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IMPEDANCE CONCEPT IN WAVE GUIDES*

BY

S. A SCHELKUNOFF
Bell Telephone Laboratories

1. Introduction. The impedance concept is the foundation of engineering trans-
mission theory. If wave guides are to be fully utilized as transmission systems or
parts thereof, their properties must be expressed in terms of appropriately chosen
impedances or else a new transmission theory must be developed. The gradual ex-
tension of the concept has necessitated a broader point of view without which an
exploitation of its full potentialities would be impossible.

In the course of various private discussions, | have found that there exists some
uneasiness with regard to the applicability of the concept at very high frequencies. In
part this may be attributed to relative unfamiliarity with the wave guide phenomena
and in part to the evolution of the Concept itself. Some particular aspects of the con-
cept have to be sacrificed in the process of generalization and although these aspects
may be logically unimportant, they frequently become psychological obstacles to
understanding in the early stages of the development. For this reason | am going to
devote several sections of this paper to a general discussion of the impedance concept
before passing to more specific applications; then by way of illustration | shall prove
that an infinitely thin perfectly conducting iris between two different wave guides
behaves as if between the admittances of its faces there existed an ideal transformer.
This theorem is a generalization of another theorem which | proved several years
ago to the effect that when the two wave guides are alike, the iris behaves as a shunt
reactor. Actual calculation of the admittances and the transformer ratio depends on
the solution of an appropriate boundary value problem.

More generally, wave guide discontinuities are representable by T-networks. In
some special cases these networks lack series branches and in other cases, the shunt
branch.

2. Evolution of concepts. Concepts evolve. It is a long way from the primitive
to the modern number concept. The primitive number was an integer, a concrete
integer at that. In some primitive languages there is no word corresponding to “two.”
There are words meaning “two men,” “two horses,” etc.; but the concept of “two”
applying either to men, or to horses, is lacking. To a primitive mind the difference
between a class comprised of two men and a class comprised of two horses over-
shadowed the similarity. Seeing similarities requires a degree of abstraction. A re-
sistance to abstract ideas seems to be a characteristic of human minds even in modern
times; only the modern mind is quicker to overcome it. An example, pertinent to

* Received Sept. 16, 1943
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our present discussion, is the following excerpt from a paper Derivation and discussion
of the general solution of the current flowing in a circuit containing resistance, self-
inductance and capacity with any impressed electromotiveforce, by Frederick Bedell and
Albert C. Crehore, published in the Journal A.l.E.E., 9, 340 (1892):

“From the analogy of this equation to Ohm’s law, we see that the expression

[i72+ (I/C w -1w )21 2is of the nature of a resistance, and is the apparent resist-

ance of a circuit containing resistance, self-inductance and capacity. This expression

would quite properly be called ‘impedance’ but the term impedance has for sev-
eral years been used as a name for the expression [i?2+L aw2]12, which is the
apparent resistance of a circuit containing resistance and self-inductance only.

We suggest, therefore, that the word ‘impediment’ be adopted as a name for the

expression [f?2+ (I/Cw —Zw) 2112 which is the apparentresistance of a circuit con-

taining resistance, self-inductance and capacity, and the term impedance be re-

tained in the more limited meaning it has come to have, that is, [7/22+ L 2w2]1/2,

the apparent resistance of a circuit containing resistance and self-inductance only.”
The name “impediment” was not adopted. Apparently, it was soon understood that
if one really wished to emphasize the difference between the impedances of various
circuits, one could simply describe the circuits and, therefore, for most purposes, it
was best to emphasize the similarity rather than the difference. And only ten years
ago there were some who objected to the use of the word impedance for the ratio
E/H in an electromagnetic wave and who wanted a new word for it.

The word “number” now includes fractions, negative numbers, irrational numbers
and complex numbers; the impedance is now a complex number, and not its absolute
value as originally intended. There are mechanical impedances, acoustic impedances,
electromechanical impedances, and finally impedances associated with any wave no
matter what its physical nature happens to be. The impedance is now the force/re-
sponse ratio 'when the force and response are harmonic functions of time and are
represented by complex exponentials. Around this concept has grown the transmis-
sion theory of force and response in linear systems. The principal tool of this theory is
the theory of functions of a complex variable. This theory is used for engineering
purposes as in the design of filters, equalizers, and other transmission systems with
prescribed desired properties; and with equal advantage it may be used for general
transmission studies. In this paper | am particularly concerned with fundamental
ideas applied to wave guides and wave guide elements.

3. General discussion of impedance and admittance. Superficially, it may seem
that the impedance concept does not apply to wave guides or if it does it is quite
different from the concept as applied to ordinary transmission lines. Actually there is
no significant difference; whatever difference there exists is largely psychological
rather than logical. In wave guides a characteristic impedance has to be associated
with each transmission mode. At first the existence of various transmission modes
may strike one as a feature which distinguishes high frequency wave guides from low
frequency “ordinary” transmission lines; but soon one will realize that even in ordi-
nary transmission lines it is usual to distinguish between different modes of trans-
mission. Consider, for instance, parallel wires at the same height above ground; there
are two obvious transmission modes recognized by communication engineers; in one
the currents in the wires are equal and flow in opposite directions and in the other
they are equal, flow in the same direction and return through ground. It is the exist-
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ence of these two transmission modes that accounts for the important engineering
difference between balanced and unbalanced transmission lines. Similarly, there are
two obvious transmission modes in a shielded parallel pair. The field patterns are
different for different transmission modes and the characteristic impedances are usu-
ally different. The existence of transmission modes is not peculiar to hollow tubes
and other structures which have become prominent in high frequency transmission;
high frequency transmission studies make us merely aware of the fact that any
physical wave guide, whether a coaxial pair or a shielded pair or a hollow tube,
admits of an infinite number of transmission modes with their characteristic field
patterns, characteristic impedances, and propagation constants.

Another cause of worry to some is a degree of indeterminacy connected with an
impedance and its associated quantities. The characteristic impedance of a wave
guide may be defined in a number of ways giving different values. For each oscilla-
tion mode a cavity resonator behaves as an ordinary circuit comprised of inductance
and capacitance; but different values are obtained, depending on how L and C are
defined. This indeterminacy is really inherent in these conceptions but in elementary
theory it is not stressed for the simple reason that no occasion arises for such stressing.
In the final analysis, this indeterminacy is of the same kind as that involved in the
essential arbitrariness of units and is related to the fact that properties of analytic
functions are not affected by a constant factor. Putting it in the language of transmis-
sion theory, the essential properties of impedance functions are not affected by ideal
transformers. If we have a closed box containing an electric network with two acces-
sible terminals and if we measure a resistance R across these terminals, we cannot
be certain that the box contains a resistance R; it may contain a resistance JR/10
which is then boosted to R by an ideal transformer. It does not really matter which
is the case. Similarly, if the measurement seems to indicate that in the box we have
a tuned circuit with an inductance L in series with a capacitance C, we may actually
have a tuned circuit with an inductance \L and the capacitance 2C in the secondary
of an ideal transformer which then doubles the impedance. More generally, the im-
pedance function is defined by its zeros, infinities, and other singularities exceptfor a
constant.

If V is the voltage across an impedance Z, | the current through zZ, and W the
complex power, then

VV*

vV = ZI, W= wvis =z oW (3-1)

where the asterisk is used to designate conjugate complex numbers. Now suppose
that our voltmeters and ammeters contain concealed ideal transformers; then “z”
will have different values in the above equations and we shall have

VV*
V = Zv,rlt IV = | Zw,rl 1% W= — —-¢ (3-2)
2Zyf V

These new equations are in effect various definitions of impedance and admittance
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Y 2W VV*
ZY) = — - ZWtl = — Zwy = —
(3-3)
1 1 1
Vvi —— > v 5 = = > v .V ——
Zv.i ZW.r Zw,v

Ordinarily, we make sure that there are no concealed ideal transformers in our
measuring instruments. Furthermore, at low frequencies we can measure the voltage
across the total capacitancei and the total current through the inductance. There
seems to be no question about the meaning of “V” and “l ” and it so happens that in
this case we are led to equations (3-1). However, in a section of a transmission line
or in a cavity resonator the capacitance and inductance are not localized and we are
forced to recognize the existence of a certain amount of indeterminacy. There is no
harm in this indeterminacy; it does not really matter in which of the following two
forms we decide to write the expression for power

W =\ZIl* or W = i(n*z) — —» (3-4)
n n

so long as we know how to compute it.

Just as ideal transformers in our “ammeters” and “voltmeters” transform equa-
tions (3-1) into equations (3-2) in the case of “ordinary” networks, they may be used
to transform equations (3-2) into (3-1) in the case of wave guides and networks with
distributed constants.

4, General impedance relations. Eliminating Vv, I, and W from (3-2), we have
the following equation connecting various impedances

ZWjZW.V = Zv.iZvj. (4-1)

If the impedances are real, then
ZWjZfF.v = Zy,i. (4-2)

In equations(3-2) V and | may be arbitrarily chosen values of thevoltage and
current associatedwith a given impedor. If we choose a given definition for J, we can
define a voltage

Vw.i = Zwjl (4-3)

for which equations (3-1) will hold and the impedance Zw.i will become the only
impedance associated with the impedor. We can also define

Vv =-—, (4-4)
Zw.v

so that again we shall have equations (3-1) with Zw.r as the sole impedance.
Since the power is an invariant we have

*

* Vw.i lw.v
Vw.il = VItrv or -y- = — e '4-51

1 Or almost across the total capacitance.
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From (4-3), (4-4), and (4-5) we have

Vijrj \v,v
\Y |

It is now evident that we can base our calculations on any particular voltage-current
pair and then, whenever desirable, we may pass to any other pair simply by inserting
in our transmission diagrams an ideal transformer with a proper impedance trans-
formation ratio.

5. Characteristic impedances and admittances of wave guides. The basic imped-
ance associated with the nth transmission mode in a wave guide is defined as the ratio
of the transverse electric to the transverse magnetic intensity

(5-D
n tn

It is called the wave impedance or the specific impedance and enters in the expression
for the average power flow per unit area in the direction of the guide

Ws = iEtws t n= hKnn t,nn]J. (5-2)
The reciprocal of this impedance is the wave admittance
Mn.=— ; (5-3)
N
the power flow is then
Ws = WIE"E *, (5-4)

In  wave guideswithperfectly conducting walls the various transmission modes
carry power independently of each other. The field patternsare“orthogonal” to each
other and may be “normalized”; that is, the transverse intensities for a typical mode
may be expressed as follows

Et,,, = VrFn(u, v), Ht.n = I,,Fn(u, d), In = Mnvn, (5-5)
where
| [Fn(u, v)]*dS= 1,
(5-6)

| Fm(u, vV)F,,{u, v)dS = 0, if m ~ n,
u and v are suitable coordinates in the transverse plane of the wave guide and the
integration is extended over the entire cross-section. The coefficients Vn and /,, may
be called respectively the normalized voltage and normalized magnetomotive force or
normalized current associated with the nth mode.

Calculating the total power carried in the Mth mode, we obtain

W = %K, Inl* = WtVnVI (5-7)

Thus, if Ae express our transmission formulas in terms of normalized voltages and
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currents, the same impedance coefficient appears in the alternative expressions (3-1)
for power and this impedance is also the ratio of the normalized voltage to the
normalized current.

Before going on let us see just what the above formulas mean in one or two special
cases. Consider a wave guide consist-
ing of two parallel metal strips of
width a, separated by distance b,
Fig. 1. In the dominant mode the
electric intensity is perpendicular to
the metal plates and is distributed
almost uniformly except near the
edges and in the external region where

the field is weakand little power is carried by the wave. Neglecting the edge effect,
we shall assume that the electric intensity is constant

Et — Eg (5-8)

The normalized distribution pattern is given by

FOX, y) = ——> (5-9)
\/ab

and, therefore,
Et = FoFo®, vy), Vo = EQ0/ab. (5-10)
The wave impedance for transverse electromagnetic waves isiTo= \Zjx/e and therefore

Fo
IE = loFo(x, y), lo= HoVab = (5-11)
Ko

In air K 0= approximately 377 ohms. The transverse voltage V between the plates
and the longitudinal current | are

V = bEO= VQ/b/a, I = aHO= W »/i; (5-12)
consequently the characteristic impedance on the voltage-current basis is

Y bVo b

Kv,r — = — Kao. (5-13)
| alo a
For the total power flow we have
* * * VV*
W = hKohlo = \M oFoFo = hKvjll = — (5-14)

2Kv,r
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so that in the present case

b
Kw.i = Kw,v = Kv.i = — Kom (5-15)
a

Consider now the Tifi,o-wave in a
rectangular wave guide, Fig. 2; for
this wave the field is given by

o TX irx
Et= Ei sin Ht = Hi sin
(5-16)
Xy 12
Ei = KiHi, Hi = MiEi, Ki = vvi« (1
4a2
The normalized field distribution function is
) R
Fi(*,y) = /j/- sin— > (5-17)
ab a
so that
Et= ViFfx, y), Ht —hFi(x, y),
(5-18)
Vi = Eiylab/2, h =11V al2b.

In this case the maximum transverse voltage V across the guide and the total longi-
tudinal current | are given by

V = Eib = Vi\/2b/a,

A (5-19)
| f IEdx = — li\/ab/2.
Vo
From these equations we have
\Y b
Kv.i = — = — Kii. (5-20)
| 2a
The power transfer is
W = iKJil* = WIViVi-, (5-21)
consequently
T2 b
Kw.i Ki, Kw.v = — Ki. (5-22)
ga a

Now let us see what happens when we join two wave guides, each consisting of
two parallel metal strips. Suppose that the frequency is so low that we do not have to
worry about higher transmission modes. At the junction the transverse voltage and
the longitudinal current must be continuous. This requirement is responsible for re-
flection unless the characteristic impedances of the two guides are equal. The coeffi-
cients of reflection and transmission depend on the impedance ratio K'v.i/Kv.i of the
two wave guides. As we shall find later the effect of the geometric discontinuity can
be calculated equally well by concentrating attention on normalized voltages and
currents. With respect to these variables the characteristic impedances of the above
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wave guides are equal; but at the wave guide junction there will exist an effective
ideal transformer with the impedance transformation ratio equal to K'vj/K'vj- In
the case of ordinary low frequency transmission lines we prefer to think in terms of
total voltages and currents; to think in terms of normalized voltages and currents
would be to make simple matters complicated; but it will presently become evident
that, in general, it is advantageous to introduce the normalized variables at least in
certain stages of the analysis.

Take an iris in a rectangular wave guide. We know that for frequencies between
the lowest cut-off frequency and the next higher, the iris can be represented as a
shunt susceptance. The value of this susceptance will depend on its definition; but
the ratio to the corresponding characteristic admittance of the guide is an invariant.
It is this ratio that appears in transmission formulas involving lumped elements in-
serted in a uniform transmission line. If, however, the iris is between circular and
rectangular wave guides, the ratio of the characteristic impedances of the two guides
will also be involved and this ratio depends on whether both impedances are defined
on the power-voltag'e basis or the power-current basis. It is evident, therefore, that
in this case the iris cannot behave as a simple shunt susceptance. The theory which
we are now evolving permits us to prove that in the more general case the equiva-
lent transducer for the iris consists of two shunt susceptances, corresponding to the
two faces of the iris, and an ideal transformer between them. The transformer ratio
depends on the particular voltage-current set we happen to choose for our analytical
work but our final transmission formulas will be independent of this choice. The
degree of arbitrariness involved in the choice of “V” and “l ” is of the same kind as
that involved in the choice of coordinate systems or of units. In elementary analysis,
a particular choice was so natural that a mistaken notion spread abroad that this
choice was a necessary one.

6. An iris between two wave guides. Let us now obtain an exact equivalent circuit
for an infinitely thin perfectly conducting iris between two wave guides of arbitrary

0)
@

TIrTer -7 7y AV Nbyy f, £/

Fig. 3.

cross-section (Fig. 3). The constants of this circuit depend on the particular trans-
mission mode under consideration; that is, there is one equivalent circuit for transi-
tion from each transmission mode in wave guide 1 to each mode in wave guide 2. The
most important case is that of transition from the dominant mode in one wave guide
to the dominant mode in the other, and in the following analysis we shall keep this
case specifically in mind; but the analysis applies to any other case. We shall use
Cartesian coordinates in our equations; but this does not mean that our analysis is
restricted to rectangular guides.

Suppose that the transverse field of the incident wave at the surface of the iris is
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E\(X, ¥)
HI(x, y)

where V\is the normalized incident voltage. In response to this impressed field, we
shall have some field over the aperture of the iris. Letf(x, y) be the tangential electric
intensity over the aperture; then in wave guide 2 the “transmitted” tangential elec-
tric intensity is

VIFi(x, y),
M Wgfa, vy),

E[{x,y) = f(x, y) over the aperture,
= ® ' over the screen. $'2)

In wave guide 1 the total tangential electric intensity, that is, the sum of the incident
and the reflected intensity, must be

VAFi(x, y) + Et(x, y)

f(x, y) over the aperture,
=8 over the screen. 6'3)
The function defined by (6-2) may be expanded into a series of normalized or-
thogonal functions appropriate to wave guide 2 ; thus

to

E\{x,.y) = £ V,Fn(x, y). (6-4)
n_l.

The tangential magnetic intensity is then

©
HI(x, y) = rlfl M nVrFEn(x, y). (6-5)

The function defined by (6-3) can be expanded into a series of normalized orthogo-
nal functions appropriate to the wave guide 1 ; thus

©
FJFi(s, y) + E[(x, y) = EIVan(x, y). (6-6)
n=
The reflected tangential intensity is therefore
EMx, y) = (Vi - VUFitx,y) + E VrFn(x, y). (6-7)
W))z

The corresponding tangential magnetic intensity is then

o]

Ift{x, y) = - MLVI- VOFi{x, y) - E MnVnFn(x, y). (6-8)
n«2

The transfer of complex power through the aperture must be continuous; therefore

2MyV[V* - E MnV,V*= E MnVX. (6-9)
n=1 n«=|
The voltage reflection coefficient qv is defined as the ratio of the reflected voltage
Vi— 7/ to the incident voltage.Vi; it may be obtained from (6-9) if we divide the equa-
tion by 2JIfi7i7il; thus
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viodirl+i A~ i +M rt\i+ *SE£1 (610
1+ qv 7j 2 Zi Mx7x7tJ 2NTXT ™. Mi7i7*J

Consider now the complex power flow into the second wave guide

W* = — MyV.Vt + 4 E Mn7,7*. (6-11)
2 2 n,2

The form of this expression is such that from the input end various transmission
modes appear to be in parallel. It is not exactly that the characteristic admittances
Mu Mt, Mi, « «« aredirectly in parallel;if we select the first admittance for reference,
the others are transformed in the ratio VnV*/V\V\ before being connected in parallel.
In any case the net effect on the input admittance is the same as would be obtained
if we had an admittance Y in shunt with a transmission line maintaining only the
dominant mode. Thus we can write

17 = \M\ViV*+ (77x7* (6-12)
where
“ 77
? ~5 fln 7x7* (6"13)

The ratio of the shunt admittance to the characteristic admittance

(«4)
M Mii Z M Xx7x7*

is an invariant. It has the same value regardless of a particular basis for definition
of admittances and it depends only on the form of distribution of the tangential
electric intensity over the aperture.

Similarly for the admittance ratio looking from the iris into wave guide 1we have

\Y 7 MV VvV
— = E . (6-15)

M 1 tr2 Mi7 7%
If the frequency is in the interval between the lowest cutoff frequency and the
next higher, then M2 Mi, me ¢ are reactive and the shunt admittances are pure sus-

ceptances
Y =iB, Y = iB. (6-16)

For frequencies higher than the second cutoff frequency an iris entails some power
loss to the dominant wave. The lost power is contributed to one or more higher
transmission modes. This is analogous to what happens when a doublet antenna is
inserted in shunt with a parallel pair or at the end of it. The plane wave guided by
the parallel pair loses power; this power is then carried away by a spherical wave
which originates at the junction. One mode of energy transmission is partly trans-
formed into another. Usually there is also an energy exchange between a local field
and the plane wave; this results in reactance. At lower frequencies an ordinary coil
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(or a capacitor) inserted in a transmission line acts just like an iris; electrically it does
not matter just what physical means we happen to provide for a local storage of
energy.

We now can rewrite (6-10) as follows

1 1/ 7\ 1 M i/ Y\
=— 1+ )+ — «»* + (6-17)
1+ qgr 2 V MJ 2 M i\ M j K 1
where
e = M (6-18)
Viv*

The reciprocal of the voltage transmission coefficient is

1 VI 1 Vi 1f1/ v\ i MH( Y-
) c= = — (14 =)+ —mnx Uk —-) (6-19)

pv Vi 1+ qv Vi nL2v M J 2 Mi \ Mi.L
It is a simple matter to provez that for transmission lines coupled as indicated in
Fig. 4, pv and qv are given precisely by equations (6-17) and (6-19). In Fig. 4 the

M, fcl 3£ (2 M,

Fig. 4.

transformer ratio 1 :«2is indicated for the impedances rather than for the admittances
in order to conform to the established practice. If n= 1, which is always the case when
the wave guides on both sides of the iris are the same, the admittances Y and Y of the
two faces of the iris are just in parallel, and the transformer can be omitted.

The exact numerical values of n, Y/Mi, Y/M i are found by solving the appropri-
ate boundary value problems.3 The approximate values can be obtained quite easily
if we assume a reasonable form of distribution of the tangential electric intensity
over the apertures and of course, we can always calculate these quantities from
measurements of the transmission and reflection coefficients for waves moving from
one wave guide into the other. Thus,

1+ ay Mi 1+ qv Ki

(6-20)
1+ ¢y MI 1+ CQy KI

where qy is the voltage reflection coefficient for a wave moving from left to right
and gy is that for a wave moving in the opposite direction.

5 See for instance S. A. Schelkunoff, Electromagnetic waves, D. Van Nostrand Company, Inc., New
York, 1943, p. 212.

3 For example, see S. A. Schelkunofi, The impedance of a transverse wire in a rectangular wave guide,
Quarterly of Applied Mathematics, 1, 78-85 (1943).

*S. A Schelkunoff, Electromagnetic waves, p. 491.



12 S. A. SCHELKUNOFF [Vol. 1I, No. 1

If the iris is not indefinitely thin, there is a section of a wave guide between the
two faces of the iris.

While the iris acts effectively as a lumped impedance, the field associated with
it is actually distributed. Even if the frequency is such that the iris is reactive, the
field extends to some distance on either side of it. Near the cutoff for the second trans-
mission mode this distance may be quite large; but ordinarily the field extends roughly
to a distance comparable to the transverse dimensions of the guide. There will exist,
therefore, a mutual impedance between those faces of two nearby irises which face
each other. For frequencies above the second cutoff, the'mutual impedance may, and
usually will, exist even between two distant irises. All these considerations do not
affect our essential picture of electrical properties of wave guide discontinuities; they
affect merely the numerical values of various impedance and admittance functions.

In the above equations we have treated Et and H t as if they were scalars; in gen-
eral, they are vectors. However, the analysis is similar to the above and the final
formulae are the same.

In the case of coaxial pairs or wave guides formed by parallel.metal strips the
dominant wave is transverse electromagnetic. If the edges of the iris are normal to
the lines of force for the dominant wave, the voltage between the edges is equal to
the transverse voltage across either guide; the total voltages associated with higher
transmission modes are equal to zero; and the transformer ratio is unity provided we
base our transmission diagram not on the normalized characteristic impedance but on
the conventional impedance K which in this case equals Kv.i, Kw.r and Kw.v-

7. Reactances in series with wave guides. An example of a reactance effectively
in series with the wave guide is shown in Fig. 5 which represents a circular wave guide

2a

Fig. 5.

and a narrow radial transmission line.s Let us suppose that we are concerned with
transmission of a TM 0,l-wave. For this wave the field is circularly symmetric. Mag-
netic lines are circles coaxial with the tube, and electric lines are in radial planes.
It is practically self-evident that the radial line is in series with the guide, and that
in parallel with the radial line there is an impedance associated with the gap. If the
frequency is between the lowest cutoff frequency and the next higher, this “gap im-
pedance” or fringing impedance is capacitive and is

of little importance except when the impedance of

the radial transmission line is high. For frequencies

above the second cutoff, the gap impedance is in

part resistive on account of power transfer from the

dominant wave to the higher order waves. As seen

from the gap, the impedances of various waves in

I the guide and the impedance of the radial wave are

in parallel; the two halves of the guide are in series;

Fig. 6. and the impedance diagram looks like that shown

5 S. A Schelkunoff, U. S. Patent 2,155,508, April 25, 1939.
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in Fig. 6. The same diagram is shown in Fig. 7 where the characteristic impedances
Ki and Ki have been “expanded” into semi-infinite transmission lines; the impedance
consisting of 2Ki, 2K 3 « « «in parallel is represented simply as the gap impedance Z,,.

Starting with equation (10.17-1) of “Electromagnetic W aves,” we can obtain the
approximate gap impedance by the method explained there. In this case, however,
the following elementary derivation is preferable. To begin with, let us remove the
radial line and assume that the electric charge is being transferred across the gap by
an impressed voltage VI The total conduction current I in the tube is the sum of
currents associated with the various transmission modes. Thus for the input current
we have

I —I\+ 72+ la+ eeeo (7-1)
The input power is then
W = IFT* = JFT*+ IFT*+
(7-2)

where Zi, Z2, « « + are the input impedances of individual waves; that is,
) . F1
Zi= -—> Zi= —>ees, (7-3)

In the above equations we have tacitly assumed that the gap is very small and
the current associated with each mode does not vary in the gap. This restriction wall
presently be removed. The total power contributed to the wave is divided between
different modes; one-half of it is carried to the left and the other half to the right.
The power carried in one direction in the nth mode is %K\y>jIn *; thus we have

Z, = 2Kwl]i. (7-4)

Actually the appliedvoltage is distributed in the interval (—s/2,5/2) around the
midpoint 2= 0. Assumingthat thedistribution is uniform, we may write the con-
tribution to the total current associated with the nth wave at point 2 due to an
elementary voltage at point 2 as follows

* dz
l,,e-r.U-d— > (7-5)

where 2» is the'amplitude at the source. The total current at point 2 is then

7o(2)=20 OOy pg 2 (7-6)
Sd-n2 S
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The power contributed to the nth wave is then

r * o dz
Wh = _In@) - = (7-7)
J —2 S
Thus we shall have
Wn= hXnv'C (7-8)
where (assuming that T,, is real)
9 ‘-U%\ f-”z- X X _ 2 201 - e-i>)
-— 1 al = (7-9)
12 V42 «—hz r,.] raJz
On the other hand
Wn= KwjlJn; (7-10)
consequently
F*  2Kwj
(7-11)

Xn

Since Xn decreases with increasing n, the successive components of the gap admittance

Y,, = Y2+ Y3+ Fi+ eee= + -ii—+ + e (7-12)
2JT», 2K«\, 2
decrease.

The typical is given in problem 8.10 on page 509 of “Electromagnetic Waves”

dirlo)e u M3>
where kn is the nth zero of Jo(x). For sufficiently large n, therefore, we have

2 2
n 1ns knS
Z,, = THKWJs = — — = — . (7-14)
47Tia€  AirlWta-

The impedance of the radial line is approximately

5 2irl
Z = 601 — tan (7-15)
a X

A more accurate expression in terms of Bessel functions may be found on page 269
of. “Electromagnetic Waves.”

8. Conclusion. The ideas developed in this paper are adequate for expressing
transmission properties of wave guides with discontinuities in terms of impedances
and admittances associated with these discontinuities. These impedances are reactive
if the frequency is such that the energy in either guide can be transmitted to any
distance in only one mode; otherwise, the discontinuities present some resistance for
the mode under consideration and a negative resistance to those other modes which
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participate in transmission of energy. The finding of exact values of impedances re-
quires solution of corresponding boundary value problems; but frequently good ap-
proximations can be found by making reasonable a priori assumptions on physical
grounds. In fact, the point of view outlined in this paper makes it easy to make such
assumptions.

More complex discontinuities can be analyzed into simpler discontinuities. The
discontinuity shown in Fig. & is equivalent to an ideal transformer between two wave
guides; across the left “winding” of which there is a small shunt capacitances and
‘across the right winding there is the capacitance7 associated with the annular disc

Fig. s.

Fig. 9.

looking into the second guide. In parallel with the latter capacitance there is the series
combination of the impedance of the radial line and the second guide itself. We may
express these ideas by the diagram shown in Fig. 9, where the inductance is used to
designate the radial transmission line only because this line, when it is short, is ap-
proximately an inductance.

More generally, the discontinuities should be represented by impedances distrib-
uted along the guide, as in fact they are. Finally, the section of the guide with the
discontinuities may be replaced by an appropriate T-network.

Recently J. R. Whinnery and H. W. Jamiesons have obtained explicit expressions
for the capacitances of numerous types of “step discontinuities” in transmission lines
formed by parallel conducting planes. They show how to apply these results to coaxial
conductors. They find theoretical predictions in good agreement with measured
values. The equivalent circuits given by Whinnery and Jamieson do not contain ideal
transformers; this is because for transmission lines comprised of two conductors, the
transformer ratios at discontinuities are equal to unity and the transformers may be
omitted.

6 In the first approximation this capacitance may be neglected.

1We assume that we are operating below the second frequency cutoff; otherwise there will also be a

conductance.
8J. R. Whinnery and H. W. Jamieson, Equivalent circuits for discontinuities in transmission lines,

I.R.E. Proc., February 1944, pp. 98-114.
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THE DISTORTION OF THE BOUSSINESQ FIELD DUE
TO A CIRCULAR HOLE*

BY

A. BARJANSKY1
The Brush Development Company

1. Introduction. One of the most important problems in the theory of elasticity
is the solution of the biharmonic equation V2 = 0, where <is Airy’s stress function,
for a given group of boundary conditions. As is well known, the most common ap-
proach to the solution of this problem consists in selecting a system of coordinates
particularly suited to the region studied.

Thus, using bipolar coordinates, G. B. Jeffery has given the general solution of
the plane problem, that is, of the biharmonic equation in two dimensions, for regions
bounded by non-concentric circles (Ref. 1). A clear, but not quite complete, treatment
of Jeffery’s method can be found in Coker and Filon (Ref. 2). This method has re-
cently been used by R. D. Mindlin for the determination of dead loads on tunnels
(Ref. 3).

The present paper is an attempt to apply Jeffery’s approach to the problem
of the distortion introduced in the so-called plane Boussinesq field by the presence
of a circular hole. Starting with the stress function §>of the undistorted Boussinesq
field, an auxiliary stress function x will be found such that $ =d>+x satisfies the differ-
ential equation and all the boundary conditions. The stresses and strains in the dis-
continuous field can then be directly determined from the derivatives of <>

2. The Boussinesq field. Boussinesq and Flamant have given the solution of the
biharmonic equation for the case of an isolated force P acting at a point on the bound-
ary of a semi-infinite plane. Their solution, which can be found in all standard texts
(see, for instance, Ref. 4, p. 82) is:

P
< — rd sin 8 (1a)

7

for the case of a normal force, and
P
4 = rd cos 0 (Ib)

m

for a force parallel to the boundary. The significance of the symbols is shown in
Figs. la and Ib.

In the simple Boussinesq problem, the only boundary conditions are that the
stresses, both normal and shearing, must vanish along the straight boundary (except,
of course, at the point of application of the force) and also must tend to zero as one

* Received Sept. 23, 1943,

1 The writer wishes to express his thanks to the following: persons who have assisted him in the
preparation of this paper: Professor M. S. Ketchum of Case School of Applied Science, who suggested the
problem; Dr. W. N. Dudley, also of Case, for several helpful hints; and especially Dr. H. G. Baerwald
whose assistance in many mathematical details has been invaluable.
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moves away from the point of application within the half-plane. With the appearance
of the circular discontinuity (Fig. 2), the above conditions remain, and a new one is

Fig. la. Fig. Ib.

added, determined by the nature of the discontinuity. Thus, if it is a hole, both normal
and shearing stresses must vanish along its periphery.
The region is thus bounded by a
circle and a straight line; the latter can
be considered as a circle of infinite
radius, so that here is a case of a region
bounded by two non-concentric circles,
to which Jeffery’s method is applicable.
3. Bipolar coordinates. Jeffery’s
method consists essentially in intro-
ducing a system of curvilinear coordi-
nates, called bipolar coordinates in
works on elasticity. Two poles, A and
B (Fig. 3) are taken at abscissas +a Fig. 2
along the X-axis, and the location of
any point is determined with respect to these poles by the quantities

Tl
£=log T = o1 —o2.
r-i
The lines rj=constant are circles passing through .4 and B, while £= constant are
a system of circles with centers on the X-axis. Some of these lines are drawn on Fig. 3.
If a circle of diameter d has its center h units from the horizontal axis (Fig. 2),
it is easy to show (see Ref. 1) that the proper polar distance a is determined from
a2=h2—di/ 4 and that the value £o of £ corresponding to the circle is £0= cosh_1 2h/d.
The cartesian coordinates can be expressed as follows in terms of the bipolar:

a sinh £ a sin f]
2
cosh £ —cos i) cosh £ —cos 4 (@)
When the biharmonic equation is expressed in bipolar coordinates, it is found
convenient to write it, not in terms of the usual stress function x> but in terms of
x/J,where J has the value

cosh £ —cos 9

the stresses are also expressed as derivatives of x/J-
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The bipolar solution for x /J used by Jeffery has the general form:

x/J = mEcosh £+ (—BE + G cosh 2£+ H sinh 2£ + F) cosy

+ (G'cosh 2£ + H' sinh 2£ -j-F') siny
[04]

+ {[Ek cosh (k + 1)E + Fk sinh (k + 1)£ + Ghcosh (k — 1)
k2

+ 11k sinh (k — 1)£] cos ky + [E£* cosh (k + 1)E + F/ sinh (k + 1)
+ G)' cosh (k — DE + 1k sinh (k — 1)£] sin ky\, 3)

where all the B’s, E’s, F's, G’ and Fl's are constants. This series will be assumed
convergent and differentiable for the time being.

Here the terms independent of ¥ and those containing cos y or sin y are used ex-
actly as they appear in Ref. 2 (Eq. 4.066 and paragraph 4.07), but those containing
functions of multiples of y come directly from Ref. 1 (Eq. 21), with some slight
changes in nomenclature.

Fig. 3.

4. General procedure. As was said before, the presence of the circular discon-
tinuity causes a modification of the Boussinesq functions d4 and d2 into <, and 4=
the latter having to satisfy the biharmonic equation and all boundary conditions
Also 45 = (/)i-l-xi» 4)2=d2+ X2 where xi and X2 are auxiliary stress functions of the gen-
eral form (3). Now since both 4¥s and both x’s satisfy the biharmonic equation, which
is linear, so do 4> and 42 As to the boundary conditions, $i and s 2 satisfy them along

the straight boundary and for remote points. Therefore, xi and X2 must be so selected
that:
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(1) they give vanishing stresses for remote points (E—», 7—%);

(2) they give zero normal and shearing stresses along the straight boundary;

(3) in combination with the known functions <fi and 42 they satisfy the boundary

conditions at the circular discontinuity.

In the next paragraphs, conditions (1) and (2) will be considered first and their
application will determine some of the hitherto arbitrary constants of Eq. (3).
Then the function x satisfying conditions (1) and (2) will be added to 01 or g2 (ac-
cording to whether a normal or a tangential load is studied), yielding

= pl-- Xi 42 = o02-f

Finally the remaining constants of x will be determined in each case by the conditions
at the inner boundary.

5. First and second boundary conditions. The stresses are expressed as follows in
terms of bipolar coordinates:
f ape a  _a |/X\
= (cosh £ — cos tj) — ssimhef - sSINTH — - ceslie | — ,
L difR 3E ani YA
r agd2 ad I/x\
a<r, = (cosh £ — cos 73 - — — sEllﬂhEE —————————— sSiﬂTﬂ— ————— 1- cos 7] (— (4)
L a2 at dv J\/ /
) ol {

The first condition necessitates
=0 0,=0, t{, = 0 for (£, 7n) —0;

and the second
at= 0, =0 for £= 0.

The first condition is seen from Eqgs. (4) to be equivalent to

= 0 for (£ rj) —0
from which, immediately
G+ F=0G= - Fand Ek+ Gk= 0, Gk= —Ek
For the second condition, tj, = 0 for £= 0, which yields

B _ k (-1 ) kT 1
and from <{= 0 for £= 0,

Thus the stress function satisfying boundary conditions (1) and (2)assumes the form:

-y — 5£ cosh £ — [i5(E —sinh £ cosh £) + 2F sinh2£] cos 4 + (G'cosh2E + F') sin 7
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+ ﬁ< -k- ------ {[mE*(E — 1) sinh £sinh k&
- —1

+ Fk(k sinh £ cosh kf — cosh £ sinh k£)] cos kq
+ [2* {k — 1) sinh £sinh ££ + Fi! (k sinh £cosh (£ — cosh £siph ¢£)]sin kq}. (5)

6. Third boundary condition. The value of x/J from (5) is now added to ¢4 (f°r
normal load) or g2 (tangential load), and the remaining arbitrary constants of (5)
determined by the conditions at the boundary of the hole, which are that both normal
and shear stresses vanish on the periphery, i.e. ©%{o=0, and (tj,){,,= 0.

In order to coordinate the functions % <2, on one hand, and xn X2, on the other,
the system of axes shall be selected so that the y=o0 (or 7= o) axis passes through the
center of the hole, as shown in Figs. 2 and 3. Then the concentrated force, whether
normal or tangential, will act at a point y=yo, and the stress functions ¢t and <
become

p _ Yoo = P_tar i AN
<1 — o) tan 1 1 0= tan 1
T (v —yof ~ ”

Transforming this into bipolar coordinates (Eqg. 2) one has

P yOQ(cosh £ —cos tj) —a sin g yO(cosh £ —cos q) —a sin g
tan-1 >

01—
X cosh £ —cos q asinh £
P asinh £ yo(cosh £ —cos gq) — a sin q
= n-1 - : .
X cosh £ —cos g asinh £

But, as was said before, in treating problems involving bipolar coordinates, it is easier
to express stresses not in terms of the stress function itself, but in terms of the stress
function divided by the quantity J, so that:

cosh £- cos - asin
4>i/] yX % d

P :
— [yo(cosh £ —cos q) — a sin #Jtan-1
to.

a sinh £

y0(cosh £ —cos q) — asinq

P
4>i/J = — sinh £ tan-1 :
X a sinh £

These two expressions must now be written in Fourier series in g to be comparable
with the auxiliary functions xi and X2 of (5). The coefficients of these series are found
by means of the usual integrations which are presented in detail in the Appendix.
The results are as follows:

[04]
= h E cos kg + Uk sin kq),
with -

To Pi T . /X \ 1 1+ cos/3)
= — | tan /Scosh £j~an-1 (tan j3coth £) + — [3 sinh £ —e*— —J],

2
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Ti = —tan (3 sin fBcosh £ —tan-1 (tan /?coth £) — sinh £ ,
Ui = —| —2~ [/ n N~ CS  _ tan-1 (tan [3coth £) — p'j sinh £~ ,
and for k~2
Pckl tan B sin kB k sinh £—cosh £ cos k(3
k= — —1) K =mmmmmemm e cosh £H— i+(-D* )
X k2-\ cos j3 }l
iv'il tan B cos IF]B k sinh £—cosh £ tan jS sin kfi
Uk= \(-1)A cosh £- -
X (( )A k ¢2- 1 L k H-1) cos 3
Ro )
to/J = h E. cos kg + St sin kq),
2 i
where
Ro P sinh £ .
tan-1 (tan /?coth £) + — [3sinh £
2
P sinh £
Pi =

g (—1sin B

P sinh £

[ — (=~ cos &7

In these expressions /3= tan_1 yo/a (Fig. 2). The above formulas refer to the case
/SFAO (see Appendix). For the important case j3= 0, i.e., yo= 0

To P
— = Pi = 0O, 2\~ 0,
2 X
for k> 2
2P ek((k sinh £ —cosh £)
Pi = for £ even, P* = o for &odd, Uk = o,
X k2 —1
and
Po . 2P ek(
— =0, Pi=o, b*= —- S|rl1<h £ for k odd, St = o for k even.
2 X

The following special cases will be considered in the next section on applica-
tions: (A) half-space containing a hole bounded by £= fo and subjected to normal
load; (B) same region subjected to tangential load.

APPLICATIONS

A. Hole subject to normal load. Here

dl/P = 4>ilJ + XilP.
or
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1+cos [}
<hi// = BE cosh |4 -jtan B cosh £[\an-1 (tan R coth£)as- —3~sinh £ -
2 COs R }
| P(E—sinh £ cosh £)+ 2P sinhz2 £
P
— tan B j*eEsin B cosh £—tan-1 (tan R colh £)— — R'jsinh £ | cos B

P Ttan R
1—-

(.
+ cosh 2£4P ,H — {I+(14-eZ) cosjS}

-tan-1 (tan R coth £)—(— @"sinh £ j- sin B

4- *2I\3/|2 -_a_--z--—l-gEk\k—I] sinh £sinh ¢£4 -Fk[k sinh £ cosh RE—cosh £ sinh Af]
-1 .y ( tan /Ssin kR k sinh £—cosh £ T cos kR cos K]
2tr | e k----- COsh*+ ¢2- | cos B _
2
+ ﬁfz —k":ﬁ [a—1] sinh £sinh ¢£4-P* [R sinh £ cohh ¢£—cosh £ sinh £]
k—\ ( tan R cos kB k sinh £—cosh £Ptan R sin kg' .
Pe*f<(—1)* -—----mommmmm- cosh£- +(-1>* sin kt].
( k k2- 1 L k cosR _
The condition (t{,){,,= —(cosh £—cos Ij)d?/dl,dl’l{ﬂ\]):o amounts to equating

to zero at £= fo the derivative with respect to £ of each term except the one inde-
pendent of 4. As to (crf)to= 0, this can be shown to require that for k~2 each term
be zero at £= fo- Thus, for each term, two equations are available; and this is suffi-
cient to find all of the remaining constants, with the exception of F' in the term in
sin |3. The constant F' remains indeterminate, and can therefore be taken as equal
to zero. By solving the two equations for each term, the following values are found
for the constants:

ousihe fp \ 2 sinz2jS(coshz £o+ 5)
—ef®

B=-
2usinhz2 fo | \' sinh o / coshz £0—c0s2 B
14-COSR
—(7—2/3) tan B cosh £o(cosh2 £0—|) —coth £o
cos B
P=- e(° tan R sin B cosh £0—tan R sinh £o cosh £o
2ir sinhz £o )
sin B cos B h I+cos|3
cosh £o0
.cosh2 £o—cos2 B ( H 2 Cos R
-P . sin B cos R
G'=- eZE’sin R- cosh zo
27sinh2fo cosh2 sco—cos2 B ( H
P'=0,
Et = —————2—{(—1)Atan R sin kR(k sinh £o cosh £o+sinh2 co—e A sinh £z04
t

4-[I — (— 1) Acos kB/cos /S]£ sinh2 £0} [sinh2 ifo—k2 sinh2 £0]-1,
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P
Fk = ————é}]{(—l)*(A—l)ﬁEl tan B sin ¢/3[&sinh zo cosh £0—  sinh Ap]
+ (k+ 1)—a[l+ (— 1)* cos kRB/cosR] [E2sinh2£0— Ksinh £0cosh £0 — sinh ¢£0]|

FI =

FI =

*[sinh2 &0 —k2 sinh2 £0]-1j

{(—*tan B cos kB[k sinh A cosh £o+sinh2 fo—etf*sinh (£0]
r

—I[&-1 tan o + (—1)* sin ¢/S/cos/3]& sinh2 £0]} [sinh2 Ao — Flsinhz fo]~\

P
2f{(—l)*(£—l)k-~l tan B cos kB [k sinh go cosh £0+06;f°sinh ¢£0]
Ir

—(&+1)-1 [¢~] tan /3+(—1)* sin kB/cos B) [kz sinh2 eo—k sinh £0cosh so—etfosinh ¢£0] }
e [sinh2 eg0 — k2 sinh2 fo]-1.

To test the suitability of this expansion, it is sufficient to examine the terms of
the auxiliary functions (Eq. 5) for the values of the constants given above. The co-
efficient of cos kj] in the general term of the latter equation is seen to consist of two
parts, one multiplied by (—I)ftand the other not. The first part forms an alternating
series the general term of which tends to zero, so that the alternating series is con-
vergent by a well-known theorem. The second part is found to converge outside the
circle £= fo by the ratio test. The same is true for the coefficient of sin kr/. Thus
the above expression for </ / is a uniformly convergent series in t) in the region con-

sidered.

Because of the great complexity of the expression involved, only the case /3= 0
will be considered in more detail. For that case

P cosh £o P
P<0) — oo : P(0)= oo 1 6'(0> —'pm — o
o sinhs fo 2t sinh2 fo
r(11 P k sinh2 £o
Pu — L — . for k even, Ek = 0 for k odd,
o sinh2 kfo — k2 sinhz £o0
P k2sinh2g0 — k sinh go cosh g0 — sinh ££0
P[> = ! |s for k even, Fm = Ofor ¢odd,

if —
(k + 1)(sinh2 kfo — k2 sinh2 £0

Ek@= Fkm = 0.

The stress function becomes

P cosh zo
-mmmmmmeemew — £ COSH £ -—--——- ei
T sinhs g0 7T
P cosh fo ) sinh2 £ 4
+ — (E —sinh £cosh £) -) cos 7
m _sinh3fo sinhz2zo

2P f  k{k — 1) sinh2 o
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k2sinh2£0 — k sinh g0 cosh £0 — sinh ¢£0 . . .
) ) (k sinh £cosh kim— cosh £sinh ££)
(k + 1)(sinh2 kGo — k2 sinh2 £0)

(k sinh £ —cosh £)  cos ktj

with the summation extending over even values of k only.

The most significant stress is the hoop stress cr, at the periphery of the hole, £= &
Substituting the above value of $1/J into the second of Eqs. (4), the following series
is obtained:

thoeg 20 ONE 1+ T 5 cothr o — 1 cos 24
aty = - (1 + cothz 7—-—-co0sT+ — (5 coth2fo—1) cos
m t sinh2 fo X
2P 2 sinh fosinh 2¢0 4 sinh fo sinh 4fo

cos 37
X Lsinh22£0 —4 sinh2 fo sinh2 4£0 — 16 sinh2 £0.

4P 4 sinh £o sinh 4fo
4+ COS 417
X sinh24fo0 — 16 sinh2zo
2P r 4 sinh =o sinh 4fo 6 sinh £o sinh 6£0

X Lsinh24f0 — 16 sinh2z0  sinh26£0 — 36 sinh2£0_

Fig. 4.

Fig. 4 is a graphical illustration of the above formula. In that figure, the “stress
factor” is plotted for different values of 2/i/d = cosh £&» By “stress factor” is meant
the ratio of the stress a,, to the stress which would have existed under the same load-
ing at a point corresponding to the center of the hole, if the latter had not been
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drilled. If there had been no hole, the point corresponding to its center would have
been under a stress —2P/irh (compression) so that the stress factor is the ratio
—cr,/(2P/td). Therefore, a positive value of the stress factor represents compression,
a negative value, tension.

It is seen from the figure that for each curve there exists a tension directly under
the load (a=o0), which becomes a compression as a is increased, reaches a maximum,
then decreases, and becomes tension again when a approaches 180°. For low values
of cosh %o, i.e., of the depth-to-diameter ratio, there exists a secondary maximum
of tension in the neighborhood of a = 20°.

As cosh So increases (as the hole gets deeper and deeper), the stress factor
curves tend towards the “limit curve,” which is simply the graph of 1—2 cos 2a.
The latter expression (Ref. 4, p. 77, second of Eqgs. (58)) is obtained by assuming the
hole to be in a field of uniform compression, equal to the compression —2P /wli at the
center of the hole.

B. Hole subjected to tangential load. Now the total stress function has the form

ad = I+ xuld,

where s2 is the total stress function, <2 is given by (Ib) and Xz > of the general
form (5). The heretofore arbitrary constants are determined by the conditions at the
inner boundary, which are the same as in the preceding case. The remaining constants
are found to be:

P sin R sin 2/3 coth =o coshz go
) (x- 23
27T _sinh2fo  cosh2 g0 —cos2 B sinh £o ]l
P sinB ~ sin B cos R
2wl sinh g0 coshzso —cos2®8 (€ ~  cosh *°]”
P e2%
C = - (1 + cos R),
2ir sinh 2¢0
F'=0,
P sin kR k2 sinh2to+ k sinh £0 cosh g0 — e4f»sinh ;£o
EK = - (—1)* . : >
2X k sinh2 (g0 — k2sinh2 zo
P . sinh
Y ——— (_ D)*(E —1) sin kB 2 E0
2X sinh2 kGo — k2sinh2 zo
| P [l —(—ly4acos kB] azsinh2go + ”sinh g0 cosh g0 — et{°sinh ;0
E =
2X k sinh2 A — k2sinh2 zo
el P K Hil (—1 @] sinh2 £o
_— — — (— 14 cos
2t sinh2 kfo — k2 sinhz2 zo

The resulting Fourier series can be shown to converge as in the previous case.

C. Conclusion. In the above paragraphs, a method was presented for computing

the distortion of the original Boussinesq field when a hole is introduced. Other inter-
esting results can be derived by simple means; thus, by superposing on the above
stress functions s1 or <z one of the solutions presented in Refs. 1and 2, it is possible
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to obtain the stress system for a Boussinesq field containing a hole, the periphery of
which is subjected to a uniform pressure. Another extension of the above method,
on which the writer is working at present, can be used to solve the case of a Boussinesq
field containing a rigid disc.

APPENDIX

The decomposition of the Boussinesq stress function into a Fourier series in 2.
We shall begin by decomposing the shear stress function
<€« P yO(cosh £ —cos 7f — asin §

— = —sinh £tan-1 -
J t a sinh £

The different Fourier coefficients are given by

) 1 r~1742 _
Rk+ iSk = — 1 J—e'k"dl).

mJo
This can be simplified by introducing the angle 0 = tan-1 yo/a.

02 P yo(cosh ¢ — cos 7 — asin 7
— = — sinh £tan-1
J ir a sinh £

sin 0 cosh E—;in M+ 0)

P
—_ 3~ g tan-1
r cos 0 sinh £

Let also sin 0 cosh £= 0, cos0 sinhf=15, 77+/? =", Then

1 r2rP p —sin0
Rk + isk — —_ | —sinh £ tan-1 -------—------ e'k"di7
Mo tt
P sinh £e-i*0 f 2T p — sin tp P sinh £&~ A3
tan-1 —------m----mm- eik*d\p = —----mmmm - 1k-
t Jo () 2

Here the limits of integration need not be changed, since the integrand is a periodic
function of period 27T. To evaluate Ik, use is made of integration by parts, with

p —sino
m= tan-i --------------- 1 dv — eik*d\p.
?
Then
g cos o dp i
du : > T el&  (k 0)

(0 —sino)2+ Q2 k

and I 1t
Ik = uv vdu.
) Jo

But, since both u and v are periodic, their product evaluated over the period 2ir is
zero; then
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Replacing the sine and cosine by their exponential equivalents and transforming, one
has —
29 r 2- fe2i* + 1)rf(ex)

I eik*

Ik = —
k Jo (e2* - 2ipe*™ - ly2 - 4q22i+

This is easily seen to be a rational function of eI the denominator of which, the
difference of two squares, can be decomposed into two quadratic factors with rela-
tively simple roots, so that the transformation by partial fractions can be used to
obtain the following result:

1 riT / 1 1 1 1
lk=— 1 ek (- — : r : r+ - r) die**).
2kJa ' e e ' * e e'*+ e*e e'* f-

Thus the integral breaks down into four integrals of the form
r2r tk

n |I—c

where t=e** and c is a complex constant of the form +e+f4ifl. Now if the indicated
division of tk by /—c is performed, a quotient which is a polynomial in t and a re-
mainder ck result. The polynomial is integrated into another polynomial in t—e',
and the value of this second polynomial between the limits o and 2ir is zero because
of the periodicity of e Thus the remaining terms are of the type

r 2T ckdt r2r ck
= die**);
o t C Jn 6 —C
namely,
1 (enM)k (c-fe*)* (- e~(e-"Mkl

2kJ o Le* —efe's el*—e~eP e + eeP e + e-f ,sJ A AN
The value of the resulting terms can be obtained more easily by considering the
corresponding complex function of f=1i

[ e = e £ gf N
Jc elt —c Jr e

along the contour shown on Fig. 5. It is well known from the theory of the complex
variable that the value of the above contour integral is zero if the pole of the integrand
falls outside that contour, and is equal to 2iriXickX Res., where Res. is the residue
of the integrand, if the pole lies inside the contour.
Performing the integration around the contour, we obtain the following:
(1) along the real axis —mS 4/ = w<the complex integral reduces to the real
integral to be evaluated (limits —tvand w are equivalent to o and 2tt);
(2) the two integrals along the vertical paths cancel each other;
(3) the integral along to= A has a zero limit for A—w.
Therefore,

*This treatment was indicated to the writer by his friend and colleague, Dr. H. G. Baerwald.
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o if the pole lies outside the strip
diefr) = 6 ™o — TT™NI!'ATT
2iri X ick X Res. if it lies inside that strip.

cM

The pole occurs at eif—c=0, or f = —i log c; c is of the form
c=e'P or c= —gifg-» =

so that logc—+£+i/3 or log c= +£+f(r—a3) and f= |3+ f£ or f = m—3+ if.

But the region x>0 corresponds to £<o, as can be seenfrom (2), and also
0</3< /2, s0 that the integrals whose pole has an imaginary part of theform +i£,
namely the second and fourth of (A), have the value zero. The poles of the first and
third, on the contrary, fall inside the region of integration, so that their values are

2Tti X ick X Res.

It remains to evaluate the residue. This is found to be —i by methods explained
in texts on the complex variable (Ref. 5). Thus the required integrals become

2iri X ick X (— i) = 2irick.

Thus,
Ik = i 2iri[{er)k- (- gfe-thd],
and
Pi eki
Rk + iSk = sinh £--|—(—-—[1 - gR*-<»*].
Therefore
P g*f
Rk = — (—1)*— sinh £sin kf3 >
T k

p eki
Sk —— sinh £ [l — (— 1)* cos A/3],
m k

When /3= 0, the poles shown on Fig. 5 have real parts 0 and tt, respectively. In
other words, one of the poles is on the contour itself. Besides, due to the periodicity
of the integrand, a third pole appears with a real part equal to —ir. This latter pole
has, in general, a real part —r—/?, and is identical with the pole at ir—;j3 Thus, there
are three poles in all, one wholly within the contour and two others, with equal
residues, on the contour itself. Now it is easy to see that each of the latter contributes
half its residue to the value of the integral, and since these residues are equal, the
situation remains the same as if there were only two poles, both entirely within the
contour, so that the case j3= o is not essentially different from /3X0, and it is sufficient
to set 3= 0 in the above formulas for R kand Sk- Thus

(0) »(0) 2P ek’ _ )
Rk™ =0, Sk © = --ﬁ----l-(--smh £ for k odd, Sk” =0 for k even.

Case A= 0. For this case, the procedure is exactly the same up to the integration
by parts. There, while u remains as before, dv=d\p, v=\f, so that I k becomes
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M —sinp gp cos pdf
la = p tan- + = 2% tan 1p/q qjo

(p —sinp)2+ @2

To evaluate J 0, the same method as before is used, exponentials being introduced
in place of the trigonometric functions:

it Pie2* + 1)d{ei*)
= 2i
Jo ie2* - 2ipe* - ly2- 4qx2*
This can again be transformed into partial fractions:

i i i i -n
\ --- === + die*).
* — eje" e* — e~ie" e* + e(e~f3 e*+

0 = -
IE)

2 cos j9J o e

Here we are dealing with integrals of the type

r -r pd{e*) r 2* pe*dp

Jo e* —c¢ JO ¢

these can be treated, as before, by in-
troducing the complex variable and
integrating around the contour of
Fig. 5. Since the denominator of the
integrand is the same as before, all
that was said about the poles of the
partial integrals making up Ik re-
mains true. Therefore, the second and
fourth terms in the expression for / o
contribute nothing, and the first and
third are each equal to 2Tt times the
residue times constants. The residues,
however, have here the value —log c,
so that

Jo = i 2Trf[—E£ — iR+ £+ 7(wr—1N})] = (tt - 2d),
2 COs IR cos 3

and the imaginary term vanishes, as could be expected. Then
70 = 2ft tan-1 (tan B coth £) + Xx (r — 2/3) sinh £
and

Psinhfr
RO = - [2tan 1 (tan B coth £) + (x — 2/3) sinh £].
X

Half of this expression is the first term of the Fourier series:

Roi P sinh £}
tan-1 (tan B coth £) + sinh £
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For 3= 0, there are again three poles, one on the imaginary axis and the two
others with real parts +x. This location is, as in the general case ky*O, due to the
periodicity of the denominator of the integrand. However, here the integrand as a
whole is not periodic, so that the residues at the two poles on the contour are not
equal, and the situation is not the same as for /3”0. The detailed computations show
that i2o=o.

Series for 4>i/J. Since the ratio

p —sin @7 + o)
451/ <2/ — <i>1/02 — *
9
is a simple trigonometric expression, the series for <j>i/J can be obtained from that
for £2/J.by term-by-term multiplication.
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THE THERMAL-STRESS AND BODY-FORCE PROBLEMS OF
THE INFINITE ORTHOTROPIC SOLID*

BY

G. F. CARRIER
Cornell University

1. Introduction. Elastic problems dealing with orthotropic materials have had
considerable investigation in recent years,1but up to the present time, such investiga-
tion has been largely limited to a consideration of the problems involving thin plates
of this material.

In the present paper, two problems dealing with the stresses and displacements
in an infinite elastic orthotropic solid are solved, and in each case the results are ob-
tained in terms of three independent displacement potentials. The two solutions are:
1) the displacement potentials arising from an arbitrary distribution of temperature
within a finite region of the solid (the temperature being measured from an arbitrary
datum) and 2) the potentials arising from an arbitrary distribution of body force
within a finite region. Each of these problems reduces to the solution of three simul-
taneous partial differential equations, which are transformed, through the use of'
Fourier integrals, into individual solutions for each potential. The expressions for
these potentials are reduced to the form of Newtonian potential integrals for those
cases where sufficient symmetry of the material properties exists to allow such a re-
duction. In the more complicated cases, the results are still expressed in closed form
in terms of definite integrals.

2. The thermo-elastic problem. The conditions under which the thermo-elastic
problem will be formulated and solved are the following. The material is to be homo-
geneous, orthotropic, and elastic, throughout the infinite region, and is to be within
that class of orthotropic materials which has three coefficients of temperature ex-
pansion, ay, associated with the three principal directions of the material. The body
forces will be taken as vanishing, since any problem involving both thermal and body
force effects has a solution which is merely the superposition of the two individual
solutions. The temperature distribution is to be an arbitrary function of position with
the restrictions that this function must vanish everywhere outside some finite region,
be continuous everywhere and be differentiable everywhere except on a finite number
of surfaces.

The fundamental relations needed to formulate the problem mathematically are:
the equations of equilibrium of an element of the material; the thermo-elastic equa-
tions, that is, the relations between strains, stresses and temperature; and the rela-
tions between strains and displacements.

The equations of equilibrium are found by a consideration of the equilibrium of
a rectangular parallelepiped of the material under general loading. Since these equa-
tions are independent of the type of material under consideration, they are given, as

* Received Sept. 1, 1943.
1 See, for example, A. E. Green, and G. I. Taylor, Stress distributions in aeololropic plates, Proc. Roy.
Soc. A 173, 163 (1939).
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in the isotropic case for zero body force,2by three equations of the type,

daz driv ot xz

T— hk—r— —7—=0 I
dx dy dz ' M)
where the notation is the conventional one.

The orthotropic material has been defined as one whose Hooke’s law has the form
indicated by equations (2), when T is identically zero. The effect of temperatures,
different from datum, is to produce normal strains in the three principal directions
of the material, as specified under the conditions of the problem. Hence, when the
coordinate axes are taken parallel to the principal directions, the general formulas
for the strains have the form,

ex = fluff* + fluffy + fluff* 4* ociT, me o ; yvz = a-UTyz, ®ee . (2)
If we now define three displacement potentials, < such that

d<pi dip2 dtp3
dx dy dz
and such that <pj and its derivatives vanish at infinity, the conventional definitions

of the strains become,

o QU 029 S L (P T ®3)
dx dx2 dz m dy dzdy

Combining now, equations (1), (2), and (3), we obtain three equations of which
the following is the first:

d f  d2 d2 d2\ d2 a2 "l dT
A1 — 7+ 66 +56 )+ [A27-749+ 3—748\= ~ Pi  * (4
g (\Hadt e dy2 ¢ dzZ)) ““ dy2 B dx @

Each of these may be integrated once to give,3

/ d2 dz d2\ d2 d2 )
(\(,n m+ (66 d_yz + (,655_:))<Fi+ (,12d—y_<Pz+ flu 52—27<¢3 = —PiT,* «¢ (4a)

The arbitrary functions which appear ineach of the foregoing integrations must
each vanish, since, for example, in the first equation, all terms vanish when x is in-
finite and y, z are finite, implying that all functions independent of x must vanish
identically.

Due to the convenient form of the boundary conditions, these equations are easily
integrated by the following procedure. Multiply each equation through by e~i* +v' +{>
and integrate over the whole region, integrating by parts those terms containing
derivatives of <. This operation produces the following three equations, using the
abbreviated forms defined below in equations (6).

*A. E. H. Love, A treatise on the mathematical theory of elasticity, Cambridge, 1934, p. 125.

5The hij, cn and /Syare combinations of elastic and thermal constants arising from the above opera-
tion. The manner in which these constants appear in the second and third of these is easily deduced from
equations (5).
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{bnk2 + b"r,2 + + cin2E2+ Cu”™Ei = piS,
Cuk'Ei + (bek2 + bMWv2+ b«n)E2+ cRBE3= 035, S)
CI3?Z | + Czz~Ei + (B2 + ¢irt2+ bzz"2)Ez = /3jS,
where,
Ej — J"J3" Qe ~>kdy d
(6)
-/ I | Te-""l+w+"dx dy dz.
Equations (5) are easily solved for the Ej, and yield the expressions,
Ej = Fj{k, v, OS, O

where the Fj become ratios of homogeneous polynomials in £2 r,2and f2
Noting now, that by their definitions, the Ej are the Fourier transforms (in three

dimensions) of the 45, we may write

<hi{x, y, z) = f Ejkv,f v, Odk dr, d{
(8)
U f f Fjkr, dr, @i n : T(r, s, Qe~i(rl+”I+t)dr ds dt,
and the order of the indicated integrations may be changed to give,
Fiik, 7, ar, df.  (9)

Since each Fj (as defined by equation 7) is a ratio of second order polynomial in
k2, rt, and f2 to one of third order, we may write,

IE'j— & R*RI

R\RIRI

where i2*x = X*2-(-;ul72+""2, and where the xa, jua, and B, are constants depending on
the values of the constants appearing in the determinants defining Fj, and hence,
may be considered as known. Note that the X* /4, for je=1, 2, 3, must be non-nega-
tive, since no singularity may exist except at the origin.

In many cases, the expressions for the Fj may be reduced to the form,

(10)

~ T,
Al123
This will always be true when the problem involves a material which is isotropic in
a certain plane (for example, a laminated plastic) unless identical values of R2recur
in the denominator. This may be seen by noting that since the denominator of Fj
must be invariant under a rotation about the z axis due to this isotropy (the plane of
isotropy is here taken as the x, y plane), £2 and r,2 must occur in the combination
£2+j?2 and hence, Xa= n& and the R2 become essentially binomials. The reduction
of Fj to the form of equation (10) is, in this case, merely a matter of evaluating A, k’
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When equation (10) does hold, the integration proceeds as follows: Using the con-
ventional vector notation and the new coordinates with the subscript k (where
£*=X*£, xk=x\iT1 rh=r\jr\ etc. and where mk=i(xk—rk)+ j(yk—sk) + klzk—tk)), the
integral over £, 77, and f, of equation (9) defining Green’s function G, may be written,

G,{x,y,z,r,s,t)="fff X _~"Tei”k ~ dO- U
Uxoy )J JJ * §,23 Kk Xa nk )

If we now change to a spherical coordinate system in which 7 is the angle between
fnk and Rk and 5 is the polar angle about mk, this integral becomes,

Gj=JJJ X eimkRk(:os'r sin 7 dy dd dRKk,

where the integration now takes place over, 027 ~ %, 0757227r, 0"1?a< «> The ele-
mentary integrations over 7 and 5 produce

4ttAjk  r K sin mkRk

~ dRKk,

Gj — ~ =~
*=1,23 KkiikmkJ O Rk

which is known to have the value,
Gj=2r X .
k—1,2,3 AiM* 15k

Now transforming the remaining terms of equation (9) to the coordinates with the
subscript k, and substituting the above value for Green’s function, we obtain,

V- T (\krk, fiksk, tk)
X Aik— T, drkdskdtk.  (12)

Hence, the problem, wherein T(x, y, z) represents the temperature distribution,
becomes the problem of evaluating the Newtonian potential function corresponding
to a mass distribution of,

P=—-T(\kxk Pkyk, zK.
For an isotropic material, the 4k become alike, and are given by 4

a + v Ir IClr T{r, s, t)
4t 1—vJ JJ \M(x —n2+ (y —s)2+ (z—12

In the evaluation of Green’sfunction for those cases wherethe denominator of F
has a multiple root, it is convenient to introduce the notation

d2 d2 d2

Gj=12Gj, A* 1 1 -
n dx2  dy* dz2

In this case, integrals of the form,

1J. N. Goodier. On the integration of the thermo-elastic equations, Phil. Mag. (7), 23, 1017 (1937).
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= K XA ks A+t dr, ds (13)

must be evaluated, provided Using the above notation, the equivalence of
the following to equation (13) may be verified by substitution:

A%y, = Aid fJ dr, d{. (13a)

The integral involved in this equation is, however, the same as that appearing in
equation (11), so (13a) becomes,
. 2Cin
A/, —Aj >
\/(x2—1r22+ (y2 —s22+ (22 —fid2

where Cy, is an easily evaluated constant. Substitution will again show that,
Gjn —C,, Ai\V/('r12—rd2+ (y2~ S22+ (2 —h)2

is equivalent to the above equation, and hence the <€sare given by,
ti=— Z)f f f T(r’s’0Gjn(r, s, t, x, y, z)dr ds dt. (14)

In those cases where F- cannot be reduced to one of the foregoing convenient
forms, Gy is more difficult to evaluate. Since no explicit form has been found for this
function, other than complicated definite integrals, it is believed best to leave it in
the form defined by equation (9).

3. The body-force problem. As in dealing with isotropic materials, the solution
of the body force problem may be shown to reduce to a form analogous to that of the
thermo-elastic problem. To show this, we shall consider only the problem where the
body force is directed parallel to the # axis, noting that the general solution is ob-
tained by the superposition of three such problems.

Equations (1) and (2) are modified to contain the body-force function, A, and to
eliminate the temperature terms. Equations (4) are then obtained again, where now
the right hand sides are replaced respectively by, X, 0,and 0.

The d5 will not, in general, vanish at infinity in this problem, hence the procedure
needs a slight modification. The second and third of these equations are integrated
with respect to y and z respectively and then differentiated with respect to x. This
yields equations (4a), where again, X, 0, 0, appear on the right and where the $jare
replaced by d(f>j/dX. The procedure is now identical with that of the thermal problem,
and the 45 are found by the expressions analogous to equation (14).

4. The two-dimensional problem. If we carry through in two dimensions the
procedure used in the previous sections of this paper, we arrive at an equation which
is identical to equation (8) except that z, I, and f, no longer appear. The expressions
for Fj arc now simpler in form, being given by,

P XOE2 + PR
+Ag)(xr + M%)



36 G. F. CARRIER
which may always be reduced to the form

Fi= £ —

unless = [
Before changing the order of integration, we differentiate equation (8) with re-
spect to y. The integral form of Green’s function becomes then

dGjk i"e iyeir +v")
J Pody, (15a)

dy XA + AV
unless R2—R 3, in which case,

dGj rr iyei(xt+v”)
A2—" = AX A, - m -° dtdq. (15b)
ay JJ X2 + pit]

This latter expression is, of course, derived by the same reasoning used in the three
dimensional problem.

Equation (15a), after the introduction of the coordinates with the subscript k,
can be written in the iterated integral form,

dGgA f @4A-k rm cos jjkxXk Wk f £*\
| sin Tkykdyk —dl—)

dy Jo x* Jo i 'w

which is known to be equivalent to,
dGjk f“ 4/1jk
dy Jo

and this integral yields,

. m
sin yw k—2 e-i’M'dyk

dG,k  2irAjk yk
dy X x\ + y\
or
Gjk = -——-—In (x| + yl), (16)
Xeau

and we obtain the familiar two-dimensional logarithmic potential.
Equation (15b), then becomes, in an analogous manner,

oo iedj »
AGj = - Ai In (XZ - y?
Xaah
or,

Gj =

A2[(*i + y) In (*2+ y2]. an
2\kHk

Hence, Green’s functions are determined for each two-dimensional problem involving

thermal stress or body forces in the infinite plate. The usual methods of superimposing

plane stress (or strain) solutions may be utilized, of course, to solve the corresponding

problems for the finite body.



37

STRESSES IN THE DIAPHRAGMS OF DIAPHRAGM-PUMPS*

BY

A. M. BINNIE
Engineering Laboratory, Oxford

1. Introduction. Complete prevention of leakage from a reciprocating pump is
difficult to ensure over a long period of working. When the fluid to be pumped is
of such a nature that no leakage whatever is permissible, some modification in the
design of the pump is essential, and under these circumstances a diaphragm-pump
may conveniently be used. This in its essentials consists of two chambers (Fig. 1)
attached to a modified reciprocating pump. The chambers are of conical form rounded
off at the apex and at the base, and between them a diaphragm is clamped at its edge.
For high-pressure operation the diaphragm is a very thin steel disc. The fluid to be
pumped passes through one chamber, connexion to inlet and exhaust valves being
made by means of a number of small ports. The other chamber is connected similarly
to a single-acting reciprocating pump, which is not fitted with valves. This chamber,
the pump cylinder and their connecting ports are filled with a liquid (commonly oil),
and thus motion of the piston of the reciprocating pump causes the diaphragm to be
pressed alternately against both conical surfaces, thereby producing the desired
pumping action. The inevitable leakage of oil past the piston is made good by means
of an auxiliary pump.

An approximate method of calculating the stresses in the diaphragm is explained
below, hence the size of the chambers may be so designed that the fatigue strength
of the diaphragm is not exceeded. In section 2 the deflexion of the diaphragm is
taken as sinusoidal, in section 3 as a cubic, and in section 4 as following a Bessel-
function relation Attention is confined to the stresses which result from distortion
into the same shape as the chamber, no regard being paid to the local stresses round
the ports.

2. Stresses when the transverse displacement is sinusoidal. In general the dis-
placement of the diaphragm from its unstrained position has not only a transverse
but also a radial component; therefore it
does not seem possible (except by relax-
ation methods) to calculate the stresses ¥
for a specified shape ofchamber. It is {oar
necessary to assume areasonable ex- T T ‘
pression for the transverse displacement | T !
«w, from which the corresponding radial
displacement u and the stresses will be obtained; and, when both u and w are known,
the shape of the chamber is determined.

W ith the axes shown in Fig. 1 we shall in this section take w as specified by

WL | cos™, (1)
2\ a)

* Received Sept. 29, 1943.
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where a is the radius of the diaphragm and wo the maximum value of w. This expres-
sion satisfies the conditions that the slope must vanish at the centre and at the edge.
For it we assume as an approximationlthat

u=r{a—rn)(Ci+ C2x), (2)

where C{and C2are constants which will be determined by the principle of minimum
strain energy. The conditions that u is zero at the centre and at the edge are auto-
matically fulfilled. Now the transverse displacements are many times the thickness
of the diaphragm, hence large-deflexion theory must be employed. In Timoshenko’s
notation (loc. cit.) the radial and tangential strains are thus

du 1/dwV
*lox o om| VET e

©

u
r
The diaphragm being very thin in comparison with its radius, the strain energy in

it due to bending may be neglected in comparison with that due to the stretching of
its middle plane. Hence the strain energy in the diaphragm is

Vi 2veTet)dr. 4)
Here E denotes Young’s modulus, v Poisson’s ratio, and h the uniform thickness of

the diaphragm. On putting (1) and (2) into (3) and inserting the results in (4) we
obtain

. mrrEh 1 3 7 3rrd
Vi —cy + —CiCx+ —cy + — W
4 10 60 1024
mwlal 2 1AV 1\\ /5 ™ /tt2 INN)’ (5)
+T 0 VeT 40w +t)) vt Neras+t)) )
Now
dvi  dvx_
. (6)
dCi 3C2
hence
25\ (2 17
[ <— + —
128a313 5 (7)
15wl (72
Cc2= -

— +13
128a41 3

In the remaining calculations we will consider the case v=0.3 when (7) reduces to

wl Wo
Cl = 1.06 —; 1.76— m (8)
a3 a*

Cf. S. Timoshenko, Theory of Plates and Shells, McGraw-Hill, New York and London, 1940, chap.
1X.
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The radial and tangential tensile stresses are

£ E
oY er + vet), = et + ver). 9
Lo e 3 g (errven ©)

Then, with the aid of (3) and (8), (9) becomes

Bwb { r r2 _ i)
o — <151 - 711 — + 6.38 b 1.36 sin2—
a* | a a* a)
. (10)
Ewl ( r r2 _ i)
= e <151 - 495 — + 3.67 b 0.41 sin2— X
a2 | a a2 a)

These expressions are plotted in Fig. 2, from which it will be seen that the maximum
stress occurs at the centre and is given by 1.51 Eit%/a2 If wQa = 1/35 and £=13000
tons/sq. in., the maximum stress is 17 tons/sq. in., which for a good quality steel is
a reasonable working stress. Finally we will examine the shape of the chamber corre-
sponding to (10). It will be noticed from (2) that u is zero not only at the centre and
at the edge but also at r/a ——Ci/(C2) = 0.60. On differentiating (2) it appears that u

1-5
k
\%
1-0 %
%
eraz2
Em ;2 % i
Hi
0-5 \ \ \ Vv N
I V T T E T T T TSI R T I TR TR \
ot -<
X
0 025 0-5 0-75 0
r/a

Fig. 2. Radial and tangential tensile stresses in the diaphragm.
-------------- sinusoidal displacement.
------------ cubic displacement.
— - — Bessel-function displacement.

has a maximum value 0.12«"/a at r/a=0.24 and a minimum value —0.06wo/a at
r/a = 0.82. Hence the greatest radial difference between the shape of the chamber
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and w as given by (i) is 0.12 u%/a, which for w@’a =i/35 is only 0.98XI0~*a. For a
chamber of normal diameter this difference is too small to be appreciable in manu-
facture.

It is of interest to determine the strain undergone by a radius of the diaphragm,
and for this purpose an accurate method of rectification is available. For a chamber
of sinusoidal shape a radius is extended to a length s given by

> &2 / X 2W0 7rr\12
LH cos2— ) dr
0 az2

al
2a r*n{I . irr\ 112 /irr\
= _d (1-~sin* —) d — , e (11)
ir Jo \ al \a /
TMWo [/ TRW o\
,vhere +

Since p is small, the first bracket in (11) may be expanded by the binomial theorem
and the complete elliptic integral replaced by

T/ b2  3b*
2\ 4 64 /'

The strain of the radius then reduces to

a p2 13p4
—~ —~—bh mme (12)
a 4 64

For wo/a= 1/35 this strain amounts to 0.05%, hence in a steel wire distorted into this
sinusoidal form the tensile stress would be only 0.0005X13000 = 6.5 tons/sq.in.

3. Stresses when the transverse displacement follows a cubic relation. To esti-
mate how far the stresses depend on the expression assumed for w, we will in this
section replace (1) by the cubic

/ 3r2  2r3\

w
(13)

This equation satisfies the same four boundary conditions as (1), and the greatest
difference between the two is approximately O.OlOwo at r/a = 0.28 and 0.72. After
employing (2), (3), (4) and (6) we find that
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For v= 0.3, (15) reduces to

. Wo W
Ci=0.99 —, C2= 1.62 —, (16)
a3 a*

and the stresses obtained from (3) and (9) are

( r r2 r3 r4)
<142 - 6.61 — + 25,67 ——-- 39.56 b 19.78 — 09,
a2 ( a az a3 al)
A7)
Ew\ ( r r2 r3 ré)
<Tt <142 - 460 — + 9.32 ------ 11.87 b 593 —9.
a2 | a a2 a3 ad)

From Fig. 2, in which these expressions also are shown, it will be seen that the maxi-
mum stress is slightly smaller than that obtained in section 2.

4, Stresses when the transverse displacement follows a Bessel-function relation.
Lastly we will take w as given by

w = Wo[Jo(kr) —m\, (18)
where k=a/a, a=3.83 ¢+« being the first positive root of Ji(a;)=0,
m = Jo(cc) — —0.402 e m,
and
JFo = wd/{/o(0) —/o(a)} = W0/1.402 « me .

This equation satisfies the four boundary conditions, and it gives a displacement
which, unlike those previously considered, is unsymmetrical about the line w—wa 2.
Except at r=0 and r—a the displacement is everywhere less than that specified by
(1), the greatest difference between the two being approximately 0.019 wOatr/a = 0.53.
The same procedure as before leads to

irEh p1
V1 C\a4 + — CiCia6+ — C\a6+ f rJ\(kr)dr
1- v2L t 10 60 4 Jo
(kwJl(ka)
+ Wo (Ca + 3Cj)
Y 12
+ ~ (2+ v)(da - d) J\(kr)dr - a78("a)™|J, (19)
51Tor
Ci 6(2 + ){/ > (kr)dr —a.]%(ka)q — kavald o{ka) ,
~w\_
- (20)
5TFI I
C2= g N2 + ") { /o Jl(kr)dr - a/O(Aa)J - kva3dll(ka)]”.
»

If we take v=0.3 and f*JI{x)dx = 1.2599,3 (20) reduces to

* After some fruitless attempts to evaluate this integral, | asked Professor G. N. Watson whether
it was expressible in any simple form; his reply was that he thought not, and he computed its value to
15 places of decimals, his result being 1.25990 97359 05768. The value 1.2599 is sufficiently accurate for
our present purpose.
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Ci= 101—,Cr= - 1.74— (21)
a3 a4

and the stresses are

EZwb ( r r2 o1
o <l.44 - 6.95 b 6.31 — + 4.10/?(ir)>,
a2 | a a2 )
(22)
Ew\ .
i f1.44 - 484 — + 3.63 — + 1.23/i(Er)\.
| a a2 ;
These stress distributions, which are plotted in Fig. 2, are in close accord with the
results obtained in sections 2 and 3.
5. Conclusions. The following conclusions emerge from the above calculations:—
(i) For the three kinds of displacement considered, the maximum stress in the dia-
phragm is at the centre and is about 1.5 Ev?0/a2
(it) The stress distributions due to the three kinds of displacement do not differ
widely. Hence, if it is decided to use one kind, and small errors are made in the
difficult process of machining the chambers, no great alteration in the stresses
will result.
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THE INTRINSIC THEORY OF THIN SHELLS AND PLATES
PART II.—APPLICATION TO THIN PLATES*

BY

WEI-ZANG CHIEN
Department o} Applied Mathematics, University of Toronto

7. The general equations for a thin plate. We shall now investigate the equations
of equilibrium and compatibility for a thin plate, not necessarily of constant thick-
ness. First, we shall introduce the condition that the system is a plate, i.e., its middle
surface in the unstrained state is plane. We have therefore

bak = 0, RaByp = 0. (7.1)

Furthermore, in order to simplify the problem, we assume in the following sections
that the body force forms a parallel vector field, and therefore (3.38), (3.39) are
satisfied; this is true for most practical problems.

Substituting (7.1) and the conditions on body force into (6.34) and (6.35), we have
three equations of equilibrium for a thin plate

- 2JHffi*gfrPIxh + SAft'x(gIXA3|fiT+ A g *qg*~h * + P°
i - 2a
+ 2X[Oh + ’h + a*qrX@h = 0°m , 7. 2a
[a Q )é 1—g 2" X@ (7. 29)

2 A N(prxli)i, - Afé"iq"quh*)é,+ + Pa

a a

+ 2Xf(h + — a“(Q°/)ip+ (aTsaay + 2a°sa*y)QyqTsh = Ofo, (7.2b)
1 X a

where the O-symbols have the following magnitudes,

0?2«)! X @h,X°Qh,p*qh, Q~gh, Qgph, Pgh\X°h\ Qh\ gPh\ gph\ gXh\ ghK (7.3a)

Of43); P 27> Qpb, Xph, XQh, Q-h, Pgh\ Qh\ X h\p h\ gh*. (7.3b)
We recall that
A(f'X = = aa«3a”™ + (1 - <rjacraB}, 7.3¢c
(fx= ot (- <rjacaB} (7.30)
2(2(t — 1)
3(1- 1) 0 -3d)

Similarly, substituting (7.1) into (6.43) and (6.44), we have three equations of com-
patibility for a thin plate

2nfoi<.70|9,cL‘T(I + 2n[00$paxP,p + 2anPxx)
— 2nfQg3r(arX + 2n*n*ppt)(pOX|T+ p7xja- p,7X) = 0, (7.4a)

* Received June 12, 1943. Part | of this paper appeared in this Quarterly, 1, 297-327 (1944).
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(an"nfoij—yaiE)fI + n*nA<PTRA (I + 2nftn|pxjpTU+ 2aTH X
" e o N —
1 2 ("MIROPM & )(prpz\i/ ‘T Pyr\g Pypg) (PaugT‘ P(|u§1 Pofl\av‘v) 0. (7 .4b)
The macroscopic tensors in (6.29), (6.30), (6.31) can be written as
T<* = 2 < ",XA - a**0«A + 0%, (7.5a)
1 —cr
Adi= fnra~tV jA 3+ 0(4, (7.5b)
r-0 = |~ (« JA9], + G'A+ (a*P- + a“CPY)guA3+ OB (7.50)

where

0(4 = 0$,(p2A, G2A, GpA, pA3 GA3 WA3 q2A3, (7.6a)
04 = 0f4(9PA3 *°A3 GA3 A=, XgA3, (7. 6b)
0?4 = 0f4(GpA, G2A, G"A2Qqh2Pph2PQh2qph3X°h3 Qh3 Xqgh3 g2A5H. (7.6c)

Equations (7.2a, b) and (7.4a, b) are the six differential equations of a thin plate
in the six unknowns pads and gap. The next step is to introduce certain systematic
approximations based upon the thinness of the plate, so as to obtain a set of differ-
ential equations in simpler form.

8. Classification of all thin plate problems. We consider a family of <>lthin plates
of the same material, having an identical middle surface SJ in the unstrained state,
but different thicknesses; each is subject to the action of (i) external force systems
applied at the edges, (ii) surface loadings on its two boundary surfaces, and (iii) uni-
form body force throughout the plate. (This includes gravity, but excludes a centrif-
ugal field.)) We attach to the middle surface of each plate the same system of
coordinates x“, so that the fundamental tensor a,s is the same for all plates in this
family. We assign to each plate a value of a parameter e, so that the thickness of all
the plates can be represented by

2A = 2ef)(x1, x2), (8.1)

where 0 < e < 6i and the function h is the same for all the plates; for thin plates, t\ is
supposed to be small, but the basic idea of the method is that we seek solutions valid
for all e in the range 0 < e< (j.

Equation (8.1) implies that the derivatives of the thickness at any point are of
the same order of magnitude as the thickness itself. We shall call these plates “regular
plates.” On the other hand, if the thickness and its derivatives are of different orders
of magnitude, we have an “irregular plate.” The following theory is limited to regular
plates only.

We may suppose e chosen equal to the ratio of the average thickness to a selected
lateral dimension (usually the smallest lateral dimension) of the plate. For a circular
plate, e is the ratio of the average thickness to the diameter of the plate. For a rec-
tangular plate, it may be chosen equal to the ratio of the average thickness to the
length of the shorter side.

It isimportant to observe that eis the only parameter involved. Except the funda-
mental tensor adj and Poisson’s ratio cr, all the other quantities occurring are func-
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tions of € and no quantity is “small” unless it tends to zero with e. (Young’s modulus
does not appear, on account of the use of reduced stresses and body forces.) Thus for
any “small quantity” T, we must have

lip T = o. (8.2)

In order that a problem may belong to the theory of small strain, e.y must be a small
quantity, and therefore

QB ea = 0. (8.3)

It follows that pa® must also be a “small quantity,” depending on e like in (8.2).
But this is not necessarily true for gak.

It is understood that all conditions (such as reduced edge forces, reduced surface
loadings, and reduced body forces) depend on e in such a way that (8.3) holds. We
shall assume that Q\ P', X[( vanish at least as fast as e, and are in fact power series
in e. This assumption implies that the derivatives of any of these quantities with
respect to x" are of the same order of magnitude as (or higher order of magnitude
than) the quantity itself. Hence we write

° = ! = 8.4a
0 gg*koQ u'. Qa= E (8.4a)
p°=E rw ¢ p°=E p%)p> (84b)
smil
) ®
*joi = ED*(,)[,,]«-, *[01 = E *(.)[0L* (8.4c)

where k, ko, n, n0,j, jo are integers greater than zero, and P[s), £), Y(9[Q are functions
of x“, independent of e.

Similarly we assume that the traction, shearing force and bending moment ap-
plied on the edge curve can be represented by

|[H = E r&e*. (8.5a) (> =f )£E&m, (8.5b) = E (8.5¢)
8=t U gnh

where t, it, | are positive integers, and Tjf)t 1$, T are functions of position on the

edge curve, independent of e.

Now the problem is to find the behaviour of the family of » 1thin plates under
the action of a given family of external force systems (8.4), (8.5). Given an external
force system defined by (8.4), (8.5), we seek solutions of the equations of equilibrium
(7.2) and the equations of compatibility (7.4) of the form

PaR = D p « .s«* (8.6a) gak = E q(,)cBi’, (8.6h)
Im.p

where p and g are zero or positive integers, and P(«>ai and Q(.)ap are functions of xa,
independent of « Only those problems admitting solutions with p> 0 belong to the
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theory of small strain. On the other hand, g may be zero; then we are dealing with a
finite deflection problem.

The usual discussion of plate theory is based on the deflection, i.e. the normal
displacement of a particle on the middle surface. The present method is intrinsic, and
the general equations contain no explicit reference to the displacement. However,
since q,,8 corresponds to change of curvature (i.e. curvature of the middle surface
after strain), it is clear that finite values of ga correspond to finite deflection and small
values of gaB to small deflection. Similar remarks apply in the case of shells. Hence,
in classification, we may use the familiar word “deflection” when referring to the order
of magnitude of q,,R.

The assumed forms (8.6a, b) imply that the derivatives of pa, gal with respect
to xa are of-the same order of magnitude as the quantities themselves, or of higher
order. In fact, pak and gaR expressed by (8.6a, b) represent the behaviour of the
family of col thin plates under the action of the given family of PI, Q\ Xfa,
f aBi f ai, L a&defined by the equations (8.4), (8.5). It is understood that if P\ Q\ X[o],
faR fao' faRk are identically equal to zero (i.e., k, kO, n, n0Q,j, jo, t, u, /=«>), then
pa and galvanish (i.e., p, g— ) everywhere; this corresponds to the unstrained state
of the plate. This means that self-strained plates are not discussed.

In a thin plate problem, we are to regard the numbers k, k0, n, n0,j, jo, t, u, I as
given; the initial step towards solution would appear to be the determination of p
and g, for then we could simplify the equations of equilibrium and compatibility in
the first approximation by picking out the principal terms in e from equations
(7.2a, b), (7.4a, b). But owing to the partial indeterminacy of p and g, this method
is not successful.

It is much simpler to solve the problem in the reverse order. First we assign in-
tegralvalues to p and g. The values of k, k0, n, no,j,jo are fixed by the conditions that
o> X o> P(n)- £&,). Qw should contribute to the principal parts of
(7.2a, b), without dominating these equations to the exclusion of pa8 and gaB. The
equations of equilibrium and compatibility in the first approximation are then ob-
tained by picking out the principal terms in e from equations (7.2a, b), (7.4a, b). Then
the values of t, u, | are automatically fixed through the expressions (7.5).

We shall now discuss the classification of thin plate problems based on assigned
values of p and g, so that the principal parts of (7.2a, b), (7.4a, b) in the first approxi-
mation are different for different “Types.” The classification is shown graphically in
Fig. 3, where permissible pairs of {p, g)-values are represented by circles. As indicated
in (8.6a, b), we consider only non-negative integral values of p and g. Since, however,
p =0 corresponds to finite extension of the middle surface, we must omit the (p, q)-
points on the g-axis.

It is found that the points in the (p, g)-plane break up into twelve groups depend-
ing on their positions relative to the division lines AD, AB, OC and the p-axis. For
any point (except g= 0) on the line AD, it is easily seen from inspection of (7.2a)
that the first and second terms are of the same order of magnitude and prevail over
all the other terms, with possible exception of those involving X{Q, P', Q\ For any
(P< g)-point (except g=0) above AD, the second term in (7.2a) dominates, and for
any (p, g)-point below AD, the first term dominates. For the point A, the first three
terms in (7.2a) are of the same order of magnitude and prevail over the right hand
side. For any point on the p-axis above A, the second and third terms in (7.2a) are
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of the same order of magnitude and prevail over the other terms. Thus the principal
part of (7.2a) takes five different forms depending on the position of the (p, g)-point
relative to the line AD and the p-axis.

Similarly, the form of the dominant part of (7.2b) depends on the position of the
(P>?)-point relative to the line AB and the p-axis. Finally, the form of the dominant
part of (7.4b) depends on the position of the (p, g)-point relative to the line OC and
the ¢»-axis. The equation (7.4a) has no division line, since the term nfo)Qa/3|7 dominates
for any position of the (p, <z)-point.

0 1 2 3 4 5 6 7 8

g.-values

Fig. 3. Classification of thin plate problems.
p=order of extension of middle surface, g= order of change of curvature of middle surface.
(Type P12 is not indicated in the diagram, since for these problems, g= », and consequently the corre-
sponding points lie at infinity to the right hand side.)

It follows that the (p, g)-plane is divided into twelve regions, so far as permissible
non-negative integral values of p and g are concerned, and so the complete classifica-
tion of all thin plate problems involves consideration of twelve types (Types P1-P12).
Type P 12 is not indicated in the diagram, since for these problems, g— oo, and con-
sequently the corresponding points lie at infinity to the right hand side.

Although the classification gives twelve types, four of these (Types P3, P6,P 7,
P 8) are less important than the others. They represent overdetermined problems, in
which the number of equations exceed the number of unknowns. Such cases can occur
only when very special relations connect the body forces and surface forces.

These twelve types may be described as follows:

(1) Problems of finite deflection ®=0), Types P1-P3.
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(2) Problems of small deflection (gSil, p—1; 2=1, p=2; gSil, p>2q), Types
P4-P8.

(3) Problems of very small deflection (gS:2, 2q ~p *2), Types P9-P11.

(4) Problems of zero deflection (g= co), Type P12.

In order to save space, we shall not discuss all the twelve types in detail. The
discussion of Types PI, P2, P3 will serve as an example. The results for all types
are summarized in the tables in the Appendices at the end of this paper. The prin-
cipal parts of the equations of equilibrium and compatibility are shown in Table I,
and the orders of magnitude of the external forces and the principal parts of the
macroscopic tensors in Table II.

It should be noted that the theory of generalized plane stress [l, 2], the Lagrange-
Kirchhoff theory of small deflection [3, 4, 5], and the von Karman theory of “large”
deflection [6] can be derived respectively from the Types P12, P 1I, P5.

We shall devote the next section to discussing the problems of finite deflection
(P1-P3). All results for these types are new, and may prove particularly interesting.

9. Problems of finite deflection (g=0), types P1 —P3.

(@) Type Pl: g=0, p—1 Finite deflection with dominant extension in
THE MIDDLE SURFACE

General equations. By the condition that, in the first approximation, (7.2a, b) re-
ceive significant contributions from P°ni), P°{n), X°M[0], X am, <&*), Q\k), we must have

M=n=2 io=7 = 1, ka= k = \. (9.1)
Therefore, we obtain from (6.23)
/i{t) = he + 0(e2?), () = he + 0(e2; (9.2)

consequently, the common assumption that the middle surface of the unstrained
plate is deformed into the middle surface of the strained state is justified in the first
approximation.

We now substitute (8.1), (8.4)-(8.6) into (7.2), (7.4). The lowest power of e oc-
curring is €2in (7.2), and e°in (7.4). The corresponding coefficients give rise to equa-
tions of equilibrium and compatibility in the first approximation as follows:

1—2a
— + P(2+ + (Q(I)A()_;{i + 4 eirrgmr\Q°i)h = 0, (9.3a)

2 < (P (@I )5 + PI) + 2X°wl0]h + T_qaaap(@ﬁ)/Z)g

+ (aa“T+ 2a%a r>)gqOn)7/j = 0,(9.3b)
nI\/Q(O)a7(Lj(‘) = 0, (9.3c)
nMnMOO5<7(0)aT = 0. (9.3d)

We may remark that all quantities in the above equations are finite, i.e. independent
of € The macroscopic tensors in (7.5) can be written as
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To* = QA?"PWHi+ 1_Ga*Q?“i)_.e.* + 0(e%), (9.4a)
L<* = gmuh3e3+ 0(d), (9.4b)
p«e = + <QA*») if <o) N o,

T“0= {G55+ & ifi(g(o)XiAi)aixje3+ O(e4 if 0%, = 0. (9. 4c)

Equations (9.3a, b, ¢, d) form a set of six equations for the six unknowns g«»aii and
p(iais. From (9.3d), we see that the total curvature of the middle surface does not
change for the first approximation. Consequently the strained middle surface in this
type of problem is to be regarded as a developable surface.

Equations (9.3a, b, c, d) can be further simplified. Since for a plate, R papy= 0, the
order of the operations of covariant differentiation is immaterial; consequently, from
(9.3c), we have

<A0p) = WO)33. (9.5)

Here w(Q is an unknown function of x“, which satisfies, in consequence of (9.3d),

nMnMw (o)losw,(0)]ar = 0. (9.6)

The existence of w«», satisfying (9.5), is easily proved by temporary use of special
coordinates (rectangular Cartesians). The last equation is, in fact, the famous differ-
ential equation [7] of a developable surface in the curvilinear coordinate system, and
Wo) may be called the deflection function. If (9.6) is satisfied, q(0)*y is given by (9.5).
There still remain the three equations (9.3a, b) for the three unknowns P(i>r7. We
can handle the problem indirectly by means of P‘2. This is the coefficient of the lowest
power, €2, in the series for T &) and by (9.4a)

adiQ°i,h. 9,7)

1 —cr

We note that this is a symmetrical tensor, so that it has only three independent com-
ponents. Substituting (9.5), (9.7) into (9.3a, b), we have

— TRWO)rx + P2 + 2X°Didli + {Q(\)h)\r + aDw 10)|NQli)h = 0, (9.8a)
T%\r + P?2+ 2X?m h + (aDa“r + 2a“a ™V (>xQ(mA= 0. (9.8b)

To sum up, for problems of type P I, we have a set of four equations (9.6), (9.8a, b)
in the four unknowns, w(0) and T°Ey
Special case. The following special case is interesting. If

pP?2>= = % =0, (9.9)
then by (9.8b) there exists an Airy function x<2), so that

T\f) = nfglfaiX(2)[xx. (9.10)
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This is easily proved by temporary use of special coordinates (rectangular Cartesians
[2]). Consequently, (9.8a) can be reduced to the form

—nfo]n[o])((z)gatv(o)éBH P(2 + 2X(i)OA+ a‘Vtojiéthyi = 0. (9.11)

The problem is now to find X(2 and w (0 as functions of x“ satisfying the two non-
linear partial differential equations (9.6) and (9.11). In rectangular Cartesian co-
ordinates, the equations (9.6) and (9.11) may be written as

W(0),X2N(0),12 — W(0),iiW(0),22 = 0, (9.12a)
2X<2).12W(0),12 —X(2),1ITV(0),22 — X (2).22m, (0) 11 + Q()/AIV(0) + P )+ 2Y (1) 01A= 0, (9.12h)

where the comma indicates partial differentiation with respect to xa, and A is the two-
dimensional Laplace operator. The macroscopic tensors are given by

Tn = X2),22+ 0(d), T2 = X@.nd + 0(63, \

(9.13a)
T» = r«' = - X(2),12d + 0(63), f
1l = 22 = 21 _ f)*,@tliex+ O(d),|
U2=p(wm,u + <nv(©0,.2)d + O(d), > (9.13b)
L2t = —E£>(w(0).2 + <W0),n)es + O(d),
Tio = {1 - ¢)(Dw(0),12,2+ (OW(0),11 crLHv(0),2),i}d + O”"4,! (9.130)
T20 = {(1 —Cn2V(0),l12.1 + (OW(0),2 + ffOW(0),li),2}e3+0(d).j '
Here the symbol D is defined by
2/d
D = -—-mmmmmeee- (9.14)
31 - a2

This is a finite quantity; the ordinary flexual rigidity is De*E (where E is Young’s
modulus). An example of this type of problem is given below.

Example. A long rectangular plate is subjected to a uniform tension T”"e2on the
two long edges, and a normal load -P”*e2on one face; this normalloaddocs not vary
along the length of the plate. Find the form of the plate in the strained state.

In this example, we can neglect the edge effect near the end of the plate by con-
sidering the plate infinitely long. We assume that the middle surface in the strained
state is cylindrical, with the generators of the cylinder parallel to the length of the
plate, that is

F01 = WO =ii(x), FO2= 901 = 0. (9.15)

Here x“ are  rectangular Cartesian coordinates, such that the x2-axisisparallel to the
long edges, and the xl-axis perpendicular to them; isan unknown function. Further-
more, in this example,

Pw = *r)[0= Qw = (u, = x°mi = 0. (9.16)

Then from (9.8b) and the condition that Tfy are functions of xlonly, we have, in
consequence of the boundary conditions on the two long edges,

K) = Tm, (9.17a) 2# = =0, (9.17b) T% =0. (9.17c)



1944] INTRINSIC THEORY OF SHELLS AND PLATES 51

Substituting (9.15)—9.17) into (9.8a), we obtain

oo A 918
ii(xi) 40 (9.18)

Therefore the curvature at any point of the cylindrical surface is proportional to the
normal pressure at the point. For uniformly distributed pressure, the strained middle
surface is circular cylindrical. It should be noted that the above conclusion holds in
general for plates of non-uniform thickness, with the limitation that his independent
of x2

(b) Type P2: q=0, p=2 Finite deflection with small extension in the
MIDDLE SURFACE
General equations. As in Type P, we have
M= m= 3, jo=j = 2 ka =k = 2. (9.19)
By substituting the eseries from (8.1), (8.4)-(8.6) into (7.2a, b), (7.4a, b), it is found
that the lowest power of e occurring in (7.2a, b) is €3 and in (7.4a, b) is e°. The corre-

sponding coefficients give rise to the equations of equilibrium and compatibility in
the first approximation as follows:

- 2A"Ng mpyp WTJi + §A’\)(q(;,)'l'>4?)‘lij7+ P@+ 2X%mh
1-20

+ A”rUgmr.gmngm yfiz + (Qfoh)é + 1 4 = 0, (9.20a)

2ATEXp@>Mlp + A " (g lTgmuhan, + fa-q ()7 Xa@W/2)3+ P
+ 2x90h+ (aDaay + 2adaTYYOPXCQ™ + ) _ aC@Yjs — O (9.20b)

nM9(o)0rIi§ = 0, (9.20c¢); «'{39 (099(0)07 — O- (9.20d)

The macroscopic tensors in (7.5a, b, ¢) can be written as
T<* = 12A4 p miXh+ jzr; a°*Q2h ~ Atr U<Imr.gmuh” e3+ 0(i*), (9.21a)

L* = gtojxa/Fe3 + 0(e<), (9.21b)
T°° = {<&h + fA’\I\/I(q(o))GAQB}e3+ 0o(S). (9. 21¢)

Here A$)'x, AffiuXi are given as in (6.33a, b). Equations (9.20a, b, ¢, d) form a set
of six fundamental equations for the six unknowns pm apand g(©>«0. We see that from
(9.20d) that the middle surface in the strained state is a developable surface.

As in Type P, the problem can be further simplified by introducing w(0), such

that
<ZO = W(O)QJS. (9.22)

We have also

Pg» = 2AffPp Qr1 - Affirgmr.gmiiP + -1~_Oa"W - (9.23)
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We note that Pg3is the coefficient of the lowest power of e in Ta& It is a symmetric
tensor, and consequently it has only three independent components. Substituting
(9.22) and(9.23) into (9.20a, b, c, d), we find that (9.20c) is identically satisfied, while
the other three equations become

— 7?3>(0)a\,7 + §ANMV < ,,)auX/?)a\w + Plz) +ix% m h
+ iQ(z)h)aIr + a'XN(o)JT)é%(IZ)A: 0, (9.244a)

TS\ T Pg, + 2Xg)on
+ (aDa"7 + 2aa>GT|')W(o)JIxQ(2)7/2= 0, (9.24b)
nfolnioiw,(o}JpaN (O)ai<>7 = 0- (9.24c)

To sum up, we have for problems of Type P2 a set of four equations (9.24a, b, c),
in the four unknowns, w(0) and Pgf.

The special case of uniform thickness will now be treated. Since h is constant,
(9.24a, b) may be written in the form

— TN|W(0)|p7 + DAAw(0) + Pg) + 2Z(9[dh + Q&\*h + Q°2hAwm = 0/ (9.253a)
{Thi + Pa“ra™w(@)|,7AwQ - |Pa“YAW@)2}a + Pg) -f 2Xg)h
+ (a®Awco) + 2aayaTw W \rs)Qmeh ‘= 0, (9.25b)

and (9.24c) remains unchanged. Here A is the two-dimensional Laplace operator, and
D is the reduced flexual rigidity as in (9.14).
Furthermore, when

P[3>— X?m = Qg) = 0, (9.26)
the equation (9.25b) will be satisfied by putting &3 is an arbitrary function of xa)
Pgj = nfOn’\’\(3)a|Tx—i>a“|a6>W(0)a|Iwa(0) + |D a“s(Aw(0))2 (9.27)
And consequently, (9.25a) can be reduced to the form
—nMn[oI"(S)LTiW-(o)a|P7+ .DAAW(0) + 2P(Aw(0))3+ P°3
+ 2X%mh + GnhAwm = 0. (9.28)

Therefore for a plate of uniform thickness under the condition (9.26), we have in
this type of problem a set of two equations, (9.24c) and (9.28), with two unknowns
w( and $@Q. In rectangular Cartesians, these two equations may be written as

W(0),iaV(0),i2 - W(0),nW(0),22 = 0, (9.29a)
2W (0),128(3),12 — W (0),H$(3),22 ~ M, (0),22%(3),Uu + PAAW (0)
+ |P(Aw(@0)3+ P(3 + 2X%)mh + <2(2)/iAw(0) = 0. (9.29b)

The macroscopic tensors are given by
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Tn= {#H2+ %DW(0),2 — W(O0)IHAWO) }€3+ 0(td),

Tu= Tn = _ {03>21+ Dwm” w m }e3+ 0(c4, (9.30a)
T2— {0(3),11 + %D(W(0),11 —W(0),22AW(0) }i3+ 0(«4,.

¢n = _ 422 = _ D(1- <nw(0),223+ 0(64,

L2= D(wm,u + dVv(0),2e3+ 0 (4, (9.30b)
;A= —D(W(0),2+ ON(),INf3+ 0(ed,

TI0= Z}Awg,)).ie3+ 0(c9, r20= D(Awm),23+ 0(ed. (9.30c)

An interesting example of this type of problem is given below.

Example: A long rectangular plate of uniform thickness is deformed under the
actions of (a) uniform tensions T”ue3, T(3jB3and uniform bending moments Lojae3,
A(3jje3on the two long edges, (b) a normal load P°3)e3 on one face (this load does not
vary along the length of the plate). Assuming that p =2, g= 0, find the form of the
middle surface in the strained state.

In this example, we can neglect the edge effect at the two ends by considering
the plate infinitely long. Since the given external force system does not vary along
the lengthofthe plate, we shall assume that strain and stress are constant along
thisdirection. Hence in the first place, the deformed surface is cylindrical, with the
generators of the cylinder parallel to the length of the plate:

901 = WO)11 = i2(x), 9012 = W(0)12 — 902 = W(0)2 = 0. (9.31)

Here x*“ are rectangular Cartesians, so that x2axis is parallel to the long sides and
x4axis is perpendicular to them, fl is a function of x1, to be determined.

In the second place, Ta?is a function of x1only. Since the ends of the plate are
free from tractions, it follows that Tn and T2 vanish everywhere to the third order:

= 0. (9.32)
The component Tn can be written as
Tn = T$t* + 0(ed, (9.33)

where is a function of x1, to be determined.
The problem is to determine two unknowns and T¢j as functions of x1through
Egs. (9.25a, b) under the conditions

P{3) = Knol = *(2[0]= Qv = C(® = 0. (9.34)
Substituting (9.31)-(9.34) into (9.25a, b), we have
- 07% + DO,n + PI'Y =0, (9.35) (™ + |Z9£22ti = 0. (9.36)

Integration of (9.36) gives
T@ + hDO.2 = C. (9.37)

Here Cis a constant to be determined by the conditions on the long edges. Substitut-
ing w(0,<0 from (9.31) into (9.30b, c), we get

¢n = - ¢m =0(ed, Z12= DCit3+ 0(cd, L2= - cDCIt3+ 0(ed, (9.38)
Tio = DEIIt3+ r 0= 0(e). (9.39)
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Then (9.37) becomes

@ =Cc" 2D-~" (9'40)

where, by definition, This equation is satisfied everywhere throughout the
plate. Therefore it is also satisfied at the two long edges, and consequently T$)a,
T(3b, P(3n, P(3b must satisfy the following relation:

1@A1l (i<3M)2 - TEBH QB2 - £ (6-4114

Therefore we conclude that among T”a, T{)b, LmA, L")b only threequantities are
independent; whenany three are given, the fourth can be calculatedthrough (9.41).
Substituting Tq) from (9.37) into (9.35), we obtain

\Di23- CO. + DE£i,n = - P°3 (9.42)

This is a non-linear differential equation of the second order and third degree in fi.
When the boundary values of fl are given (or Z-om, P(3b are given), the solution is
uniquely determined.

If P@ =0, the problem is identical with the problem of theelastica [8]. For then,
if we introduce the new variable 0, so that

£2 = 0., (9.43)
equation (9.42) can be written as
¢P(0,i)3—CO,, + PO.,i = 0. (9.44)
The second integral of this equation is
iPtOa)2- C = F cosO. (9.45)

Equation (9.45) is in the same form as the well known equation for the elastica. The
constant F can be determined by the boundary conditions on the long edges; 0 is a
physical quantity which denotes the direction of the tangent to the middle surface
in the strained state.

The bending of a rectangular sheet of paper into a cylindrical surface by forces
and couples applied to two opposite edges may be considered as a problem of the
above type. There is, however, an edge effect in the neighborhood of the free edges.

(c) Type P3:2=0,p>2. Finite deflection with negligible extension in
THE MIDDLE SURFACE

General equations. As in type PI, P2, we have
M= m= 3 jo=7 = 2, ko = k = 2. (9.46)

By substituting the e series from (8.1), (8.4)-(8.6) into (7.2a, b), (7.4a, b), we find
that the lowestpower in (7.2a, b) is €3,and in (7.4a, b) is €°. The corresponding coeffi-
cients give rise to the equations of equilibrium and compatibility in the first approxi-
mation as follows:
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K (r X<?<0)*A?)i,, + AGB™)XH<.°)Mampyq<.0)TJi3 + P°0)

1 - 2c

+ (05,%)1, + 2X%mh + &nqo)nQ(dh = o,  (9.47a)

— A x(qO)T,q@)j\WVI ], + 2aargmryAJ "\gm\shz) jp+ P(}+ 2X7iolh
+ 7— a"p(RW)IP + (ara‘“r + 2aaa™)9(0)*x£>(2)7A = 0, (9.47b)
1~ < a
nld < (0)a7i0o —O, (9.47¢) nfojnfol9(0)p09(0)aT — 0. (9.47d)

The macroscopic tensors in (7.5a, b, ¢) can be written as

T*={7 3 7 - < 1WO*WOAGe3+ 0(<d), (9.48a)
L°e = fn|*aTW f g(Ox8* 3+ 0(e<), (9.48b)
Teo = {FALi|(g(0x./2)u + Q(V))«3+ 0(e<). (9.48c)

Equations (9.46a, b, ¢, d) form a set of six equations involving only three unknowns
<Q0K0, so the problem is overdetermined. Let us suppose that g<o)ap can be eliminated
from these six equations; we get a set of three conditions, which may be written in
the form

*<i) =0, 0'=1,2, 3). (9.49)

Equations (9.49) represent the three necessary conditions on the external force sys-
tem in order that a plate may undergo finite deflection with negligible extension in
the middle surface. A special example will be considered as follows.

Example. Under what circumstances can a portion of a plate of uniform thick-
ness be bent by normal pressure into a cylindrical surface of finite curvature with
negligible extension in the middle surface? The normal pressure is assumed to be con-
stant along the generators of the cylinder.

In this case,

=<9$) = = 0. (9.50)

Let us choose the x2axis in the direction of the generators of the assumed cylindrical
surface, and the x'-axis in the perpendicular direction. Then we have as in the ex-
ample of Types P 1, P2

Q)i = ~(x), 9OL= 902 =0, (9.51)

and the equations (9.47a, b) become

3@ ‘ 190
Pii.n H— —-—-- DO3-fP@Q + — ClQ%)h = 0, 9.52
i b @+ — _ oo (9.52a)
- (2. + vfiQm.i = 0. (9.52b)

Integration of (9.52b) gives
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where C\ is an integration constant. Substituting fl2from (9.53) into (9.52a), we get

, n i (3 — o)A 32
W I{(Cl + $»)>"*} 11+ _|2_(1_—<T)[T£ (Cl + Q)32
+ F@>+ 737 (77 hmQm =& (9-54)

This is the required condition to be satisfied by €@Q), P(3m
Let us assume that Q° and P° are of the same order of magnitude; then, since
P (=0, we have

<& = 0. (9.55)
Then the condition (9.54) becomes

B —<)0A32 c

P@ = -

\ln = constant. (9.56)

Furthermore, since the right hand side of (9.53) is constant, the plate is bent into a
circular cylindrical surface; its curvature is given by

_ (A - fMpm)w _ (9.57)
I 3- a)Db )

When P(3= 0, we get from (9.57) 12= 0. Therefore we conclude that it is impossible
to bend any portion of a plate of uniform thickness into a cylindrical surface offinite
curvature withnegligible extension in the middle surface, if on that portion of the
plate the surface force isof the fourth order, and the body force of the third order,
with respect to the thickness of the plate.

CONCLUSIONS

A systematic method of approximation based upon the thinness of the plate has
been developed in this paper. It is found that thin plate problems may be classified
into twelve types (P1-P12) according to the relative orders of magnitude of paR,
gaBand h. In each case, the problem reduces to the solution of a set of partial differ-
ential equations, different for different types. These differential equations are given
in Table I. Furthermore, the principal parts of the macroscopic tensors and the orders
of magnitude of the external forces for each case are given in Table Il. Among these
twelve types, P1-P3 represent the problems of finite deflection, P4-P8 the problems
of small deflection, P9-P11 the problems of very small deflection and P12 the prob-
lems of zero deflection. The problems of finite deflection are discussed in section 9;
these are new problems, and a simple example for each of these types is solved. The
problems of small deflections, very small deflection, and zero deflection are familiar;
the detailed discussion of these types is therefore not necessary. However, we may
note that the theory of generalized plane stress, the Lagrange-Kirchhoff theory of
“small” deflection, the von K&rmé&n theory of “large” deflection and the membrane
problem can be derived respectively from Types P12, PIl, P5, P4,
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APPENDICES

(i) Table I.—Table of the equations of equilibrium and compatibility of thin plate problems.

Types

PI
P2
p2*

P4
Pi

P6*
PI*
P&

P9
P10
Pl

P12

In this table, the following notation is used:
The terms occurring in the first equation of equilibrium (7.2a) are

7° =

@

>1

2A87?q, pAh,

X X

X X

XXX XXXX

7° = P +'2A007i + ((?'1Y),.,

X

X X

(7.2a)

13

X
X

7:

XXX XXXXX XXX

XX XXX X

7

X X
X X

X XX X

X XXX

fA% j\q”~h>)ypy,
a

(7.2b)

~
=~

X X
XX XX XXXXX XXX

~
~

~

X X X

X X

(7.4b)

()
X
X
X

X

X X
X
X
X

X

X

X X

X

*i

XXX XXXXX XXX

57

(7.4a)

7° = Aft“Mg,, q ragXih>

It = — —- axg*Q°h.

1 -

The terms occurring in the second and third equations of equilibrium (7.2b) are

77 = 2ALTX(p,.XA)|p,
a

It =

n=P-+ 20+ Qi

The terms occurring in the first equation of compatibility (7.4b) are

J\ — 2n"jn"Ppy|0",
a

J 2= nonioj3pTi<E

~ A& M (gxugxih>) ;.
a a

7= (a™a"+ 2a"«,

The term occurring in the second and third equations of compatibility (7.4a) is

Jal =

| 4.
a

On account of the conditions which hold in the various types of problem, some of
these terms may be negligible in comparison with others. The table shows by the
symbol ‘X’ those terms which are to be retained in the first approximation for the
various types. (The overdetermined problems are denoted by '*’.) Thus for example,
for problems of Type P I, we having the following equations of equilibrium and com-
patibility in the first approximation:
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7?7+ 72+ 1t = 0, It+ It + It =0, A =0, Jal = 0.

These equations are written in terms of the small principal parts instead of in terms
of the finite coefficients of the lowest power in e (see (9.3a, b, c, d)).

(ii) Table Il.—Table of the external force system and the macroscopic tensors for
various types of thin plate problems.

JoP LaP Ta
Types no n jo j ko k .
8 oMy 773
PI 2 2 1 1 1 1 2 X X 3 X 2 X X
\ 2 2 1 1 1 2 2 X X 3 X 3 X X
p2 3 3 2 2 2 2 3 X X X 3 X 3 X X
P3 3 3 2 2 2 2 3 X X 3 X 3 X X
pg | 2%2 2 2+ 1 1 1 2+ 1 2 X X 243 X 2+2 X
| 2+2 2 2+ 1 1 1 242 2 X X 243 X 243 X X
P5 4 3 3 2 2 3 3 X X 4 X 4 X X
P6 2+3 22+2 2+2  22+1 25+1 242 22+2 X X 243 X 243 X X
P7 2+3  25+3  22+2 242 2+2 2242 2243 X X X 243 X 243 X X
P8 243 22+3 2242 2+2 2+2 2242 22+3 X X 2+3 X 243 X X
P9 2+3 3 242 2 2 2+2 3 X X 2+3 X 2+3 X X
P10 2+3 p+1 242 P P 2+2  p+1 X X 2+3 X 243 X X
PIl 243 2+1 2+2 22 29 2+2 2»+1 X X 2+3 X 243 X X
P12 © p+| © P P O p+1 X X @ ®

In this table, the following notation is used:
The terms occurring in the expression (7.5a) for the membrane stress tensor T dfi
are denoted by
Tf = 2A(fp , X!, Tf=- A "qguqTuh\ T? = a«$h.

l1—a

The term occurring in the expression (7.5b) for the bending moment tensor L aP
is denoted by

if =

The terms occurring in the expression (7.5c) for the shearing stress tensor T a0 are
denoted by

T? = Q°h, 2T = fA” MOx«A*)|r.
a
Furthermore,
no=order of sum of the normal forces acting on the upper and lower boundary
surfaces, or order of P°,
n worder of sum of the tangential forces acting on the upper and lower boundary
surfaces, or order of P “,
order of normal component of body force, or order of XfQl,

order of tangential component of body force, or order of XJj,

— —
o
I
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(0= order of difference of normal forces acting on the upper and lower surfaces,
or order of €°
k = order of difference of tangential components of forces acting on the upper and
lower boundary surfaces, or order of Qa,
t = order of membrane stresstensorT aR,
u = order of bendingmoment tensorL aB,
I = order of shearing stress tensor F “°.
This table gives (a) the values of n0, n, j0,j, k&t k, t, u, I, (b) the principal terms
in the expressions for TaR, L aB, T a0 (denoted by *%’). The terms not marked with x’
are negligible in comparison with those principal terms. It will be noted that there are
two lines in the table for P I and also for P4. This is because, in each case, k may have
two values.
For example, in the case of Type P I, we have for T aB, L aR,

TR=TFf+ TfT, L°B= L f,
while for P “°,

Pa0 = Pf (ifk= 1),

Tao= t?+ Tt (ifk= 2).

(To becontinued)
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EFFECT OF A SMALL HOLE ON THE STRESSES IN A
UNIFORMLY LOADED PLATE*

BY

MARTIN GREENSPAN
National Bureau of Standards

1. Introduction. The National Bureau of Standards has recently made tests on
steel columns having perforated cover plates.1 Most of the perforations were of so-
called ovaloid shape, i.e., that of a square with a semi-circle erected on each of two
opposite sides. The tests on the columns included experimental determinations of the
distribution of stress in the neighborhood of a perforation, and the results obtained
aroused interest in the development of a theory for the distribution of stress in a large,
uniformly loaded plate having a single ovaloid hole.

In this paper an exact solution to this problem is obtained for a hole having any
boundary of which the equation can be expressed in the parametric form

X — p cos 3+ r cos 33, y = g sin )S—r sin 3/3. @

The plate is supposed in a state of generalized plane stress, the stress2 at points re-
mote from the hole having the constant nor-
mal components <x—Sxy Gy Sifi and the con-
stant shearing component txv= T xv.

Eq. (1) represents a closed curve having
symmetry about the «-axis and about the
y-axis. For certain values of p, g, and r the
curve is simple, i.e., it does not cross itself.
By adjustment of the values of p, g, and r a
variety of simple closed curves is obtained,
including a good approximation to an ovaloid

The dashed line represents the actual and a good approximation to a square with

ovaloid and the full line the approximate oval-  founded corners, as well as exact ellipses
oid of Egs. (1) and (2). (r=10) of any eccentricity. The approximate

ovaloid obtained by taking

Fig. 1. Actual and approximate ovaloids.

m—.Wj, *-1.108, r= - 0.079, 2

is shown compared to the actual ovaloid in Fig. 1. The approximate square obtained
by taking
p=gqg=1 r= —0.14, (3)

* Received Nov. 13, 1943.

1Ambrose H. Stang and Martin Greenspan, J. Research NBS 28, 669, 687; 29, 279; 30, IS, 177, 411
(1942-43).

5The term stress is used throughout to denote the mean value of the stress over the thickness of the
plate.
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is shown in Fig. 2. The sides of the square are
parallel to the axes of coordinates. By taking

p=qg=1 r = 0.14, 4

the same square, but with the diagonals parallel
to the axes of coordinates, is obtained. The
radius of curvature at the mid-point of the fillet
is about 0.086 times the length of the side of the

square.
2. Curvilinear coordinates. If two sets of
curves are defined by

/io, y) = a, fa2(x, y) = P, (5)

then a pair of values (a, /3) defines the points at Fig. 2. The approximate square of
which the corresponding curves (5) intersect, Egs. (1) and (3).

and (a, /3) are curvilinear coordinates in the

X, y-plane. As a special case, the functions of Eq. (5) may be obtained by equating
real and imaginary parts of both sides of

w = /(z), (6)
where w = and z=x-\-iy. In this case the transformation from the w-plane to
the z-plane is conformal and the two families of Eq. (5) are orthogonal. The expres-
sion,

= —e'*, 7

dw li )

defines the stretch ratio, 1/h, of the transformation, and gives ip, the inclination of the
curve, 3= constant, to the x-axis.

In the absence of body forces, the condition that the stresses satisfy the conditions
of equilibrium is that the normal components, traand o>, and the shearing component,
r @, can be derived from a stress function, p, by means of the relations3

dd 1 /dp dill2  dp dh2

= It2
a/32 2 W a3 da «.,/m

d2> 1 /dp dh2 dp dh2
h2 (8)
da2 2 \a/3 a3 da da)
d2p dp dh2 dp dhi
2dad/3 2 Va3 da da dfl > |
and the condition that the expressions (8) satisfy the compatibility conditions is
/a2 a2 2 hzéaz a2\ )I'2/(a2 a2\)
V'P = 1 1 1 — 0. 9
\3x2  dy2 P \da2 d&2  \da2 dp2) P ©

If a function, F, satisfies Laplace’s equation,

Ta3= —h

VE = 0, (10)

*A. E. H. Love, A treatise on the mathematical theory of elasticity, 4th ed., Cambridge, 1927, p. 91.
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then F, xF, yF, and p2F= (x2+y 2F satisfy Eq. (9). Functions which satisfy Eq. (10)
are called harmonic functions, those which satisfy Eq. (9), biharmonic functions.
3. The coordinate system. The solution of the problem is simplified by the use
of a coordinate system (a, [3) such that Eq. (1) of the boundary of the hole reduces
to the form a= a0 Such a system is obtained by writing for Eq. (6)

z —ewT abe~w+ ac3e~3w (11)

or, separating the real and imaginary parts,

x = (e" + abe~a) cos B + ac3e~3acos 3/3,

y
For constanta, say ao, Eq. (12) reduces to Eq. (1) for the boundary of the hole, where

(12)

(ea — abe~a) sin 3 —ac3~3a sin 3/3.

p = cas+ abe~a\ q = e“«—abc~a°, r = ac®_3a« (13)

From Eqgs. (2) and (13) it is easily calculated that for the approximate ovaloid of
Egs. (1) and (2),

= 1.585, ab = 0.758, ac3 = - 0.314.

By keeping ab and ac3 fixed and varying a and /3 the appropriate coordinate system

/

?a

Fig. 3. Coordinate system for problem of ovaloid hole.

for the ovaloid is obtained. This system is shown in Fig. 3. The appropriate systems
for the approximate square with rounded corners are similarly obtained. Figure 4
shows the system corresponding to the case of Eq. (3) and Fig. 2, and Fig. 5 shows
the system corresponding to the case of Eq. (4).
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Fig. 4. Coordinate system for problem of square hole with rounded corners, sides of
square parallel to Cartesian axes.

The coordinates (a, /S) approach polar coordinates (p, 6) for large a as follows:

lima = logp, limB=o. (14)

cr= 00 cr—o

The values of lizand its derivatives may be computed as follows. From Eq. (11)

dz
= ew — abe~w — 3ac3e~3w
dw
Hence from Eq. (7),
Ir2= e2a + a2t2e-2a J 9.~ -6« _ 2abcos 23

+ 6a3bc3e~ia cos 2/3 — 6ac3e~2a cos 4/3,

h\e3a — ad2e~2a — 27ax3 6a

12a2bc3e~ia cos 2/3 + 6ac3e~2a cos 4/3),
1
2 d§

= — h4(2ab sin 2/3 —6asbc3e~ia sin 23 + 12acV"2a sin 4/3).
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4, The boundary conditions. The statement of the problem may be recapitulated
as follows. There is given a large plate containing a small hole of the shape given by
Eq. (1). The edge of the hole is free from stress. The plate is in a state of (generalized)
plane stress and the components of (mean) stress at points remote from the hole are
0x=Sx, &=Su, T =Txu; or in polar coordinates,

SX+ Sv S2
2

cos 26 -j- T xy sin 20,

Sx—Su .
@ = cos 20 — T X sin 20, (16)

- Sy |
T sin 20 + Txy cos 20.

The boundary conditions may finally be stated as

=r,3=0, (a = aB,

S P ——— fi cos 2B + Txy sin 23,
2 2
SX+ Sy  Sx —S, ) 17
) cos 213 — T Xy sin 2/3,
SX .
TdS sin 23+ Txy cos 2/3, (a — co).

The last three of Eq. 17 are obtained by substitution of Eq. (14) into Eq. (16).
5. The stress function. From the harmonic functions easin /?and e~asin /3may be
constructed the biharmonic functions yeasin f3and ye~asin /3. From Eq. (12)

y = easin /3 —abe~a sin /3 —ac3~3a sin 33.

Hence
yeasin /3= 8e2a —|e2‘cos 2/3 — %ab + %ab cos 213 + -|ac3E-2* cos 4/3 — %ac3e~2a cos 2/3,

ye~asin 3= § — 8 cos 213 —| abe~3a + \abe~2acos 2/3+ | ac3e~ia cos4/3—ac3e~ia cos
By dropping theharmonic terms from each of these functionsandmultiplying by 2
the two biharmonic functions,

<a= e2a+ ab cos 23+ ac3e~3acos 43,

4h = —cos 2/3 —abe~3a — ac3ke~4a cos 213,
are obtained. The biharmonic function.

& — ye~a cos IS+ xe~asin /3 = sin 23 —ac%k~ia sin 2/3

is obtained in similar fashion.
The biharmonic function p2 may be obtained from Eq. (12):

p2= a2+ y2= e2a+ aXd2e~2a+ aXx6e~6‘+ 2ab cos 23
+ 2ac3e~ia cos 23 + 2ac3e~2a cos 4/3.
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Fig. 5. Coordinate system for problem of square hole with rounded corners,
diagonals parallel to Cartesian axes.

The non-harmonic stress functions required by this problem are

£ = 298 — 2a4sh — 02<

452 — — <£&.
and
46 = 4x
or
$+ = e2'+ ad2e~2a —azxee~6' + lab cos 2/3,
<2 — abe~2a + cos 2/3 + ac3e~ia cos 2/3,
and
<p — sin 2/3 — ac%~ia sin 2/3.
In addition, the harmonic stress functions,
43 = e2acos 2/3, <= e~2‘cos 23 = a, <t—e2'sin 23 and 4s= e~2‘sin 23

will be required.
The complete stress function may be written

= A + C22+ c3p3 + Csf>i + G5+ Gxt6 + + Cs4>Si (18)

where the C’s are to be adjusted so that the stresses derived from 4>meet boundary
conditions (17). Also
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g = 2Ci(e2' —a2 2~2'+ 3aX6-6“) — 2Ci(abe~2a + 2ac3e~ia cos 2/3)
+ 2Cze'la cos 2/3 — 2C4e-2* cos 213+ CB+ 4C6acx~4° sin 2/3
+ 2C7%2* sin 2/3 — 2C8&-2"“ sin 2/3, (19a)
ap o . :
— = —A4Ciab sin 213 —2C2(sin 213 + ac%x~4"* sin 2/3)
» — 2Cse2* sin 2/3 — 2C4-2" sin 2/3 + 2Ce(cos 2/3 — ac3e~ia cos 2/3)
+ 2C7e2‘ cos 23+ 2C8&-2' cos 28, (19b)
dp
daz = 4Ci(e2* + a2dx~2' —90Xx6e~6") + 4C2(ade-2a + 4ac3e~4‘ cos 2/3)
+ 4Cse2' cos 23+ 4Cde 2acos 213 —  1606<zcE~4" sin 23
+ 4C-e2‘sin 23+ 4C&-2“ sin 2/3, (19c)
d3ap
. = —8Ciab cos 23 —4C2(cos 213+ ac3-4“ cos 2/3)
— 4Cse2‘ cos 2/3 — 4C4e~2* cos 2/3 —ACe(sin 2/3 — ac3e~ia sin 2/3)
—4C-e2* sin 2/3 — 4CB8e-2a sin 2/3, (19d)
d-tp
dad3 8C2acse 4" sin 2/3 —A4C3fi2' sin 2/3 + 4C4e~2* sin 213
+ 8C@c3-4a cos 23+ 4Ch2‘ cos 28 —4C&-2“ cos 2/3. (19¢)
6. The stresses. Substitution of Eqgs. (15) and (19) into Eq. (8) gives the stresses
in the form
Cr - .
hA 2Ci(dio + -412cos 23 + -didcos 4/3)
+ 2C2(/120+ 4 2 cos 28+ d 2cosd3+ 4 2 cos 6/3)
+ 2Cs(d30 + AR cos 23 f /134 cosd/3+ /136 cos 6/3)
+ 2C4d4D + cos 23+ An cos48 + d 46 cos 68)
(- V(Lo + A m cos 28 + 464 cos 48)
—2CHd@&sin 28 +d 64sin 48 + 4 66sin 68)
—2C7(4R2sin 28 +/174sin 48 + 4 7sin 68)
— 2Cg/1&sin 28 +4 81sin 48 + 4 &sin 68), (20)
A 2Ci(/3i0 + -812cos 28 + 23ia CCS 48 + ~sxe COS 68)

+ 2C2(230+ B2 cos 28 + 2324cos48 + 23%cos 68)

—2C32730 + 27 cos 28 + H3A cos48 + 2*36cos 68)

—2C4(2340+ Bu cos 28 + 234 cos48 + 1546 cos 68)

— Cs(27%60 + 8 m cos 28 + 2364 cos 48)

— 2Cp(B$2 sin 28 + 2%64sin 48 + 2% 5sin 68)

+ 2C7(2372sin 28 + 237 sin 48 + 23/ sin 68)

+ 2C8(5 82sin 28 + 2J84sin 48 + Bs6sin 68), (21)
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raa
= 12Ci(Du sin 23+ Du sin 43+ Du sin 6/3)

— 2C2(Z>2 sin 2/3 + Do.,sin 43 + Z2gsin 6/3)

+ 2C3(D32 sin 23 f-D3sin 4/3 + D3Fsin 6/3)

— 2C4(/?42 sin 23 + -Dusin 43 + Di6sin 6/3)

+ 2CHZ® sin 2/3 + ZGisin 4/3)

— 2C6Z%60 + Dm cos 23+ DOi cos 43+ DM cos 6/3)

+ 2Cv(i27lo  Z’2 cos 23+ D74 cos 43+ £576 cos 6/3)

—2Cs(D% 4- Dm cos 23+ D& cos 43+ Dm cos 6/3), (22)
in which
A0 = ed*+ 4aAd2- (24ax6+ 18a3 X3- adide~4"+ 24adVe~8a- 8ladclre~42a,
Au = —4[aie2* — (3abc3—ad Je-2“ + (9adbc6b— 3adi XJe-6“ + 9adbce~10],
/114 = 2(3ac3+ aZd2—6a3dbce~4a + 9aXx%e-8%),
A2 = 2ai — (6a2c3 — a3bIe~4a + 30adbcee-8,
42= —2[ext — (4ac3 — adb2)e~2a f- 6(ax6 — ad xJe-6“ —18ax%r~10q],
A2i = ab — 8a2bc3e~4a + 9aPHck~8", 426= —6aXxe-6“,
430 = 3aie2‘ - 15a5bcE-2“, Am = - (ed*- 15ec3+ 3az22+ 45axe-4),
A34 = aieZ* — 9a2bc3e~2a, 4% = 3ac3
Ato = 3aie~2‘ — 3a2bc3e~6a, Am =—[3 —(9ac3—aZ Je-4“ — 9azx6e-8“],
H#4 = aie-2“+ 3azdc3-6“, Ai6 = —3acx-4“,
-460 = e2' —ad2e~2a — 27aXx6-6", 482 = — 2adc3e~4a, An = 6ac%-2",
ne2 = 2[e2'+ (a22+ 4acle-2“ + 6axe-6“ + 18ax%-10“],
yld = — (0i — 2a2cke~4a — 9a3ic6e-8"), 486= ~ 6aXxe-6“,
472 = e4'+ 3(@d2+ 5ac3 + 45ax6-4“, M74= — (abe2a—9adc3e~22), An= — 3ac3
4= 3+ (ad2+ 9acde-4“ — 9axee~83, ASi = — (abe~2“+ 3azhc3e~6a),A 8= 3acF-4“,
B10 = eda+ 4ad2+ (24ax6+ 6a3pc3 + adife-4“ - 24adi26-8“ - 8ladcle-12¢
Bu = —4[aie2* — (3azhc3 — adb3)e~2a — 9a3c@-6“ + 18adic%-10],
Bu = - 2(9ac3- a2+ 6ad x3F-4“- 455V ), 23i6 = 12adc3-2“,
£20 = 2ab - (6a2c3 - ad Je-4“ + 6a3bce~8a,
Bm = 2[2(ac3—ad de-2“ —3(4azx6—ad 2Je-6“ + 9aX%e~10],
£24 = ab — 16a5c3-4“ + 9a3bcae~Sa, B26 — 6(ac3e~2a — 2a6e~8a),
Bi0 = 3abex — 15a5c3x~2, B3 = — (eda — 15ac3+ 3ad2 + 45aZx6e-4%),
B34 = abeZ2a — 9a2bc3e~2a, B33 = 3ac3
£40 = 3abe~2a — 3a2bc3e~8a, Bm = — [3 — (9ac3— a22e~4a — 9ax6-8“],
£44 = aije-2“ + 3adc3-~6", £46 = —3acE-4“,

e2' —abe~2a — 27aZx6e-6", £®= —12akbc3e-4", Bn = 6ac3x-2“,
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Bm = 2[2ac3-2“ + 3(adb2c3 -f 4ax6e-5“ + 9aVe-10“],
B6i = —(ai + 4adc3-4“ —9adce-8"), BlB= —6(ac3k-2“ + 2axc-6),
= eda+ 3(5ac3+ add + 45ax6-4“, /ih= — (aie2* —9adc3-2“), j3®B= —3ac3
#82 = 3 + (9ac3+ adde-4“ — 9ax6e-8“, £84 = — (abe~2a + 3azbcle~3d), B% = 3acE-4“,
Dn = (10a3c6+ a4 XJe-6“ —3a‘'bce~10a, Du = 2(ac3+ 3aX%E-8“), Du — — azhc3e~2a,
B2 = e2'+ (2ac3+ adde-2" — 3(2axCG+ a3 xJe-6" + 9aTV~10°,
£24 = AadAc3-4¢, £5% = 3(ac3-2“ + aXx6e-6“),
B2 = e4'+ 15ac3+ 3adb2+ 4baxee-4“, £3 = — (aie2' —9aicF~29), £36= —3ac3
= 3+ (9ac3+ adde 4 —9azx’e-8“, LM = — (aie-2“ + 3abcke~6),Du = 3acE-4“,
£B5 = ai — 3a2bck~ia, £S04 = 6ac3Ek-2“, £60 = 12a3c6-8“,
= - [e2*- (2ac3+ ade-2"- 3(2ax6+ a3 xJe-6“ - 9aXx%e-10],
= 4daZc3-4“, BB= - 3(acE-2" - ax6e-6“),
£0 = 3(aie2’ - 5adc3x-2), 1= - [e4" - 3(5ac3- a2 +45axee-4“],
£574 = aieZ* —9adc3e~2a, £7% = 3ac3,
B0 = 3(aie-2“ - adc3e-6“), B®= - [3- (9ac3- a2 de-4“ - 9axe- 8
B8 = aie-2“ + 3a2cic~6a, Pe= —3ac3e-4“.

Boundary conditions (17) are satisfied by substitution for the C's in Egs. (20),
(21), and (22) of
Ci = 1(5, + S,), C3= —1}(5, - S,), C7= - *5%.

- 21 - ac%x-4'09)C2= ai(S* + S,) - «“(5,- 5,), =

4(1 - acE-4'0)C4= 4a2cFE Z'o(5'1 + Sv) - (ed'»+ 3ac3d(SI - Sv),
—2(1 —ac%k-4*°)C5= [e2'»— (ac3—ad Je-2"““+ (3ax6+ a3 xJe-6“»

- 3aX% Wo](51 + S,) - 2ab(Sx- Su,
(1 + ac3-4'»)C6= eZ'ofzy, —2(1 + acE4“<0C = (ed4'»—3acy T zy.

(23)

The case ac®-4“°= +1, for which some of the C’s in Eq. (23) are infinite, does not
correspond to a simple curve for a=a0and hence is excluded.
7. Stresses along the inner boundary. The tangential stress in the boundary

a=«o0 is
Ol = (70-a0*

However, it is simpler to compute it as follows. From Eq. (8),

A A<D do d¥
h2 da2 di32

Hence from Eq. (19),

----- " -2----—= 4Ci[e2' T a2 2-2“ —9azx@-6“ — 2ai cos 23l
+ 4C2[aie-2" — (1 — 3ac*-4*) cos 2/8] —4Ce[l + 3ac3x-4“] sin 2/3. (24)
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Fig. 6. Ovaloid hole, tension parallel to long axis. Distribution of stress along ovaloid boundary.
The dashed curve shows the distribution of stress for the case of an elliptical boundary having the
same ratio of major to minor axis and the same rectified length as the ovaloid boundary'.

Fig. 7. Ovaloid hole, tension parallel to short axis. Distribution of stress along the ovaloid boundary.
The dashed curve shows the distribution of stress for the case of an elliptical boundary having the
same ratio of major to minor axis and the same rectified length as the ovaloid boundary.



70 MARTIN GREENSPAN [Vol. 11, No. 1

Fig. 8. “Square” hole, tension parallel to side.
The dashed curve shows the distribution of stress for the case of a circular boundary having the same
rectified length as the “square” boundary.

For a =<x0, a* = 0; hence

a-= { = (do “H
or from Eq. (24),

— = 4Ci[e2” - abzx 2a» — 9aVe~6a— 2ab c0s2/3]
0 + ACi\abe~2ax—1 —3ac®-40 cos 23] —4Ce[l + 3ac%-4a»] sin 2/3, (25)
in which ho denotes the value of h fora =a0.
Substitution into Eq. (25) of hofrom Eq. (15), of Ci, Co, and Cé from Eq. (23),

and replacement of the constants a, b, ¢, and a4by their values obtained from Eq. (13)
gives, finally

[(p2+ 6rqg) sin2/S+ (¢2+ 6rp) cos20 —6r(p + @) cos22/3 + 9r-]Jat

= (5, + SJip* sin2/S+ ?2c0s2/3- 9r) - T%p + ?)2-tl.q+.6rsin 2p
p+ g+ 2r

(p2-?2(5, +S,) - (A + g)25i- 5)

B v n 7
- , [{p - 3r) sin-B- (q - 3r) cos2/S.  (26)
p+aq—ear
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8. Some special cases. The components of stress at any point in the plate may be
computed from Eqgs. (20), (21), (22), and (23). Of especial interest, however, are the
values of alt the tangential stress along the inner boundary, a =a0, at points of which
the numerically greatest normal and shearing stresses may be expected to occur.

In this section the values of cr(are computed and shown for several simple cases.

Case 1 (Fig. 6). Ovaloid hole, tension parallel to long axis. In this case at is ob-
tained from Eq. (26) with Sy=Txy=0 and p, g, and r as given by Eq. (2). Then

at 4,915 - 7.133 cos 2/3
Sx 3.723 —2.316 cos 2/3-f-cos 4/3

Case 2 (Fig. 7). Ovaloid hole, tension parallel to short axis. Here Sx=Txy=0. Then

g, 1.079 + 7.517 cos 213
Sy 3.723 —2.316 cos 213 -(- cos 43

Case 3 (Fig. 8). “Square” hole, ten-
sion parallel to side. Here Sy=Txy=0
and p, g, and r are given by Eqg. (3).
Then

a% .981 - 2.967 cos 23
SX~ 1.401 + cos 4/3

Case 4 (Fig. 9). “Square” hole, ten-
sion parallel to diagonal. Here Sy—Txy
=0 and p, g, and r are as given by
Eq. (4). Then

at 081 — 1.606 cos 2/3
S X 1.401 —cos 4/3

/ In each of Figs. 6, 7, 8, and 9 the
T values of at/Sx or at/Sy are plotted
along the development of one quadrant

of the inner boundary of the plate. For
comparison, there is shown by means of

the dashed curve in each figure the
distribution of at/Sx or at/Sy for the

_ ] ) case of an elliptical boundary having
Fig. 9. “Square” hole, tension parz_illel_to diagonal. the same ratio of major axis to minor
The dashed curve shows the distribution of stress . d th ified | h
for the case of a circular boundary having the same axis and the same rectified length as
rectified length as the “square” boundary. the actual boundary.
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SOME PRESENT NONLINEAR PROBLEMS OF THE ELECTRICAL
AND AERONAUTICAL INDUSTRIES1

BY

ERNEST G. KELLER
Research Laboratory, Curtiss-Wriglit Corporation

1. Introduction. The accelerated growth of research in the field of nonlinearity is
due to different causes. The general advancement of science requires increasingly
more precise expressions for the laws of science. Accurate nonlinear equations fre-
quently depart from the linearized or postulated linear equations which have been
previously used for approximate results. The quest for perfection and generalization
and the love of difficult investigations by professional mathematicians play a large
part in this growth. Another incentive is the increasingly exacting requirements of
modern manufacturing. These requirements are born of the competitive necessity of
producing ever improved machines and equipment in the most economical manner.
The greatest incentive is necessity. Manufactured equipment and devices must be
designed to work.

A nonlinear problem2 has been defined as “one which, when formulated mathe-
matically, reduces to (one or) a system of differential, integral, or integro-differential
equations such that at least one of the three quantities, a derivative, an integral, or
a dependent variable, is involved transcendentally or algebraically to a power other
than the first in at least one equation of the system or in at least one boundary con-
dition of the system.” Of course, in dealing with applied problems, a physical defini-
tion independent of all mathematical concepts is preferable, but such is difficult to
formulate.

Nonlinear problems resolve themselves into two general types, continuous and dis-
crete. The first type deals with the behavior of quantities in a field or in at least one
continuous region of space and, more often than not, reduces mathematically to sys-
tems of nonlinear partial differential equations. Problems relating primarily to this
field have been treated by Dr. Theodore von Kéarméan in his Josiah Willard Gibbs
Memorial lecture.3 This paper is both a milestone and a beacon of progress in that
it is an admirable exposition and inventory of the nonlinear problems of continuous
fields and at the same time an inspiration and invitation to both the engineer and
mathematician for further advancement in this difficult field. Among other subjects,
the von Karman lecture treated relaxation oscillations, subharmonic resonance, non-
linear problems in the theory of elasticity in which the hypotheses of (a) small
deflections are abandoned, (b) Hooke’s law no longer holds, plasticity, hydrodynam-

1A Symposium Address before the American Mathematical Society at Stanford University, April
24, 1943. Manuscript received Aug. 16, 1943.

*E. G. Keller, Analytical methods of solving discrete nonlinear problems in electrical engineering, Trans-
actions of the American Institute of Electrical Engineers, 60, 1194 (1941).

s Theodore von Kiirrndn, The engineer grapples with nonlinear problems. Bull. Am. Math. Soc., 46,
615 (1940).
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ics; and aerodynamics of (a) ideal fluids, (b) viscous fluids, and (c) compressible
fluids. The bibliography of the paper contains 178 entries.

The second type of nonlinear problem is called discrete. Discrete nonlinear prob-
lems are characterized by the fact that they possess only a finite number of degrees
of freedom. They are frequently reducible mathematically to systems of nonlinear
ordinary (total) differential equations or to systems of nonlinear integral equations.

2. Nature of industrial discrete nonlinear problems. Solutions of nonlinear prob-
lems in industry are usually in the “small”;i.e., a solution of a system is not required
for every magnitude whatsoever of the parameters involved. In the solution of such
problems the greatest single body of theory contributing to nonlinear analysis of
discrete systems is that which grew out of the attempts of the great French and Ger-
man mathematicians of the last century to solve the problem of three bodies. While
their objective, in its complete generality, was never realized, the pure mathematics
developed (theory of differential equations, convergence, dominant functions, singu-
larities, removable singularities, etc.) is today directly applicable in the study of non-
linear equations of electrical circuits, rotating electrical machines, arid various non-
linear dynamical and aerodynamical devices. The two second largest bodies of theory
are those of nonlinear integral equations as developed by T. Lalesco4and others5and
the methods of Galerkin6and Ritz along with the modifications of these techniques.7

There are at least three salient characteristics of nonlineat engineering problems
which distinguish them from purely theoretical problems. First, oscillograms, differ-
ential analyzer solutions,8or other records frequently indicate the nature of the solu-
tion of the mathematical systems in question. Such mechanical or electrical solutions
for the same system often differ so much among themselves that there is the risk of
concluding erroneously that the solution is not unique. (For example, the differential
equations which yield the two solutions represented in Figs. 3 and 4 also possess
sinusoidal solutions. Yet the solutions are unique; i.e., the solution in (4) is identical
with the sinusoidal solution.) Of course, there are systems which do not possess a
unique solution. In general, even when a solution is unique it may have so many
manifestations that it is often necessary to integrate the system to determine the
effect of the various parameters involved. A second characteristic of industrial non-
linear problems is that frequently the methods of mathematics are not powerful
enough to yield a complete solution of the problem in sufficiently simple form to be
usable. Tricks and devices, born of physical concepts, must guide the mathematics
if a usable solution is to be attained. The mathematics is surely necessary and it is
just as surely not sufficient. The solution is mathematics plus. A third distinction of
industrial nonlinear problems is the fact that the derivation of the equations of per-
formance requires, in addition to a knowledge of mathematics, mathematical physics,

4V. Volterra, Lecons sur les équations intégrales, Gauthier-Villars, Paris, 1913, p. 90.

5H. Galajikian, Bull. Amer. Math. Soc., 19, 342 (1913); also Ann. of Math., 16, 172 (1915);
E. Schmidt, Math. Ann., 65, 370 (1908).

*A. N. Dinnik, Galerkin's method for determining the critical strengths and frequencies of vibrations,
Aeronautical Engineering, U.S.S.R., 9, No. 5, 99 (1935). Also W. J. Duncan, Galerkin’s method in mechan-
ics and differential equations, R&M 1798 (1938).

7 For additional bibliographies see references 2 and 3 above, also the book, E. G. Keller, Mathematics
of modern engineering, vol. 11, Wiley and Sons, New York, 1942, pp. 303-304. These list a total of 302
papers; and these papers in turn possess bibliographies.

*V. Bush and H. L. Hazen, Integraph of differential equations, J. Franklin Inst., 204, 575 (1927).
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and engineering, inventive ability in thought. A system of equations may be an in-
vention of the highest order. It is not always necessary to integrate a system of non-
linear equations. Often it is necessary only to determine under what conditions the
physical system is stable. Of course, no single stability criterion exists for nonlinear
systems such as exists for linear systems. When a solution of a nonlinear system can-
not be obtained with sufficient rapidity or when it can be obtained but is worthless
because the time consumed in applying it is loo great, it may be possible to obtain the
information desired by integrating a dominant and a “subordinate” system such that
the solution of the actual problem is bounded or limited by the solutions of the domi-
nant and subordinate system. The use of dominant and “subordinate” systems will
be clear in the following problems.

3. Some representative discrete nonlinear problems of industry. In this paper a
number of representative nonlinear systems are treated which illustrate the princi-
ples enumerated in the last section. These systems are either original, appearing here
for the first time, or else of very recent date. Some of them pertain to electrical manu-
facturing, others to aircraft development. Although, as stated above, the derivation
of the equations of a system is often more important than the solution, none of the
equations considered are derived here. Some systems are derived in the literature and
to these references are given. The derivations of the remaining ones can not be given
for military reasons. These are viewed here merely as hypothetical nonlinear systems.

1. Nonlinear control circuits. As is well known, the volt-ampere characteristic of
a nonlinear series circuit (Fig. 1) is represented by the curve in Fig. 2. Such circuits
have numerous industrial applications due to their rugged mechanical simplicity and
at the same time their electrical sensitivity. The characteristic in Fig. 2 displays the
fact that there exists a so-called critical or resonant voltage Eo at which the R.M.S.
value of the current suddenly increases many fold. For a value of E<E 0 (see E sin wt
in Fig. 1) the current is sinusoidal. For£ > £ 0 the current has the wave form dis-
played in Fig. 3.

LCO C R
hP H U « — i

— o -
E SIN tot

Fig. 1 Fig. 2. Fig. 3.

In industrial applications Eo0is prescribed. It is required to design a circuit which
will be sensitive for this prescribed value of Eo. A simple slide rule formula is desired
which will express E0 as a function of the circuit parameters and of the nonlinear
reactor employed. The equation of performance for the circuit in Fig. 1 is
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For the range of interest the current i is such that the saturation curve of the reactor
is single-valued and represented by the equation

E = ki a3xz + ahxh
With 0=at, Eqgs. (1) and (2) yield

dx r
M d—o+ R(x —a3x3+ a"xy -f- chI (x —a3x3+ a3xhdQ = —Ek cos (6 —0Q, (3)

where, for a given w, M and xcare constants. The integration of the nonlinear Eq. (3)
and the development of Eoas a function of the parameters of the physical problem
are carried out elsewhere and need not be repeated here.9
2. Nonlinear transmission line phenomena. If a series capacitor is employed in

the primary side of a transmission line to improve the power factor, curious wave
forms of voltage and current ensue. The system becomes unstable as far as possessing
a periodic solution is concerned. This is to be expected since the maximum flux den-
sity attains a value close to that of the knee of the saturation curve if the transformers

A31S=;.7x27
Fig. 4.

are operating efficiently. The addition of series capacitance is thus likely to create an
unstable system. In this unstable system, the current and voltage taken on an in-
definitely large number of wave forms such as shown in Fig. 4. Synchronous motors
which require sinusoidal applied voltages cannot operate on currents and voltages of
the type shown in Fig. 4.

If the capacitor of the system is shunted by a resistor as indicated in Fig. 5, then
the equations of performance are

' E. G. Keller, Resonance theory of non-linear control circuits, J. Franklin Inst.. 225, 561 (1938)
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dii 1
-T Riii+ L —1 f (ii —ij)dt = E sin (8 - #0),
dt clJ
: 4
i2R2= xcJ *Qi — It)as, (xc= 1/C), @
aii = x —a3x3+ aB&°; Il = ai\x = B/BO\B0o= dB/dE atH = 0,
or
d2x xcBoa . dx  xc(Ri + R2 .
ciBo h + i?i(l —3ax2+ 5fl6»Y) -— p---m-mmmmmeee- (x —a3ir3+ aky)
de2 L R2 dd 722

= — [i?l + xI]I'E cos (d + 00- tan“l—Y
Ro \ Ri/

Now i?22 must have the smallest possible value consistent with stability, since it
represents a perpetual loss of power. There are ten parameters and two variables.

BEAWW

Fig. 5.

There are infinitely many values of the parameters for which the system is unstable
and equally as many for which it is stable, i.e., for which the solutions are sinusoidal.
A convenient slide rule formula is desired giving the above smallest value of Rj as
functions of the other nine parameters of the system. The equations of the system are
derived and solved elsewhere.10

3. Nonlinear springs. It is sufficient to say that, in general, the differential equa-
tions involving nonlinear springs are integrable by hyperelliptic functions. 1 If damp-
ing is large a combination of variation of parameters and hyperelliptic functions will
usually afford sufficient accuracy.

4. Electric locomotive oscillations. Experience classifies the five oscillatory motions
of an electric locomotive as pitch, roll, plunge, nose, and rear-end lash. The last two
are especially important because their pronounced existence in a locomotive produces
a tendency to derail. Considered superficially, characteristic oscillations of an electric
locomotive would seem to be similar to those of an ordinary vehicle such as an auto-
mobile, but experimental data and observation indicate the existence of dangerous

DE. G. Keller, Beat theory of non-linear circuits, J. Franklin Inst., 228, No. 3, 319-337 (1939).
1N A theory of hyperelliptic functions in usable form is given by F. R. Moulton, On certain expansions
of elliptic, hyperelliptic and related functions, Am. J. Math., 34, 177-202 (1912).
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nose and rear-end lash which are not common to an automobile. If the tendency to
nose exists in an electric locomotive and if the locomotive noses for a speed FO, then
it will nose for all speeds greater than V0. Consequently, nosing is not a resonance
phenomenon and cannot be avoided by running at a slightly different speed. It might
be supposed that nosing is due to the coning of the wheels or to the staggering of
the rails or to a combination of these two possible causes. Such causes, however,
would produce resonance frequencies for definite discrete values of V instead of in-
stability for all values of V exceeding FO. Rails on European railroads are not stag-
gered and yet electric locomotive nosing still persists. The tendency to nose and the
violence of the oscillation increase with the weight and power of the locomotive.

In seeking the source of the phenomenon, consider first an elementary experi-
ment. Let a miniature set of driving wheels and axle be constructed from two rubber
paste bottle stoppers and a lead pencil. If the miniature drivers are forced down
against two rulers as rails, if a torque is applied tending to rotate the wheels, and if
further in the forward motion slight lateral motion is permissible then an oscillating
torque will be experienced tending to rotate the axle about a line through the center
of axle and perpendicular to the plane of the track. The creepage forces between the
rubber wheels and the rails produce an oscillatory torque.

The weight of an electric locomotive is so great that it effectively rolls on elastic
wheels on elastic rails. Making use of this fact and whatever additional facts are nec-
essary the equations of motion22can be shown to be

Mxg — 0,
Myo= —F2—f2—2f(~ ~f) - 2 -f)-F,-fi- 20- - 1),
Azo - Ai(zo — Aity) - X(so —ct- -f- 22I) .+ M(so — 4" hot]) -f- k\z0 = 0,

At; + XS0+ @ + hil)) —X2Cz0 — G + Ay + kit;

— —Db§Fi + F2+ /1 + fi) —2bb— (yi + j + y2 + 6A4f,

(5)
Bij — XiAi(zo — b\ri) -f- X2&8(zo + o; + bit]) - X220 —ct; -f- &J) T kv = 0,
2fdz 6fb2
Cf= - d3(F; - F2 - dtfi yx- y2 - -y- f
2fhb

= ] (y + yi+ w + Ri(i').

To the accuracy required, the flange forces are given by

u E. G. Keller, Mathematics of modern engineering, vol. 11, p. 72.
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(6
IV y*

where the constants II, I, J, j, i, h are determined from force curves, and 5i and 52
are lengths shown in Fig. 6.
The variables yi, y2 yz, y4,and y are eliminated from (5) by means of the relations

yi = ya+ + 4> yz= yot+ b —dzt,
yz = 3o+ Ais + dil, y\ = yo + hif —d&,
y = yo+ bE,

where 25, d3, dt, hi and hi are lengths defined in reference 12.

If in (5) Fi=F2=fi—f2=0, then the equations are linear; and the solution can
be written down at once. This solution is either stable or unstable as indicated by the
roots of the characteristic equation. The nature of the roots are, of course, a function
of V, the operating speed of the locomotive. Even if the locomotive is unstable with
vanishing flange forces, it is stable with non-vanishing flange forces. In this case the
locomotive is operating roughly and damaging the track needlessly.

In practical applications, then, it is not necessary to integrate the nonlinear sys-
tern (5). As a check on the validity of the theory, however, it is necessary to integrate
the nonlinear system and compare the predicted motion with actual motion as deter-
mined by runs on a test track. Evidently the solution of (5) for Fx=F2=/i=/2=0
cannot be used as a generating solution for the case of the non-vanishing of the flange
forces because the stability or unstability of this generating solution is carried over
into the complete solution.

Since nosing and rear end lash are the two motions of most importance, it is suffi-
cient to resort to elementary means. Consequently, F, and /m [Eqgs. (6)] are replaced
by segments of straight lines as shown in Fig. 6, and the second and sixth equations
of (5) are solved fory0and f by operational methods (general operational methods
where both initial charges and initial currents exist must be used.) SinceAhe flange
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forces are taken as functions with discontinuous slopes, the system of differential
equations and its characteristic equation change as the flange forces, as functions
of yi, y2, y$i yn change at points a, b, c, d, e, f shown in Fig. 6. The first set of initial
conditions are chosen by trial and error in such a way that the resulting motion is
periodic in yoand f. The solution for a complete cycle is sufficient. The check of the
theory is the approximate agreement of computed and test periods.

5. Nonlinear differential equations of dynamic braking of a synchronous machine.
The equations of dynamic braking are
i =(~IR + XX A + (oA
dt L [(rso/s)2+ x<irxd 4 [(rio/1)2+ xi>xq\[(«0A)2+ xdx(]3
ds _ulJ2 x\ + (rso/s)* A A
dt s [xdxg+ (rjoli)2]2
where
2KPr3x9(xd - xd')s\ KPr
no — — > mi
J11 JI

I being the field current, 5 the rotor speed, t the time in seconds, all other symbols
being constant parameters. It is desired to obtain an expression for the time of
stopping of the rotor as a function of the parameters of the machine.

The last term in the right member of the first of Eqgs. (7) has in all cases a magni-
tude of approximately ten per cent of its predecessor. Thus a solution as a power series
in a parameter which vanishes with M is to be expected. Neglecting the term con-
taining mo in (7) and dividing the first equation by the second, we obtain a solution
of the resulting equation immediately. However, this solution is an implicit function
of I and 5and such that it is solvable explicitly for either I or s only as a slowly con-
vergent series. An attempted solution by the method of variation of parameters is
equally cumbersome.

It is known from oscillograms, however, that both I and 5are monotone decreas-
ing functions of the time for the interval within which (7) is valid. Change of de-
pendent variables by

E
| — Tile~ww and s = soe-~z

R
yields
dy R t R(A2—At) ( [4 + (re®2][E/R + g
7t~ T + L[AI + (re*y] + A [A2+ {re®2 [A2+ («*)*]" A4
dz Wi \{E/R)+he-»]2[x\ + (rey] (®)
— = Mi ; :
dt A2+ (V)2]%2
where
Al = Xd'XQ A 2= xdxv A > Ao
The number of revolutions before the rotor of the machine comes to rest is
1 r4 Lf"
N=— 1 sdt=— 1| s0e~zdt. 9)

rd o 2wtelo
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Now it is sufficient for practical purposes to set an upper limit to N as given by (9)
provided the upper limit is sufficiently small and provided the results display the
effect of-each parameter of the system. To accomplish this (8) may be replaced by a
simpler system of equations. Evidently,

[Al + {re'Y\ g Ul + rV z [d2+ (re*)’] ™ (¢2+ rdex (10)
for s50. Employing (10) in (7) and integrating, we have
R RU'-AI) r

+ —
L L{Al + r2 Jo

1 (r2+ xluo

X | + he-
+ sih {Al + Y)(A>+ r23

Mi(r2 + xI) r *VE T

JIM? +'e>!

e-"dt

where the instantaneous values of y and z as given by (11) are always less than those
given by the solution of (7) for 0 <t < 00.
The system (11) is of the form

Uk{t)  $a(t) + Afo Ki\t, 2, «i(i), o+, un@N\d% {k — 1,2, oo, »)

which is Lalesco’s system of nonlinear integral equations. The solution of this is the
limit of the sequences

40= (0.
= &) + f Kk\t, £ <HE), o' ¢ 14>n(0]dE  (k —1, 2, . nj,
j O
In the present application = Rt/L and {p{t) = 0. For small synchronous machines
the second approximations and u” give values of y and z such that N in (9) is in

error by five per cent. The integration in (9) is carried out numerically. Because of
bearing friction and other decelerating factors not included in (7) the upper limit in
(9) is finite.

6. A double-valued nonlinear problem. Consider the integration of the equation

16 + 06 + )x[kid + h tan-1k3(d + o)] = 0. (12)

This equation was derived ingeniously by W. W. Beman to express an important
phenomenon in aerodynamics. The quantities I, 3 iji, ¢1 k2 k3, and a are all positive
numbers and the plus or minus sign in (0+a) is used according as 6<0 or $>0.
Evidently, for a particular amplitude of 9, Eq. (12) possesses a periodic solution.
The period and amplitude of this solution are desired. Eq. (12) in the normal form is

9 — 0i, 9 = — (n/1)[ki9 + k2tan-1 k3{6 = a)] —/30i/7. (13)
An integral of (13) for/3=0 s
2pf kj*
<—

el =c¢
11 2

1
0+ a) tan“1k3(d + a) log (1 + k3(0i = a)2 }
2k3
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or
Olb + VF-Tw, (14)
where c=f(s0) and where 60is the maximum positive displacement for t=to. If (14) is

used as an equation of change of variable, the method of variation of parameters
yields

30i dc 30i fx . 3
—————— _ =—————[¢!0 -J ki tan-1 k3(0 + 0)j] ——0Ou
dc dt dt | |
*
whence
c= - 2/3071, (15)
or
- A ro
/ 0?d/ f-d = —ﬁl 6d6 d,
in I *in

where d is an arbitrary constant. From the last equation
ijc = _ 23f|| = _ 23(1 Ve _ 1(0)). (16)
do / /

To determine the signs in (16) it isevident from (15) that c is a decreasing function
of the time. Consequently, for 0<O

dc dc dt dc
— (- aa- m).
do dt de dt

Thus Eq. (16) is
dc 23

ad 1

I+

Vc-m a7

according as 0i<O or 0i>0.
For the integration of (17) it is sufficient to replace \/c —(0) by k[c—f(0)] where k
is determined graphically by

\]Ve- /(0) do = k\J [c - /(0)]1dO,

c=/(00) or c=/(00) according as 608" 6q or do ;=" 6% and 60, 00, and CH are
shown in Fig. 7. The curve in Fig. 7 is the solution (14). With this replacement and
simple integration
. i 2Bk | . .
¢ — eZ3i(fl-Bo>i @ - 4 c-w"mdoJ 00 a og Oi),
(18)
2Bk

re 1
¢ — g-Bk(e-an (eVMftydO\ (@ 00"),
¢ J

where co=/(00) and c0 =/(00 )» The above values of c are substituted in Eq. (14). The
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solution is periodic when 60 is chosen such that 8'¢ turns out to be equal to 00 The
period of the motion is then given by
p do
P =2 — (19)
The numerical integration of (19) presents no difficulty at the limits 90 and 00
since 0i in the vicinity of 00and 6; can be replaced by an integrable function/ Osuch
that the limit of (fo/di) = 1 at 0i=0oand 0i= 8.

Fig. 7. Fig. 8.

7. A nonlinear problem of two oleo-pneumatically coupled masses one of which
is subject to impact. It can be shown without difficulty that the nonlinear differential
equations of motion of ni\ and M2shown in Fig. 8 are

p(S —sm3s2— ii)2 .
JWMIl . + kiii + /(si) = 0,

(S2 — Si) 2gc’-[A(r)Y =

D
posS p(S — M (is —il)2
misi — nw2+ .

(s2— Si) 2gc-[A(n)Y

D
where

M(r)]2 = ir2{i?2- [r, + 0,(s2- si)]2}, f(sj) = (Ko + hsj),

and » = (1—m), 0|Tb |1 . In Egs. (20) and (21), si, Ss, and t are the dependent and
independent variables, the remaining symbols being constants.

A solution of (20) is desired for the initial conditions ii(0)=1i2(0) =va The time t
is counted from the instant when the lower end of the spring is in contact with a
fixed horizontal surface. For suitable values of R, r{, and bi a graph of [A (r)]2is either
Fig. 9a or 9b.
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Fig. 9a.

Fig. 10.
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Fig. 9b.

Even in the case where A[r) —uR the follow-
ing methods, (a) power series solutions in the
time, (b) numerical integration, (c) successive
integrations, (d) Galerkin’s, (e) curvature, and
(F) expansions in power series in parameters,
become so laborious that they fail for practical
purposes. Lord Rayleigh13has given methods of
handling differential equations linear in all terms
except containing a damping coefficient which
depends on the square of the velocity. The ve-
locity term is supposed small. In Eq. (20) the
velocity term is small or large dependent upon
the stage of the motion.

Consider the curves shown in Figs. 10, 11,
and 12. It is evident that the forces relevant to
these curves can be approximated by the arc
20(? and the small number of secant lines Q\Q2
RoRi, RiRi, and R2R3 The location of Qlt RO,
Ri, Ri, and R3will become evident from physical
conditions presently discussed.

For the first interval of motion replace Eq.
(20) by the equations

ii d~ Ko d- koSi —a[/lo d- Wo{s2 Si)] S~ L) , (22)
120~ 7 [-do + Wo(i2—-u)] —nS ~ ~ —M)2>

where
pbS
az2ln’7’

P ~

p(S — Smz _ £o05 = p(~r>~ sm)2 A"

2wicVR* ’ 7 mt’ 2w»cWR2 ’

1 Lord Rayleigh, Theory of sound, (2nd ed.) vol. I, Macmillan, London, 1894, p. 81.
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and A0, m0, KO, and ko are shown in the figures. The ordinate of i?3 represents the
value of (1 —£)~120when the system is at rest under the force of gravity. The points
R2and Ri are located such that no ordinate on the secant lines exceeds the correspond-
ing ordinate on the arc by more than ten per cent.

The solution of Eq. (20) is now broken up into two timeintervals. We reduce
Eqg. (21) to the normal form by the substitutions

ii = £1 + ®l N2 = £2 + 2, £1 = £3, £2 = £4,

where ay and a2 are constants such that no constant term remains in the resulting
differential equations. Then the equations are

£l = £3
b ~ U (23)
£3 — — (ocnio -j- £0)£i + anionr2 + £(£4 — £3)2,

£4 = 7 Wiofi — ymfa — ;(£4 — £3)2,
and
«1 = y[g + (aA0— .Ko)] —a [r"0 —ng]/ykO,
« = {wo[7(g + aAo — KO — <x(yA0O —ng)] — 070 —ng)}/mykQ

and aA0=Ko in order that S may not be positive in its initial motion. That is, the
origin of time is taken to be the instant at which the upward force of the spring 5
is equal to the downward force due to gas pressure on my.

The general solution of (23) (with squared terms suppressed) is

£l = yii sin cojl + A 2c0s coii -j- yl3sinuz + Ay C0S @2,
£2 = byAy sin wyt + byA2cos uyt + $2"3sinw2 + ¢ 244c0s U, (24)
£3 — 0)yAy COS @1/ — colr42 sin Idyt “b 0)2A 2 COS c21l — @/ 14 sir) o)2t,

£4 = byWyAy G085 GOl — by03yA2 sin Gk-F- b202A 2 QOB @21 — b20i2A 4sin @21,
where «1 and o are the roots of the characteristic equation and
by = (amo + & —u\)/avio, b2 = (amo + ko — oi2)/amO.

The nonlinear terms in (22) are taken into account by the method of variation
of parameters. Employing (24) as equations of change of variables and remembering

that (24) satisfies
3Ei 3£2
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H3 . 3£3 3£3 .

—7* N H - e A-m-—A 3\— —m 4 — $(E4 — £3I7 Inc,A
3.41 B 3/13 3/14 (25)
$4 . WA . 7 04

——A\ - —Aj N-— A3 (——A 4= —5(E4—£5)2

3/11 dAi 3/13 3/14

The solutions of (25), after some rather lengthy trigonometric manipulations, are

5+ big £)2005 41/ 5+ biR £)25
(g4 - cos f (g4 — SIN wit,
~>ibi — b)) 0.'i(bi —nh)
5+ biB S+ biB
(¢4 — s$3)2 COS @il, A 4 — (4 — £3)2sin Wit.
Wi{bi — &)

The solution of (26) is obtained with sufficient approximation by using a device com-
mon in celestial mechanics; i.e., for small values of the time, the A, entering (26)
through £3 and £4 may be considered constants having the values obtained by the
solution of (24) for £1= —<x, £2= —a2 3= £4=~0 at (= 0. Thus the solution of (26),
to the accuracy required, is reduced to quadratures. Moreover, since the.interval for
which this solution is valid is small (0OiSfgO.0Ol) the trigonometric functions involved
may be expanded as power series in t before the quadratures are performed. The
solution of (25) is
Ai = C + fiit) (i= 1 e00,4), 27)
where /,(0)=0. The substitution of (27) in (24) gives the complete solution for
0~t where w2i <§ and w2> wi. The values of Ci=Ai as determined above.
The value of [E4(;) —£3(;1)]2 locates the point Qi in Fig. 10. The ordinate of Qi

is 1% The ordinate of Ri is given by Si(ti)—Si{ti). The ordinate of R4 is the value of
(1—£)-1-2 when the air chamber is decreased to 0.7 of its initial value.

/[ Cro
0-f)

P ISAGNTA_RONTONC
m'=

AQ =A2

Fig. 11 Fig. 12*

* In Hg;. 12 the origin should be marked So and the second point of intersection of the straight line
through the origin and the curve should be marked Si.
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In the solution for the second interval (htiKh) of motion it is sufficient to re-
place the arcs RiRzR"Ri and QiQ2 by the secant lines RiRi and Q1Q2 The quantity
(¢(2—mii)2 on the interval Q1Q2 may be written

(2—ii)2= —Bo + «0("2 —-fi), (28)
and (22) becomes

(p2+ «wo + KkQsi —amoSz = g + aAo —PBo + (3«0(i2 —¢1) — Ko, n
—70m1+  (p2-f-ymQsi = ng —7A0+ SBa—>5n0(s2 —i),

where any additional constants are shown in the figures. At the neworigin of time
for (29), Ji(0) = 52(0) = 0 and ii(0) =»1, M(0) =i2(/i) =»2

The proper determination of the constants 61 and 22in the substitution 5i= £i+6i,
52= £2+72 in (29) yields

P2+ P>iop + otvio + I — >+ am0)2 = 0,
i i &O)Ei [3»0/ 0 N
— (Snap + 7Wo)|i + (p2+ Snap + ymo~2 = 0.

While the characteristic equation of (30) is of the fourth degree, yet its roots are
widely separated in practical cases and quickly found by Graeffe’s method.

The values of 5i= £i+&i, 52= "2+62 as given by the solution of(30) do not yield
the equilibrium positions of mi and m2, because when (¢;2- ¢1)2becomes small the rela-
tion (28) and Eqs. (29) are no longer valid. This is no defect of the solution because
its purpose is the determination of the maximum accelerations acting on mi and m2
These maxima occur in the interval = The equilibrium positions of mi and m2
are determined from static considerations.

A point of special interest is the determination of the effects of the factor ng upon
the solution. The above solution is constructed with this in mind.

The roots of the characteristic equation of (30) have special physical significance.
In practical cases these are usually one or two pairs of complex roots. If there are
four complex roots, one pair gives a high frequency oscillation of moderate magnitude
for mi. This is to be avoided.

If [A(r)¥ isgiven by the graph shown in Fig. 9b the above method is still applica-
ble. The solution is very sensitive with respect to [A(r)].2 Of course, the intervals
of solution will exceed two in number, but in each interval the value of (;2—ii)2will
be given by the ordinates of the arc Q0Q1 or the secant Q1Q2.

The most complicated process involved in solving (20) is the solution of a quartic
equation.

4, Concluding remarks. The seven problems presented above are representative

of the nonlinear discrete problems of industry in so far as one nonlinear problem can
represent a group the members of which differ greatly. No bibliography is given for
the reason stated in footnote 7.

Methods of handling industrial nonlinear problems of continuous systems arising
in industry are reserved for a subsequent paper.
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—NOTES—

A GEOMETRICAL INTERPRETATION OF THE
RELAXATION METHOD*

By J. L. SYNGE {The Ohio State University)

Letdij, Bi (i,j= 1,2, * **, «) be given constantssuch that 4,7=a*,-and X X -1 aijX<q
is a positive definite form. Consider the equations

»
X) a-ijXi — Bi - 0 (i=1,2,-* ,«). 1)
j-i
The solution is easily expressed as a set of quotients of determinants. However, as n
increases, the task of calculating the determinants becomes excessively burdensome.
The relaxation methodlprovides a set of easy steps by which the solution of (1) is
approached. The method has been compactly described by Temple.2
The purpose of the present note is to give a geometrical description of the relaxa-
tion method. For the trivial case « = 2 the geometrical description may be displayed
accurately in a diagram. For ;i=3a model may be visualized. For «>3 we pass be-
yond the region of simple concrete geometrical representation, but in many ways
geometry in an «-space is closely analogous to geometry in 2-space or 3-space, and
the geometrical description continues to serve as a general guide to procedure.
Let us regard *eas rectangular Cartesian coordinates in a Euclidean «-space. Let
us define

n n
H{x) =\ aijXixXj — J2 BiXi. (2
»7-1 i-1

The equation if (x) = const. represents a family of ellipsoids E\ these ellipsoids have
a common center, common directions for their principal axes, and common values
for the ratios of their principal axes. They form, in fact, a family of similar and simi-
larly situated ellipsoids.

The equations (1) represent a set of planes (i.e., flats of « —1 dimensions). The
point of intersection of these planes is the common center G of E. Thus the problem
of solving (1) is the problem of finding the center of an ellipsoid when its equation
is given.

It isimportant to note that H(x) takes a minimum value at G. Il is constant over
each ellipsoid, and increases steadily as we pass out from G.

It is not possible to define precisely what procedures are to be regarded as per-
missible. It is a question of ease of computation. Let us follow Southwell and consider
an approach to G by steps each of which is parallel to one of the axes of coordinates Xi.

Fig. 1 shows Southwell’s procedure. It is a schematic diagram in which the ellip-

* Received Dec. 29, 1943.
1R. V. Southwell, Relaxation methods in engineering, Oxford, 1940.
2G. Temple, Proc. Roy. Soc. London A, 169,476-500 (1939).
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soids are represented by circles. (The ellipsoids can of course be transformed into
concentric spheres by a linear transformation, which however destroys the orthogo-
nality of perpendicular lines.) We start with an arbitrary point P 0 (the zero approxi-
mation). Let E0 be the ellipsoid which
passes through Po. Through P Owe draw
a straight line L parallel to one of the
coordinate axes. Let Qi be the second
point in which L cuts EO. Let Pi be the
middle point of the chord PoQi- Then Pi
is the first approximation.
Since the ellipsoid isa convex surface,
Pi lies inside P 0Oand so II(Pi) <//(P0).
Moreover it is easy to see that PoQi is
tangent at Pi to the ellipsoid Pi which
passes through Pi. Thus, of all points
on the chord P 0Qi, the point Pi gives g
the smallest value of II.
The process is repeated, starting
from Pi. The second approximation P2
is the middle point of a chord P\Q% of Pi,
drawn parallel to another of the coordi-
nate axes. In this way we get a sequence
of points PO, Pi, me«. The success of the
method depends on the rapidity of the
convergence of this sequence to G.
In one important respect the above
procedure isincompletely defined. When
we have reached P m in which of the directions defined by the coordinate axes are we
to proceed in order to get P m+i? There are 11 coordinate axes. Of these one cannot be
used, viz., that which gave the direction of the step P m iPm But, of the remaining
n —1directions, which should we use?
Gaskell3 has suggested the following plan. Write

it
Ci(x) = X) aUxi~ B< 3

Having reached the point P m, we calculate the quantities C,(Pn). Let C*(Pm) be the
greatest of these in absolute value. Then we choose for the step P nP m+i the direction
of the axis of x*.

This procedure is called the liquidation of the greatest error, since we obtain
a(P mt)=0. It is interesting to see how this result fits into the geometrical discus-
sion. The plane C*(x) =0 is the plane through G conjugate to the direction of the
axis x*. The line P nP m+l is parallel to this axis and tangent at P m+ to one of the
ellipsoids, P m+i. But the point of contact of a line with an ellipsoid lies on the central
plane conjugate to the direction of the line. Hence P mti lies on Ci(x) =0, i.e,
C*(Pm+I)=0.

* R. E. Gaskell, Quarterly of Applied Mathematics, X 237-249 (1943).
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But it may well be asked whether the quantities Ci themselves possess any deep
significance. It is true that G satisfies Ci{x) = 0, but the quantity Ci(x) for a general
point does not represent the perpendicular distance of that point from the plane
C,(&) = 0. This perpendicular distance is

ICi{x) I

Should we not liquidate the greatest pi rather than the greatest Cf? Or is there a
better plan than either?

The following plan is suggested. Having reached the point P,,,, we have an option
on n—1next points. Each of these points lies on an ellipsoid of the family E. Choose
that point which lies on the innermost ellipsoid. This is equivalent to saying: Choose
that point which gives the smallest value to II.

Nowd4for a step in the direction of the axis Xi the decrease in Il is £C@a,-;. This is
to be made as great as possible, and so we should pick the direction of the step
PmPm+i according to the following rule: Proceed in the direction of the axis of Xk where
Cl/akk is the greatest of the quantities Cf/aa (t=1, 2, ¢ ¢+, n).

Thus Cf/au is made the criterion rather than Gaskell’s Ci. The calculation of the
former quantities involves slightly more computation, but this may be taken care of
by making the initial transformation

Xi = ()
Then
I=h 2 &ijxixi-  Bix, (6)
«,[-1 1=1
where
au = 1, 4 = anl/iana»)'l*, b!= J5.-/(a,)ll @)
Now, with
Cli(x) = £ a-jxj- BI, (8)

the criterion for the direction of the next displacement is Ci2 or |Ci |, the same
as Gaskell's. Moreover the transformation from Pmto P m+is now extremely simple.
It is6

Pm. il Xk,"*" , Xn,

Pm+1. X{,eee, Xk — Ck (*0. ’ ms mXi .

*R. E. Gaskell, loc. cit.,, Eq. (23).
s R. E. Gaskell, loc. cit.
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PROPOSED SYMBOLS FOR THE MODIFIED COSINE
AND EXPONENTIAL INTEGRALS

m By S. A. SCHELKUNOFF (Bell Telephone Laboratories’)

The standard sine and cosine integrals are defined as follows

e1sint ) r xcos t
[ dt, Cix =1 dt.
0o t d o t

The cosine integral has a logarithmic singularity at x=0. Now in problems of electro-
magnetic radiation x is proportional to the frequency but the impedance functions
involving Ci x are free from logarithmic singularities at/=0. Thus one expects and
actually encounters logarithmic functions which cancel the singular parts of the cosine
integrals.

For this reason the more suitable function is the following modified cosine integral

(0] t

which is an entire function. This function has already been used quite frequently, and
we wish only to suggest that a standard notation be adopted for it.

Inasmuch as one is frequently interested in the analytic properties of impedance
functions over the entire oscillation constant plane, the following modified exponen-
tial integral is suggested

The independent variable z will be proportional to £ = £-f-ico where u = 2ir times the
frequency. Then, on the imaginary axis we have

Ein (iy) = Ciny + i Siy,

where y is proportional to the frequency.
The even part of Ein zmay be designated as Cinh z and the odd part Sih z.
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BOOK REVIEWS

The mathematics of physics and, chemistry. By Henry Margenau and George Moseley
Murphy. D. Van Nostrand Company, Inc. New York, 1943. xii+581 pp. $6.50.

Contents: 1. The mathematics of thermodynamics. 2. Ordinary differential equations. 3. Special
functions. 4. Vector analysis. 5. Vectors and curvilinear coordinates. 6. Calculus of variations. 7. Partial
differential equations of classical physics. 8. Eigenvalues and eigenfunctions. 9. Mechanics of molecules.
10. Matrices and matrix algebra. 11. Quantum mechanics. 12. Statistical mechanics. 13. Numerical cal-
culations. 14. Linear integral equations. 15. Group theory.

The need for comprehensive manuals of mathematical tools is widely felt by workers in various ap-
plied fields. The readers of this Quarterly may, therefore, envy the theoretical physicists and chemists
for whom the present book is primarily intended. However, it appears from the above table of contents
that the book covers such a great variety of topics that almost everyone will find some chapter of par-
ticular interest. In this connection the chapters on special functions and special coordinate systems de-
serve particular mention.

The authors have well succeeeded in making the book appear as a homogeneous unit although the
individual chapters are independent and show a refreshing lack of formal uniformity. In some chapters
physical theories are treated at very considerable length, while other chapters are quite mathematical in
form. Formal deductions arc given in general, but often it seemed more desirable merely to record formulas
or facts. “The degree of difficulty of the treatment is such that a Senior majoring in physics or chemistry
would be able to read most parts of the book with understanding.”

Occasionally, a more daring departure from customary lines would have made the book still more
useful. Thus some numerical methods which are often presented and hardly ever used would better have
been omitted in favor of a more thorough presentation of the really useful techniques. The modern statis-
tician will regret to find the theory of errors treated along conventional, obsolete lines. The magic spell
of purely conventional but impressive terms such as “probable error” has proved very dangerous indeed
and inspires an unjustified confidence. The physicist who still believes in the normalcy of observational
errors should consult W. A. Shewhart's “Statistical Method From the Viewpoint of Quality Control”
(Washington 1939). There, starting on p. 66, he will find a most interesting analysis of some measurements
among the very elite (velocity of light, the gravitational constant, Planck’s constant). They all show com-
plete lack of statistical control, and even the simplest methods of industrial quality control could be used
for an improvement.

In general, the presentation is very clear. Only occasionally an attempt at mathematical sophistica-
tion makes itself felt. Thus the authors first introduce vectors in the usual (most satisfactory) manner.
Then (pp. 134-135), rather unclear references are made to a more restrictive analytical definition. The
passage culminates in the puzzling statement that [> x] (which, by the way, is the gradient of the func-
tion xy) “does not define a vector.” It does. And the authors themselves make free use of gradients and,
on the other hand, they (p. 135) “do assume that all of the vectors discussed are proper vectors.”

W. Feller

Navigational trigonometry. By P. R. Rider and Ch. A. Hutchinson. The Macmillan
Company. New York, 1943. ix+ 232 pp. $2.00.

The reviewer has considered this book more from the standpoint of a person studying the principles
underlying the art of navigation, either for the first time or as a refresher, than as a mathematical text-
book.

The book, as the authors say, is “a revision and expansion of part of Rider’s Plane and Spherical
Trigonometry.” The general arrangement of the material is very good, both as to the sequence of topics
taken up by chapters and the presentation of the material in each chapter itself. Chapter by chapter it
leads the student from fundamental definitions through the solutions of right spherical triangles and
oblique spherical triangles which are necessary for the student to know if he is to thoroughly understand
his navigation. Admitting that one can learn to navigate and use the short cuts common to practical
navigation without a very thorough background of spherical trigonometry, nevertheless the more com-
plete his knowledge of this branch of mathematics, the better navigator he will be and the more he will



92 BOOK REVIEWS

enjoy working out navigational problems. This phase has, in the reviewer's opinion, been very well
handled by the authors, who have shown good judgment in maintaining the proper balance between the
amount of detail used in “proofs” and the confidence shown in the intelligence of the student in assuming
that he will either accept certain facts or will be able to complete the detailed proofs himself.

The chapters on The Terrestrial Sphere, Charts, The Sailings, Astronomical Triangle and Lines of
Position are presented in clear, concise English and in logical order, giving the student the information
necessary for him to understand the problems which will confront him later when he takes up navigation
as a working tool. The authors very sensibly do not attempt to include in these chapters everything that
a man must know in order to actually navigate, but leave that to other books written especially for this
purpose.

Throughout the book the method of presentation of material is excellent. Each chapter contains cer-
tain proofs and facts followed by problems or exercises based on preceding information, giving the student
an opportunity to apply the principles discussed. The fact that the answers to certain problems are given
in the back of the book gives the student the chance to know whether or not he has used the proper
method of solution, and also the satisfaction of knowing that he has successfully accomplished his task.

The inclusion of an appendix discussing briefly the standards of accuracy is, in the reviewer's opinion,
very well worth while. This subject, often neglected, is not well understood by students who have had
little experience in mathematics, and is all too often not recognized even by those who have had such
experience.

The problems throughout the book are well thought out and the authors have given careful study
to the matter, laying special emphasis on the authenticity of materials and assumptions so that the prob-
lems are as practical as possible in a text of this size.

The book contains a complete five place table of natural and logarithmic haversines with one minute
intervals, which is a notable and welcome innovation in a textbook on trigonometry. It has been the re-
viewer’s experience that the beginner finds it confusing to use the table in Bowditch with its variable
interval. This table, along with the table of Common Logarithms of the Trigonometric Functions makes
it necessary for the student to make less frequent use of Bowditch, which, because of its size, is rather
awkward to manipulate.

All in all, the authors have accomplished what they set out to do. The book fulfills their claims even
better than might be expected and should prove to be very popular in the teaching and studying of the
basic mathematical problems underlying the principles of navigation.

Leighton T. Bohl

Table of circular and hyperbolic tangents and cotangents for radian arguments. Prepared
by the Mathematical Tables Project, Work Projects Administration of the Fed-
eral Works Agency; conducted under the sponsorship of the National Bureau of
Standards. Official Sponsor: Lyman J. Briggs. Technical Director: Arnold N.
Lowan. Columbia University Press. New York, 1943. xxxviii+410 pp. $5.00.

The main table gives the values of tan *, tanh *, cot x and coth x over the range *=0 to *=2 at in-
tervals of 0.0001. Circular and hyperbolic tangents are given to 8 significant figures for 0<*£|0.01 and
for 0.1 ¢ *¢ 2, and to 9 decimal places for 0.01 ¢*¢0.1. Circular cotangents are given to 8 significant
figures for 0.1 ¢ *¢1.57 and 1.575¢ *¢ 2, to 8 decimal places for 0 <*;0.1 and to 13 decimal places for
157 ¢*¢1.575. Hyperbolic cotangents are given to 8 decimal places for O”xiSO.l and to 8 significant
figures for 0.1 ¢, * ¢ 2. The second central differences for all these functions are given wherever linear inter-
polation is not sufficient. Auxiliary tables contain the values of the circular and hyperbolic tangents and
cotangents to 10 decimal places over the range * =0 to * = 10 at intervals of 0.1; the values of the inter-
polation coefficients for the formulas of Gregory-Newton and of Everett; the values of mr/2 for integer
values of n from 1to 100; and values facilitating the conversion from radians to degrees and from de-
grees to radians.

W. Prager
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