_{0}=$ order of difference of normal forces acting on the upper and lower surfaces, or order of $Q^{0}$,
$k=$ order of difference of tangential components of forces acting on the upper and lower boundary surfaces, or order of $Q^{\alpha}$,
$t=$ order of membrane stress tensor $T^{\alpha \beta}$,
$u=$ order of bending moment tensor $L^{\alpha \beta}$,
$l=$ order of shearing stress tensor $T^{\alpha 0}$.
This table gives (a) the values of $n_{0}, n, j_{0}, j, k_{0}, k, t, u, l$, (b) the principal terms in the expressions for $T^{\alpha \beta}, L^{\alpha \beta}, T^{a 0}$ (denoted by ' $x$ '). The terms not marked with ' $x$ ' are negligible in comparison those principal terms. It will be noted that there are two lines in the table for $S S 1, S S 4, S S 13, S S 21, S F 1, S F 5$, and three lines for $S S 19$, $S S 20, S F 4, S F 8$. This is because, in each case, $k$ may have two or three values.

For example, in the case of Type $S S 1$, we have for $T^{\alpha \beta}, L^{\alpha \beta}$,

$$
T^{\alpha \beta}=T_{1}^{\alpha \beta}+T_{3}^{\alpha \beta}, \quad L^{\alpha \beta}=L_{1}^{\alpha \beta},
$$

while for $T^{\alpha 0}$,

$$
\begin{array}{ll}
T^{\alpha 0}=T_{1}^{\alpha} & (\text { if } k=1) \\
T^{\alpha 0}=T_{1}^{\alpha}+T_{2}^{\alpha} & (\text { if } k=2)
\end{array}
$$

## References

1. Th. von Kármán and H. S. Tsien, The buckling of thin cylindrical shells under axial compression, J. Aeronautical Sci. 7, 303-312 (1941).
2. Th. von Kármán and H. S. Tsien, The bucking of spherical shells by external pressure, J. Aeronautical Sci. 7, 43-50 (1939).
3. K. Friedrichs and J. J. Stoker, The nonlinear boundary value problem of the circular plate, Proc. Nat. Acad. Sci. U.S.A. 25, 535-540 (1939); Amer. J. Math. 63, 839-888 (1941).

# THE AERODYNAMICS OF A RING AIRFOL** 

BY<br>H. J. STEWART<br>Califormia Institute of Technology

Abstract. The downwash required to produce a given vorticity distribution is computed for a ring airfoil and the results are compared with the corresponding twodimensional case. From this it appears that if the curvature of the chord plane is small, as is the case with normal amounts of dihedral, the effect of this curvature on the chordwise lift distribution of a wing is extremely small. If the radius of curvature is small compared to the chord, as it is near the vertex of a cranked wing, it is seen that this curvature may cause comparatively large changes in the lift distribution.

1. Introduction. At the present time, the steady state two-dimensional airfoil theory is a highly developed subject; and, subject to the usual limitations of perfect fluid theory, solutions may be obtained with almost any desired degree of accuracy. The steady state three-dimensional airfoil theory is, however, in a much lower state of development. For most engineering problems the "lifting line" theory as developed by Prandtl and others is adequate to provide satisfactory results; however, for certain other problems, such as the flow near a wing tip, the effects of sweepback or of yaw, or the lift of a low aspect ratio wing, the lifting line theory cannot be used. At this time there have been only a fairly small number of solutions of finite wing problems in which lifting surfaces rather than lifting lines have been used and which may thus be used to throw light on these essentially more complicated problems. The best known of these lifting surface theories are those due to Blenk, ${ }^{1}$ Kinner, ${ }^{2}$ Krienes, ${ }^{3}$ and


Fig. 1. Ring wing in a uniform flow. Bollay. ${ }^{4}$ As the number of such solutions is so limited almost any special solution involving a lifting surface is of interest.

From an analytical viewpoint, probably the simplest lifting surface problem which has not yet been investigated is that of the axially symmetric flow past a ring airfoil as shown in Fig. 1. This flow is especially simple as the vortex lines in the lifting surface are circular rings and there are thus no trailing vortices. The particular purpose of the present paper is to discuss the differences between this problem and the corresponding two dimensional problem. In addition to its intrinsic interest in the theory of the "anti-drag" cowl, the ring airfoil problem possesses a general interest insofar as it demonstrates, at least qualitatively, some of the effects of dihedral on the lift distribution of a wing.

[^15]2. The vector potential. The mathematical analysis of this problem may be conveniently carried out by the method of the vector potential. Since the equation of continuity in an incompressible fluid is simply
\[

$$
\begin{equation*}
\operatorname{div} q=0 \tag{1}
\end{equation*}
$$

\]

the velocity vector $q$ may be written as the curl of a vector potential $A$ or

$$
\begin{equation*}
q=\operatorname{curl} A \tag{2}
\end{equation*}
$$

By the Helmholtz decomposition theorem the vector potential may be subjected to the restriction that

$$
\begin{equation*}
\operatorname{div} A=0 \tag{3}
\end{equation*}
$$

The differential equation for the determination of the vector potential is found by curling Eq. (2). This gives

$$
\begin{equation*}
\nabla^{2} A=-\operatorname{curl} q=-\Omega \tag{4}
\end{equation*}
$$

If the vorticity $\Omega$ is a given function, this is a Poisson equation for the determination of the vector potential. The solution of this equation, which is well-known and may be obtained by the use of Green's theorem, is

$$
\begin{equation*}
A=\frac{1}{4 \pi} \int \Omega \frac{d v}{r_{1}} \tag{5}
\end{equation*}
$$

where the volume integral covers the entire region where the vorticity exists and $r_{1}$ is the distance from the point at which the vorticity exists to the point $P$ at which the vector potential is being computed. If the vorticity is in the form of a single vortex filament of strength $\Gamma$ then

$$
\begin{equation*}
A=\frac{\Gamma}{4 \pi} \int \frac{1}{r_{1}} d s \tag{6}
\end{equation*}
$$

where $d s$ is an infinitesimal distance vector along the vortex filament. If there are several vortex filaments the contribution from each one may be found by Eq. (6), and these results must then be summed to obtain the vector potential.
3. The vector potential for a vortex ring. As the vortex filaments are all circles for the axially symmetric flow past a ring wing, the complete vector potential can easily be obtained if the vector potential of a single filament is known. For such a filament of strength $\Gamma$ and lying in the plane $z=0$ (see Fig. 2), it is obvious that the vector potential is not a function of the meridian angle $\theta$, and it may be calculated at points in the plane $\theta=0$. Since $d s$ is in the plane $z=0$, the vector potential can have no $z$-component. Furthermore, by considering two vortex elements, one having the negative of the other's $\theta$ co-


Fig. 2. Vortex ring. ordinate, it is evident that the vector potential can have no radial component. The vector potential has thus only the component $A_{\theta}$ which is perpendicular to the meridian planes. By Eq. (6), this is

$$
\begin{equation*}
A_{\theta}=\frac{a \Gamma}{2 \pi} \int_{0}^{\pi} \frac{\cos \theta d \theta}{\left[a^{2}+r^{2}+z^{2}-2 a r \cos \theta\right]^{1 / 2}} \tag{7}
\end{equation*}
$$

With the vector potential expressed in this form as an elliptic integral, it is rather difficult to superimpose the vector potentials for a band of vorticity of radius $a$ and of chord $c$ in order to represent the ring wing. A much more convenient form can be obtained by the use of the Fourier integral. For an even function $f(z)$, the Fourier integral theorem states that

$$
\begin{equation*}
f(z)=\frac{2}{\pi} \int_{0}^{\infty} \cos k z\left\{\int_{0}^{\infty} f(l) \cos k l d t\right\} d k \tag{8}
\end{equation*}
$$

Since $A_{\theta}$ is an even function of $z$, it follows that

$$
\begin{equation*}
A_{\theta}=\frac{a \Gamma}{\pi^{2}} \int_{0}^{\infty} \cos k z\left[\int_{0}^{\infty} \cos k t\left\{\int_{0}^{\pi} \frac{\cos \theta d \theta}{\left[a^{2}+r^{2}-2 a r \cos \theta+t^{2}\right]^{1 / 2}}\right\} d t\right] d k . \tag{9}
\end{equation*}
$$

Since ${ }^{5}$

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\cos (k t)}{\left[x^{2}+t^{2}\right]^{1 / 2}} d t=K_{0}(k x) \tag{10}
\end{equation*}
$$

the inner two integrals of Eq. (9) become, after inversion of the order of integration,

$$
\begin{equation*}
I=\int_{0}^{\pi} K_{0}\left[k \sqrt{a^{2}+r^{2}-2 a r \cos \theta}\right] \cos \theta d \theta \tag{11}
\end{equation*}
$$

The addition theorem for the modified Bessel functions of the second kind (see Ref. 5 , p. 74) states that
$K_{0}\left[k \sqrt{a^{2}+r^{2}-2 a r \cos \theta}\right]=\left\{\begin{array}{l}I_{0}(k a) K_{0}(k r)+2 \sum_{n=1}^{\infty} I_{n}(k a) K_{n}(k r) \cos n \theta \text { if } r>a . \\ I_{0}(k r) K_{0}(k a)+2 \sum_{n=1}^{\infty} I_{n}(k r) K_{n}(k a) \cos n \theta \text { if } r<a .\end{array}\right.$
Since the trigonometrical functions are orthogonal over the range $0 \leqq \theta \leqq \pi$,

$$
I=\left\{\begin{array}{lll}
\pi I_{1}(k a) K_{1}(k r) & \text { if } & r>a  \tag{13}\\
\pi I_{1}(k r) K_{1}(k a) & \text { if } & r<a
\end{array}\right.
$$

The vector potential for the vortex ring in the outer range where $r>a$ can thus be written as

$$
\begin{equation*}
A_{\theta}=\frac{a \Gamma}{\pi} \int_{0}^{\infty} I_{1}(k a) K_{1}(k r) \cos (k z) d k \quad(r>a) \tag{14}
\end{equation*}
$$

For the inner range it is necessary to interchange the arguments of the two Bessel functions.
4. The vector potential for a ring airfoil. A ring airfoil may be considered to be a system of ring vortices of radius $a$ and distributed over the chard $c$ from $z=-c / 2$ to $z=c / 2$. If the strength of this vortex sheet is $\gamma\left(z_{0}\right)$, then the vector potential for $r>a$ is

- Grey, Mathews and MacRobert, Bessel functions, Macmillan and Co., London, 1931, p. 52.

$$
\begin{equation*}
A_{\theta}=\frac{a}{\pi} \int_{-c / 2}^{c / 2} \gamma\left(z_{0}\right)\left\{\int_{0}^{\infty} I_{1}(k a) K_{1}(k r) \cos k\left(z-z_{0}\right) d k\right\} d z_{0} \tag{15}
\end{equation*}
$$

If the vortex strength is known, Eq. (15), after inversion of the order of integration, can conveniently be used to compute the vector potential or the radial or axial velocity components, $u_{\tau}$ and $u_{z}$ respectively. From Eq. (2),

$$
\begin{equation*}
u_{r}=-\frac{\partial A_{\theta}}{\partial z}, \quad u_{z}=\frac{1}{r} \frac{\partial}{\partial r}\left(r A_{\theta}\right) \tag{16}
\end{equation*}
$$

The radial velocity is of the most interest as it corresponds to the downwash velocity in the ordinary two-dimensional airfoil theory. The downwash at the ring airfoil, $r=a$, is

$$
\begin{equation*}
u_{\mathrm{r}}=\frac{a}{\pi} \int_{0}^{\infty} k I_{1}(k a) K_{1}(k a)\left\{\int_{-c / 2}^{c / 2} \gamma\left(z_{0}\right) \sin k\left(z-z_{0}\right) d z_{0}\right\} d k . \tag{17}
\end{equation*}
$$

5. Comparison with two-dimensional flat plate airfoil. If the airfoil shape is given, the downwash $u_{r}$ is known, and Eq. (17) may be considered as an integral equation for the determination of the vortex strength $\gamma\left(z_{0}\right)$. It is, however, an integral equation of a difficult type. The importance of the curvature of the chord plane may be estimated by comparing the downwash for some given vortex distribution with the corresponding two dimensional result. This process will be carried out for the vortex distribution

$$
\begin{equation*}
\gamma\left(z_{0}\right)=A \sqrt{\frac{c-2 z_{0}}{c+2 z_{0}}} \tag{18}
\end{equation*}
$$

In the two-dimensional case, this vorticity distribution corresponds to a flat plate airfoil with its leading edge at $z_{0}=-c / 2$. The downwash is then constant over the airfoil and equal to $A / 2$. For this vorticity distribution it can easily be seen by use of the transformation $2 z_{0}=c \sin \theta$ that

$$
\begin{equation*}
\int_{-c / 2}^{c / 2} \gamma\left(z_{0}\right) \sin k\left(z-z_{0}\right) d z_{0}=\frac{\pi}{2} A c\left[J_{0}\left(\frac{1}{2} k c_{)}\right) \sin k z+J_{1}\left(\frac{1}{2} k c\right) \cos k z\right] . \tag{19}
\end{equation*}
$$

The downwash velocity is thus

$$
\begin{equation*}
u_{r}=\frac{1}{2} A c a \int_{0}^{\infty} k I_{1}(k a) K_{1}(k a)\left[J_{0}\left(\frac{1}{2} k c\right) \sin k z+J_{1}\left(\frac{1}{2} k c\right) \cos k z\right] d k \tag{20}
\end{equation*}
$$

It is of interest to note that the two-dimensional result can be obtained directly from this by considering the limiting form as the radius of the ring becomes infinitely large; for

$$
\begin{equation*}
\lim _{x \rightarrow \infty}\left\{x I_{1}(x) K_{1}(x)\right\}=\frac{1}{2} \tag{21}
\end{equation*}
$$

so the downwash in the two-dimensional case is given by

$$
\begin{equation*}
u_{\mathrm{r}}=\frac{1}{4} A c \int_{0}^{\infty}\left[J_{0}\left(\frac{1}{2} k c\right) \sin (k z)+J_{1}\left(\frac{1}{2} k c\right) \cos (k z)\right] d k . \tag{22}
\end{equation*}
$$

Table I
Comparison of $F(x)$ and $F_{1}(x)$

| $x$ | $F(x)$ | $F_{1}(x)$ | $F(x)-F_{1}(x)$ |
| :--- | :---: | :---: | :---: |
| 0.1 | 0.0493 | 0.0132 | 0.0361 |
| 0.5 | 0.2132 | 0.2000 | 0.0132 |
| 1 | 0.3402 | 0.3637 | -0.0235 |
| 2 | 0.4450 | 0.4571 | -0.0121 |
| 3 | 0.4762 | 0.4800 | -0.0038 |
| 4 | 0.4873 | 0.4885 | -0.0012 |
| 5 | 0.4921 | 0.4926 | -0.0005 |

The first integral vanishes on the airfoil where $z^{2} \leqq c^{2} / 4$ and the second is equal to $2 / c$ on the airfoil (see Ref. 5, p. 65) ; so in the two-dimensional case, for this vorticity distribution

$$
\begin{equation*}
u_{r}=\frac{1}{2} A \quad\left(z^{2} \leqq c^{2} / 4\right) . \tag{23}
\end{equation*}
$$

An exact evaluation of the integral of Eq. (20) is rather difficult; however, an approximate evaluation, valid for large values of $a / c$, may be obtained quite easily. If

$$
\begin{equation*}
F(x)=x I_{1}(x) K_{1}(x) \tag{24}
\end{equation*}
$$

a very close approximation to $F(x)$ is given by

$$
\begin{equation*}
F_{1}(x)=\frac{x^{2} / 2}{3 / 8+x^{2}} \tag{25}
\end{equation*}
$$

It may be noted that the asymptotic expansions for $F(x)$ and $F_{1}(x)$ are the same up through terms of order $\left(x^{-2}\right)$. It is shown in Table I and Fig. 3 that $F_{1}(x)$ is a good approximation to $F(x)$ even for small values of $x$.


Fig. 3. Comparison of $F(x)$ and $F_{1}(x)$.
Since

$$
\begin{equation*}
F_{1}(x)-\frac{1}{2}=-\frac{3 / 16}{3 / 8+x^{2}} \tag{26}
\end{equation*}
$$

an approximate expression for $\Delta u$, the difference between the ring airfoil downwash of Eq. (20) and the corresponding two-dimensional case is given by

$$
\begin{equation*}
\Delta u=-(3 / 32) A c \int_{0}^{\infty}\left[J_{0}\left(\frac{1}{2} k c\right) \sin k z+J_{1}\left(\frac{1}{2} k c\right) \cos k z\right] \frac{d k}{3 / 8+a^{2} k^{2}} \tag{27}
\end{equation*}
$$

Let $\lambda=k c / 2, \alpha=\sqrt{3 / 32} c / a$ and $\beta=2 z / c$. Then

$$
\begin{equation*}
\Delta u=-\frac{1}{2} A \alpha^{2} \int_{0}^{\infty}\left[J_{0}(\lambda) \sin \beta \lambda+J_{1}(\lambda) \cos \beta \lambda\right] \frac{d \lambda}{\lambda^{2}+\alpha^{2}} . \tag{28}
\end{equation*}
$$

On the airfoil where $\beta^{2} \leqq 1$, this gives (see Ref. 5, p. 78)

$$
\begin{equation*}
\Delta u=\frac{1}{2} A\left[\alpha \cosh (\alpha \beta) K_{1}(\alpha)-\alpha \sinh (\alpha \beta) K_{0}(\alpha)-1\right] . \tag{29}
\end{equation*}
$$

The ratio of the change in downwash to the two dimensional downwash is $2(\Delta u) / A$. For $\alpha=0.02$ and 0.20 corresponding to $a / c=15.3$ and 1.53 respectively, this ratio is given in Table 2 for the leading edge ( $\beta=-1$ ), the center of the airfoil ( $\beta=0$ ), and for the trailing edge ( $\beta=1$ ).

Table 2
Values of $2(\Delta u) / A$ for the ring airfoil

| $\alpha$ |  |  |
| :---: | :---: | :---: |
| $\alpha / c$ | 0.02 | 0.20 |
| $\beta=-1$ | 15.3 | 1.53 |
| $\beta=0$ | -0.0009 | 0.0451 |
| $\beta=1$ | -0.0023 | -0.0448 |

As the downwash velocity is determined by the slope of the camber line, the airfoil camber required to produce the lift distribution of Eq. (18) may be computed by integrating the downwash velocity. The camber lines for $a / c=1.53$ and for the two dimensional case are shown for comparison in Fig. 4.
6. Conclusions. From Table 2, it is apparent that the effects of the curvature of the chord plane of the ring airfoil are negligibly small if $a / c=15.3$ while they are fairly large for $a / c=1.53$. From


Fig. 4. Airfoil profiles having the same vorticity. See Eq. (18). Fig. 4 it appears that the lift of a ring airfoil having a constant angle of attack across the chord would be somewhat more than that of the corresponding two dimensional airfoil and the lift is shifted away from the leading edge toward the center of the airfoil.

It seems reasonable to suppose that the changes at any given section of the ring wing are caused primarily by the vortex elements near that section. These results may thus be applied in estimating the effects of the dihedral of a wing on the lift distribution over the wing's surface. This indicates that if the curvature of the chord plane is small, as is normally the case, no appreciable changes in the lift distribution need be expected; however, if the radius of curvature of the chord plane is of the same order as the chord, fairly large effects may be expected. This should be particularly noticeable near the vertex of a cranked wing.

# THE MATHEMATICS OF WEIR FORMS* 

BY<br>ALLEN P. COWGILL<br>Syracuse University

1. Introduction. This paper aims at making more readily available the results of a study of the mathematics of weir forms, a subject in Hydraulics to which higher mathematics can be applied. Section 2 covers the general application of Abel's integral equation to the forms of weirs by Brenke. ${ }^{1}$ Section 3 deals with sectionally analytic weir forms, particularly the Stout-Sutro weir. The writer believes he has made the original application of Abel's integral equation to this corrected weir form. Section 4 deals with cases when the quantity of flow can be expressed as a convergent series.
2. Abel's integral equation. One method of solution of the problem of weir forms involves Abel's integral equation. The natural conditions found in the flow of water through weirs satisfy all the requirements of this integral equation, so it proves a superior mathematical tool in handling the general problem. In 1922 Brenke studied the problem of the weir form when the flow was proportional to some power of the depth. He made the original application of Abel's integral equation. This equation has the form

$$
\begin{equation*}
\phi(x)=\int_{a}^{x} \frac{f(s) d s}{(x-s)^{\lambda}}, \quad 0<\lambda<1 \tag{1}
\end{equation*}
$$

and its solution is, under certain conditions,

$$
\begin{equation*}
f(x)=\frac{\sin \lambda \pi}{\pi} \int_{a}^{x} \frac{\phi^{\prime}(s) d s}{(x-s)^{1-\lambda}} \tag{2}
\end{equation*}
$$

To obtain (2) from (1) use is made of two fundamental formulas, namely ${ }^{2,3}$

$$
\begin{gather*}
\frac{\pi}{\sin \lambda \pi}=\int_{a}^{z} \frac{d x}{(z-x)^{1-\lambda}(x-s)^{\lambda}}, \quad 0<\lambda<1  \tag{3}\\
\int_{a}^{\varepsilon} \int_{0}^{z} \frac{\phi^{\prime}(s) d x}{(z-x)^{1-\lambda}(x-s)^{\lambda}} d s=\int_{a}^{z} \frac{1}{(z-x)^{1-\lambda}} \int_{a}^{x} \frac{\phi^{\prime}(s) d s}{(x-s)^{\lambda}} d x \tag{4}
\end{gather*}
$$

$\phi(s)$ is assumed to be continuous and have a continuous derivative in the closed

[^16]interval, $a$ to $b$. Formula (4) is known as Dirichlet's generalized formula. ${ }^{4}$ Multiply (3) by $\phi^{\prime}(s) d s$ and integrate from $a$ to $z,(a \leqq z \leqq b)$, which gives
\[

$$
\begin{equation*}
\frac{\pi}{\sin \lambda \pi}[\phi(z)-\phi(a)]=\int_{a}^{z} \int_{:}^{z} \frac{\phi^{\prime}(s) d x}{(z-x)^{1-\lambda}(x-s)^{\lambda}} d s \tag{5}
\end{equation*}
$$

\]

If (4) is applied to the right hand member of (5), we have

$$
\begin{equation*}
\phi(z)-\phi(a)=\frac{\sin \lambda \pi}{\pi} \int_{a}^{z} \frac{1}{(z-x)^{1-\lambda}} \int_{a}^{x} \frac{\phi^{\prime}(s) d s}{(x-s)^{\lambda}} d x \tag{6}
\end{equation*}
$$

Then, if $\phi(a)=0$ and if we replace the inner integral on the right of (6) by its value from (2), we see that (6) becomes (1). Hence (2) is a solution of (1).

The weir is actually symmetrically constructed as in Fig. 3, but for purposes of the present calculation a half section is used (Fig. 1). Letting $y=f(x)$ express the


Fig. 1.


Fig. 2.
distribution of width over depth, $h$ the depth of flow, $C_{d}$ the coefficient of discharge (approximately 0.6 ), and assuming that the quantity of flow is proportional to the $m$ th power of the depth of stream, we have

$$
\begin{equation*}
C_{d} \int_{0}^{h}[2 g(h-x)]^{1 / 2} f(x) d x=b h^{m} \tag{7}
\end{equation*}
$$

or, letting $K=b / C_{d}(2 g)^{1 / 2}$,

$$
\int_{0}^{h}(h-x)^{1 / 2} f(x) d x=K h^{m}
$$

Differentiating with respect to $h$, we have

$$
\begin{equation*}
\int_{0}^{h} \frac{f(x) d x}{(h-x)^{1 / 2}}=2 K m h^{m-1} \tag{8}
\end{equation*}
$$

This equation has the form of Abel's integral equation.
To find the equation of the weir form when the flow is $b h^{m}$, we have

[^17]$$
f(x)=\frac{\sin \pi / 2}{\pi} \int_{0}^{x} \frac{2 K m(m-1) h^{m-2}}{(x-h)^{1 / 2}} d h
$$
or
\[

$$
\begin{equation*}
f(x)=\frac{2 K m(m-1)}{\pi} \int_{0}^{x} \frac{h^{m-2}}{(x-h)^{1 / 2}} d h . \tag{9}
\end{equation*}
$$

\]

By the use of Gamma Functions, ${ }^{5}$

$$
\begin{equation*}
f(x)=\frac{2 K \Gamma(m+1)}{\pi^{1 / 2} \Gamma\left(m-\frac{1}{2}\right)} x^{m-3 / 2}, \quad m \geqq 2 \tag{10}
\end{equation*}
$$

Let $n$ be a positive integer $\geqq 2$. Then the Gamma Functions become simple products when $m=n$ or $m=n+\frac{1}{2}$. When $m=n$,

$$
\begin{equation*}
f(x)=\frac{K}{\pi} \frac{2^{n} n!}{1 \cdot 3 \cdot 5 \cdots(2 n-3)} x^{n-3 / 2} ; \quad n \geqq 2 \tag{11}
\end{equation*}
$$

When $m=n+\frac{1}{2}$,

$$
\begin{equation*}
f(x)=K \frac{1 \cdot 3 \cdot 5 \cdot \cdots(2 n+1)}{2^{n}(n-1)!} x^{n-1} ; \quad n \geqq 2 \tag{12}
\end{equation*}
$$

3. Sectionally analytic weir forms. When $m$ is equal to or greater than $\frac{3}{2}$ one gets continuous forms of weirs (Fig. 2). When $m$ is greater than $\frac{1}{2}$ and less than $\frac{3}{2}$ the weir forms have an infinite width at the bottom, the curve $f(x)$ approaching the $X$-axis asymptotically. As this is impossible in practice, the necessary correction due to limiting the width of the weir furnishes an interesting mathematical problem which has been studied in the case where $m=1$.


Fig. 3. Copy of Stout's drawing in 1897.


Fig. 4.

The weir in which the flow is proportional to the depth is of engineering value. One of the first records of it is in an article by O. V. P. Stout. ${ }^{6}$ Approximate correction was made by circular openings (Fig. 3). A weir of this type was also constructed by Sutro and it is referred to in some texts as the Sutro weir. The modern way to correct

[^18]the Stout-Sutro weir is to start with a rectangular cross section of depth $a$ and width $w$ (Fig. 4). The upper section is then designed to give a flow proportional to the first power of the depth when the depth of flow equals or exceeds $a$ :

The calculations of E. A. Pratt ${ }^{7}$ by series solutions gave a mathematically correct form of weir where $h \geqq a$. In this solution a rectangular section of depth $a$ and width $w$ is first assumed. Soundings are made with the zero point $\frac{1}{3} a$ from the bottom,

$$
Q=b H=b\left(h+\frac{2}{3} a\right)
$$

The quantity of water discharged through the rectangular portion of the weir is

$$
Q_{0}=\frac{4}{3} w K\left[(h+a)^{3 / 2}-h^{3 / 2}\right] .
$$

Therefore

$$
Q=\frac{4}{3} w K\left[(h+a)^{3 / 2}-h^{3 / 2}\right]+2 K \int_{0}^{h}(h-x)^{1 / 2} f(x) d x=b\left(h+\frac{2}{3} a\right)
$$

As this equality must hold for $h=0, \frac{4}{3} w K a^{3 / 2}=\frac{2}{3} a b$ and $b=2 w K a^{1 / 2}$, so

$$
\int_{0}^{h}(h-x)^{1 / 2} f(x) d x=\frac{2}{3} w\left[\frac{3}{2} h a^{1 / 2}+a^{3 / 2}-(h+a)^{3 / 2}+h^{3 / 2}\right] .
$$

Instead of solving by the use of series, as Pratt did, one may differentiate with respect to $h$ to put the equation in the form of Abel's integral equation; thus

$$
\int_{0}^{h} \frac{f(x) d x}{(h-x)^{1 / 2}}=2 w\left[a^{1 / 2}-(h+a)^{1 / 2}+h^{1 / 2}\right]
$$

For the solution of Abel's integral equation the right hand member must be a continuous function, equal to zero when $h=0$. These conditions being satisfied,

$$
\begin{align*}
y & =f(x)=\frac{\sin \pi / 2}{\pi} 2 w \int_{0}^{x} \frac{\left[-\frac{1}{2}(h+a)^{-1 / 2}+\frac{1}{2} h^{-1 / 2}\right]}{(x-h)^{1 / 2}} d h \\
& =\frac{w}{\pi}\left[\int_{0}^{x} \frac{d h}{\left[x h-h^{2}\right]^{1 / 2}}-\int_{0}^{x} \frac{d h}{\left[a x+h(x-a)-h^{2}\right]^{1 / 2}}\right] \\
& =\frac{w}{2}+\frac{w}{\pi} \sin ^{-1} \frac{a-x}{a+x}, \tag{13}
\end{align*}
$$

or

$$
\begin{equation*}
y=w-\frac{2 w}{\pi} \tan ^{-1}\left(\frac{x}{a}\right)^{1 / 2} \tag{14}
\end{equation*}
$$

This solution can also be written

$$
\begin{equation*}
x=a \tan ^{2} \frac{\pi(w-y)}{2 w} \tag{15}
\end{equation*}
$$

In the design of the Stout-Sutro weir it is now necessary to choose an $a$ for substitution in the above formulas. One will generally know the average depth of flow

[^19]expected through the weir. It is felt to be better to keep the curve of (13) as close to the curve of the uncorrected weir derived from (10), $y=2 K x^{-1 / 2} / \pi$, as possible. The scheme is to make the rectangular section of the Stout-Sutro weir have the same dimensions as if the uncorrected weir of (10) were corrected for the average depth of flow by the addition of a rectangular section at the bottom, below the $Y$-axis, to compensate for limiting its width to $2 w$.

One substitutes $y=w$ in the uncorrected formula (10) above and solves for $x$. This value and that of the $h$ assumed to be average are substituted in

$$
\frac{h}{2} \sin ^{-1} \frac{h-2 x}{h}+\frac{2}{3 x^{1 / 2}}(h+r)^{3 / 2}-\frac{\pi h}{4}-\left(h x-x^{2}\right)^{1 / 2}-\frac{2}{3 x^{1 / 2}}(h-x)^{3 / 2}=0
$$

which is solved for $r$. One then makes $a$, the depth of the rectangular section, equal to $x+r$. It must be appreciated that (10) can be corrected for one depth of flow by the addition of a rectangular opening at the bottom, but would not be correct at any other depth of flow. Formula (13) is correct at any depth, $H>\frac{2}{3} a$ (Fig. 4).
4. Series solutions of weir forms. We consider now the forms of weirs when the quantity of flow can be expressed as a convergent series in powers of $h$. Assume that the quantity of flow, $Q(h)$, can be written

$$
\begin{equation*}
Q(h)=\sum_{n=0}^{n-\infty} a_{n} h^{n+\alpha} . \tag{16}
\end{equation*}
$$

a convergent series not having a constant term, and assume the form of weir to be given by

$$
\begin{equation*}
f(x)=\sum_{n=0}^{n-\infty} f_{n}(x), \tag{17}
\end{equation*}
$$

each term of (17) giving rise to one term of (16).
The general equation is

$$
C_{d}(2 g)^{1 / 2} \int_{0}^{h}(h-x)^{1 / 2} f(x) d x=Q(h)
$$

Its solution will involve a series of integral equations of the form

$$
C_{\alpha}(2 g)^{1 / 2} \int_{0}^{h}(h-x)^{1 / 2} f_{n}(x) d x=a_{n} h^{n+\alpha} \quad n=0,1,2, \cdots ; \alpha>\frac{1}{2}
$$

which can be solved by the use of (10), giving

$$
\begin{equation*}
f_{n}(x)=C a_{n} \frac{\Gamma(n+\alpha+1)}{\Gamma\left(n+\alpha-\frac{1}{2}\right)} x^{n+\alpha-3 / 2} \tag{18}
\end{equation*}
$$

where

$$
C=\frac{2}{C_{d}(2 g \pi)^{1 / 2}} .
$$

Substitution of this in (17) gives the formal solution

$$
\begin{equation*}
f(x)=C \sum_{n=0}^{n-\infty} a_{n} \frac{\Gamma(n+\alpha+1)}{\Gamma\left(n+\alpha-\frac{1}{2}\right)} x^{n+\alpha-3 / 2} \tag{19}
\end{equation*}
$$

The first term of this series

$$
\begin{equation*}
f_{0}(x)=C a_{0} \frac{\Gamma(\alpha+1)}{\Gamma\left(\alpha-\frac{1}{2}\right)} x^{\alpha-3 / 2} \tag{20}
\end{equation*}
$$

will be discontinuous at $x=0$ if $\frac{1}{2}<\alpha<\frac{3}{2}$ and continuous if $\alpha \geqq \frac{3}{2}$.
The series formed by all the terms after the first will converge and represent a continuous function of $x$. This may be proved as follows. By hypothesis the series $\sum_{n=1}^{n=\infty} a_{n} h^{n+\alpha}$ converges since it is the series for $Q(h)$, (16), with the first term omitted. Let

$$
\begin{aligned}
c_{n} & =\frac{\Gamma(n+\alpha+1)}{\Gamma\left(n+\alpha-\frac{1}{2}\right)}, \quad \alpha>\frac{1}{2} \\
& =\frac{(n+\alpha)(n+\alpha-1) \Gamma(n+\alpha-1)}{\Gamma\left(n+\alpha-\frac{1}{2}\right)}, \quad \Gamma(p+1)=p \Gamma(p) \\
& =(n+\alpha)(n+\alpha-1) c_{n}^{\prime}
\end{aligned}
$$

where $c_{n}^{\prime}=\Gamma(n+\alpha-1) / \Gamma\left(n+\alpha-\frac{1}{2}\right)$ and $0<c_{n}^{\prime}<1$ since $\Gamma(p)$ increases monotonically for $p>1.46$. Now ${ }^{8}$ if the series $\sum_{n=1}^{n-\infty} a_{n} h^{n+\alpha}$ converges, so also will the series

$$
\sum_{n=1}^{n=\infty} c_{n}^{\prime} a_{n} h^{n+\alpha}, \quad \sum_{n=1}^{n=\infty} n c_{n}^{\prime} a_{n} h^{n+\alpha} \text { and } \sum_{n=1}^{n-\infty} n^{2} c_{n}^{\prime} a_{n} h^{n+\alpha} .
$$

But the series $\sum_{n=1}^{n=\infty} c_{n} a_{n} h^{n+\infty}$ is a simple combination of these three series, hence it also converges. In each case the function represented by the series is continuous.

We have then the form of weir given by

$$
\begin{equation*}
f(x)=f_{0}(x)+g(x) \tag{21}
\end{equation*}
$$

where $f_{0}(x)$ is given by (20) and

$$
g(x)=C \sum_{n=1}^{n-\infty} c_{n} a_{n} x^{n+\alpha-3 / 2}
$$

the quantities $\alpha, C$ and $c_{n}$ being as specified above. The solution $f(x)$ is discontinuous at $x=0$ if $\frac{1}{2}<\alpha<\frac{3}{2}$. It is continuous for $\alpha \geqq \frac{3}{2}$.

[^20]
# THE NUMERICAL SOLUTION OF LAPLACE'S AND POISSON'S EQUATIONS* 

BY<br>DAVID MOSKOVITZ.<br>Carnegie Institute of Technology

1. Introduction. A quite common method of solving numerically the Laplace differential equation

$$
\begin{equation*}
\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}=0 \tag{1.1}
\end{equation*}
$$

with the boundary values of $V$ prescribed on some contour $\Gamma$ bounding a region $R$ is to approximate $V$ by the solution $u$ of the Laplace difference equation:

$$
\begin{equation*}
4 u(x, y)=u(x+h, y)+u(x-h, y)+u(x, y+h)+u(x, y-h) . \tag{1.2}
\end{equation*}
$$

Briefly, the method of procedure, commonly called the Liebmann procedure, ${ }^{1}$ is to cover the region $R$ with a rectangular network of lines at distances $h$ apart, and to assume values at the interior lattice points of this network. Using these assumed values and the known boundary values, we traverse the region $R$ moving in some definite geometrical pattern from lattice point to lattice point, replacing the assumed values of $u$ at each lattice point by the arithmetic average of the values of $u$ at the four neighboring lattice points. We then repeat the traverse moving in the same pattern to obtain a second improved value of $u$ at each lattice point; and so on until a convergent stage is reached when the values of $u$ are no longer changed materially by continued traversing.

The purpose of this paper is to present a process which yields precisely the convergent values of $u$ obtained by infinitely many traverses of the region. In more precise language, if $u_{k}$ is the $k$ th approximation of the value of $u$ after $k$ traverses, our process yields the value $u=\lim _{k \rightarrow \infty} u_{k}$.
2. Notation and set up of the problem. Equation (1.2) can be transformed to

$$
\begin{equation*}
4 u(x, y)=u(x, y+1)+u(x, y-1)+u(x+1, y)+u(x-1, y) \tag{2.1}
\end{equation*}
$$

by a simple transformation, and we shall concern ourselves with the solution of equation (2.1), with the values of $u$ prescribed on the boundary lines

$$
x=0, \quad x=n, \quad y=0, \quad \text { and } \quad y=m
$$

of the rectangle $R$.
Unless otherwise stated the numbers $m$ and $n$ are fixed positive integers, and $i$ and $j$ will be used as variable positive integers with the range of values

$$
i=1,2, \cdots, n-1 ; \quad j=1,2, \cdots, m-1 .
$$

We shall denote the value of $u$ at the point $(i, j)$ by $u_{j}(i)$, and we desire to distinguish the known prescribed values of $u$ on the boundary (which values are precisely the

[^21]same as those of $V$ on the boundary) from the unknown values of $u$ at the interior lattice points. Accordingly, we denote the prescribed values of $u$ on the boundaries as follows:
\[

$$
\begin{array}{lllll}
\text { by } & \bar{u}_{j}(0) & \text { at }(0, j) ; & \text { by } & \bar{u}_{j}(n) \\
\text { at } & (n, j) ; \\
\text { by } & \bar{u}_{0}(i) & \text { at }(i, 0) ; & \text { by } \bar{u}_{m}(i) & \text { at }(i, m) ;
\end{array}
$$
\]

and agree that

$$
u_{i}(0)=u_{j}(n)=u_{0}(i)=u_{m}(i)=0
$$

wherever these terms appear in our equations.
At each interior lattice point we can write

$$
\begin{equation*}
4 u_{i}(i)=u_{i}(i+1)+u_{i}(i-1)+u_{i+1}(i)+u_{i-1}(i)+\phi_{j}(i), \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi_{i}(i)=\delta_{i, 1} \bar{u}_{j}(0)+\delta_{i, n-1} \bar{u}_{j}(n)+\delta_{i, 1} \bar{u}_{0}(i)+\delta_{i, m-1} \bar{u}_{m}(i), \tag{2.3}
\end{equation*}
$$

and $\delta_{i j}$ (or $\delta_{i, i}$ ) is the Kronecker delta defined by

$$
\delta_{i j}=1, \quad \text { if } \quad i=j ; \quad \delta_{i j}=0, \quad \text { if } \quad i \neq j .
$$

3. A special system of difference equations. We consider the solution of the system of equations

$$
\begin{array}{r}
L_{c} u_{j}(i) \equiv c u_{j}(i)-u_{j}(i+1)-u_{j}(i-1)=u_{i+1}(i)+u_{j-1}(i)+\phi_{j}(i),  \tag{3.1}\\
(i=1,2, \cdots, n-1 ; j=1,2, \cdots, m-1),
\end{array}
$$

in which $c$ and the $(m-1)(n-1)$ constants $\phi_{j}(i)$ are prescribed. ${ }^{2}$ We assume that

$$
u_{j}(0)=u_{j}(n)=u_{0}(i)=u_{m}(i)=0,
$$

and seek the values of the $(m-1)(n-1)$ unknowns $u_{j}(i)$.
The system (3.1) represents ( $m-1$ ) difference equations in the ( $m-1$ ) functions $u_{i}(x),(j=1,2, \cdots, m-1)$, whose values are desired for integral values of the argument $x$ from 1 to ( $n-1$ ). It can be readily shown that system (3.1) has a unique solution, and of course this solution can be written down by Cramer's Rule, but we shall give the solution in another form.

An immediate property of the operator $L_{c}$ defined by (3.1) is given by

$$
\begin{equation*}
L_{c+a} u(i)=\left(L_{c}+a\right) u(i), \tag{3.2}
\end{equation*}
$$

where $a$ is any constant. We define the inverse operator $L_{c}^{-1}$ and integral powers $L_{c}^{k}$ of the operator $L_{c}$ in the usual manner.

From (3.2), we obtain

$$
\begin{equation*}
\left[L_{c}+a\right]^{-1}=L_{c+a}^{-1} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{c}\left[L_{c+a}^{-1}\right]=1-L_{c+a}^{-1}, \tag{3.4}
\end{equation*}
$$

where 1 is used as the identity operator. The latter is established as follows:

$$
L_{c}\left[L_{c+a}^{-1}\right]=\left[L_{c+a}-a\right]\left[L_{c+a}^{-1}\right]=L_{c+a} L_{c+a}^{-1}-a L_{c+a}^{-1}=1-a L_{c+a}^{-1} .
$$

[^22]The solution of system (3.1) will be given symbolically in terms of the inverse operator $L_{c}^{-1}$, and the interpretation of the symbolic solution will depend on the constants $D_{o}(k)$ and $\lambda_{c, k}(i)$ defined below. To apply the solution obtained to the solution of the Laplace difference system (2.2), we have merely to observe that (2.2) is a special case of (3.1) in which $c=4$ and $\phi_{j}(i)$ has the value given in (2.3).

Let $\sigma_{c}$ and $\rho_{c}$ be the roots of the characteristic equation

$$
\begin{equation*}
c \xi-\xi^{2}-1=0 . \tag{3.5}
\end{equation*}
$$

We define $D_{c}(k)$ and $\lambda_{c, k}(i)$ by

$$
\left.\begin{array}{rl}
D_{c}(k) & =\frac{\sigma_{c}^{k}-\rho_{c}^{k}}{\sigma_{c}-\rho_{c}} \\
\lambda_{c, k}(i) & =\frac{D_{c}(k)}{D_{c}(n)} D_{c}(n-i) \quad \text { when } \quad k \leqq i,  \tag{3.7}\\
\lambda_{c, k}(i) & =\frac{D_{c}(n-k)}{D_{c}(n)} D_{c}(i) \text { when } \quad k \geqq i .
\end{array}\right\}
$$

The identities

$$
\begin{equation*}
D_{c}(n)=D_{c}(i) D_{c}(n-i+1)-D_{c}(i-1) D_{c}(n-i) \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{c}(i+1)={ }_{c} D_{c}(i)-D_{c}(i-1) \tag{3.9}
\end{equation*}
$$

with $D_{c}(0)=0, D_{c}(1)=1$ are easily established. In terms of the operator $L_{c}$, we may write (3.9) in the form

$$
\begin{equation*}
L_{c} D_{c}(i)=0 . \tag{3.10}
\end{equation*}
$$

Also if $a$ is any constant, we have

$$
L_{c} D_{c+a}(i)=\left[L_{c+a}-a\right] D_{c+a}(i)=L_{c+a} D_{c+a}(i)-a D_{c+a}(i) ;
$$

hence

$$
\begin{equation*}
L_{c} D_{c+a}(i)=-a D_{c+a}(i) . \tag{3.11}
\end{equation*}
$$

We shall show that

$$
\begin{equation*}
L_{c} \lambda_{c, k}(i)=\delta_{i k} . \tag{3.12}
\end{equation*}
$$

To establish (3.12) we have three cases to consider:

1) When $k \leqq i-1$, we have

$$
\begin{equation*}
L_{c} \lambda_{c, k}(i)=\frac{D_{c}(k)}{D_{c}(n)} L_{c} D_{c}(n-i)=0, \quad \text { by } \tag{3.10}
\end{equation*}
$$

2) When $k \geqq i+1$, we have

$$
L_{c} \lambda_{c, k}(i)=\frac{D_{c}(n-k)}{D_{c}(n)} L_{c} D_{c}(i)=0, \quad \text { by } \quad(3.10)
$$

3) When $k=i$, we have

$$
\begin{aligned}
L_{c} \lambda_{c, i}(i) & =c \lambda_{c}(i)-\lambda_{c, i}(i+1)-\lambda_{c, i}(i-1) \\
& =\left[c D_{c}(n-i) D_{c}(i)-D_{c}(n-i-1) D_{c}(i)-D_{c}(i-1) D_{c}(n-i)\right] / D_{c}(n) \\
& =\left[D_{c}(i)\left\{c D_{c}(n-i)-D_{c}(n-i-1)\right\}-D_{c}(i-1) D_{c}(n-i)\right] / D_{c}(n) \\
& =\left[D_{c}(i) D_{c}(n-i+1)-D_{c}(i-1) D_{c}(n-i)\right] / D_{c}(n), \text { by } \quad(3.9), \\
& =D_{c}(n) / D_{c}(n)=1, \quad \text { by }(3.8) .
\end{aligned}
$$

Also useful is the relation

$$
\begin{equation*}
L_{c} \lambda_{c+a, k}(i)=\delta_{i, k}-a \lambda_{c+a, k}(i), \tag{3.13}
\end{equation*}
$$

which is a consequence of (3.2) and (3.12).
4. The special cases $m=2$ and $m=3$. As an introduction to the symbolic solution, we consider first the simplest case, $m=2$, in which case there is only one equation in the system (3.1), since by hypothesis $u_{0}(i)=u_{m}(i)=0$. This equation is

$$
\begin{equation*}
L_{\mathrm{c}} u_{1}(i)=\phi_{1}(i) . \tag{4.1}
\end{equation*}
$$

Its solution is given by

$$
\begin{equation*}
u_{1}(i)=\sum_{k=1}^{n-1} \lambda_{c, k}(i) \phi_{1}(k) . \tag{4.2}
\end{equation*}
$$

We also write the solution of (4.1) in the symbolic form

$$
\begin{equation*}
u_{1}(i)=L_{c}^{-1}\left[\phi_{1}(i)\right] \tag{4.3}
\end{equation*}
$$

where the expression on the right side of (4.3) is to be interpreted as being equal to the right side of (4.2). Explicitly,

$$
\begin{equation*}
L_{c}^{-1}\left[\phi_{1}(i)\right]=\sum_{k=1}^{n-1} \lambda_{e, k}(i) \phi_{1}(k) . \tag{4.4}
\end{equation*}
$$

To make actual use of the solution given in (4.2), it is necessary to have a table of values of the constants $\lambda_{c, k}(i)$. In order not to complicate unduly the notation, the dependence of these constants on $n$ has been omitted from our notation. A complete tabulation of these constants would require a great deal of space, since, with $m$ fixed, they still depend on four parameters $c, k, i$, and $n$. However, for the application to the solution of (2.2), we have $c=4$, and abridged usable tables requiring only tabulations for $i=1,2$ and varying $k$ and $n$ are given in Tables 1 and 2 of $\$ 9$.

The entries in Table 1 give the multipliers to be applied to each of the boundary values in the calculation of $u_{1}(1)$. As an example let us consider a 2 by 10 rectangle. Multiply each boundary value of the first column by the multiplier which appears opposite it in the column $n=10$; add these products, and the sum is the value of $u_{1}(1)$. Likewise, by interchanging the arguments ( $n-i$ ) and $i$, the same multipliers can be used to calculate $u_{1}(9)$. Next using $u_{1}(1)$ and $u_{1}(9)$ as known boundary values and the 2 by 8 rectangle which has the points $(1,1)$ and $(1,9)$ on its ends, use the multipliers in column $n=8$ to calculate $u_{1}(2)$ and $u_{1}(8)$; and so on.

The number of points at which the values of $u$ are to be calculated by this process can be cut in half by using Table 2. With the entries in this table, using again a 2 by

10 rectangle, the values $u_{1}(2)$ and $u_{1}(8)$ can be calculated using the multipliers in column $n=10$; then in the 2 by 6 rectangle with points $(2,1)$ and $(8,1)$ as ends, and using multipliers in column $n=6$, calculate $u_{1}(4)$ and $u_{1}(6)$. The values $u_{1}(1), u_{1}(3), \cdots, u_{1}(7)$ can then be obtained by the Liebmann formula, each being the average of its four neighbors. For example,

$$
u_{1}(5)=\frac{1}{4}\left[u_{1}(4)+u_{1}(6)+\bar{u}_{0}(5)+\bar{u}_{2}(5)\right] .
$$

In the case $m=3$, system (3.1) reduces to the following:

$$
\begin{equation*}
L_{c} u_{1}(i)=u_{2}(i)+\phi_{1}(i), \quad L_{c} u_{2}(i)=u_{1}(i)+\phi_{2}(i), \tag{4.5}
\end{equation*}
$$

with two unknown functions $u_{1}$ and $u_{2}$.
Treating the operators in (4.5) as algebraic multipliers, and solving for $u_{1}$ and $u_{2}$, we obtain symbolically

$$
\left.\begin{array}{l}
u_{1}(i)=\frac{L_{c}}{L_{c}^{2}-1} \phi_{1}(i)+\frac{1}{L_{c}^{2}-1} \phi_{2}(i)  \tag{4.6}\\
u_{2}(i)=\frac{1}{L_{e}^{2}-1} \phi_{1}(i)+\frac{L_{c}}{L_{e}^{2}-1} \phi_{2}(i)
\end{array}\right\}
$$

The following interpretation of the operators in the right members of (4.6) produces actual solutions. Write the operators of the right members in their partial fraction expansions, obtaining

$$
\begin{aligned}
& \frac{L_{c}}{L_{c}^{2}-1}=\frac{1}{2}\left[\frac{1}{L_{c}-1}+\frac{1}{L_{c}+1}\right]=\frac{1}{2}\left[L_{c-1}^{-1}+L_{c+1}^{-1}\right] \\
& \frac{1}{L_{c}^{2}-1}=\frac{1}{2}\left[\frac{1}{L_{c}-1}-\frac{1}{L_{c}+1}\right]=\frac{1}{2}\left[L_{c-1}^{-1}-L_{c+1}^{-1}\right]
\end{aligned}
$$

The last step in each line follows from (3.3). Consequently, the explicit solution of (4.5) is given by

$$
\begin{equation*}
u_{1}(i)=\sum_{k=1}^{n-1}\left[\alpha_{k}(i) \phi_{1}(k)+\beta_{k}(i) \phi_{2}(k)\right], \quad u_{2}(i)=\sum_{k=1}^{n-1}\left[\beta_{k}(i) \phi_{1}(k)+\alpha_{k}(i) \phi_{2}(k)\right]_{i} \tag{4.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{k}(i)=\frac{1}{2}\left[\lambda_{c-1, k}(i)+\lambda_{c+1, k}(i)\right], \quad \beta_{k}(i)=\frac{1}{2}\left[\lambda_{c-1, k}(i)-\lambda_{c+1, k}(i)\right] . \tag{4.8}
\end{equation*}
$$

To verify that (4.7) is the solution of (4.5), we use

$$
L_{c} \alpha_{k}(i)=\delta_{i k}+\beta_{k}(i), \quad L_{c} \beta_{k}(i)=\alpha_{k}(i)
$$

which follow from (4.8) and (3.13). Consequently,

$$
\begin{aligned}
L_{c^{i u_{1}}(i)} & =\sum_{k=1}^{n-1}\left\{\left[L_{c} \alpha_{k}(i)\right]_{\phi_{1}}(k)+\left[L_{c} \beta_{k}(i)\right] \phi_{2}(k)\right\} \\
& =\sum_{k=1}^{n-1} \delta_{i k} \phi_{1}(k)+\sum_{k=1}^{n-1}\left[\beta_{k}(i) \phi_{1}(k)+\alpha_{k}(i) \phi_{2}(k)\right] \\
& =\phi_{1}(i)+u_{2}(i)
\end{aligned}
$$

Tables 3 and 4 of $\S 9$ are useful in calculating values of $u_{1}(1)$ and $u_{1}(2)$ for the case $m=3$, again using $c=4$ which is appropriate for the Laplace cquation.

These tables are used in a similar manner as Tables 1 and 2. However, for each value of $n$, there are two numbers side by side, and also two boundary values in the first column. The interpretation is to multiply the left one of the two boundary values of each line by the left one of the two multipliers of the same line in the appropriate $n$ column.

For a given $n$, calculate $u_{1}(1)$ using multipliers of Table 3 ; then interchanging the subscripts 1 and 2 and the subscripts 0 and 3 , calculate $u_{2}(2)$ using multipliers of Table 4. The value $u_{2}(1)$ is then obtained by the Liebmann formula

$$
u_{2}(1)=\frac{1}{4}\left[\bar{u}_{2}(0)+\bar{u}_{3}(1)+u_{1}(1)+u_{2}(2)\right]
$$

As in the case $m=2$, we can also calculate from the end $x=n$ of the rectangle.
5. The general case. We now consider the general system (3.1) for any value of $m$, and show that its solution can be written symbolically in terms of the polynomial operators defined by

$$
\begin{equation*}
P_{0}=0, \quad P_{1}=1, \quad P_{k}=L_{c} P_{k-1}-P_{k-2} \quad \text { for } \quad k>1 \tag{5.1}
\end{equation*}
$$

The operator $P_{k}$ is a polynomial in $L_{c}$ of the $(k-1)$ st degree, which is precisely the same function of $L_{c}$ as $D_{c}(k)$ is of $c$. From this observation, the following analogue of (3.8) can be seen to be valid,

$$
\begin{equation*}
P_{n}=P_{i} P_{n-i+1}-P_{i-1} P_{n-i} \tag{5.2}
\end{equation*}
$$

By solving the system (3.1) treating $L_{c}$ as an algebraic multiplier, we obtain symbolically
$u_{j}(i)=\sum_{k=1}^{j} \frac{P_{m-j} P_{k}}{P_{m}} \phi_{k}(i)+\sum_{k=j+1}^{m-1} \frac{P_{i} P_{m-k}}{P_{m}} \phi_{k}(i), \quad(j=1,2, \cdots, m-1)$,
in which the operators of the right member are to be interpreted similarly to those of (4.6) ; that is they are to be expanded into partial fractions. Since each of the operator coefficients in the right member of (5.3) is a proper fraction, their expansions will have the form

$$
\begin{equation*}
\frac{P_{i} P_{k}}{P_{m}}=\sum_{l=1}^{m-1} \frac{b_{l}(j, k)}{L_{c}-a_{l}}=\sum_{l=1}^{m-1} b_{l}(j, k) L_{c-a_{l}}^{-1} \tag{5.4}
\end{equation*}
$$

where $a_{1}, a_{2}, \cdots, a_{m-1}$ are the roots of $P_{m}(\xi)=0$ and the numbers $b_{l}(j, k)$ are uniquely determined. The actual solution of (3.1) is thus given in terms of the operators $L_{c-a_{l}}^{-1}$ which have the meaning given in (4.4).

That the foregoing actually yields the solution of (3.1) can be established by operating on each side of (5.3) with the operator $L_{c}$ and using the relations (5.1) and (5.2).
6. Application to solutions of Laplace's equation. We have already observed that (2.2) is a special case of the system (3.1) in which $c=4$ and $\phi_{j}(i)$ has the value given in (2.3). To apply the preceding results, it becomes necessary to calculate the coefficients of $\phi_{k}(i)$ in the solution of (3.1) for various values of $m$. The polynomial operators $P_{m}$ must be factored, and the operators appearing in (5.3) must be written in the more useful form (5.4).

We have already considered in detail the cases $m=2, m=3$ in §4. We now particularize the general solution of $\S 5$ to the case $m=4$.

From (5.3) we have symbolically:

$$
\left.\begin{array}{l}
u_{1}=\frac{P_{1} P_{3}}{P_{4}} \phi_{1}+\frac{P_{1} P_{2}}{P_{4}} \phi_{2}+\frac{P_{1} P_{1}}{P_{4}} \phi_{3}, \\
u_{2}=\frac{P_{1} P_{2}}{P_{4}} \phi_{1}+\frac{P_{2} P_{2}}{P_{4}} \phi_{2}+\frac{P_{1} P_{2}}{P_{4}} \phi_{3}  \tag{6.1}\\
u_{3}=\frac{P_{1} P_{1}}{P_{4}} \phi_{1}+\frac{P_{1} P_{2}}{P_{4}} \phi_{2}+\frac{P_{1} P_{3}}{P_{4}} \phi_{3}
\end{array}\right\}
$$

where

$$
\begin{align*}
& \frac{P_{1} P_{1}}{P_{4}}=\frac{1}{L_{c}^{3}-2 L_{c}}=\frac{1}{4}\left[\frac{1}{L_{c}-\sqrt{2}}+\frac{1}{L_{c}+\sqrt{2}}-\frac{2}{L_{c}}\right]=\frac{1}{4}\left[L_{c-\sqrt{2}}^{-1}+L_{c+\sqrt{2}}^{-1}-2 L_{c}^{-1}\right], \\
& \frac{P_{1} P_{2}}{P_{4}}=\frac{L_{c}}{L_{c}^{3}-2 L_{c}}=\frac{1}{2 \sqrt{2}}\left[\frac{1}{L_{c}-\sqrt{2}}-\frac{1}{L_{c}+\sqrt{2}}\right]=\frac{1}{2 \sqrt{2}}\left[L_{c-\sqrt{2}}^{-1}-L_{c+\sqrt{2}}^{-1}\right], \\
& \frac{P_{1} P_{3}}{P_{4}}=\frac{L_{c}^{2}-1}{L_{c}^{3}-2 L_{c}}=\frac{1}{4}\left[\frac{1}{L_{c}-\sqrt{2}}+\frac{1}{L_{c}+\sqrt{2}}+\frac{2}{L_{c}}\right]=\frac{1}{4}\left[L_{c}^{-1} \sqrt{2}+L_{c+}^{-1} \sqrt{2}+2 L_{c}^{-1}\right],  \tag{6.2}\\
& \frac{P_{2} P_{2}}{P_{4}}=\frac{L_{c}^{2}}{L_{c}^{3}-2 L_{c}}=\frac{1}{2}\left[\frac{1}{L_{c}-\sqrt{2}}+\frac{1}{L_{c}+\sqrt{2}}\right]=\frac{1}{2}\left[L_{c-\sqrt{2}}^{-1}+L_{c}^{-1} \sqrt{2}\right] .
\end{align*}
$$

The explicit form of the solution is given by

$$
\begin{align*}
& u_{1}(i)=\sum_{k=1}^{n-1}\left[Q_{k}(i) \phi_{1}(k)+S_{k}(i) \phi_{2}(k)+R_{k}(i) \phi_{3}(k)\right], \\
& u_{2}(i)=\sum_{k=1}^{n-1}\left[S_{k}(i)\left\{\phi_{1}(k)+\phi_{3}(k)\right\}+T_{k}(i) \phi_{2}(k)\right],  \tag{6.3}\\
& u_{3}(i)=\sum_{k=1}^{n-1}\left[R_{k}(i) \phi_{1}(k)+S_{k}(i) \phi_{2}(k)+Q_{k}(i) \phi_{3}(k)\right],
\end{align*}
$$

where

$$
\begin{align*}
& Q_{k}(i)=\frac{1}{4}\left[\lambda_{c-} \sqrt{2}, k\right. \\
& \left.R_{k}(i)=\lambda_{c+\sqrt{2}, k}(i)+2 \lambda_{c, k}(i)\right], \\
& S_{k}(i)=\frac{1}{2 \sqrt{2}, k}\left[\lambda_{c-\sqrt{2}, k}(i)-\lambda_{c+} \sqrt{2}, k\right.  \tag{6.4}\\
& \left.\lambda_{c+}(i)-2 \lambda_{c, k}, k(i)\right], \\
& T_{k}(i)=\frac{1}{2}\left[\lambda_{c-\sqrt{2}}^{2}, k(i)+\lambda_{c+\sqrt{2}, k}(i)\right],
\end{align*}
$$

and

$$
\begin{align*}
& \phi_{1}(k)=\delta_{k, 1} \bar{u}_{1}(0)+\delta_{k, n-1} \bar{u}_{1}(n)+\bar{u}_{0}(k), \\
& \phi_{2}(k)=\delta_{k, 1} \bar{u}_{2}(0)+\delta_{k, n-1} \bar{u}_{2}(n),  \tag{6.5}\\
& \phi_{3}(k)=\delta_{k, 1} \bar{u}_{3}(0)+\delta_{k, n-1} \bar{u}_{3}(n)+\bar{u}_{4}(k) .
\end{align*}
$$

Multipliers for calculating $u_{2}(1), u_{2}(2)$, and $u_{1}(2)$ are given in Tables 5,6 , and 7 . For a 4 by $n$ rectangle, calculate $u_{2}(1)$ using Table 5, $u_{1}(2)$ using Table $7, u_{3}(2)$ using

Table 7 with subscripts 0 and 4 and subscripts 1 and 3 interchanged. Then calculate $u_{1}(1), u_{3}(1)$ by the Liebmann Formula. Then using known values $u_{1}(1), u_{2}(1), u_{3}(1)$ and treating them as known boundary values for the rectangle one unit shorter, calculate $u_{2}(3)$ using Table $6 ; u_{2}(2)$ can then be obtained by use of the Liebmann Formula. Then calculate $u_{1}(4), u_{3}(4)$ using Table 7 ; and so on. Of course, as in the case $m=2$ and $m=3$, we can also calculate from the end $x=n$ of the rectangle. By this process the value at only every other point on each line is calculated by the use of the tabular values.

For values of $m$ larger than 4, it is only convenient to use composite values of $m$. It can be easily shown that when $m$ is composite having $q$ for one factor then $P_{m}$ contains $P_{q}$ as a factor. However, for larger values of $m$, the necessary tables occupy more space and require a tremendous amount of time in their preparation. Theoretically the complete solution for any value of $m$ is given by (5.3), but practically it is sufficient to use tables with $m=4$. A given rectangle can be covered by a lattice 4 units wide and the values of the function $u$ at the interior lattice points calculated by the methods indicated. When the values of $u$ at these lattice points are obtained, each rectangle can then be subdivided again by a finer network and the first calculated values are then used as approximate values for the finer network, and can in turn be improved either by traversing or by the use of the tables given here.
7. The Poisson Equation. The preceding methods and results can be extended with slight modification to apply to the numerical solution of the more general Poisson equation

$$
\begin{equation*}
\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}=F(x, y), \tag{7.1}
\end{equation*}
$$

in which $F(x, y)$ is defined in the interior of the region $R$. The approximating difference equation in this case is

$$
\begin{equation*}
4 u(x, y)=u(x+h, y)+u(x-h, y)+u(x, y+h)+u(x, y-h)-h^{2} F(x, y) . \tag{7.2}
\end{equation*}
$$

Employing our former notation, we can write at each interior lattice point

$$
\begin{align*}
4 u_{j}(i) & =u_{j}(i+1)+u_{j}(i-1)+u_{j+1}(i)+u_{j-1}(i)-h^{2} F_{i}(i)+\delta_{i, 1} \bar{u}_{j}(0)+\delta_{i, n-1} \bar{u}_{j}(n) \\
& +\delta_{j, 1} \bar{u}_{0}(i)+\delta_{j, m-1} \bar{u}_{m}(i), \quad(i=1,2, \cdots, n-1 ; j=1,2, \cdots, m-1), \quad(7 . \tag{7.3}
\end{align*}
$$

and again consider

$$
u_{j}(0)=u_{j}(n)=u_{0}(i)=u_{m}(i)=0 .
$$

The system (7.3) is again a special case of system (3.1) in which the known function $\phi_{j}(i)$ is now given by

$$
\begin{equation*}
\phi_{j}(i)=\delta_{i, 1} \bar{u}_{j}(0)+\delta_{i, n-1} \bar{u}_{j}(n)+\delta_{j, 1} \bar{u}_{0}(i)+\delta_{j, m-1} \bar{u}_{m}(i)-h^{2} F_{j}(i) . \tag{7.4}
\end{equation*}
$$

Consequently, the general solution given in $\$ 5$ applies at once.
In the case $m=2$, for example, we have

$$
\begin{equation*}
u_{1}(i)=\sum_{k=1}^{n-1} \lambda_{e, k}(i)\left[\delta_{k, 1} \bar{u}_{1}(0)+\delta_{k, n-1} \bar{u}_{1}(n)+\bar{u}_{0}(k)+\bar{u}_{2}(k)-h^{2} F_{1}(k)\right] . \tag{7.5}
\end{equation*}
$$

To apply Tables 1 and 2 to obtain the values of $u_{1}(1)$ and $u_{1}(2)$, first calculate $h^{2} F_{1}(k), k=1,2, \cdots, n-1$, at each interior lattice point. Then apply to these values
the same multipliers as are applied to $\bar{u}_{0}(k)$ and $\bar{u}_{2}(k)$. If Table 2 is used to calculate $u_{1}(2)$, the value $u_{1}(1)$ can be obtained from the associated Liebmann equation

$$
\begin{equation*}
u_{1}(1)=\frac{1}{1}\left[u_{1}(2)+\bar{u}_{1}(0)+\bar{u}_{0}(1)+\bar{u}_{2}(1)-h^{2} F_{1}(1)\right] . \tag{7.6}
\end{equation*}
$$

For the case $m=3$, multiply $h^{2} F_{1}(k)$ and $h^{2} F_{2}(k)$, respectively, by the same multipliers as are used for $\bar{u}_{0}(k)$ and $\bar{u}_{3}(k)$.

For the case $m=4$, additional tables are required. The explicit solution in this case is formally the same as that given in (6.3), but $\phi_{1}(k), \phi_{2}(k)$, and $\phi_{3}(k)$ have the following values:

$$
\left.\begin{array}{l}
\phi_{1}(k)=\delta_{k, 1} \bar{u}_{1}(0)+\delta_{k, n-1} \bar{u}_{1}(n)+\bar{u}_{0}(k)-h^{2} F_{1}(k),  \tag{7.7}\\
\phi_{2}(k)=\delta_{k, 1} \bar{u}_{2}(0)+\delta_{k, n-1} \bar{u}_{2}(n)-h^{2} F_{2}(k), \\
\phi_{3}(k)=\delta_{k, 1} \bar{u}_{3}(0)+\delta_{k, n-1} \bar{u}_{3}(n)+\bar{u}_{4}(k)-h^{2} F_{3}(k) .
\end{array}\right\}
$$

The multipliers $Q_{k}(2)$ and $R_{k}(2)$ appear in Table 7 and are respectively those multipliers applied to $\bar{u}_{0}(k)$ and $\bar{u}_{4}(k)$ in the calculation of $u_{1}(2)$. The multipliers $S_{k}(1)$ appear in Table 5 and are those multipliers applied to both $\bar{u}_{0}(k)$ and $\bar{u}_{4}(k)$ in the calculation of $u_{2}(1)$. The multipliers $S_{k}(2)$ are those multipliers in Table 6 which are applied to both $\bar{u}_{0}(k)$ and $\bar{u}_{4}(k)$ in the calculation of $u_{2}(2)$.

The multipliers $T_{k}(1)$ and $T_{k}(2)$ which must be applied to $h^{2} F_{2}(k)$ in the calculation of $u_{2}(1)$ and $u_{2}(2)$ appear in Tables 8 and 9 respectively.
8. Irregular cases and non-rectangular boundaries. The preceding solutions both in the case of the Laplace equation and the Poisson equation apply only to rectangular boundaries whose dimensions are integral multiples of the lattice unit $h$. To apply Tables 5, 6, and 7 in the solution of the Laplace equation for a rectangular boundary, divide the smaller dimension of the rectangle by 4 to obtain the lattice unit $h$. If the longer dimension of the rectangle is an integral multiple of $h$, the process here outlined for the solution applies directly. We call this the regular case. If the longer dimension is not an integral multiple of $h$, we call this the irregular case, and a modification of the process here outlined is required. We need an analogue of the Liebmann Formula to express the value of a harmonic function approximately in terms of the values of the function at four non-equidistant neighbors.

Let $H(x, y)$ be an arbitrary harmonic function whose value $H_{0}$ at $\left(x_{0}, y_{0}\right)$ is to be expressed approximately in terms of $H_{1}, H_{2}, H_{3}, H_{4}$ which are the values of $H(x, y)$ at the points $\left(x_{0}+r_{1} h, y_{0}\right),\left(x_{0}-r_{2} h, y_{0}\right),\left(x_{0}, y_{0}+r_{3} h\right),\left(x_{0}, y_{0}-r_{4} h\right)$ where $r_{1}, r_{2}, r_{3}, r_{4}$, and $h$ are positive. When $r_{1}=r_{2}=r_{3}=r_{4}=1$, and $I(x, y)$ is approximated by its T. S. (Taylor Series) expansion about ( $x_{0}, y_{0}$ ) up to terms including those of the third degree in $h, H_{0}$ is found to satisfy the Liebmann equation

$$
\begin{equation*}
H_{0}=\frac{1}{4}\left(H_{1}+H_{2}+H_{3}+H_{4}\right) . \tag{8.1}
\end{equation*}
$$

When $r_{1}, r_{2}, r_{3}$, and $r_{4}$ are not equal, and $H(x, y)$ is approximated by its T.S. up to terms including those of the second degree in $h$, we find ${ }^{3}$

$$
\begin{equation*}
H_{0}=a_{1} H_{1}+a_{2} H_{2}+a_{3} H_{3}+a_{4} H_{4} \tag{8.2}
\end{equation*}
$$

where

[^23]\[

$$
\begin{array}{ll}
a_{1}=r_{2} r_{3} r_{4} /\left(r_{1}+r_{2}\right)\left(r_{1} r_{2}+r_{3} r_{4}\right), & a_{2}=r_{1} r_{3} r_{4} /\left(r_{1}+r_{2}\right)\left(r_{1} r_{2}+r_{3} r_{4}\right),  \tag{8.3}\\
a_{3}=r_{1} r_{2} r_{4} /\left(r_{3}+r_{4}\right)\left(r_{1} r_{2}+r_{3} r_{4}\right), & a_{4}=r_{1} r_{2} r_{3} /\left(r_{3}+r_{4}\right)\left(r_{1} r_{2}+r_{3} r_{4}\right) .
\end{array}
$$
\]

If $H(x, y)$ is approximated by its T.S. up to terms of the first degree in $h$, we find

$$
\begin{equation*}
H_{0}=\sum_{k=1}^{4} b_{k} H_{k} \quad \text { with } \quad b_{k}=r_{k}^{-1} /\left(r_{1}^{-1}+r_{2}^{-1}+r_{3}^{-1}+r_{4}^{-1}\right) \tag{8.4}
\end{equation*}
$$

Either (8.2) or (8.4) expresses $H_{0}$ as a weighted average of its four neighbors, and although (8.4) is casier to use, presumably (8.2) gives a better approximation to the value of $H_{0}$. However in the application to the irregular case of the rectangle, we require only the simpler forms to which (8.3) and (8.4) reduce when three of the $r_{k}(k=1,2,3,4)$ are equal to unity.

To determine the values of a harmonic function at the interior lattice points of a rectangle whose dimensions are $4 h$ by $(n+r) h$ where $n$ is an integer and $0<r<1$, let $x, y, z$, etc. be the values of the harmonic function at the points indicated in Fig. 1. By means of Tables 5, 6, 7 we can express $u, v$, and $w$ as linear functions of $x, y, z$


Fig. 1.
and the boundary values. Then by means of (8.2) or (8.4) or any other approximation method determine $x, y$, and $z$ in terms of $u, v, w$, and the boundary values $B_{k}$ ( $k=1,2,3,4,5$ ) at the indicated points of the figure. This process leads to three linear algebraic equations for the determination of $x, y$, and $z$. When these values are determined, the values of the harmonic function at the other interior lattice points can be obtained as the problem is now reduced to the regular case.

A similar method can of course be used for the Poisson equation. In this case the analogue of (8.2) is

$$
\begin{equation*}
H_{0}=a_{1} H_{1}+a_{2} H_{2}+a_{3} H_{3}+a_{4} H_{4}-a_{0} F_{0} \tag{8.5}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{0}=\frac{1}{2} h^{2}\left(\frac{r_{1} r_{2} r_{3} r_{4}}{r_{1} r_{2}+r_{3} r_{4}}\right) \tag{8.6}
\end{equation*}
$$

$F_{0}$ denotes $F\left(x_{0}, y_{0}\right)$, and $a_{1}, a_{2}, a_{3}, a_{4}$ are given by (8.3).
The foregoing method applies equally well if the top and bottom boundaries of the figure are not straight. We postpone for a later paper the procedure which can be applied for non-rectangular boundaries in general. In this subsequent paper we shall also show the application of our methods to an extension of the Liebmann process in which the values at certain of the interior lattice points are calculated from the arithmetic average of the values at their four normal neighbors while the values at the other lattice points are calculated from the values at their four diagonal neighbors.
9. Tables. The entries in the following tables were rounded off to four decimal places from calculations carried out to a higher number of decimal places. In the tables, the decimal points are not printed but are to be understood to be present just before the first digit. In the compilation of these tables, the values of $D_{c}(k)$, defined in (3.6), were required for the values $c=4,3,5,4-\sqrt{2}$, and $4+\sqrt{2}$. These were calculated from the recurrence relation (3.9), and are integers only when $c$ is an integer.

The values $\lambda_{4, k}(1)$ and $\lambda_{4, k}(2)$, defined in (3.7) are the entries in Tables 1 and 2, respectively. The entries in Tables 3 and 4 are the values $\alpha_{k}(i)$ and $\beta_{k}(i)$ for $i=1$ and 2 , respectively; these were calculated from $\lambda_{3, k}(i)$ and $\lambda_{5, k}(i)$ for $i=1$ and 2 using the relations (4.8). The entries of Tables 5 to 9 were calculated from the relations (6.4).

As one convenient check on the accuracy of Tables 1 to 7 , the sum of the multipliers used on all of the boundary values must be equal to unity; this check was applied. The author would be happy to know that no errors were made in the nuany calculations required in the preparation of these tables.

Table 1.-To calculate $u_{1}(1) ; m=2$

| Boundary <br> values | $n=3$ | $n=4$ | $n=5$ | $n=6$ | $n=7$ | $n=8$ | $n \geqq 9$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bar{u}_{1}(0)$ | 2667 | 2679 | 2679 | 2679 | 2679 | 2679 | 2679 |
| $\bar{u}_{0}(1)+\bar{u}_{2}(1)$ | 2667 | 2679 | 2679 | 2679 | 2679 | 2679 | 2679 |
| $\bar{u}_{0}(2)+u_{2}(2)$ | 0667 | 0714 | 0718 | 0718 | 0718 | 0718 | 0718 |
| $\bar{u}_{0}(3)+\bar{u}_{2}(3)$ |  | 0179 | 0191 | 0192 | 0192 | 0192 | 0192 |
| $u_{0}(4)+\bar{u}_{2}(4)$ <br> $\bar{u}_{0}(5)+\bar{u}_{2}(5)$ <br> $\bar{u}_{0}(6)+\bar{u}_{2}(6)$ <br> $\bar{u}_{0}(7)+u_{2}(7)$ <br> $\bar{u}_{0}(8)+\bar{u}_{2}(8)$ |  |  | 0048 | 0051 | 0052 | 0052 | 0052 |
|  |  |  | 0013 | 0014 | 0014 | 0014 |  |
| $\bar{u}_{1}(n)$ | 0667 | 0179 | 0048 | 0013 | 0003 | 0001 | 0000 |

Table 2.-To calculate $u_{1}(2) ; m=2$

| Boundary values | $n=4$ | $n=5$ | $n=6$ | $n=7$ | $n=8$ | $n=9$ | $n \geqq 10$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $u_{1}(0)$ | 0714 | 0718 | 0718 | 0718 | 0718 | 0718 | 0718 |
| $\begin{aligned} & z_{0}(1)+\bar{u}_{2}(1) \\ & \bar{u}_{0}(2)+z_{2}(2) \\ & \bar{u}_{0}(3)+\bar{z}_{2}(3) \\ & \bar{u}_{0}(4)+\bar{u}_{2}(4) \\ & \bar{u}_{0}(5)+\bar{u}_{2}(5) \\ & \bar{i}_{0}(6)+\bar{u}_{2}(6) \\ & z_{0}(7)+\bar{u}_{2}(7) \\ & \bar{u}_{0}(8)+\bar{u}_{2}(8) \\ & \bar{u}_{0}(9)+\bar{u}_{2}(9) \end{aligned}$ | $\begin{aligned} & 0714 \\ & 2857 \\ & 0714 \end{aligned}$ | $\begin{aligned} & 0718 \\ & 2871 \\ & 0766 \\ & 0191 \end{aligned}$ | $\begin{aligned} & 0718 \\ & 2872 \\ & 0769 \\ & 0205 \\ & 0051 \end{aligned}$ | 0718 <br> 2872 <br> 0770 <br> 0206 <br> 0055 <br> 0014 | $\begin{aligned} & 0718 \\ & 2872 \\ & 0770 \\ & 0206 \\ & 0055 \\ & 0015 \\ & 0004 \end{aligned}$ | 0718 <br> 2872 <br> 0770 <br> 0206 <br> 0055 <br> 0015 <br> 0004 <br> 0001 | 0718 <br> 2872 <br> 0770 <br> 0206 <br> 0055 <br> 0015 <br> 0004 <br> 0001 <br> 0000 |
| $\bar{u}_{1}(n)$ | 0714 | 0191 | 0051 | 0014 | 0004 | 0001 | 0000 |

Table 3.-To calculated $u_{1}(1) ; m=3$

| Boundary values |  | $n=2$ |  | $n=3$ |  | $n=4$ |  | $n=5$ |  | $n=6$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $u_{1}(0)$ | $\bar{u}_{2}(0)$ | 2667 | 0667 | 2917 | 0833 | 2948 | 0861 | 2953 | 0866 | 2953 | 0866 |
| $\hat{u}_{0}(1)$ | $\bar{u}_{3}(1)$ | 2667 | 0667 | 2917 | 0833 | 2948 | 0861 | 2953 | 0866 | 2953 | 0866 |
| $\overline{i n}_{0}(2)$ | $u_{3}(2)$ |  |  | 0833 | 0417 | 0932 | 0497 | 0945 | 0509 | 0947 | 0511 |
| $2_{0}(3)$ | $\bar{u}_{3}(3)$ |  |  |  |  | 0282 | 0195 | 0318 | 0227 | 0323 | 0232 |
| $\hat{u}_{0}(4)$ | $2_{3}(4)$ |  |  |  |  |  |  | 0100 | 0082 | 0114 | 0095 |
| $u_{0}(5)$ | $\dot{u}_{3}(5)$ |  |  |  |  |  |  |  |  | 0037 | 0033 |
| $\bar{u}_{1}(n)$ | $\bar{u}_{2}(n)$ | 2667 | 0667 | 0833 | 0417 | 0282 | 0195 | 0100 | 0082 | 0037 | 0033 |

Table 3.-(continued)

| Boundary values |  | $n=7$ |  | $n=8$ |  | $n=9$ |  | $n=10$ |  | $n \geqq 11$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bar{u}_{1}(0)$ | $\pi_{2}(0)$ | 2953 | 0866 | 2953 | 0866 | 2953 | 0866 | 2953 | 0866 | 2953 | 0866 |
| $\bar{u}_{0}(1)$ | $z_{3}(1)$ | 2953 | 0866 | 2953 | 0866 | 2953 | 0866 | 2953 | 0866 | 2953 | 0866 |
| $\bar{u}_{0}(2)$ | $\bar{u}_{3}(2)$ | 0947 | 0512 | 0947 | 0512 | 0947 | 0512 | 0947 | 0512 | 0947 | 0512 |
| $\mathrm{no}_{0}(3)$ | $\hat{u}_{3}(3)$ | 0324 | 0233 | 0324 | 0233 | 0324 | 0233 | 0324 | 0233 | 0324 | 0233 |
| $\overline{n o}_{0}(4)$ | $\bar{u}_{3}(4)$ | 0116 | 0097 | 0116 | 0097 | 0116 | 0097 | 0116 | 0097 | 0116 | 0097 |
| $u_{0}(5)$ | $\bar{n}_{3}(5)$ | 0042 | 0038 | 0043 | 0039 | 0043 | 0039 | 0043 | 0039 | 0043 | 0039 |
| $\chi_{0}(6)$ | $\overline{1 ı}_{3}(6)$ | 0014 | 0013 | 0016 | 0015 | 0016 | 0015 | 0016 | 0015 | 0016 | 0015 |
| $\mathrm{in}_{0}(7)$ | $\mathrm{il}_{3}(7)$ |  |  | 0005 | 0005 | 0006 | 0006 | 0006 | 0006 | 0006 | 0006 |
| $30(8)$ | $u_{3}(8)$ |  |  |  |  | 0002 | 0002 | 0002 |  | 0002 | 0002 |
| $u_{0}(9)$ | $\bar{u}_{3}(9)$ |  |  |  |  |  |  | 0001 | 0001 | 0001 | 0001 |
| $u_{0}(10)$ | $\pi_{3}(10)$ |  |  |  |  |  |  |  |  | 0000 | 0000 |
| $n_{1}(n)$ | $u_{2}(n)$ | 0014 | 0013 | 0005 | 0005 | 0002 | 0002 | 0001 | 0001 | 0000 | 0000 |

Table 4.-To calculate $u_{1}(2) ; m=3$

| Boundary values |  | $n=3$ |  | $n=4$ |  | $n=5$ |  | $n=6$ |  | $n=7$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bar{u}_{1}(0)$ | $i_{3}(0)$ | 0833 | 0417 | 0932 | 0497 | 0945 | 0509 | 0947 | 0511 | 0947 | 0512 |
| $\bar{u}_{0}(1)$ | $\mathfrak{u}_{3}(1)$ | 0833 | 0417 | 0932 | 0497 | 0945 | 0509 | 0947 | 0511 | 0947 | 0512 |
| $\pi_{0}(2)$ | $\chi_{0}(2)$ | 2916 | 0834 | 3230 | 1056 | 3271 | 1093 | 3277 | 1098 | 3277 | 1099 |
| $\bar{u}_{0}(3)$ | $u_{3}(3)$ |  |  | 0932 | 0497 | 1045 | 0591 | 1061 | 0606 | 1063 | 0608 |
| 20(4) | $\bar{u}_{3}(4)$ |  |  |  |  | 0318 | 0227 | 0360 | 0265 | 0366 | 0271 |
| $\bar{u}_{0}(5)$ | $\bar{u}_{3}(5)$ |  |  |  |  |  |  | 0114 | 0095 | 0129 | 0109 |
| tio(6) | $\boldsymbol{u}_{3}(6)$ |  |  |  |  |  |  |  |  | 0042 | 0038 |
| $u_{1}(n)$ | $\bar{u}_{2}(n)$ | 2916 | 0834 | 0932 | 0497 | 0318 | 0227 | 0114 | 0095 | 0042 | 0038 |

Table 4.-(continued)

| Boundary values |  | $n=8$ |  | $n=9$ |  | $n=10$ |  | $n=11$ |  | $n \geqq 12$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bar{u}_{1}(0)$ | $\chi_{2}(0)$ | 0947 | 0512 | 0947 | 0512 | 0947 | 0512 | 0947 | 0512 | 0947 | 0512 |
| $\bar{u}_{0}(1)$ | $\bar{u}_{3}(1)$ | 0947 | 0512 | 0947 | 0512 | 0947 | 0512 | 0947 | 0512 | 0947 | 0512 |
| $\bar{u}_{0}(2)$ | $u_{3}(2)$ | 3277 | 1099 | 3277 | 1099 | 3277 | 1099 | 3277 | 1099 | 3277 | 1099 |
| $z_{0}(3)$ | $u_{3}(3)$ | 1063 | 0609 | 1063 | 0609 | 1063 | 0609 | 1063 | 0609 | 1063 | 0609 |
| $\mathrm{Z}_{0}(4)$ | $\bar{u}_{3}(4)$ | 0367 | 0272 | 0367 | 0272 | 0367 | 0272 | 0367 | 0272 | 0367 | 0272 |
| $u_{0}(5)$ | $\chi_{3}(5)$ | 0131 | 0112 | 0132 | 0112 | 0132 | 0112 | 0132 | 0112 | 0132 | 0112 |
| $\bar{u}_{0}(6)$ | $u_{3}(6)$ | 0048 | 0044 | 0049 | 0044 | 0049 | 0045 | 0049 | 0045 | 0049 | 0045 |
| $a_{0}(7)$ | $u_{3}(7)$ | 0016 | 0015 | 0018 | 0017 | 0018 | 0017 | 0018 | 0017 | 0018 | 0017 |
| $\chi_{0}(8)$ | $\bar{u}_{3}(8)$ |  |  | 0006 | 0006 | 0007 | 0007 | 0007 | 0007 | 0007 | 0007 |
| $u_{0}(9)$ | $z_{3}(9)$ |  |  |  |  | 0002 | 0002 | 0003 | 0003 | 0003 | 0003 |
| $\bar{u}_{0}(10)$ | $u_{3}(10)$ |  |  |  |  |  |  | 0001 | 0001 | 0001 | 0001 |
| $\bar{u}_{0}(11)$ | $u_{3}(11)$ |  |  |  |  |  |  |  |  | 0000 | 0000 |
| $u_{1}(n)$ | $z_{2}(n)$ | 0016 | 0015 | 0006 | 0006 | 0002 | 0002 | 0001 | 0001 | 0000 | 0000 |

Table 5.-To calculate $u_{2}(1) ; m=4$

| Boundary values | $n=2$ | $n=3$ | $n=4$ | $n=5$ | $n=6$ | $n=7$ | $n=8$ | $n=9$ | $n=10$ | $n=11$ | $n=12$ | $n \geqq 13$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{u}_{2}(0)$ | 2857 | 3230 | 3304 | 3320 | 3323 | 3324 | 3324 | 3324 | 3324 | 3324 | 3324 | 3324 |
| $\bar{u}_{1}(0)+\bar{u}_{3}(0)$ | 0714 | 0932 | 0982 | 0993 | 0996 | 0997 | 0997 | 0997 | 0997 | 0997 | 0997 | 0997 |
| $\bar{u}_{0}(1)+\bar{u}_{4}(1)$ | 0714 | 0932 | 0982 | 0993 | 0996 | 0997 | 0997 | 0997 | 0997 | 0997 | 0997 | 0997 |
| $\bar{u}_{0}(2)+\bar{u}_{4}(2)$ |  | 0497 | 0625 | 0654 | 0661 | 0662 | 0663 | 0663 | 0663 | 0663 | 0663 | 0663 |
| $\bar{u}_{0}(3)+\bar{u}_{4}(3)$ |  |  | 0268 | 0332 | 0346 | 0349 | 0350 | 0350 | 0350 | 0350 | 0350 | 0350 |
| $\bar{u}_{0}(4)+\bar{u}_{4}(4)$ |  |  |  | 0133 | 0164 | 0171 | 0172 | 0173 | 0173 | 0173 | 0173 | 0173 |
| $u_{0}(5)+u_{4}(5)$ |  |  |  |  | 0064 | 0079 | 0082 | 0083 | 0083 | 0083 | 0083 | 0083 |
| $\bar{u}_{0}(6)+\bar{u}_{4}(6)$ |  |  |  |  |  | 0031 | $0038$ | 0039 | 0040 | $0040$ | 0040 | 0040 |
| $\bar{x}_{0}(7)+\bar{u}_{4}(7)$ |  |  |  |  |  |  |  | 0018 | 0019 | 0019 | 0019 | 0019 |
| $\bar{u}_{0}(8)+\bar{u}_{4}(8)$ |  |  |  |  |  |  |  | 0007 | 0008 | 0009 | 0009 | 0009 |
| $z_{0}(9)+\pi_{4}(9)$ | \% |  |  |  |  |  |  |  | 0003 | $0004$ | 0004 | 0004 |
| $\bar{u}_{0}(10)+\bar{u}_{1}(10)$ |  |  |  |  |  |  |  |  |  |  | 0002 | 0002 |
| $\bar{u}_{0}(11)+\bar{u}_{4}(11)$ |  |  |  |  |  |  |  |  |  |  | 0001 | 0001 |
| $\bar{u}_{0}(12)+u_{4}(12)$ |  |  |  |  |  |  |  |  |  |  |  | 0000 |
| $u_{1}(n)+\bar{u}_{3}(n)$ | 0714 | 0497 | 0268 | 0133 | 0064 | 0031 | 0015 | 0007 | 0003 | 0002 | 0001 | 0000 |
| $\bar{u}_{2}(n)$ | 2857 | 1056 | 0446 | 0226 | 0093 | 0044 | 0021 | 0010 | 0005 | 0002 | 0001 | 0000 |

Table 6.-To calculate $u_{2}(2) ; m=4$

| Boundary <br> values |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Table 7.-To calculate $u_{1}(2) ; m=4$

|  | $\begin{aligned} & \text { ndary } \\ & \text { lues } \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | (0) | 04 |  |  |  |  |  |  |  |  |  |  |  |
| $i_{1}(0)$ | $\bar{u}_{3}(0)$ | 0861 | 0195 | 0982 | 0268 | 1005 | 0287 | 1010 | 0292 | 1011 | 0293 | 1011 | 0293 |
| $\bar{u}_{0}(1)$ | $i_{4}(1)$ | 0861 | 0195 | 0982 | 0268 | 1005 | 0287 | 1010 | 0292 | 1011 | 0293 | 1011 | 0293 |
| $\bar{u}_{0}(2)$ | $\bar{u}_{4}(2)$ | 2948 | 0282 | 3304 | 0446 | 3365 | 0494 | 3377 | 0506 | 3380 | 0508 | 3381 | 0509 |
| $20_{0}(3)$ | $\bar{u}_{4}(3)$ |  |  | 0982 | 0268 | 1129 | 0364 | 1158 | 0389 | 1164 | 0394 | 1165 | 0396 |
| $i t_{0}(4)$ | $\bar{u}_{4}(4)$ |  |  |  |  | 0365 | 0174 | 0429 | 0224 | 0442 | 0236 | 0445 | 0239 |
| $\bar{u}_{0}(5)$ | $\bar{u}_{4}(5)$ |  |  |  |  |  |  | 0148 | 0097 | 0177 | 0122 | 0183 | 0128 |
| $z_{0}(6)$ | $R_{4}(6)$ |  |  |  |  |  |  |  |  | 0064 | 0050 | 0077 | $0062$ |
| $\bar{u}_{0}(7)$ | $n_{4}(7)$ |  |  |  |  |  |  |  |  |  |  | 0029 |  |
| $u_{1}(n)$ | $\bar{u}_{3}(n)$ | 2948 | 0282 | 0982 | 0268 | 0365 | 0174 | 0148 | 0097 | 0064 | 0050 | 0029 | 0025 |
| $u_{2}(n)$ |  | 0932 |  | 0625 |  | 0332 |  | 0164 |  | 0079 |  | 0038 |  |

Table 7.-(continued)

| Boun val | dary ues | $n$ |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | (0) |  |  |  |  |  |  |  |  |  |  |  |  |
| $u_{1}(0)$ | $\lambda_{3}(0)$ | 1011 | 0293 | 1011 | 0293 | 1011 | 0293 | 1011 | 0293 | 1011 | 0293 | 1011 | 0293 |
| $u_{0}(1)$ | $\bar{u}_{4}(1)$ | 1011 | 0293 | 1011 | 0293 | 1011 | 0293 | 1011 | 0293 | 1011 | 0293 | 1011 | 0293 |
| $\bar{u}_{0}(2)$ | $u_{4}(2)$ | 3381 | 0509 | 3381 | $050{ }^{\circ}$ | 3381 | 0509 | 3381 | 0509 | 3381 | 0509 | 3381 | 0509 |
| $i z l_{0}(3)$ | $4_{4}(3)$ | 1166 | 0396 | 1166 | 0396 | 1166 | 0396 | 1166 | 0396 | 1166 | 0396 | 1166 | 0396 |
| $\bar{u}_{0}(4)$ | tit (4) | 0446 | 0240 | 0446 | 0240 | 0446 | 0240 | 0446 | 0240 | 0446 | 0240 | 0446 | 0240 |
| $\chi_{0}(5)$ | $u_{1}(5)$ | 0184 | 0129 | 0185 | 0129 | 0185 | 0130 | 0185 | 0130 | 0185 | 0130 | 0185 | 0130 |
| $\bar{u}_{0}(6)$ | $\bar{u}_{4}(6)$ | 0080 | 0065 | 0081 | 0066 | 0081 | 0066 | 0081 | 0066 | 0081 | 0066 | 0081 | 0066 |
| $\overline{u s}_{0}(7)$ | $u_{1}(7)$ | 0035 | 0031 | 0036 | 0032 | 0036 | 0032 | 0037 | 0033 | 0037 | 0033 | 0037 | 0033 |
| $\bar{u}_{0}(8)$ | $\bar{u}_{4}(8)$ | 0013 | 0012 | 0016 | 0015 | 0017 | 0016 | 0017 | 0016 | 0017 | 0016 | 0017 | 0016 |
| $\bar{u}_{0}(9)$ | $z_{4}(9)$ |  |  | 0006 | 0006 | 0007 | 0007 | 0008 | 0008 | 0008 | 0008 | 0008 | 0008 |
| $i 20^{0}(10)$ | $u_{4}(10)$ |  |  |  |  | 0003 | 0003 | 0003 | 0003 | 0004 | 0004 | 0004 | 0004 |
| $\bar{u}_{0}(11)$ | $\bar{u}_{4}(11)$ |  |  | 50 |  |  |  | 0001 | 0001 | 0002 | 0002 | 0002 | 0002 |
| $\hat{H}_{0}(12)$ | $\bar{u}_{( }(12)$ |  |  |  |  |  |  |  |  | 0001 | 0001 | 0001 | 0001 |
| $u_{0}(13)$ | $\bar{u}_{4}(13)$ |  |  |  |  |  |  |  |  |  |  | 0000 | 0000 |
| $\bar{u}_{1}(n)$ | $\bar{u}_{5}(n)$ | 0013 | 0012 | 0006 | 0006 | 0003 | 0003 | 0001 | 0001 | 0001 | 0001 | 0000 | 0000 |
| $\bar{u}_{3}(n)$ |  | 0018 |  | 0008 |  | 0004 |  | 0002 |  | 0001 |  | 0000 |  |

Table 8.-Values of $T_{k}(1)$

| $k$ | $n=2$ | $n=3$ | $n=4$ | $n=5$ | $n=6$ | $n=7$ | $n=8$ | $n=9$ | $n=10$ | $n=11$ | $n=12$ | $n=13$ | $n \geqq 14$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2857 | 3230 | 3304 | 3320 | 3323 | 3324 | 3324 | 3324 | 3324 | 3324 | 3324 | 3324 | 3324 |  |
| 2 |  | 1056 | 1250 | 1292 | 1301 | 1303 | 1304 | 1304 | 1304 | 1304 | 1304 | 1304 | 1304 |  |
| 3 |  |  | 0446 | 0539 | 0560 | 0564 | 0565 | 0565 | 0566 | 0566 | 0566 | 0566 | 0566 |  |
| 4 |  |  |  | 0201 | 0245 | 0255 | 0257 | 0258 | 0258 | 0258 | 0258 | 0258 | 0258 |  |
| 5 |  |  |  |  | 0093 | 0114 | 0119 | 0120 | 0120 | 0120 | 0120 | 0120 | 0120 |  |
| 6 |  |  |  |  |  | 0044 | 0054 | 0056 | 0056 | 0056 | 0057 | 0057 | 0057 |  |
| 7 |  |  |  |  |  |  | 0021 | 0025 | 0026 | 0027 | 0027 | 0027 | 0027 |  |
| 8 |  |  |  |  |  |  |  | 0010 | 0012 | 0012 | 0013 | 0013 | 0013 |  |
| 9 |  |  |  |  |  |  |  |  |  | 0005 | 0006 | 0006 | 0006 | 0006 |
| 10 |  |  |  |  |  |  |  |  |  |  | 0002 | 0003 | 0003 | 0003 |
| 11 |  |  |  |  |  |  |  |  |  |  | 0001 | 0001 | 0001 |  |
| 12 |  |  |  |  |  |  |  |  |  |  |  | 0000 | 0001 |  |
| 13 |  |  |  |  |  |  |  |  |  |  |  |  | 0000 |  |

Table 9.-Values of $T_{k}(2)$

| $k$ | $n=3$ | $n=4$ | $n=5$ | $n=6$ | $n=7$ | $n=8$ | $n=9$ | $n=10$ | $n=11$ | $n=12$ | $n=13$ | $n=14$ | $n \geqq 15$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1056 | 1250 | 1292 | 1301 | 1303 | 1304 | 1304 | 1304 | 1304 | 1304 | 1304 | 1304 | 1304 |
| 2 | 3230 | 3750 | 3859 | 3883 | 3888 | 3890 | 3890 | 3890 | 3890 | 3890 | 3890 | 3890 | 3890 |
| 3 |  | 1250 | 1493 | 1546 | 1558 | 1561 | 1561 | 1562 | 1562 | 1562 | 1562 | 1562 | 1562 |
| 4 |  |  | 0539 | 0653 | 0678 | 0684 | 0685 | 0686 | 0686 | 0686 | 0686 | 0686 | 0686 |
| 5 |  |  |  | 0245 | 0299 | 0311 | 0314 | 0314 | 0314 | 0314 | 0314 | 0314 | 0314 |
| 6 |  |  |  |  | 0114 | 0140 | 0145 | 0146 | 0147 | 0147 | 0147 | 0147 | 0147 |
| 7 |  |  |  |  |  | 0054 | 0066 | 0068 | 0069 | 0069 | 0069 | 0069 | 0069 |
| 8 |  |  |  |  |  |  | 0025 | 0031 | 0032 | 0033 | 0033 | 0033 | 0033 |
| 9 |  |  |  |  |  |  |  | 0012 | 0015 | 0015 | 0015 | 0015 | 0015 |
| 10 |  |  |  |  |  |  |  |  | 0006 | 0007 | 0007 | 0007 | 0007 |
| 11 |  |  |  |  |  |  |  |  |  | 0003 | 0003 | 0003 | 0003 |
| 12 |  |  |  |  |  |  |  |  |  |  | 0001 | 0002 | 0002 |
| 13 |  |  |  |  |  |  |  |  |  |  |  | 0001 | 0001 |
| 14 |  |  |  |  |  |  |  |  |  |  |  |  |  |

## -NOTES-

## A METHOD FOR THE SOLUTION OF CERTAIN NON-LINEAR PROBLEMS IN LEAST SQUARES*

Bx KENNETH LEVENBERG ${ }^{1}$ (Frankford Arsenal)

The standard method for solving least squares problems which lead to non-linear normal equations depends upon a reduction of the residuals to linear form by first order Taylor approximations taken about an initial or trial solution for the parameters. ${ }^{2}$ If the usual least squares procedure, performed with these linear approximations, yields new values for the parameters which are not sufficiently close to the initial values, the neglect of second and higher order terms may invalidate the process, and may actually give rise to a larger value of the sum of the squares of the residuals than that corresponding to the initial solution. This failure of the standard method to improve the initial solution has received some notice in statistical applications of least squares ${ }^{3}$ and has been encountered rather frequently in connection with certain engineering applications involving the approximate representation of one function by another. The purpose of this article is to show how the problem may be solved by an extension of the standard method which insures improvement of the initial solution. ${ }^{4}$ The process can also be used for solving non-linear simultancous equations, in which case it may be considered an extension of Newton's method.

Let the function to be approximated be $h(x, y, z, \cdots)$, and let the approximating function be $H(x, y, z, \cdots ; \alpha, \beta, \gamma, \cdots)$, where $\alpha, \beta, \gamma, \cdots$ are the unknown parameters. Then the residuals at the points, $\left(x_{i}, y_{i}, z_{i}, \cdots\right), i=1,2, \cdots, n$, are

$$
\begin{equation*}
f_{i}(\alpha, \beta, \gamma, \cdots)=H\left(x_{i}, y_{i}, z_{i}, \cdots ; \alpha, \beta, \gamma, \cdots\right)-h\left(x_{i}, y_{i}, z_{i}, \cdots\right) \tag{1}
\end{equation*}
$$

and the least squares criterion requires the minimization of

$$
\begin{equation*}
s(\alpha, \beta, \gamma, \cdots)=\sum_{1}^{n} f_{i}^{2} \tag{2}
\end{equation*}
$$

(It is assumed that the weights of the residuals are unity. If not, consider the func-

[^24]tion $f_{i}$ to be the product of the residual and the square root of the corresponding weight.) Choosing an initial solution, $p_{0}=\left(\alpha_{0}, \beta_{0}, \gamma_{0}, \cdots\right)$, at which it is assumed that $s$ does not have a stationary value, the first order Taylor expansions of the residuals are taken about $p_{0}$, giving a set of linear approximations to the residuals,
$f_{i}(\alpha, \beta, \gamma, \cdots) \cong F_{i}(\alpha, \beta, \gamma, \cdots)=f_{i}\left(p_{0}\right)+\frac{\partial f_{i}}{\partial \alpha} \Delta \alpha+\frac{\partial f_{i}}{\partial \beta} \Delta \beta+\frac{\partial f_{i}}{\partial \gamma} \Delta \gamma+\cdots$,
where $\Delta \alpha=\alpha-\alpha_{0}, \Delta \beta=\beta-\beta_{c}, \cdots$, and the partial derivatives are evaluated at $p_{0}$. Now, the standard method consists of minimizing
\[

$$
\begin{equation*}
S(\alpha, \beta, \gamma, \cdots)=\sum_{1}^{n} F_{i}^{2} \tag{4}
\end{equation*}
$$

\]

by setting the partial derivatives of $S$ with respect to the various parameters equal to zero, yielding the usual linear normal equations,

$$
\begin{align*}
& \frac{1}{2} \frac{\partial S}{\partial \alpha}=[\alpha \alpha] \Delta \alpha+[\alpha \beta] \Delta \beta+[\alpha \gamma] \Delta \gamma+\cdots+[\alpha 0]=0 \\
& \frac{1}{2} \frac{\partial S}{\partial \beta}=[\beta \alpha] \Delta \alpha+[\beta \beta] \Delta \beta+[\beta \gamma] \Delta \gamma+\cdots+[\beta 0]=0 \tag{5}
\end{align*}
$$

where the notation [ ] is a symbol of summation, so that, e.g.,

$$
[\alpha \alpha]=\sum_{1}^{n}\left(\frac{\partial f_{i}}{\partial \alpha}\right)^{2}, \quad[\alpha \beta]=\sum_{1}^{n}\left(\frac{\partial f_{i}}{\partial \alpha} \cdot \frac{\partial f_{i}}{\partial \beta}\right), \quad[\alpha 0]=\sum_{1}^{n}\left(\frac{\partial f_{i}}{\partial \alpha} \cdot f_{i}\right), \quad \text { etc. }
$$

However, as pointed out above, the values of the increments, $\Delta \alpha, \Delta \beta, \Delta \gamma, \cdots$, obtained by solving equations (5), may be so large in absolute value as to invalidate the approximations (3) so that the decrease in $S$ may not correspond to a decrease in $S$.

In such cases, it would seem advisable to limit or "damp" the absolute values of the increments of the parameters in order to improve the first order Taylor approximations (3) and to minimize simultancously the sum of the squares of the approximating residuals (4) under these damped conditions. In order to make both the increments and the residuals small in absolute value, the least squares idea can be employed. The sum of the squares of both the residuals and the increments may be minimized. More precisely, the expression to be minimized will be

$$
\begin{equation*}
\bar{S}(\alpha, \beta, \gamma, \cdots)=w S(\alpha, \beta, \gamma, \cdots)+a(\Delta \alpha)^{2}+b(\Delta \beta)^{2}+c(\Delta \gamma)^{2}+\cdots \tag{6}
\end{equation*}
$$

where $a, b, c, \cdots$ are a system of positive constants or weighting factors expressing the relative importance of damping the different increments, and $w$ is a positive quantity expressing the relative importance of the residuals and increments in this minimizing process. If we denote the point at which $\bar{S}$ takes its minimum, for any positive value of $w$, by $p_{w}=\left(\alpha_{w}, \beta_{w}, \gamma_{w}, \cdots\right)$, and set

$$
\begin{equation*}
Q(\alpha, \beta, \gamma, \cdots)=a(\Delta \alpha)^{2}+b(\Delta \beta)^{2}+c(\Delta \gamma)^{2}+\cdots \tag{i}
\end{equation*}
$$

it is seen, under the assumption that $s$ is not stationary at $p_{0}$, that

$$
w S\left(p_{w}\right)<w S\left(p_{w}\right)+Q\left(p_{w}\right)=\bar{S}\left(p_{w}\right)<\bar{S}\left(p_{0}\right)=w S\left(p_{0}\right)+Q\left(p_{0}\right)=w S\left(p_{0}\right),
$$

whence

$$
\begin{equation*}
S\left(p_{w}\right)<S\left(p_{0}\right) . \tag{8}
\end{equation*}
$$

Also, denoting the standard least squares solution by $p_{\infty}$ (the reason for the notation is discussed later), we have

$$
w S\left(p_{w}\right)+Q\left(p_{w}\right)=\bar{S}\left(p_{w}\right)<\bar{S}\left(p_{\infty}\right)=w S\left(p_{\infty}\right)+Q\left(p_{\infty}\right)<w S\left(p_{w}\right)+Q\left(p_{\infty}\right),
$$

whence

$$
\begin{equation*}
Q\left(p_{w}\right)<Q\left(p_{\alpha}\right) . \tag{9}
\end{equation*}
$$

Inequality (8) shows that the minimization of (6) will diminish the sum of the squares of the approximating residuals, $S$, and (9) shows that the increments given by the standard least squares solution will be improved in the sense that the weighted sum of their squares, $Q$, will be reduced. That the sum of the squares of the true residuals, $s$, can be diminished, will be proved shortly.

To minimize (6) and obtain $p_{w}$, the partial derivatives of $\bar{S}$ with respect to the various parameters are put equal to zero, and we get

$$
\frac{\partial \bar{S}}{\partial \alpha}=w \frac{\partial S}{\partial \alpha}+2 a \Delta \alpha=0, \quad \frac{\partial \bar{S}}{\partial \beta}=w \frac{\partial S}{\partial \beta}+2 b \Delta \beta=0,
$$

When we divide through by $2 w$, and substitute the expressions for the partial derivatives of $S$ from (5), the "damped normal equations" become

$$
\begin{array}{r}
{\left[[\alpha \alpha]+a w^{-1}\right) \Delta \alpha+\quad[\alpha \beta] \Delta \beta+[\alpha \gamma] \Delta \gamma+\cdots+[\alpha 0]=0} \\
{[\beta \alpha] \Delta \alpha+\left([\beta \beta]+b w^{-1}\right) \Delta \beta+[\beta \gamma] \Delta \gamma+\cdots+[\beta 0]=0,} \tag{10}
\end{array}
$$

These equations are seen to be the same as the ordinary normal equations (5), except for the coefficients of the principal diagonal, which are increased by quantities proportional to the weighting factors $a, b, c, \cdots$, respectively. Since the symmetry of the matrix of the coefficients of equations (5) is preserved, simplified methods of solution of linear simultaneous equations, which take full advantage of such symmetry, ${ }^{5}$ may be used to solve equations (10). It is to be noted that the standard method of least squares corresponds to $w \rightarrow \infty$, and is thus a special case of the method here given, which may be termed the method of "damped least squares."

If we denote the number of parameters by $k$, it is seen from the determinantal solution of equations (10) that, in the neighborhood of $w=0$,

$$
\Delta \alpha=\alpha_{w}-\alpha_{0}=\frac{-[\alpha 0] w^{1-k} b c d \cdots+\cdots}{w^{-k} a b c \cdots+\cdots}=-[\alpha 0] a^{-1} w+\cdots,
$$

whence

$$
\begin{equation*}
\left(\frac{d \alpha_{w}}{d w}\right)_{w=0}=-[\alpha 0] a^{-1}, \tag{11}
\end{equation*}
$$

and similarly for the other parameters. Now

$$
\begin{equation*}
\frac{d s\left(p_{w}\right)}{d w}=\frac{\partial s}{\partial \alpha} \cdot \frac{d \alpha}{d w}+\frac{\partial s}{\partial \beta} \cdot \frac{d \beta}{d w}+\cdots, \tag{12}
\end{equation*}
$$

[^25]and, from the definition of the summation symbols, we find that the partial derivatives of $s$ at $p_{0}$ are given by
\[

$$
\begin{equation*}
\frac{\partial s}{\partial \alpha}=2[\alpha 0], \quad \frac{\partial s}{\partial \hat{\beta}}=2[\beta 0], \cdots \tag{13}
\end{equation*}
$$

\]

Hence the substitution of (11) and (13) in (12) yields

$$
\begin{equation*}
\left(\frac{d s}{d w}\right)_{w=0}=-2\left\{[\alpha 0]^{2} a^{-1}+[\beta 0]^{2} b^{-1}+\cdots\right\} \tag{14}
\end{equation*}
$$

This derivative is negative since the partial derivatives in (13) are not all zero, by the assumption that $s$ does not have a stationary value at $p_{0}$. Therefore, $s\left(p_{w}\right)$ is decreasing at $w=0$, thus insuring that values of $w$ can be found for which the sum of the squares of the true residuals (2) will be reduced.

The best value of $w$ to use may theoretically be determined directly by solving

$$
\begin{equation*}
\frac{d s\left(p_{w}\right)}{d w}=0 ; \tag{15}
\end{equation*}
$$

however, this equation is generally complex in practice. By writing

$$
\begin{equation*}
s\left(p_{w}\right) \cong s\left(p_{0}\right)+w\left(\frac{d s}{d w}\right)_{w=0} \tag{16}
\end{equation*}
$$

and setting the left side of (16) equal to zero on the assumption that $p_{0}$ was chosen so that the decreased value $s\left(p_{w}\right)$ will be small, the approximate formula,

$$
\begin{equation*}
w \cong-\frac{s\left(p_{0}\right)}{d s / d w_{x=0}}=\frac{\frac{1}{2} s\left(p_{0}\right)}{[\alpha 0]^{2} a^{-1}+[\beta 0]^{2} b^{-1}+\cdots} \tag{17}
\end{equation*}
$$

is obtained. ${ }^{6}$ If necessary, this value may be improved by calculating $s\left(p_{w}\right)$ for several different trial values of $w$, so that an approximate minimum may be located graphically. Experience with the method, especially in connection with fitting a particular function $I I(x, y, z, \cdots ; \alpha, \beta, \gamma, \cdots)$, enables one to get an idea of the general order of magnitude of the best value of $w$ so that very few trial values of $w$ should suffice. If so desired, the improved set of values of the parameters may be further improved (if the true minimum has not already been reached), by a repetition of the process, considering this improved set as a new initial solution.

So far, the weighting system $a, b, c, \cdots$ has been left arbitrary, the only restriction being that the weighting factors be positive. If we set the criterion that these factors be chosen so that the directional derivative of $s$, taken at $w=0$ along the curve $\alpha=\alpha_{w}, \beta=\beta_{w}, \cdots$, should have its minimum value, namely, the negative gradient, we have

$$
\begin{equation*}
\frac{d s}{d w}\left\{\left(\frac{d \alpha}{d w}\right)^{2}+\left(\frac{d \beta}{d w}\right)^{2}+\cdots\right\}^{-1 / 2}=-\left\{\left(\frac{\partial s}{\partial \alpha}\right)^{2}+\left(\frac{\partial s}{\partial \beta}\right)^{2}+\cdots\right\}^{1 / 2} \tag{18}
\end{equation*}
$$

where the derivatives are taken at $w=0$. Substitution of (14), (11), (13) in (18) gives us

[^26]\[

$$
\begin{align*}
\left\{[\alpha 0]^{2} a^{-1}+[\beta 0]^{2} b^{-1}+\cdots\right\}\left\{\alpha[0]^{2} a^{-2}+[\beta 0]^{2} b^{-2}\right. & +\cdots\}^{-1 / 2} \\
& =\left\{[\alpha 0]^{2}+[\beta 0]^{2}+\cdots\right\}^{1 / 2} \tag{19}
\end{align*}
$$
\]

and this is satisfied when the factors $a, b, c, \cdots$ are all equal. Without loss of generality, they may be taken equal to unity. For this weighting system, the formation of the clamped normal equations (10) may be thought of as being accomplished simply by the addition of a positive constant, $1 / w$, to the coefficients of the principal diagonal of the standard normal equations (5). Another weighting system which has been used successfully is, $a=[\alpha \alpha], b=[\beta \beta], \cdots$; in this case the damped normal equations are formed by multiplying the principal diagonal coefficients of the standard normal equations by a constant greater than unity, $1+1 / w$.

The nature of the damping which we have imposed upon the parameter variables can be given a simple geometric interpretation. For instance, if the unity weighting system is considered, the "overshooting" of the solution is prevented by damping the distance ( $k$ dimensional) from the initial solution point, since $Q$ is then the square of this distance. By this restriction of $k$ dimensional distance (which would appear to be a natural way to prevent overshooting), we are not obliged to decide on an arbitrary preassigned procedure restricting the variables individually, as is clone, for example, by the method of Cauchy (1.c.). The greater freedom given the individual variables by the method of damped least squares may account for the fact that it has solved, with a comparatively rapid rate of convergence, types of problems which are of much greater complexity than those to which the principle of least squares is ordinarily applied.

## ON THE DEFLECTION OF A CANTILEVER BEAM*

By H. J. BARTEN (Washington Navy Yard)

In spring theory it is sometimes necessary to compute the deflection of a cantilever beam for which the squares of the first derivatives cannot be neglected as is done in classical beam theory. This problem is thus placed in the same category as the problem of the elastica.

The solution given in this note can be applied to a cantilever of any stiffness. The difference between the deflection as found by the classical beam theory and that found by the present method is, however, noticeable only in the case of beams of low stiffness.

The clamped end of the beam is taken as the origin of coordinates and downward deflections are considered as positive. A point on the beam may be identified by four quantities of which only one is independent. These four quantities are the two rectangular coordinates $x$ and $y$, the are length $s$ measured from the origin of coordinates, and the deflection angle $\theta$ which is the angle between the tangent to the curve at the point under discussion and the horizontal. We may thus identify this point by the symbol ( $x, y, s, \theta$ ). The subscript $L$ is used to identify the value of these quantities at the free end of the beam. Before deflection a vertical load $P$ is applied at the point ( $L, 0, L, 0$ ). The beam has a uniform cross section of moment of inertia $I$ and is com-

[^27]posed of a material whose modulus of elasticity is $E$. The problem is to find the deflection of the end-point of the beam due to the vertical load $P$.

The bending moment induced at the point $(x, y, s, \theta)$ by the vertical load $P$ is

$$
M=P\left(x_{L}-x\right) .
$$

Therefore

$$
\begin{equation*}
d \theta / d s=a\left(x_{L}-x\right), \tag{1}
\end{equation*}
$$

where $a=P / E I$. Using the relation

$$
\frac{d \theta}{d s}=\frac{d \theta}{d x} \frac{d x}{d s}=\cos \theta \frac{d \theta}{d x},
$$

we obtain

$$
\int \cos \theta d \theta=\int a\left(x_{L}-x\right) d x
$$

or

$$
\begin{equation*}
\sin \theta=a\left(x_{L} x-\frac{1}{2} x^{2}\right)+C . \tag{2}
\end{equation*}
$$

The boundary condition at the clamped end of the beam, namely, $\theta=0^{-}$when $x=0$, reduces Eq. (2) to

$$
\begin{equation*}
\sin \theta=a\left(x_{L} x-\frac{1}{2} x^{2}\right) . \tag{3}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\sin \theta_{L}=\frac{1}{2} a x_{L}^{2} . \tag{4}
\end{equation*}
$$

Combining the latter expression and Eq. (3) we obtain

$$
\begin{equation*}
\sin \theta_{L}-\sin \theta=\frac{1}{2} a\left(x_{L}-x\right)^{2} . \tag{5}
\end{equation*}
$$

Thus

$$
x_{L}-x=\left[2 a^{-1}\left(\sin \theta_{L}-\sin \theta\right)\right]^{1 / 2} .
$$

Substituting this expression into Eq. (1), we obtain

$$
\frac{d \theta}{d s}=\frac{d \theta}{d y} \frac{d y}{d s}=\sin \theta \frac{d \theta}{d y}=\left[2 a\left(\sin \theta_{L}-\sin \theta\right)\right]^{1 / 2},
$$

or

$$
y=\int_{0}^{\theta} \frac{\sin \theta d \theta}{\left[2 a\left(\sin \theta_{L}-\sin \theta\right)\right]^{1 / 2}} .
$$

Therefore

$$
\begin{equation*}
y_{L}=\int_{0}^{\theta_{L}} \frac{\sin \theta d \theta}{\left[2 a\left(\sin \theta_{L}-\sin \theta\right)\right]^{1 / 2}} . \tag{6}
\end{equation*}
$$

With the transformation

$$
\cos \left(\frac{\pi}{4}-\frac{\theta}{2}\right)=\cos \left(\frac{\pi}{4}-\frac{\theta_{L}}{2}\right) \sin \phi=k \sin \phi,
$$

Eq. (6) becomes

$$
\begin{equation*}
y_{L}=a^{-1 / 2} \int_{0}^{\pi / 2} \frac{\left(2 k^{2} \sin ^{2} \phi-1\right) d \phi}{\left(1-k^{2} \sin ^{2} \phi\right)^{1 / 2}}, \tag{7}
\end{equation*}
$$

where

$$
\sin \delta=\frac{\cos \pi / 4}{k}, \quad k=\cos \left(\frac{\pi}{4}-\frac{\theta_{L}}{2}\right) .
$$

Eq. (7) is a combination of incomplete and completc elliptic integrals ${ }^{1}$ and may be written

$$
\begin{equation*}
y_{L}=a^{-1 / 2}[F(k)-F(k, \delta)-2 E(k)+2 E(k, \delta)], \tag{8}
\end{equation*}
$$

where $F(k)$ and $E(k)$ are the first and second complete elliptic integrals respectively and $F(k, \delta)$ and $E(k, \delta)$ are the first and second incomplete elliptic integrals respectively.

As Eq. (8) stands it is useless unless we find $\theta_{L}$ as a function of $a$ and $L$. This relationship may be obtained in the following manner. From Eq. (1) we get

$$
\theta_{L}=\int_{0}^{L} a\left(x_{L}-x\right) d s
$$

Integrating by parts we obtain

$$
\theta_{L}=\int_{0}^{x_{L}} a s d x=\int_{0}^{L} a s \frac{d x}{d s} d s=\int_{0}^{L} a s \cos \theta d s
$$

Differentiating this latter integral with respect to its upper limit, we have

$$
d \theta_{L} / d L=a L \cos \theta_{L}
$$

The solution to this differential equation is

$$
\begin{equation*}
\sin \theta_{L}=\tanh \frac{a L^{2}}{2} \tag{9}
\end{equation*}
$$

This completes the solution to the problem.
In order to compare our results with those of Gross and Lehr ${ }^{2}$ we must express our solution in the same dimensionless factors that they employed. By dividing the actual deflection of the beam by the "small deflection" $a L^{3} / 3$ they obtain a deflection factor which is a function of the dimensionless quantity $a L^{2}$. We shall call this deflection factor $F_{y}$. Thus, from Eq. (8)

$$
\begin{equation*}
F_{y}=\frac{3 y_{L}}{a L^{3}}=3\left(a L^{2}\right)^{-3 / 2}[F(k)-F(k, \delta)-2 E(k)+2 E(k, \delta)] \tag{10}
\end{equation*}
$$

In order to find the maximum bending stress at the clamped end of the beam we must know the length of the moment arm $x_{L}$. Combining Eqs. (4) and (9) we find that

$$
\begin{equation*}
x_{L}^{3}=\frac{2}{a} \tanh \frac{a L^{2}}{2} . \tag{11}
\end{equation*}
$$

Gross and Lehr use the dimensionless contraction factor $x_{L} / L$ an an aid in finding $x_{L}$. We shall define this factor as $F_{x}$. Thus

[^28]\[

$$
\begin{equation*}
F_{\alpha}^{2}=\frac{2}{a L^{2}} \tanh \frac{a L^{2}}{2} \tag{12}
\end{equation*}
$$

\]

Computations show that Gross and Lehr's values of $F_{y}$ have a constantly increasing error which deviates about $4 \%$ from our results when $a L^{2}=1$.


Fig. 1.
The two factors $F_{x}$ and $F_{y}$ are very important to the designer. For this reason curves of these two factors with $a L^{2}$ as the independent variable are given in Fig. 1. The values of $F_{y}$ were computed from Jahnke and Emde.

## ON WAVES IN BENT PIPES*

## By S. A. SCHELKUNOFF (Bell Telephone Laboratories)

In a recent issue of this Quarterly, ${ }^{1}$ Karlem Riess obtained expressions for the fields of electromagnetic waves in bent pipes of rectangular cross section by the perturbation method. While it is true that in a bent pipe the waves cannot be classified into transverse electric and transverse magnetic types because in general both $E$ and $H$ have components in the direction of wave propagation, a different classification into two types is possible. This permits another method which yields the general solution in terms of Bessel functions.

In the one wave type, the plane of the electric ellipse is normal to the axis of bending (the $Y$-axis in Figure 1, p. 329 of Riess' paper) ; these waves have been called electrically oriented ( $E O_{m, n}$ wave type) and the fields of these waves are obtainable from $H_{y}$ which may be expressed as the product of Bessel and sine (or cosine) functions.

[^29]In the other wave type, the plane of the magnetic ellipse is normal to the axis of bending; these waves are magnetically oriented ( $M O_{m, n}$ wave type) and their fields are obtainable from $E_{\gamma}$. In each case the order of Bessel functions is equal to the angular phase constant.

For a berit pipe formed by the intersection of two concentric spheres and two coaxial cones emerging from the center there is also a solution in terms of known functions. In one wave type, $E O_{m, n}$ type, the plane of the electric ellipse is normal to the radius; in the other, $M O_{m, n}$ type, the plane of the magnetic ellipse is normal to the radius. The fields of $E O$-waves are calculable from $H_{r}$ and the fields of $M O$-waves from $E_{r} ; H_{r}$ and $E_{r}$ themselves can be expressed in terms of Bessel and Legendre functions. These waves may be called spherically oriented in order to distinguish them from the plane oriented waves described earlier. The letters $S$ and $P$ in front of $E O$ and $M O$ may be conveniently used in the abbreviations.

CORRECTIONS TO MY PAPER

## A STRAIN ENERGY DERIVATION OF THE TORSIONALFLEXURAL BUCKLING LOADS OF STRAIGHT COLUMNS OF THIN-WALLED OPEN SECTIONS

QUARTERLY OF APPLIED MATHEMATICS, 1, 341-345 (1944).

By<br>N. J. HOFF

In the last term of the right hand side member of Eq. (3) on page 343, $n$ should be raised to the second power and not to the fourth power.

The following equation defining $T$ should be added:

$$
T=\left(1 / \rho^{2}\right)\left(n^{2} R+G C\right)
$$



# Reduced Price Editions of Two Great Mathematical Reference Works Offfered for Your Free Examination 

In line with the Dover Publications program for making outstanding mathematical warks available in fure reprint editions at less than $1 / 2$ of their original cost, the following reference and study aids of international renown and permanent nalue are affered for examination withont cost or abligation ta readers of the Quarterly of Applied Mathematics.

# A Treatise on the Analytical Dynamics 

 of Particles and Rigid BodiesBy E. T. WHTTAKER
Author of "Calculus of Observations,"
"Modern Aralysis," etc.

Originally puh. at $\$ 6.00$<br>

Writen by one of the most famous figures in contemporary mathematics, this comprahensive work examines the fundamertal and advanced mathematical methods employed in analytical dynamics-with a wide range of representative problems.
The latest, revised fth edition contains exhaustive chapters on kinematics, equations of motion, soluble problems of rigid dynamics and paticle dynamics, the trangformation theory of dynamics, general theory of dynamical orbits, the problem of three bodies, etc.
Extensive sections also provide theoretical discussions and illustrative problems for trigonometric beries, principles of least action and least curyature, treatment of Hamiltonian systems and their integral invariants, ignorable coordinates, non-holonomic systems and dissipative systems, the work of Lie, Rayleigh, Klein, Hertz, Poincaré, Bruns, Boltrmana, Greenhill, Euler, Chasle, Painlevé, Levi-Civita, etc.
This edition contains many text and formula corrections as well as a number of additions to Whittaker's extensive references to contemporary mathematical literature.
Complete and unsbridged reprimt of the latest, 4th revised edition (1937), 464 pp. $6 \times 9$. Handsome waterproof binding.
"Analysical Dynamics" is reviewed in the Bulletin of the Americm Mathematical Saciety as:
$\stackrel{\mu}{ }$. . to a greater extent than his, predecessors Whittaker has availed himself of the great mischinery of modern mathematics, has thrown life into both the mathematics and mechanics which he treals . . . an inspiration to the next generstion ... exhibits great mathematical power and attainments . . diversity of method ... compact style ... arranged for reference use

TABLES FOR CONVERTING RECTANGULAR TO POLAR CO-ORDINATES
by Dr. J. C. P. Miller, Lectuser in Applied Mathematics at Univergity of Tiverpool. This concise booklet of tables is a new computational toal of great walue to the worker in elentricity, radio, electrenics, seronautics, physics, applied mathematics, etc. Tabulated in inerements of the argument of 0.001. Also containg a table for reducing angles to the first quagrant for angles from 0 to 9630 and from 0 to 224.6293 radians.

## Ordinary Differential Equations

By E. L. INCE

${ }_{\text {pub. at }}^{\text {Originally }} 812.003,75$

In this classic exposition of the present state of the theary of ordinary differential equations is provided a reservoir of contemporary methods and techniques for solving ordinary differential equations, with a complete treatment of the theory of boundary value problems, non-linear equations, the solution of differential equations in series, exis:ence theorems, and numerical methode of solution.

The pure mathenatician will be particularly interested in exhaustive sections an existence and nature of solutions, continuons tranaformation groups, the algebraic theory of linear differential systems, solution of differential equations by methods of contour integration, and the thorough analysis of differential equations in the complex as well as the real domain:

Workers in applied mathematics will find an excellent treatment of such diverse topice as the Legendre equation, Legendre functions and poly nomials, Green's function, Jacohians, the Lia place Transformation, the hypergeometric equation, Bessel's equation, oscillation of solutions of differential equations, canditions for oscillation, Mathier's equation, etc.

A painstakingly complete index, extensive bib liography and full references to literature quoted increase the value and easy use of the volume.

Complete and unabridged reprint of English edition, 564 pp. $5 \frac{1}{2}$ x 9 . Handsome waterproof binding.
"Ordinary Differential Equations" is reviewed in the Bulletin of the American Machematical Society as:
4 . . . deserves the highest praise .... a notable addition to mathematical literature in English... topiss discussed cover every important article on differential equations which has appeared in the journals during the last 25 years. . .. "

## EREE EXAMINATION IS CORDIALLY INYTEE

 orce מîde for your fnepection at yo phlygntion or cots. If tho booln wall ta meet your needey you may retam fhem mithout explanition.
(Plen es give basinea or college atinlition when Ibquamifng approval caplen.) If arder is pIE-pald, poalayo is Ifec. Money back ciequitoo, of townet

Tar Frea Appeoval Copisa xcrils ta
DOVER PUBLICATIONS, Dept. Q.
31 EAST 27 ST., HEW Y日RK 15, W. Y.
PLEIEE FHITE HOK PHEE NEW CATALOE OF OTEER RENUCED PRICE ETOTIONS OF

FAMOUS BOOMS ON
the Laplace iramiormation, sublea of the mathamatituI functionM, 1 ho mathematical foundationo of quantusil wechaticin, coaversion ublen, callection of formuleo arid theoreme, atc.

## CONTENTS

J. N. GOODIER: On combined flexure and torsion, and the fexural buck- ling of a twisted bat ..... 93
V. Morkovin: Membrane stresses in shells of constant slope ..... 102
T. Alfrey: Nonhomogeneous stresses in visco-elastic media ..... 113
x) W. Z. Chen: Intrinsic theory of thin shells and plates ..... 120
H. J. Stewart: The aerodynamics of a ring airfoil ..... 136
A. P, CowGirl: The mathematics of weir forms ..... 142
D. Moskovirz: The numerical solution of Laplace's and Poisson's aqua- ions ..... 148
Notes:
K. Levenberg: A method for the solution of certain non-linear prob- lems in least squares. ..... 164
H. J. Batten: On the deflection of a cantilever beam ..... 168
S. A. Schelkunoff: On waves in bent pipes ..... 171
N. I. Hoff; Corrections to my paper "A strain energy derivation ofthe torsional-flexural buckling loads of straight columns of thin-walled open sections*172
McGraw-Hill Books of Unusual Interest

## Methods of Advanced Calculus

By Philip Franikitm, Massachusetts Institute of Technology. 486 pages, $\$ 4.50$ Covers those aspects of advanced calculus that are most needed in applied mathematics. including vector analysis, ordinary and partial differential equations, Fourier series, and the calculus of variations.

## Modern Operational Mathematics in Engineering

By Rues V. Caurcaies, University of Michigan. 306 pages, $\$ 3.50$
Partial differential equations of engineering and Laplace transforms are the two principal topics treated. Problems in ordinary differential equations and other types of problems are induced.

## Mathematical and Physical Principles of Engineering Analysis

By Walter C Johnson. Princeton University. 343 pages, \$3.00
Presents the essential physical and mathematical principles and methods of attack that underlie the analysis of many practical engineering problems.

## Navigation Instruments

Published under the Supervision of the Training Division, Bureau of Aeronautics, U. S. Nary. 147 pages, $\$ 1.50$

Deals with the nature and use of the basic instruments commonly employed in air navigation. Intended for flight preparation training courses,

Send far copies on approval
McGRAW-HILL BOOK COMPANY. Inc.
330 West 42 nd Street New York 18, N. X.


[^0]:    Entered as second class matter March 14,1944 , at the post office at Providence, Rhode Island, under the act of March 3, 1879. Additional entry at Menasha, Wisconsin.

[^1]:    * Received March 24, 1944.
    ${ }^{1}$ J. N. Goodier, (i) The buckling of compressed bars by torsion and flexure, Cornell University Engineering Experiment Station, Bulletin 27, 1942; (ii) Flexural torsional buckling of bars of open section, Bulletin 28, 1942.
    ${ }^{2}$ S. Timoskenko, Theory of elastic stability, McGraw-Hill, 1936, p. 168, or (1) (ii) equations 2, 3, 7.

[^2]:    ${ }^{3}$ Introduction to the theory of elasticity, 2nd ed., Oxford University Press, 1941, p. 443.

    - The notation and conventions are those of C. E. Weatherburn, Differential geometry, vol. 1, Cambridge University Press, Cambridge 1939, p. 15.
    ${ }^{5}$ The discussion thus far, except for the introduction of the angle $\gamma$, corresponds with that of A. E. H. Love, Mathematical theory of elasticity, 4th ed., Cambridge University Press, 1934, .Ch. XVIII. The further development is different.

[^3]:    ${ }^{6}$ This problem is analysed from first principles in Timoshenko, Strength of materials, Part II, 2nd ed., Van Nostrand, 1941, p. 177.

[^4]:    * Received Oct. 16, 1943.
    ${ }^{1}$ The author wishes to express his appreciation to Professor W. Prager for proposing the problem and for other valuable suggestions.
    ${ }^{2}$ Non-circular cones (for which the generators meet in one point while their "slope" varies) have been considered recently by A. Pfüger, Z. angew. Math. Mech. 22, 99-116 (1942).
    ${ }^{3}$ The fuselages of some acroplanes, for instance, can be approximated by one or several shells of different slopes connected by stiff bulkheads. The construction of models is relatively simple because each portion forms a developable surface.

[^5]:    ${ }^{4}$ See for instance S. P. Timoshenko, Theory of plates and shells, McGraw-Hill Co., New York, 1940, p. 356; also the first chapter of W. Flügge's Statik und Dynamik der Schalen, J. Springer, Berlin, 1934.

[^6]:    ${ }^{5}$ In the case of cylindrical surfaces, $\theta=0$ and integration of (2.3) leads to the special solution: $N_{s}=\rho P_{n}: N_{t t}=f(s)+l\left(P_{a}-d N_{s} / d s\right) ; N_{t}=g(s)-i d f / d s+t P_{t}+t^{2} / 2\left(d^{2} N_{t} / d s^{2}-d P_{s} / d s\right)$; where $f(s)$ and $g(s)$ are arbitrary functions of the arc length s. In this connection see pp. 66-76 of Flügge's book.

[^7]:    ${ }^{6}$ Specifically, $A=\left(T / 2 A_{0} G h\right)\left\{\int_{0}^{\varphi} \rho d_{\varphi}-\left(1 / 2 A_{0}\right) \int_{0}^{\varphi}\left(x_{\rho} \cos \varphi+y_{\rho} \sin \varphi\right) d \varphi\right\}$. This expression is found by the method indicated in section 8 .

[^8]:    ${ }^{7}$ This is the price that has to be paid for the simplifications due to the assumptions of the membrane theory. A "disturbance" of the state of stress on one end-section (the difference between the equivalent stress distributions) "propagates" itself along the generators without "dying out." The general theory of thin shells would lead to differential equations of higher order; for these one can find solutions representing disturbances that die out with the distance from the end-section.
    ${ }^{8}$ All the results of sections $5-9$ simplify to the corresponding expressions for a cylinder as the taper approaches zero.

[^9]:    ${ }^{-}$See for instance Timoshenko, Strength of materials, vol. 1, D. Van Nostrand, New York, 1940, p. 312.

[^10]:    ${ }^{10}$ For a treatment of warping along similar lines see R. V. Southwell, On the torsion of conical shells, Proc. Royal Soc. London, (A)163, 337-355 (1937).

[^11]:    * Received Dec. 21, 1943. This paper was presented at the meeting of the Society of Rheology on October 29, 1943. The author wishes to express his gratitude to Dr. W. Prager for his help in the preparation of the present manuscript. Much of the material presented in this paper will appear, in modified form, in the book: The mechanical behavior of high polymers. By T. Alfrey. Interscience Publishing Co. 1944.
    ${ }^{1}$ According to this convention $\sigma_{i k, k}$ stands for the sum of all the terms obtained by giving $k$ the values $1,2,3$. In general, whenever a subscript appears twice in the same monomial, this subscript is to be given the values $1,2,3$ and the resulting terms are to be added. Such a repeated subscript is called a dummy subscript.

[^12]:    ${ }^{2}$ W. Voigt, Ablı. Göttingen Ges. Wiss, 36 (1899), 47 pp.
    ${ }^{3}$ R. Simha has recently used the stress-strain relations which are obtained from Eqs. (14) by substituting the stress tensor $\sigma_{i k}$ for its deviatoric part $s_{i k}$ [J. Appl. Phys. 13, 201 (1942)]. Such stress-strain relations imply that, at constant strain, the stress decays exponentially with a relaxation time $\tau$ which is independent of the geometrical nature of the stress. This treatment ignores the fact that viscous flow, which is the cause of relaxation, is a response to shearing stresses only. In an incompressible material a uniform hydrostatic pressure does not produce viscous flow, and, hence, does not tend to relax. Contrary to Simha's stress-strain relations, our Eqs. (14) reflect this behavior.

[^13]:    "The term "static" is used here to indicate that, though the stresses $\bar{\sigma}_{i k}$ depend on $t$ as do the forces $f_{i}$, no inertia effects should be taken into account in computing these stresses. In fact, as far as this elastic body is concerned, $t$ plays the role of a parameter which need by no means be identified with the time.

[^14]:    - *Received June 12, 1943. Parts I and II of this paper appeared in this Quarterly, 1, 297-327 (1944), and 2, 43-59 (1944).

[^15]:    * Received Feb. 19, 1944.
    ${ }^{1}$ Blenk, H., Zeit. f. angew. Math. u. Mechanik, 5, 36 (1925).
    ${ }^{2}$ Kinner, W., Ingenieur Archiv, 8,47 (1937).
    ${ }^{3}$ Krienes, K., Zeit. f. angew. Math, u. Mechanik, 20, 65 (1940).
    4 Bollay, W., Zeit. f. angew. Math, u. Mechanik, 19, 21 (1939); also J. Aero. Sci., 4, 294 (1937).

[^16]:    * Received January 8, 1944. This paper constitutes part of a thesis submitted in partial fulfillment of the requirements for the degree of Master of Arts at the University of Nebraska.
    ${ }^{1}$ W. C. Brenke, An application of Abel's integral equalion, Am. Math. Monthly, 29, 58 (1922).
    ${ }^{2}$ E. T. Whittaker and G. N. Watson, Modern analysis, 4th Ed., Cambridge Univ. Press, London, 1927, pp. 211, 229.
    ${ }^{3}$ Maxime Bocher, An introduction to the study of integral equations, Cambridge Tracts in Math. and Math. Physics, No. 10, Cambridge Univ. Press, London, 1926, p. 8.

[^17]:    4 W. A. Hurwitz, Note on certain iterated and multiple integrals, Annals of Math., 9, 183 (1907).

[^18]:    ${ }^{5}$ F. S. Woods, Advanced calculus, Ginn \& Co., 1926, p. 164.
    ${ }^{6}$ O. V. P. Stout, $A$ new form of weir notch, Trans. of the Nebraska Engineering Society, 1, 13 (1897).

[^19]:    ${ }^{T}$ E. A. Pratt, Anoher proporional-flow weir, Sutro weir, Engr. News, 72, 462 (1914).

[^20]:    ${ }^{8}$ F. S. Woods, Advanced calculus, Ginn \& Co., 1926, p. 47.

[^21]:    * Received Jan. 7, 1944.
    ${ }^{1}$ For a fuller description of the process and for references to the literature on the subject, see the paper by Shortley and Weller in J. App. Phys. 9, 334-348 (1938).

[^22]:    ${ }^{2}$ We assume that at least one of the $\phi_{i}(i)$ is different from zero; otherwise the system (3.1) has only the trivial solution $u_{i}(i)=0$.

[^23]:    ${ }^{3}$ This relation is also given by Shortley and Weller, ibid.; but their method of derivation is slightly different from ours.

[^24]:    * This paper was read before the Annual Meeting of the American Mathematical Society in Chicago, Ill., on Nov. 26, 1943. Manuscript received Feb. 2, 1944.
    ${ }^{1}$ The writer wishes to thank Dr. J. G. Tappert, under whose direction the method of damped least squares was developed, and Dr. H. B. Curry, for valuable suggestions and guidance.
    ${ }^{2}$ E. T. Whittaker and G. Robinson, The calculus of observations, Blackie and Son, London, 1937, p. 214.
    ${ }^{*}$ E. B. Wilson and R. R. Puffer, Least squares and laws of population growth, Proc. Amer. Acad. Arts and Sci. (Boston), 68, 285-382 (1933).
    - Another extension of the standard method, which requires the use of second partial derivatives, is given by Wilson and Puffer (I.c.).

    A different kind of approach, not based upon the standard method, is given by Cauchy, Methode gênêale pour la resolution des systèmes d'équations simultantées, C. R. Acad. Sci. Paris, 25, 536-538 (1847). See also a paper by H. B. Curry, not yet published, (abstract in Bull. Amer. Math. Soc.r 49, 859 (1943), abstract No. 278).

[^25]:    ${ }^{3}$ P. S. Dwyer, The solution of simultaneous equations, Psychometrika, 6, 101-129 (1941).

[^26]:    ${ }^{6}$ This type of approximation was used by Cauchy (1.c.).

[^27]:    * Received Feb. 21, 1944.

[^28]:    ${ }^{1}$ Jahnke and Emde, Funklionentafeln mit Formeln und Kurven, Dover Publications, 1943.
    ${ }^{2}$ Gross and Lehr, Die Federn, V. D. I. Verlag, 1938.

[^29]:    * Received Feb. 18, 1944.
    ${ }^{1}$ Vol. 1, No. 4, pp. 328-333.

