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IMPEDANCE CONCEPT IN WAVE GUIDES*

BY

S. A. SCHELKUNOFF 
Bell Telephone Laboratories

1. Introduction. The impedance concept is the foundation of engineering trans
mission theory. If wave guides are to be fully utilized as transmission systems or 
parts thereof, their properties must be expressed in terms of appropriately chosen 
impedances or else a new transmission theory must be developed. The gradual ex
tension of the concept has necessitated a broader point of view without which an 
exploitation of its full potentialities would be impossible.

In the course of various private discussions, I have found that there exists some 
uneasiness with regard to the applicability of the concept at very high frequencies. In 
part this may be attributed to relative unfamiliarity with the wave guide phenomena 
and in part to the evolution of the Concept itself. Some particular aspects of the con
cept have to be sacrificed in the process of generalization and although these aspects 
may be logically unimportant, they frequently become psychological obstacles to 
understanding in the early stages of the development. For this reason I am going to 
devote several sections of this paper to a general discussion of the impedance concept 
before passing to more specific applications; then by way of illustration I shall prove 
that an infinitely thin perfectly conducting iris between two different wave guides 
behaves as if between the admittances of its faces there existed an ideal transformer. 
This theorem is a generalization of another theorem which I proved several years 
ago to the effect that when the two wave guides are alike, the iris behaves as a shunt 
reactor. Actual calculation of the admittances and the transformer ratio depends on 
the solution of an appropriate boundary value problem.

More generally, wave guide discontinuities are representable by T-networks. In 
some special cases these networks lack series branches and in other cases, the shunt 
branch.

2. Evolution of concepts. Concepts evolve. It is a long way from the primitive 
to the modern number concept. The primitive number was an integer, a concrete 
integer at that. In some primitive languages there is no word corresponding to “two.” 
There are words meaning “two men,” “two horses,” etc.; but the concept of “two” 
applying either to men, or to horses, is lacking. To a primitive mind the difference 
between a class comprised of two men and a class comprised of two horses over
shadowed the similarity. Seeing similarities requires a degree of abstraction. A re
sistance to abstract ideas seems to be a characteristic of human minds even in modern 
times; only the modern mind is quicker to overcome it. An example, pertinent to

* Received Sept. 16, 1943.
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our present discussion, is the following excerpt from a paper Derivation and discussion  
of the general solution of the current flowing in  a circuit containing resistance, self- 
inductance and  capacity w ith a ny  impressed electromotive force, by Frederick Bedell and 
Albert C. Crehore, published in the Journal A .I.E .E ., 9, 340 (1892):

“From the analogy of this equation to Ohm’s law, we see that the expression 
[i?2 + ( l / C w - I w ) 2 ] ‘ ' 2 is of the nature of a resistance, and is the apparent resist
ance of a circuit containing resistance, self-inductance and capacity. This expression 
would quite properly be called ‘impedance’ but the term impedance has for sev
eral years been used as a name for the expression [i?2 + L 2w2]1/2, which is the 
apparent resistance of a circuit containing resistance and self-inductance only. 
We suggest, therefore, that the word ‘impediment’ be adopted as a name for the 
expression [f?2 + ( l/C w  —Zw) 2 ] l/2  which is the apparentresistance of a circuit con
taining resistance, self-inductance and capacity, and the term impedance be re
tained in the more limited meaning it has come to have, that is, [722+ L 2w2]1/2, 
the apparent resistance of a circuit containing resistance and self-inductance only.” 

The name “impediment” was not adopted. Apparently, it was soon understood that 
if one really wished to emphasize the difference between the impedances of various 
circuits, one could simply describe the circuits and, therefore, for most purposes, it 
was best to emphasize the similarity rather than the difference. And only ten years 
ago there were some who objected to the use of the word impedance for the ratio 
E / H  in an electromagnetic wave and who wanted a new word for it.

The word “number” now includes fractions, negative numbers, irrational numbers 
and complex numbers; the impedance is now a complex number, and not its absolute 
value as originally intended. There are mechanical impedances, acoustic impedances, 
electromechanical impedances, and finally impedances associated with any wave no 
matter what its physical nature happens to be. The impedance is now the force/re- 
sponse ratio 'when the force and response are harmonic functions of time and are 
represented by complex exponentials. Around this concept has grown the transmis
sion theory of force and response in linear systems. The principal tool of this theory is 
the theory of functions of a complex variable. This theory is used for engineering 
purposes as in the design of filters, equalizers, and other transmission systems with 
prescribed desired properties; and with equal advantage it may be used for general 
transmission studies. In this paper I am particularly concerned with fundamental 
ideas applied to wave guides and wave guide elements.

3. General discussion of impedance and admittance. Superficially, it may seem 
that the impedance concept does not apply to wave guides or if it does it is quite 
different from the concept as applied to ordinary transmission lines. Actually there is 
no significant difference; whatever difference there exists is largely psychological 
rather than logical. In wave guides a characteristic impedance has to be associated 
with each transmission mode. A t first the existence of various transmission modes 
may strike one as a feature which distinguishes high frequency wave guides from low 
frequency “ordinary” transmission lines; but soon one will realize that even in ordi
nary transmission lines it is usual to distinguish between different modes of trans
mission. Consider, for instance, parallel wires at the same height above ground; there 
are two obvious transmission modes recognized by communication engineers; in one 
the currents in the wires are equal and flow in opposite directions and in the other 
they are equal, flow in the same direction and return through ground. It is the exist-
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ence of these two transmission modes that accounts for the important engineering 
difference between balanced and unbalanced transmission lines. Similarly, there are 
two obvious transmission modes in a shielded parallel pair. The field patterns are 
different for different transmission modes and the characteristic impedances are usu
ally different. The existence of transmission modes is not peculiar to hollow tubes 
and other structures which have become prominent in high frequency transmission; 
high frequency transmission studies make us merely aware of the fact that any 
physical wave guide, whether a coaxial pair or a shielded pair or a hollow tube, 
admits of an infinite number of transmission modes with their characteristic field 
patterns, characteristic impedances, and propagation constants.

Another cause of worry to some is a degree of indeterminacy connected with an 
impedance and its associated quantities. The characteristic impedance of a wave 
guide may be defined in a number of ways giving different values. For each oscilla
tion mode a cavity resonator behaves as an ordinary circuit comprised of inductance 
and capacitance; but different values are obtained, depending on how L  and C are 
defined. This indeterminacy is really inherent in these conceptions but in elementary 
theory it is not stressed for the simple reason that no occasion arises for such stressing. 
In the final analysis, this indeterminacy is of the same kind as that involved in the 
essential arbitrariness of units and is related to the fact that properties of analytic 
functions are not affected by a constant factor. Putting it in the language of transmis
sion theory, the essential properties of impedance functions are not affected by ideal 
transformers. If we have a closed box containing an electric network with two acces
sible terminals and if we measure a resistance R  across these terminals, we cannot 
be certain that the box contains a resistance R ;  it may contain a resistance JR/10 
which is then boosted to R  by an ideal transformer. It does not really matter which 
is the case. Similarly, if the measurement seems to indicate that in the box we have 
a tuned circuit with an inductance L  in series with a capacitance C, we may actually 
have a tuned circuit with an inductance \ L  and the capacitance 2C in the secondary 
of an ideal transformer which then doubles the impedance. More generally, the im
pedance function is defined by its zeros, infinities, and other singularities except fo r  a 
constant.

If V  is the voltage across an impedance Z ,  I  the current through Z , and W  the 
complex power, then

VV*
V  =  Z I ,  W  =  \ V I *  =  \ Z 1 I \  W  — (3-1)

2 Z*

where the asterisk is used to designate conjugate complex numbers. Now suppose 
that our voltmeters and ammeters contain concealed ideal transformers; then “Z ” 
will have different values in the above equations and we shall have

VV*
V  =  Z v , r l t IV =  | Z w ,rI I *, W  = — —  • (3-2)

2  Zyf V

These new equations are in effect various definitions of impedance and admittance



V  2 W  VV*
Z YJ  =  —  - Z WtI =  — , Z w,v =  — ,

(3-3)
1 1 1

V  v.i — —— > I V , r  =  —;— > I V ,  v — —  
Z v .i  Zw.r Zw,v

Ordinarily, we make sure that there are no concealed ideal transformers in our 
measuring instruments. Furthermore, at low frequencies we can measure the voltage 
across the total capacitance1 and the total current through the inductance. There 
seems to be no question about the meaning of “ V ” and “I ” and it so happens that in 
this case we are led to equations (3-1). However, in a section of a transmission line 
or in a cavity resonator the capacitance and inductance are not localized and we are 
forced to recognize the existence of a certain amount of indeterminacy. There is no 
harm in this indeterminacy; it does not really matter in which of the following two 
forms we decide to write the expression for power

W  = \ Z I I *, or W  =  i(n*Z) —  — » (3-4)
n n

so long as we know how to compute it.
Just as ideal transformers in our “ammeters” and “voltm eters” transform equa

tions (3-1) into equations (3-2) in the case of “ordinary” networks, they may be used 
to transform equations (3-2) into (3-1) in the case of wave guides and networks with 
distributed constants.

4. General impedance relations. Eliminating V, I ,  and W  from (3-2), we have 
the following equation connecting various impedances

Z w jZ w .v  =  Z v . i Z v j .  (4-1)

If the impedances are real, then

ZwjZfF.v = Zy ,i .  (4-2)

In equations (3-2) V  and I  may be arbitrarily chosen values of the voltage and
current associated with a given impedor. If we choose a given definition for J, we can
define a voltage

Vw.i  =  Z w j l  (4-3)

for which equations (3-1) will hold and the impedance Z w .i  will become the only 
impedance associated with the impedor. We can also define

V ,v  =  - — ., (4-4)
Zw.v

so that again we shall have equations (3-1) with Z w .r  as the sole impedance.
Since the power is an invariant we have

*  *  Vw.i  Iw  .v
Vw.i I  =  Vltr .v  or - y -  =  —  • '4-51

4  S . A . S C H E L K U N O F F  [Vol. I I ,  N o . 1

1 Or almost across the total capacitance.
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V jr j I\v ,v

V I

It is now evident that we can base our calculations on any particular voltage-current 
pair and then, whenever desirable, we may pass to any other pair simply by inserting 
in our transmission diagrams an ideal transformer with a proper impedance trans
formation ratio.

5. Characteristic impedances and admittances of wave guides. The basic imped
ance associated with the nth transmission mode in a wave guide is defined as the ratio 
of the transverse electric to the transverse magnetic intensity

( 5 - D
n  t,n

It is called the wave impedance  or the specific impedance  and enters in the expression 
for the average power flow per unit area in the direction of the guide

W s = i E twns t  n =  h K nn t ,nn ] J. (5-2)

The reciprocal of this impedance is the wave admittance

M n .= —  ; (5-3)
-ft- n

the power flow is then

W s = W l E ^ E * ,  (5-4)

In wave guides with perfectly conducting walls the various transmission modes
carry power independently of each other. The field patterns are “orthogonal” to each
other and may be “normalized” ; that is, the transverse intensities for a typical mode 
may be expressed as follows

Et,„ =  V nF n(u, v), Ht.n =  I„Fn(u, d), In = M nv n, (5-5)

where

I f
[.Fn(u, v )]*dS=  1 ,

I f

(5-6)

F m(u, v)F„{u, v)dS =  0, if m  ^  n,

u  and v are suitable coordinates in the transverse plane of the wave guide and the 
integration is extended over the entire cross-section. The coefficients V n and /„  may 
be called respectively the normalized voltage and normalized magnetomotive force or 
normalized current associated with the nth mode.

Calculating the total power carried in the Mth mode, we obtain

W  = %K„InI*  =  W t V n V l  (5-7)

Thus, if Ave express our transmission formulas in terms of normalized voltages and
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currents, the same impedance coefficient appears in the alternative expressions (3-1) 
for power and this impedance is also the ratio of the normalized voltage to the 
normalized current.

Before going on let us see just what the above formulas mean in one or two special
cases. Consider a wave guide consist
ing of two parallel metal strips of
width a , separated by distance b,
Fig. 1. In the dominant mode the 
electric intensity is perpendicular to 
the metal plates and is distributed 
almost uniformly except near the 
edges and in the external region where 

the field is weak and little power is carried by the wave. Neglecting the edge effect,
we shall assume that the electric intensity is constant

'  Et  — E q.

The normalized distribution pattern is given by

1
F 0(x, y) =  — — > 

\ /  ab

(5-8)

(5-9)

and, therefore,

E t =  FoFo^, y ) , Vo = E 0\ /a b .  (5-10)

The wave impedance for transverse electromagnetic waves isiT 0 =  \Zjx/e and  therefore

F 0
IE  =  IoFo(x, y), I o =  H o V ab =

Ko
(5-11)

In air K 0 =  approximately 377 ohms. The transverse voltage V  between the plates 
and the longitudinal current I  are

V  =  bE 0 =  V 0\ / b / a ,  I  =  aH 0 =  W » / i ;  

consequently the characteristic impedance on the voltage-current basis is

K v ,r

For the total power flow we have

V

I

bV  o b
—  = — Ko. 
a l  o a

(5-12)

(5-13)

* * * VV*
W  = h K oh lo  =  \ M  oFoFo =  h K v j I I  =  — ~

2 Kv,r
(5-14)
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so that in the present case
b

Kw.i = Kw,v = K v . i  =  — Ko■ (5-15)
a

Consider now the Ti£i,o-wave in a 
rectangular wave guide, Fig. 2; for 
this wave the field is given by

E t = E i  sin
TX

H t =  H i  sin
irx

E i  =  K i H i ,  H i  =  M iE i ,  K i  =  v V / «  ( 1 

The normalized field distribution function is

Fi(*, y) =  / j / -

X2 y 1' 2 

4a2/

(5-16)

’ 2  _ 7rrc
sin — > 

ab a
so that

E t =  V i F f x ,  y), H t — h F i ( x ,  y),

V i = E iy /a b /  2, h  = I I  V a /  2b.

(5-17)

(5-18)

In this case the maximum transverse voltage V  across the guide and the total longi
tudinal current I  are given by

I

From these equations we have

V  =  Eib = V i \ /2 b /a ,  

4
f  IE-

v 0
d x  =  — I i \ /  a b / 2 .

The power transfer is 

consequently

V  7rb
K v .i  = —  = — K i . 

I  2 a

W  =  i K J i I *  =  W Ï V i V Ï - ,

Kw.i
T2b 

8  a
K  i,

2b
Kw.v = —  K  i. 

a

(5-19)

(5-20)

(5-21)

(5-22)

Now let us see what happens when we join two wave guides, each consisting of 
two parallel metal strips. Suppose that the frequency is so low that we do not have to 
worry about higher transmission modes. At the junction the transverse voltage and 
the longitudinal current must be continuous. This requirement is responsible for re
flection unless the characteristic impedances of the two guides are equal. The coeffi
cients of reflection and transmission depend on the impedance ratio K 'v . i /K v . i  of the 
two wave guides. As we shall find later the effect of the geometric discontinuity can 
be calculated equally well by concentrating attention on normalized voltages and 
currents. With respect to these variables the characteristic impedances of the above
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wave guides are equal; but at the wave guide junction there will exist an effective 
ideal transformer with the impedance transformation ratio equal to K'v j / K 'v j - In 
the case of ordinary low frequency transmission lines we prefer to think in terms of 
total voltages and currents; to think in terms of normalized voltages and currents 
would be to make simple matters complicated; but it will presently become evident 
that, in general, it is advantageous to introduce the normalized variables at least in 
certain stages of the analysis.

Take an iris in a rectangular wave guide. We know that for frequencies between 
the lowest cut-off frequency and the next higher, the iris can be represented as a 
shunt susceptance. The value of this susceptance will depend on its definition; but 
the ratio to the corresponding characteristic admittance of the guide is an invariant. 
It is this ratio that appears in transmission formulas involving lumped elements in
serted in a uniform transmission line. If, however, the iris is between circular and 
rectangular wave guides, the ratio of the characteristic impedances of the two guides 
will also be involved and this ratio depends on whether both impedances are defined 
on the power-voltag'e basis or the power-current basis. It is evident, therefore, that 
in this case the iris cannot behave as a simple shunt susceptance. The theory which 
we are now evolving permits us to prove that in the more general case the equiva
lent transducer for the iris consists of two shunt susceptances, corresponding to the 
two faces of the iris, and an ideal transformer between them. The transformer ratio 
depends on the particular voltage-current set we happen to choose for our analytical 
work but our final transmission formulas will be independent of this choice. The 
degree of arbitrariness involved in the choice of “ V ” and “I ” is of the same kind as 
that involved in the choice of coordinate systems or of units. In elementary analysis, 
a particular choice was so natural that a mistaken notion spread abroad that this 
choice was a necessary one.

6 . An iris between two wave guides. Let us now obtain an exact equivalent circuit 
for an infinitely thin perfectly conducting iris between two wave guides of arbitrary

0 )
(2)

TT7 ’-rr7-rr7-7-?-;-7y~7 V 7 "V > y v f , f /

F ig . 3.

cross-section (Fig. 3). The constants of this circuit depend on the particular trans
mission mode under consideration; that is, there is one equivalent circuit for transi
tion from each transmission mode in wave guide 1 to each mode in wave guide 2 . The 
most important case is that of transition from the dominant mode in one wave guide 
to the dominant mode in the other, and in the following analysis we shall keep this 
case specifically in mind; but the analysis applies to any other case. W e shall use 
Cartesian coordinates in our equations; but this does not mean that our analysis is 
restricted to rectangular guides.

Suppose that the transverse field of the incident wave at the surface of the iris is
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E \(x ,  y ) =  V[Fi(x, y),

HÎ(x, y) =  M W g f a ,  y),

where V\ is the normalized incident voltage. In response to this impressed field, we
shall have some field over the aperture of the iris. Let f ( x ,  y)  be the tangential electric
intensity over the aperture; then in wave guide 2  the “transmitted” tangential elec
tric intensity is

E[{x, y) = f ( x ,  y) over the aperture,
n ' ♦!, <6' 2)=  0  over the screen.

In wave guide 1 the total tangential electric intensity, that is, the sum of the incident 
and the reflected intensity, must be

V\Fi(x , y) +  E rt(x, y) =  f ( x ,  y) over the aperture,
n n, 6̂'3)=  0  over the screen.

The function defined by (6-2) may be expanded into a series of normalized or
thogonal functions appropriate to wave guide 2 ; thus

to

E \{x , .y )  =  £  V„Fn(x, y). (6-4)
n— 1

The tangential magnetic intensity is then
co

H l(x ,  y) =  E  M nVnFn(x, y). (6-5)
n- 1

The function defined by (6-3) can be expanded into a series of normalized orthogo
nal functions appropriate to the wave guide 1 ; thus

00

FJFi(s, y) +  E[(x, y) =  E  VnF n(x, y).  (6 -6 )
n=l

The reflected tangential intensity is therefore

E\{x, y) =  (Vi  -  VÙFitx, y) +  E  V nF n(x, y). (6-7)
n*»2

The corresponding tangential magnetic intensity is then
co

I f t{x, y) =  -  M 1( V l -  V\)Fi{x, y) -  E  M nV nF n(x, y). (6 -8 )
n« 2

The transfer of complex power through the aperture must be continuous; therefore 

2MyV[V* -  E  M nV„V* =  E  M n V X .  (6-9)
n = l  n « = l

The voltage reflection coefficient qv is defined as the ratio of the reflected voltage 
V i— 7 / to the incident voltage.Vi;  it may be obtained from (6-9) if we divide the equa
tion by 2 J lfi7 i7 iI; thus
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v i  i r 1 +  i ^ i  +  M r t \ i + ± * S £ l  (6. 10)
Z i  Mx7x7t J 2 ^ 7 x 7 * .  M i7 i7 *  J1 +  qv 7 j  2

Consider now the complex power flow into the second wave guide

W* = —  M y V .V t  +  4  E  Mn7„7* . (6-11)
2  2  n„ 2

The form of this expression is such that from the input end various transmission 
modes appear to be in parallel. It is not exactly that the characteristic admittances 
M u  M t,  M i,  • • • are directly in parallel; if we select the first admittance for reference, 
the others are transformed in the ratio V n V * / V \ V \  before being connected in parallel. 
In any case the net effect on the input admittance is the same as would be obtained 
if we had an admittance Y  in shunt with a transmission line maintaining only the 
dominant mode. Thus we can write

17 =  \ M \ V i V *  +  ¿ 7 7 x 7 *  (6 -1 2 )

where

“ 7  7*

?  ~  5  fln  7 x 7 *  ‘ ( 6 " 1 3 )

The ratio of the shunt admittance to the characteristic admittance

( « 4 )
M  M i  Z  M x 7 x 7 *

is an invariant. It has the same value regardless of a particular basis for definition 
of admittances and it depends only on the fo rm  of distribution of the tangential 
electric intensity over the aperture.

Similarly for the admittance ratio looking from the iris into wave guide 1 we have

V ” M V V*
—  =  E  • (6-15)
M l  , t r 2 M i 7 , 7 *

If the frequency is in the interval between the lowest cutoff frequency and the 
next higher, then M2, M i, ■ • • are reactive and the shunt admittances are pure sus- 
ceptances

Y  = iB , Y  =  iB .  (6-16)

For frequencies higher than the second cutoff frequency an iris entails some power 
loss to the dominant wave. The lost power is contributed to one or more higher 
transmission modes. This is analogous to what happens when a doublet antenna is 
inserted in shunt with a parallel pair or at the end of it. The plane wave guided by 
the parallel pair loses power; this power is then carried away by a spherical wave 
which originates at the junction. One mode of energy transmission is partly trans
formed into another. Usually there is also an energy exchange between a local field 
and the plane wave; this results in reactance. A t lower frequencies an ordinary coil



(or a capacitor) inserted in a transmission line acts just like an iris; electrically it does 
not matter just what physical means we happen to provide for a local storage of 
energy.

We now can rewrite (6-10) as follows

1 1 /  7  \  1 M i /  Y \
 =  — 1 +  ) +  — « » *  +  (6-17)
1 +  qr 2  V M J  2 M i \  M j  K 1
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where

m  'nn* =  — —  • (6-18)
ViV*

The reciprocal of the voltage transmission coefficient is

1 V[ 1 V i  1 f  1 /  7  \  1 M i

pv V i  1 +  qv V
i 1 r  1 /  y \  1 M l /  Y \ -
- =  — — ( 1 + ----- ) +  —  m n *  ( 1 +  — - )
i  n L  2  V  M J  2  M i  \  M i . L

(6-19)

It is a simple matter to prove2 that for transmission lines coupled as indicated in 
Fig. 4, pv  and qv are given precisely by equations (6-17) and (6-19). In Fig. 4 the

M, fcl 3  £  (2) M,

F i g . 4 .

transformer ratio 1 : « 2 is indicated for the impedances rather than for the admittances 
in order to conform to the established practice. If n =  1, which is always the case when 
the wave guides on both sides of the iris are the same, the admittances Y  and Y  of the 
two faces of the iris are just in parallel, and the transformer can be omitted.

The exact numerical values of n, Y / M i ,  Y / M i  are found by solving the appropri
ate boundary value problems. 3 The approximate values can be obtained quite easily 
if we assume a reasonable fo rm  of distribution of the tangential electric intensity 
over the aperture, 4 and of course, we can always calculate these quantities from 
measurements of the transmission and reflection coefficients for waves moving from 
one wave guide into the other. Thus,

1 +  ay M i  1 +  qv K i
(6 -2 0 )

1 +  ç ÿ  M l  1 +  Çy K l

where qy is the voltage reflection coefficient for a wave moving from left to right 
and qÿ is that for a wave moving in the opposite direction.

5 See for instance S. A. Schelkunoff, Electromagnetic waves, D. Van Nostrand Company, Inc., New 
York, 1943, p. 212.

3 For example, see S. A. Schelkunofi, The impedance of a transverse wire in a rectangular wave guide, 
Quarterly of Applied Mathematics, 1, 78-85 (1943).

* S. A. Schelkunoff, Electromagnetic waves, p. 491.
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If the iris is not indefinitely thin, there is a section of a wave guide between the 
two faces of the iris.

While the iris acts effectively as a lumped impedance, the field associated with 
it is actually distributed. Even if the frequency is such that the iris is reactive, the 
field extends to some distance on either side of it. Near the cutoff for the second trans
mission mode this distance may be quite large; but ordinarily the field extends roughly 
to a distance comparable to the transverse dimensions of the guide. There will exist, 
therefore, a mutual impedance between those faces of two nearby irises which face 
each other. For frequencies above the second cutoff, the'mutual impedance may, and 
usually will, exist even between two distant irises. All these considerations do not 
affect our essential picture of electrical properties of wave guide discontinuities; they 
affect merely the numerical values of various impedance and admittance functions.

In the above equations we have treated E t and H t as if they were scalars; in gen
eral, they are vectors. However, the analysis is similar to the above and the final 
formulae are the same.

In the case of coaxial pairs or wave guides formed by parallel.metal strips the 
dominant wave is transverse electromagnetic. If the edges of the iris are normal to 
the lines of force for the dominant wave, the voltage between the edges is equal to 
the transverse voltage across either guide; the total voltages associated with higher 
transmission modes are equal to zero; and the transformer ratio is unity provided we 
base our transmission diagram not on the normalized characteristic impedance but on 
the conventional impedance K  which in this case equals K v . i ,  K w .r  and K w .v -

7. Reactances in series with wave guides. An example of a reactance effectively 
in series with the wave guide is shown in Fig. 5 which represents a circular wave guide

2 a

Fig. 5.
and a narrow radial transmission line . 5 Let us suppose that we are concerned with 
transmission of a T M 0,l-wave. For this wave the field is circularly symmetric. Mag
netic lines are circles coaxial with the tube, and electric lines are in radial planes. 
It is practically self-evident that the radial line is in series with the guide, and that 
in parallel with the radial line there is an impedance associated with the gap. If the 
frequency is between the lowest cutoff frequency and the next higher, this “gap im

pedance” or fringing impedance is capacitive and is
_______  of little importance except when the impedance of

the radial transmission line is high. For frequencies 
above the second cutoff, the gap impedance is in 
part resistive on account of power transfer from the 
dominant wave to the higher order waves. As seen 
from the gap, the impedances of various waves in

I ____________ the guide and the impedance of the radial wave are
in parallel; the two halves of the guide are in series; 

Fig. 6 . and the impedance diagram looks like that shown

5 S. A. Schelkunoff, U. S. Patent 2,155,508, April 25, 1939.
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in Fig. 6. The same diagram is shown in Fig. 7 where the characteristic impedances 
Ki  and Ki  have been “expanded” into semi-infinite transmission lines; the impedance 
consisting of 2Ki, 2K 3, • • • in parallel is represented simply as the gap impedance Z„.

Starting with equation (10.17-1) of “Electromagnetic W aves,” we can obtain the 
approximate gap impedance by the method explained there. In this case, however, 
the following elementary derivation is preferable. To begin with, let us remove the 
radial line and assume that the electric charge is being transferred across the gap by 
an impressed voltage V I  The total conduction current I  in the tube is the sum of 
currents associated with the various transmission modes. Thus for the input current 
we have

I — I\  +  72 +  I 3 +  • • • • (7-1)

The input power is then

W =  I FT* =  JFT* +  ! FT* +

(7-2)

where Zi, Z2, • • • are the input impedances of individual waves; that is,

F* F 1'
Zi =  -—> Zi  =  — > • • • . (7-3)

1 1 12

In the above equations we have tacitly assumed that the gap is very small and 
the current associated with each mode does not vary in the gap. This restriction wall 
presently be removed. The total power contributed to the wave is divided between 
different modes; one-half of it is carried to the left and the other half to the right. 
The power carried in one direction in the nth mode is %K\y>jInI * ; thus we have

Z„ =  2Kw]i .  (7-4)

Actually the applied voltage is distributed in the interval ( — s/2, s/2) around the
midpoint 2 =  0. Assuming that the distribution is uniform, we may write the con
tribution to the total current associated with the nth wave at point 2 due to an 
elementary voltage at point 2 as follows

* dz
/„ e-r .U -d —  > (7-5)

where 2» is the'amplitude at the source. The total current at point 2 is then

I n r 8/2 . .. dz

-m/2

In C 8/2 - dz7 » ( z ) = —  e-r„P-*l — . (7-6)
S d - m/2 S



The power contributed to the nth wave is then

r  * dz
Wn =  In(z) -  ■ (7-7)

J  —i/2  S

Thus we shall have

Wn =  hXnV 'C  (7-8)

where (assuming that T„ is real)

1 f * '2 r ’l- x x 2  2 ( 1  -  e-i>)
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J / . i /2 / . i /2

= — I à  I =
i 2 V —1/2 « —i/2• /2  - i /2 r„j r 2J2

On the other hand

(7-9)

Wn =  K w jIJn ; (7-10)

consequently

F* 2 K w j
(7-11)

X n

Since Xn decreases with increasing n, the successive components of the gap admittance

Y„ =  Y2 +  Y3 +  Fi +  • • • =  +  - i i — +  +  • • • (7-12)
2JT», 2K«\, 2

decrease.
The typical is given in problem 8.10 on page 509 of “Electromagnetic W aves”

j g
4irlo)e

where k n is the nth zero of Jo(x). For sufficiently large n, therefore, we have

Kw*,! — -—-—> r„ = r kl 4tr2n 1/2
■ <M 3 >

2 2
(n) 1 nS knS

z„ =  TnKWJs =  — —  =  —    • (7-14)
47Tia’€ AirlWta-

The impedance of the radial line is approximately

5 2irl
Z =  601 — tan   (7-15)

a X

A more accurate expression in terms of Bessel functions may be found on page 269 
of. “Electromagnetic W aves.”

8 . Conclusion. The ideas developed in this paper are adequate for expressing 
transmission properties of wave guides with discontinuities in terms of impedances 
and admittances associated with these discontinuities. These impedances are reactive 
if the frequency is such that the energy in either guide can be transmitted to any 
distance in only one mode; otherwise, the discontinuities present some resistance for 
the mode under consideration and a negative resistance to those other modes which
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participate in transmission of energy. The finding of exact values of impedances re
quires solution of corresponding boundary value problems; but frequently good ap
proximations can be found by making reasonable a priori assumptions on physical 
grounds. In fact, the point of view outlined in this paper makes it easy to make such 
assumptions.

More complex discontinuities can be analyzed into simpler discontinuities. The 
discontinuity shown in Fig. 8  is equivalent to an ideal transformer between two wave 
guides; across the left “winding” of which there is a small shunt capacitance6 and 

'across the right winding there is the capacitance7 associated with the annular disc

[1___________

Fig. 8 .

Fig. 9.

looking into the second guide. In parallel with the latter capacitance there is the series 
combination of the impedance of the radial line and the second guide itself. We may 
express these ideas by the diagram shown in Fig. 9, where the inductance is used to 
designate the radial transmission line only because this line, when it is short, is ap
proximately an inductance.

More generally, the discontinuities should be represented by impedances distrib
uted along the guide, as in fact they are. Finally, the section of the guide with the 
discontinuities may be replaced by an appropriate T-network.

Recently J. R. Whinnery and H. W. Jamieson8 have obtained explicit expressions 
for the capacitances of numerous types of “step discontinuities” in transmission lines 
formed by parallel conducting planes. They show how to apply these results to coaxial 
conductors. They find theoretical predictions in good agreement with measured 
values. The equivalent circuits given by Whinnery and Jamieson do not contain ideal 
transformers; this is because for transmission lines comprised of two conductors, the 
transformer ratios at discontinuities are equal to unity and the transformers may be 
omitted.

6 In the first approximation this capacitance may be neglected.
1 We assume that we are operating below the second frequency cutoff; otherwise there will also be a 

conductance.
8 J. R. Whinnery and H. W. Jamieson, Equivalent circuits for discontinuities in transmission lines,

I.R.E. Proc., February 1944, pp. 98-114.
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THE DISTORTION OF THE BOUSSINESQ FIELD DUE 
TO A CIRCULAR HOLE*

BY

A. BARJANSKY1 

The Brush Development Company

1. Introduction. One of the most important problems in the theory of elasticity 
is the solution of the biharmonic equation V20 =  0, where </> is Airy’s stress function, 
for a given group of boundary conditions. As is well known, the most common ap
proach to the solution of this problem consists in selecting a system of coordinates 
particularly suited to the region studied.

Thus, using bipolar coordinates, G. B. Jeffery has given the general solution of 
the plane problem, that is, of the biharmonic equation in two dimensions, for regions 
bounded by non-concentric circles (Ref. 1). A clear, but not quite complete, treatment 
of Jeffery’s method can be found in Coker and Filon (Ref. 2). This method has re
cently been used by R. D. Mindlin for the determination of dead loads on tunnels 
(Ref. 3).

The present paper is an attem pt to apply Jeffery’s approach to the problem 
of the distortion introduced in the so-called plane Boussinesq field by the presence 
of a circular hole. Starting with the stress function <j> of the undistorted Boussinesq 
field, an auxiliary stress function x  will be found such that $  =d>+x satisfies the differ
ential equation and all the boundary conditions. The stresses and strains in the dis
continuous field can then be directly determined from the derivatives of <!>.

2 . The Boussinesq field. Boussinesq and Flamant have given the solution of the 
biharmonic equation for the case of an isolated force P  acting at a point on the bound
ary of a semi-infinite plane. Their solution, which can be found in all standard texts 
(see, for instance, Ref. 4, p. 82) is:

P
<t>i —  rd sin 8 (la)

7T

for the case of a normal force, and
P

4>2 =  rd cos 0 (lb)
7T

for a force parallel to the boundary. The significance of the symbols is shown in 
Figs. la  and lb.

In the simple Boussinesq problem, the only boundary conditions are that the 
stresses, both normal and shearing, must vanish along the straight boundary (except, 
of course, at the point of application of the force) and also must tend to zero as one

* Received Sept. 23, 1943.
1 The writer wishes to express his thanks to the following: persons who have assisted him in the

preparation of this paper: Professor M. S. Ketchum of Case School of Applied Science, who suggested the 
problem; Dr. W. N. Dudley, also of Case, for several helpful hints; and especially Dr. H. G. Baerwald 
whose assistance in many mathematical details has been invaluable.
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moves away from the point of application within the half-plane. With the appearance 
of the circular discontinuity (Fig. 2), the above conditions remain, and a new one is

Fig. la. F ig. lb.

added, determined by the nature of the discontinuity. Thus, if it is a hole, both normal 
and shearing stresses must vanish along its periphery.

The region is thus bounded by a 
circle and a straight line; the latter can 
be considered as a circle of infinite 
radius, so that here is a case of a region 
bounded by two non-concentric circles, 
to which Jeffery’s method is applicable.

3. Bipolar coordinates. Jeffery’s 
method consists essentially in intro
ducing a system of curvilinear coordi
nates, called bipolar coordinates in 
works on elasticity. Two poles, A  and 
B  (Fig. 3) are taken at abscissas + a  
along the X-axis, and the location of 
any point is determined with respect to these poles by the quantities

Tl
£ =  log   T) =  01 — 02.

r-i

The lines rj =  constant are circles passing through .4 and B ,  while £ =  constant are 
a system of circles with centers on the X-axis. Some of these lines are drawn on Fig. 3.

If a circle of diameter d  has its center h units from the horizontal axis (Fig. 2), 
it is easy to show (see Ref. 1) that the proper polar distance a is determined from 
a 2 = h 2 — d i/ 4 and that the value £o of £ corresponding to the circle is £ 0 =  cosh_ 1  2 h /d .  
The cartesian coordinates can be expressed as follows in terms of the bipolar:

a sinh £

F ig. 2.

cosh £ — cos i)

a sin t] 

cosh £ — cos t]
(2 )

When the biharmonic equation is expressed in bipolar coordinates, it is found 
convenient to write it, not in terms of the usual stress function x> but in terms of 
x / J , where J  has the value

a
J  =  --------------------  ;

cosh £ — cos t)

the stresses are also expressed as derivatives of x / J -



The bipolar solution for x / J  used by Jeffery has the general form: 

x / J  =  ■#£ cosh £ +  ( — B£ +  G cosh 2 £ +  H  sinh 2£ +  F) cos y

+  (G' cosh 2£ +  H '  sinh 2£ -j- F')  sin y
00

+  { [Ek cosh (k  +  1)£ +  Fk sinh (k  +  1)£ +  Gh cosh (k  — 1)£
k*~ 2

+  Ilk  sinh ( k — 1)£] cos ky +  [£* cosh ( k +  1)£ +  F /  sinh ( k +  1)£

+  G)' cosh ( k — 1)£ +  Ilk  sinh ( k — 1)£] sin k y \ ,  (3)

where all the B ’s, E ’s, F's, G’s and FI's are constants. This series will be assumed 
convergent and differentiable for the time being.

Here the terms independent of r/ and those containing cos y or sin y are used ex
actly as they appear in Ref. 2 (Eq. 4.066 and paragraph 4.07), but those containing 
functions of multiples of y come directly from Ref. 1 (Eq. 2 1 ), with some slight 
changes in nomenclature.
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Fig. 3.

4. General procedure. As was said before, the presence of the circular discon
tinuity causes a modification of the Boussinesq functions d>i and d>2 into <4>i, and 4>2 

the latter having to satisfy the biharmonic equation and all boundary conditions 
Also 4>i =  (/)i-l-xi» 4 )2 =  d,2 + X 2 where xi and X2 are auxiliary stress functions of the gen
eral form (3). Now since both 4>’s and both x ’s satisfy the biharmonic equation, which 
is linear, so do 4>i and 4>2. As to the boundary conditions, <j>i and $ 2 satisfy them along 
the straight boundary and for remote points. Therefore, xi and X2 must be so selected 
that:



( 1 ) they give vanishing stresses for remote points (£—>0 , 77—>0 );
(2 ) they give zero normal and shearing stresses along the straight boundary;
(3) in combination with the known functions <£i and <f>2 they satisfy the boundary 

conditions at the circular discontinuity.
In the next paragraphs, conditions (1) and (2) will be considered first and their 

application will determine some of the hitherto arbitrary constants of Eq. (3). 
Then the function x  satisfying conditions (1) and (2) will be added to 0 1 or <p2 (ac
cording to whether a normal or a tangential load is studied), yielding

$ 1  =  (p1 -j- Xi <i>2 =  0 2 -f

Finally the remaining constants of x will be determined in each case by the conditions 
at the inner boundary.

5. First and second boundary conditions. The stresses are expressed as follows in 
terms of bipolar coordinates:
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f  a2 a a l /x \
=  ( c o s h  £  —  c o s  tj )    s i n h  £  s i n  77 f- c c s l i  £  I —  J ,

L di]2 3£ dri J \ J  /

r a2 . a a " l / x \
a< r„ =  ( c o s h  £  —  c o s  77)  - s i n h  £  s i n  77----------1- c o s  77 (  —  ) ,

L a£ 2 a£ dv J \  /  /

a2 a a
— ;-------- sinh £ ---------- sin 77 —
dt]2 a£ 3t;

d2 a a
■— — — sinh £ ---------- sin 77 —
a£ 2 a£

) 0 2  (
a£a7,'

(4)

The first condition necessitates

=  0, o-, =  0, t {, =  0 for (£, 77) —> 0;

and the second
crt =  0, =  0 for £ =  0.

The first condition is seen from Eqs. (4) to be equivalent to

—  =  0 for (£, rj) —> 0

from which, immediately

G +  F  =  0, G =  -  F and E k +  Gk =  0, Gk =  — E k.

For the second condition, tj, =  0 for £ =  0, which yields

B  k -(- 1 k T  1
H  =  — , W  =  0, H k =  -    F k, H i  = -  — ~ F i  :

2  k 1 k \

and from <r{ =  0 for £ =  0,
G i  =  -  E i .

Thus the stress function satisfying boundary conditions (1) and (2) assumes the form:

- y  — 5£ cosh £ — [i5(£ — sinh £ cosh £) +  2F  sinh2 £] cos tj +  (G' cosh 2£ +  F') sin 7;
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CC 2

+  X) --------  { [■£*(£ — 1) sinh £ sinh k£
k-2 k — 1

+  F k(k  sinh £ cosh k£ — cosh £ sinh k£)] cos kq

+  [22* {k — 1) sinh £ sinh ££ +  Fi! (k  sinh £ cosh ¿£ — cosh £ siph ¿£) ] sin k q }. (5)

6 . Third boundary condition. The value of x / J  from (5) is now added to cj>i (f°r 
normal load) or <p2 (tangential load), and the remaining arbitrary constants of (5) 
determined by the conditions at the boundary of the hole, which are that both normal 
and shear stresses vanish on the periphery, i.e. (o"f){ 0 =  0 , and (t j ,){„ =  ().

In order to coordinate the functions <j>\, <£2, on one hand, and xn X2, on the other, 
the system of axes shall be selected so that the y =  0  (or 77 =  0 ) axis passes through the 
center of the hole, as shown in Figs. 2 and 3. Then the concentrated force, whether 
normal or tangential, will act at a point y = y 0, and the stress functions </> 1 and <£2 

become

p  , w  y ~  , p  * y  ~  y°
<¡>1 —  (y — y 0) tan 1 ---------- 1 <£2 = --------tan 1 ------------

TT X T X

Transforming this into bipolar coordinates (Eq. 2 ) one has

P  y0(cosh £ — cos tj) — a sin q y0(cosh £ — cos q) — a sin q
(p1 — ---------------------------------------------tan- 1 ------------------------------------------>

x cosh £ — cos q a sinh £

P  a sinh £ yo(cosh £ — cos q) — a sin q
<f> 2 = ------------------------- tan- 1 -------------------------------- :------- •

x cosh £ — cos q a sinh £

But, as was said before, in treating problems involving bipolar coordinates, it is easier 
to express stresses not in terms of the stress function itself, but in terms of the stress 
function divided by the quantity J ,  so that:

P  . y0(cosh £ -  cos q) -  a sin q
4>i/J = — [yo(cosh £ — cos q) — a sin 77 J tan- 1 ---------------------------------------- ,

to. a sinh £

P  y0(cosh £ — cos q) — a sin q
4>i/J = — sinh £ tan- 1 -----------------------------------------

x a sinh £

These two expressions must now be written in Fourier series in q to be comparable 
with the auxiliary functions x i and X2 of (5). The coefficients of these series are found 
by means of the usual integrations which are presented in detail in the Appendix. 
The results are as follows:

To 00
=  h E  cos kq +  Uk sin kq),

2  jt_i
with

To

2

P i  T / x  \  1 1 +  cos/3)
=  — |  tan /S cosh £ j t̂an-1 (tan j3 coth £) +  —  /3j  sinh £J — e* — — j  ,
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T i  =  — tan (3 sin /3 cosh £ — tan- 1  (tan /? coth £) — sinh £ ,

Ui =  — | — 2 ~  [ /  ^  ^  C° S _  tan- 1  (tan /3 coth £) —  p'j sinh £^ ,

and for k ^ 2  

P c kl
T k= —

tan B sin kB k sinh £ —cosh £
(— 1) k ------------------ cosh £H—

X

iV 'i l tan B cos kB
U k =  \ ( - 1 ) A-; cosh £-

x ( k

k 2- \  

k sinh £ —cosh £

¿2- l

i + ( - D *

tan jS

cos k(3

}■

L k
H - 1 )

cos j3 

sin kfi

cos /3

Ro

where

t o / J  =  h E  cos kq +  S t  sin kq),
2  t_i

Ro P  sinh £ 
2  x

tan- 1  (tan /? coth £) +  —  /3̂  sinh £

P i =  

=

P  sinh £

x & 

P  sinh £ 

x k

( — 1)* sin ¿/3,

[l — ( — 1)* cos £/?].

In these expressions /3 =  tan_ 1  yo/a (Fig. 2). The above formulas refer to the case 
/Sf^O (see Appendix). For the important case j3 =  0, i.e., yo =  0

for k >  2

To P
— =  Pi =  0, ZJ\ ~  0,

2  x

P i =

and

2 P  ek((k  sinh £ — cosh £) 

x k2 — 1
for £ even, P* =  0  for & odd, Uk == 0 ,

Po 2P ek(
— = 0 , P i =  0 , 5* = -— -  sinh £ for k odd, S t  =  0  for k even.
2  x k

The following special cases will be considered in the next section on applica
tions: (A) half-space containing a hole bounded by £ =  £o and subjected to normal 
load; (B) same region subjected to tangential load.

AP P LIC A T IO N S  

A. Hole subject to normal load. Here

d’l/P  =  4>i/J +  Xi/P.
or
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<hi// =  B£ cosh | 4  -jtan ß  cosh £ | \a n - 1  (tan ß coth£)4 - —ß^sisinh £

[Vol. II, No. 1

1 + c o s  ß»t-
2  cos ß }

| P(£ —sinh £ cosh £) +  2P sinh2 £ 

P
— tan ß ĵ e£ sin ß cosh £— tan- 1  (tan ß  colh £) — — ß'j sinh £ |  cos ß

( , P  Ttan ß
+  cosh 2 £4P ,H 1— -—  { l+ (1 4 -e 2{) cosjS}

-tan- 1  (tan ß coth £) — ( —— ß3̂  sinh £ j- 

M 2  /
4- 23 -------( E k \ k — l]  sinh £ sinh ¿£4 -Fk[k sinh £ cosh ß£— cosh £ sinh A£]

* _ 2 ä — 1 \

sin ß

k - 1

2tr
- PfiV

( tan /S sin kß k sinh £ — cosh £
l ' -----  k-----COsh*+ ¿2- l

1 4 - ( — 1 ) *
cos kß 

cos ß _
” 2 /

+  2 3  --------( [ ä — l ]  s in h  £ s in h  ¿ £ 4 -P *  [ß  s in h  £ cohh ¿ £ — c o sh  £ s in h  £]
k~2 k — l \

k s in h  £ — c o sh  £ P ta n  ßk — \  ( tan ß  cos kß
 Pe*f < ( — 1 ) * ---------------- cosh£-

2r  ( k k 2- l L k
+ ( - l> *

sin kß' 

cos ß _

C O S  kt]

sin kt].

The condition (t{,){„= — (cosh £ —cos ij)d2/di;dri{$/J) = 0 amounts to equating 
to zero at £ =  £o the derivative with respect to £ of each term except the one inde
pendent of t]. As to (cr{){0 =  0, this can be shown to require that for k ^ 2  each term 
be zero at £ =  £o- Thus, for each term, two equations are available; and this is suffi
cient to find all of the remaining constants, with the exception of F '  in the term in 
sin |3. The constant F ' remains indeterminate, and can therefore be taken as equal 
to zero. By solving the two equations for each term, the following values are found 
for the constants:

B = -
2tt sinh2 £o

( ( 2  cosh2 £o \
< e£t tan /3 sin /3 ( ----------------ef°
I \  sinh £ 0 /

cosh2 £o \  2 sin2 jS(cosh2 £0+ 5 )
— e£»

cosh2 £ 0 —cos2 ß

— (7T — 2/3) tan ß cosh £0(cosh2 £0—|)  —coth £0

P = -
2ir sinh2 £0

e(° tan ß  sin ß  cosh £0— tan ß sinh £ 0 cosh £ 0 

sin ß  cos ß

G'=-
-P

27T sinh2 £o 

P' =  0,

e2£° sin ß-

.cosh2 £0—cos2 ß 

sin ß  cos ß
( H cosh £0

1 4 - cos ß

cos ß

l+ co s |3  

2  cos ß

cosh2 £0 —cos2 ß ( H cosh £0

E t  = ------ { ( —1)A tan ß sin kß(k  sinh £ 0 cosh £0+ sin h 2 £ 0 —eA£° sinh £ £ 0 J
2tt

4 - [l — ( — 1 ) A cos kß/cos  /S]£ sinh2 £0 } [sinh2 i£o— k 2 sinh2 £0]-1 ,



P
Fk = ------ { (— 1)*(A — 1)Æ- 1  tan ß  sin ¿/3[& sinh £0 cosh £0— sinh A|p]

2 7T
+  (k +  1 )—1 [ l  +  ( — I)*  c o s  kß/cosß]  [ £ 2 s in h 2 £0 — k s in h  £0 c o sh  £0 — s in h  ¿ £ o ] |

• [sinh2 &£0 —k 2 sinh2 £o]-1 j

p

F I  = — { ( — l)*tan ß cos kß[k  sinh Æ£o cosh £o+sinh2 £0 —etf* sinh ¿£o]
2 r

— [& - 1  tan 0  +  ( —1)* sin ¿/S/cos/3]& sinh2 £o]} [sinh2 Æ£ 0 — F1 sinh2 fo]~\
p

F I  =  —-{(— 1) *(£ — l ) k ~ l tan ß cos kß [k sinh £ 0 cosh £o+ö;'f° sinh ¿£0]
2ir

— (&+1 ) -1  [¿~l tan /3+( — 1)* sin kß/cos ß) [k 2 sinh2 £ 0 — k sinh £0cosh £ 0 —etfo sinh ¿£0] }

• [sinh2 £ £ 0 — k2 sinh2 fo]- 1 .

To test the suitability of this expansion, it is sufficient to examine the terms of 
the auxiliary functions (Eq. 5) for the values of the constants given above. The co
efficient of cos kj] in the general term of the latter equation is seen to consist of two 
parts, one multiplied by ( — l ) fc and the other not. The first part forms an alternating 
series the general term of which tends to zero, so that the alternating series is con
vergent by a well-known theorem. The second part is found to converge outside the 
circle £ =  £o by the ratio test. The same is true for the coefficient of sin kr/. Thus 
the above expression for <f>i/ /  is a uniformly convergent series in t) in the region con
sidered.

Because of the great complexity of the expression involved, only the case /3 =  0 
will be considered in more detail. For that case

P  cosh £ 0 P
p<.o) — ----------------------------- ,  p (  o) = ----------------------------- 1 6 ' (o >  — ' p m  —  o ,

7r sinh3 £o 2tt sinh2 £o

r (1 1  P  k sinh2 £ 0 ...
Pu —  —  for k even, E k =  0 for k odd,

7r sinh2 k£o — k 2 sinh2 £ 0

P k2 sinh2 £ 0 — k sinh £ 0 cosh £ 0 — sinh £ £ 0
P[0> =  i f  —  ! | s  for k even, Fhm  =  Ofor ¿odd,

7r (k  +  l)(sinh 2 k£o — k 2 sinh2 £0)

E'k(a) =  F'km  =  0.

The stress function becomes

P cosh £ 0 P
i>[ J  = --------------- —  £ cosh £ ------- ei

Tr sinh3 £ 0 7T
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P
+ —

7T

cosh £o sinh2 £ ~1
(£ — sinh £ cosh £) -) :  cos 77

_sinh3£o sinh2 £ 0

2 P  f  k{k  — 1) sinh2 £0



Fig. 4.

Fig. 4 is a graphical illustration of the above formula. In that figure, the “stress 
factor” is plotted for different values of 2/i/d =  cosh £<>• By “stress factor” is meant 
the ratio of the stress a„ to the stress which would have existed under the same load
ing at a point corresponding to the center of the hole, if the latter had not been

A. BARJANSKY 

k 2 sinh2 £ 0 — k sinh £ 0 cosh £ 0 — sinh ¿ £ 0

(k  +  l)(sinh2 kÇo — k 2 sinh2 £o) 

( k sinh £ — cosh £) cos ktj

[Vol. II, No. 1 

(k  sinh £ cosh ki■ — cosh £ sinh ££)

with the summation extending over even values of k  only.
The most significant stress is the hoop stress cr, at the periphery of the hole, £ =  £<>• 

Substituting the above value of $ 1  / J  into the second of Eqs. (4), the following series 
is obtained:

a<rv = ------- (1  +  coth2 £0)
7T

2 P  cosh £o P
 ;— ----- cos T] +  — (5 coth2 £o — 1) cos 2t]

t  sinh2 £o x
2 P 2  sinh £o sinh 2 £ 0 4 sinh £o sinh 4£o

x L sinh2 2 £ 0 — 4 sinh2 £o sinh2 4£o — 16 sinh2 £0.
cos 377

4P  
+ ----

4 sinh £0 sinh 4£o 

x sinh2 4£o — 16 sinh2 £ 0 

4 sinh £0 sinh 4£o

cos 477

2 P r  

x Lsi

6  sinh £ 0 sinh 6 £ 0

sinh2 4£o — 16 sinh2 £0 sinh2 6 £o — 36 sinh2 £0_
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drilled. If there had been no hole, the point corresponding to its center would have 
been under a stress — 2 P /irh  (compression) so that the stress factor is the ratio 
— cr,/(2 P / ttJi). Therefore, a positive value of the stress factor represents compression, 
a negative value, tension.

It is seen from the figure that for each curve there exists a tension directly under 
the load (a =  0 ), which becomes a compression as a  is increased, reaches a maximum, 
then decreases, and becomes tension again when a  approaches 180°. For low values 
of cosh $o, i.e., of the depth-to-diameter ratio, there exists a secondary maximum 
of tension in the neighborhood of a  =  2 0 °.

As cosh So increases (as the hole gets deeper and deeper), the stress factor 
curves tend towards the “limit curve,” which is simply the graph of 1 — 2  cos 2a. 
The latter expression (Ref. 4, p. 77, second of Eqs. (58)) is obtained by assuming the 
hole to be in a field of uniform compression, equal to the compression — 2 P / ttIi at the 
center of the hole.

B. Hole subjected to tangential load. Now the total stress function has the form

4  2 /  J  =  <P2 / J  +  X 2 /  J ,

where $ 2  is the total stress function, </>2 is given by (lb) and X2 >s of the general 
form (5). The heretofore arbitrary constants are determined by the conditions at the 
inner boundary, which are the same as in the preceding case. The remaining constants 
are found to be:

B

F

P

2 7T

P

sin ß  sin 2/3 coth £ 0 cosh2 £ 0
(x -  2/3)

_ sinh2£o cosh2 £0 — cos2 ß sinh £ 0

sin ß  ^  sin ß cos ß

2tt l  sinh £ 0 cosh2 £0 — cos2 ß

]■

( t  ~  cosh *°] ’
P  e2* 0

C  = -------------------- (1  +  cos ß),
2ir sinh 2 £ 0

F '  =  0,

P  sin kß k 2 sinh2 £ 0 +  k sinh £0 cosh £0 — e4f» sinh ¿ £ 0
Ek = --------( — 1)* ------------------------------------------------------------------------ >

2 x k sinh2 ¿£ 0  — k2 sinh2 £0

P  sinh2 £0
p k = -------- ( _  !)*(£ — l) sin kß

E l  =

2 x sinh2 kÇo — k2 sinh2 £0

P  [l — (— l ) 4 cos kß] à2 sinh2 £0 +   ̂sinh £0 cosh £0 — et{°sinh ¿ £ 0 

2 x  k sinh2 Æ£o — k2 sinh2 £ 0

P  sinh2 £ 0
F l  — — {k — l ) [ l  — ( — 1) 4 cos kß]

2t  sinh2 k£o — k2 sinh2 £0

The resulting Fourier series can be shown to converge as in the previous case.
C. Conclusion. In the above paragraphs, a method was presented for computing 

the distortion of the original Boussinesq field when a hole is introduced. Other inter
esting results can be derived by simple means; thus, by superposing on the above 
stress functions $ 1  or <F2 one of the solutions presented in Refs. 1 and 2 , it is possible
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to obtain the stress system for a Boussinesq field containing a hole, the periphery of 
which is subjected to a uniform pressure. Another extension of the above method, 
on which the writer is working at present, can be used to solve the case of a Boussinesq 
field containing a rigid disc.

APPENDIX

The decomposition of the Boussinesq stress function into a Fourier series in ?7. 
We shall begin by decomposing the shear stress function

<£2 P  y0(cosh £ — cos 77)  —  a sin tj
— =  — sinh £ tan- 1 -----------------------------------------
J  tt a sinh £

The different Fourier coefficients are given by

1 r ~ T <t>2
Rk +  iS k =  — I — e 'k"di).

7T J  0 J

This can be simplified by introducing the angle 0  =  tan- 1  yo/a.

02 P  yo(cosh £  —  cos 77)  —  a sin 77
— =  — sinh £ tan- 1 ---------------------------------------
J  ir a sinh £

P  sin 0  cosh £ — sin (77 +  0)
— —  3^ ^  £  tan- 1  7 -

7r cos 0 sinh £

Let also sin 0  cosh £ =  0 , cos 0  sinh £ =  5 , 77+/? =  ̂ . Then

1 r  2r P  p — sin 0
R k  +  i S k  — —  I — sinh £ tan- 1 --------------e'k"di7

TT J  0 tt q
P  sinh £e- i *0 r  2t p — sin \p P  sinh £e~,AiJf  -T p — s in  0  1 s in h  £e“ ,*p

ta n - 1 --------------- eik*d\p =  —---------------- Ik-
J o  O 7T2tt J  0 q

Here the limits of integration need not be changed, since the integrand is a periodic 
function of period 27T. To evaluate Ik, use is made of integration by parts, with

p — sin 0
m =  tan- 1 ---------------1 dv — eik*d\p.

?
Then

q cos 0  d\p i
du   ------------------------------> v — --------elA* ( k 0 )

( 0  — sin 0 ) 2 +  q2 k

and , 2t
Ik  =  uv

It /* I

) J  0
vdu.

But, since both u  and v are periodic, their product evaluated over the period 2ir is 
zero; then
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Replacing the sine and cosine by their exponential equivalents and transforming, one 
has —

2q r  2- fe2i* +  1 )rf(e*V)
Ik  =  —  I eik* ---------------------------------------------------------------

k J o  (e2'* -  2 ipe** -  l ) 2 -  4q2e2i+

This is easily seen to be a rational function of e1*, the denominator of which, the 
difference of two squares, can be decomposed into two quadratic factors with rela
tively simple roots, so that the transformation by partial fractions can be used to 
obtain the following result:

1 r iT /  1 1 1 1 \
Ik =  —  I e'k* ( - --------------:—  —;-------------- r : r  +  -  r )

2k J a \ e e ' *  — e e' * +  e*e e'* -f-

Thus the integral breaks down into four integrals of the form

r 2r t k

n

die**).

I — c

where t = e**, and c is a complex constant of the form + e ±f±ifl. Now if the indicated 
division of t k by / — c is performed, a quotient which is a polynomial in t and a re
mainder ck result. The polynomial is integrated into another polynomial in t — e'*, 
and the value of this second polynomial between the limits 0  and 2ir is zero because 
of the periodicity of e Thus the remaining terms are of the type

namely,

r 2T ckdt r 2r ck
  =    die**);

o t C J  n 6*̂  — C

1 ( e ^ ) k (c-fe*)* ( -  e~(e-^ )k l

2k J  o Le’* — efe's e1'*' — e~(e'P e +  e*e~'P e +  e~£e_,sJ  ̂  ̂ ^
The value of the resulting terms can be obtained more easily by considering the 

corresponding complex function of f  =  i

d(ei() _ r  e’hff[  3 ^ !L  =  ick f  JL
J c elt — c J r. e'{

along the contour shown on Fig. 5. It is well known from the theory of the complex 
variable that the value of the above contour integral is zero if the pole of the integrand 
falls outside that contour, and is equal to 2 ir iX ic kX  Res., where Res. is the residue 
of the integrand, if the pole lies inside the contour.

Performing the integration around the contour, we obtain the following:
(1 ) along the real axis — ■k S 4/ = 'w< the complex integral reduces to the real 

integral to be evaluated (limits — tv and tv are equivalent to 0  and 2 tt);
(2 ) the two integrals along the vertical paths cancel each other;
(3) the integral along to =  A has a zero limit for A—> w .

Therefore,

* This treatment was indicated to the writer by his friend and colleague, Dr. H. G. Baerwald.
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cM
d(e{*) =

0  if the pole lies outside the strip

6.' ^  0  — TT^l/'^TT

2iri X ick X Res. if it lies inside that strip.

The pole occurs at eif —c =  0, or f  =  — i  log c; c is of the form

c =  e^c'P or c =  — gifg- **5 =

so that log c — ± £ + i/3  or log c =  ± £ + f ( 7r —13) and f  =  |3 +  f£ or f  =  7r — /3 +  i£.
But the region x > 0  corresponds to £ < 0 , as can be seen from (2 ), and also

0 </3 < 7t / 2 , so that the integrals whose pole has an imaginary part of the form + i£ ,
namely the second and fourth of (A), have the value zero. The poles of the first and 
third, on the contrary, fall inside the region of integration, so that their values are

2Tti X ick X Res.

It remains to evaluate the residue. This is found to be —i  by methods explained 
in texts on the complex variable (Ref. 5). Thus the required integrals become

2-iri X ick X ( — i) =  2irick.
Thus,

1
I k =  — 2 i r i [ { e ^ ) k -  ( -  gfe-tf)4],

2k
and

P i  eki
Rk +  i S k =  sinh £ ------[1  -  gR*-<»*].

7T k

Therefore
P  g*f

Rk =  — ( — '1)* — sinh £ sin kf3 >
7r k

P  eki
Sk — —  s in h  £   [ l  — ( — 1)*  c o s  A/3],

7T k

When /3 =  0, the poles shown on Fig. 5 have real parts 0 and tt, respectively. In 
other words, one of the poles is on the contour itself. Besides, due to the periodicity 
of the integrand, a third pole appears with a real part equal to — ir. This latter pole 
has, in general, a real part — 7r —/?, and is identical with the pole at ir — ¡3. Thus, there 
are three poles in all, one wholly within the contour and two others, with equal 
residues, on the contour itself. Now it is easy to see that each of the latter contributes 
half  its residue to the value of the integral, and since these residues are equal, the 
situation remains the same as if there were only two poles, both entirely within the 
contour, so that the case j3 =  0  is not essentially different from /3X0, and it is sufficient 
to set /3 =  0 in the above formulas for R k and Sk- Thus

(0) „(0) 2 P  ek' _ to)
R k = 0, Sk = -----------sinh £ for k odd, Sk = 0  for k even.

TT k

Case A =  0. For this case, the procedure is exactly the same up to the integration 
by parts. There, while u remains as before, dv = d\p, v = \f, so that I k becomes
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la =  p  tan-
■p — s in p

+
qp cos p d f  

(p — sin p ) 2 +  q2
=  2% tan 1 p /q  q j 0

To evaluate J 0, the same method as before is used, exponentials being introduced 
in place of the trigonometric functions:

=  2  i f
J  o

Pie2*  +  1 )d{ei*)

ie2*  -  2 ip e*  -  l ) 2 -  4q2e2*

This can again be transformed into partial fractions:

i  r 2r r i i i  i -n
Jo = ------------  p \ ---------------------------------------------------- + ------------------

2  cos j9 J  o L e*  — eie'^ e*  — e~ie'^ e*  +  e(e~,/3 e*  +
die*).

Here we are dealing with integrals of the type

pd(e*)r  -r pd{e'*) r 2* p

J  o e *  — c J 0 e'

pe*dp

these can be treated, as before, by in
troducing the complex variable and 
integrating around the contour of 
Fig. 5. Since the denominator of the 
integrand is the same as before, all 
that was said about the poles of the 
partial integrals making up Ik  re
mains true. Therefore, the second and 
fourth terms in the expression for / 0 

contribute nothing, and the first and 
third are each equal to 2 Tt times the 
residue times constants. The residues, 
however, have here the value —log c, 
so that

Jo =
2  cos ß

i  27rf[— £ — iß +  £ +  7 (7r — /})] =
cos ß

(tt -  2 d),

and the imaginary term vanishes, as could be expected. Then 

70 =  27t tan- 1  (tan ß coth £) +  x (7r — 2/3) sinh £

and
P  sinh £ r

Ro = -----------  [2 tan 1 (tan ß  coth £) +  (x — 2/3) sinh £].
x

Half of this expression is the first term of the Fourier series:

Ro P  sinh £ I1 P  sinh £ |~
tan- 1  (tan ß coth £) + sinh £
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For /3 =  0, there are again three poles, one on the imaginary axis and the two 
others with real parts ± x .  This location is, as in the general case ky^O, due to the 
periodicity of the denominator of the integrand. However, here the integrand as a 
whole is not periodic, so that the residues at the two poles on the contour are not 
equal, and the situation is not the same as for /3^0. The detailed computations show 
that i ? 0 =  0 .

Series for 4>i/J. Since the ratio
p  — sin (17 +  0 )

4>l/J <t>2/J — <¿>1/02 — *
9

is a simple trigonometric expression, the series for <j>i/J can be obtained from that 
for </>2/J .b y  term-by-term multiplication.
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THE THERMAL-STRESS AND BODY-FORCE PROBLEMS OF 
THE INFINITE ORTHOTROPIC SOLID*

BY

G. F. CARRIER 
Cornell University

1. Introduction. Elastic problems dealing with orthotropic materials have had 
considerable investigation in recent years,1 but up to the present time, such investiga
tion has been largely limited to a consideration of the problems involving thin plates 
of this material.

In the present paper, two problems dealing with the stresses and displacements 
in an infinite elastic orthotropic solid are solved, and in each case the results are ob
tained in terms of three independent displacement potentials. The two solutions are:
1) the displacement potentials arising from an arbitrary distribution of temperature 
within a finite region of the solid (the temperature being measured from an arbitrary 
datum) and 2) the potentials arising from an arbitrary distribution of body force 
within a finite region. Each of these problems reduces to the solution of three simul
taneous partial differential equations, which are transformed, through the use of' 
Fourier integrals, into individual solutions for each potential. The expressions for 
these potentials are reduced to the form of Newtonian potential integrals for those 
cases where sufficient symmetry of the material properties exists to allow such a re
duction. In the more complicated cases, the results are still expressed in closed form 
in terms of definite integrals.

2. The thermo-elastic problem. The conditions under which the thermo-elastic 
problem will be formulated and solved are the following. The material is to be homo
geneous, orthotropic, and elastic, throughout the infinite region, and is to be within 
that class of orthotropic materials which has three coefficients of temperature ex
pansion, ay, associated with the three principal directions of the material. The body 
forces will be taken as vanishing, since any problem involving both thermal and body 
force effects has a solution which is merely the superposition of the two individual 
solutions. The temperature distribution is to be an arbitrary function of position with 
the restrictions that this function must vanish everywhere outside some finite region, 
be continuous everywhere and be differentiable everywhere except on a finite number 
of surfaces.

The fundamental relations needed to formulate the problem mathematically are: 
the equations of equilibrium of an element of the material; the thermo-elastic equa
tions, that is, the relations between strains, stresses and temperature; and the rela
tions between strains and displacements.

The equations of equilibrium are found by a consideration of the equilibrium of 
a rectangular parallelepiped of the material under general loading. Since these equa
tions are independent of the type of material under consideration, they are given, as

* Received Sept. 1, 1943.
1 See, for example, A. E. Green, and G. I. Taylor, Stress distributions in aeololropic plates, Proc. Roy. 

Soc. A 173, 163 (1939).
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in the  isotropic case for zero body force ,2 by  three equations of the type,

daz d r IV 0 t xz
*7— I— r — I— 7— =  0 , (l)
dx dy  dz

where the  notation  is the conventional one.
T he orthotropic m aterial has been defined as one whose H ooke’s law has the form 

indicated by equations (2), when T  is identically zero. T he effect of tem peratures, 
different from datum , is to  produce norm al s trains in the three principal directions 
of the m aterial, as specified under the conditions of the problem. Hence, when the 
coordinate axes are taken parallel to the principal directions, the  general form ulas 
for the strains have the form,

ex =  fluff* +  fluffy +  fluff* 4* ociT, ■ • • ; y vz =  a-uTyz, • • • . (2)

If we now define th ree displacem ent potentials, </>,-, such th a t

d<pi dip 2 dtp 3

dx  dy dz

and such th a t <pj and its derivatives vanish a t  infinity, the  conventional definitions 
of the strains become,

du d2<pi dv dw d2e* ; 7yz =  4 - _ _ _  (0 2 -f. 4,3), . . . (3)
d x  d x 2 dz ■ dy dzdy

Com bining now, equations (1), (2), and (3), we obtain th ree equations of which 
the following is the f irs t:

f  d 2 d2 d2 \  d 2 a 2 "I d T
( ¿11 --- 7 +  ¿66    +  ¿56    ) <Pl +  ¿12 7—7 4>2 +  ¿13 — 7 4>3 \ = ~  P i   * (4)
\  d x 2 d y 2 dz2)  d y 2 dz2 J dx

Each of these m ay be in tegrated  once to  give ,3

/  d2 d2 d 2 \  d2 d 2
( ¿n —— +  ¿66 — '  +  ¿65 —-  ) <Pi +  ¿12 —— <P2 +  flu 7—7 <¿3 =  — P iT , • • • (4a)
\  d x 2 d y 2 dz~) dy- dz2

T he a rb itra ry  functions which appear in each of the  foregoing in tegrations m ust
each vanish, since, for example, in the  first equation, all term s vanish when x  is in
finite and y , z are finite, im plying th a t all functions independent of x  m ust vanish 
identically.

D ue to  the  convenient form of the  boundary  conditions, these equations are easily 
in tegrated  by the  following procedure. M ultip ly  each equation through by  e~i^ +v',+z{'> 
and in tegrate  over the  whole region, in tegrating  by p arts  those term s containing 
derivatives of <pj. T his operation produces the following three equations, using the 
abbreviated  forms defined below in equations (6).

d

dx

* A. E. H. Love, A treatise on the mathematical theory of elasticity, Cambridge, 1934, p. 125.
5 The hi¡, cn and /Sy are combinations of elastic and thermal constants arising from the above opera

tion. The manner in which these constants appear in the second and third of these is easily deduced from 
equations (5).



{bnk2 +  b^r, 2 +  +  c12n2E 2 +  C u ^ E i  =  piS,

Cuk'Ei +  (b66k2 +  bMv 2 +  b « n ) E  2 +  c23E 3 =  0  2S, (S)

Cl3?Z£ l  +  C z z ^ E i  +  (¿>B5̂ 2 +  ¿ ir t 2 +  bzz^2) E z  =  /3jS,
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where,

E j  — J '  'J '  <j)je ~>dx dy  d,

- / / /  T e - '^ l+ w + ^ d x  dy  dz.

(6)

E quations (5) are easily solved for the E j,  and yield the expressions,

E j  =  Fj{k, v, O S ,  (7)

where the Fj  become ratios of homogeneous polynom ials in £2, r, 2 and f 2.
N oting now, th a t  by their definitions, the E j  are the  Fourier transform s (in three 

dimensions) of the 4>j, we m ay write

(8)

<bi{x, y, z) =  f  E j(k, v, f v , Odk dr, d{

U f f  Fj(k, r,, dr, d% i n :  T(r, s, ()e~i(rl+”l+‘t )dr ds dt,

and the order of the indicated in tegrations m ay be changed to  give,

F jik , 77, dr, df. (9)

Since each F j  (as defined by equation 7) is a ra tio  of second order polynom ial in 
k2, r,t , and f 2, to one of th ird  order, we m ay write,

n x, R *R l  F j  =  B ------------,
R\RIRI

where i? *  =  X*£2-(-;uI772 +^"2, and where the  X a , jua, and B ,  are constants depending on 
the values of the constan ts appearing in the determ inan ts defining Fj, and hence, 
m ay be considered as known. N ote th a t  the X*, /4, for jfe =  l ,  2 , 3, m ust be non-nega
tive, since no singularity  m ay exist except a t  the origin.

In  m any cases, the  expressions for the Fj m ay be reduced to  the form,

F , ~  T .  (10)
A-1,2,3

T his will always be true when the problem  involves a m aterial which is isotropic in 
a certain  plane (for example, a lam inated plastic) unless identical values of R 2 recur 
in the  denom inator. T his m ay be seen by noting th a t  since the  denom inator of Fj  
m ust be invarian t under a ro tation  abou t the z axis due to this isotropy (the plane of 
isotropy is here taken  as the x, y  plane), £2 and r;2 m ust occur in the com bination 
£2+j?2, and hence, Xa =  m&> and the  R 2t  become essentially binomials. T he reduction 
of F j  to  the form of equation (10) is, in th is case, m erely a m atte r of evaluating A ,k ’



W hen equation (10) does hold, the integration proceeds as follows: Using the con
ventional vector no tation  and the new coordinates w ith the subscript k (where 
£*=X*£, x k =  x \ iT 1, r h = r \ j r \  etc. and where m k =  i ( x k—r k) + j ( y k — s k) + k l z k — tk)), the 
integral over £, 77, and f, of equation (9) defining G reen’s function G, m ay be w ritten ,

G , { x , y , z , r , s , t ) = f f f  X  ~ ^ T ei”k ~ dO-  (U )
J  J  J  * _ i ,2,3 K k Xa n k

If we now change to  a spherical coordinate system  in which 7  is the  angle between 
fnk and R k and 5 is the polar angle abou t m k, th is integral becomes,
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Gj =  J  J" J  X  eimkRk(:os'r sin 7  dy dd d R k,

where the integration now takes place over, 0 ^ 7  ^ 7r, 0 ^ 5 ^ 2 7 r , 0 ^ I ? a <  «>. T he ele
m entary  in tegrations over 7  and 5 produce

4ttAjk r K sin m kR k 
Gj — ~~~ ~ I ~ d R k,

*=1,2,3 Kkiikm k J  0 R k

which is known to have the value,

Gj =  2 r  X  •
k—1,2,3 AiM* 1>lk

Now transform ing the rem aining term s of equation (9) to  the coordinates w ith the 
subscript k, and substitu ting  the above value for G reen’s function, we obtain,

1 f  f  f  v -  , T ( \ krk, fikSk, tk)
4>j = — I I I  X  A ik—  ...... ........... drk dsk dtk. (12)

i i r J J J  kw.)i2,3 •\/(-1'"fc — r k) 2 +  ( y l  — s k) 2 +  (zk — Ik )2

Hence, the problem , wherein T (x ,  y , z) represents the tem peratu re d istribu tion , 
becomes the problem  of evaluating the New tonian potential function corresponding 
to a mass d istribu tion  of,

p = —- T ( \ kXk, pky k, z k).

For an isotropic m aterial, the 4>k become alike, and are given b y ,4

a  1 +  v r  C r  T{r, s, t)
<j>{ = -------------- I I I —  —  ■ ----- dr ds dt.

4 t  1 — v J  J  J  \ / ( x  — r) 2 +  (y — s) 2 +  (z — I) 2

In the evaluation of G reen’s function for those cases where the denom inator of F j
has a m ultiple root, it is convenient to  introduce the notation

d 2 d2 d 2
Gj = Z G j „  A*  -------1---------1--------

n d x 2 dy* dz2

In  th is case, integrals of the form,

1 J. N. Goodier. On the integration of the thermo-elastic equations, Phil. Mag. (7), 23, 1017 (1937).
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(*(*(* Jx ’ A
=  J  J J eiK*-r>{+C*-A,+(*--t)f]rf£ dr, d$ (13)

m ust be evaluated , provided Using the above notation , the equivalence of
the following to equation (13) m ay be verified by substitu tion :

A2Gy„ =  Ai J f  J dr, d{. (13a)

T he integral involved in this equation is, however, the same as th a t appearing in 
equation (11), so (13a) becomes,

2 C in
A2G/„ — A j     >

\ / ( x 2 — r 2) 2 +  (y'2 — s2) 2 +  (22 — fid2

where Cy„ is an easily evaluated  constant. Substitu tion  will again show th a t,

Gjn — C,„Ai\/(.'r2 — r 2) 2 +  (y2 ~  S2)2 +  (22 — h ) 2, 

is equivalent to the above equation, and  hence the  <£,• are given by,

<t>i =  —  Z ) f  f  f  T (r ’ s ’ 0Gjn(r, s, t, x, y, z)dr ds dt. (14)

In  those cases where F,- cannot be reduced to  one of the foregoing convenient 
forms, Gy is more difficult to  evaluate. Since no explicit form has been found for this 
function, o ther th an  com plicated definite integrals, it  is believed best to leave it in 
the form defined by equation (9).

3. T he body-force problem . As in dealing w ith  isotropic m aterials, the  solution 
of the body force problem  m ay be shown to reduce to  a form analogous to  th a t of the 
therm o-elastic problem . T o show this, we shall consider only the problem  where the 
body force is directed parallel to  the # axis, noting th a t the general solution is ob
tained  by  the superposition of three such problems.

E quations (1) and (2) are modified to  contain the body-force function, A , and to 
elim inate the tem peratu re term s. E quations (4) are then obtained again, where now 
the righ t hand sides are replaced respectively by, X ,  0 , and 0 .

T he d> j will not, in general, vanish a t  infinity in this problem , hence the procedure 
needs a  slight modification. T he second and th ird  of these equations are in tegrated  
w ith respect to  y  and z respectively and then differentiated w ith respect to x. T his 
yields equations (4a), where again, X ,  0, 0, appear on the righ t and where the <j>j are 
replaced by d(f>j/dX. T he procedure is now identical w ith th a t  of the therm al problem , 
and the 4>j a re found by the expressions analogous to  equation (14).

4. T he tw o-dim ensional problem . If we carry through in two dim ensions the 
procedure used in the  previous sections of th is paper, we arrive a t  an equation which 
is identical to  equation (8) except th a t  z, I, and f , no longer appear. T he expressions 
for Fj  arc now sim pler in form, being given by,

p  X?£2 +  m?92

+  ^2y ) ( x r  +  m§92)
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which m ay always be reduced to  the form

Fi =  £  —

unless =  ■
Before changing the order of integration, we differentiate equation (8) w ith re

spect to  y.  T he integral form of G reen’s function becomes then

dGjk r  i"°  iyei^ +v")

dy J X^ + AqV
d% dy, (15a)

unless R 2 — R 3, in which case,

dGj r  r  iyei(xt+v’’)
A2—  =  Ax A , -  ■■ - d tdq .  (15b)

ay J  J  X2t  +  pit]

This la tte r  expression is, of course, derived by  the same reasoning used in the  th ree 
dimensional problem.

E quation  (15a), after the in troduction of the coordinates w ith the subscript k, 
can be w ritten  in the  itera ted  integral form,

dG ^  f  00 4A,-k r m cos jjkXk Vk ( £*\
  =  I  sin Tjk y k dyk  — d I — )

dy J o  X* J o  j _j_ ' w

which is known to be equivalent to,

dGjk f  “  4/1 jk . 7T
sin y w k —  e - i ’M 'dyk

y  J  0dy J  o \ k  2

and this integral yields,

dG,k 2irA jk yk

dy  X*, x\  +  y\

or

Gjk =  ----- — In ( x l  +  y l) ,  (16)
Xa-au

and we obtain  the  fam iliar two-dim ensional logarithm ic potential.
E quation (15b), then becomes, in an analogous manner,

ir-d j „ „
AzGj = -------- Ai In (X2 -f- y2)

Xaah
or,

Gj =  ——— A2[(*i +  yl) In (*2 +  y2)]. (17)
2 \kHk

Hence, G reen’s functions are determ ined for each two-dim ensional problem  involving 
therm al stress or body forces in the infinite plate. T he usual m ethods of superim posing 
plane stress (or strain ) solutions m ay be utilized, of course, to  solve the corresponding 
problem s for the finite body.
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STRESSES IN THE DIAPHRAGMS OF DIAPHRAGM-PUMPS*
BY

A. M. BINNIE 
Engineering Laboratory, Oxford

1. Introduction. Com plete prevention of leakage from a reciprocating pum p is 
difficult to ensure over a long period of working. W hen the fluid to be pum ped is 
of such a natu re  th a t  no leakage w hatever is permissible, some modification in the 
design of the pum p is essential, and under these circum stances a diaphragm -pum p 
m ay conveniently be used. This in its essentials consists of two chambers (Fig. 1) 
a ttached  to a modified reciprocating pum p. T he cham bers are of conical form rounded 
off a t  the apex and a t  the base, and between them  a diaphragm  is clam ped a t  its edge. 
For high-pressure operation the diaphragm  is a  very  thin steel disc. T he fluid to  be 
pum ped passes through one cham ber, connexion to in let and exhaust valves being 
m ade by m eans of a  num ber of small ports. T he o ther cham ber is connected sim ilarly 
to a single-acting reciprocating pum p, which is n o t fitted  w ith valves. This cham ber, 
the pum p cylinder and their connecting ports are filled w ith a liquid (commonly oil), 
and thus m otion of the piston of the reciprocating pum p causes the diaphragm  to be 
pressed a lternate ly  against both  conical surfaces, thereby producing the desired 
pum ping action. T he inevitable leakage of oil p ast the piston is m ade good by m eans 
of an auxiliary pump.

An approxim ate m ethod of calculating the stresses in the diaphragm  is explained 
below, hence the size of the cham bers m ay be so designed th a t the fatigue strength  
of the diaphragm  is n o t exceeded. In section 2 the deflexion of the diaphragm  is 
taken as sinusoidal, in section 3 as a cubic, and in section 4 as following a Bessel- 
function relation A tten tion  is confined to the stresses which resu lt from distortion 
into the sam e shape as the cham ber, no regard being paid to the local stresses round 
the ports.

2. S tresses w hen the  transverse  displacem ent is  sinusoidal. In  general the dis
placem ent of the diaphragm  from its unstrained position has n o t only a  transverse 
b u t also a radial com ponent; therefore it
does n o t seem possible (except by relax
ation m ethods) to  calculate the stresses__________________________________________¥
for a  specified shape of cham ber. I t  is
necessary to  assum e a reasonable ex
pression for the  transverse displacem ent pIG j Arrangement of diaphragm and chambers.
•w, from which the corresponding radial
displacem ent u  and the stresses will be obtained; and, when both  u  and  w  are known, 
the shape of the cham ber is determ ined.

W ith the axes shown in Fig. 1 we shall in this section take w  as specified by

wo (  ir Aw — _  ( 1 _|_ cos  ), (1)
2 \  a )

* Received Sept. 29, 1943.
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where a  is the radius of the diaphragm  and wo the maxim um  value of w. T his expres
sion satisfies the conditions th a t  the slope m ust vanish a t  the centre and a t  the edge. 
For it we assum e as an approxim ation1 th a t

u = r{a — r)(Ci +  C2r), (2)

where C{ and C2 are constants which will be determ ined by the principle of m inim um  
strain  energy. T he conditions th a t  u  is zero a t  the centre and a t  the edge are au to 
m atically fulfilled. Now the transverse displacem ents are m any times the thickness 
of the diaphragm , hence large-deflexion theory  m ust be employed. In T im oshenko’s 
notation  (loc. cit.) the radial and tangential strains are thus

du  1 / dw  V

* ' - *  ■ I  V * 7  •

u

r

(3)

The diaphragm  being very thin in com parison w ith its radius, the strain  energy in 
it due to bending m ay be neglected in comparison w ith th a t  due to the stretch ing  of 
its middle plane. Hence the strain  energy in the diaphragm  is

Vi 2 veTet)dr. (4)

Here E  denotes Y oung’s modulus, v Poisson’s ratio, and h the uniform thickness of 
the diaphragm . On pu tting  (1) and (2) into (3) and inserting the results in (4) we 
obtain

V  i

Now

hence

■rrEh 1 3 7 3rr4
— c y  + — CiC2<z5 +  — c y  +  —
4 10 60 1024

Wo

■wlal /  7r2 /V  1 \ \  /  5 Tr2 / t t 2 IN N )’

+ T { ' V “  T  + ’ V7  + t ) )  + c’“ ( t  “  n + ’ Cl5 '+ t ) ) }.

dVi d V x _  

dCi 3C2

(5)

(6)

25Wo2 ( 7r2 17
Ci = -------- <—  +  —

128a3 1 3 5

C2 =  -
1 5 w l  (  7T2

— + 1 3
(7)

128a4 1 3

In  the rem aining calculations we will consider the case v = 0.3 when (7) reduces to

wl
Cl =  1.06 —  ;

a 3

Wo
1 .7 6 —  ■ 

a*
(8)

IX.
Cf. S. Timoshenko, Theory of Plates and Shells, McGraw-Hill, New York and London, 1940, chap.
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The radial and tangential tensile stresses are

£
OY (er +  vet),

E
<Tt =

1 -  v2 ............................ 1

T hen, w ith the aid of (3) and (8), (9) becomes

E w l

(et +  ver). (9)

ov
Swo { r r2 irr)
— < 1.51 -  7.11 — +  6 .3 8  b 1.36 sin2 —
a* I a a* a )

E w l ( r r2 irr)
= -------< 1.51 -  4.95 — +  3.67  b 0.41 sin2 — X

a2 I a a2 a )

(10)

These expressions are p lo tted  in Fig. 2, from which it will be seen th a t the maxim um  
stress occurs a t  the centre and is given by 1.51 Eit%/a2. If w 0/ a  =  1/35 and £ = 1 3 0 0 0  
tons/sq . in., the m aximum stress is 17 tons/sq . in., which for a good quality  steel is 
a  reasonable working stress. Finally we will examine the shape of the cham ber corre
sponding to (10). I t  will be noticed from (2) th a t  u  is zero no t only a t  the centre and 
a t  the edge b u t also a t  r /a  — — C i/(C 2a) =  0.60. On differentiating (2) it appears th a t  u

1-5

1-0

e r a 2

E m ;2

0-5

0

k

V

%

%

%

\ \  \  V

i
H i

/ /

Í V  

ö t  - <

~..............................
\

' ' X :

0 2 5 0-5

r / a

0-75 •0

F ig. 2. Radial and tangential tensile stresses in the diaphragm.
-------------- sinusoidal displacement.
------------cubic displacement.

— ------—  Bcssel-function displacement.

has a maxim um  value 0.12«^/a a t  r /a  =  0.24 and a m inim um  value — 0.06wo/a a t  
r /a  =  0.82. Hence the g reatest radial difference between the shape of the cham ber
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and w  as given by ( i)  is 0.12 u%/a, which for w 0/ a  =  i / 3 5  is only 0.98Xl0~*a. For a 
cham ber of norm al d iam eter this difference is too small to be appreciable in m anu
facture.

I t  is of in terest to  determ ine the strain  undergone by a radius of the diaphragm , 
and for this purpose an  accurate m ethod of rectification is available. For a  cham ber 
of sinusoidal shape a radius is extended to a length s given by

0/2 /  x2wo 7rr\1/2
1 H cos2 — ) dr

o \  4a2 a //» a/2 /

. ('
2 a r * n {  irr\ 112 /  irr\

=  _ d  ( l - ^ s i n *  — ) d —  , • (11)
ir J  o \  a /  \ a  /

7T2 W o / /  7T2 W o\

,vhere +

Since p  is small, the first bracket in ( 11) m ay be expanded by the binomial theorem  
and the com plete elliptic integral replaced by

7r /  b2 3b*
E

2 \  4 64 / '

The stra in  of the radius then reduces to

a p 2 13p4
— ~  — ~ — b ■ ■ • • (12)

a 4 64

For w o /a =  1/35 this strain  am ounts to 0.05% , hence in a steel wire d istorted  into this 
sinusoidal form the tensile stress would be only 0.0005X13000 =  6.5 tons/sq .in .

3. S tresses  when the  tran sv e rse  displacem ent follows a cubic relation. To esti
m ate how far the stresses depend on the expression assum ed for w, we will in this 
section replace ( 1) by the cubic

w
/  3r2 2r3\

(13)

T his equation satisfies the sam e four boundary  conditions as (1), and the g reatest 
difference between the two is approxim ately O.OlOwo a t  r /a  =  0.28 and 0.72. A fter 
em ploying (2), (3), (4) and (6) we find th a t
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F o r  v =  0 .3 , (1 5 ) r ed u ces  to

Wo
Ci =  0.99 — , 

a 3
C2 =

Wo 
1.62 —  , 

a*
(16)

and the stresses obtained from (3) and (9) are 

E w  §
o

<Tt

Ewo ( r r2 r3 r4)
 < 1.42 -  6.61 — +  25.67 ------  39.56  b 19.78 — 9,
a2 ( a a2 a3 a1)

E w \  ( r r2 r3 r4)
 < 1.42 -  4.60 — +  9.32 ------- 11.87  b 5.93 — 9.

a,2 I a a2 a3 a4)

(17)

From  Fig. 2, in which these expressions also are shown, it will be seen th a t the maxi
mum stress is slightly sm aller than  th a t obtained in section 2 .

4. S tresses  w hen the  transverse  d isplacem ent follows a B essel-function relation. 
L astly  we will take w  as given by

w =  Wo[Jo(kr) — m \ ,  (18)

where k = a / a ,  a  =  3.83 • • • being the first positive root of J i(a ;)= 0 ,

m  =  Jo(cc) — — 0.402 • • ■ ,

and
JFo =  w0/{ /o(0) — /o(a)}  =  Wo/1.402 • ■ • .

This equation satisfies the four boundary  conditions, and it gives a displacem ent 
which, unlike those previously considered, is unsym m etrical ab o u t the line w  — w 0/ 2 . 
Except a t  r =  0 and r —a  the displacem ent is everywhere less th an  th a t  specified by
(1), the g reatest difference between the two being approxim ately  0.019 w0a t r / a  =  0.53 . 
T he same procedure as before leads to

V 1
irEh p 1

1 -  v2 L t

( k W J l ( k a )

C\a4 +  — C 1Cia6 +  — C\a6 +
10 60 4

f  rJ\(kr)dr  
J  o

+  Wo
Y 12

(C2a +  3Cj)

+  ~  (2 +  v ) ( d a  -  d )  J \(k r )dr  -  a 7 § (^ a )^ |J ,

Ci
51Tor

~ w \ _
6(2 +  „) { / > ■)(kr)dr — aJ%(ka) 9 — k2va3J 0{ka) ,

C2 =
5TFÎ

Iff»"
^9(2 +  " ) { / o Jl(kr)dr  -  a / 0’(Aa) j  -  k2va3Jl (ka)]^.

(19)

(20)

If we take v =  0.3 and f * J l { x ) d x  = 1.2599,3 (20) reduces to

* After some fruitless attempts to evaluate this integral, I asked Professor G. N. Watson whether 
it was expressible in any simple form; his reply was that he thought not, and he computed its value to 
15 places of decimals, his result being 1.25990 97359 05768. The value 1.2599 is sufficiently accurate for 
our present purpose.
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Ci =  1.01 — , C r =  -  1 .7 4 — (21)
a3 a4

and the stresses are 

o>

<Ti

These stress distributions, which are plotted  in Fig. 2, are in close accord w ith the 
results obtained in sections 2 and 3.

5. Conclusions. T he following conclusions em erge from the above calculations:— 
(i ) For the three kinds of displacem ent considered, the maximum stress in the d ia 

phragm  is a t  the centre and is ab o u t 1.5 Ev?0/ a 2.
(it) T he stress d istributions due to the three kinds of displacem ent do n o t differ 

widely. Hence, if it is decided to use one kind, and small errors are m ade in the 
difficult process of m achining the cham bers, no g reat a lteration  in the stresses 
will result.

E w l  

Ew \

'Zwo ( r r2 1
 < 1.44 -  6.95  b 6.31 — +  4 .1 0 /? ( ir )> ,
a2 I a a2 )

-f 1.44 -  4.84 —  +  3.63 — +  1 .2 3 / i ( £ r ) \ .  
I a a2 ;

(22)
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THE INTRINSIC THEORY OF THIN SHELLS AND PLATES 
PART II.—APPLICATION TO THIN PLATES*

BY

WEI-ZANG CHIEN 
Department 0}  Applied Mathematics, University of Toronto

7. T he general equations for a th in  plate. W e shall now investigate the equations 
of equilibrium  and com patib ility  for a thin plate, no t necessarily of constan t th ick 
ness. F irst, we shall in troduce the  condition th a t  th e  system  is a plate, i.e., its middle 
surface in the unstrained s ta te  is plane. W e have therefore

b aß = 0, Raßyp =  0. (7.1)

Furtherm ore, in order to  sim plify the problem , we assum e in the following sections 
th a t  the body force forms a parallel vector field, and therefore (3.38), (3.39) are 
satisfied ; th is is true  for m ost practical problems.

Substitu ting  (7.1) and the conditions on body force into (6.34) and (6.35), we have 
three equations of equilibrium  for a thin p late

-  2JHffi*qfr P lxh  +  §Aft'x(g lXA3) |flT +  A ^ q ^ q ^ h *  +  P°

i -  2 a
+  2X[0]h  +  (Q’h )  1,  +    a * q rX@ h  =  0°m , (7. 2a)a 1 — a

2 A ^ ( p rx/i)i„ -  A f ä ^ i q ^ q u h * )  I, +  +  P aa a a

+  2Xf0] h  +  — a “'(Q°/i) ip +  (aTSa ay +  2a°sa*y)Qyq TSh  = Ofo, (7.2b)
1 —  (X a

where the O-symbols have the following m agnitudes,

0?«)! X 0p h ,X ° Q h ,p * q h ,  Q~qh, Q q p h ,  P q h \ X ° h \  Q h \  q P h \  q p h \  q X h \  qhK  (7.3a) 

Of43); P 27>. Q p b ,  X p h ,  X Q h ,  Q-h, P q h \  Q h \  X h \ p h \  qh*. (7.3b)

We recall th a t

A (f'x = --------- {aa«3a ^  +  (1 -  <rja«raB*}, (7 .3c)
1 — <x2
2(2(t — 1)

~  0  • 3d)
3(1 -  tr)

Sim ilarly, substitu ting  (7.1) into (6.43) and (6.44), we have three equations of com
patib ility  for a  thin plate

2nfoi<?0|9|T(l +  2n[0Xn$päxP,p +  2arXPxx)a
— 2nf0)]g3r(a rX +  2n^n^]p pt) (p 0x|T +  p 7x|a -  p „ 7 |x) =  0, (7.4a)

* Received June 12, 1943. Part I of this paper appeared in this Quarterly, 1, 297-327 (1944).
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(Znj^nfojPp-yiofl +  n^n^<jPT(?a/3) ( l  +  2nf(̂ n|L0ijpxjpTU +  2 a TSp x<)a
”1“ *4<̂nl0](^M[0]T'{0]PM & ) (prp\y “1“ Pyr\p Pyp | r) (Pau |/S T" P(iu\a Pofi\w) == 0. (7 .4b)a a a a a a

T he macroscopic tensors in (6.29), (6.30), (6.31) can be w ritten  as

T<* = 2 < ' xp,xA -  a **0«A +  0 $ „
1 — cr

Aa(i =  f n ^ a ^ t V j A 3 +  0 (4 ,

r-o = | ^ ( « X|A*)|, +  G“A +  (a-*P- +  a“CP*)g,xA3 +  Of4°6J>a
where

0 (4  =  0 $ , (p 2A, G2A, GpA, p A 3, GA3, WA3, q 2A3), (7.6a)

0 “4  =  0 f4 (9 P A 3, * °A 3, GA3, <j2A=, XgA3), (7. 6b)

0?4  =  0f4(G pA , G2A, G ^ A 2, Q q h 2, P p h 2, P Q h 2, q p h 3, X ° h 3, Q h 3, X q h 3, g 2A5). (7.6c)

E quations (7.2a, b) and (7.4a, b) are the six differential equations of a th in  p late 
in the six unknow ns p als and q ap. T he next step  is to  introduce certain  system atic 
approxim ations based upon the thinness of the plate, so as to  obtain a set of differ
ential equations in sim pler form.

8 . Classification of all th in  plate problem s. W e consider a fam ily of <*>1 thin plates 
of the sam e m aterial, having an identical middle surface S J  in the unstrained sta te , 
b u t different thicknesses; each is sub ject to  the  action of (i) external force system s 
applied a t  the edges, (ii) surface loadings on its two boundary  surfaces, and (iii) uni
form body force th roughout th e  plate. (This includes grav ity , b u t excludes a centrif
ugal field.) W e a ttach  to the  middle surface of each plate  the same system  of 
coordinates x “, so th a t  the fundam ental tensor a„s is the sam e for all p lates in this 
family. W e assign to each plate  a  value of a param eter e, so th a t the thickness of all 
the plates can be represented by

2A =  2e/)(xI, x2), (8 . 1)

where 0 < e < 6i and the function h is the same for all the  p lates; for thin plates, t\  is 
supposed to  be small, b u t the basic idea of the m ethod is th a t  we seek solutions valid 
for all e in the range 0 <  e <  (¡.

E quation  (8.1) implies th a t  the  derivatives of the thickness a t  any point are of 
the  same order of m agnitude as the thickness itself. W e shall call these plates “regular 
p la tes.” On the o ther hand, if the thickness and its derivatives are of different orders 
of m agnitude, we have an “irregular p la te .” T he following theory  is lim ited to  regular 
p lates only.

W e m ay suppose e chosen equal to  the  ra tio  of the  average thickness to a selected 
lateral dimension (usually the sm allest lateral dim ension) of the  plate. For a circular 
plate, e is the ra tio  of the average thickness to  th e  d iam eter of the  plate. For a  rec
tangu lar plate, it m ay be chosen equal to  the  ra tio  of the  average thickness to  the 
length of the shorter side.

I t  is im portan t to  observe th a t e is the only param eter involved. Except the funda
m ental tensor a oij and Poisson’s ratio  cr, all the o ther quan tities occurring are func-

(7.5a)

(7.5b)

(7.5c)



tions of €, and no q u an tity  is “sm all” unless it tends to zero w ith e. (Y oung’s modulus 
does not appear, on account of the use of reduced stresses and body forces.) T hus for 
any “small q u a n tity ” T , we m ust have

lim T =  0 . (8 . 2)<-*o

In  order th a t  a problem  m ay belong to the theory of small strain , e.y m ust be a small 
q u an tity , and therefore

lim ea = 0. (8.3)
€—♦0

I t  follows th a t p aß m ust also be a “small q u an tity ,” depending on e like in (8.2). 
B u t th is is no t necessarily true for q aß.

I t  is understood th a t  all conditions (such as reduced edge forces, reduced surface 
loadings, and reduced body forces) depend on e in such a w ay th a t (8.3) holds. We 
shall assum e th a t  Q \  P ' ,  X[0j vanish a t least as fast as e, and are in fact power series 
in e. T his assum ption implies th a t  the derivatives of any of these quan tities with 
respect to  x" are of the  same order of m agnitude as (or higher order of m agnitude 
than) the  q u an tity  itself. Hence we w rite
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0° =  E  Q U ’ . Qa =  E (8.4a)
8-*k o

p ° =  E  r W ‘, p ° =  E  p%)p> (8.4b)
SmmJl

00
*ïoi =  E  *(.)[„]«•,

70

00
*[01 =  E  * ( .) [01«*. (8.4c)

where k, ko, n, n 0, j ,  jo  are integers greater than  zero, and P[s), £>[,), Y(s)[0j are functions
of x “, independent of e.

Sim ilarly we assum e th a t  the traction , shearing force and bending m om ent ap 
plied on the edge curve can be represented by

| H = E  r&e*. (8.5a) ¿ >  =  f ) £& ■ , (8.5b) =  E  (8.5c)
8=~t S=U 8*ml

where t, it, I are positive integers, and Tjf)t 1 $ ,  T are functions of position on the 
edge curve, independent of e.

Now the problem is to find the behaviour of the fam ily of » 1 th in  plates under 
the action of a given family of external force system s (8.4), (8.5). G iven an external 
force system  defined by (8.4), (8.5), we seek solutions of the equations of equilibrium  
(7.2) and the equations of com patibility  (7.4) of the form

Paß =  D p « . s«*, (8 . 6a) q aß =  E  q(,)cßi’, (8 . 6b)
9m. p

where p  and q are zero or positive integers, and P(«>ai and Q(.)ap are functions of x a, 
independent of «. Only those problem s adm itting  solutions w ith p >  0 belong to  the
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theory  of small strain . On the o ther hand, g m ay be zero; then we are dealing w ith a 
finite deflection problem.

T he usual discussion of p late  theory  is based on the deflection, i.e. the norm al 
displacem ent of a particle on the middle surface. T he present m ethod is intrinsic, and 
the general equations contain no explicit reference to the displacem ent. However, 
since q„ß corresponds to  change of cu rvatu re  (i.e. cu rvatu re  of the middle surface 
after strain), it is clear th a t  finite values of q aß correspond to  finite deflection and small 
values of q aß to small deflection. Sim ilar rem arks apply in the  case of shells. Hence, 
in classification, we m ay use the fam iliar word “deflection” when referring to  the order 
of m agnitude of q„ß.

T he assum ed forms (8 .6a, b) im ply th a t  the derivatives of p aß, q aß w ith respect 
to xa are of-the sam e order of m agnitude as the quan tities them selves, or of higher 
order. In fact, p aß and q aß expressed by (8 .6a, b) represent the  behaviour of the 
family of co1 th in  plates under the action of the given family of P l, Q \  Xfa,  
f aßi f aü, L a& defined by the equations (8.4), (8.5). I t  is understood th a t  if P \  Q \  X[o], 
f a ß' fa o ' f a ß  are identically equal to  zero (i.e., k, k 0, n , n 0, j ,  jo, t, u, /= « > ), then 
paß and q aß vanish (i.e., p, q — ) everyw here; this corresponds to  the unstrained sta te
of the plate. T his m eans th a t self-strained plates are no t discussed.

In  a thin plate problem , we are to  regard the  num bers k, k 0, n , n 0, j ,  jo, t, u, I as 
given; the initial step tow ards solution would appear to  be the determ ination of p  
and q, for then we could simplify the equations of equilibrium  and com patibility  in 
the first approxim ation by  picking o u t the principal term s in e from equations 
(7.2a, b), (7.4a, b). B u t owing to  the partia l indeterm inacy of p  and q, th is method 
is not successful.

I t  is much sim pler to solve the problem  in the  reverse order. F irst we assign in- 
teg ra lvalues to  p  and q. T he values of k, k 0, n, n 0, j , j o  are fixed by  the conditions th a t  
<̂j.)[o]> X «[o]> P(n)- £&-„). Qw  should con tribu te to the principal parts  of

(7.2a, b), w ithou t dom inating these equations to the exclusion of p aß and q aß. The 
equations of equilibrium  and com patib ility  in the first approxim ation are then ob
tained by picking o u t the principal term s in e from equations (7.2a, b), (7.4a, b). T hen 
the values of t, u , I are autom atically  fixed through the expressions (7.5).

W e shall now discuss the classification of th in  p late problem s based on assigned 
values of p  and q, so th a t the principal p arts  of (7.2a, b ), (7.4a, b) in the first approxi
m ation are different for different “T ypes.” T he classification is shown graphically in 
Fig. 3, where permissible pairs of {p, g)-values are represented by circles. As indicated 
in (8 .6a, b ), we consider only non-negative integral values of p  and q. Since, however, 
p  = 0 corresponds to  finite extension of the middle surface, we m ust om it the (p, q)- 
points on the g-axis.

I t  is found th a t the points in the (p , g)-plane break up into twelve groups depend
ing on their positions relative to  the division lines A D ,  A B ,  OC  and the p-axis. For 
any point (except g =  0) on the line A D ,  it is easily seen from inspection of (7.2a) 
th a t  the first and second term s are of the same order of m agnitude and prevail over 
all the o ther term s, w ith possible exception of those involving X{01, P ',  Q \  For any 
(P< g)-point (except g =  0) above A D ,  the second term  in (7.2a) dom inates, and for 
any (p, g)-point below A D ,  the first term  dom inates. For the point A ,  the first three 
term s in (7.2a) are of the sam e order of m agnitude and prevail over the righ t hand 
side. For any poin t on the p -axis above A ,  the second and th ird  term s in (7.2a) are
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of the  same order of m agnitude and prevail over the o ther term s. T hus the principal 
p a r t of (7.2a) takes five different forms depending on the  position of the (p , g)-point 
relative to  the line A D  and the p-axis.

Sim ilarly, the  form of the  dom inant p a rt of (7.2b) depends on the position of the 
(P> ?)-point relative to  the line A B  and the p-axis. Finally, the form of the dom inant 
p a rt of (7.4b) depends on the  position of the (p , g)-point re lative to  the line OC  and 
the ¿»-axis. T he equation (7.4a) has no division line, since the term  nfo)Qa/3|7 dom inates 
for any position of the (p , <z)-point.

0 1 2 3 4 5 6 7 8

q.-values

F ig . 3. Classification of thin plate problems. 
p = o rd er  of extension of middle surface, g =  order of change of curvature of middle surface.

(Type P 12 is not indicated in the diagram, since for these problems, g =  » ,  and consequently the corre
sponding points lie a t infinity to the right hand side.)

I t  follows th a t the  (p, g)-plane is divided into twelve regions, so far as permissible 
non-negative integral values of p  and q are concerned, and so the  com plete classifica
tion of all th in  p late  problem s involves consideration of twelve types (Types P 1 -P 1 2 ). 
T ype P 12 is no t indicated in the  diagram , since for these problems, q — oo, and con
sequently  the  corresponding points lie a t  infinity to  the righ t hand side.

A lthough the classification gives twelve types, four of these (Types P 3 , P 6 , P 7, 
P 8) are less im portan t th an  the  others. T hey  represent overdetermined problem s, in 
which the num ber of equations exceed the  num ber of unknowns. Such cases can occur 
only when very special relations connect the body forces and surface forces.

These twelve types m ay be described as follows:
(1) Problem s of finite deflection (<2 =  0), Types P 1 -P 3 .
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(2) Problem s of small deflection (gS il, p  — 1; 2 = 1 , p  = 2; g S il, p > 2 q ) ,  Types 
P 4 -P 8 .

(3) Problem s of very  small deflection (gS :2 , 2q ^ p ^ 2 ), Types P 9 -P 1 1 .
(4) Problem s of zero deflection (g =  co), T ype P12.
In order to  save space, we shall no t discuss all the twelve types in detail. T he 

discussion of T ypes P I ,  P 2, P3  will serve as an example. T he results for all types 
are sum m arized in the tables in the Appendices a t  the end of this paper. T he prin
cipal p arts  of the equations of equilibrium  and com patib ility  are shown in T able I, 
and the orders of m agnitude of the external forces and the principal p arts  of the 
macroscopic tensors in T able II.

I t  should be noted th a t  the theory  of generalized plane stress [l, 2 ], the Lagrange- 
Kirchhoff theory  of small deflection [3, 4, 5], and the von K arm an theory  of “large” 
deflection [6 ] can be derived respectively from the T ypes P12, P l l ,  P5 .

We shall devote the next section to discussing the problem s of finite deflection 
(P 1 -P 3 ). All results for these types are new, and m ay prove particu larly  in teresting.

9. P roblem s of finite deflection (g =  0), types P I  —P3.

(a) T y p e  P I :  g =  0, p — 1. F in i te  d e f le c t i o n  w i th  d o m in an t e x te n s io n  in
T H E  M ID D L E  S U R F A C E

General equations. By the condition th a t, in the  first approxim ation, (7.2a, b) re
ceive significant contributions from P°ni), P°{n), X°M[0], X ao m , <2°*,), Q\k), we m ust have

Mo = n =  2, i  o = 7  =  1, ka = k = \.  (9.1)

Therefore, we obtain from (6.23)

/i{+) =  he +  0(e2), /*(_) =  he +  0(e2); (9.2)

consequently, the common assum ption th a t the m iddle surface of the unstrained 
plate is deformed into the middle surface of the strained s ta te  is justified in the first 
approxim ation.

W e now su b stitu te  (8.1), (8.4)-(8.6) into (7.2), (7.4). T he lowest power of e oc
curring is €2 in (7.2), and e° in (7.4). T he corresponding coefficients give rise to  equa
tions of equilibrium  and com patib ility  in the first approxim ation as follows:

1 — 2cr
— +  P(2) +  +  (Q(l)A)|i +  — eir^ q m r \Q°i)h =  0, (9.3a)a 1 — a

2 < ( P (1)J ) | ,  +  PI)  +  2X°wl0]h +  — a ap(@“1)/z) ,pa 1 — <T a

+  (a lXa “T +  2a°xa ’r’>')q,C0)TX<2(1)7/j =  0 ,(9 .3b) 

nMQr(O)a7|0 =  0, (9.3c)a
nMnM<?CC)p/5<7(0)aT =  0. (9.3d)

We m ay rem ark th a t all quan tities in the above equations are finite, i.e. independent 
of €. T he macroscopic tensors in (7.5) can be w ritten  as



T°* = (2 A ? ^ P W tJ i +  ——— a*Q?„i).e* +  0(e*), (9.4a)
1 — cr ^__.

L<* = q m u h 3e3 +  0 (d ), (9.4b)

P “° =  +  <?(*») if <?o) ^  o,

T “0 =  {G5,5 +  & i f i (g(o)XiAi) ixje3 +  0(e4) if 0 “ , =  0. (9. 4c)
a
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E quations (9.3a, b, c, d) form a set of six equations for the six unknowns q«»aii and 
p(i)ais. From  (9.3d), we see th a t  the to ta l cu rvatu re  of th e  m iddle surface does no t 
change for the  first approxim ation. C onsequently the  strained middle surface in this 
type of problem  is to  be regarded as a developable surface.

E quations (9.3a, b, c, d) can be fu rther simplified. Since for a plate, R papy =  0, the 
order of the  operations of covarian t differentiation is im m aterial; consequently, from 
(9.3c), we have

<?(0)ai) =  W(0)|aj3. (9.5)
a

Here w (o) is an unknown function of x“, which satisfies, in consequence of (9.3d),

nMnMw (o)losw,(o)|ar =  0. (9.6)
a  a

The existence of w«», satisfying (9.5), is easily proved by tem porary  use of special 
coordinates (rectangular C artesians). T he last equation is, in fact, the  famous differ
ential equation [7] of a developable surface in the  curvilinear coordinate system , and 
W(o) m ay be called the deflection func tion .  If (9.6) is satisfied, q (o)*y is given by (9.5). 
T here still rem ain the three equations (9.3a, b) for the three unknowns P(i>r7. We 
can handle the problem  indirectly by m eans of P “2̂ . T his is the coefficient of the lowest 
power, e2, in the series for T a<J, and by (9.4a)

a afiQ°i,h. (9,7)
1 — cr

W e note th a t  this is a sym m etrical tensor, so th a t  it has only th ree independent com
ponents. S ubstitu ting  (9.5), (9.7) into (9.3a, b), we have

— 7"(r2X)W(0)|rx +  -P°2) +  2X°1)i0]/i +  {Q(\)h)\r +  a TXw  l0) | r\Qli)h =  0, (9.8a)
a  a

T%\r +  P?2) +  2 X?m h +  (a TXa “r +  2a“xa ^ V (0>|TxQ(m A =  0 . (9.8b)
a  a

T o sum up, for problem s of type P I ,  we have a set of four equations (9.6), (9.8a, b) 
in the four unknowns, w (0) and T°£y

Special case. T he following special case is interesting. If

P?2> =  =  %  =  0, (9.9)

then by (9.8b) there exists an A iry function x<2), so th a t

T\f) = nfo]>»foiX(2)|xx. (9.10)



T his is easily proved by tem porary  use of special coordinates (rectangular Cartesians
[2 ]). Consequently, (9.8a) can be reduced to  the form

— nfo]n[o]X(2) iratv (o) |Px +  P(2) +  2 X(i)[0]A +  a 'V to jirtG fy i =  0 . (9.11)a a a
T he problem  is now to  find X(2) and w (0) as functions of x “ satisfying the two non
linear partia l differential equations (9.6) and (9.11). In  rectangular C artesian co
ordinates, the equations (9.6) and (9.11) m ay be w ritten  as

W(0),X2W(0),12 — W(0),iiW(0),22 =  0, (9.12a)

2 X< 2 ) .1 2 W (0 ) ,1 2  — X ( 2 ) , l l T V ( 0 ) , 2 2  —  X  (2 ) .2 2M, (0) .11 +  Q(l)/<AlV(0) +  P  (2 ) +  2Y (1) (0] A =  0, (9.12b)

where the com m a indicates partia l differentiation w ith respect to  x a, and A is the two- 
dimensional Laplace operator. T he macroscopic tensors are given by
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(9.13a)
T n  =  XC2),22*2 +  O(d), T 22 =  X(2) .n d  +  0 (63), \

T »  =  r « '  =  -  X ( 2 ) , 1 2 d  +  0 ( 6 3) ,  f

¿11 =  _  ¿22 =  _  2J(1 _  ff)* ,(#)tlie* +  O (d),|

U 2 =  p ( w m ,u  +  <nv(0,.22)d  +  O(d), > (9 .13b)
L 21 = — £>(w( 0).22 +  <rW(0),n)es +  O(d), '

T i0 = {(1 -  «t)(D w  (0), 12),2 +  (OW(0),11 crLHv(0),22) ,i} d  +  O ^4),!

T 20 =  {(1 — Cr)(ZhV(0),l2).l +  (OW(0),22 +  ffOW(0),li),2} e3 + 0 ( d ) . j

H ere the symbol D  is defined by

(9.13c)

2/d
D = ---------------- (9.14)

3(1 -  cr2)

T his is a finite q u an tity ; the ordinary  flexual rigidity  is De*E (where E  is Y oung’s 
m odulus). An example of this type of problem  is given below.

Exam ple .  A long rectangular p late  is subjected to  a uniform  tension T ^ e 2 on the
two long edges, and a norm al load -P^e2 on one face; this norm al load docs no t vary
along the  length of the plate. Find the  form of the  p late  in the strained state .

In  th is example, we can neglect the edge effect near the  end of the plate by con
sidering the  plate infinitely long. W e assum e th a t  th e  middle surface in the strained 
s ta te  is cylindrical, w ith the  generators of the cylinder parallel to  the length of the 
plate, th a t  is

<7(0)11 =  W(0),11 = i i ( x 1), <7(0)22 =  <7(0)12 =  0. (9.15)

H ere x “ are rectangular C artesian coordinates, such th a t  the x2-axis is parallel to  the
long edges, and the x l-axis perpendicular to  them ; is an unknown function. F u rth e r
more, in this example,

-Pw =  *r.)[0] =  Q°w  =  (?u, =  x°m i  =  0 . ( 9 .16)

T hen from (9.8b) and the condition th a t  Tfy  are functions of x l only, we have, in
consequence of the boundary  conditions on the  two long edges,

K )  = T m , (9.17a) 2 #  =  =  0, (9.17b) T% = 0. (9.17c)



S ubstitu ting  (9.15)—(9.17) into (9.8a), we obtain

ii(x i) =  ~ ^  • (9.18)
4 (2)

Therefore the  curvatu re  a t  any  point of the cylindrical surface is proportional to  the 
norm al pressure a t  the point. For uniform ly d istribu ted  pressure, the strained m iddle 
surface is circular cylindrical. I t  should be noted th a t  the  above conclusion holds in 
general for plates of non-uniform  thickness, w ith the lim itation th a t h is independent 
of x2.

(b) T y p e  P 2: q =  0, p  =  2. F in i t e  d e f le c t i o n  w i th  s m a ll  e x te n s io n  in  t h e
MIDDLE SURFACE

General equations. As in T ype P I ,  we have

Mo =  m =  3, j 0 = j  =  2, ka = k = 2. (9 .19)

By substitu ting  the  e series from (8.1), (8.4)-(8.6) into (7.2a, b), (7.4a, b), it is found 
th a t  the lowest power of e occurring in (7.2a, b) is e3, and in (7.4a, b) is e°. T he corre
sponding coefficients give rise to  the equations of equilibrium  and com patibility  in 
the  first approxim ation as follows:

-  2 A ^ q mpyp WTJ i  +  § A ^ X(q c„)TX/? ) |P7 +  P (°3J +  2X%m ha
1 - 2  o-

+  A ^ r Uq m r . q m n g m ,yfiz +  (Qfoh) {.  +    =  0, ( 9 .20a)a 1 <f

2Aft'X(p (2>^)|p  +  A ^ ( q l0)TUq m u h 3h ,  +  f a - q (o),7< X{(q (o)xi/? ) |3 +  Pf3)a a a
+  2 X “2)[o\h +  (a TXa ay +  2a aXa T'1')g(o)xx(?(2)7^ +  “ a<>/J((?(2)^) is — 0» (9.20b)1 — cr a

nM9(o)orlis =  0, (9.20c); «^"{3 9 (0)̂ /99(0)07 — 0- (9.20d)a
T he macroscopic tensors in (7.5a, b, c) can be w ritten  as 

T<* = 1 2A â p miXh +  j z r ;  a °*Q°2)h ~  A t r U< l m r . q m u h ^  e3 +  0(i*), (9.21a)

L *  =  qtojxa/Fe3 +  0(e<), (9 .21b)

T°° =  {<&)h +  fA ^ M(q (o)XiA3) |,} e 3 +  O(S). (9. 21c)a
H ere A$)'x, A f f iuXi are given as in (6.33a, b). E quations (9.20a, b, c, d) form a set 
of six fundam ental equations for the six unknowns p m ap and q(o>«0. W e see th a t  from 
(9.20d) th a t the middle surface in the strained s ta te  is a developable surface.

As in T ype P I ,  the problem  can be fu rther simplified by introducing w (0), such 
th a t

<Z(O)o0 =  W(0)|a|S. (9.22)a
W e have also

Pg» =  2A ffxp (2)rJ  -  A f f i^ q m r .q m iiP  +  ~ ~  a " W -  (9.23)1 — O'
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W e note th a t  Pg3 is the  coefficient of the lowest power of e in T a&. I t  is a sym m etric 
tensor, and consequently it has only three independent com ponents. Substitu ting
(9.22) and (9.23) into (9.20a, b, c, d), we find th a t (9.20c) is identically satisfied, while
the o ther th ree equations become

—  7 ? 3 > ( 0 ) | , 7  +  § A ^ V < „ ) U x / ? ) |P7 +  P lz )  + i x % m h
a  a  a

+  iQ(2)h) I r +  a ' xw (o)|Tx<3(l2)A =  0, (9.24a)
a  a

T $ \ P +  +  Pg, +  2Xg)[0) h
a  a  a  a

+  (a TXa "7 +  2a aXa Ti')w(o)|IxQ(2)7/2 =  0, (9.24b)
a

nfolnioiw,(o)|p3w (0)i<>7 =  0- (9.24c)
a  a

To sum up, we have for problem s of T ype P 2 a se t of four equations (9.24a, b, c), 
in the four unknowns, w (0) and Pgf.

T he special case of uniform  thickness will now be trea ted . Since h is constan t, 
(9.24a, b) m ay be w ritten  in the form

— 7^'|W(o) |p7 +  DAAw(o) +  Pg) +  2Z(2)[o\h +  Q&)\*h +  Q°2)hA w m  = 0 /  (9.25a)
a  a

{Tffii +  Pa“ra^w(o)|,7Aw(0) -  |Pa“'s(AwCo))2} \a +  Pg) -f 2Xg)[0]/t
a  a

+  (a^Awco) +  2aaya^Tw W \rs)Qmeh '= 0, (9.25b)
a

and (9.24c) rem ains unchanged. H ere A is the  two-dim ensional Laplace operator, and 
D  is the  reduced flexual rigidity as in (9.14).

Furtherm ore, when
P[3> — X?m  =  Qg) =  0, (9.26)

the equation (9.25b) will be satisfied by pu ttin g  (</>(3) is an a rb itra ry  function of xa) 

Pgj =  nf0’ n ^ ^ (3) |Tx — i>a“Ia (3XW(0) |IxAw(0) +  |D a “'s(Aw(o))2. (9.27)
a  a

And consequently, (9.25a) can be reduced to the  form

— nMn[ol^(3)|TiW-(o)|P7 +  .DAAw(o) +  -2-P(Aw(0))3 +  P°3)
a  a

+  2X%m h +  Q°m hAw m  =  0 . (9.28)

T herefore for a p late  of uniform  thickness under the condition (9.26), we have in
this type of problem  a  set of two equations, (9.24c) and (9.28), w ith two unknowns 
w (o) and $ (3). In  rectangular C artesians, these two equations m ay be w ritten  as

W(o),i2W(o),i2 -  W(o),nW(o),22 =  0, (9.29a)

2 W ( o ) ,  1 2 $ ( 3 ) ,1 2  —  W ( 0 ) , H $ ( 3 ) , 2 2  ~  M, ( 0 ) , 2 2 $ ( 3 ) , U  +  P A A W ( 0 )

+  |P (A w (0,)3 +  P (3) +  2X%) m h +  <2(2)/iAw(0) =  0. (9 .29b)

T he macroscopic tensors are given by
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T n =  { </> (3) ,22 +  %D(W( 0) ,22 — W'(0),ll)AW(0) } €3 +  0 (t4),
T u  = T n  = _  {0(3)>21 +  D w m ^ w m }e3 +  0(c4), (9.30a)

T 22 — { 0(3),11 +  %D(W( 0) ,11 — W'(0),22)AW'(0) } i 3 +  0(«4),.
¿ n  =  _  ¿22 =  _  D( 1 -  <r)w(0),12e3 +  0(64),

L 12 =  D (w m ,u  +  dM, (0),22)e3 +  0 (e4), (9.30b)

¿ 21 =  — D(W(0) ,22 +  O’W’(0),ll)f3 +  0(e4),

T 10 =  Z}(Aw«,)).ie3 +  0(c4), r 20 =  D (A w m ) ,2e3 +  0(e4). (9.30c)

An in teresting example of this type of problem  is given below.
Exam ple:  A long rectangular p late  of uniform thickness is deformed under the 

actions of (a) uniform  tensions T ^ u e 3, T (3)jBe3 and uniform  bending m om ents Lojae3, 
A(3)jje3 on the two long edges, (b) a norm al load P°3)e3 on one face (this load does no t 
vary  along the length of the plate). Assuming th a t  p  =  2, g =  0, find the form of the 
middle surface in the strained state .

In th is example, we can neglect the edge effect a t  the two ends by considering 
the p late infinitely long. Since the given external force system  does no t vary  along 
the length of the  plate, we shall assum e th a t  strain  and stress are constan t along
this direction. H ence in the first place, the deformed surface is cylindrical, w ith the
generators of the cylinder parallel to  the length of the p late:

9 (0)11 =  W(0),11 =  i 2(x'), 9 (0)12 =  W(0),12 — 9 (0)22 =  W(0),22 =  0. (9.31)

H ere x “ are rectangular C artesians, so th a t  x2-axis is parallel to  the long sides and 
x4-axis is perpendicular to them , fl is a  function of x1, to  be determ ined.

In  the second place, T a? is a function of x 1 only. Since the ends of the p late  are 
free from tractions, it follows th a t  T n  and T 22 vanish everywhere to  the th ird  order:

=  0. (9.32)

T he com ponent T n  can be w ritten  as

T n  =  T $ t *  +  0(e4), (9.33)

where is a function of x1, to  be determ ined.
T he problem  is to  determ ine two unknow ns and T ¿j as functions of x 1 through 

Eqs. (9.25a, b) under the conditions

P{3) = K n o l  =  * (2)[0] =  Q v  =  C(2) =  0 . (9.34)

S ubstitu ting  (9.31)-(9.34) into (9.25a, b), we have

-  0 7 $  +  D O ,n +  Pi'3) =  0, (9.35) ( ^  +  |Z9£22) ti =  0. (9.36)

In teg ration  of (9.36) gives
T(3) +  hDO.2 =  C. (9.37)

H ere C is a constan t to  be determ ined by the  conditions on the long edges. S u b stitu t
ing w (o),<,0 from (9.31) into (9.30b, c), we get

¿ n  =  -  ¿m  =  0(e4), Z,12 =  DCit3 +  0(c4), L 21 =  -  cDClt3 +  0(e4), (9.38)

T i0 = D£l,lt3 +  r 20 =  O(e4). (9.39)
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Then (9.37) becomes
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(3) =  C "  2 D ~ ’ (9 ' 40)

where, by definition, T his equation is satisfied everyw here th roughout the
plate. Therefore it is also satisfied a t  the two long edges, and consequently T $ )a , 
T(3)b, P(3m, P(3)b m ust satisfy the following relation:

1 (i<3M)2 T  I (Z,<3)i5)2 C (0 1111 (3)A 1 —   -  i  (3)B H — ---- -  c .  (9-41)

Therefore we conclude th a t am ong T ^ a ,  T {3)b, L mA, L ^ )b  only three quan tities are
independent; when any three are given, the fourth  can be calculated through (9.41).

S ubstitu ting  T q) from (9.37) into (9.35), we obtain

\D i23 -  CO. +  D£i,n  =  -  P°3). (9.42)

T his is a non-linear differential equation of the second order and th ird  degree in fi. 
W hen the boundary  values of fl are given (or Z-om, P(3)b are given), the solution is 
uniquely determ ined.

If P (3, =  0, the problem  is identical w ith the problem  of th ee la s tica  [8 ]. For then, 
if we introduce the new variable 0, so th a t

£2 =  O.i, (9.43)

equation (9.42) can be w ritten  as

¿P(0,i) 3 — CO,, +  P 0 .„ i =  0. (9.44)

T he second integral of this equation is

iP tO a) 2 -  C = F  cosO. (9.45)

E quation  (9.45) is in the sam e form as the well known equation for the elastica. T he 
constan t F  can be determ ined by the boundary  conditions on the long edges; 0 is a 
physical q u an tity  which denotes the direction of the tangen t to the  m iddle surface 
in the strained  sta te .

T he bending of a rectangular sheet of paper into a cylindrical surface by forces 
and couples applied to two opposite edges m ay be considered as a problem  of the 
above type. T here is, however, an edge effect in the neighborhood of the free edges.

(c) T y p e  P 3 : 2 =  0, p > 2 .  F in i t e  d e f l e c t i o n  w ith  n e g l ig ib le  e x te n s io n  in
T H E  M ID D L E  S U R F A C E

General equations. As in ty p e  P I ,  P 2, we have

Mo =  m =  3, jo = 7  =  2 , ko =  k =  2. (9.46)

By substitu ting  the e series from (8.1), (8.4)-(8.6) in to  (7.2a, b ), (7.4a, b), we find
th a t  the lowest power in (7.2a, b) is e3, and in (7.4a, b) is e°. T he corresponding coeffi
cients give rise to  the  equations of equilibrium  and com patib ility  in th e  first approxi
m ation as follows:



K ( r X(<?<o)*A/?)i„ +  A(3™XS<l<.°)Mqmpyq<.o)TJi3 +  P°0)
1  - 2c

+  (05,*) I, +  2X%m h +    &TXq(o)r\Q(2)h =  o, (9.47a)
a  1  —  <J

— A ^ ^ x( q (o)T„q (o)j\/)3) |„ +  ?3a arq m r y A J ^ \ q m \ Shz) ¡p +  P (“} +  2 X^,io]h
a a

+  7 —— a"p(<2(V»)lP +  (a rXa “r +  2aaXa^)9(0)*x£>(2)7A =  0, (9.47b)
1 ~  <7 a
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nlo1<7(o)a7i0 — 0, (9.47c) nfo|nfol9(o)p09(o)aT — 0. (9.47d)
a

T he macroscopic tensors in (7.5a, b, c) can be w ritten  as

T *  =  { 7 3 7 -  < r Wg (0)*W(0)A^3} e 3 +  0(<d), (9 .48a)

L°e  =  fn |^ a TÛ f  g (0)x8̂ 3 +  0(e<), (9 .48b)

T “° =  { fA [i |(g (0)x./?)u +  Q(V))« 3 +  0(e<). (9.48c)
a

E quations (9.46a, b, c, d) form a set of six equations involving only th ree unknowns 
<?(o)<*0, so the  problem is overdeterm ined. L et us suppose th a t  q<o)ap can be elim inated 
from these six equations; we get a set of three conditions, which m ay be w ritten  in 
the  form

*<i) =  0, O '= 1 , 2 ,  3). (9.49)

E quations (9.49) represent the three necessary conditions on the external force sys
tem  in order th a t  a p late m ay undergo fin ite  deflection w ith negligible extension in 
the middle surface. A special example will be considered as follows.

Exam ple.  U nder w hat circum stances can a portion of a p late  of uniform thick
ness be ben t by norm al pressure into a cylindrical surface of finite cu rvatu re with 
negligible extension in the middle surface? T he norm al pressure is assum ed to be con
s ta n t along the generators of the cylinder.

In  th is case,
= <$) =  =  0. (9.50)

L et us choose the x2-axis in the direction of the generators of the assum ed cylindrical 
surface, and the x '-axis in the perpendicular direction. T hen we have as in the ex
am ple of T ypes P I ,  P2

<?(0)ii =  ^ ( x 1), 9 (0)12 =  9 (0)22 =  0, (9.51)

and the equations (9.47a, b) become

3 (J 1 9(j
P ii .n  H— —------ - D O ,3 -f  P (3) +  — ClQ%)h = 0, (9.52a)

2(1 — cr) 1 — tr

-  Z>(£22).i +  vfiQm.i  =  0. (9.52b)

In tegration  of (9.52b) gives
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where C\ is an integration constant. S ubstitu ting  fl2 from (9.53) into (9.52a), we get 

, n i (3 — cr)(crÄ) 3/2
W ' ! {(Cl +  $»)> '*} ,11 +  -i— — — —  (Cl +  Q°(2,)3' 2

2(1 — <r)Dl,£

+  F(3> +  7 3 7 ( 7 7  h m Q m  = 0< (9-54)

This is the required condition to  be satisfied by <2 (2), P(3)■
L et us assum e th a t  Q° and P° are of the  sam e order of m agnitude; then, since 

P (2) =  0 , we have
<&) =  0. (9.55)

Then the condition (9.54) becomes

(3 — <r)(o-A) 3/2
P  (3) =  C \n  =  constant. (9.56)

2(1 -  1

F urtherm ore, since the righ t hand side of (9.53) is constan t, the p late is ben t into a 
circular cylindrical surface; its  cu rvatu re  is given by

( 2(1 -  ff) P m ) w  
£2 =  — <—------- —  ̂  . (9 . 57)

I (3 -  a)D )

W hen P(’3) =  0, we get from (9.57) 12 =  0. Therefore we conclude th a t  it is impossible  
to  bend any portion of a p late  of uniform  thickness into a cylindrical surface of f in ite  
curvature with negligible extension in the  m iddle surface, if on th a t  portion of the
plate the surface force is of the fourth order, and the body force of the th ird  order,
w ith respect to  the thickness of the plate.

C O N C L U S IO N S

A system atic m ethod of approxim ation based upon the  thinness of the plate has 
been developed in th is paper. I t  is found th a t th in  plate problem s m ay be classified 
in to  twelve types (P 1 -P 12) according to  the  relative orders of m agnitude of p aß, 
q aß and h .  In  each case, the  problem  reduces to the solution of a set of partia l differ
ential equations, different for different types. These differential equations are given 
in T able I. Furtherm ore, the principal parts  of the macroscopic tensors and the orders 
of m agnitude of the external forces for each case are given in T able II . Among these 
twelve types, P 1 -P 3  represent the problem s of finite deflection, P 4 -P 8  the problem s 
of small deflection, P 9 -P 1 1  the problem s of very  small deflection and P12 the  prob
lems of zero deflection. T he problem s of finite deflection are discussed in section 9; 
these are new problem s, and a simple example for each of these types is solved. T he 
problem s of small deflections, very small deflection, and zero deflection are fam iliar; 
the detailed discussion of these types is therefore no t necessary. However, we may 
note th a t  the  theory  of generalized plane stress, the Lagrange-K irchhoff theory  of 
“sm all” deflection, the  von K ärm än theory  of “large” deflection and the m em brane 
problem can be derived respectively from Types P I 2, P l l ,  P 5 , P4 .
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A P P E N D IC E S

(i) Table I.—Table of the equations of equilibrium and compatibility of thin plate problems.

Types 3 P
(7.2a) (7.2b) (7.4b) (7.4a)

II 7; 1°3 7: 7: 7? 7? 77 7“ 7Î f 2 *7fri

PI 0 1 X X X X X X X X
P2 0 2 X X X X X X X X X X X
P2* 0 >2 X X X X X X X X X

P4 È1 1 X X X X X X X
P i 1 2 X X X X X X X X X
P6* ä l 22 +  l X X X X X X
PI* à l 25+2 X X X X .X X X X
P&* ä l >22+2 X X X X X X X

P9 2 >1 X X X X X X X X
P10 2 <p<2q X X X X X X
P ll à2 25 X X X X X X X

P12 00 >1 X X X

In th is table, the  following notation  is used:
T he term s occurring in the first equation of equilibrium  (7.2a) are

7° =  -  2A 8 ? q „ p A h , II =  f  A % j\q ^ h > )ypy, 7° =  A f t “Mq „ q raq Xih>
a

7° =  P° + ' 2Aq0j7i +  ((? '/!),„  I t  = — —-  a xXq ^ Q °h .
a 1 —  <T

T he term s occurring in the  second and th ird  equations of equilibrium  (7.2b) are 

7? =  2A£7x(p„xA )|p,
a

I t  =  ~  A & M ( q xuq xih>) I p ,

a a

7? = P- +  2X[“0]h +  a-»(Q«h) ip, 7? = ( a ^ a “ +  2a"«,
1 — CT a

T he term s occurring in the first equation of com patib ility  (7.4b) are 

J \  — 2n^jn^Ppy|0̂ , J  2 =  n(o)n[o]<3,pTr<2'aS-
a

T he term  occurring in the second and th ird  equations of com patibility  (7.4a) is

J al =  | «jr.
a

On account of the  conditions which hold in the various types of problem, some of 
these term s m ay be negligible in com parison w ith others. T he tab le  shows by the 
symbol ‘x ’ those term s which are to be retained in the first approxim ation for the 
various types. (The overdeterm ined problem s are denoted by  '* ’.) T hus for example, 
for problem s of T ype P I ,  we having the following equations of equilibrium  and com
patib ility  in the first approx im ation :



7? +  72 +  I t  =  0, I t  +  I t  +  I t  =  0, A  =  0, J al =  0.

These equations are w ritten  in term s of the  small principal p arts  instead of in term s 
of the finite coefficients of the lowest power in e (see (9.3a, b, c, d)).
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(ii) Table II.—Table of the external force system and the macroscopic tensors for 
various types of thin plate problems.

Types n0 n jo j ko k

J'oP L aP T a°

I ĵ a(3 rpot. u L f I 7 7 'pa 1 2

P I (
2 2 1 1 1 1 2 X X 3 X 2 X X

\ 2 2 1 1 1 2 2 X X 3 X 3 X X
P2 3 3 2 2 2 2 3 X X X 3 X 3 X X
P3 3 3 2 2 2 2 3 X X 3 X 3 X X

P4 I 2+2 2 2 +  1 1 1 2 +  1 2 X X 2+3 X 2+2 X
I 2+2 2 2 +  1 1 1 2+2 2 X X 2+3 X 2+3 X X

P5 4 3 3 2 2 3 3 X X 4 X 4 X X
P6 2+3 22+2 2+2 22 +  1 2S +  1 2+2 22+2 X X 2+3 X 2+3 X X
P7 2+3 2S+3 22+2 2+2 2 +2 22+2 22+3 X X X 2+3 X 2+3 X X
P8 2+3 22+3 22+2 2+2 2+2 22+2 22+3 X X 2+3 X 2+3 X X

P9 2+3 3 2+2 2 2 2+2 3 X X 2+3 X 2+3 X X
P10 2+3 P + 1 2+2 P P 2+2 P + 1 X X 2+3 X 2+3 X X
P ll 2+3 22 +  1 2+2 22 2g 2+2 22 +  1 X X 2+3 X 2+3 X X

P12 CO P + l CO P P 00 P + 1 X X OO 00

In  this table, the  following notation  is used:
T he term s occurring in the expression (7.5a) for the m em brane stress tensor T afi 

are denoted by

T f  =  2A(f;xp , x/!, T f  =  -  A ^ q u q Tuh \  T ?  =  — a « $ h .
1 — a

T he term  occurring in the  expression (7.5b) for the  bending m om ent tensor L aP 
is denoted by

i f  =

T he term s occurring in the expression (7.5c) for the shearing stress tensor T a0 are 
denoted  by

T? = Q °h ,  2T =  f  A” M(9x«A*) |r .
a

Furtherm ore,
n 0 = order of sum of the norm al forces acting on the upper and lower boundary  

surfaces, or order of P°, 
n  ■*= order of sum of the  tangential forces acting on the  upper and lower boundary 

surfaces, or order of P “, 
jo  =  order of norm al com ponent of body force, or order of Xf01, 
j  =  order of tangential com ponent of body force, or order of XJj,
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¿0 =  order of difference of norm al forces acting on the  upper and lower surfaces, 
or order of <2°,

k =  order of difference of tangential com ponents of forces acting on the upper and 
lower boundary surfaces, or order of Qa,

t =  order of m em brane stress tensor T aß,
u  =  order of bending m om ent tensor L aß,
I = order of shearing stress tensor F “°.
T his table gives (a) the values of n 0, n, j 0, j ,  k 0t k, t, u, I, (b) the principal term s 

in the  expressions for T aß, L aß, T a0 (denoted by ‘x ’). T he term s not m arked w ith ‘x ’ 
are negligible in com parison w ith those principal term s. I t  will be noted th a t there are 
two lines in the  table for P I  and also for P4 . T his is because, in each case, k  m ay have 
two values.

For example, in the  case of T ype P I ,  we have for T aß, L aß,

T °ß =  T f  +  T f ,  L °B =  L f ,
while for P “°,

P a0 =  P f  (if k =  1 ),

T ao = t ? +  T t  (if k = 2).

(To be continued)
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EFFECT OF A SMALL HOLE ON THE STRESSES IN A 
UNIFORMLY LOADED PLATE*

BY

MARTIN GREENSPAN 
National Bureau of Standards

1. In troduction. T he N ational Bureau of S tandards has recently  m ade tes ts  on 
steel colum ns having perforated cover p la tes .1 M ost of the perforations were of so- 
called ovaloid shape, i.e., th a t  of a  square w ith a semi-circle erected on each of two 
opposite sides. T he tests on the columns included experim ental determ inations of the 
d istribution of stress in the neighborhood of a perforation, and the results obtained 
aroused in terest in the developm ent of a theory  for the d istribu tion  of stress in a large, 
uniform ly loaded plate  having a single ovaloid hole.

In this paper an exact solution to  this problem  is obtained for a hole having any 
boundary of which the equation can be expressed in the param etric form

x — p  cos /3 +  r cos 3/3, y  = q sin )S — r  sin 3/3. (1)

T he plate is supposed in a s ta te  of generalized plane stress, the  stress2 a t  points re
m ote from the hole having the  constan t nor
mal com ponents <rx — Sxy Gy ‘Sifi and the con
s ta n t shearing com ponent t x v = T xv .

Eq. (1) represents a closed curve having 
sym m etry  abou t the «-axis and ab o u t the 
y-axis. For certain  values of p , q, and r the 
curve is simple, i.e., i t  does not cross itself. 
By ad ju stm en t of the  values of p, q, and r a 
varie ty  of simple closed curves is obtained, 
including a good approxim ation to an  ovaloid 
and a  good approxim ation to  a square w ith 
rounded corners, as well as exact ellipses 
(r =  0 ) of any  eccentricity . T he approxim ate 
ovaloid obtained by taking

■y — ¿ .w j ,  * - 1 . 1 0 8 ,  r =  -  0.079, (2)

is shown com pared to the actual ovaloid in Fig. 1. T he approxim ate square obtained 
by taking

p = q =  1, r  =  — 0.14, (3)

* Received Nov. 13, 1943.
1 Ambrose H. Stang and Martin Greenspan, J. Research NBS 28, 669, 687; 29, 279; 30, IS, 177, 411 

(1942-43).
5 The term stress is used throughout to denote the mean value of the stress over the thickness of the 

plate.

F ig . 1. Actual and approximate ovaloids. 
The dashed line represents the actual 

ovaloid and the full line the approximate oval
oid of Eqs. (1) and (2).
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is shown in Fig. 2. T he sides of the square are 
parallel to the axes of coordinates. By tak ing

p = q =  1, r =  0.14, (4)

the sam e square, b u t w ith the  diagonals parallel 
to the axes of coordinates, is obtained. T he 
radius of cu rvatu re  a t  the m id-point of the fillet 
is ab o u t 0.086 tim es the length of the side of the 
square.

2 . Curvilinear coordinates. If two sets of 
curves are defined by

Fig. 2. The approximate square of 
Eqs. (1) and (3).

/ i O ,  y ) =  a, f 2(x, y ) =  P, (5)

then a pair of values (a, /3) defines the points a t 
which the  corresponding curves (5) intersect, 
and (a , /3) are curvilinear coordinates in the 
x, y-plane. As a special case, the  functions of Eq. (5) m ay be obtained by equating  
real and im aginary p arts  of both sides of

w =  /(z), (6)

where w  =  and z =  x-\- iy .  In  this case the transform ation from the w-plane to
the z-plane is conformal and the two families of Eq. (5) are orthogonal. T he expres
sion,

dz 1
(7)

dz 1
 = — e'*,
dw li

defines the stretch ratio, 1 /h ,  of the transform ation, and gives ip, the inclination of the 
curve, ¡3 =  constan t, to  the x-axis.

In  the absence of body forces, the condition th a t  the stresses satisfy the conditions 
of equilibrium  is th a t  the norm al com ponents, tra and o>, and the  shearing com ponent, 
r O0, can be derived from a stress function, p,  by m eans of the relations3

d2p

  « . , /■
= It2

h2

Tai3 =  — h2

a/32

d24>

da2

d2<j>

1 / d p  dll2 dp dh2\

2 W  a/3 da

1 /d p  dh2

2 \a/3 a/3

dp dh2\  

da da )

2 V

dp dh2 dp dh1

a/3 da da dfl > I
(8)

dad/3

and the  condition th a t  the expressions (8) satisfy the com patib ility  conditions is
L 2

V'P
/ a 2 a2

\3 x 2 d y 2

/ a 2 a2 \  / a 2 a 2 \
p =  h2 ( ------- 1---------) li2 ( ------- 1---------) p — 0.

\ d a 2 d&2)  \ d a 2 dp2)

If a function, F, satisfies Laplace’s equation,

V2F  =  0,

(9)

(10)

* A. E. H. Love, A treatise on the mathematical theory of elasticity, 4th ed., Cambridge, 1927, p. 91.



Fig. 3. Coordinate system for problem of ovaloid hole.

for the ovaloid is obtained. T his system  is shown in Fig. 3. T he appropriate  system s 
for the approxim ate square w ith  rounded corners are sim ilarly obtained. F igure 4 
shows the  system  corresponding to  the case of Eq. (3) and Fig. 2, and Fig. 5 shows 
the system  corresponding to  the case of Eq. (4).

then F, xF , yF ,  and p2F =  (x2+ y 2)F  satisfy Eq. (9). Functions which satisfy Eq. (10) 
are called harm onic functions, those which satisfy Eq. (9), biharm onic functions.

3. T he coordinate system . T he solution of the problem is simplified by the use 
of a coordinate system  (a , [3) such th a t Eq. (1) of the boundary of the hole reduces 
to  the  form a = a 0. Such a system  is obtained by w riting for Eq. (6)

z — ew T  abe~w +  ac3e~3w, (11)

or, separating  the  real and im aginary parts,

x  =  (e" +  abe~a) cos B +  ac3e~3a cos 3/3,
(12)

y  = (ea — abe~a) sin /3 — ac3e~3a sin 3/3.

For constan t a , say ao, Eq. (12) reduces to  Eq. (1) for the boundary of the  hole, where

p = ca • +  abe~a\  q =  e“« — abc~a°, r =  ac3e_3a«. (13)

From  Eqs. (2) and (13) it is easily calculated th a t  for the approxim ate ovaloid of 
Eqs. (1) and (2),

=  1.585, ab = 0.758, ac3 = -  0.314.

By keeping ab and ac3 fixed and varying a  and /3 the appropriate  coordinate system

/ 
ea 
/
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1944] EFFECT OF SMALL HOLES ON STRESSES IN PLATES 63

Fig. 4. Coordinate system  for problem of square hole w ith rounded corners, sides of 
square parallel to Cartesian axes.

T he coordinates (a, /S) approach polar coordinates (p, 6) for large a  as follows:

lim a  =  log p, lim /3 =  0. (14)
cr =  oo cr — oo

T he values of li2 and its derivatives m ay be com puted as follows. From  Eq. (11)

dz
=  ew — abe~w — 3ac3e~3w.

dw

Hence from Eq. (7),
l r 2 =  e 2 a  +  a 2 £ 2 e - 2 a  _J_ 9 , ^ - 6 «  _  2ab COS 2/3 

+  6a3bc3e~ia cos 2/3 — 6ac3e~2a cos 4/3,

h \ e 3a — a2b2e~2a — 27 a2c3e 6a 

12a2bc3e~ia cos 2/3 +  6ac3e~2a cos 4/3),

1
 =  — h4(2ab sin 2/3 — 6a3bc3e~ia sin 2/3 +  12acV"2a sin 4/3).
2 d§
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4. The boundary conditions. T he sta tem en t of the problem  m ay be recapitu lated  
as follows. T here is given a  large p late containing a small hole of the shape given by 
Eq. (1). T he edge of the hole is free from stress. T he p late  is in a s ta te  of (generalized) 
plane stress and the com ponents of (mean) stress a t  points rem ote from the hole are 
0 x = S x, &v = S u, TXy = T xu; or in polar coordinates,

s x +  s v s2  

2 2

S x — S u
C0 =

T p$

cos 26 -j- T xy sin 20,

cos 20 — T Xy sin 20,

■Sx -  Sy
sin 20 +  Txy cos 20.

(16)

T he boundary conditions m ay finally be sta ted  as 

=  r „3 =  0 , (a =  a B),

S x + S y  , 
<Ta = ------------- fi

<7,3

T a/S

2

S  X +  Sy 

2

Sx

2

Sx — S,

cos 2ß +  Txy sin 2/3,

cos 2/3 — T Xy sin 2/3,

sin 2/3 +  Txy cos 2/3, (a — co).

(17)

T he last th ree of Eq. 17 are obtained by substitu tion  of Eq. (14) into Eq. (16).
5. T he stress function. From  the harm onic functions ea sin /? and e~a sin /3 m ay be 

constructed  the biharm onic functions y e a sin /3 and ye~a sin /3. From  Eq. (12)

y = ea sin /3 — abe~a sin /3 — ac3e~3a sin 3/3.

Hence

yea sin /3 =  §e2a — |e 2“ cos 2/3 — %ab +  %ab cos 2/3 +  -|ac3e-2“ cos 4/3 — %ac3e~2a cos 2/3,

ye~a sin ¡3 =  § — § cos 2/3 — | abe~3a +  \abe~2a cos 2/3 +  |  ac3e~ia cos 4/3 — \a c 3e~ia cos 2/3.

By dropping the harm onic term s from each of these functions and m ultiplying by 2
the  two biharm onic functions,

<t>a = e2a +  ab cos 2/3 +  ac3e~3a cos 4/3,

4>b = — cos 2/3 — abe~3a — ac3e~4a cos 2/3,

are obtained. T he biharm onic function.

4>c — ye~a cos /S +  xe~a sin /3 =  sin 2/3 — ac3e~ia sin 2/3

is obtained in sim ilar fashion.
T he biharm onic function p2 m ay be obtained from Eq. (12):

p2 =  a;2 +  y 2 =  e2a +  a2b2e~2a +  a2c6e~6“ +  2ab cos 2/3 

+  2a2bc3e~ia cos 2/3 +  2ac3e~2a cos 4/3.
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Fig. 5. Coordinate system for problem of square hole with rounded corners, 
diagonals parallel to Cartesian axes.

T he non-harm onic stress functions required by th is problem  are

<f>i = 2 <j>a — 2ab4>b — o2<

4>2 —  —  <£&.

and
4> 6 =  4>c.

or
<j>i =  e2“ +  a2b2e~2a — a2c6e~6" +  lab cos 2/3,

<t>2 — abe~2a +  cos 2/3 +  ac3e~ia cos 2/3,
and

<pi — sin 2/3 — ac3e~ia sin 2/3.

In  addition, the harm onic stress functions,

<t>3 =  e2a cos 2/3, <£4 =  e~2“ cos 2/3, =  a, <t>i — e2“ sin 2/3, and 4>s =  e~2“ sin 2/3

will be required.
T he com plete stress function m ay be w ritten

</> =  Cl<f>l +  C2<t>2 +  C 3(p3 +  Ctsf>i +  Cs<i>5 +  Ca<t>6 +  +  Cs4>Si (18)

where the C’s are to  be adjusted  so th a t the stresses derived from 4> m eet boundary 
conditions (17). Also



dtp
— = 2Ci(e2" — a2i 2e~2“ +  3a2c6e-6“) — 2Ci(abe~2a +  2ac3e~ia cos 2/3) 
da

+  2Cze'la cos 2/3 — 2C4e-2“ cos 2/3 +  CB +  4C6ac3e~4° sin 2/3

+  2C7e2“ sin 2/3 — 2C8e-2“ sin 2/3, (19a)

d<p
— =  — 4Cia6 sin 2/3 — 2C2(sin 2/3 +  ac3e~4“ sin 2/3)
3/3

— 2Cse2“ sin 2/3 — 2C4e-2“ sin 2/3 +  2Ce(cos 2/3 — ac3e~ia cos 2/3)

+  2C7e2“ cos 2/3 +  2C8e-2" cos 2/8, (19b)

d2tp
 =  4Ci(e2“ +  a2d2c~2“ — 9o2c6e~6“) +  4C2(ade-2a +  4ac3e~4“ cos 2/3)
da2

+  4Cse2" cos 2/3 +  4C4e_2a cos 2/3 — 16C6<zc3e~4“ sin 2/3

+  4C-e2“ sin 2/3 +  4C8e-2“ sin 2/3, (19c)

d3tp
 =  — 8Ciab cos 2/3 — 4C2(cos 2/3 +  ac3e-4“ cos 2/3)
d/32

— 4Cse2“ cos 2/3 — 4C4e~2“ cos 2/3 — 4Ce(sin 2/3 — ac3e~ia sin 2/3)

— 4C-e2“ sin 2/3 — 4C8e-2a sin 2/3, (19d)
d-tp
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8C2acse 4" sin 2/3 — 4C3fi2" sin 2/3 +  4C4e~2“ sin 2/3
dad/3

+  8C6ac3e-4a cos 2/3 +  4C7e2“ cos 2/8 — 4C8e-2“ cos 2/3. (19e)

6. T he stresses. Substitu tion  of Eqs. (15) and (19) into Eq. (8) gives the stresses 
in the form

O'er
hA

h 4

2Ci(dio +  -412 cos 2/3 +  -di4 cos 4/3)

+  2C2(/l2o +  4  22 cos 2/8 +  d 24 cos 4/3 +  4 2s cos 6/3)

+  2Cs(d3o +  A 32 cos 2/3 -f- / l 34 cos 4/3 +  /136 cos 6/3)

+  2C4( d 40 +  cos 2/3 +  A n  cos 48 +  d 46 cos 68)

- ( -  6̂ b(/1 so +  A m  c o s  28 +  464 cos 48)

— 2C6(d 62 sin 28 +  d 64 sin 48 +  4 66 sin 68)

— 2C7( 4 72 sin 28 +  /174 sin 48 +  4 76 sin 68)

— 2C8(/182 sin 28 +  4  84 sin 48 +  4 86 sin 68), (20)

2Ci(/3io +  -812 c o s  28 +  2 3 i 4 ccs 48 +  ^ 5 xe cos 68)

+  2C2(232o +  B 22 cos 28 +  2324 cos 48 +  2326 cos 68)

— 2C3(2?3o +  2?32 cos 28 +  H34 cos 48 +  2*36 cos 68)

— 2C4(2340 +  B u  cos 28 +  2344 cos 48 +  J 5 46 cos 68)

—  Cs(2?6o +  B m  c o s  28 +  2364 cos 48)

— 2Cp(B$2 sin 28 +  2*64 sin 48 +  2*66 sin 68)

+  2C7(2372 sin 28 +  2374 sin 48 +  2376 sin 68)

+  2C8(5 82 sin 28 +  2J84 sin 48 +  B s6 sin 68), (21)
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r aa
  =  12Ci(Du sin 2/3 +  D u  sin 4/3 +  D u  sin 6/3)
h4

— 2C2(Z>22 sin 2/3 +  Do., sin 4/3 +  Z>2g sin 6/3)

+  2C3(D32 sin 2/3 -f- D 34 sin 4/3 +  D36 sin 6/3)

— 2C4(/?42 sin 2/3 +  -D-u sin 4/3 +  D i6 sin 6/3)

+  2C5(Z>62 sin 2/3 +  Z>6.i sin 4/3)

— 2C6(Z>6o +  D m cos 2/3 +  D 0.i cos 4/3 +  D M cos 6/3)

+  2Cv(i27o Z?72 cos 2/3 +  .D74 cos 4/3 +  £>76 cos 6/3)

— 2Cs(DSo 4- D m c o s  2/3 +  D 84 cos 4/3 +  Dm c o s  6/3), (22)

in which

A 10 =  e4“ +  4a2i 2 -  (24a2c6 +  18a3i 2c3 -  a4i 4)e~4“ +  24a4b V e ~ 8a -  81 a4cl2e~42a,

A u  =  — 4 [aie2“ — (3a25c3 — a3i 3)e-2“ +  (9a35c6 — 3a4i 3c3)e-6“ +  9a45c9e~10“],

/114 =  2(3ac3 +  a2i 2 — 6 a3b2c3e~4a +  9a3c9e-8“),

A 20 =  2a i  — (6a2bc3 — a3b3)e~4a +  30a35c6e-8“,

4  22 =  — 2 [e2ot — (4ac3 — a2b2)e~2a -f- 6(a2c6 — a3i 2c3)e-6“ — 18a3c9e~10a],

A 2i = ab — 8a2bc3e~4a +  9a35c6e~8“, 4 26 =  — 6a2c6e-6“,

4 30 =  3aie2“ -  15a25c3e-2“, A m =  -  (e4“ -  15ec3 +  3a2i 2 +  45a2c6e-4“),

A 3 4 =  a ie2“ — 9a2bc3e~2a, 4 36 =  3ac3,

Ato =  3aie~2“ — 3a2bc3e~6a, Am  =  — [3 — (9ac3 — a2i 2)e-4“ — 9a2c6e-8“],

H 44 =  aie-2“ +  3a2ic3e-6“, A i6 =  — 3ac3e-4“,

-460 =  e2“ — a2b2e~2a — 27 a2c6e-6“, 4&2 =  — 2 a2bc3e~4a, A n  =  6ac3e-2“,

^62 =  2[e2“ +  (a2i 2 +  4ac3)e-2“ +  6a2c6e-6“ +  18a3c9e-10“],

yl«4 =  — (oi — 2a2bc3e~4a — 9a3ic6e-8“), 4 66 =  ~  6a2c6e-6“,

4 72 =  e4“ +  3(a2i 2 +  5ac3) +  45a2c6e-4“, ^174. =  — (abe2a — 9a2bc3e~2a), A n  = — 3ac3,

4  82 =  3 +  (a2i 2 +  9ac3)e-4“ — 9a2cee~8a, A Si = — (abe~2“ +  3a2bc3e~6a) , A 83 =  3ac3e-4“,

B 10 =  e4a +  4a2i 2 +  (24a2c6 +  6a3b2c3 +  a4i 4)e-4“ -  24a4i 2c6e-8“ -  81 a4cI2e-12“,

B u  =  — 4 [aie2“ — (3a2bc3 — a3b3)e~2a — 9a3icGe-6“ +  18a4ic9e-10“],

B u  = -  2(9ac3 -  a2b2 +  6a3i 2c3e-4“ -  45s V r 8»), 23i6 =  12a2ic 3e-2“,

£20 =  2ab -  (6a2bc3 -  a3i 3)e-4“ +  6a3bc8e~8a,

B m =  2[2(ac3 — a2i 2)e-2“ — 3(4a2c6 — a3i 2c3)e-6“ +  9 a3c9e~10“],

£24 =  ab — 16a25c3e-4“ +  9a3bc6e~Sa, B 26 — 6 (ac3e~2a — 2 a2c6e~8a),

B i  0 =  3abe2ct — 15a25c3e~2“, B 32 = — (e4a — 15ac3 +  3a2b2 +  45a2c6e-4“),

B 3 4 =  abe2a — 9a2bc3e~2a, B 33 =  3ac3,

£40 =  3abe~2a — 3a2bc3e~8a, Bm  =  — [3 — (9ac3 — a2b2)e~4a — 9a2c6e-8“],

£44 =  aie-2“ +  3a2ic 3e~6“, £ 46 =  — 3ac3e-4“,

736o =  e2“ — a2b2e~2a — 27a2c6e-6“, £ 62 =  — 12a25c3e-4“, B n  = 6ac3e-2“,



B m = 2 [2 ac3e-2“ +  3(a3b2c3 -f 4a2c6)e-5“ +  9 aV e-10“],

B 6i =  — (ai +  4 a2ic 3e-4“ — 9a3ic 6e-8“), B 06 =  — 6(ac3e-2“ +  2 a2c6e-6“),

•#72 =  e4a +  3(5ac3 +  a2i 2) +  45a2c6e-4“, / i74 =  — (aie2“ — 9a2ic 3e-2“), j376 =  — 3ac3, 

#82 =  3 +  (9ac3 +  a2i 2)e-4“ — 9a2c6e-8“, £?84 = — (abe~2a +  3a2bc3e~3a), B $6 = 3ac3e-4“, 

D n  = (10a3ic 6 +  a4i 3c3)e-6“ — 3a‘'bc9e~10a, D u  =  2(ac3 +  3a3c9e-8“), D u  — — a2bc3e~2a, 

£>22 =  e2“ +  (2ac3 +  a2i 2)e-2“ — 3(2a2cG +  a3i 2c3)e-6“ +  9 a3cV~10“,

£>24 =  4a2ic 3e-4“, £>26 =  3(ac3e-2“ +  a2c6e-6“),

£>32 =  e4“ +  15ac3 +  3a2b2 +  45a2c6e-4“, £>34 =  — (aie2“ — 9a2ic 3e~2“), £>36 =  — 3ac3, 

£>42 =  3 +  (9ac3 +  a 2i 2)e_4“ — 9a2c°e-8“, £>44 =  — (aie-2“ +  3a2bc3e~6a) , D u  =  3ac3e-4“, 

£>52 =  a i  — 3a2bc3e~ia, £>64 =  6ac3e-2“, £>60 =  12a3ic 6e-8“,

£>62 =  -  [e2“ -  (2ac3 +  a2i 2)e-2“ -  3(2a2c6 +  a3i 2c3)e-6“ -  9a3c9e-10“],

£>64 =  4a2ic3e-4“, £>66 =  -  3(ac3e-2“ -  a2c6e-6“),

£>70 =  3(aie2“ -  5a2ic3e-2“) , £>72 =  -  [e4“ -  3(5ac3 -  a2i 2) +  45a2c6e-4“],

£>74 =  aie2“ — 9a2bc3e~2a, £>76 =  3ac3,

£>so =  3 (aie-2“ -  a 2ic3e-6“), £>82 =  -  [3 -  (9ac3 -  a2i 2)e-4“ -  9a2c6e- 8“J,

£>84 =  aie-2“ +  3a2bc3c~6a, £>se =  — 3ac3e-4“.

B oundary conditions (17) are satisfied by substitu tion  for the C's in Eqs. (20), 
(21), and (22) of
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XI/»

(23)

Ci =  1 (5 , +  S„), C3 =  — } (5 , -  S„), C7 =  -  *5%
-  2(1 -  ac3e- 4“o)C2 =  ai(S* +  S„) -  «*“.(5 , -  5„), ■

4(1 -  ac3e- 4“o)C4 =  4a2ic 3e- 2“o(5'I +  S v) -  (e4“» +  3ac3)(S I -  S v),

— 2(1 — ac3e- 4“°)C5 =  [e2“» — (ac3 — a2i 2)e-2““ +  (3a2c6 +  a3i 2c3)e-6“»

-  3a3c9e- 10“o](5I +  S„) -  2ab(Sx -  S u),

(1 +  ac3e- 4“»)C6 =  e2“o£zy, — 2(1 +  ac3e-4“<OCs =  (e4“» — 3ac3) T zy.

T he case ac3e-4“° =  + 1 , for which some of the C’s in Eq. (23) are infinite, does not
correspond to  a simple curve for a = a 0 and hence is excluded.

7. S tresses along the inner boundary. T he tangential stress in the boundary 
a  =  «o is

O'! =  (*7̂ )0—a0*

However, it  is sim pler to com pute it as follows. From  Eq. (8),

<7a -f- <70 d24> d2<j)

h2 d a 2 d/32

Hence from Eq. (19),

------------ =  4Ci[e2“ T  a2i 2e-2“ — 9a2cGe-6“ — 2ai cos 2/31
h2

+  4C2[aie-2“ — (1 — 3ac3e-4“) cos 2/8] — 4Ce[l +  3ac3e-4“] sin 2/3. (24)
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Fig. 6. Ovaloid hole, tension parallel to long axis. Distribution of stress along ovaloid boundary. 
The dashed curve shows the distribution of stress for the case of an elliptical boundary having the 

same ratio of major to minor axis and the same rectified length as the ovaloid boundary'.

Fig. 7. Ovaloid hole, tension parallel to short axis. Distribution of stress along the ovaloid boundary. 
The dashed curve shows the distribution of stress for the case of an elliptical boundary having the 

same ratio of major to minor axis and the same rectified length as the ovaloid boundary.
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F ig . 8. “S q u a re” hole, tension parallel to  side.
The dashed curve shows the distribution of stress for the case of a circular boundary having the same 

rectified length as the “square” boundary.

For a  =<x0, a* =  0 ; hence

Cl =  i>(| =  (do “H
or from Eq. (24),

—  =  4Ci[e2“° -f- a252e_2a» — 9 a V e ~ 6ao — 2ab cos 2/3]

0 +  ACi\abe~2a<‘ — (1 — 3ac3e- 4l,o) cos 2/3] — 4Ce[l +  3ac3e-4a»] sin 2/3, (25)

in which ho denotes the  value of h for a  =  a 0.
S ubstitu tion  into Eq. (25) of h 0 from Eq. (15), of Ci, Co, and C6 from Eq. (23), 

and replacem ent of the constan ts a, b, c, and a 4 by  their values obtained from Eq. (13) 
gives, finally

[(p 2 +  6rq) sin2/S +  (ç2 +  6rp) cos2 0 — 6r(p +  q) cos2 2/3 +  9r-]at

=  (5 , +  S J ip *  sin2 /S +  ?2 cos2 /3 -  9r2) -  T % p  +  ?) 2 - t l . q + . 6r sin 2p
p +  q +  2 r

(.p 2 -  ?2) (5 , +  S„) -  (A +  g)2(5 i -  5 ,) r; „ , . , „ -, _
 — —     [{p -  3r) Sin- /3 -  (q -  3r) cos2 /S]. (26)

p +  q — 2 r
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8 . Som e special cases. T he com ponents of stress a t  any  point in the p late m ay be 
com puted from Eqs. (20), (21), (22), and (23). Of especial interest, however, are the 
values of a lt the tangential stress along the inner boundary, a  = a 0, a t  points of which 
the num erically g reatest norm al and shearing stresses m ay be expected to occur.

In th is section the  values of cr( are com puted and shown for several simple cases.
Case 1 (Fig. 6). Ovaloid hole, tension parallel to long axis. In this case a t is ob

tained from Eq. (26) w ith S y = T xy =  0 and p , q, and r as given by Eq. (2). Then

at _  4.915 -  7.133 cos 2/3

S x 3.723 — 2.316 cos 2/3-f-cos 4/3

Case 2 (Fig. 7). Ovaloid hole, tension parallel to short axis. H ere S x = T xy =  0. Then

<7, 1.079 +  7.517 cos 2/3

S y 3.723 — 2.316 cos 2/3 -(- cos 4/3

Case 3 (Fig. 8). “Square” hole, ten 
sion parallel to  side. Here S y = T xy = 0 
and p, q, and r are given by Eq. (3). 
Then

a% .981 -  2.967 cos 2/3 

S x ~  1.401 +  cos 4/3

at ■ 981 — 1.606 cos 2/3 

S x 1.401 — cos 4/3

/
/ / /

F ig. 9. “Square” hole, tension parallel to diagonal. 
The dashed curve shows the distribution of stress 

for the case of a circular boundary having the same 
rectified length as the “square” boundary.

In each of Figs. 6 , 7, 8 , and 9 the 
values of a t/ S x or a t/ S y are plotted 
along the developm ent of one qu ad ran t 
of the inner boundary of the plate. For 
comparison, there is shown by m eans of 
the dashed curve in each figure the 
d istribution of a t/ S x or a t/ S y for the 
case of an elliptical boundary having 
the same ratio  of m ajor axis to minor 
axis and the same rectified length as 
the actual boundary.

Case 4 (Fig. 9). “S quare” hole, ten 
sion parallel to  diagonal. H ere S y — T xy 
= 0 and p,  q, and r  are as given by 
Eq. (4). Then
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SOME PRESENT NONLINEAR PROBLEMS OF THE ELECTRICAL 
AND AERONAUTICAL INDUSTRIES1

B Y

ERNEST G. KELLER 
Research Laboratory, Curtiss-Wriglit Corporation

1. Introduction. T he accelerated growth of research in the  field of nonlinearity  is 
due to different causes. T he general advancem ent of science requires increasingly 
more precise expressions for the laws of science. A ccurate nonlinear equations fre
quently  d ep art from the linearized or postulated  linear equations which have been 
previously used for approxim ate results. T he quest for perfection and generalization 
and the love of difficult investigations by professional m athem aticians play a large 
part in this grow th. A nother incentive is the  increasingly exacting requirem ents of 
m odern m anufacturing. These requirem ents are born of the com petitive necessity of 
producing ever im proved m achines and equipm ent in the  m ost economical m anner. 
T he g reatest incentive is necessity. M anufactured  equipm ent and devices m ust be 
designed to work.

A nonlinear problem 2 has been defined as “one which, when form ulated m athe
m atically, reduces to  (one or) a system  of differential, integral, or integro-differential 
equations such th a t  a t  least one of the th ree quantities, a derivative, an integral, or 
a dependent variable, is involved transcendentally  or algebraically to a power o ther 
th an  the first in a t least one equation of the system  or in a t least one boundary  con
dition of the system .” Of course, in dealing w ith applied problems, a physical defini
tion independent of all m athem atical concepts is preferable, b u t such is difficult to 
form ulate.

Nonlinear problem s resolve them selves into two general types, continuous and dis
crete. T he first type deals w ith the behavior of quan tities  in a  field or in a t  least one 
continuous region of space and, more often th an  not, reduces m athem atically  to  sys
tem s of nonlinear partia l differential equations. Problem s relating prim arily  to  this 
field have been treated  by D r. Theodore von K árm án in his Josiah W illard Gibbs 
M em orial lecture .3 This paper is bo th  a milestone and a beacon of progress in th a t 
it is an  adm irable exposition and inventory  of the nonlinear problem s of continuous 
fields and a t  th e  sam e tim e an inspiration and invitation to  both  the  engineer and 
m athem atician  for fu rther advancem ent in th is difficult field. Am ong other subjects, 
the von K árm án lecture trea ted  relaxation oscillations, subharm onic resonance, non
linear problem s in the theory  of elasticity  in which the  hypotheses of (a) small 
deflections are abandoned, (b) H ooke’s law no longer holds, p lasticity , hydrodynam 

1 A Symposium Address before the American Mathematical Society at Stanford University, April 
24, 1943. Manuscript received Aug. 16, 1943.

* E. G. Keller, Analytical methods of solving discrete nonlinear problems in electrical engineering, Trans
actions of the American Institute of Electrical Engineers, 60, 1194 (1941).

s Theodore von Kiirrndn, The engineer grapples with nonlinear problems. Bull. Am. Math. Soc., 46, 
615 (1940).
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ics; and aerodynam ics of (a) ideal fluids, (b) viscous fluids, and (c) compressible 
fluids. T he bibliography of the paper contains 178 entries.

T he second type of nonlinear problem  is called discrete. D iscrete nonlinear prob
lems are characterized by the fact th a t  they  possess only a finite num ber of degrees 
of freedom. T hey  are frequently  reducible m athem atically  to system s of nonlinear 
ordinary  (to tal) differential equations or to  system s of nonlinear integral equations.

2 . N ature of industrial discrete nonlinear problems. Solutions of nonlinear prob
lems in industry  are usually in the “sm all” ; i.e., a solution of a system  is not required 
for every m agnitude w hatsoever of the param eters involved. In  the solution of such 
problem s the  g reatest single body of theory  contributing to nonlinear analysis of 
discrete system s is th a t  which grew o u t of the a ttem p ts  of the great French and G er
m an m athem aticians of the last cen tu ry  to solve the problem of three bodies. W hile 
their objective, in its com plete generality, was never realized, the pure m athem atics 
developed (theory  of differential equations, convergence, dom inant functions, singu
larities, rem ovable singularities, etc.) is today directly  applicable in the study  of non
linear equations of electrical circuits, ro ta ting  electrical machines, arid various non
linear dynam ical and aerodynam ical devices. T he two second largest bodies of theory  
are those of nonlinear integral equations as developed by T. Lalesco4 and o thers5 and 
the m ethods of G alerkin6 and R itz along with the modifications of these techniques .7

T here are a t  least three salient characteristics of nonlineat engineering problems 
which distinguish them  from purely theoretical problems. F irst, oscillograms, differ
ential analyzer solutions ,8 or o ther records frequently  indicate the na tu re  of the  solu
tion of the m athem atical system s in question. Such mechanical or electrical solutions 
for the sam e system  often differ so much am ong themselves th a t there is the risk of 
concluding erroneously th a t  the solution is not unique. (For example, the differential 
equations which yield the two solutions represented in Figs. 3 and 4 also possess 
sinusoidal solutions. Y et the solutions are unique; i.e., the solution in (4) is identical 
w ith the  sinusoidal solution.) Of course, there are system s which do not possess a 
unique solution. In  general, even when a solution is unique it m ay have so m any 
m anifestations th a t it  is often necessary to in tegrate the system  to determ ine the 
effect of the various param eters involved. A second characteristic of industrial non
linear problem s is th a t  frequently  the m ethods of m athem atics are no t powerful 
enough to yield a com plete solution of the problem in sufficiently simple form to be 
usable. T ricks and devices, born of physical concepts, m ust guide the m athem atics 
if a usable solution is to  be a tta ined . T he m athem atics is surely necessary and it is 
ju st as surely not sufficient. T he solution is m athem atics plus. A th ird  distinction of 
industrial nonlinear problem s is the  fact th a t  the derivation of the equations of per
formance requires, in addition to  a  knowledge of m athem atics, m athem atical physics,

4 V. Volterra, Leçons sur les équations intégrales, Gauthier-Villars, Paris, 1913, p. 90.
5 H. Galajikian, Bull. Amer. Math. Soc., 19, 342 (1913); also Ann. of Math., 16, 172 (1915); 

E. Schmidt, Math. Ann., 65, 370 (1908).
* A. N. Dinnik, Galerkin's method for determining the critical strengths and frequencies of vibrations, 

Aeronautical Engineering, U.S.S.R., 9, No. 5, 99 (1935). Also W. J. Duncan, Galerkin's method in mechan
ics and differential equations, R&M 1798 (1938).

7 For additional bibliographies see references 2 and 3 above, also the book, E. G. Keller, Mathematics 
of modern engineering, vol. II, Wiley and Sons, New York, 1942, pp. 303-304. These list a total of 302 
papers; and these papers in turn possess bibliographies.

* V. Bush and H. L. Hazen, Integraph of differential equations, J. Franklin Inst., 204, 575 (1927).
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and engineering, inventive ab ility  in thought. A system  of equations m ay be an in
vention of the highest order. I t  is not always necessary to  in tegrate  a system  of non
linear equations. Often it is necessary only to  determ ine under w hat conditions the 
physical system  is stable. Of course, no single s tab ility  criterion exists for nonlinear 
system s such as exists for linear system s. W hen a  solution of a nonlinear system  can
not be obtained w ith sufficient rap id ity  or when it can be obtained but is  worthless 
because the time consumed in  apply ing  it  is loo great, i t  m ay be possible to  obtain  the 
inform ation desired by in tegrating  a dom inant and a  “subord inate” system  such th a t 
the solution of the actual problem  is bounded or lim ited by the solutions of the dom i
n an t and subordinate system . T he use of dom inant and “subord inate” system s will 
be clear in the following problems.

3. Some represen ta tive d iscrete nonlinear problem s of industry. In  th is paper a 
num ber of representative nonlinear system s are trea ted  which illustra te  the  princi
ples enum erated in the last section. These system s are either original, appearing here 
for the first tim e, or else of very  recent date. Some of them  perta in  to electrical m anu
facturing, others to  aircraft developm ent. A lthough, as s ta ted  above, the  derivation 
of the equations of a  system  is often more im portan t than  the solution, none of the 
equations considered are derived here. Some system s are derived in the lite ra tu re  and 
to these references are given. T he derivations of the rem aining ones can no t be given 
for m ilitary  reasons. These are viewed here merely as hypothetical nonlinear system s.

1. Nonlinear control circuits. As is well known, the volt-am pere characteristic of 
a nonlinear series circuit (Fig. 1) is represented by the curve in Fig. 2. Such circuits 
have num erous industrial applications due to  their rugged mechanical sim plicity and 
a t  the same tim e their electrical sensitivity . T he characteristic in Fig. 2 displays the 
fact th a t  there exists a so-called critical or resonant voltage Eo a t  which the R .M .S. 
value of the curren t suddenly increases m any fold. For a value of E < E 0 (see E  sin wt 
in Fig. 1) the cu rren t is sinusoidal. F o r £ > £ 0 the cu rren t has the wave form dis
played in Fig. 3.

LCO C R

h P H U « — i

1— o -
E SIN  tot

Fig. 1. Fig. 2. Fig. 3.

In  industrial applications E 0 is prescribed. I t  is required to  design a circuit which 
will be sensitive for this prescribed value of Eo. A simple slide rule form ula is desired 
which will express E 0 as a function of the  circuit param eters and of the nonlinear 
reactor employed. T he equation of perform ance for the circuit in Fig. 1 is
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A 3 1 S = ¿ .7 x 2 7

Fig. 4.

are operating efficiently. T he addition of series capacitance is thus likely to  create an 
unstable system . In  this unstable system , the curren t and voltage taken  on an in
definitely large num ber of wave forms such as shown in Fig. 4. Synchronous m otors 
which require sinusoidal applied voltages cannot operate on currents and voltages of 
the type shown in Fig. 4.

If the capacitor of the system  is shunted by a resistor as indicated in Fig. 5, then 
the equations of perform ance are

For the  range of in terest the curren t i  is such th a t the satu ra tion  curve of the reactor 
is single-valued and represented by the equation

E  = k i a3x z +  ahxh.

W ith 0 = a t ,  Eqs. (1) and (2) yield

d x  r
M  —  +  R ( x  — a3x 3 +  a^x5) -f- xc I ( x  — a3x 3 +  a3x h)dQ =  — E k  cos (6 — 0O), (3)

dO J

where, for a given w, M  and x c are constants. T he integration of the nonlinear Eq. (3 ) 
and the developm ent of E 0 as a function of the param eters of the physical problem 
are carried ou t elsewhere and need n o t be repeated here .9

2. Nonlinear transmission line phenomena. If a series capacitor is employed in 
the prim ary side of a transm ission line to  im prove the power factor, curious wave 
forms of voltage and curren t ensue. T he system  becomes unstable as far as possessing 
a periodic solution is concerned. T his is to  be expected since the  m aximum flux den
sity  a tta in s  a  value close to th a t  of the knee of the satu ra tion  curve if the transform ers

' E. G. Keller, Resonance theory of non-linear control circuits, J. Franklin Inst.. 225, 561 (1938)
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dii 1
-T R i i i +  L  —-— 1 f  ( ii  — i¡)dt = E  sin (8 -f~ #o),

dt C J

i 2R 2 =  xcJ ’ Ci i  — Ít)á6, (xc =  1/C),

[Vol. II, No. 1

(4)

or

d2x
ciBo h

de2

aii  =  x  — a3x 3 +  aBx°; I I  = a i \ x  = B / B 0\ B 0 =  d B / d E  a t H  =  0, 

xcBoa

L R  2
+  i?i(l — 3a3x 2 +  5fl6»‘1)

d x  xc(R i  +  R 2)
-— i---------------------(x — a3ir3 +  aBxs)
dd i?2

=  — [i?l +  x l] l ' 2E  cos (d  +  00 -  tan“ 1 — Y  
Ro \  R i /

Now i ?2 m ust have the sm allest possible value consistent w ith stab ility , since it 
represents a perpetual loss of power. T here are ten param eters and two variables.

■ A W W

e sin e

- w i t — ( 3 -------------- ^
Fig. 5.

T here are infinitely m any values of the param eters for which the  system  is unstable 
and equally as m any for which it is stable, i.e., for which the solutions are sinusoidal. 
A convenient slide rule form ula is desired giving the above sm allest value of R¡ as 
functions of the o ther nine param eters of the system . T he equations of the system  are 
derived and solved elsewhere .10

3. Nonlinear springs. I t  is sufficient to  say th a t, in general, the differential equa
tions involving nonlinear springs are integrable by  hyperelliptic functions .11 If dam p
ing is large a  com bination of varia tion  of param eters and hyperelliptic functions will 
usually afford sufficient accuracy.

4. Electric locomotive oscillations. Experience classifies the  five oscillatory m otions 
of an  electric locomotive as pitch, roll, plunge, nose, and rear-end lash. T he last two 
are especially im p o rtan t because their pronounced existence in a locomotive produces 
a tendency to derail. Considered superficially, characteristic  oscillations of an electric 
locomotive would seem to be sim ilar to  those of an ord inary  vehicle such as an  au to 
mobile, b u t experim ental d a ta  and observation indicate the existence of dangerous

10 E. G. Keller, Beat theory of non-linear circuits, J. Franklin Inst., 228, No. 3, 319-337 (1939).
11 A theory of hyperelliptic functions in usable form is given by F. R. Moulton, On certain expansions 

of elliptic, hyperelliptic and related functions, Am. J. Math., 34, 177-202 (1912).
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nose and rear-end lash which are no t common to an autom obile. If the tendency to 
nose exists in an electric locomotive and if the locomotive noses for a speed F0, then 
it will nose for all speeds g reater th an  V0. Consequently, nosing is not a resonance 
phenom enon and cannot be avoided by running a t a slightly different speed. I t  m ight 
be supposed th a t  nosing is due to  the coning of the wheels or to the staggering of 
the rails or to  a com bination of these two possible causes. Such causes, however, 
would produce resonance frequencies for definite discrete values of V  instead of in
stab ility  for all values of V  exceeding F 0. Rails on European railroads are no t s tag 
gered and yet electric locomotive nosing still persists. The tendency to nose and the 
violence of the oscillation increase w ith the weight and power of the locomotive.

In seeking the source of the phenom enon, consider first an elem entary experi
m ent. L et a m iniature set of driving wheels and axle be constructed from two rubber 
p aste  bo ttle  stoppers and a lead pencil. If the m iniature drivers are forced down 
against two rulers as rails, if a torque is applied tending to ro ta te  the wheels, and if 
fu rther in the forward m otion slight lateral m otion is permissible then an oscillating 
torque will be experienced tending to ro ta te  the axle about a line through the center 
of axle and perpendicular to  the plane of the track . T he creepage forces between the 
rubber wheels and the rails produce an oscillatory torque.

T he weight of an electric locomotive is so g reat th a t  it effectively rolls on elastic 
wheels on elastic rails. M aking use of this fact and w hatever additional facts are nec
essary the equations of m otion12 can be shown to be

M xq — 0,

M y 0 =  — F 2 — f 2 — 2 f ( ~  ~  f )  -  2 -  f )  - F , -  f i  -  2/ 0 -  -  f ) ,

A/zo -f- Ai(zo — Aity) -f- X2(so — ct- -f- ¿>217) .+  M(so — 4" hot]) -f- k \z0 = 0 ,

At; +  X2C(S0 +  Ct; +  bil)) — X2C(zo — Cs +  A3 y) +  kit;

— — b6(Fi +  F 2 +  /1  +  f i )  — 2 bb — (yi +  j  +  y2) +  6A6/ f ,

(5)
Bij — XiAi(zo — b\ri) -f- X2&2(zo +  ct; +  bit]) -f- X2A2(2o — ct; -f- &2’j) T  kzV =  0 ,

2 fdz 6f b 2
Cf =  -  d 3(F; -  F 2) -  d t f i  (yx -  y 2) -  - y -  f

2fhb
=  (y +  y  i +  w  +  Ri(i'i).

r

To the  accuracy required, the flange forces are given by

u E. G. Keller, Mathematics of modern engineering, vol. II, p. 72.
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3'<V y*
(6")

+

where the constants I I ,  I ,  J ,  j ,  i, h are determ ined from force curves, and 5i and 52 
are lengths shown in Fig. 6 .

T he variables yi, y 2, yz, y 4, and ÿ  are elim inated from (5) by means of the relations

y i  =  y  a +  +  <̂3̂  >

yz =  3’o +  Aïs +  d il,

ÿ =  y 0

y  z =  yo +  b — dzt ,  

y \  =  yo +  h i£ — d&,  

+  b£,

where Z>5, d3, d t , hi and hi are lengths defined in reference 12.
If in (5) Fi = F2 = f i —f 2 = 0, then the equations are linear; and the solution can 

be w ritten  down a t  once. T his solution is either stable or unstable as indicated by the 
roots of the characteristic  equation. T he natu re  of the roots are, of course, a function 
of V,  the  operating  speed of the locomotive. Even if the locomotive is unstable with 
vanishing flange forces, it is stable w ith non-vanishing flange forces. In  this case the 
locomotive is operating roughly and dam aging the track  needlessly.

In practical applications, then, it is not necessary to  in tegrate  the nonlinear sys-' 
tern (5). As a check on the  va lid ity  of the theory, however, it is necessary to  in tegrate  
the nonlinear system  and com pare the predicted m otion w ith actual m otion as d e te r
mined by runs on a  test track . E v iden tly  the solution of (5) for F x = F2 = / i  = / 2 =  0 
cannot be used as a generating solution for the case of the non-vanishing of the flange 
forces because the stab ility  or unstab ility  of this generating solution is carried over 
into the com plete solution.

Since nosing and rear end lash are the  tw o m otions of m ost im portance, it is suffi
cient to resort to  elem entary  means. Consequently, F,  and /,■ [Eqs. (6)] are replaced 
by segm ents of s tra ig h t lines as shown in Fig. 6 , and the second and sixth equations 
of (5) are solved for y 0 and f  by  operational m ethods (general operational m ethods 
where bo th  initial charges and initial currents exist m ust be used.) SinceAhe flange
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forces are taken as functions w ith  discontinuous slopes, the  system  of differential 
equations and its characteristic equation change as the flange forces, as functions 
of yi, y 2, y$i yn change a t  points a, b, c, d , e, f  shown in Fig. 6 . T he first set of initial 
conditions are chosen by tria l and error in such a w ay th a t the resulting motion is 
periodic in y 0 and f. T he solution for a com plete cycle is sufficient. T he check of the 
theory  is the approxim ate agreem ent of com puted and tes t periods.

5. Nonlinear differential equations of dynam ic  braking of a synchronous machine. 
T he equations of dynam ic brak ing  are

dl  = (£ ~ IR) +  XiX*\ _  ^ + (r̂ oA)2] ____
dt  L  [(rso/s)2 +  x<i’Xq]  s4 [(rio/i)2 +  Xi>Xq\[(«oA)2 +  x dxq]3

ds _  u J 2 x\  +  (rso/s)*  ̂ ^

dt s [xdxq +  (rjo /i)2]2
where

2K P r 3x 9( x d -  x d')s\ K P r
no —  —  > mi

J I l  J I l

I  being the field curren t, 5 the ro tor speed, t the tim e in seconds, all o ther symbols 
being constan t param eters. I t  is desired to obtain an  expression for the tim e of 
stopping of the ro to r as a function of the param eters of the machine.

T he last term  in the righ t m em ber of the first of Eqs. (7) has in all cases a m agni
tude of approxim ately ten per cent of its predecessor. T hus a solution as a power series 
in a param eter which vanishes w ith Mo is to be expected. Neglecting the term  con
tain ing mo in (7) and dividing the first equation by the second, we obtain  a solution 
of the resulting equation im m ediately. However, this solution is an  im plicit function 
of I  and 5 and such th a t it is solvable explicitly for either I  or s only as a slowly con
vergent series. An a ttem p ted  solution by the m ethod of variation  of param eters is 
equally cumbersome.

I t  is known from oscillograms, however, th a t  both I  and 5 are m onotone decreas
ing functions of the tim e for the interval w ithin which (7) is valid. Change of de
pendent variables by

E
I  —  1- 1 1  e~v and s =  so e~z

R
yields

dy R  t R ( A 2 — At)  ( [ 4  +  (re*)2] [ E / R  +  e*+*‘

7 t ~ T +  L [ A l  +  (re*y] +  ^  [.A 2 +  {re*)2 [A 2 +  («•)*]’ A 4
dz \ { E / R ) + h e - » ] 2[x\ +  (rezy ]
— =  Mi ; ; e ,
dt [A 2 +  (V )2]%2

(8)

where
A l  =  Xd'XQ, A 2 =  x dxv  A  >  A o.

T he num ber of revolutions before the ro tor of the machine comes to rest is

1 r “ 1
I s dt =  — 
o 2w o o

N
1 r a I f "

=  — I s dt — -  I s0e~zdt. (9)
¿1r J  o ¿ tt  J  o



Now it is sufficient for practical purposes to set an upper lim it to N  as given by  (9) 
provided the  upper lim it is sufficiently small and provided the results display the 
effect of-each p aram eter of the system . T o accomplish this (8 ) m ay be replaced by a 
sim pler system  of equations. Evidently ,

[Al +  {re‘Y \  g  U l  +  r V z- [d 2 +  (re*)’] ^  ( ¿ 2 +  r 2)e2z (10)

for s 5 0 . Em ploying (10) in (7) and in tegrating, we have
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R  R U ' - A l )  r ‘
—  t +  —    e -^d t
L  L{A l  +  r 2) J o

1 (r2 +  xl)uo

+  s i h  {Al +  Y)(A> +  r 2) 3X I +  h e -

Mi(r2 +  xl) r ‘ VE  T

J}M’ + '•> '

where the instan taneous values of y  and z as given by (11) are alw ays less th an  those 
given by the solution of (7) for 0 <t  < 00.

T he system  (11) is of the form

Uk{t) $a(t) +  f  Ki:\t, ?, « i(i), • • • , un(£)\d% {k — 1, 2, • • • , ») 
A 0

which is Lalesco’s system  of nonlinear integral equations. T he solution of th is is the 
lim it of the sequences

4 0) =  (0 .

=  4>k{t) +  f  Kk\t, £, <t>i(£), • ' • 1 4>n(0]d£ (k  — 1, 2 , 
j  0

. n),

In  the  present application =  R t / L  and {j}2{t) =  0. For small synchronous machines 
the  second approxim ations and u ^  give values of y  and z such th a t  N  in (9) is in 
error by five per cent. T he in tegration in (9) is carried o u t num erically. Because of 
bearing friction and o ther decelerating factors no t included in (7) the upper lim it in 
(9) is finite.

6 . A  double-valued nonlinear problem. Consider the in tegration  of the equation

16 +  06 +  )x[kid +  h  tan- 1 k3(d ±  o)] =  0 . (12)

T his equation was derived ingeniously by  W. W . Bem an to  express an im portan t 
phenom enon in aerodynam ics. T he quan tities I ,  (3, ¡i, ¿ 1, k 2, k 3, and a  are all positive 
num bers and the plus or minus sign in (0 + a )  is used according as 6 < 0  or $ > 0 .

E vidently , for a particu lar am plitude of 9, Eq. (12) possesses a periodic solution. 
T he period and am plitude of this solution are desired. Eq. (12) in the norm al form is

9 — 0i, 9i = — (n/ I ) [ki9  +  k2 tan-1 k3{6 ±  a)] — /30i/7. (13)

An integral of (13) for /3 =  0 is 

2p f  k j *
e] = c  < —

1  I  2

1
(0 ±  a) tan“ 1 k3(d ±  a )  log (1 +  k 3(0i ±  a)2)

2 k3 }
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or

01 b  ±  V F - T w ,  (14)

where c = f(8 0) and where 60 is the m axim um  positive displacem ent for t = t o .  If (14) is 
used as an equation  of change of variable, the m ethod of variation of param eters 
yields

30i dc 30i fx /3
 ------ _ ---------- [¿!0 -J- ki tan -1 k3(0 +  o)j — -— 0u
dc dt dt I  I

*
whence

or
=  r . , 20

where d is an a rb itra ry  constan t. From  the last equation

c =  -  2/30?/1 , (15)

/.I 2/3 r 9
0?d/ -f- d =  — —- I 6 d6 d,

in I  * in

dc 2/3 2/3   ,
_  ==-. _  fll =  _  ( ±  V c  _  / ( 0 ) ) .  (1 6 )
dO /  /

To determ ine the signs in (16) it is evident from (15) th a t c is a decreasing function 
of the time. Consequently, for 0<O

dc dc dt dc
— =  —  =  — ( -  a a  -  m ) .  
do dt de dt

T h u s Eq. (16) is
dc 2/3

±  V c - m  (17)
ad 1

according as 0i< O  or 0i>O .
For the in tegration of (17) it  is sufficient to  replace \ / c —/ ( 0) by k [ c —f(0)]  where k 

is determ ined graphically  by

J V e -  / ( 0) do = k J [c -  / ( 0) ]dO,

c = / ( 0o) or c = / ( 0o) according as 6o ^ 8 ^ 6q or dô ¿=6 ^ 6%, and 60, 0o', and OH are 
shown in Fig. 7. T he curve in Fig. 7 is the solution (14). W ith this replacem ent and 
simple integration

c — e2j3i(fl-f>o>/i 

c — g-2ßk(e-6'0)II

2 ßk  I
Co -  —  c - w ^ m d o  (00 â  o g  Oi),  

I  d  J

Co

(18)
2Bk r 6 1
  ( e V M f ty d O  \  (Oo 0o"),

I  e't J

where co= /(0 o) and c0' =/(0o )• T he above values of c are substitu ted  in Eq. (14). T he
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solution is periodic when 60 is chosen such th a t  8 '¿ tu rns o u t to  be equal to 0O. T he 
period of the m otion is then  given by

p dO
P  = 2 — • (19)

T he num erical integration  of (19) presents no difficulty a t  the lim its 90 and 0O' 
since 0i in the  v icin ity  of 0O and 6¿ can be replaced by an integrable fu n c tio n / 0 such 
th a t the lim it of (fo/di) =  1 a t  0i =  0o and 0i =  8¿ .

Fig. 7. Fig. 8.

7. A  nonlinear problem of two oleo-pneumatically coupled masses one of which 
is subject to impact. I t  can be shown w ithout difficulty th a t  the nonlinear differential 
equations of m otion of ni\ and ?w2 shown in Fig. 8 are

JWlil

miś i — nw  2 +

(S2 — Si)

D

poS

(s2 — Si)

D

p(S — S m) 3( ś  2 —  i i ) 2 

2gc'-[A(r)Ÿ ■

p(S — Sm) 3 (is — i l ) 2

2gc-[A(r)Y

+  k ï i i  +  /(s  i) =  0 ,

where

M (r) ] 2 =  ir2{i?2 -  [r, +  ô,-(s2 -  s i)]2}, f (sj )  = (Ko +  h s j ) ,

and » =  (1 — m ),  0 | î b | 1 .  In Eqs. (20) and (21), si, Ss, and t are the dependent and 
independent variables, the  rem aining symbols being constants.

A solution of (20) is desired for the initial conditions i i (0 ) = i 2(0 ) = v a. T he tim e t 
is counted from the in s tan t when the lower end of the spring is in con tac t w ith a 
fixed horizontal surface. F or su itab le values of R , r {, and bi a  graph of [A (r) ] 2 is either 
Fig. 9a or 9b.
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Fig. 9b.

Even in the case where A [ r ) — ttR  the follow
ing m ethods, (a) power series solutions in the 
tim e, (b) num erical integration, (c) successive 
integrations, (d) G alerkin’s, (e) curvature, and 
(f) expansions in power series in param eters, 
become so laborious th a t they  fail for practical 
purposes. Lord R ayleigh13 has given m ethods of 
handling differential equations linear in all term s 
except containing a dam ping coefficient which 
depends on the square of the velocity. T he ve
locity term  is supposed small. In Eq. (20) the 
velocity term  is small or large dependent upon 
the stage of the motion.

1  - J .  Consider the curves shown in Figs. 10, 11,
 ► and 12. I t  is ev ident th a t  the forces re levant to

these curves can be approxim ated by the arc 
<2 o(?i and the  small num ber of secant lines Q\Q2, 
RoRi, R iR i,  and R 2R 3- T he location of Qlt R 0, 
Ri, R i, and R 3 will become evident from physical 
conditions presently  discussed.

For the first in terval of m otion replace Eq.
(20) by  the equations 

Fig. 10.

i i  d~ Ko d- koSi — a[/lo d- Wo{s2 Si)] S ~  L) , (22)

Ï 2 d~ 7 [-do +  Wo(i2 — -u)] — nS ~  ~~ — ^ ) 2>
where

p b S  p ( S  — Sm) Z _  £o5 _ =  p (^ > ~  s m)2 ^

 a_ 2 J n 7 ’ P ~  2w ic V R *  ’ 7  m t ’ 2w »cW R 2 ’
11 Lord Rayleigh, Theory of sound, (2nd ed.) vol. I, Macmillan, London, 1894, p. 81.

F ig . 9a.
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and A 0, m 0, K 0, and k 0 are shown in the figures. T he ord inate of i?3 represents the 
value of (1 — £)~1,20 when the system  is a t  rest under the  force of grav ity . The points 
R 2 and R i  are located such th a t  no ord inate  on the secant lines exceeds the correspond
ing ordinate on the arc by more than  ten per cent.

T he solution of Eq. (20) is now broken up in to  two tim e intervals. We reduce
Eq. (21) to  the norm al form by the substitu tions

i i  =  £ l +  ®li 2̂ =  £2 +  ¿2 , £1 =  £3, £2 =  £4,

where ay and a2 are constan ts such th a t  no constan t term  rem ains in the  resulting 
differential equations. T hen  the equations are

£1 =  £31

b  ~  U  (23)
£3 — —  (ocnio -j- £o)£ i +  anio^2 +  £(£4 —  £3) 2,

£4 =  7 Wio£i —  y m f a  —  ¿(£4 —  £3) 2,

and

«1 =  y[g  +  (aA  0 — .Ko)] — a  [7^0  — n g ] / y k 0,

«2 =  {wo[7 (g +  aAo — K 0) — <x(yA 0 — ng)] — ¿0(7^0  — n g ) } / m 0y k Q,

and a A 0 = Ko  in order th a t  Sy m ay no t be positive in its initial m otion. T h a t is, the 
origin of tim e is taken to be the in s tan t a t  which the upw ard force of the spring 5  
is equal to the dow nward force due to  gas pressure on my.

T he general solution of (23) (with squared term s suppressed) is

(24)

£1 =  yii sin cojl +  A 2 cos coii -j- yl3 sin u 2t +  Ay cos co2t,

£2 =  byAy sin wyt +  byA2 cos uyt +  ¿2^3 sin w2l +  ¿ 2̂ 4 4 cos u 2t,

£ 3  —  0 ) y A y  CO S CO 1/  —  COl^ 4 2  s i n  Id y t  “b  0) 2A 2 CO S CO21 —  CO2/ I 4 s i r )  0 ) 2t ,

£4 =  byWyAy COS COiI — by03yA2 sin COit -f- b20i2A 2 COS CO21 — b20i2A 4 sin CO21,

where «1 and co2 are the roots of the  characteristic equation and

by =  (amo +  &o — u\)/avio, b2 =  (amo +  ko — oi2) / a m 0.

T he nonlinear term s in (22) are taken  into account by the m ethod of variation  
of param eters. Em ploying (24) as equations of change of variables and rem em bering 
th a t (24) satisfies

3£i 3£2
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<5£3 • . 3£3 3£3 .
—7“ ^ l H -------------- -\---—-A 3 -\--- —■ A  4 — $(£4 — £3)^  / n c ,A
3.41 (5yl j 3/13 3/14 (25 )

$£4 . $£4 . d%4 . 0^4
—— A \  -f- —— A i  ^-----— A 3 -(--- — A 4 =  — 5(£4 — £s)2.
3/11 dA i  3/13 3/14

T he solutions of (25), afte r some ra th e r lengthy trigonom etric m anipulations, are

5 +  biß 

^>i(bi — b 1)

5 +  biß

(£ 4  -  £3)2 cos 4)1 /,
5 +  biß

( £ 4  —  s 3 ) 2 COS COil, A 4 —

o.'i(bi —

S +  biß

Wi{bi — &i)

(£ 4  — £3)2 sin wit,
h )

( £ 4  —  £3 ) 2 s i n  W it.

T he solution of (26) is obtained w ith sufficient approxim ation by  using a device com
mon in celestial m echanics; i.e., for small values of the time, the A ,  entering (26) 
through £3 and £4 m ay be considered constan ts having the values obtained by the 
solution of (24) for £1=  — <X\, £2= — a2, £ 3  =  £4 = ^ 0  a t  ¿ =  0. T hus the solution of (26), 
to  the accuracy required, is reduced to  quadratu res. M oreover, since the.in terval for 
which th is solution is valid is small (OiSfgO.Ol) the trigonom etric functions involved 
m ay be expanded as power series in t before the quadratu res are perform ed. The 
solution of (25) is

A i  = C> +  f i i t )  ( i  =  1, • • • , 4), (27)

where / , ( 0 ) = 0 .  T he substitu tion  of (27) in (24) gives the com plete solution for 
0 ^ t  w here w2/i < §  and w2>  wi. T he values of Ci = A i  as determ ined above.

T he value of [£4(¿1) — £3(¿1)]2 locates the po int Qi in Fig. 10. T he ordinate of Qi 
is 1%. T he ord inate  of R i  is given by  Si ( t i ) —Si{t i) .  T he ordinate of R 4 is the value of 
(1 — £)-1-2 when the air cham ber is decreased to  0.7 of its initial value.

Fig. 11. Fig. 12*

/ C1-10
0 - f )

P IS A OENCPAL POINT ON C
m ' =
^0  = ^ 2

* In Fig;. 12 the origin should be marked So and the second point of intersection of the straight line 
through the origin and the curve should be marked Si.
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In  the solution for the second in terval ( h t i K h )  of m otion it is sufficient to  re
place the arcs RiRzR^Ri  and Q1Q2 by  the secant lines R iR i  and Q1Q2. The q u an tity  
(¿2 — ■ii)2 on the interval Q1Q2 m ay be w ritten

(¿2 — i i ) 2 =  — Bo +  « 0(^2 — -fi), (28)

and (22) becomes

(p 2 +  «wo +  kQ)si — amoSz =  g +  aAo — PBo +  (3«o(i2 — ¿1) — Ko, ^

— 7 OT0S1 +  (p 2 -f- y m 0)si = ng — 7A 0 +  SBa — 5n0(s 2 — ii),

where any additional constants are shown in the figures. A t the new origin of time
for (29), Ji(0) = 52(0 ) =  0 and ii(0) =  »1, ^ (0 ) = i 2(/i) = » 2.

T he proper determ ination of the constan ts 61 and Z>2 in the substitu tion  5i =  £ i+ 6i, 
52 =  £2+^2 in (29) yields

(P2 +  P>iop +  otvio +  &o)£i — (/3»o/> +  am  0)^2 =  0, ^

— (Snap +  7Wo)|i +  (p 2 +  Snap +  y m 0)^2 =  0.

W hile the characteristic equation of (30) is of the fourth degree, yet its roots are 
widely separated  in practical cases and quickly found by Graeffe’s m ethod.

T he values of 5i =  £i+&i, 52 =  ̂ 2+62 as given by  the solution of (30) do not yield
the equilibrium  positions of mi  and m2, because when (¿2- ¿1)2 becomes small the  rela
tion (28) and Eqs. (29) are no longer valid. T his is no defect of the  solution because 
its  purpose is the determ ination of the m axim um  accelerations acting  on mi and m2. 
These m axim a occur in the in terval = T he equilibrium  positions of mi and m2
are determ ined from sta tic  considerations.

A point of special in terest is the determ ination  of the effects of the factor ng upon 
the  solution. T he above solution is constructed  w ith this in mind.

T he roots of the  characteristic equation of (30) have special physical significance. 
In  practical cases these are usually one or two pairs of complex roots. If there are 
four complex roots, one pair gives a  high frequency oscillation of m oderate m agnitude 
for mi. This is to be avoided.

If [ A ( r ) ¥  is given by the graph shown in Fig. 9b the above m ethod is still applica
ble. T he solution is very  sensitive w ith respect to [ A( r ) ] . 2 Of course, the intervals 
of solution will exceed two in num ber, b u t in each in terval the  value of (¿2 —-ii) 2 will 
be given by the ordinates of the arc Q0Q1 or the secant Q1Q2.

T he m ost com plicated process involved in solving (20) is the solution of a quartic 
equation.

4. Concluding rem arks. T he seven problem s presented above are representative 
of the  nonlinear discrete problem s of industry  in so far as one nonlinear problem  can 
represent a group the m em bers of which differ greatly . No bibliography is given for 
the reason sta ted  in footnote 7.

M ethods of handling industrial nonlinear problem s of continuous system s arising 
in industry  are reserved for a subsequent paper.
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— N O T E S —

A GEOMETRICAL INTERPRETATION OF THE 
RELAXATION METHOD*

By J. L. SYNGE {The Ohio State University)

L e td i j ,  B i  ( i , j =  1, 2, • • •, «) be given constan tssuch  th a t <1,7 =  a*,-and X X -1 a ijX<Xj 
is a positive definite form. Consider the equations

»
X) a-ijXi — Bi -  0 ( i  = 1 , 2 , - * -  , «). (1)
j- i

T he solution is easily expressed as a  set of quotien ts of determ inants. However, as n  
increases, the task  of calculating the determ inan ts becomes excessively burdensome. 
T he relaxation m eth o d 1 provides a set of easy steps by  which the solution of (1) is 
approached. T he m ethod has been com pactly  described by T em ple.2

T he purpose of the present note is to  give a geom etrical description of the relaxa
tion m ethod. For the triv ial case «  =  2 the geom etrical description m ay be displayed 
accurately  in a diagram . For ;i =  3 a  model m ay be visualized. For « > 3  we pass be
yond the region of simple concrete geom etrical representation, b u t in m any ways 
geom etry in an «-space is closely analogous to  geom etry in 2-space or 3-space, and 
the geom etrical description continues to serve as a general guide to  procedure.

L et us regard *,• as rectangular C artesian coordinates in a Euclidean «-space. Let 
us define

n n
H{x)  = \  aijXiXj — J 2  BiXi. (2)

»,7-1 i-1

T he equation i f  (x) =  const. represents a fam ily of ellipsoids E \  these ellipsoids have 
a common center, common directions for their principal axes, and common values 
for the ratios of their principal axes. T hey  form, in fact, a family of sim ilar and simi
larly s ituated  ellipsoids.

T he equations (1) represent a set of planes (i.e., flats of « —1 dimensions). T he 
point of intersection of these planes is the common center G of E .  T hus the problem  
of solving (1) is the problem  of finding the center of an ellipsoid when its equation 
is given.

I t  is im p o rtan t to  note th a t H ( x )  takes a minim um  value a t G. I I  is constan t over 
each ellipsoid, and increases steadily  as we pass out from G.

I t  is no t possible to  define precisely w ha t procedures are to be regarded as per
missible. I t  is a question of ease of com putation. L et us follow Southwell and consider 
an approach to  G by steps each of which is parallel to  one of the axes of coordinates Xi.

Fig. 1 shows Southw ell’s procedure. I t  is a  schem atic diagram  in which the ellip-

* Received Dec. 29, 1943.
1 R. V. Southwell, Relaxation methods in engineering, Oxford, 1940.
2 G. Temple, Proc. Roy. Soc. London A, 169,476-500 (1939).
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soids are represented by circles. (The ellipsoids can of course be transform ed into 
concentric spheres by a linear transform ation, which however destroys the orthogo
nality  of perpendicular lines.) W e s ta r t  w ith an a rb itra ry  point P 0 (the zero approxi
m ation). L et E 0 be the ellipsoid which 
passes through Po. T hrough P 0 we draw  
a s tra ig h t line L  parallel to one of the 
coordinate axes. L et Qi be the second 
point in which L  cuts E 0. L e t P i be the 
m iddle point of the  chord PoQi- Then P i 
is the  first approxim ation.

Since the ellipsoid is a  convex surface,
P i lies inside P 0 and  so I I ( P i )  < / / ( P 0).
M oreover it is easy to see th a t PoQi is 
tangen t a t  P i  to  the ellipsoid P i which 
passes through P i. Thus, of all points 
on the chord P 0Qi, the point P i gives q  
the sm allest value of I I .

T he process is repeated , s ta rtin g  
from P i. T he second approxim ation P 2 
is the m iddle point of a chord P\Q% of P i, 
draw n parallel to ano th er of the coordi
na te  axes. In  this w ay we get a sequence 
of points P 0, P i, ■ • • . T he success of the 
m ethod depends on the  rap id ity  of the 
convergence of th is sequence to  G.

In one im portan t respect the above 
procedure is incom pletely defined. W hen 
we have reached P m, in which of the directions defined by the coordinate axes are we 
to  proceed in order to  get P m+i? T here are 11 coordinate axes. Of these one cannot be 
used, viz., th a t  which gave the direction of the step  P m_iP m. B ut, of the rem aining 
n  — 1 directions, which should we use?

G askell3 has suggested the following plan. W rite

rt
C i ( x )  = X) a U x i ~  B <- (3)

H aving reached the point P m, we calculate the  quan tities C ,(P m). L et C*(Pm) be the 
g reatest of these in absolute value. T hen  we choose for the step  P mP m+i the direction 
of the axis of x*.

T his procedure is called the  liquidation of the  greatest error, since we obtain 
a ( P m+i) =  0. I t  is in teresting  to  see how th is result fits into the geom etrical discus
sion. T he plane C*(x) =  0 is the plane through G conjugate to  the direction of the 
axis x*. T he line P mP m+1 is parallel to  th is axis and tangen t a t  P m+i to one of the 
ellipsoids, P m+i. B ut the  point of con tac t of a line w ith an ellipsoid lies on the central 
plane conjugate to  the direction of the  line. Hence P m+i lies on Ci(x) =  0, i.e., 
C*(Pm+l)=0.

• R. E. Gaskell, Quarterly of Applied Mathematics, X, 237-249 (1943).
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B ut it m ay well be asked w hether the  quan tities Ci them selves possess any deep 
significance. I t  is true  th a t G satisfies Ci{x) =  0, b u t the q u an tity  Ci(x) for a general 
po in t does not represent the perpendicular d istance of th a t  point from the plane 
C,(a;) =  0. T his perpendicular d istance is

I Ci{x) I
M  =  "7  „ \ ha" ' W

Should we no t liquidate the g reatest pi ra th e r than  the greatest Cf? Or is there a 
b e tte r plan than  either?

T he following plan is suggested. H aving reached the point P,„, we have an option 
on n — 1 next points. Each of these points lies on an ellipsoid of the family E . Choose 
that po in t which lies on the innermost ellipsoid. T his is equivalent to  saying: Choose 
th a t po in t which gives the sm allest value to I I .

Now4 for a  step in the direction of the axis Xi the decrease in I I  is £C(2/a,-;. T his is 
to  be m ade as g reat as possible, and so we should pick the direction of the  step  
PmPm+i according to  the following rule: Proceed in  the direction o f  the axis  o f  Xk where 
Cl/akk is  the greatest of the quantities Cf / aa  (t =  l ,  2 , • • • , n).

T hus Cf / au  is m ade the criterion ra th e r than G askell’s Ci. T he calculation of the 
form er quan tities involves slightly more com putation, b u t this m ay be taken care of 
by m aking the initial transform ation

x i  =  (5)
T hen

I I  = h 2  a'ijx'ix'i -  Bix'i, (6)
«,/-1 i=i

where

a'u = 1, 4  =  an/iana») '!* , b ! =  J5.-/(a„)1/l. (7)

Now, with

C'i(x') =  £  a-jx'j -  Bi, (8)
i=i

the criterion for the direction of the next displacem ent is C i2 or | Ci | , the same 
as Gaskell's. M oreover the transform ation from P m to P m+  ̂ is now extrem ely simple. 
I t  is6

Pm. »T1 Xk , ' * ' , Xn ,

Pm+1 . X{ , • • • , Xk — Ck (*0. ’ ■ • ■ Xi .

* R. E. Gaskell, loc. cit., Eq. (23). 
s R. E. Gaskell, loc. cit.



PROPOSED SYMBOLS FOR THE MODIFIED COSINE 
AND EXPONENTIAL INTEGRALS

■ B y  S. A. SCHELKUNOFF (Bell Telephone Laboratories')

T he standard  sine and cosine integrals are defined as follows

/•1 sin t r x cos t
■ dt, Ci x  =  I  dt.

0 t d oo t

T he cosine integral has a logarithm ic singularity  a t x =  0. Now in problem s of electro
m agnetic rad iation  x  is proportional to the frequency b u t the im pedance functions 
involving Ci x  are free from logarithm ic singularities a t / = 0 .  T hus one expects and 
actually  encounters logarithm ic functions which cancel the singular p a rts  of the cosine 
integrals.

For this reason the more suitable function is the following modified cosine integral

/■* 1 — cos t
------------- dt

o t

which is an entire function. T his function has already been used quite frequently, and 
we wish only to suggest th a t  a standard  notation  be adopted for it.

Inasm uch as one is frequently  interested in the ana ly tic  properties of im pedance 
functions over the  en tire  oscillation constan t plane, the  following modified exponen
tial integral is suggested

r z 1 -  e~w
Ein z =  I -----------dw.

J  o to

T he independent variable z will be proportional to  £  =  £-f-ico where u  = 2 ir tim es the 
frequency. Then, on the im aginary axis we have

Ein ( iy)  =  Cin y  +  i Si y,

where y  is proportional to  the  frequency.
T he even p a rt of Ein z m ay be designated as Cinh z and the odd p a rt Sih z.
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The mathematics of physics and, chemistry. By H enry M argenau and George Moseley 
M urphy. D. Van N ostrand Com pany, Inc. New York, 1943. x ii+581 pp. $6.50.
Contents: 1. The mathematics of thermodynamics. 2. Ordinary differential equations. 3. Special 

functions. 4. Vector analysis. 5. Vectors and curvilinear coordinates. 6. Calculus of variations. 7. Partial 
differential equations of classical physics. 8. Eigenvalues and eigenfunctions. 9. Mechanics of molecules. 
10. Matrices and matrix algebra. 11. Quantum mechanics. 12. Statistical mechanics. 13. Numerical cal
culations. 14. Linear integral equations. 15. Group theory.

The need for comprehensive manuals of mathematical tools is widely felt by workers in various ap
plied fields. The readers of this Quarterly may, therefore, envy the theoretical physicists and chemists 
for whom the present book is primarily intended. However, it appears from the above table of contents 
that the book covers such a great variety of topics that almost everyone will find some chapter of par
ticular interest. In this connection the chapters on special functions and special coordinate systems de
serve particular mention.

The authors have well succeeeded in making the book appear as a homogeneous unit although the 
individual chapters are independent and show a refreshing lack of formal uniformity. In some chapters 
physical theories are treated at very considerable length, while other chapters are quite mathematical in 
form. Formal deductions arc given in general, but often it seemed more desirable merely to record formulas 
or facts. “The degree of difficulty of the treatment is such that a Senior majoring in physics or chemistry 
would be able to read most parts of the book with understanding.”

Occasionally, a more daring departure from customary lines would have made the book still more 
useful. Thus some numerical methods which are often presented and hardly ever used would better have 
been omitted in favor of a more thorough presentation of the really useful techniques. The modern statis
tician will regret to find the theory of errors treated along conventional, obsolete lines. The magic spell 
of purely conventional but impressive terms such as “probable error” has proved very dangerous indeed 
and inspires an unjustified confidence. The physicist who still believes in the normalcy of observational 
errors should consult W. A. Shewhart's “Statistical Method From the Viewpoint of Quality Control” 
(Washington 1939). There, starting on p. 66, he will find a most interesting analysis of some measurements 
among the very elite (velocity of light, the gravitational constant, Planck’s constant). They all show com
plete lack of statistical control, and even the simplest methods of industrial quality control could be used 
for an improvement.

In general, the presentation is very clear. Only occasionally an attempt at mathematical sophistica
tion makes itself felt. Thus the authors first introduce vectors in the usual (most satisfactory) manner. 
Then (pp. 134-135), rather unclear references are made to a more restrictive analytical definition. The 
passage culminates in the puzzling statement that [>•, x] (which, by the way, is the gradient of the func
tion xy) “does not define a vector.” It does. And the authors themselves make free use of gradients and, 
on the other hand, they (p. 135) “do assume that all of the vectors discussed are proper vectors.”

W. Feller

Navigational trigonometry. By P. R. R ider and Ch. A. H utchinson. T he Macmillan 
Com pany. New Y ork, 1943. ix +  232 pp. $2.00.
The reviewer has considered this book more from the standpoint of a person studying the principles 

underlying the art of navigation, either for the first time or as a refresher, than as a mathematical text
book.

The book, as the authors say, is “a revision and expansion of part of Rider’s Plane and Spherical 
Trigonometry.” The general arrangement of the material is very good, both as to the sequence of topics 
taken up by chapters and the presentation of the material in each chapter itself. Chapter by chapter it 
leads the student from fundamental definitions through the solutions of right spherical triangles and 
oblique spherical triangles which are necessary for the student to know if he is to thoroughly understand 
his navigation. Admitting that one can learn to navigate and use the short cuts common to practical 
navigation without a very thorough background of spherical trigonometry, nevertheless the more com
plete his knowledge of this branch of mathematics, the better navigator he will be and the more he will
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enjoy working out navigational problems. This phase has, in the reviewer's opinion, been very well 
handled by the authors, who have shown good judgment in maintaining the proper balance between the 
amount of detail used in “proofs” and the confidence shown in the intelligence of the student in assuming 
that he will either accept certain facts or will be able to complete the detailed proofs himself.

The chapters on The Terrestrial Sphere, Charts, The Sailings, Astronomical Triangle and Lines of 
Position are presented in clear, concise English and in logical order, giving the student the information 
necessary for him to understand the problems which will confront him later when he takes up navigation 
as a working tool. The authors very sensibly do not attempt to include in these chapters everything that 
a man must know in order to actually navigate, but leave that to other books written especially for this 
purpose.

Throughout the book the method of presentation of material is excellent. Each chapter contains cer
tain proofs and facts followed by problems or exercises based on preceding information, giving the student 
an opportunity to apply the principles discussed. The fact that the answers to certain problems are given 
in the back of the book gives the student the chance to know whether or not he has used the proper 
method of solution, and also the satisfaction of knowing that he has successfully accomplished his task.

The inclusion of an appendix discussing briefly the standards of accuracy is, in the reviewer's opinion, 
very well worth while. This subject, often neglected, is not well understood by students who have had 
little experience in mathematics, and is all too often not recognized even by those who have had such 
experience.

The problems throughout the book are well thought out and the authors have given careful study 
to the matter, laying special emphasis on the authenticity of materials and assumptions so that the prob
lems are as practical as possible in a text of this size.

The book contains a complete five place table of natural and logarithmic haversines with one minute 
intervals, which is a notable and welcome innovation in a textbook on trigonometry. It has been the re
viewer’s experience that the beginner finds it confusing to use the table in Bowditch with its variable 
interval. This table, along with the table of Common Logarithms of the Trigonometric Functions makes 
it necessary for the student to make less frequent use of Bowditch, which, because of its size, is rather 
awkward to manipulate.

All in all, the authors have accomplished what they set out to do. The book fulfills their claims even 
better than might be expected and should prove to be very popular in the teaching and studying of the 
basic mathematical problems underlying the principles of navigation.

Leighton T. Bohl

Table of circular and hyperbolic tangents and cotangents fo r  radian arguments. P repared 
by the M athem atical T ables Project, W ork Projects A dm inistration of the Fed
eral W orks Agency; conducted under the sponsorship of the N ational Bureau of 
S tandards. Official Sponsor: Lym an J. Briggs. Technical D irector: Arnold N. 
Lowan. Columbia U niversity Press. New York, 1943. xxxviii+ 410 pp. $5.00.
The main table gives the values of tan *, tanh *, cot x and coth x over the range * = 0 to * = 2 at in

tervals of 0.0001. Circular and hyperbolic tangents are given to 8 significant figures for 0<*£|0.01 and 
for 0.1 ¿ * ¿ 2 , and to 9 decimal places for 0.01 ¿*¿0.1. Circular cotangents are given to 8 significant 
figures for 0.1 ¿*¿1.57 and 1.575 ¿ * ¿ 2 , to 8 decimal places for 0 <*¿0.1 and to 13 decimal places for 
1.57 ¿*¿1.575. Hyperbolic cotangents are given to 8 decimal places for O^xiSO.l and to 8 significant 
figures for 0.1 ¿ * ¿ 2 . The second central differences for all these functions are given wherever linear inter
polation is not sufficient. Auxiliary tables contain the values of the circular and hyperbolic tangents and 
cotangents to 10 decimal places over the range * = 0 to * = 10 at intervals of 0.1; the values of the inter
polation coefficients for the formulas of Gregory-Newton and of Everett; the values of mr/2 for integer 
values of n from 1 to 100; and values facilitating the conversion from radians to degrees and from de
grees to radians.

W. Prager



SUGGESTIONS CONCERNING THE PREPARATION OF 
MANUSCRIPTS FOR THE QUARTERLY OF 

APPLIED MATHEMATICS

. T h e  E ditors 'will appreciate  th e  au tho rs’ cooperation in taking note of the 
following directions for the  preparation of m anuscripts. These directions have 
been draw n up w ith a  view tow ard elim inating unnecessary correspondence, 
avoiding the  re tu rn  of papers for changes, and reducing the  charges made 
for “a u th o r’s corrections,’’

M anuscrip ts:  Papers should be subm itted  in original typew riting on one side 
only of w hite paper sheets and  be double or triple spaced w ith wide margins. 
T he papers subm itted  should be in final form. Only typographical errors m ay 
be corrected on proofs; if au thors wish to  add  m aterial, they  m ay do so a t 
their own expense.

Titles:  T he title  should be brief b u t express adequately  the  sub ject of the 
paper. T he nam e and initials of the au th o r should be w ritten  as he prefers; 
a il titles and degrees or honors will be om itted . The nam e of the organization 
w ith which the  au th o r Is associated should be given in  a  separate line to 
follow his nam e. yi ?

Mathematical work:  Only very simple symbols and form ulas should be ty p e
w ritten . All o thers should be carefully w ritten  by hand in  ink. Ample space 
for m arking should be allowed above and  below all equations. G reek letters' 
used in formulas should be designated by  nam e in the margin. T he difference 
between capital and lower-case le tte rs  should be clearly shown; and care 
should be taken to  avoid confusion between zero (0) and the le tte r 0 ,  between 
the num eral one ( 1) and the le tte r I and the prim e ('), between a lpha and at 
kappa and k, mu and u, nu  and v, e ta  and «. All subscripts and exponents 
should be clearly m arked, and  dots and  bars over le tters  should be avoided 
as far as possible. Square roots of com plicated expressions should be w ritten 
w ith the exponent $ ra th e r th an  w ith the  sign y /  ■ . Com plicated exponents 
and  subscrip ts should be avoided. A ny com plicated expression th a t  reoccurs 
frequently  should be represented by  a special symbol.

Cutst}:D raw ings should be m ade w ith black Ind ia  ink  on w hite paper or trac 
ing cloth. I t  is recom m ended to  subm it drawings of a t  least double the desired 
.size; of th e  cu t. T h e  w id th  of the lines of such drawings and the size of the 
lettering m ust allow for th e  necessary reduction. Drawings which are unsu it
able for reproduction will be re tu rned  to  the au th o r for redrawing. Legends 
accom panying the  drawings should be w ritten  on a separate  sheet.

B ib liography: References should be given as footnotes. Only in longer exposi
to ry  articles m ay references be grouped together in a bibliography a t  the end 
of th e  m anuscript. T he arrangem ent should be as follows: (for books)— au
thor, title, volume, publisher, place of publication, year, page referred to ; 
(for periodicals)—author, title, nam e of periodical, volume, page, year. All 
references should be com plete and  thoroughly  checked.
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Mathematical and Physical Principles of Engineering Analysis
B y W a l t e r  C, J o h n s o n , Princeton U niversity. 343 pages, $3.00 

Presents the essential physical and mathematical principles and m ethods o f  attack that . 
underlie the analysis o f  many practical engineering problems,
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Partial differential equations o f engineering and Laplace transform s are the two principal 
topics treated. Problem s in ordinary differential equations and other types o f problems are 
included.
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