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LIFTING-LINE THEORY FOR A WING IN NON-UNIFORM FLOW*

BY

THEODORE VON KARMAN and HSUE-SHEN TSIEN
California Institute of Technology

1 Introduction. Prandtl’s theory of the lifting line gave the answer to most of
questions in the aerodynamic design of airplane wings. Thus the three-dimensional
wing theory became a standard tool of airplane designers. One restriction involved
in the conventional wing theory is the uniformity of the undisturbed flow in which
the wing is placed. Now there are many important cases which do not satisfy this
condition. For instance, in the case of a wing spanning an open jet wind tunnel, the
velocity of the air stream has a maximum at the center of the jet and drops to zero
outside of the jet. Another example is the problem of the influence of the propeller
slip-stream on the characteristics of the wing. Here the higher velocity of the propeller
slip-stream makes the application of the Prandtl.wing theory difficult. Such cases led
several authors to investigate the problem of a wing in non-uniform flow. Some in-
vestigators found a satisfactory solution of the problem for the case of “stepwise”
velocity distribution. In this case the flow in regions of uniform velocity can be deter-
mined by using Prandtl’s concepts with additional continuity conditions at the bound-
aries between such regions. On the other hand, the problem of a continuously varying
velocity field seems to need an appropriate treatment. K. Bauschlhas tried to modify
the Prandtl theory for the case of small inhomogeneity in the air stream; however,
besides the restriction of slight deviation from uniform flow, his method encounters a
further difficulty in estimating the error introduced by the approximations. The
seriousness of this difficulty becomes evident when one tries to compare the results of
Bausch with that of F. Vandrey.2 Vandrcy considers the problem with variable
velocity as the limiting case of a wing in a stepwise velocity field, and his result seems
to differ from that of Bausch. Recently R. P. Isaacs3has investigated the same prob-
lem, but the authors have not yet had the opportunity to study his work.

It seems to the authors that a general and more satisfactory solution for the flow
of a wing in a non-uniform stream can be obtained by studying the three-dimensional
problem anew in this generalized case, introducing the modifications of Prandtl’s
fundamental concepts. The first fundamental concept is the following: the span of

* Received September 27, 1944.

} K. Bausch, Auflriebsverteilung und daraus abgeleitete Grossen fir Tragflliigel in schwach inhomogenen
Stromungen, Luftfahrtforschung, 16, 129-134 (1939).

3F. Vandrey, Beitrag zur Theorie des Tragfligels in schwach inhomogener Parallelstromung, Zeit-
schrift f. angew. Math. u. Mech. 20, 148-152 (1940).

3R. P. lIsaacs, Airfoil theory for flows of variable velocity, abstract in Bulletin of the American
Mathematical Society, 50, 186 (1944).
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the wing is sufficiently large compared with the chord so that the variation of the

velocities in the spanwise direction is small when compared with the variation of the

velocities in a plane normal to the span; then the flow at each sectional plane per-

pendicular to the span can be considered as a two-dimensional flow around an airfoil.

The only additional feature for the flow in this sectional plane is the modification of

the geometrical angle of attack, as defined by the undisturbed flow, on account of the

so-called induced velocity. The second fundamental concept of Prandtl is the replace-

ment of the wing by a lifting line having the same distribution of lifting forces along

the span as the wing. This concept,

with the additional assumption that

the disturbance caused by the lifting

line is small, i.e., that the wing is

lightly loaded, makes the calculation

of the induced velocity relatively sim-

ple. In this paper the authors will

study the flow around a lightly loaded

lifting line placed in a parallel stream

whose velocity is perpendicular to the

span (Fig. 1) and is assumed to vary

in both directions normal to the flow.

Due to the rather complicated char-

acter of the flow, the usual concept of

the picturesque system of trailing

vortices encountered in Prandtl’s

wing theory is not very useful here.

A method, which is mathematically

Fig. 1. Lifting line in a non-uniform flow. more convenient, has to be adopted.

This method has already been used

by the senior author4in explaining the similarity between Prandtl’s wing theory and

the theory of planning surfaces. After the general theory is formulated, the problem

of minimum induced drag will be considered. Finally a general expression for calculat-
ing the induced drag of a wing in a stream of varying velocity will be presented.

Of course, the complete solution of the problem of a wing in a non-uniform stream
requires a knowledge of the “section characteristic” or the two-dimensional properties
of the airfoil sections of the wing. If the velocity of the main stream is varying only
in the direction of the span, the required section characteristics are those of an airfoil
in a two-dimensional uniform flow, and are common knowledge in applied aerodynam-
ics. However, if the velocity of the main stream is also varying in a direction perpen-
dicular to the span and to the velocity itself, the required section characteristics are
those of an airfoil in a two-dimensional non-uniform flow. Such flow problems have not
yet been studied extensively.5

2. General theory of a lifting line. Let the x-axis be parallel to the direction of
the main flow, the y-axis coincide with the lifting line and the z-axis be normal to the

4Th. von Kdrintn, Neue Darstellung der Tragfligeltheorie, Zeitschrift f. angew. Math. u. Mech. IS,
56-61 (1935).
5H. S. Tsien, Symmetrical Joukowsky airfoils in shear flow, Quart. Appl. Math. 1, 130-148 (19431.
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lifting line (Fig. 1). If p is the pressure, p the density, and »i, v2 v3the components of
the velocity, the dynamical equations for the steady motion of an inviscid, incompres-
sible fluid without external forces are

dw\ dvi 3l 1 dpi
i—— + »2—— 4+ »3— = —— —
»Ii ™ » dy »3 e o dx (@)
_dv2 dv3 dv3 1 dp.
Vi— + »—* + V3— - —— —I @)
dx dy dz p dy
dv3 dv3 dv3 1 dp
»l-r—+ »2-— + V33— = -—— — . 3)
dx dy dz p dz
The equation of continuity is
dvi dv2  dv3
y g = 0. ()

Equations (1) to (4) constitute a system of four simultaneous equations for the four
unknowns i, »2, v3and p.

For the particular problem of a lightly loaded lifting line, the velocity components
can be expressed in the following forms:

»izil + « (5); »2 =V, (6); »3= W. ©)

Here u, v, w are the velocity components due to the presence of the lifting line and U
is the main stream velocity assumed to be a function of y and z but independent of
Since the lifting line is assumed to be lightly loaded, u, v and w are small compared
with the main velocity U. By substituting Egs. (5) to (7) into the dynamical equa-
tions and neglecting higher order terms, a set of linear equations for u, v and w is
obtained. Thus

du du du 1 dp
U Hv b w = C)]
dx dy dz p dx
dv 1 dp dw 1 dp
U— = 9); U = . (10)
dx p dy dx p dz
Then the equation of continuity becomes
du dv  dw
ax Fy+ Az T (1)

If Eqgs. (8), (9) and (10) are differentiated with respect to x, y and z respectively and
the results added, the sum can be simplified by using Eq. (11) and can, finally, be
written in the form

1 dd» d (1 dp\ 3/1 dp\

( )

-+ - )+ — -)=0. 12
U2 dx2 dy\U 2 dy) dz(UZ dz? (12)

This is now an equation for the pressure p only and can be used conveniently as the
starting point of the solution. If the pressure of the undisturbed main flow is chosen
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as the reference pressure and set equal to zero, one of the boundary conditions to be
satisfied by p is

p=0, for |a] or —» 00. (13)

The condition at the lifting line, or y-axis, is that the lifting force is represented by a
suction force on the “upper surface” of the lifting line and a pressure force of equal
magnitude on the “lower surface” (Fig. 2). Hence the pressure p must satisfy the
following expressions

J pdx = —\I(y), for z=+ 0, (14)
and
T " pdx = \I(y), for z= —0, (15
PRESSUREOULOWER .
SURFACE « tin
where I(y) is the lift per unit length of the
lifting line at the point y. Furthermore, on
account of the symmetry of the flow,
tin
sucrm ou upper” p = 0 for z =0, Ix\ > e (16)
SURFACE i f .
To solve Eq. (12) together with the
boundary conditions given by Egs. (13) to
(16), the Fourier integral theorem can be
used to build up the solution of the problem
from the elementary solutions of Eq. (12)
Fig. 2. Representation of lift as pressure forces the form
acting on the two “surfaces” of the lifting line. z cos \ x

The equation to be satisfied by P is

' Ady(\L'JA\ngdy\) " /dAz\\(ﬁ\-Z dzg Ve e an
To determine P uniquely, it is convenient to impose the following conditions
P—0, for lyl—@®, 121 (18)
P=—\{y) for z= + 0 (129)
P —hKy) f°r z= —0. (20)
The required solution for p can then be written as
o — 2 [ “cos\xP(y, 2 \)d\. (21)
wda

By substituting Eq. (21) into Egs. (9) and (10), the “induced velocities” v and w
are obtained;

1 1 r®sin\x d

-— — P(y, z, Yd\ (22)

v(X, y, 2) = »0,vy, z — — 1 —
Xy, 2 »(y)pUitJO X dy
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1 1 sinXi 3

wix,y,2 =w{0,y,z) —— I P(y, z \)d\. (23)
pu tJo X dz

Because the integrals are odd functions of x, the following relations hold for velocities

far ahead of the lifting line and far behind the lifting line:

E[»(—Qy, 2) F p(oo, y, 2)] = n(0, y, 2), [[w (- Ay, 2) + w(oo,y, 2)] = w(0, y, 2).

However, it is evident that the induced velocities far ahead of the lifting lines must
be zero. Hence

®0, vy, 2) = iy, 2), 24); w(0, vy, 2) = %w(co, Y, 2). (25)

The induced velocities vand w at the lifting line are then one-half of those far down-
stream. This is in accordance with the usual wing theory based upon the concept of
trailing vortices.

One meets an apparent difficulty if the x component of the induced velocity is cal-
culated; integration of Eq. (8) with respect to x furnishes the x-component of the
induced velocity:

1 1 dU rz 1 dU r*
u = p ---m-mmmmmee- I vdx — I wdx. (26)

PU U dy J_«, U dz J_

Since p tends to zero, vand w tend to finite quantities as x tends to infinity, and u in-
creases indefinitely as x tends to infinity. This is in contradiction to the assumption
of small disturbances introduced at the beginning of the present investigation. How-
ever, it is believed that this difficulty does not prevent the application of the theory to
practical cases, since the apparent large value of the u component is due to the dis-
tortion of the variable main stream by the induced cross flow and the infinite value
for x—a> is due to the linearization of the differential equations. Some further re-
marks on this point are given in Section 4.

3. Conditions far downstream. For the application of the lifting-line theory to the
wing problem, the quantity of primary interest is the z component of the induced
velocity at the lifting line. The simple relations given by Eqgs. (24) and (25) suggest
a possible simplification of the calculation by considering conditions far downstream,
or the “Trefftz plane” according to the terminology of the conventional wing theory.

To abbreviate the notation, we let
20 = r(0, vy, 2), w0 = w(0, y,z), 4 @7
» = a(co, y, 2), wi=w(»,y,z). |

Then, according to (24) and (25), o= i»i, Wo—iuii. Therefore, Egs. (22) and (23) give

vi 1 i 1 IrMsinXx 5 p( )X
i — im— 1 e , Z, ,
pllx wJlo X y y
. 1 2 rx sinxXx d
»i = lim— | e P(y, z, \)d\.
pUux*<t Jo X dz

Let us consider P(y, z, X) as a regular function of X; then
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Py, z,X) = P(y,z, 0) + Xtc;\x_Jlx-o

By using the variable ;=Xx, the expressions for Vi and wi can be rewritten,

1 2 rMsintdT t(dP\ "
»l = lim— | P(y,zzO) H (-—- +eee |t

pU*m iv Ja t dyL x \ 5X/x=0 J

1 2 rMsin/ dT t(dP\ |
Wi = ———Ilim — e P(y,zO)H  (-—--—-- ? + eee \dt

pUx®mw Jo t dzL x \ dX-/x«0 J

At the limit, only the first terms of the integrands are significant, and furthermore

2 rx sin/ .
-ifl. = 1.
mJo
Hence

Si = 7 P(y, z, 0),  (28); ah = o0 @ P(y, z, 0). (29)

Equations (28) and (29) simplify the problem of calculating the induced velocities
at the Trefftz plane considerably. In fact, by introducing a “potential function” de-
fined by the relation

4y, z) - —P(y, 2, 0), (30)

the problem can be formulated as follows: the differential equation to be satisfied
by <€ can be deduced from Eq. (17) by setting X= 0; thus

aal”™ + all ~ . o €1))
dy Vt/2 dy) dz\U 2 dz)

The boundary conditions to be satisfied by 0 are

0=0 for |y|—«> |Z]|—><, (32)
0 =I{y)/2 for z= + 0, (33)
0= —I(y)/2 for z= —0O. ] (34)
Then
1 50 1 50
tu= — —, (35); Wi=— —- (36)
pu dy pU dz

By substituting Egs. (35) and (36) into Eq. (31), one has
5

=" @37
dy\U) dz\u)

This equation has a very simple physical meaning. Since Vi and Wi are considered to
be small quantities, the ratios Vi/U and Wi/U are the angles of inclination, (3 and vy,
of the stream lines with respect to the zx and xy planes. Consider parallel planes
perpendicular to the x-axis and dx apart (Fig. 3). If the width of the stream tube
at the section x is 5V then at the section x+dx, the width of the stream tube is
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5,[1+dx dp/dy]. If the height of the stream tube at the section x is 5Z then at the

section x+ dx, the height of the stream tube is [I+dx dy/dz]. The total increase in
the cross-sectional area of the stream tube from x to x+dx is then approximately

Fig. 3. Stream tube far downstream from the lifting line.

/[dP  dy\
— + —)dx.
\dy dzj

Now at the Trefftz plane, the flow field can be considered as settled into a uniform
condition; i.e., the pressure is constant in the x-direction. Hence, the velocity of the
flow along any stream tube is constant. Then the cross-sectional area of the stream
tube must be also constant. Therefore,

dp d
Ply

= Ol
dy dz

which is simply Eq. (37). From this point of view, Eq. (37) is really the equation of
continuity, simplified under the conditions prevailing at the Trefftz plane.
On the other hand, pcan be eliminated from Egs. (35) and (36). The result is

dU' dU'_O
5 (W) — U = 0 (38)

This equation can be considered as the modified vorticity equation. It actually holds
for all values of x under the approximation assumed in the present investigation. This
can be seen in the following way: since U is a function ofy and z but independent of x,
Egs. (9) and (10) can be written in the form

w
dx p dy dx p dz

By differentiating the first equation with respect to z and the second equation with
respect to y and then subtracting, the result is
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ard d 1
() - — (Uw) =
dx\_dz dy J
Thus
— (W) - (Uw) = a function of y and z
az ay
But forpoints far upstream, orfor x =—<», v and wvanish;therefore thefunction

of y andz on theright ofabove equationmust be identically zero.Hence for all
values of x,
d d
— (Uv) - — (Uw) = 0. (39)
dz *dy
It should be noted here that Eqgs. (37), (38) and (39) are obtained without any
reference to the lifting line and hence they are true for more general cases. However,
the complete determination of Vi and WA requires a knowledge of the relation between
the induced velocities and the lift on the wing. This relation depends upon the type
of lift distribution. For the particular case of a lifting line, this relation is supplied
by Egs. (33) and (34).
Equation (37) can be identically satisfied by introducing the “stream function”

\p defined by
7\ /N - if1
V=V yi=- U : @)
z y

Then Eq. (38) gives the differential equation for

oI5 Tl =0 @

Both Eq. (31) and Eq. (41) reduce to the Laplace equation for the conventional wing
theory when U is a constant.

4, Minimum induced drag. The induced downwash angle at the lifting line is
equal to Wo/U or /U, according to Eq. (25). Therefore, Eq. (36) gives the down-
wash angle at the lifting line as [I/2pZ73(30/5z)i_o, and the induced drag Di can then
be expressed as

D.--.lr[‘<k+©'*(,,'0-’ 1 /A ]1C b I .

The first integral is evaluated across the span of the lifting line. The second integral
is calculated along a contour following the upper and lower “surface” of the horizontal
strip shown in Fig. 4. Since <6—0 for points far from the lifting line, the contour in-
tegral can be transformed into an area integral by Green’s theorem, and

Di=1ff J=+ (+A) + (43)
2pj J \dy\Uu2 dy) dz\ U2 dz))

This integral extends throughout the region outside of the lifting line. Since ¢>satisfies
the differential equation (31), Eq. (43) reduces to
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(44)

Therefore, the induced drag is represented by the kinetic energy corresponding to the
velocity components vxand wxat the Trefftz plane. It is seen that the u component
of the velocity does not appear in the expression for the induced drag. Thisis due to
the fact that the increase of u with increasing x does not represent a real acceleration

of a fluid element in the a direction. Rather, it is due to the fact that the cross flow
transports fluid elements from regions of lower main velocity to regions of higher
main velocity and vice versa. This is in accordance with the modified continuity
equation (37) which clearly indicates that the cross section of the individual stream
tubes has a definite limiting value for x—>co, and therefore the velocity component
in the direction of the stream tube tends to a finite value.

The problem of minimum induced drag requires the determination of the mini-
mum of Di as given by Eq. (44) together with the condition that the total lift L
remains fixed. Thus

L :J Idy :\] [y, + 0) - O(y, - 0)]dy = - J ¢ constant. (45)

By using the method of Lagrange’s multiplier, the above problem can be reduced to
that of finding the minimum of Di+K/pL, where K is a constant. Hence,

) K
SDi 5L = 0. (46)
P
The variation of the induced drag can be obtained from Eq. (44),

. 1 d> 1 350}
WI,irr dydz.
pJJ 1Udy U dy Udz U dz)
However, & must satisfy the differential equation (31) ; thus

8Di 4 54;)Ha/(| GI¢50Y)o|o| ! |r 2 >tk
i —r — >dydz = — | -
> -7 / / F\ t/2 dy ) dz\U* dz 3] y PJcU?2 dzgq
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On the other hand,
5L = — | )k
Jc

By substituting these results into Eq. (46), the condition of minimum induced drag
is obtained in the form

7/.(-F S -1)***_0- <47)

The variation of Sf>on the lifting line is arbitrary; therefore the minimum induced
drag is given by the condition that the induced downwash angle must be constant
along the span. If the main stream velocity U is constant, the above condition is
reduced to the requirement of constant downwash. This is in agreement with the
well-known result of Prandtl’s wing theory.
5. Flow with velocity varying in the direction of span only. If the stream velocity

varies only in the y direction, i.e., in the direction of the wing span, the calculation

of induced velocity and induced drag can be simplified with the aid of characteristic
functions connected with the differential equation for the potential function 0. In this
case Eqg. (31) becomes

du
dx> db dy do&
-+ — - 2— — = 0. (48)
dy2 dz2 U dy

To satisfy the boundary condition given by Eq. (32), $ is expressed by the following

integral
4(y, 3 = jf0 /@e~)@Yx(y)dX (ZB

for z>0./(X) is an unknown function to be determined. For z<0,
>y, z) = - Iy, - 3. (50)

By substituting Eq. (49) into Eq. (48), the differential equation for Fx(y) is ob-
tained,

du
rf2F x dy dy\
— - 2—>~ — + XFx=0. (51)
dy2 U dy

This equation will determine Fx(y) uniquely if proper normalizing and boundary con-

ditions are imposed.
At the span, the condition (33) must be satisfied. Thus

Ky)
This relation can be considered as the equation for determining /(X) with the given

lift distribution /(y). For example, in the case of constant stream velocity U or
Prandtl’s case, Y\(y) is a trigonometric function and therefore /(X) can be deter-
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mined easily by means of Fourier’ inversion theorem. Equation (50) shows that with
/(X) so determined, the condition (34) will be automatically satisfied.

The downwash velocity w0 at the wing can then be easily calculated by using
Egs. (25), (36) and (49). The result is

My, 0) = —— f  X/(X)Fx(y)dX. (53)
lpu J o
The induced drag is given by
a - | L
J — U

Therefore, in terms of F\(y), the following general expression for the induced drag
is obtained:

Di =f" - — dy f “/(AF*(y)dA f =vi(v)Y,(y)dv. (54)
J pul’  Jo Jo

Thus theproblem of calculating the induced drag with a given distributionof lift
I(y) isreduced to the problem of solving the integral equation (52) for/(X)and then
evaluating the integral given by Eq. (54).

If thechord c, thegeometrical angle of attack a and the slope k of the lift coeffi-
cient aregiveninstead of.the lift distribution I(y), then

Ky) = bU*ck ja + 0) . (55)
Thus Eqg. (52) is replaced by the following equation
\PUZk XIX)Fx(y)dxj = [(X)Fx(y)dX,

or

\PUZKa =J (1 +j x)/(X)EXY)iX. (56)

This is now the integral equation for/(X). When/(X) is determined, the induced drag
Di can be again calculated by using Eq. (54).
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ON THEODORSEN’S METHOD OF CONFORMAL MAPPING
OF NEARLY CIRCULAR REGIONS*

BY

S. E. WARSCHAWSKI
Washington University

1. Introduction. In determining the complex velocity potential of the two-dimen-
sional flow around an airfoil, one is lead to the problem of finding the analytic func-
tion which maps the exterior of a circle conformally onto that of a “nearly circular”
contour. T. Theodorsen developed a method for the practical computation of this
mapping function, a method which was later elaborated on in a joint paper by
Theodorsen and |I. E. Garrick.1Theodorsen reduces the problem of determining the
mapping function to the solution of a certain non-linear integral equation which
then is solved by successive approximations. In both papers examples of wing sections
of airplanes are calculated demonstrating the use of the process and the rapidity with
which it converges. However, the validity of the method from a mathematical point
of view, such as the proof of the convergence of the successive approximations, is not
discussed. The present paper is an attempt to supply such a discussion. Simple con-
ditions on the nearly circular contour (essentially involving the tangent angle and the
curvature) are established which insure the convergence of the process. The absolute
value of the difference between the mapping function and the successive approxima-
tions is estimated. These estimates serve both to prove the convergence and to ap-
praise the accuracy of the approximation. The analogous problem for the derivative
of the mapping function is treated. (The derivative of the mapping function enters
in the computation of the velocity and pressure distribution on the surface of the
wing.) Finally, conditions are discussed under which the map of the circle by means
of the successive approximations is star-shaped.

Although Theodorsen’s method is of particular importance in the theory of air-
foils, it represents the solution of a general problem in conformal mapping. For this
reason all results of the present paper are derived for the “standard” case where the
interior of a circle about the origin is mapped onto the interior of the nearly circular
contour containing the origin under preservation of the positive line element at the
origin. However, all results obtained remain the same for the mapping function of
the exteriors and for a different normalization of the mapping function (see 83).

Sections 2-8 contain the actual results and proofs of the paper. To simplify the
presentation some auxiliary results used in the text are listed in §9.

2. Theodorsen’s integral equation and the successive approximations. Let Cbea
simple closed curve represented in polar co-ordinates by the equation p=p{6)
(0&(?4a2m), where p{0) is absolutely continuous2and for some e (0<e<l),

* Received May 9, 1944; presented to the American Mathematical Society, November 26, 1943.
1T. Theodorsen, Theory of wing sections of arbitrary shape, NACA Tech. Rep. No. 411 (1931);
T. Theodorsen and |. E. Garrick, General potential theory of arbitrary wing sections, NACA Tech. Rep.

No. 452 (1934).
I' A function g(8) is absolutely continuous in an interval if its derivative g'(8) exists for all 6 of this
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7N -2ap(fl) £ a(l + e, (2.1)
1+ e
a being a positive constant, and
o'Uh
Nk (2.2)
P(0)

Any curve C satisfying these conditions will be called a nearly circular contour.
Let us suppose that the function w=/(z) maps the circle \z2\ <1 conformally onto
the interior of C, and that/(0)=0, /'(0) > 0. The function

Piz) = log”" = log @) + arg/(z)-, (2.3)

which is defined as the real-valued log/'(()) when z= 0, is single-valued and analytic
for |z|<1l and continuous for |z| iS1. For z=el* we write arg [/(e**)#"**] = 0(0) —O,
and therefore

F(e™) = log p[0(0)] + ¢(0(0) - B (2.4)

Hence

00) —</>=—— [ {log p0g>+ 0] —log p[0(4>—/)]} cot —dt.  (2.5)
¢ird o 2

(The termarg[/(2)/z]2.0=arg//(0),which  should be added to the integral on the
right, is zero.) Thusthe functionFie'*) and hence/(z)may be found by solving this
integral equation for 0(0). The existence of a continuous solution of this integral equa-
tion is assured by Riemannfs mapping theorem. This solution is also unique as is
shown in §9(a). In order to compute the solution we follow Theodorsen and form the
successive approximations

0qo) = 4
i rr t
On@>) ~ 0 = “« — 1 {logp[0,_!(0 + t)] ~ logp[On_I(0 ~ 0]} COt—-dt, )
Jo 2 > (2.0)
n=12—))

Thefunctions On(0) are continuousfor 04>=2rr\ in fact, they are absolutely continuous
and the squares of their first derivatives are integrable (for the proof of this, see
§9(b)); 0,,(0) —0 is a conjugate function of log p[On_i(0)].

We shall show that the sequence 0,,(0) converges uniformly to 0(0) as w—»<». Hence,
also log p[On(0)] converges uniformly to log p[0(0)] as w—>co, so that the functions

FOfei) = loga, A,(ed) = log p[0,_i(0)] + ¢(0,(0) - 0) (n~ 1), 2.7)

may be used to compute Fie'*) with any desired degree of accuracy.
Let Fn(z) denote the function which is analytic for |z|] <1 and assumes the bound-
ary values Fnle™) for |z| = 1. By the principle of the maximum modulus the uniform

interval except possibly for a set of Lebesgue measure zero and if flg ’{6)d0=g{b) —g{a) for every aand b
of this interval. In order to establish the convergence of Theodorsen's method under reasonably general
conditions, we employ the integral of Lebesgue.
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convergence of Fn(e'*) to implies that Fn(z) converges to F(z) uniformly for
\z\ {1, and thus the functions /,,(z) =zef<g} converge uniformly for |z| ~1 to the
mapping function/(z).

In order to prove the convergence of the functions 0,(0) and 0, (0) we shall derive
estimates for the differences |0n(0) —0(0)| and |0, (0)—0'(0)| in terms of e and n.
These differences approach zero as n—«>, and will at the same time permit us to ap-
praise the degree of accuracy of the nth approximation.

Remark. Theodorsen considers the case where the exterior of a circle |r| =F is
mapped onto the exterior of a “nearly circular” closed curve T whereby the mapping
function o= g(f) is so normalized that limf..Qco/f = 1. This case is immediately reduced
to the one considered above by means of the transformations w =w~1and z=1?/f. Let
us suppose that T is represented by the equation r=r(0) (0”0 ~2ir), where, for some
positive b and O<e<l, {(1+«)“1*r(0) ~6(1+e€) and |r'(0)/r(0)| ge. Then the
function w=f(z) = I/g(f), where f =1?/z, maps the circle |z| <1 onto the interior of
the-nearly circular contour C represented by the equation p=p(0) =1/r(0), where
6= —0 and p(0) satisfies the conditions (2.1) and (2.2) with a=b~l. For f = we
write arg [g(f)/f]=0(0) —0, where arg [g(f)/f] is defined as 0 when f = oo. Then, for
f =Reiland z=eij where 0= —0,

pit)
log = log r[0(0)] + ¢(0(0) —0) —log R

f
= - Iog/—OO - log R
z

= - log p[0(0)] - ¢(0(0) - O) - log R.

Thus one can form the successive approximations 0, (0) for the function o(0) in the
same manner as the 0,,(0) are formed for 0(0). Furthermore, 0,(0) = —0,,(0),0= —0
and 0,(0) —0(0) = —(0,,(0) —0(0))- Hence any bound obtained for |0n(0)—0(0)| is
also a bound for |©n(0) —0(0) |, and the same remark applies to the derivatives of
these differences.

3. Statement of results. We shall prove the following estimates:

I. If Cis a nearly circular contour, and if On(0) and 0(0) = arg fie'*) are defined by
(2.6) and (2.4), respectively, then

0,0 - 00)| g 2(y " j) UV +2)2- ' (3.1)

The boundfor |0n(0)—0(0)| obtained here approaches zero asn— (since
0<c< 1) andistherefore sufficient to establish the convergence ofthe functions
0,,(0) to 0(0). However, a bound which converges to zero more rapidly can be found if
a further assumption regarding C is made.

Il. If Cis a nearly circular contour and if

IFiL.IiFL (3.2)
p(M p(».) 1
€ being the same as in (2.1), then
10,(0) ~ 0(0) | » (2tA (it + 1))>'V+b (3.3)

where A =42
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The followingresult is obtained for the derivatives 0, (0).
I1l. If Cis anearly circular contour, if (3.2) holds, and if p{9) =d[p'(6)/p(9)]/dd
satisfies the condition

| 0(02 - 0(0,) | g e\d2- 011 (3.4)
e being the same as in (2.1), then
[0L () - 0'(0) | » V2AT (A(n + D))«*ict+>, (3.5)
where A =4'e<and
n
Cl=1+ ¢ <7,= (1 -feH (1 + cky/2irAk). (3.6)
k2
For all n,
c, M (1+ e exp [2«V52~(1 ~ €)~3/2]. 3.7)

so that anis bounded if 0<e< 1.
Estimates for the difference | Fn{z) —F(z)\, |z| 51, may be obtained from those
for 10,(0) —0(0) |. For by (2.2),

[Fn{e™) - F(ES*)|  {e3(0._.(0) - 0(0))* + (0,(0) - 0(0))*}*/*,
and for |z| ~ 1

jF.fz) —F(@) | g max |F,(e”") —F{eit) I.

Thus, for example, in case Il we find by use of (3.3) that
|F.(2) - F(2) | g 2(Ax(n + -[))*'V+1

Hence, if0O<e< 1, the successive approximations F,,(z) convergeuniformly to
F{z) =log ,[/(z)/z] when |z| ~1. Ananalogous statement applies tothe derivatives
d [Fn(re”)1/d0 and d [Ffje'*) ]/d0.

To prove the three theorems I, Il, and Ill, we shall first derive bounds for the
square means

= f (w0 - oy W wre = 1=t 2100 = 0/(0)20, o
3.8

M 24 i (0i'(0)-i" (0))4.

The above results will then be obtained by use of the inequalities (see 84(c))
| 0,i(0) - 0(0) | g (2irMnMn’)*'2, | 0A(0) - O'(0) |~ (2nMIM I’y

The functions/n(z) =zeFn(*> map the circle |z| =1 onto closed curves C,. Since
the functions fn(z) are to be used as approximations to the mapping function/(z),
it is essential to know that the C, are simple closed curves. This will certainly be the
case if the C,, are star-shaped with respect to the origin. (A closed curve is star-shaped
with respect to the origin if every ray from the origin intersects the curve in exactly
one point.) Knowing that Cnis star-shaped has the additional advantage3that 0»(0)

3Cf. Theodorscn and Garrick, l.e., pp. 184-185.
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is then an increasing function of ¢>and therefore possesses a unique inverse function
4>=<f>,(6). This permits us to form immediately the inverse z=ei*"(9 of the mapping
function w=f(z) for w on Cn. We examine therefore the question when the Cn are
star-shaped, and obtain the following result:

V. If Cis a nearly circular contour and if the condition (3.2) is satisfied, then the
curve Ci is star-shaped with respect to the origin if €;(2 log 2)_1, Ci if 1g 0.34, C3if
€9 0.31, and Ciif e=0.3. For n*z4 all Cn are star-shaped if e g 0.295.

This result is derived by examining the values of e for which \0f (§—1| Sal, so
that $,,'($) 2:0 and dn@>) is therefore monotone increasing. For large values of n (m2;4)
a more favorable estimate for emay be obtained by making use of (3.5) and of a lower
bound for &(@>) which is given in 89(d).

4. Proof of I. (a) Estimate of Mn. Let Fie'*) and Fn(e*) be the functions in
(2.4) and (2.7). Because of the representations of 6(<p) —f>and dn(§>—4>by means of
the integrals (2.5) and (2.6), respectively, we have

b
f \e(d>) - &= 0, f (en@®) - &= 0. (4.1)
JoO *70
We now apply the following well known theorem:4 If the function g<> is real-

valued, periodic (period 2it); and (g(</;))2is integrable (in the sense of Lebesgue) 0g<£g 2ir,
and if gto) is a conjugate function of g<g> (then surely existing), then

— f [sto)]'d<j> + cr = — f [gd>)]2=+ /32, (4.2)
ZITJ 0 grr” 0
where
1 r2t 1 r X
a = — gAt> 0= — gPt=
2tcJ 0 ZttJ 0

Applying this with g<3+ig(<h) = F,,(ei*) —F(ei*) and observing that B=0 (be-
cause of (4.1)), we obtain

Mn =—F  (Onto) - Oto)fd<jt gﬁf0 {lapioni<y —Fge PV JO* @93
By hypothesis (2.2),

|iog F[e,_|(<3] = log plo(<i>)] | g q On-ito) - °to) l.

and therefore

0t
2
__f  (On-Ito) —8@f) ¢ 0 Bvin-
Mn § € g f - (Onito) —8e) de G Gun-1
or
mn Dtmn-1 Mo M Mon
For n —0 we obtain from (4.2) by use of (2.1),

2t 7

t ) 2
T6 o g ") &~ e.
o\ a J

m\ = f"m - 4>)% "y '
2ir*/o 27To"

4 See, for example, A. Zygmund, Trigonometric series, Warsaw, 1935, p. 76 (Eq. (4)).
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Thus we have proved that if p(0) satisfies hypotheses (2.1) and (2.2),
Mng €+L (4.4)

(b). Estimate of M,(. It follows from 89(b) and 8§9(c) that F,,(e®) and F(e*) are
absolutely continuous and that (d [Fn(e*)]/dp] }2and [d[F(e*)]/dp}2are integrable.
Furthermore, because of the absolute continuity of Fn(e'+) —FijeT), the imaginary
part of the derivative d {Fn(e't) —F(e*)}/dp is a conjugate function of the real part.
Finally,

f  -~-F(e™®)dp = [F(e”)]*T= 0, f ~F neNdp = 0.
*To P J o dip

Hence, applying (4.2) with g(p)+ig(p) =d[Fn(ei*)~ F(ei*)]/dp, we obtain6
1 /*2x

1) 0

- ¢7T*;I:O {5 K-ifo)K-ito) - — [O(D)}etO)\ dp. (4.5)

By (2.2) we have (omitting the argument p in the integrands)

1 2 _
Mn =j2€ z—mln "™n~l + 0 Y= (4.6)
As is shown in 89(c),
R €
Furthermore, applying (4.2) with g(0}+*£(0) «¢[",,(e*)]/«”, we obtain by (2.2),
1 Cc2t 0 1 F2t/1l \ 2 1 for
TYI'JIO On—1) dp = Et; 0 { 5 [0,,_110"—1.]/dp g 6 -2—t——\]f0 o'n-ldp,
o 1 2t b2t \ ol 2T
U 6,,dp — 2J dndp+ 2x| g e — On-idp.

2X
Since f1’0/dp = 2, we find that

1 Fzro,,d 1g €21 [ Zafap.

zZrT 0

Wﬁ 1 [ 2tthdp,

2tJn

If we set

we have m,2g 1+w r2_ie2 and therefore

Since

6The notation — [& or (»'/») [#] means p'(6)/p(6).

/1<S VA
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| 2¢
»0 '= Erj%e dp = 1,

we obtain
mlg (1- e)“1 (4.8)
Thus by (4.6), (4.7), and (4.8),
M, g 4e2(l ~ A (4-9)
(c)estim ate of|d,,(p) —O(f) |. To complete the proof we nowapplythe follow-

ing theorem: If g(p) is areal-valued, absolutely continuous andperiodic function
(period 2ir) and if (g'(p))~ is integrable, thenfor any p<,

[0(P)12~ [9(PO)}2"2xM M ", (4.10)
where

TP = §7TJf0 [g9(p)]12p, Mn = 27]'ij [9'(P)]p.

Thefactor 2ir is the “best possible” constant; it cannot be replaced by a smaller one.6
Let g(p)=dn(p) —0(p). Since then flrg(6)dp =0, there exists a value po such that
g(po)=0. Hence

|6n(P) - d(p) | g (27rMnM iy i\

Using (4.4) and (4.9), we find (3.1).

5. Proof of Il. (a) Estimate of M |. Under the present hypotheses an estimate
for M f sharper than (4.9) may be obtained. We shall prove that if p(6) satisfies (2.1),
(2.2) and (3.2), then

Mf S A(n + lentl, (A = 4<e*). (5.1)

Using the relation (4.5) we obtain for »2:1,

Mo = {1 [C-- [0._i1 - p (e fy + p - e')Jddop 3}y W2

+

6To prove (4.10), we note first that for 0£<i>"2jr, 02$0S27r,

2(0) - 9240 = 2 =2 f* * t)&{t)dl. *
_ g2(0) - 924> V0 b g[t)&{t) *)
Since 14p 11/ ear | P PV
1gg'l dl + [ gg’| dI = | gg'| dt = | gg’| dI,
-To 1 Vo 1

one of the two integrals in (*) does not exceed \ft*\gg'\&i. Hence, by the inequality of Schwarz,
[90)]2- [9(09]24 Jf'ojjrl gg'l dl & 2tM M ",

Applying (4.10) with g<®) =cos™ 0 (<= iir) and letting n—*«, we see that the constant 2ir cannot be re-
placed by a smaller one.
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by Minkowski’s inequality. Under the present hypotheses we have by 8§9(d),
0<6'(p) M A =142
Hence, by (3.2) and (2.2),
1 r2T il
M I geAg-J ), - Oyd;)j + eMI-i = e(AMny + M1-1),
and, therefore, by (4.4),
Mr! g iU«" + Mn'-i), (n™ 1) (5.2)
For » = 0, we have, using (4.2) and (2.2),
i f 2t /p

i ro2r
Mo2= — (0'~ 1)-V0 = —

v a r2
(— jdpge2— d'dp = ed.
2ttd o 2ir Jo \P /

2irJ o

This inequality proves (5.1) for « = 0. For »2:1, (5.1) is easily seen to be true by
induction. Assuming that it holds for some »SO, we obtain by use of (5.2),

Mn+lg «(ylerl+ A(n + DenH) = A(n + 2)e"+2

i.e.,, (5.1) is also true for »+1.
(b). Estimate of 16n(p)-d(p) \* Applying (4.10), (4.4) and (5.1), we find

[Onto) - Oto) I » 2rrMnMiyi* g (2rA(» + 1)»/*e«t».

6. Proof of II1. (a) Some properties of the functions FieI*) and Fn(e*). Be-
cause of the hypothesis (3.4), Fie*) has a continuous second derivative for70 g<£ g27r.
The same is true for all Fn(e*) as is shown in §9(e). Differentiating Fie*) and Fn(e*)
twice with respect to p, we obtain

== W + W - i), tt = pW 2+ — W "+ io",
dp ~ p ) dp P p
— -~ K-lj~n-1 + i(0On~ 1), — — = p[Qn-\0'n-l + — [#,_vy]O,,-l + id,"
dp dp2 p
The present proof is similar to that of (1) and we estimate first
(L r2 j i
MI' = J {61' - 6")Adp”

We prove that, for «2:1,
MI' g /12« + |)2nén+l, (6.1)

where A =4'e'2and a,, is defined in (3.6).
(b) Proof of the inequality (61) Since
wx 2
(Fn
f. dp1

7 See, for example, S. E. Warschawski, On the higher derivatives at the boundary in conformai mapping,
Trans. Amer. Math. Soc. 38, 326 (Theorem I11), (1935).

(e*) - F(e*))dp = 0,
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we have, applying (4.2),
W O’ - I f 7{<?[*.] - tie))0”+ #[».](*:!1- «7)

+ (- [«]- 7 [«D)«"+- [»k«' - »">)Y (6.2
\'p p J p !
Because of (3.2),
| *(*)| g.e. (6-3)
Using (9.3), (3.4), (6.3), (3.2), and (2.2), we find that
(¢Co2” - f V ldn- 9\ + [62- O + [0"[]0.- 9\ + |[0" - fI"|}V
2irJ o

If Mnand M1 are defined as in (3.8), we have by Minkowski’s inequality:

M” ,g Cla'm.+ { ¢/ “oa'VERY S
(1 r2r 0 12
+ | —J (0O (»- ®<m + MI' . (6.4)
Since by (9.4),
(1 C2r ) 12
Mo" = J RBYAE N 243'V 2 6, (6 -5)
and by (3.3),
10.8) - «(*) | g (2tA(h+ DIWVH,
we have
rl /fe2¢ 152

i—J  ©,- 0)D"Xxty] g (ird(k+ 1)i/*4*/V2 e*+2= 2/IE"+\AT(» + e (6-6)

Next, applying the theorem of 84(c) with g(p)=dl 8'(p), we obtain
@1 -d'y™ 2ttMI M 11,

and taking the square root and using (9.3), we have

\dl +er\g 2A +V2tMI M,,".
Hence

{j~f RB"2~ 0224 J - MAN2A+ VATM ") = 2AMI + MIy/2rMIM If,

Applying the inequality8 M| g VM, M," to the factor M| of the square root we
find that

8 If we set g(4>) *=6,,((j>)—e(4>), we have by integration by parts
o UDID= | BT | seiene
rtr (rar r2r E][Z
g Jo IgWg U)| H £ JJo [ Jo (*"(*»«*[

This proves the inequality of the text.
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J— (02 09244 g 202 . 6.7

Thus we obtain from (6.4) using (4.4), (6.7), (6.6) and (5.1),

M+1 g e{jd42e"+1 + 2/12(« + 1)e"+1+ 241"+ V>r(» + 1)

+ 1+ c"+V2*vi(»+ 1))M,, J,
and therefore

/ tf\

MnH g A2Zm2<1l+ 2(» + 1) -f- 2«\/x(« + 1) + (1 + €nlv /2X/I(W + 1)) ---m---mm- >. (6.8)
t /126n+1]

Assuming now that (6.1) is true for some 2, we see from this inequality that

(6.1) also holds for »+1. For, if we substitute in (6.8) for M |I' the right-hand side of
(6.1), we find that

wfH A AZn+2{l + 2(re+ 1) + 2e\/x(w - 1) + (1 + enH\22irA(e+ 1))(» + 1) &r,}.
Forrejn2,
1+ 2(n+ 1)+ 2e\Zir(n+ 1) < [I + 2(re+ 1D]JQ + 6 < [I + 2(n + D]<rn+y,
and therefore
M+ g AB"+Vn+l(l + 2(re+ 1) + (re+ 1) = A\n + 2)V,+le"+2
To complete the induction we show that (6.1) holds for «=1 and re= 2.Frbm

(6.2) with re= 0, we find that

Mx = iT [(PM - p[OMDe2+ pM (i - n - [0(*)]«"Jd*}V_

g £j/IWo + (™ f - 0'w) ; + MY ,

by Minkowski’s inequality and (3.4), (6.3), and (2.2). Applying (4.4), (9.3), (5.1), and
observing that by (9.4) Mo' ~/l12(l+i), wefind that

MI' g e2A2+ (1 + A)A + A1+ «) = [ik27P2+ Ay "o+

Since /1 ¢1, (1-|-/1)//1 ~2, and therefore
M{'" g A224 + € < 41V (1 + «). (6.9)

To prove (6.1) for r= 2, we apply (6.8) with re= 1and Mi' replaced by AZ2(4 + ¢€)
(see (6.9)), to obtain

MI'" g "E3BG+ 222i + (L + 222°T)(4 + £)].
Since 2\/2x <6 and I+2e2A/"A >1,

5+ 2ey/2i+ (1 +2tVil)(4 + <5+ 6e+ 4+ ¢(l + 2eV*vO
<91+ ol + 22ViA) = 320X
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and, therefore
MI' g 3V 2d 23

(c). Estimate of 191 «»—d(4>)|. Applying the theorem of §4(c) with
=61 ($) — we obtain from (5.1) and (6.1)

| *,'(*) - 61S V2aw<rn (A(m+ 1))3V +i.

(d). Proof of (3.7). To estimate an we first note that

r

w o n
JJ (1 + tk/2irAk) ™~ exp \Z2irA V leky/k
*_ 2

L A 2
Now
E iV I = ¢eE i<*-"'2) S e{ E i*"1E
A-2 A™M2 V A-2 A2 1

by the inequality of Schwarz. Hence

» ( e / 1 Y| 12 eV 2

S TEER § S VTS e Rl U (R T
)

We find therefore that <r,,<(l+ ¢€) exp [2s/rA e2(l —e)_3/2].

7. Anintegral representation for 61 (4« We shall discuss now the conditions under
which the images Cnof the unit circle by means of the functions w ="fn(z) = zeFni® are
star-shaped. For this purpose we shall first establish the following representation for
6,! 4. If Cis a nearly circular contour and if thefunction p{6) which represents C satis-
fies hypothesis (3.2), then the derivative 61 () of 6n( is continuous and

1 r*+T (p' p) t-f>
(40 -1 = - - - -(*)> cot— _-dt, (7.1)
2t Jt-r tp p | 2
b a<Hx ip’ P ) t—$
K@) - 1= -mmeeed V<—[0»-1(0]-------- [dn-litme~t) cot —— dI
] fp P ) 2

- [e,_)(()]? [e-tto) Jel-awy  (»12). (72

Proof. The integrand of (7.1) is continuous in both the variables t, except pos-
sibly for t=f>, and is bounded because of (3.2). Hence the integral (7.1) is a continuous
function of <= Since this integral represents the conjugate function of (p'/p)[<f>] for
which the integral over the interval (0, 27r) is zero, it is equal to 61 (5 —1, at least for
almost all <5 and, because of the continuity, for all <= This proves (7.1).

Let us suppose it were proved that 61 () is a continuous function when
k—I, 2,e¢¢ « (wS:l). We then show that the formula (7.2) holds with n replaced
by »+1, and that 6!H(<p) is continuous. This will then prove the representation (7.2)
and the continuity of 61 ($) for all n.

Since En+iO”) = log P[<,(<f)]+i(0,,+i(0)—) is absolutely continuous (see §9(b))
it follows that 61+1(0) —1is conjugate to (p'/p) [dn3]0,, (<E), and we have, for almost
all 0,
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I CT (V r 1 ) T*<
on+@) - 1= - — K (t)K'(t)

t
. ps cot — dt,
lirJo \p J T=i_( 2

the integral being convergent in the sense that limj,0/J exists. We write

0i(0) - 1= - - fl—[n@+ *)]- — [©O)]) 010+ O cot— o

+ — T { [0 —t)\ - [0(<x>)])} 6'(0 — 1 cot  dt

2rJ o \p P
[On(<E)] —lf 100+ t) —0,(0 —/N} cot— dt.
P 2xJ o 2

Because of (3.2) and the continuity of 0, (0), the first two integrals represent continu-
ous functions of 0. The third integral (without the factor —(p'/p) [0,,(0)]) is equal to
(P7p)[0n, -1(0)]0x»,-1(0), since 0, (0) —1is conjugate to this function. Introducing the
variable t =0+2 in the first integral and r = 0 —2in the second, we obtain

On+i(0) —1= —— f i— [0,()] — [0,,(0)];0,,' (r) cot -dr
2 Ip p 2

~ — [OM]— [0»-1(0)]0,-10).
P P

The right-hand side of this equation represents a continuous function of 0. Hence
0,+i(0) may be defined as a continuous function for all 0, and therefore 0,,+i(0) has a
continuous derivative for all 0. This completes the proof.

8. Conditions under which Cnis star-shaped. Proof of IV. The curve Cnis star-
shaped if 0n(0)*O. By (7.1) and (3.2)

i r*+T\p' t-

0
0i (0) - 11g - :(0) cot dt

ZITd o1 1 p

e r 4F t- 0
= — 1 2—0) cot 0/ = 2elog 2.
2x0 ¢ X 2
Thus, if 2«log 2" 1or eg (2 log 2)_1, then 0/ (0) 0 and Ci is star-shaped.
Let us suppose it were proved that 0, (0) ~ 0 for some n” 1, provided <does not
exceed some value eo<l. Then we examine 0/+1(0). By (7.2), (3.2), and (2.2),

ton10) - 1|~ = Fr 0@ - 0.0)0n @ cot— . -dt + e, x©) . (8.1)
2

xJ0T

It is to be noted that 0,,(2)—0,,(0) has the same sign as (—0 since 0,( (2)2:0. We find
by integration by parts that
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Hence by Minkowski’s inequality,

mns ' crtY a-M - - - ey uo 11

203 A* \ 2 sin 52 —0) /)

+/arv -+ yal
1.2x0 ¢_T \2 sin M2 —0)/

Integrating by parts, we find that

1 r*+r/ 2-0 1 [*4T 2-0
i A Yoo= =1 @ —0)cot-——-- = 2log2=c2
2i3J * ., \2 sin |(2 — 0)/ 2rJ * 2

Furthermore, by the theorem of §9(f),
1 fo=T/Q@) = 2= [846) = 8)y2 = j1 F++Fflog p[0._i(2)j - log p[0n—0)7 202
240 *-t \ 2 sin £ — 0) / 2irdj., v 2 sin 42 — 0) '
By (2 2), the right-hand side of this equation is
21 f *r/0,_i(2) - 0,_i(0)\ 2 2 2
g e — 1 |- --7—- — )02 = 6Wn-I.
2>d) ;_T \ 2sin £z —0) /

Hence
#i,, N il + C

Since ma=c, we have

1_ en+l
ffin A C(l fe+ 2+ oo+ en) = C— =-————--——-
1—e
Hence, by (8.1),
2 i T1—e"+l*2 2
[ On+i(0) - 11~ €W, + 610, 1(0) 1 g 2~ —j log 2+ elo«30) I  (8.2)

Applying (8.2) with n=1, we find since 00 (2) =1 that,
|02(0) - 11~ 2e(l -f e)2log 2 + €2 (8.3)

and this will be less than 1if eg 0.34.
For « =2 we find, since 0/ (0) gl+2e log 2 and 0/ (0)>0 for «<(2 log 2)_1, that

|03(0) - 1| g 2e(l + e+ ed2log 2+ e(l + 2ilog 2).

This expression will be less than 1, if eg 0.31 (<(2 log 2)_I).

By (8.3), |02 (0)| ~ 1.7927 if e=0.30. Hence, applying (8.2) for n—3 and usil
this estimate for 02 (0), we find that |dl (0) —11g 1, if eg 0.3.

Assuming that, for some «jsi, 0<0,'_i(0) g2, we see from (8.2) that

1 2Io/c\;2
1071(0) - I| g— ~-e + 22< 1
1- e)2

if eg 0.295. Since for eg 0.295 this assumption is certainly satisfied forn—1and n = 2,
it follows that for all n |0/+i(0) —11<1 if e g 0.295.
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Remark. For large values of n the bound for e can be improved by use of Theorem
IV and the left hand inequality in (9.3).

By Theorem 1V, 16J\M{4>)-0'(0)| gV '2~(4(ra+1))3/2e+1>and by (9.3), 0'(0)
NA~ X1+ €)_1/2. For any given fixed n, eOcan be chosen so that \Z2Tren{ A {n-\-\)yI2tQH
<AM-UI + eg)-V2 Then, for all eSe0  @"d'{<j>)-A~I{\-fed-12" 0.

¢ 9. Auxiliary theorems. This section contains the proofs of some of the auxiliary
results cited in the text.

(a). Unigueness of the solution of Theodorsen’s Integral Equation. If C
is a nearly circular contour, the integral equation (2.5) has at most one continuous solu-
tion.

Let us suppose that it had two such solutions, Oi(<€) and C(g>. Since
i@ — Be>= o, I (d2 — #a)dp = o,
it follows by use of the theorem cited in 84(a) that
M2= {log p[di(4>)] — log p[e{<t>))\}aK=

By (2.2),
Ilogp[Oi(<¢>)] - logp[02(0)]| &€]0i(ce) - 02(<A |

so that we have M 2"e2M 2 Since 0<e<Il, M —0 and hence ffi(<f) = Y>>

(b). A PROPERTY of the functions dnfgd. If Cis a nearly circular contour, then the
functions 9n{4 defined by (2.6) are absolutely continuous, and (9,! (<£))2 are integrable
{in the sense of Lebesgue) for 0 g2x.

This is clearly true when w= 0. We suppose that this statement were proved for
some m”™0. Since log p(0) has bounded difference quotients (by (2.2)) and 0»(0) is ab-
solutely continuous, it follows that log p [#,(<E)] also is absolutely continuous. Further-
more, because of the inequality

it follows that the integral

exists. Hence, the conjugate function of log p[On(<>)], namely 0,+(<E) —< exists and
is absolutely continuous and the integral /i;T(On+i(<€) —I) 2kE exists.9

(c). Aproperty OF §<>). If Cis a nearly circular contour, then 6(4>)=arg/(e*) (de-

9We are using here the following theorem: if g(</) is an absolutely continuous and periodic function
(period 2x) for 04 4>S2irand if [g'(4>)]sis integrable, then the conjugate function g(4>) is absolutely con-
tinuous and (g'(0))Jis integrable. (See, for example, W. Seidel, Uber die Randerzuordnung bei konformen
Abbildungen, Math. Annalen 104, 223 (1931).
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fined by (2.4)) is absolutely continuous and {0{g>))2is integrable {in the sense of Lebesgue)
and

x R 1
z 62> 0 - (9.1)

Proof. Since the curve C is rectifiable, the function F{e<) is absolutely continu-
ous.DHence n

— Fe*) - i = — [ff(*)]«rfo) 4- id'M
&) p

exists almost everywhere for 0g<I>g2Tr, and is integrable. Furthermore, the function
d[F{z)]/dcj>—i = u{z)-\-iv{z), z=ref*, may be represented by the Poisson Integral in
the unit circle,

u{z) + iv{z) = ZIJfO \u{eil) + iv{eu)} " r-':'EFE{Js'ﬁ':B dt. 9.2)
For almost all (j){0Og<pg2ir),

lim «(re™) = — {d{4>)jf|'fa) = u(e'), lim v{re?) - Q> = t(e).
r-* p >

Since Cis star-shaped, 6{t> a0, and we have by (2.2),
v{eit) + «(e**) & 6'{4>){l - e & 0.

Because of the representation (9.2) we conclude that v{z)+u{z) SO and v{z) —u{z)"0
for |z| <1. Hence u2(z) —u2{z) ~0 for |z|] <1. Now

i r2
— | (u2(re'*) — u2{re"t))d<t> = 1.
2irJ o

Hence, taking the limit as r—1, we obtain by Fatou’s lemma

i-J 20211 - (— (@) &g 1,
and by (2.2), A )
2ir o tMM G- 4

This proves that (0'(<£))2is integrable and that (9.1) holds.

(d). An estimate for 6{<) ana d'{4>). If Cis a nearly circidar contour and if in
addition (3.2) is satisfied, then
1 N 0'(0) M A =42 (9.3)
AVI + €

(i r2 | 1 12 ) -
j—1J {{"(<s>)2t g A32emin (L + e V2). (9.4)

10 This follows from a theorem of F.and M. Riesz, Uber die Randwerte einer analytischen Funktion,
Comptes Rendus du Quatrieme Congres des Mathématiciens Scandinaves a Stockholm (1916) pp. 27-44.
See also, F. Riesz, Math. Zeitschrift, 18, 95 (1923).
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The proofs of these inequalities are contained in a paper to be published elsewhere.

(e). A PROPERTY of the functions FN{>. If C is a nearly circular contour for
which (3.2) and (3.4) are satisfied, then the functions Fn(eit) have continuous second de-
rivatives which satisfy a Holder condition with any fixed exponenta, 0 <a < 1.

The proof may easily be given by induction. Since log p(fi> and are con-
jugate functions and since the second derivative of log p(<f) satisfies the Lipschitz
condition (3.4), it follows from a theorem of I. Privaloff,11 that 6{ (&5 and 9['(fi) exist
and that 9{' (& satisfies a Holder condition with any fixed exponent a, O0<a<l|. Let
us suppose now, that it had-been shown that 9 f (€ exists and satisfies a Holder con-
dition with any fixed exponenta, 0<a < 1 Then log p[9n@)] has continuous first and
second derivatives, (p'/p) [On(<E)]0, (&5 and p[9n(g>)]9I12+ (p'/p).[0On(0)]0,," (0), re-
spectively, and the latter satisfies a Holder condition with any exponenta, 0<a<l|,
(because of (3.4) and (3.2)). Hence, again by Privaloff’s theorem, the conjugate func-
tion dnH(4>)—+> possesses a second derivative 9f+i(<gji) which satisfies such a Holder
condition. This completes the proof.

(f). A theorem on conjugate functions. Let us suppose that u{t) is a periodic
function (period 2tt) possessing a continuous derivative for 0”(?£27r. Let v(t) be con-
jugate to u{t) and let us suppose that v(t) also possesses a continuous derivative for
05=727t. Then for every d,

u(i) — u(6) v(t) - v(6)
sin \{t —0) sin \{t —Q

Proof. Let G(z) = U(z)-\-iV(z) denote the function which is analytic for \z\ <1
and assumes the boundary values g(t) =u(t)+iv(t) —(u(d)+iv(d)) for z=eil. Then the
real part of [G(z)]2may be represented by the Poisson integral (z=reit)

U@)Y-- F@I2= | 1) - «O)2- 0O - N —— (t_4>)dt.

dt.

As is easily seen, the limit of this integral as r—1is

(9-5)

By the mean value theorem (since U(ei6) = V{eiB =0)

1 1. Privaloff, Sur lesfondions conjuguées, Bull. Soc. Math. France 44, 100-103 (1916); orZygmund,
l.e. p. 156. Privaloff’s Theorem states: if g{<t>) is periodic (period 2ir) and satisfies a Holder condition with
the exponent a, 0<a<|, for all € then any conjugate function of g{4>) satisfies such a condition.
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1—r dp

= 2§ U(pe‘e)—d U{peie) - V(Pe®) i F(pe")l\ ,(r<r< 1) (9.5
( dp dp )p?

Since g'(t) exists and is continuous,

— +i-- =¢e"G'(pe") -» - fg'(0)

dp dp
as p-»l. Thus limp_i d[U(peiQ]/dp and limpx d[V(peie)]/dp exist. Furthermore,
limp® U{peie)= limp,i V(peie) =0. Hence, the limit as r-*1 of (9.6) is zero and there-
fore the integral (9.5) is zero. This proves the theorem.
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ON ROTATIONAL GAS FLOWS*

BY

ANDREW VAZSONYI
Elliott Co., Jeanette, Pa.

Introduction. The main body of the science of aerodynamics is based on the classi-
cal theory of frictionless, incompressible, irrotational fluids. Recently airplanes have
attained such high velocities that this fluid model has proved to be too restricted and
interest has centered on the irrotational motion of frictionless, compressible fluids.
By the term “compressible fluid” one generally means a fluid for which the density
p and pressure p are connected by the isentropic relation pp~y=const. However, the
student of aerodynamics is frequently interested in supersonic phenomena and be-
cause of the possible occurrence of shock waves, such flows cannot be described, in
general, by isentropic, irrotational flows. Accordingly, it becomes necessary to study
the motion of gases under less restricted conditions.

Let us call a fluid barotropic when there is a unique functional relationship be-
tween the pressure and the density of the fluid. The most important examples are the
incompressible fluid where the same constant density belongs to each pressure and
the isentropic fluid where the relation pp~y=-const, holds. The dynamics of friction-
less barotropic fluids is based on a theorem due to Lagrange. If a fluid particle is
irrotational at one moment, it will remain sofor all subsequent time. One can generally
assume in aerodynamics that the air starts from rest. The dynamics of the flow can
then be summed up in the single statement that the motion is irrotational. It follows
that the velocity distribution admits a potential, and the comparative mathematical
simplicity of the dynamics of frictionless barotropic fluids follows from this fact.

Classical fluid dynamics deals almost exclusively with the theory of frictionless
barotropic fluids. To find an example of frictionless non-barotropic fluids, we turn to
the theory of the propagation of waves. When Newton developed his theory of sound-
waves, he assumed that the motion of air was isothermal. Later his theory was super-
seded by a better one which assumes isentropic motion. Thus, both theories assumed
that the transmitting medium was barotropic. The mathematical theory of one-
dimensional large disturbances, a much more difficult problem, was developed first by
Riemann, who again assumed that the flow is isentropic. However, the isentropic
theory of shock-waves turns out to be fallacious because it can be shown to violate
the law of conservation of energy. When shock-waves are considered thefluid model must
be extended to include non-barotropic fluids.

In this connection, let us draw attention to the thermodynamical aspect of the
general theory of compressible fluids. In the case of a three-dimensional flow there are
six unknowns: three velocity components, pressure, density and temperature. The
laws of conservation of matter and momentum together with the equation of state
yield only five equations. To get the missing sixth equation the law of conservation
of energy, i.e., the first law of thermodynamics, must be used. Flows will be isentropic
only when as a consequence of these laws the entropy turns out to be a constant.

* Received Oct. 2, 1944,
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Although the theory of one-dimensional shock-waves requires a non-barotropic
fluid model, this fluid model is a very special one. Even if there is an increase of
entropy across shock-waves, the flow remains isentropic between shock-waves. More-
over, a one-dimensional fluid motion is always irrotational But when one turns to
two or three-dimensional shock-waves, the situation becomes quite different. In this
case Hadamardlwas the first to point out in 1903, that vortices are generated suddenly
by shock-waves and, in general, the flow becomes non-barotropic after shock-waves.

Hadamard determined the sudden change of circulation across a shock-wave but
was not interested in the circulation variations occurring in the fluid behind shock-
waves. A general circulation theorem for frictionless barotropic fluids was established
by Bjerknes2in 1900, for the purposes of his dynamical theory of meteorology. The
motion of air masses originating from non-homogeneous conditions is clearly a phe-
nomenon requiring a non-barotropic fluid model.

Crocco,3in 1937, again took up the question of the motion of frictionless fluids
behind shock-waves. By restricting himself to the steady state he discovered a very
useful theorem. Recently, this theorem was generalized by the author of the present
paper.4

So far, we have spoken only about frictionless fluids. There are problems with
respect to the flow of gases where viscosity cannot be neglected. We mention, for
instance, the boundary layer theory and the behavior of a gas within shock-waves.
It appears probable that when considering the viscous flow of gases, the conductivity
of the gas cannot be neglected in general. Variations in viscosity might have impor-
tance also. No general theorems are available for such flows and we shall have to be
content with presenting the fundamental differential equations governing these phe-
nomena. Any investigation with respect to the flow of gases must be based on these
equations. While in the case of frictionless flows some general consequences of the
fundamental equations are available, in the case of viscous flows we must start the
investigation of each problem by examining the fundamental equations anew.

Lagrange’s theorem plays a fundamental role in our concepts about fluid dynam-
ics. Its validity is restricted, however. The art of aeronautics is now at a point where
we have to extend our fluid model and thus modify some of our basic concepts. We
must accept for instance the fact that vortices can be generated in the midst of a
frictionless fluid. Whether this extended fluid model will be able to account for all
the phenomena which we may wish to consider, only the future can tell.

I. THE FUNDAMENTAL EQUATIONS

1 Continuity equation. From the law of conservation of matter it can be proved
that
dP
divpq = --—--- >
dt
1J. Hadamard, Sur les tourbillons produit par les ondes de choc, Note 111, in Legons sur la propagation

des ondes, A. Hermann, Paris, 1903, p. 362.

s V. Bjerknes, Das dynamische Princip der Circulationsbewegungen in der Atmosphare, Meteorologische
Zeitschrift, 17, 97-106 (1900).

3L. Crocco, Eine neue Stromfunktion fir die Erforschung der Bewegung der Gase mit Rotation, Zeit-
schrift f. Ang. Math, und Mech., 17, 1-7 (1937).

“ A. Vazsonyi, On two-dimensional rotational gas flows, Bull, of the American Mathematical Society,
50, 188 (1944).
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where g is the velocity vectbr. Another useful form of the continuity equation is
given by

. 1 dp
div q = — ©)
p at
2. The Navier-Stokes equation. From the law of conservation of momentum it
can be proved that the equation of motion is given by
d 1 .
_q = grad p H P Ag H grad div q, M)
d tp p 3p

where it is assumed that the viscosity p is constant.
It will be useful to derive certain other forms of this equation. The specific en-

thalpy h of a gas is defined by

h=U + pp~\ (2.1)

where U denotes the specific internal energy. The specific entropy s is defined by
Tds = dU + pdip-) (2.2)
where T denotes the absolute temperature. From Egs. (2.1) and (2.2) it follows that
Tds = dh — p~dp. (2.3)
Using vector notation and considering only spacial variations, we may then write
T grad i = grad h —p~I grad p. (2.39

From this last equation and theequationof motion we find that

:—?: Tgrad 5—grad h—-\——,EAq ----- I—grid div q. (M)

Another useful form of the equation of motion can be obtained by using the

stagnation enthalpy
hO= h+ <2 (2.4)

and the identity

Jg 3
— = hgrad {\q? - gXw (to = curl ) (2.5)
dt dt

together with the equation of motion (M")- Thus one obtains

dg P P
it gXto= —grad ho+ T grad s H Aq grad div q. (M™)
p 3p

A fourth useful form of the equation of motion can be obtained by introducing the
rate of change of the stagnation enthalpy. Differentiating Eq. (2.4) with respect to t,

we obtain
dho dll 1 dg2
+

(2.6)

dt dt 2 dt
From Eqg. (2.3) it then follows that
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dho ds 1 dp da ds 1 dpm 1 da
= T— + ——- +0Q— = T— + - -+ —qg-grad® + g— ¢ (2.7)
dt dt p dt dt dt p dt p dt
Using the continuity equation (C'), we may write this as follows:
dho ds I dp /1 dg\
— = + +q- -grad/> + -~ (2.8)
dt dt pdt \ p dt /
Introducing the last expression into the equationof motion (M")i we finally obtain
dho ds 1d p
=T 1 —f -(Aq + § grad div q). M™
ot it St g (Aq g q) (M™)

3. Theenergy equation. From the law of conservationof energy, it can be shown5

that
du d{p~I) 1

at at p

+ Q (E)

The first term on the left-hand side accounts for the rate of change of internal energy;
the second term stands for the work required to compress the fluid. The first term on
the right-hand side represents the heat generated by the viscous forces. The dissipa-
tion function (p is defined by

/du\- / dv\~ /dw\ 2 (dw dv\ 2
TAlfc) M 2fe) +2t ) +W +10)
(du dw\- (dv. dn\2 2 1

o(*"J YL 1.) , WIVBT  <ay

Finally, the last term on the right-hand side accounts for the heat added to the fluid
per unit of time per unit of mass. For instance, when all the heat transfer is due to the
conductivity of the fluid (no external heat sources, no radiation), Q is given by

Q = p_1div (k grad T). (3.2)

The energy equation can be simplified by introducing the entropy from Eq. (2. 3);
thus we have
& \ - EO
— = [ V- 4>
5 Q ; (
The interpretation of this last equation is particularly simple. The right-hand side
represents the total heat increase of thefluid, while the left-hand side gives the corresponding
product of the temperature by the entropy change. By combining the equation of motion
{M') with the energy equation (E'),weobtain the followingimportant relation,
dho 1 dp 1e p .
— = — —+ Q4 <M q+(Agq + § grad div Q). (E"
dt p dt p P

In the literature, theenergy equation is frequently given inthis last form.

6See J. Ackeret, Handbuch der Physik, vol. 7, Berlin 1927, chap. 5, p. 293, or H. Lamb, l.e. pp. 575
and 637. In the energy equation it is not assumed that p is constant.
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II. VORTEX THEOREMS FOR FRICTIONLESS FLUIDS
4. The circulation theorems. The circulation is defined by
-dlI. 4.1
_ (4.1)

where the integration is to be taken along a closed curve formed by fluid particles. It
is easy to show that the rate of change of the circulation is given by
dT
= <fi— d\ (4.2)
dt J dt

Let us combine the last relation with the equation of motion (M). If the viscous
terms are omitted, we have

dr ri r dp
(4.3)
17 p
By means of the identity
0= () d(p~Ip) — (>pd(p~D () p~ldp, (4.4)
Eqg. (4.3) can be transformed into
dT )
it - ~£ P(grad p“)mi\ = - j) pd{p-I). (4.3)
Instead of using Eq. (M), we can use Eq. (M') and thus obtain
dr ) )
ot = 9> T{graA s) dl = (j) Tds. (4.3")

Sometimes it is preferable to transform the line integrals into surface integrals with
the aid of Stokes’ theorem. Thus it follows from the last two equations that

dr

il = — [grad p-1) X grad p\dA, (4.5)
dr
— = [(grad T) X grad s\dA. (4.5)

We now come to the interpretation of the equations for dT/dt. When the fluid is
barotropic, the right-hand side is zero in all of these equations, and the theorem of
Lord Kelvin is then obtained. The circulation along a closed “fluid line” in a barotropic
fluid is constant for all time. In particular, when the circulation is zero at a certain
instant, it will remain so for all subsequent time. By applying Kelvin’s theorem to
an indefinitely small closed line, Lagrange’s theorem is obtained.

In the case of non-barotropic fluids, the situation is quite different. The right-hand
sides in the equations are not zero in general and Kelvin’s theorem does not hold.
Bjerknes2 gave a simple geometrical interpretation of Eq. (4.5). Let us draw equi-
distant members of the families of surfaces p =const, and p-1= const, and so obtain
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a series of tubes bounded by these surfaces. The theorem of Bjerknes states that the
rate of change of circulation per unit of time along a fluid line C is proportional to the
number of tubes surrounded by C. (In the case of a barotropic fluid the surfaces
p —const, and p“l=const, are identical.)

A very similar interpretation can be given to Eq. (4.5") by considering tubes
formed by the families of surfaces T = const. and s = const. In the case of a barotropic
fluid, these two families of surfaces are identical, unless the flow is isentropic in which
case the surfaces s=const. are no longer defined. Bjerknes’ theorem, in this modified
form, will be useful in a later part of this paper.

5. Theorems with respect to the rotation. Helmholtz’s theorem. With the aid of
Egs. (2.5) and (CO it can be easily proved that

(5.1)

Applying the operator curl to both sides of the equation of motion (M) or (M"), we
obtain in the frictionless case
d(p ’tg

ot (<oV)eq = —grad p~I X grad p, (5.2)

or
d(p ’«)

dt

— (0V)eq = grad T X grad s. (5.20

In the case of barotropic fluids, the right-hand side equals zero. (For two-dimensional
flows the second term on the left-hand side equals zero because u is everywhere nor-
mal to g.) Thus, for barotropic fluids,

(5.2

A geometrical interpretation of the last equation led Helmholtz to the discovery
of his famous vortex theorems. Vortex lines are material lines. The product of the cross-
sectional area and of the vorticity w of a vortexfilament is constant both in space and time*
(Holmholtz unnecessarily restricted his investigations to incompressible fluids.) In
the case of non-barotropic fluids, (5.2'0 must be replaced by the more general Egq.
(5.2) and the Helmholtz vortex theorems do not hold any more. Friedman6 derived
certain theorems for non-barotropic fluids which are somewhat analogous to the
Helmholtz theorems.

6. The theorem of Crocco and its generalization. In the case of steady, frictionless
flows the equation of motion (M'O simplifies to the important relation
g X « = grad h0— T grad s. 6.1

We will see later that for a very important type of flow ho is constant throughout the
field. In this case Eq. (6.1) reduces to

* A line which at each point is tangent to the vorticity vector w, at this point, is called a vortex line.
An infinitely thin tube formed by vortex lines is called a vortex filament.

6A. A. Friedmann, Uber Wirbelbewegung in einer kompressiblem Fliissigkeit, Zeitschrift f. Ang. Math,
und Mcch., 4, 102-107 (1924).
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g X «=-T grads. (6.1

This last relation was discovered by Crocco.3When both hOand 5 are constant the
right-hand side of Eq. (6.1) is zero and so the motion must be irrotational. The im-
portance of Eq. (6.1) lies in the fact that it relates the rotation of thefluid to the rates of
change of hOand s.

I11. ADIABATIC, STEADY, FRICTIONLESS FLOWS

7. General relations. For the flows considered in this chapter the energy equa-
tions (E') and (E") reduce to
o . 0 (7.1) dto_ 0 (7.2)
do ' ' do '

where d/do indicates differentiation along a streamline. Accordingly, both the entropy
and the stagnation enthalpy are constant along each streamline (but they might vary
from one streamline to another). Because of its great importance, we shall write out
the integral of Eq. (7.2) in detail for a perfect gas with constant specific heats. One
obtains

1 1 1 cpp .
ho= — g2+ // = — g2+ cpT = — Q2+ -—-—-—-- = const, along a streamline, (7.2)
2 2 2 R p
where the equation of state
Plp —RT (7.3)

is used.

The modified Bjerknes theorems simplify somewhat for the flows considered in
this chapter, because the lines of constant entropy coincide with the streamlines.
Similarly the generalized Crocco theorem [Eq. (6.1)] simplifies, because the stream-
lines coincide with both the lines of constant entropy and the lines of constant stagna-
tion enthalpy.

An example illustrating these theorems will be useful.* Consider the discharge of
a perfect gas from a container. We assume that the gas is originally in equilibrium,
that is, that the pressure po is constant, but do not assume that the temperature TO
is constant. In order to use Bjerknes’ theorem (in its modified form) we construct
the net formed by the lines of constant entropy and the lines of constant temperature.
At the beginning of the experiment the pressure is constant and these lines coincide.
Thus it follows from Bjerknes’ theorem that dT/dt —0. However, at a subsequent
instant, the lines become distinct and so the motion becomes rotational. Let us pro-
ceed now to determine the rotation. In order to use the generalized Crocco theorem
we consider only steady state flow (infinite container). According to our energy theo-
rem, the entropy and the stagnation enthalpy (and consequently the stagnation
temperature) are constant along each streamline. Furthermore, since po is a constant,
it follows from the thermodynamical relation (2.3") that

grad ho = TOgrad s. (7.4)
Thus from Eq. (6.1)

* The author is indebted to Professor H. W. Emmons of Harvard University for this example.
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g X «.= "1l ——" grad hO (7.5)
or, after simplifications,
g X 0= |?2grad (In To). (7.59

We observe again that although the flow originates from a resting gas, the motion is
rotational in general.

8. Two-dimensional flow. The continuity equation shows that in this case there

exists a stream function such that
u —p~Idip/dy, = — p~Idip/dx. (8-1)

From the definition of the rotation,it follows that the stream function must satisfy
the following equation

d(p~TIpz)/dx -f- d(p~lipv)/dy = — @ = —dv/dx-\- du/dy). (8.2)

In order to determine ® we use Eq. (6.1). Because 5 and ho are constant along a
streamline,

_ ds _(Ii_ho (8.3)
i dn  dn ’ '

where d/dn indicates differentiation normal to a streamline. Both the entropy and
the stagnation enthalpy are functions of ip alone. By using the relation

d d
—=gp—, (8.4)
an ay
we find from Eq. (8.3),
ds dho\
®=  ——— ). 8.3
v dip dipJ
For a perfect gas this reduces to
<8.3»)
R dip dip

Noting that dho/dip and ds/dip are constant along any given streamline, one observes
that the rotation on each streamline is a linear combination of the density and the pres-
sure. If ho is constant, throughout the flow the rotation is proportional to the pressure.3
If s is constant, throughout the flow the rotation is proportional to the density.7
(The constant of proportionality is given by the rate of change of entropy or stagna-
tion enthalpy normal to the streamline.)

It is of some interest to develop Eq. (7.5") for the two-dimensional case. Here we
find that

i*TM

2 dp (8.5)

and the rotation is thus seen to be proportional to pg2along each streamline.
Finally we mention that after rather lengthy computations the differential equa-
tion for ip, Eq. (8.2), can be transformed into

7K. O. Friedrichs (and R. von Mises), Fluid dynamics, Brown University, Providence, R. I., 1941,
p. 229.
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( u\ 2uv / VA F3/;0 k — \ ( g2 ds~
(1 SfrXVAT 1 e S R 7 AT AT 7 —— (Ao + — )— (8.6)
Y, al a2 \ a2l _dp kR '\ 2 ) dip

When both the entropy and the stagnation enthalpy are constant throughout the
field, the right-hand side of Eq. (8.6) becomes zero and one obtains the familiar equa-
tion of a steady isentropic irrotational flow.

9. Flow around an obstacle with shock-waves. Shock-waves can be included in
our theory by admitting such discontinuities in the flow pattern as are compatible
with the laws of conservation of matter, momentum and energy. Thus, the previous
theory can be applied for flows between shock-waves For most purposes one can as-
sume that the air comes from a homogeneous condition and in particular that hO
and s are constant far ahead of the obstacle. It follows from Eqgs. (7.1) and (7.2)
that both hOand s are constant at least up to the first shock-wave, and then again along
each streamline between consecutive shock-waves. Hence to= 0 on each streamline up
to the first shock-wave. In particular, if a streamline is not intersected by a shock-wave,
o remains zero all along this streamline. From the law of conservation of energy it can
be deduced that hO must be continuous across a shock-wave and thus ho must be a
constant throughout the field. Hence from Eq. (8.3”)

p ds (9.1)

R dtp’
and the rotation is proportional to the pressure along each streamline between shock-
waves. Furthermore it is known that the entropy increases across a shock-wave and
the increase depends on the magnitude of the shock. Hence ds/dtp is not zero in general
after a shock-wave and the motion is rotational. Generally speaking there is always a
sudden increase of the rotation across shock-waves (see Hadamard), and then the rotation
remains proportional to the pressure (see Crocco).

10. Flow with axial symmetry. Let the x axis be the axis of symmetry of the flow.
Then there is a stream function such that

r lp Wtp/dr, v = —r Ip Idtp/dx, (10.1)
where
r=\fy2+ 32 (10.2)

and v is the velocity component normal to the x axis.
Quite similarly to the two-dimensional case, it follows from Eq. (6.1) that, in the

present case,
ds dho\

U= rp(hi - (10.3)
dtp dtp)
For a perfect gas, we have
d dho
e (10.3Y)
R df dtp

When ho is a constant throughout the field, one recognizes in Eq. (10.3) a relation
discovered by Crocco.3
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ON VELOCITY CORRELATIONS AND THE SOLUTIONS OF THE
EQUATIONS OF TURBULENT FLUCTUATION*

BY

P. Y. CHOU**
National Tsing Hua University, Kunming, China

1. Introduction. The theory of turbulence, as developed from Reynolds’ point of
view, is based upon the equations of turbulent fluctuation [I] and has been applied
to the solutions of various special problems [2, 3, 4, 5 6, 7]. Owing to present cir-
cumstances, these papers either have not been submitted to scientific journals for
publication or are already printed but have failed to appear before the scientific
public. The theory in its original form and its applications has three apparent diffi-
culties: first, the equations of correlation of the second, third or even higher orders
constructed out of the equations of turbulent fluctuation contain the unknown terms
of correlation between the pressure and velocity fluctuations; secondly, there exist
in these equations the terms of decay of turbulence the values of which have to be
determined; thirdly, when the differential equations of the velocity correlations of a
given order are derived from the equations of turbulent fluctuation, the presence of the
inertia terms causes the appearance of the velocity correlations of the next higher
order, which are also unknown. This has been pointed out by von Karméan and
Howarth [8] in their theory of homogeneous isotropic turbulence.

In the present paper we shall show that the pressure fluctuation can be derived
from the equations of turbulent fluctuation, and is expressible as a function of the
velocity fluctuation, the mean velocity inside the fluid volume, and the pressure
fluctuation on the boundary. We shall also show that the decay terms can be put
into simpler and more familiar forms by kinematic considerations. A general equation
of vorticity decay will be derived for the determination of Taylor’s scale of the micro-
turbulence which appears in the decay term; in the case of homogeneous isotropic
turbulence, this equation was given first by von Karméan [8]. To get over the third
difficulty we shall compare the orders of magnitudes of the different terms in the equa-
tions of triple correlation. We shall find tha.t the term involving the divergence of
the quadruple correlation is actually smaller than the correlation between the pres-
sure gradient and the two components of velocity fluctuation, and can therefore
be neglected as a first approximation. From this we can also understand why, for the
flows in channels and pipes in which the mean velocity profile is comparatively steep,
particularly in the neighborhood of the walls, all the equations of mean motion and
the equations of double and triple correlation are necessary to describe the phenomena
of turbulent motions of fluids. On the other hand, as a consequence of the approxima-
tion based on the fact that the divergence of the quadruple correlation is smaller
than the correlation between the pressure gradient and the two components of veloc-
ity fluctuation, we can stop at the equations of triple correlation instead of building
equations of higher orders. As a matter of fact, for the flows in jets [3] and wakes [4]

* Received Aug. 21, 1944,
** Now at California Institute of Technology.
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where no wall is present, the equations of mean motion and of double correlation are
sufficient, after some simple approximations to the triple correlations are made, for
the determination of the mean velocity distribution, and the equations of triple cor-
relation can be dispensed with.

From a mathematical point of view the present program indicates that the turbu-
lence problem can be reduced rigorously to a set of non-linear partial integro-differential
equations the solutions of which are very difficult to ascertain. In order to facilitate
the solution of special problems, approximate forms of the integral parts of the equa-
tions have been developed in a general way. These approximations, however, are only
valid in regions not too close to the boundary of the moving fluid volume. It may also
be worthwhile to point out that the unsatisfactory part of the present theory lies
in the Uncertain nature of the correlation integrals, as will be seen presently in §8.
A better and more accurate representation of these integrals is possible, provided
more accurate experimental information can be obtained as to the distribution of
turbulence levels and to the correlation functions between two distinct points in
general.

The rigorous way of treating the turbulence problem is probably to solve the
Reynolds’ equations of mean motion and the equations of turbulent fluctuation simul-
taneously. This procedure, however, is very difficult owing to the non-linearity of the
two sets of equations. Hence we have adopted the method of solving the equations
of turbulent fluctuation by setting up the differential equations satisfied by the veloc-
ity correlation functions of different orders, a method initiated by von Karmén and
Howarth [8] in treating the problem of homogeneous isotropic turbulence. This
process of setting up the correlation equations of different orders and seeking their
solution can be regarded as a method of successive approximation to the solution
of the turbulence problem; it will be explained in the concluding section of the present
paper. The correlation functions of higher orders in the various special problems, ob-
tained by this setting-up process, should be verifiable by direct observation with the
advance of modern experimental technique; at present experiments have only been
performed to measure the mean velocity distribution and the second order stress
tensors in a turbulent flow. It should also be noted that although the equations of
correlation have a much more complicated mathematical appearance than that of
the Navier-Stokes’ differential equations from which they are derived, the method of
Prandtl’s boundary layer approximations can still be used without leading to contra-
dictions for the particular problems [3, 4, 5] under consideration.

For the sake of convenience we list below the different equations of motion which
have been derived heretofore [I]. Reynolds’equations of mean motion and the equa-
tion of continuity for an incompressible fluid are given by

dUi
(1.1)
dt P P

Here, the tensor notation is employed, and Z& are the velocity components of the
mean motion, tis the time, p is the density, p is the mean pressure, v is the coefficient
of kinematic viscosity, a subscript preceded by a comma denotes the covariant
derivative, V2 denotes the Laplacian operator, and Reynolds’ apparent stress is
defined by the relation
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Ti. — _ pWiwit . (1-2)

Wi being the velocity components of the turbulent motion.

The equations of turbulent fluctuation and the equation of continuity for the
velocity fluctuation w', which arc the differences of the Navier-Stokes’ equations and
Reynolds’ equations (1.1), are

du>i . . . T 1 .

— -+ U’Wi,j+ w'Wi,j+ w'Uij = ro.i r’ij + v\/2wi, w’j =0, (1.3
dt . p p

where a is the pressure fluctuation. From the above set of equations we derive the
equations of vorticity fluctuation,

d

_t ua + Cloju-j+ U’.kWij - U’iWk,j + w’aik.j + w’kWi,j — w’,iWKk,j

a

+ W’&k,j +W kUi, j—WAiUK,j — ----—-- (Thi.jk — T’k.ji) + vvasik, (1.4)

where the mean vorticity fl-*and the vorticity fluctuation aukare defined by the equa-

tions
P-t = U{k — Uk,u oit = Wi,k — wk,{ (1.5)

The equations of double velocity correlation derived from (1.3) are

1 drik 1 1
--------------------------- (Ui,jT’k + Uk.jT"i) U’Tik,j + (W’WiWKk),j
p at p p
1 v
= @WKk + QKWi) —V2Tik — 2vgmnWi,mwkin,—  (1.6)
p P

where the superimposed bar denotes the mean. The ten equations of triple correlation
are

— WIiWkWi + Ui, jW’WKWi + Uk.-W'WiWi + Ui jW’'Wiwk + U (WiWkwi) + (w WiWKkwi) ;
at

= 7 (@iWkwt+ akwiWi + aiWIWK)
P

1 -
+ _ (T’i.kaI + 1T T’I,jTIk) + vgmnwiwkwi)
P2
— 2vgmr{wi,mwk,nwi + wk,mwi,nWi + wi,mwi,nwR. (1.7)

2. The pressure fluctuation. Let us take the divergence of the equations of turbu-
lent fluctuation (1.3). Because of the equation of continuity satisfiedby w\ the pres-
sure fluctuation a satisfies the following Poisson’s equation:

1 S
—vVvd = - 2Umnwnm+ (WmWn- wmwn),mm. (2.1)
p
Since any two successive covariant differentiations are commutative in a Euclidean
space, the gradient of the pressure fluctuation cot* also satisfies a Poisson’s equation,



1945] VELOCITY CORRELATIONS AND EQUATIONS OF TURBULENT FLOW 41

V2rafc = — 2(Um,nWn,m),k + (wmwn — w mw n), mnk. (2.2)

p
The general solution of (2.2) can be written in the form,

—ak=—JJJ (Ummwnmlk—dvV: ——JJJ (Wmv'n—w'nmwn',nnk —dV'
+ ~ j - ~ a\k 2.3
4trpj[J[ J[r dn’ « dn'Xrlj (2:3)

where the integrations extend over the whole region of the moving fluid, the first
two integrals represent the particular integrals, and the third represents the comple-
mentary solution which is a harmonic function expressed in terms of the boundary
values of itself and its normal derivative; xn are the coordinates of a point P' which
ranges over the region of the moving fluid, r is the distance from P' to the point P
with coordinates x\ dV' is a volume element, dS' is a surface element, d/dn' denotes
the normal derivative, and the primes on the various quantities on the right side of
(2.3) indicate that these quantities are to be evaluated at P'. We shall see finally
that the surface integral in (2.3) can be neglected for points P where atk is defined
and which are not too close to the boundary of the moving fluid.

We now let both x' and x/{ represent rectangular cartesiancoordinates, and let £
denote the difference vector of xHand x|, i.e.,

2= xH— x\ (2.4)

Covariant differentiation then reduces to ordinary differentiation, and the difference
between covariant and contravariant tensor character disappears. Hence £'is equal
to £<and the distance r between P and P’ is given by

r~= W- (2.5)

The element of volume dV' is equal.to d*d~d”.

The solution (2.3) clearly shows that besides the harmonic function expressed as
a surface integral on the boundary, the pressure fluctuation at a point P, and its
gradient, are determined by the turbulent velocity fluctuation w' not only at P but
also everywhere within the fluid. However, due to the factor \/r in the integrands
the effect of the velocity fluctuation at distant points P' on the pressure fluctuation
at P gradually dies away as P' recedes farther and farther from P.

3. Velocity correlation between two distinct points. The partial differentiations in
the integrand functions in (2.3) are taken with respect to the coordinates x'k which
are independent of x\ Hence, ifwe multiply (2.3) by thevelocityfluctuation Wi at
the point P,we obtain the correlation between Wiand aik at thesame point P:

—~r7= ~fff [UmnivE* m\,k—dV'+ ¢ [/ /] (w'nMp™<Y ™k~dV'

+ (3">

We shall neglect, however, the surface integral in the above equation on the
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ground that the correlation a',kW{ is small provided that the point P where the correla-
tion o,kWM is under consideration is situated not too close to the boundary. This
condition limits the present theory to regions where free turbulence predominates.

Likewise, under the same condition of approximation the correlation function
p~la,kWiwi is given by

— a,kwiWi = — i f f [U'mn(w'nwiWi)',,, ] fc— dV
p 2irJ J J r

[w'mw'n wiWi — w'mw ' nwiWi]',mnk — dV'. (3.2)
Piof 11 r

If we solve for a from (2.1) and form its correlation with Wi, we find, to the same
order of approximation, that

—aWi ——JJJ" Um,(WnWi)'m—dVv' + —J"jJ" (w'mw'nWi)' m— dV'. (3.3)

In the three equations (3.1), (3.2) and (3.3) we recognize three types of functions,
namely, w'mWi, w'mw'Wi and w'nWiwi, and w'nw'nwliVi\ they are, according to Taylor
[10] and von Karman [8], the velocity correlations between two distinct points P
and p' of the second, third and fourth orders respectively. They are usually functions
of both the coordinates x' and x'kand probably also of the time t. The double correla-
tion function w'nWi between P and P' has been measured extensively for isotropic
turbulence by several authors [Il, 12]; for flow in a channel [13] and in a pipe [14],
they have been recorded only in a number of isolated cases and only within limits.

It has been observed that for isotropic turbulence w'nWi vanishes very rapidly
for large values of the quantities  defined in (2.4). This must also hold true for the
other two jcorrelation functions w'nw'nWi and w"WflVi, and also for other types of
flow; furthermore their derivatives with respect to jik should all approach zero rapidly
with increasing £*

On the other hand, thequadruple correlation w,mw,rwtWi between thepoints P
and p' does not necessarily vanish when P and p' are widelyseparated, for the aver-
age values of both w,mw’nand ww; over a period of time r are themselves not sepa-
rately equal to zero in general. Hence as an analogy to the velocity vector W\ we
may separate the product wiwf into two parts, the correlation wtW{ and a symmetric
tensor itu the time average of which vanishes,*

WiWi = WiWi + Hu, (3.4)
\' o2

uu = — | uudt = 0.
T jr—»

An analogous relation holds good for wnw'n. The quadruple correlation w'nmw'nWiwi
between the points P and p' consequently becomes

wmw ' nwiWi — w'mw'nWiWi + u'mmuu. (3.5)
As P and P' recede farther and farther from each other, the correlation function

* The author wishes to express his gratitude to Mr. S. L. Chang for pointing out relation (3.4).
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it'mmuu, which behaves like w,nWi, will tend toward zero as a limit. Substitution of
(3.5) into (3.2) yields

—a,kwiWi = — i f f [U'ml,,(w'nwiwi)/,m],k— dV'
p 2tJ J I r

+ A Fff A ymk? dve (3'6)

If we substitute in the equations of thedoubleand triple correlations (1.6) and (1.7)
for p~da,kwi from (3.1) and p~xaikwiwi from (3.6) above, we obtain a set of integro-
differential equations for the mean velocity, the double and triple velocity correlations
ofaturbulent flow at a point P being the dependent variables with the velocity correla-
tions between two distinct points w'nWi and w'nWiWi as kernels. This set of integro-
differential equations is too complicated for solving special problems, so we shall
presently develop approximate forms of the integral parts of the equations in a gen-
eral way.

It should be noted that for homogeneous isotropic turbulence the following rela-
tion between the triple correlations holds [8]:

w'mw'nWi = — w'iwmwn. (3.7)

4, Conservation relations satisfied by the velocity correlations. The velocity fluc
tuation w'nat the point P' satisfies the equation of continuity w'n,,,—0. Let us multiply
this equation by Wi and average over an interval of time r. Since P and P' are inde-
pendent, we obtain the conservation equation for the double correlation w'nwi be-
tween P and P',

i»”™,-0, (4.1)
dx’n
where the coordinates are still rectangular cartesian, and the subscript * indicates
that the variables xkare to be held constant while the differentiation is carried out.

Insteadof x' and x'\ we can use the coordinates x' and £* i.e., wetransform from

the old variablesx' and,xn to the new variables x' and by meansof the equations

x'= X', xli = x'+ £ (4.2)
In terms of the new coordinates x| and Eq. (4.1) becomes
d d . s
—— (W™Wi)x = (w'nwi)x = 0. (4.3)
dx'n dp1l

For the sake of simplicity we shall drop the subscript * in (4.3); it will be understood
that the variables xk are regarded as constants during the differentiation. Hence we
can write the divergence equation (4.3) in the covariant form,

(WAwl),n = 0. (4.4)

Similarly, from the equation of continuity for w*at the point P, we have

d
- (> Ba»%'-= 0.
dxi
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In terms of the new coordinates x* and £\ this relation becomes

dx (w'nwW A f d?7 {w’nW{) x 0.

After changing the variables from x*, xu to x*, £7it can be seen that w'rwit considered
as a function of x* and £*rather than of x*and x'\ varies slowly with x* but rapidly
with £*for points not too close to the boundary of the fluid volume. Hence, as a first
approximation the equation of conservation for the double correlation between P
and P' in the index i is given by

We note that to the first approximation the correlation function w/lwi satisfies the
conservation equation symmetrically with respect to the indices i and k.

Likewise, the other two correlation functions %.,"w'nVi and w'nvjiwk between P
and P' can be shown to satisfy the following relations:

(w'mw'nwi) )i = 0, (W'nWiWK),n = 0. (4.6)

The first equation in (4.6) is derived by an approximation as was (4.5); the second one
is rigorous. We must not forget that all the covariant derivatives in (4.5) and (4.6)
are taken with respect to the variables £% the coordinates x* being held constant.

It is obvious that since the coordinates x* of the point P are regarded as constants
under the integrations in (3.1), (3.2) and (3.3), the covariant derivatives with respect
to x'hin the integrand functions can all be replaced rigorously by covariant deriva-
tives with respect to the variables £*, because of the equations of coordinate trans-
formation (4.2). For example, (3.1) then becomes

— a,kWi - —mi ff [I/'mn(w'nWi),m\,k — dV"
p 2irJ J J r

+ —J1"3" (w'nWnWitmme  dV'. 4.7)

The other two integrals (3.3) and (3.6) can be altered analogously

5. Correlation integrals between the pressure gradient and velocity fluctuations.
Let us examine the integral (4.7) more closely. In the integrand function of the first
integral on the right hand side, U'mnis a more slowly varying function of than
its factor w'nwi, both functions being regarded as functions of xk and £‘. Hence, we
expand U'mnat the point P' in a multiple power series in £*

dum dUm ™ 1 d’+1uU

Taxn o dxn Tt EUGRFAXE S ST FRA

“ o g (5.1)

Substitution of (5.1) into (4.7) would yield a series of integrals which would be too
complicated for any practical application. But if we neglect the higher order terms,
in (5.1), then we have as a first approximation to (4.7),

1

— (a,iIWk + ts.ie,-) = anmikUmn + bik, (5.2)
P
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where the functions ammik and bik are defined by

anmik _J J J + (w'nWK) ,mi] — dV"*,

bik = —\] \] \] [(«/"o«/"»<) st +  (W'mw'nWK),»mi] — dV". (5.3)

Owing to the conservation relations (4.5) and (4.6), the above two sets of functions
also satisfy the following divergence conditions:

amik = 0, gikanmik = 0, gikbik = 0. (5.4)

Of these three conservation relations, the first follows from the rigorous continu-
ity equation (4.4) and is hence exact, while the other two follow from (4.5) and the
first equation of (4.6) and are hence approximations. The nature of the functions anmik
and bik will be discussed in 88 below.

Because of (5.4), contraction of (5.2) by means of gik yields,

1 1 i
— a,{W' = — (raw*).* = 0. (5.5)
P P
This result is consistent with the correlation (3.3). For we may substitute the series
in (5.1) into (3.3) and preserve the largest term; but the latter is smaller than the
first term on the right-hand side of (5.2) by a factor of Awhich is Taylor’s scale of
micro-turbulence [10, 8]; the second term on the right-hand side of (3.3) is also smaller
than bik by an analogous factor. Hence the approximate form of (3.3), to the same
degree of accuracy as in (5.2), is
— aivi = 0. (5.6)
P
This relation has also been proved to hold true for isotropic turbulence by von
Karman and Howarth [8].

By a similar process, we find from (3.2) that the triplecorrelation between the
pressure gradient and two components of the velocity fluctuationsis, to the same de-
gree of approximation,

1
 (@iWKWi + a kwiWi+ a,twivk) = b"mikiU™\n + ciki, G.7)
p

where the forms of the tensors bmmiki and ciki are given by respectively by

bnmikl = —J J J [(w’nWiwk),ml + (mw'nWkWI),mi + (w'nU=iwi),,*] — dV’,

Cm = ff [(«"™"«e*) ,mnl + {u'mnUkl),mni + {idmnUY .m,k\ ~ JW . (5.8)

Because of (4.6), the functions bnmiki satisfy the rigorous conservation relation,
b\m = 0. (5.9)

We shall discuss the general behaviour of the functions bnmm and c<h in 88.
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6. Terms involving the decay of turbulence in the equations of double and triple
correlation. To determine the terms in the decay of turbulence, it is necessary to
know explicitly the double and triple velocity correlations between two adjacent
points. Physically, the correlation functions between two near-by points must satisfy
two conditions: first, they should become the velocity correlations at one point when
the two points coincide; secondly, they should degenerate into the isotropic corre-
lations when the flow obeys the condition of isotropy. By two adjacent points we mean
that expansions of the double and triple correlation functions in terms of the coordi-
nates £‘stop after the second and third powers of £% respectively. Furthermore, since
only approximate expressions of the decay terms are required, conservation equations
in the forms (4.4), (4.5) and (4.6) will suffice for the present purpose. In view of the
property that the double correlation W{w'n satisfies the conservation relations (4.4)
and (4.5) symmetrically with respect to the two indices i and n as a first approxima-
tion, it should also satisfy the supplementary condition that its expansion be sym-
metrical in the coordinates of P and P".

The second order velocity correlation between two adjacent points that satisfies
the above two conditions and the supplementary condition of symmetry can be ex-
panded into powers of £' in the form,

A 8ik ( Cnn \
V.- i, {— M.+ — B.CP + *, (.+ - «m)
£ (sS,S'f, + KuCi.l + A — + e} (6.1)
X2 41X4 )

where q is the mean magnitude of the velocity fluctuation, or the root-mean-square
of the velocity fluctuation, defined by

q2 = Wjw’, (6.2)
and Rik stands for

Rik = — WiWwk. (6.3)
q

The function Xis Taylor’s scale of micro-turbulence, both g and X being functions of
the coordinates x' of P; A, Bm, Cm, G and m, are all independent of £\ The co-
efficients Brmand Cm, are symmetric in m and n; Eikjim,is both symmetric in i and k
and in the last four indicesj, I, m and n, but is not symmetric in any one index of the
first set of two and any one in the last set of four, e.g., it is not symmetric in i and j.
Hence this tensor has 6 X15=90 independent components.

The form given in (6.1) for the correlation tensor wflv'’k between two adjacent
points is the most general linear combination of the products of the tensors ££%* Sik
and WiWk. The functions A, Bik, Cik and G will be assumed to be constants;it is not
necessary to know the exact nature of the separate components ofEjkjim,for our present
purpose, but we shall assume for the time being that the invariant E —gikgilgmeE ikjirm
is constant.

A question naturally arises as to whether the functions g2and X2in (6.1), which
vary with the coordinates, should be replaced by expressions which are symmetrical
in the coordinates of P and P'. However, this is not essential, for both g2and X2vary
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much more slowly than Wiw'kas a function of  since P and P ' are close to each other,

we may use their values at P as an approximation. Nevertheless, one must be careful

with this approximation, whenever differentiation with respect to xn is involved.
The function Wiw'k must satisfy the equation of continuity (4.4), or (4.5). By

setting the coefficients of  and equal to zero separately, we find that
2/15t + B{k -f- RliCa — 5GRik —3GS,i = 0, (6-4)
gk’Eik,Imn.'= 0. (6.5)

Since Eq. (6.4) is symmetric in the indices i and k, and since Cu- has been assumed
to be a constant, we must have
Cm = —CSm, (6.6)

where Cis a constant. On the other hand if Cim depends upon the correlation tensor
WiWK, then it is possible to have the more general solution Crm= —C8mn+ D Smn, where
Smis the inverse matrix of Rmm defined by SliRki=8ki. For the sake of simplicity, we
choose D to be zero for the time being. Obviously, the number of independent equa-
tions in (6.5) is 30.

In order to give a simpler appearance to the final forms of the decay term in the
equations of double correlation and of the equation of vorticity decay, we put

1= 1+ 46, C = \{k - 46). (6.7)

The first equation amounts to a change of the factor X this factor being arbitrary;
the change makes X assume the same numerical value as Taylor’s scale of micro-
turbulence, when the correlation tensor obeys the condition of isotropy. The second
equation in (6.7) only defines Cin terms of a new constant k. Utilizing relations (6.4),
(6.6) and (6.7), we put (6.1) into the form

o 02 (
Wiwk = wiwk+ — U (1 +AG)Uk ~ I [(2 + 5G)r2- \(k +1IG)i?,In?""]5a-

- i 4G)Rik - G(Rath + R¥itk) + Eikim, m nkn+--*!)» (6.8)

where the tensor E ikjinm satisfies the thirty linear equations (6.5). We shall see pres-
ently that, with the form of wiw'k given in (6.8), only the constant k will appear in
the term involving the decay of turbulence (6.14), while only G will be present in the
equation for the decay of vorticity (7.11).

For isotropic turbulence we have wflvk= §225,t, and it is easy to verify that in
(6.8) the terms in ££* and r2coincide with terms in the isotropic correlation tensor
according to von Karman and Howarth [8]. The validity of formula (6.8) and its
properties can be subjected to experimental verification.

For the triple velocity correlation WiWjiv’k between two neighboring points, we
have to assume a form which degenerates into W{Wfvk when the points coincide and
becomes the triple correlation for isotropic turbulence when the condition of isotropy
is satisfied by the flow. Since the expansion of the triple isotropic correlation function
begins with the third powers of £% as shown by von Karman and Howarth [8], the
same must hold for the present general case. This expansion must satisfy the equation
of continuity (4.6), and the final result obtained is
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F N
WiWjw'k = WiWjwk J--—-

5
—_ — 2 SikZj + SmtEr2+ 5i;+r2] + mem. 6.9
313\/3X3 [ 2( J+ S 1 (6-9)

This equation tells us that up to this degree of accuracy the correlation function
WiWjiu'k is the sum of WiWjWwt and an isotropic correlation tensor; similarly, we have
Fq

r 5
WIWMW',, = WIWHWRA ----xnmmo- - R o011 R— + 5,-fm)r2+ 5mEtr2] + e . (6.10)
313V3X3 2

In the above expression the relation (3.7) for isotropic turbulence has been utilized.
In the expansions of (6.9) and (6.10), we have introduced the further assumption
that the triple correlation h can be expressed by [8]

(Ep— r3 (6.11)

where X is Taylor’s scale of micro-turbulence and F is a numerical constant which
may be different for different flows. This emphasizes the point that this length X plays
an important role, not only for double but also for triple correlations as well. The
validity of this point should be tested experimentally.

Differentiating the correlation function (6.8) with respect to x'\ we obtain

_L_ i1+ 46)5atii+ OksCi) ~ [(2 + 5G)E, — 8(& + 11G )i?s,£n]sifc
3x2r

I(k - 4G)tRik - G(Rifk+ Rah,? + RUi + Rkidist)

+ ;, (6.12)

31X2

and furthermore, under the same approximation as in (4.6) where d( )t/dxl is neg-
lected, we get

dwi dwk r d / dw'K\~ [/ d2
WIW k
dx1 dx" 0.-c'vl{ o \3£"C)E? A=0
3rX2 ¢(1 + 4G) (isokP + Sk.8ip) ~ [(2 + 5G)Ssp - [f(A + UG)JI?., J«e*

— %(k — 4G)8spRik — G{Ri,0kP + RipSka + R ka5iP + R kp8i9 }* (6.13)

Hence the term that represents the decay of turbulence in the equations of double
correlation (1.6) is equal to

dWi dwk 2v 2vk

2 " — (k- 5 ik + —  Wwiwk. 6.14
vgm S (k7 Baaike —w (6.14)

dmexn -

If we differentiate the triple correlation (6.9) with respect to the coordinates x'm
the result is
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WIWKW'i = WiWK ------ = e (WiWkw'i)x.
dx'm dx'm df
Similarly, to the same order of approximation as in (6.13) the following relation is
true:
d dw'i dWk  dw'i dwi  dw'i d2
— WIWK — — - Wi — + WKemmmmmmmmmoees — = (WIWkw'T) x.
dxn dx'm dxn dx'm dxn dx?m

This equation and formula (6.9) then yield

dWk dwi dwi dwi I d2 \
i EWK <omeme = — | WIWKWT~ _ =0. (6.15)

| p—
dx" dxm dxndxm \d £ ndEn /£0

Cyclic permutation of the indices i, k, I in (6.15) gives rise to two similar relations;
the sum of the three is identically zero, which shows that the term analogous to the
decay of turbulence in the equations of triple correlation vanishes in general:

2vgmn[wi,mwk,nwi + WK,mWi,nWi + Wi,mwiinwk\ = 0. (6.16)

7. The equation of vorticity decay. Since Taylor’s scale of micro-turbulence X
plays a very important role in the decay of turbulence, it is necessary to find the equa-
tion which governs the behaviour of this fundamental length. This equation is pro-
vided by the decay of vorticity. The root-mean-square of the vorticity fluctuation
(W2) 12 satisfies the equation

.2 tg m»g»*um’]_j p., (71)

where am, is the antisymmetrical tensor defined by (1.5). It is not difficult to derive
the equation satisfied by a2 from (1.4) directly. However, this procedure would be
too lengthy and we shall pursue an alternative course.

We notice that

1 /e f+r/2
gmpg”'oemUp, = — | (wm,n — wn,m) (wm,,gn” — w pg mp)dt
TJ i—/2
= 2(wmnwm,gn' — wn,mwm, (7.2)

On the other hand, to the same order of approximation as in (6.12) and (6.13), the
following expressions are true:

/[ d2 \
nwm,,,wm, - — (vZWmt»' 0 w'mwm, = — wnw, n =
g ( M- €d£ndt;n /){_o

where VX stands for the Laplacian operator in the variables £°. It then follows that

1

@R= — (vqwmiflmi-0 (7.3)

Our next step is to derive the differential equation satisfied by (V22Wow'mt-o-
From the equation of turbulent fluctuation at the point P\ which can be written

in the form
dw'k 1 1

bV 'wk,-+ w'w’k.j+ w'Wk.i = o'.t Tr'k,i + vV'2w'k, (7.4)
at p p
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we derive the equation satisfied by the general double correlation function:

a
= Wiw'k + U’(wiw'k),i + U',(wiw'ky,j + + (VMVIW'KY.j
a
+ w'kiv'Ui,- + WiWAU'k.j
1
= (aro't),i (gi'w,-)* + vylwiw k) + vMn {wiw'k), (7.5)
P P

where the covariant derivatives ( )tyand ( )',/ are taken with respect to the variables
x”and x’’, respectively.

In Eq. (7.5) we next replace x{and *™* by the two new sets of variables x{and p
by use of (4.2), and neglect terms involving the partial derivatives with respect to x'
when p are held constant, except for the term U’d( )pdx’\ this exception is made
because U’ is large when compared with wk. Since we are only interested in the cor-
relation functions for two adjacent points, we can write

(w,IWiw'k)",i = D (ww'iwAz,
dp

as in the case of isotropic turbulence (3.7). With all these approximations in view,
Eqg. (7.5) in rectangular coordinates then becomes

— Wiw'k + U’ (wiw'k)i — U> (wiw'k) x+ U'* (Wiiv'k) a
at dx> dp - ap
duUi au'k
(w’Wiiv'k + W’'w'iwk)x + w'kw’ 7 -f- wiwy
dp dx’
1 d 1 d
- (aw'k) x (a'wi) x + 1TvATWiw'k) x (7.6)
p dp p dpl

For two adjacent points the power series expansion of aw'k in P is in odd powers of p.
Hence, by interchanging the two points P and P', we should have

aw'i = — a'wi. (7.7)

Consequently (7.6) is essentially symmetric in the indices i and k.
Next, let us contract the indices i and k in (7.6). As in (4.4), aw'k should satisfy
rigorously the equation of continuity,

o (o«/*), = 0. (7.8)

The result of this contraction then becomes

— WkW,h + U (wkw'k)t — U’ {wkwW>) x + | f’ (wkw'7i
dt dx’ dp dp
auk auX

a
2— (WAwkwb)i + w'kW’ -—--—--- 1 wkw”’ = 2vV2i(wkw'K)Xx. (7.9)
dp dx> dp
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Let us operate upon (7.9) with the Laplacian operator V2 and then set £=0,
denoting ( ){ 0by ( )0for simplicity. The resulting equation is,

— (VAWIW<)o + u> — :(VEWW*)o + 2U’ mgm" (— = wtw'A
dt dx’ \d£ B£" /o
—2”v2-"-r wiwkw'rj o+ 22Uk i(V-iiviw'ko = 2v(vi(Wkw 'K)o. (7.10)

Itis to be noted that in the above equation we have neglected the term wkwi'VxUKk,j,
which is smaller than the term f7*XVZW%/*)o by a factor which is the square of the
ratio of X to a macroscopic length. Equation (7.10) also follows from the equation of
vorticity fluctuation (1.4) directly as mentioned before.

By substituting into (7.10) the explicit forms of the correlation functions Wiw'k
and WiWjw'k for two adjacent points given in (6.8) and (6.9), respectively, and then
setting £'= 0, we obtain the equation of vorticity decay,

0 /o02\ 5 /o02\ 14G 70F g3 AV

5—(— ]+ 5U* — Uikw{wk = — = E —> 7.11
aA(x2/] dx'\(x2/) x2 3Vv3 X3 3 X4 ( )

in which E is defined as before,
E = gikg’lgmEikiimn. (7.12)

We assume that both E and F are constants which may be different for flows with
different Reynolds numbers. In deriving equation (7.11), the equation of continuity
u-,j= o for the mean motion has been utilized. It is also readily verifiable that (7.11)
agrees with von Karman’s equation of vorticity decay for isotropic turbulence [8].

8. Nature of the correlation integrals and the final forms of the dynamical equa-
tions of correlation. Up to the present the only remaining uncertain quantities in the
equations of the double and triple correlations (1.6) and (1.7) are the correlation
integrals, o a n d bik in (5.3), bnmikl and cik! of (5.8), and the quadruple velocity
correlation wW{Wkw . Let us examine the correlation integrals first. The function
anmik defined in (5.3), for example, would be uniquely determined if the double cor-
relation Wiw'kwere known. But unfortunately the equation of continuity (4.4) and the
general dynamical equation of double correlation (7.6) are insufficient to yield a defi-
nite solution for Wiw'k, because of the presence of the triple correlation WiW{w'k in
(7.6).

On the other hand, although the integrand functions of the four kinds of correla-
tion integrals are not known, we are dealing primarily with the integrals themselves
and they can only vary slowly with the coordinates involved. This argument can be
understood, if we recall that the correlation functions Wiw'n, Wiwkw'n, w(w'nw'n and
UikU'mn under the integral signs only change slowly when both the point P and the
point of integration P' undergo a rigid body translation, and that they vary rapidly
when the relative displacement of the two points changes. This rapidly varying part
of the functions is integrated away, leaving the slowly varying part behind. The
neglecting of the term d(w'nw")i/dx' against d(w'nw*)z/d£' in (4.5) also follows from
this interpretation.

There is another mathematical reason for the fact that the four kinds of integrals
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are slowly varying functions of the coordinates. If, for instance, we differentiate with
respect to x’ the quantities cik| defined in (5.8), we find that

dei,kl
dx"

4 [W mntUK),mi + w mukl) ,mmi + (u'mnuu), ™»f] _/) J\ dv'. (8.1)
A r

The first part of the integrand function is small when compared with the second, and
the second can be transformed into a surface integral on the boundary of the fluid by
means of the usual divergence theorem of vector analysis. If the point P is not very
close to the surface, this surface integral is negligible on the ground that the correla-
tion function u'mUik and its derivatives between P, the point in the interior of the
fluid, and P', the point of integration on the boundary, are negligible.

Since the correlation integrals are slowly varying functions of the coordinates, we
shall expand them as powers of the coordinates used in the special problems to be
solved. From kinematic considerations, the integrands of the integrals may further-
more contain powers of g, the root-mean-square of the velocity fluctuation, as fac-
tors. Both theory and experiment at present do not assure us of the exact dependence
of this factor. Nevertheless, so far as the mean velocity distribution is concerned, this
uncertainty is probably not important, as we shall see in the problem of pressure flow
between two parallel infinite planes [9].

By substituting into Egs. (1.6) and (1.7) the approximate forms of the four cor-
relation integrals from (5.2) and (5.7), and the decay terms (6.14) and (6.16), we ob-
tain finally

1 dtik 1 o1
(Ui jT’k + UK.jT") U Tiki + (WWiWK),;
p dt p

v v 2vk
- anmikUmn - bik VZik + -— (£- 5)gaik - — w-w*, (8.2)
p 3X2 a

— Wi+ UEJW ki + UK WWIWE + UTWWARK + U WiWKW) -+ (w WKW

= ~ bmmiklUmtn ~ Gkl ----- (T’iLjTkl + T'kjThi + TIjTki) + Vgmn(Wiwkwl) ,m,. (8.3)
P2

In the second set of equations we notice that the term involving the quadruple cor-
relation is actually smaller than the terms bmikiUmnand ¢cm which form the correla-
tion between the pressure gradient and two components of velocity fluctuation. This
is due to the fact that the term (w'WiWKW) is equal to a velocity fluctuation raised
to the fourth power and divided by a macroscopic length, while on the other hand Cai
is, from its definition (5.8), of the order of a velocity fluctuation raised to the fourth
power and divided by a length which has the same order of magnitude as Taylor’s
scale of micro-turbulence. The permissibility of neglecting the terms (wWiWkWi) a nd
p~2r’i,jTki as a first approximation, for instance in the problem of pressure flow be-
tween two parallel infinite planes [9], can be regarded as a justification of the above
approximation and its associated interpretation.
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We must not forget that the other dynamical equations necessary for the solution
of a turbulence problem are the equations of mean motion (1.1) and the equation of
vorticity decay (7.11).

9. Conclusion and summary. It is now not difficult to see that the foregoing de-
velopment is essentially a method of successive approximation to the solution of the
turbulence problem. In the initial approximation we have the well-known Reynolds
equations of mean motion which contain the unknown apparent stress. From the
mathematical point of view the momentum and vorticity transport theories connect
this stress with the mean velocity by physical arguments, in order to make the mean
velocity distribution determinate.

The next approximation in solving the given turbulence problem is to use the
equations of mean motion and of double correlation by making certain approxima-
tions to the triple velocity correlation in the equations. This procedure has been fol-
lowed in the determination of the velocity distributions in jets'[3] and wakes [4],
where free turbulence predominates; for the triple correlations we use their values
at the centers of the flows as an approximation. The mean velocity distributions thus
obtained agree with the experimental observations very well over large portions of
the flows.

In the third approximation to the solution of the problem we have to solve the
equations of mean motion and of both the double and triple correlations simultane-
ously by assuming approximations for the quadruple correlations. It is obvious that
this process of forming the differential equations of the correlations out of the equa-
tions of turbulent fluctuation can be generalized to higher orders. Fortunately, as in
the problem of pressure flow through a channel [9] where a wall is present, we can
stop at the equations of triple correlation and neglect the quadruple correlations as an
approximation, so that the solution of the problem is not too unnecessarily compli-
cated from the theoretical point of view. As we shall see, the solution of this particular
problem holds true in all parts of the channel, if all the equations of mean motion and
of double and triple correlation are used. On the other hand, the solution for the mean
velocity based upon the equations of mean motion and of double correlation by using
the value of the triple correlation in the center of the channel as in jets and wakes, is
only valid in the central part of the channel, and fails when the wall of the channel is
approached. This brings up incidentally the important role played by the triple cor-
relation in such problems.

In order to see more clearly how the equations of double and triple correlation
in the forms (8.2) and (8.3) and the equation of vorticity decay (7.11) are derived
from the equations of turbulent fluctuation, it might be of interest to sum up the
conditions and approximations under which they are valid. They are listed below:

(1) The velocity correlation between a point in the interior of the fluid and another
on the boundary is negligible. This excludes the immediate neighborhood of the
boundary of the fluid as a region of application of the theory.

(2) The variation of the mean velocity is small as compared with the correlation
function between two distinct points when the relative displacement between the
points changes, so that the higher order terms in the. series (5.1) and similar series
may be dropped.

(3) The second and third order velocity correlations between two adjacent points
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are expansible as power series in £%/X with the terms that do not contain £' propor-
tional to the Reynolds stress at the points. This brings out the point that Taylor’s
scale of micro-turbulence X plays an equally important role for both the double and
triple velocity correlations.

(4) The slowly varying nature of the functions anmik, bik, brmiki and ciki with
coordinates, and its physical interpretation, have been explained in the preceding
section.

With the advance of modern experimental technique the above four conditions
and their theoretical consequences, as presented here, can all be tested by direct ex-
perimental observation. The less certain part of the theory lies probably in the dis-
cussions in 88 of the slowly varying nature of the correlation integrals with the
coordinates; this perhaps could be improved if more accurate experimental evidence
were available.

This paper was written in China before the author’s arrival in this country in
November 1943, and has been supplemented and revised in Pasadena. It is a great
pleasure to the author to thank Dr. R. A. Millikan and Dr. Th. von Karmdn for the
opportunity given him to work at California Institute of Technology. He is also grate-
ful to Dr. von Karman for his interest in the problem and for many helpful criticisms
and discussions. To Dr. C. C. Lin, who collaborated with the author during the early
days of the development of the theory some years back in China, the author wishes to
express his indebtedness for many discussions of the present paper.
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QUANTITATIVE INTERPRETATION OF MAPS OF MAGNETIC
AND GRAVITATIONAL ANOMALIES BY
MATHEMATICAL METHODS*

BY

E. G. KOGBETLIANTZ
Lehigh University**

1 Introduction. In geophysical prospecting for oil and other minerals gravita-
tional and magnetic anomalies corresponding to geological phenomena are mapped.
The problem of the quantitative interpretation of such empirical maps consists in
the determination of numerical values for all the geological parameters (depth, thick-
ness, slope, density, intensity and direction of magnetization, etc.) which characterize
a tectonic structure or an ore-body. To illustrate the possibility of such an interpreta-
tion it is preferable to avoid the complications involved in the mathematical study of
maps of complex anomalies. The complex anomalies are due to the coexistence in
the same region of many different geological phenomena. Resulting from the super-
position of many simple anomalies, they can be resolved into their simple compo-
nents each of which corresponds to a single ore-body or tectonic structure. This
resolution is the first step which must be performed, since no interpretation of a com-
plex anomaly map as such is possible. The problem of resolution is a very important
one since in most cases we have to deal with complex anomalies, the simple ones being
exceptions. Special methods devised by the author solve this important problem, but
they are not discussed in this paper which deals with the quantitative interpretation
of a simple anomaly map. We study here two cases: an axial anomaly created by an
anticline and a centered anomaly corresponding to a salt dome. They are sufficiently
simple and at the same time have great practical importance.

A new method of interpretation, based as the usual methods on the theory of po-
tential but essentially different from them, is introduced in this paper. In the usual
methodsl systematic use is made of individual values such as maxima, minima,
zeros, inflection points, etc., of the observed and plotted quantity as well as of their
distances. The use of such remarkable values and distances is founded on the tacit
assumption that they reflect exclusively the physical action of the unknown structure
or ore-body whose study is the object of the interpretation. This assumption is per-
missible for the anomalies of large magnitude but it is doubtful for those of average
magnitude and completely wrong for small anomalies.

In the past, geophysical prospecting by gravitational and magnetic methods was
directed mostly toward the study of important, clearly pronounced anomalies of
large magnitude which correspond to more shallow deposits or to big well defined
tectonic structures. But now the geophysicists are obliged to deal with more difficult

* Received April 11, 1944.

** On leave of absence. Now at The New School, New York.

1 For examples of these usual methods see L. L. Nettleton, Geophysical prospecting for oil, McGraw-
Hill Book Co., New York, 1940, Chapters 6 and 12, and also H. Shaw, Interpretation of gravitational
anomalies, Trans. Amer. Inst. Min. Met. Eng. 97, 271-366 (1932).
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cases and they have to interpret maps of small anomalies. Thus, we must study the
obstacles which naturally lead to an erroneous interpretation of an anomaly map by
the usual methods of remarkable values and distances if the magnitude of the anomaly
is not very large.

2. Punctual anomaly. An anomaly map is plotted on the basis of measurements
made at isolated stations. It is supposed to be generally correct, and the usual correc-
tions required by the topography of the region, the fact that the earth is not a sphere,
etc., are supposed to have already been made. We must emphasize that a quantita-
tive interpretation presupposes an accurate correction for the so-called regional anom-
aly, and it cannot be expected to yield good results if the latter correction is made,
as is customarily (and very unfortunately) done, simply by smoothing arbitrarily the
experimental curves. Special methods exist which ensure a very accurate correction
for regional anomaly by deducing it from the map itself, but this important question
cannot be discussed here. All usual corrections having been made, each individual
value obtained at a station is the combined effect of two anomalies: 1) the anomaly
caused by the tectonic structure or the ore-body the study of which is the purpose
of the interpretation, and 2) the anomaly generated by local irregularities of mass
distribution or of magnetization intensity in the immediate vicinity of and under the
point of measurement. This strictly local anomaly—we propose to call it “punctual
anomaly”—is in general very small. It affects only a small area around the point and
it is precisely this punctual anomaly which is responsible for perceptible variations
in the value of the observed quantity which occur for small displacements of the ap-
paratus used around the station. In fact the apparatus used now are extremely sensi-
tive and we cannot neglect any more the existence of punctual anomalies. There is no
correction at all for them since the punctual anomalies, affecting every observed in-
dividual value, cannot be evaluated. If the magnitude of the studied anomaly is
large, the punctual anomalies are negligible and the map can be interpreted with the
aid of remarkable values and distances. The positive results achieved by the old
interpretation methods must be explained in this way. But, if the magnitude of the
anomaly is small, the punctual anomalies not only modify the extremal values but
they also displace them, altering all the distances used in the usual interpretation
methods. Since these old methods express all geological parameters in terms of re-
markable values, their distances and ratios, it is plain that punctual anomalies render
these methods completely useless in the interpretation of small anomalies. It is a very
important though often disregarded fact that the interpretation based on isolated
values can in general be only qualitative and gives exactly nothing in case of small
anomalies. This important fact explains the lack of success in dealing with maps of
small anomalies and is the reason for the actual ineffectiveness of geophysical pros-
pecting in discovering new oilfields in U.S.A. New methods of interpretation well
adapted to small anomalies are now necessary. They must be introduced into practice
if the geophysical prospecting by gravitational and magnetic methods is to be applied
in the future.

The interpretation errors caused by punctual anomalies can and must be elimi-
nated and there is only one possible way to do it. Considered together, the punctual
anomalies in the region covered by the measurements have a random distribution;
they oscillate about zero and are independent one from another. Consequently, they
must undergo an almost total compensation if we form the average value of some
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function of the mapped quantity, the average value with respect to the whole map,
using all the observed values at a time. We can eliminate the harmful influence of
punctual anomalies and compensate at the same time for the possible residual ob-
servation errors only by combining all observed values in an integral. For any map
in general the average values express much better the action of the phenomenon under
study than do the individual values and their distances. In other words, interpretation
rules and formulae based on the systematic use of integrals give much more correct
quantitative results in all cases and for all maps. Rules based on special individual
values hold only in very rare and exceptional cases of big structures such as, for in-
stance, the shallow salt domes of Texas, the Kursk and Kirunawaara iron ore-bodies
or the Great Rhodesian Dyke.

The method described in this paper uses exclusively the average values and, in
particular, moment functions and moments of the observed quantity and of its square.
This method was applied by the author in France and in Iran with good results. The
cases studied here are chosen only for the sake of brevity. The method is elaborated
for the most general cases of complex anomaly maps obtained as result of magnetic
or gravimetric survey of a completely unexplored region.

3. Center of gravity and first moments. The problem of locating the center of
gravity C of disturbing masses is.a fundamental one, and its solution is the first step
of every interpretation. We solve it in the general cases of an axial anomaly and of a
centered anomaly. The coordinates x*, y*, z* of C are expressed with the aid of mo-
ments of the observed quantity Q, that is in terms of

for an axial anomaly and in terms of

for a centered anomaly, the double integration being extended over the infinite plane
xOy denoted by P.

Axial anomaly. If the geologic feature being considered is much longer in one di-
mension (strike, axis of anomaly), the corrected map of the axial anomaly created by
such a structure is a family of nearly parallel lines and the interpretation deals with
a curve describing the behaviour of the plotted quantity on a typical profile perpen-
dicular to the anomaly axis. Cartesian coordinates x, y, z are introduced with the
z-axis directed vertically downward, the origin 0 being at the surface and the a;-axis
being perpendicular (the y-axis being parallel) to the anomaly axis, as shown in Fig. 1.
The excess of the density of disturbing masses over the density of their environment
is called the density-contrast and is denoted by < (0”0O). We represent the disturbing
structure as a homogeneous cylindrical body of normal cross section S, denoting the
area of S by A. Atapoint (x, z) in the planey = 0 the potential U of the body isgiven by

u(x,z) ="'- \kf / log [(#- ?7)2+ .(*- r)2¢s + const. (2

where £, f are running coordinates on P and k —Ifa, f being the gravitational constant
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(66.7 X10~9cgs.) and a the density-contrast. On the surface (plane P), z=0, the par-
tial derivatives Uxand Uz=Dg of 77are given by

Ux—iDg = —kJ J (x —p)-'dS = k(j) log (x —p)d{, (2)

where p=£+i£ and T is the boundary of 5. The second derivatives Uxx and Uxz are
called the curvature K and the gradient G respectively: K —Uxx, G= Uxz. Thus

K —iG = kJj" (x — p)-alS — k () (x —p)_ldf. ®)

Using in (2), (3)the binomial expansion, we deduce for large |x| the approximations
which hold for any form of the section S. Their first terms for instance are

— kKAXr 1, Dg ~ kAz*x~2 — 2kAZ*x~2, K~ M r2 4)

where z* is the depth of the center of gravity C. Denoting an arbitrarily chosen origin
of the coordinate x' on the profile by 0, we regard the function Dg =Dg(xr) as known
from the measurements. To find x*=00*, z*-0*C we shall use the first three mo-
ments of Dg,

Mo = f Dg{x")dx" = irkA, Mx= f x'Dg{x')dx' = wkAx*, (5)
*J _00 —@
[ [xDg{x) — kAz*]dx = irkJ j" (i2—£2dS, (6)
where in (6) the origin of the coordinate a is the point 0*, the projectionofC ontl

profile, x* being considered as already found with the aid of (5). In fact, from (2) we
deduce that

I L
x'Ux + kA —ix'Dg(x’) = kJ J (p — xV-ipds. 7

Integrating (2) and (7) with respect to x’ in (—», «>) and observing that the in-
tegral of {x1—p)~Ildx" equals iir since f in p=£+if is positive, we have (5). To prove
(6) we integrate in (—oo, co) for x*= 0 the relation

x{xUx + kA) — i(xDg(x) — kAz*) = le\]l (p — ™) _1p27P

and compare the coefficients of imaginary terms.

From (5) we deduce the rule x* —M i/M 0. However, in practice the integration
can be carried out only over a finite interval (—2?, R), where the known length R is
at least four or five times the depth z* of C. The contributions from the intervals
(— oo, —R), (R, o) can be computed by means of the expansion of Dg(x) in powers
of *-1,

Dg(x) = kAz*or2{l + 2CUZ**-1+ (3cn ~ c@z*X%~2+ 0(*-3j, (8)

where the constants cnHare given by



1945] INTERPRETATION OF MAGNETIC AND GRAVITATIONAL ANOMALIES 59

In general, unless 5 is very irregular, we have z*cn=x*, z*Z22= x*2, coz=¢ 1, whence (8)
takes the form

Dg(x) = kAz*x~2{\ + 2x*x-1+ (3x*2- z*9x~2+ 0(x~3 }. 9)

If M* and M* denote moments computed for the interval (—2, 22), i.e.,
Mo* = Dg(x")dx', Mf = x'Dg(x")dx",
and if we neglect terms of the relative order 0{{z*/R)2}, we find that

(10)
whence

(11)

Mo* and M* can be obtained from the experimental curve for Dg{x') by means of a
pianimeter. From (11), we note that Mi/M * is a first approximation for x*.

If we set ££=0, by (9) we easily see that the contribution from the intervals
(—o0, —22), (R, o00) to the integral on the left side of (6) is of order (z*/R)2 If we
neglect terms of order (z*/R)2 (6) can be written in the form

where, in the usual notation,

M*= i xDg(x)dx.

If we consider only those cases in which the horizontal dimension of 5 is much smaller
than its depth, then Jfs(®» —*)dS= —z*2\. Using this, and substituting for Mo from

(10), we have

Equations (11) and (12) permit (X.2)
us to compute x* and z* by succés- z
sive approximations, the successive
values being denoted by x*, z*
(«=1,2,3, » me)and the correspond-
ing positions of 0* (Fig. 1) by 0%*.
The steps are as follows: (a) We
choose a position for 0 and compute
M 0, M*, integrating over the inter-
val —R>x'<R with a pianimeter.
(b) We obtain a;* by setting z*=0 in z
(11) and plot Oi. (c) We compute M* Fig. L
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and new values of M* and M*. (d) Using; (12) with z*=0 in the right member we

compute z*. (e) Using the values of M*, M*, M* obtained in (c), and replacing z*

in the right members of (11) and (12) by z*, we obtain x*, zZ and plotO*. The steps

(c) and (e) are repeated until a stabilization of the points 0,* and the values x*, z*is
reached.

The same method can be applied to maps obtained by means of a torsion-balance,
giving the curves of the gradient G(x) and the curvature K{x). Denoting the nth
moment of G by Hn, we have Ho=0. Also, integration by parts yields Hi= —Mo,
Hi=—2M\, H3=—3Mi. For the corresponding reduced moments we have M* =
-1 ¥ (1+22%%-1?-0), 2M* = —H*(1+ 2z*/ttR), 3M ?=-H ¥+2kARz*. Thus (11),
(12) can be transformed into

(13)

where X=~#/(3r—1) =0.187, =5(3tt2—247r+ 8)/(37r2—t)=0.485. Equations (13)
permit us to determine the center of gravity C from the gradient map only.

The first two moments Lo and L xof the curvature K vanish. Since for |x\ very
large K(x)~kAx~2 we define the moment Z2and the reduced moment L* by the
integrals

If we multiply (3) by x2 subtract kA from both sides and integrate over (—o0, co),
we find that L2= 2i7iZ*, the contribution from the intervals (—», —R), (R, <») being
—6kAz*2R. Since Ih =//*('+42*/"). we then have for z*

ilth* = cU#(l + j3z2/*R), (14)

where a = |jt2/(#2—4) =0.84, B=1n/(x2—4) =0.535. Equation (14) supplies a control
on Eqgs. (13).

The magnetic anomaly created by a cylindrical body of section .Sis related to the
gravitational anomaly generated by the same body, and the equations relating to
maps of G and K can be transformed into equations relating to maps of the horizontal
and vertical components X and Z of the abnormal magnetic field created by the
body. If I and » denote the magnitude and inclination of the magnetization vector,
we have the classical relation (Poisson)

k(X + iZ) = 21(K + iG)e- ¥ (15)

where k —2fcr, f being the constant of gravitation and < the density-contrast. Multi-
plying (15) by x and integrating over the interval (—R, R), we obtain for the reduced
moments X*, Z* the relation k(X*+izZ*) =2I(L*+ill*)e-it. Since Li= 0, we easily
find that irRL? =4x*11*{\ + 1z*/irR). Thus

whence we obtain for the two parameters | A and i/q
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where c is defined by the relation irX*zZ*c =4-{Xie--\-Z*2. To find x*, z* we need
second moments. Since the principal term of the right side of (15) involves K, and
K~kAx~2 for large |xj we have irX"Zfx-2,irZ'-»—X?x~2 Therefore we define the
second reduced moments X?,Z* by the integrals

Their numerical values can be obtained from the experimental data as areas under
curves deduced from the curves X =X(x), Z=Z(x).
Integrating (15) after multiplication by x2 and using the defintions of X*, Z*, L*,
we obtain
k(X? + izZi) = 2/e-"t[L* + i(HZ - 2RL*ic~D].

Substituting in this result the values of Hi, L* obtained by solving (13) and (14),
and using the relation 2irRL* =8x*H*(I-\-4z*/irR), we find that

z* = a(l + yz*R~))Nx, = a(l+ frs*#“)N, + 4z*ZF~'R~\
where a and |3 are as in (12), 7 = 2(16 —&2/(®*3—47r) =0.665, and
Nz = (X?X2+ ZNZIXTC*2+ zr-)~\ Nx= (X*Z* - Xi*Z2)(Z¥2+ Zj*)-1

The numbers N x, Nz can be deduced from the maps. Thus the moments of X, Z give
the four parameters 1A, \{/, x*, z*.

It is to be noted that the above results can be obtained with the aid of the theory
of Fourier transforms. All our results are based on (2), which can be written as a
Fourier transform. Now p=£+if, and since min.(f)>0, we have

This proves that Dg-\-iUx is the Fourier transform of a function w(i), vanishing for
positive tand defined in the interval (—°°, 0) by the relation w(i) =k(2ir)llZ f se~'I'tdS.
On the other hand, Dg—iU x is the transform of w(—/), which vanishes for negative /,
and Dg{x) appears as the transform of the function /(/) defined for all values of t by

(16)

17

This expression will enable us to find easily the moments of Dg. The moments of the
square of Dg, which will be required presently can also be deduced easily from (17)
with the aid of the Parseval theorem.

Centered anomalies. In the case of a centered anomaly, we represent the disturb-
ing structure as a homogeneous irregular body B. Cartesian coordinates X, y, z are
introduced, with the z-axis directed vertically downward, the origin 0 being arbi-
trarily chosen on the plane P (Fig. 2). C{x*, y*, z*) is the center of mass of B, and 0*
is its projection on the plane P of the map.

The gravitational anomaly is Dg{x, y). In the old methods, 0* is placed at the



62 E. G. KOGBETLIANTZ [Vol. 11I, No. 1

maximum of Dg. If the body is a solid of revolution with a vertical axis, this is cor-
rect; but if the body is irregular or inclined, the maximum of Dg occurs somewhere
above its uppermost part. In the present paper, we shall locate C by means of in-
tegrals.

z
Fig. 2.

If 57 is an element of volume of B at a point (£, 77, f), and if 5[Dg(a;, y)] is the
contribution to Dg from 57, then 5[Dg] =fa$5V[(x —£)2+(y —7)2+ f2]_3/2. Now
JJP8[Dg]dS = 2Trfa8V, which is independent of § 77, f. Integration of this over B
yields JJpDgdS —irkV, where k = 2fcr and 7 is the volume of B. This result holds for
any homogeneous irregular body or bodies.

Because of symmetry ff P[x—£+f(y —7)]15[Dg(x, y)]iS = 0. Thus

JJ (x+ iy)d[DgldS = (E+ ¢HJ J 5[Dg]dS = irk(f + (757,
and integration over the body B yields
x*Jf Dgds = JJ xDgdS, y*Jf DgdS = JJ yDgdS. (18)

These are two equations for x* and y*. They hold for complex anomalies as well as
simple ones, In practice, integration can be carried out only over a finite part of the
plane P. We choose that part lying inside a circle with center 0 and radius R, where R
is a constant at least four or five times the depth z* of C. The equations of this circle
are r—R, s=0, where r2="2+y2 We denote its interior by L. The contribution to
the above integrals from the infinite region r}zR can be easily evaluated, since at such
large distances the gravitational action of the body is approximately the same as that
of a punctual mass aV located at the point C(x*, y*, z*). Therefore, for r*R we use
the approximate formula

Dg ~ 5(&*Vr~z\1+ 3(x* cos 6+ y*sind)r~l + (9a,*2+ 9y*2 —62*)(2r)-2
+ 15[2x*y* sin 2d + (**2- y*2 cos 20](2r)~2+ 0(r-3 }, (29)

where r, 6 are polar coordinates in the plane P, with origin at 0. Neglecting terms of
order (z*/R)~3and higher, we have with the aid of (19),
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0 - Ar o) 10X (x + 1y)D gds= J X (x +

Thus (18) can be written in the form

(7'5_|_ . / 7 -37%2\ r(c_l_/\ _|./\) J‘J’m)

Equations (20), applied in the first approximation with z*—0, give a first position 01
for 0*. If we choose the origin 0 at this point, then d =0\0* is small.

To obtain an equation for z*, we integrate rwgdS over L. Neglecting terms of
relative order (z*/R)2and higher, we need only the two first principal terms of this
integral. Thus we can evaluate the contribution of an elemental volume 5V at (£, 77, f)
by integrating r25[Ug]d5 over the region r' gi? instead of L, the origin of polar co-
ordinates (r', O) being at the point (£, 7) above the point (£, 77 f). In fact, the differ-
ence between two integrals over L and r' is of relative order (z*/R)2 Now
t2—t'2 p2—2pr' cos {0—0'), and integration over r' ¢ R gives

JJ rBleges = Trmttjt + (p2- 2f2i2-+ f0(2*2i? }

Integrating this result over V and replacing the integral of the secondterm by its
approximate value —2kivz*2V, we obtain

\]J rDgdS = irkVz*R{l - 2z*R~1+ 0(s*2i?2}.
Dividing by R ff¢{DgdS=TrkVR(l—z*R~1), we find that
z*RJ J DgdS = (1 + z*R-") J J rDgds. (21)

The term-|z*2?~2 must be added to the factor I+z*i?_1 if the terms neglected are of
order (z*/R)3and higher.

When the measurements are performed with the aid of a gradiometer or torsion
balance, the resulting maps of Ux and Uyz give not only x*, y*, z* but also a control,
since each of these two maps can be used to locate the point C. Applying the same
reasoning as for Dg, i.e., first integrating 8UXand SUyz corresponding to an elemental
volume 8V, and then integrating the result over V, we find that

13 BT RAB<RET YS=00 Xkt
v JJ xuxds :ff Xyu izds, y*ff y u*dS :j ffy’\’\s,

All the integrals in (22) have the same reduction factor | + 3z*/2-R. Hence it does not
appear. The third reduced moments give equations for z*. They are
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-s(,+ E )ff *ujs = 24(1+

-s(i 15 ) «wa™ - 241+

If we neglect only terms of order (z*/i?)3and higher, the term 11z*2/(182?2 must be
added to the reduction factor I+ 7s*(6i?)_1. Equations (22) and (23) are general. For
a solid of revolution with a vertical axis, they reduce to

(23)

(> + iy*)ff Gds = (I + JJJX + iy)GdS, (22%)
rr / 72*  1is*2\ rr
N J J - J(>+m«+7 L3>

where c is such that RcJfLGdS —JJLrGdS.

In the general case of a complex magnetic anomaly we assume that the magnetiza-
tion vector is the same for all particular isolated bodies which create this anomaly.
Its intensity I, inclination I, and azimuth $ are three unknowns; I cannot be sepa-
rated from the total volume V and it is the product VI which is deduced from the
maps; $>is defined with respect to arbitrary cartesian axes of x and y on the surface
of the earth; X, Y and Z are the components of the anomaly.

We shall now deduce expressions for the six parameters VI, \p, < x*, y*, z* which
characterize the magnetization vector and locate the common center of gravity of all
the disturbing magnetic bodies. This can be done by computing the moments of
X, Y, Z from maps showing the distribution of X, Y, Z over the surface of the earth,
and by use of the classical Eotvos formulae,

f<r(iX+ jY + kZ)

=ifi b j bk —" [{Uxcos €+ Uysin4cosf + Uzsin ], (15%)
\ dx dy 3z/
where i, j, k are unit vectors on the coordinate axes. We shall use moments of the
first four orders, denoting them by subscripts. For example, X m,=ffL X xnyndS. It
is to be noted that X are reduced moments. Neglecting terms of relative order
(3*/R)2 and using the same method as in the case of (21) in the computation of in-
tegrals of the second derivatives of U, we obtain

—Xoosec sec0 = —FQosec \pesc = 2Zmesc = 2irVI/R.

The first approximate values of VI, <€are then given by

tan = Y@ X00, tan A = |zoozm+ FQ) , tVI = R(XD+ FO+ \Z00) . (24)

The zero moments are small quantities, and approach zero as R approaches in-
finity. Hence (24) yield poor approximations. Nevertheless, the first value of ¢>must
be used to rotate the axes of coordinates, directing the *-axis nearly parallel to the
horizontal component of the magnetization vector, so that &will be very small.

Among the six moments of the first order, we do not use X0land FI10since they are
of order 1/i? compared with the other four, which are given by
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*10 ) , ** \ Foi ., f *
—sin A ( H cot cos qb), 2\
Aty

2ttVI \ 2R
e .
- —cos1 gcos <> tan } —Fﬂ
\Y/ R 2x7/

Hence we obtain better values for VI and tan \p,

I
|
(%2}
5
5=1
]
I
%)‘<
%)
S
(%]
5
<

— cos \I/l(siﬁ <6 y.ctan \p\.
2x7/ \ R )

2x7] —(Z10+ Zoi + -¢Xio +

tan \p =2 _y(z%io + |2:|])j2 (Zg,io +22_(]%/)2/ ™- 32\
where
8ci = 3sin 2if(a*cos ¢+ y*sin#) = 6 cos2 -c3
4c2= (cot \p+ 4tan t/0(:z* cos £+ y*sin € = (4 + cotan2”")c3,

c3 = 2 (2/io + 7io) (Zoi + Fio) [(Z20 — Z d){Zqgi — Zio) — 4ZoiZnZio].

The coordinates x*, y* of the point 0* are obtained with the aid of second mo-
ments, as indicated by the equations

2 2 -1 ) | c3\ y*2
x* = \{Zw -f- Zoi) [(Z20— Fo2Zio + 2Zoizn] ( | ld—" — tan b cos $,
vV R/ R (25)
1 / @\ X*2
y* = %(zio + Zoi) [2ZiozZn — (220 —Z @)Foi] i 1 — “an 'f s’ ¢
The expression
5 ) / 12z*\
720= —Rcos sin<g 1--—-—-—-- )
2 \Y 5R 1

shows that F2 is zero if the £-axis is parallel to the horizontal component of the
magnetization vector I. If F2is different from zero, the value of §=is given with good
precision by the important equation X (2—F20tan 4>Thus, by use of this equation and
Egs. (25), we can change our axes so that x* =y* =f>=0. Computing the third mo-
ments in this new system of coordinates, we find that X2 = -Xm= F3o= Fi2=Z2=Z03
=0, 3Zi2= Z30={T3ocot i,

9 / 7z*\

3X2=3F2 = X0= FB= - —/?2z*(1- — sm"™.

8 6R /
These expressions give for tan \p the eight values X30/Z30, F2/Z 12'etc., and the mean
of these eight values can be considered as the final value of tan x/. Now, with this
choice of axes, the second moments take the values Xu= YD—F®=Fn =0,

5 |/ 16z*\ 5 |/ 12z*\

NMD——R(1—-——- 1 cos Xq2 — R(l ) cos il,
2\ 5R 2 5R 1

I 3 R/ 82*\) N Z0=72® 3R *\)

n ——R(]l—-—- cos — sin

s R V 125" P
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Dividing any third moment by one of the five second moments different from zero,
we obtain an approximate value for z*, and the mean of all such values can be consid-
ered as the final value of z*. Thus, wc have not only solved the problem, but have
also found a control of the solution, since the degree of concordance of many different
values found for the same parameter, such as z*, characterizes the reliability of the
solution.

Fom a practical point of view, a solution involving only the moments of the verti-
cal component Z is important, since in many cases magnetic surveys are limited to
measurements of Z only. In such cases we can find 0 and 0 and locate the point 0*
by use of Eqgs. (25) together with

where c4is such that 5i?c4= 14z* —(x* cos 0+y™* sin 0) tan 0. For VI we have

Also, z* is given by

where the moments are related to the origin 0* with 0 = 0. It is plain that the accuracy
of the approximate values given by the above equations increases with R.

4. Interpretation of the map of an anticline with the aid of moments. Let us repre-
sent the structure of an anticline as a cylindrical body of normal cross section S. We
have first to choose for S some simple geometrical form which expresses the gravita-
tional action of the anticline adequately. Our choice is the region between two con-
centric elliptic cylinders, the major axes of which have an angle a of inclination
(Fig. 3). This choice is good, except in the vicinity of the deepest part of the region,
which part is at a considerable depth;the author has verified that such a choice leads
to good results in practise. We shall denote the outer and inner ellipses by Ei and Evy,
respectively, and their semi-axes by a, b and ya, yb, respectively, where 7 is a positive
constant less than unity.

Equations (10)-(14) give values for kA, x*, z*. We shall now show how 7, a and
the eccentricity e can be deduced from gravitational anomaly maps.

Let us replace e by a parameter r =2z*/c, where 2c is the focal distance of the outer
ellipse. We define a function n(s) by the relation

n(s) = MO IM (— s)D (26)

where s is a constant and 0<s < 1, M Ois as defined in 83, M (—s) is the moment of Dg
of order —s, and D is the zero moment of [Dg(a;)]2:
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The graphs of |x |- LDg(x) and [-Dg(x)]2can be plotted from the experimental curve
of Dg{x), and thus the reduced moments can be computed with the aid of a planime-
ter. On the other hand n(s) can be tabulated for various values of s. We shall require

n{\), «($), «(f).
Applying the theory of Fourier transforms to (16), (17), we have

\] Dg(x)eixtdx = irk\]\] e-M* 7S, (27)

dsds'J" e (u‘du, (28)

where <b(U) = £EH-(£' —£)«—f'| u\ —F\t—u\, and (£, ), (£', f') are two sets of running
coordinates on S. We note that

©
/ eiw(y —t)~&ly = (i))s_leilir (I «- 5)

for ¢ ~0,0< 5< 1, i?e[w] ~0, where denotes the real part of iv. Consequently,
the application to (27) of fractional integration of order 1—5yields for t"0,

]
J' Dg(x) | x\s~ieixdx = irkj\] ps ‘e'’MdS. (29)

The inversion of order of integration is permissible, since all integrals are absolutely
convergent. Replacing in (29) the exponent 5-1 by —5, (0<j<1), multiplying both
sides of this by eix‘n and letting t tend to zero, we obtain

/| ©
| x\~’Dg{x)dx = irk sec (8#s)Re[<I>(/l; —s)],

-0

where $04 ; —s)=eiT,IZfBp~'dS. For our region S we have
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4>(d; - s) = 4 («*)-[F(ii, h+ 1i, 2; - 4r-xr2i“)
- 5+ b5s, 2; - 4r~% 2~2ia) ],

where E(a, b, c\ x) is the classical hypergeometric function. The function M (—s),
which depends on the four parameters s, a, y, r, can be tabulated for —1< j< 1,
0S7=f0"ag|* rS:2 sina. We shall require tabulations fors = J, f.

If in the right side of (28) we carry out the integration with respect to u for /*0,
and then let t approach zero, we find that

20 = 2J  [Dg{x)]ax = iwsz | I I (p - p')~ldsds’,

where p= £+if, F=1;"—i f - In the present case, we have

D = Mo V(a,y;r),
where
f< 71 = eia; r) — 2Re[f(ye-ia, e<q;r)] + f(ye~ia, yeia\r),
3/(m, vir) = 16ruh\u + t>)2[Cif - CX + CRCE(®5, V)],
if and £ being complete elliptic integrals of the first and second kind of modulus X
given by 4wi>=X2[r2+ (tt+y)2],X'and bbeing such that X'= (1 —X2) 12, 2(uv)ll2in(b, X"
= X-(w+z>), and Ci, C2, C3such that
C3= 3X'l - \'sn(b, \")cn(b, W)dn(h, X"],
Ci = 3dn2b, X) + 3Ksn(b, X) - 1- X2+ bC3
C2= 3XanZAb, \")cn2Ab, X) + 3\'sn(b, X)[I + \'zn2b, X)] + X2+ bC3

Thus <>@a 7 ;r) can be tabulated.
We have now derived expressions for M{—s) and D occurring in the right side
of (26). Substitution yields the equation

E(s; a,y; 1) = n{s) (30)
where E(s; a, 7;r) = [ 7; r)]~*w(—s; a, 7 ;r), with
m{—5;a, 7;r) = sec («-7j)d~z*'i?e[+>(d; —)].

In (30) we set s= 5, 1, to obtain three equations which we can solve for the re-
quired quantities a, 7, r.

Once a, 7, r have been determined, we can deduce a new value for z* from the
relation

= MJ) V(a.71!r).

This serves as a control on the value obtained from (12).

In actual computations based on experimental data, we can use only a finite re-
gion on the surface of the earth. Hence reduced moments must be introduced, as
before, and the parameters of the problem must be deduced by successive approxima-
tions.

The same procedure can be used in treating maps of the gradient G and the curva-
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ture K. Each map leads to an independent set of values for x*, z*, a, y, r, KA. In the
case of a magnetic anomaly, the map 0i.X or of Z could be used. In all cases the mo-
ments can be expressed in terms of <P{A; —s).

We note that the above method yields kA. Now A is the area of the cross section
and k =2%, where / is the gravitational constant and o is the density-contrast. We
define the average thickness T of the disturbing layer as the geometric mean of the
extreme thicknesses; T = (1—y)(ab)lli. Since A =Tcab{\ —y 2, we then have .4(1—7)
=% (1+7)T'2 Hence, if <is known, A can be found and then T. Often T is known.
In this case, A can be found, and then o

5. Interpretation of a centered anomaly created by a salt dome. Before applying

the new method it is interesting to see what can be obtained by the old method.
Some results can be achieved if we disre-
gard the cap-rock, neglect the slope of the
flanks and omit the depth of the salt dome
base considering this structure as a homo-
geneous vertical infinite circular cylinder
whose top is at the depth p (Fig. 4). The
interpretation problem is reduced to find-
ing the three parameters: K<x=k/2), p
and the radius a of the dome. Instead of a
we consider the angleco, letting a —p tan @
With the origin at 0*, just above the cen-
ter of the top circle (maximum of Dg, zero
for the gradient G) the expressions for G
and Dg are:

G(r) = k(alryi*[2\~'{K -E) - \K],

Dg(r) = k[C,E + CiK - irpf(r)],
Fig. 4.
where Ci = bp sign (a —r) + 2(ar)U2X~, °

C2= X(a2—r2)(4ar)~l12+p[E(b, \") —¢>]sign(a—r) and 2/(r) = 1+sign(a-r), sign O be-
ing defined by sign 0= 0. The elliptic function E(b, and the complete integrals K,
E have the moduli X,= (1—X212 and X is defined by X[p2+ (a+r)2]12=2(ar)1?2
r being the distance from the origin. The argument b (0¢b”K") is that in
dn(b, X") ¢[*2+ (a+r)2]U2=a-fr. Either of two curves G=G(r), Dg=Dg(j) can be
deduced from the other by graphical differentiation or integration. Therefore, we can
use both of them for the interpretation.

Here it is the maximum of the product E(r) = r1/2 G(r) | which it is important to
locate and therefore the curve G must be transformed into the graph of the function
F(r). In fact, the equation F'(r)—O0 reduces to XE¥E(">2+a2—12 =0 and the maxi-
mum of F(r) corresponds to r=r0= (£2+ad12 The corresponding value of the
modulus X is X0= [I —tan2 (#/4 —co/2)]12 The value of the maximum itself is
max F(r) =Fo=k(p tan w)¥2[2Xtl(-Eo—2£0)+X0fo]- Thus, we have at our disposal
three experimental data ro, Fo and the maximum Dgo=irkp(sec w—1) of Dg(r). First
we find the angle w, solving the equation 5(w) =«, where the function B(u>) is defined
by # sin (w/2)(I+sin w—cos co)B(w) = —2¥2[(l+sin w)Eo—Ufo], the modulus Xo
being a function of monly. The value of the number n is deduced from the measure-
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ments by the rule n =ra&/2Fa/Dgo, this value being simply the ratio of two maxima,
multiplied by the square root of the observed distance r0. The function B(w) is easily
tabulated. Knowing w, we have p =rOcos w and a=p tan w. The value of k is de-
duced from FOor Dg0. That is all that can be obtained, using the old method, and
it is evident that it cannot satisfy a geologist. In practice the best value for rOis
(S/tt)I2 where 5 denotes the area of the closed curve, the locus of maxima of F(r) on
all radial profiles through the origin 0*. This rather rough method of interpretation
works ifit isapplied to an isolated salt dome. The advantage of the inaccurate firstap-
proximation which it gives consists in the simplicity of computations. The interpreta-
tion requires only the table of values of the function B(co) and it can be performed as
fieldwork and very rapidly.

We shall now apply the new method. It is assumed that the salt dome is a solid
of revolution. Cartesian axes are chosen, with the z-axis directed downward along the
axis of revolution, and the origin 0* on the surface of the earth. We denote the cylin-
drical coordinates of a general point inside the solid of revolution by (p, < f), and of
a general point outside by (r, 0, z) (z<fmn.); R is the distance between these two
points. By means of the classical formula

[ "2ads ree
—=2c 1 e~U~zulo(ru)Jqpu)du,

0 R Jo

where Jn(t) is a Bessel function, we deduce for the potential

*m
/ euzW (u)Jo(ru)du,
0
where .
W(u) —irk f f e~iuJo(pu)pdpdf = —- f e~Fui(pu)pd”, (31)
JJa u Jr

A being the region the revolution of which generates the'solid, and C being its bound-
ary. Denoting the Hankel transform of order r by IIn so that by definition

F(r) = NTH{/(u)} = f f(u)Jr(ru)udu,
jo

for z= 0 we have U(r, 0) =Ho\W{u)/u\. Differentiation of (31) yields similar expres-
sions for Uz=Dg(r), Uz, G, K:

Dg(r) = H,[W{w}, vui, = HO[uW{u)}, -G = Hr[uw{u)], K = HMuWiu)}. (32)

The advantage presented by the expressions (32) consists in the possibility of us-
ing the theorems of the transform theory in calculating the moments and moment
functions used in the interpretation. Because of lack of space we can give as example
only the general expression for the moment function of Dg which holds for any form
of the solid of revolution, the expression applied below to the interpretation of the
gravity map of a salt dome. There is another approach to the mathematical problem
of computing the moments and moment functions needed in the interpretation. In-
deed, direct integration of the explicit formulae (32) is easily performed with the aid
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of divergent and summable integrals of Bessel functions of the general type (with a
and brestricted only by a+b> —1),

. ladbiit)dt S 2al( (OH)r[(a + b+ 1)/2]{r[(6 - a+ 13/2]}-1 33)

but we prefer to use the transform theory. A salt dome creates also a magnetic anom-
aly and, for a solid of revolution, (15*) gives the expressions for its components on
the ground 2= 0 with the aid of gravitational quantities G, K and UzzmUsing the re-
sults of Section 3, we choose the origin and the x-axis so that x*=y* = 0, </>=0. Under
this assumption

k(X + iY) = /[cos t(KeZe- Uz + 2G sin “eie],
kZ = 2/(sintU 4 + Gcosi cos 6).

Instead of X, Y it is convenient to use in the interpretation the radial and transversal
components A rand Atof the horizontal anomaly (X2+ F2 12 Transforming the X-
and F-inaps into the maps of A rand At, we can consider their moments and moment
functions as experimental data. The corresponding expressions in terms of parame-
ters of the problem are deduced with the aid of

kK(Ar+ iAt) = /[cos i(Keie- Uze~@ + 2Gsin *]. (35)

W ith the aid of (34), (35) all the rules for the interpretation of the gravitational
anomaly can be adapted to the interpretation of magnetic anomalies produced by a
solid of revolution. Far from the origin 0* the gravitational action of a body can be
approximately expressed as that of a material point of the same excess-mass M =aV
located at the center of gravity C(0, 0, z*). Thus, for large r we have the approximate
formulae

Dg ~ fMz*r~\ - G~ 3fMz*r-\ K~ 3fMr~\ Uzz fMr~\ (36)

the neglected terms being of the relative order (z*/r)2 For the magnetic quantities
Ar,Z we have, denoting the volume of the salt dome by V, (the caprock does not
create a magnetic anomaly),

/lr~/F > -3(2 cost/ cos 6 — 3z*r_1sin f), —Z ~ /F,r_3(sin + 3z*r_1 cos fcos 0). (37)

The moment functions are defined by the integrals extended over the infinite plane P
and the formulae (36), (37) are used in computing the reduction factors introduced
by the integration over the finite area r*R, denoted by L.

The formula (32) Dg(r) =HOW(u) gives immediately W(u) =H MDg(r), that is,

2rw(u) = J f Dg(r)Jo(ru)ds. (38)

If the form of the solid is considered as known, only its dimensions being asked, i.e.,
if the expression of W(u) as function of the parameters is prescribed, the relation
(39) becomes the source of equations since for every particular value of the arbitrary
parameter u (which is the reciprocal of a length) it is an equation in the unknown
parameters of the problem. In practice the numerical value of the second member is
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obtained by integrating over L, and adding to the result the contribution of the
infinite area r*zR. This contribution, computed with the aid of (36), is equal to
2irfM(z*/R)[j1I(Ru)/Ru] where, as has been seen in Section 3, 2irfM=irk V is the
value of the first moment of Dg. In this method the map of Dg is transformed, for
each value of u, into the map of the product Dg(r)JQ(ru) and the integration over L,
giving the second member of (38), is performed on this map. Let us consider as an ex-
ample the special case when the flanks of the dome are vertical. In this case the area A
is formed by two rectangles (see Fig. 5*) and there are seven parameters: the radii a
(salt) and b (cap-rock) of two cylinders which together form the dome with its cap-
rock, the depth p at which the salt begins (bottom of the cap-rock), the thickness h
. of the cap-rock and that Il of the

° " salt, the density-contrasts ki and
ki (salt). The expression (31) gives

the characteristic function W(u),

ir~w2W (u) — e~up\ab>Ji{au)
(- <r*) + bk\Ji(bu)(e'lh- 1)].

Choosing any seven numerical val-
ues for u and computing for them
the corresponding values of the
product #_IVRIF(j<) with the aid of
the rule (38), we have a system of
seven equations with seven un-
knowns a, b, ki, ki, p, I, h. Solving
it we have all the necessary infor-
mations about the dome. This
method can be applied only if the
flanks of the dome are vertical. Let
us now consider the case of a
deeply buried salt dome, substi-
tuting for it as an idealized form a
truncated cone with the vertex at 0*. This assumption is not acceptable for shallow
domes. We need the moment function and we begin by giving its general expression
which holds for all solids of revolution. A. Erdelyi and H. Kober have recently
proved2an important theorem on the Hankel transform which they formulate using
Tricomi’s form of this transform. In our notation (Hankel’s form) this theorem
states that if W=Ili+iaw, where s> —1, a>0, and ul2v(u) belongs to Li(0, »)
then T,a{W)=11,\T,a(w)}, the operator T,abeing defined by

Fig. 5.

[ v2—xaayr-ai(yay.

Applying it to our relation W(u) =11MDg(r) with —1<s<0, 5+ 2a=0, we have

o) 6@ /1 ©
/ (y2- £2-0+«/22W (y)ydy = ar« | J{xt)t’+Ht I (r2- /[*)-»+*/«Dg(r)rdr.

* Ih Fig. S the letters Ai and A3denote the cdenoters of the two erqld[surfaces of the cap rock cylinder.
5 Quarterly Journal of Math., 2, 217 (1940), Theorem 5, case b.
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Interchanging the integrations in the second member (absolutely convergent double
integral), using t—rv12 and passing to the limit x =0, we get the desired general ex-
pression for the moment function M(s) of Dg{r) for —2<j<0,

M(s) = f f Dg(r)rdS =2ttt f Dg(r)r'+'dr

*) %W p % o
im

/ W{u)u-{+)du. (40)
(0]

The same result can be obtained integrating the relation r‘+lIDg =H @’ +iW(u) un-
der the sign of integration in u and applying the integral (33). Now the integral in
the second member of (40) can be calculated, using (31) and the formula (3) p. 385,
ch. 13.2 of “Bessel Functions” by G. N. Watson, 1922. Let ® be the angle the radius
vector of a point (p, f) makes with the z-axis; thus f = (p2+ f2 22 cosm, p tan oo Let
P, be the Legendre function of the first kind P,,(cos co). Since P [(l+.s)/2, —s/2; 1;
sin2col = P, and (2-fj) sin2coP[(3+]j)/2, —s/2; 2; sin2c0] = 2{P, —cos coP,+i), we have

M(s) — (2 + s)c,\] \]* k sec3@P"’pdpd” = c,\] k sec2+*co(P, — cos coP,+i)f2-'df, (41)

where (2+5)c, =27rr(/2)r(I1 +i/2)T(1 —s/2). The formula (41) solves the problem
for a deeply buried dome. The parameters in this case (see Fig. 6) are: the three
lengths 0*7/ ="}, j =1, 2,,3, the density contrasts k\ = 2f<j\, ki —2/cr2and the angle m,

0*
P, X

SAL

Fig. 6.

the slope of the dome’s flanks. Instead of pj we use the ratios r=p\/pt, <= pi,/p2dn&
write p2—pmAlso, k = kt/k\ this ratio being generally negative. The parameters r<|,
g>1, k verify the equation

4s¥[l - r*+ (gz- ffe]l = 3[1 - r4+ (24- 1)k]p. 42)

In our case @ is constant in the second integral of (41) since only the integral
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along BA does not vanish. It is equal to {3-\-s)kip3+<>s; r, g, k), where <£(s; G <ZKk)
= 1—3++ &(@g3+J—1). Denoting (3+s)~!c, scc2+* co[P,,(cosw)—cos wPJ+i(cosoj)] by
f(s\ co), we have the explicit expression of the moment function M(s)

M(s) = kxpz+I{s\ co)>(s; r, q, k). 43)

Thel/(j; w) is easy to tabulate for eleven particular values of s, namely for As=m,
where the integer m verifies —7 since —2<s<I|. HAs=m the function Pare-
duces to polynomials or to elliptic integrals K and E. In fact, letting cos w—x, we
have 3P_74=3P34=Pi/A+ 2a:P_i/4, P_H54=Pi/4, P _34=P_i/4 5Pt/i = 6xPili —P-i/4,
21P 7/4= 1Q*Pi/A+ (20**-9)P_i/4, where @ cos (0j/4)P_i/4=2[cos (co/2)]lliK and
T(cos (co/2)]U#i/4 = 2 cos (co/4)[4(P —K) + (1 + XiT] with the modulus
X=tan (co/4).

Also P—32=P ¥2» 3P 32= 4xP 12-P _i/2, where P+ 12 are elliptic integrals too, but
with modulus /z=sin (co/2), namely «P-\/7=2K and tPi/2= 4£ —2K. Transforming
the experimental gravity map into the maps of the quantities r’Dg(r) and integrating
on these maps over rgP, we obtain the reduced moment function M*(s) which differs
from M(s) only in the contribution of the infinite area r*R. This contribution is
computed with the aid of (36), and the reduction factor v(s) in

M(s) = + v(s)(p/Ry-"] (44)

is defined by 4(1 —s)f(s; «)</($; r, g, k)v(s) =3/(0; co)$(1; r, g, k).

We consider equations of the general type Q(s, I; o, r, g kK)=N(s, t), where the
function <2 of four unknowns o, r, g, k is defined by <2=[/(s; co)/>(s)co)/>(£)]’
*[/(0; co)<€(0) ]i-* the 4>{s) denoting </>(5; r, g, k). Thus the number N(s, t) is to be
calculated by the rule N(s, )= [ M (s ) [ M ( 0 )]I-\ Its first value is obtained
by using the reduced moment functions iV/*(i), M*(0). With the aid of these first
values N* we have to find first approximations for our parameters o, r, g, k. It is
sufficient to form four equations of the type Q=N, giving to the orders s and t nu-
merical values, for instance s=—7/4 and ;=-—5/4, —3/2 and —1, —5/4 and
—3/4, —1and —1/2. Solving such a system with the experimental data N*(—7/4,
—5/4), N*(—3/2, —1), N*{—5/4, —3/4) and N*(—1, —1/2), we get the first ap-
proximate values for oo, r, g, k. The depth p is then found using the ratio M*(s)/M*(0)
for any value of 5 (or t) and in practice the average value from many such determina-
tions will be taken as p. Using the set of first approximations in (44), we improve the
first values of the second members N(s, t) in our system of four equations <= iVand
solving the improved system, we have second approximations for o r, q, k, p. This
procedure of successive approximations is continued until the stabilization of se-
quences. The depths pi —rp and p3=qp are found, as well as kt =kki, since the value
of ki can be obtained from the value of any M(s). We observe that the interpretation
yields both density contrasts g\ (cap-rock) and 02 (salt). The depth 2* of the center of
gravity obtained with the aid of (42), compared with z* computed by (23*), gives a
control. The control also is obtained with the aid of four other values of the order 5
which were not used for the interpretation. We choose the negative values of s in
order to diminish the reduction factor in (44). It is interesting to add that the same
method applies to the interpretation of G- and if-maps, their moment functions
G(j), K(s) being expressed in terms of M(s). In fact G(s) = —(2+i)M (i —1) and
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K(s)=dM (s-1) with c;r(I1+s/2)r(1/2-s/2)=2r(-s/2)r(5/2+s/2). For the in-
terpretation of the magnetic maps we can use the same function M(s) since the
moment functions ™r(s) and Z(r) are given by ki{2-\-s)Z{s)~ —21 sin p-sK(s) and
KiAr{s) = —21 sin ip- (2+s)M(s).

In the general case, when the vertex of the cone is on the vertical of the point 0*
at the distance (unknown) | above (I>0) or below (I<0) the ground, the moment
function has a very complicated expression and is difficult to tabulate. In its place
we use the integrals D nof the type

A, = I2n~23 J (12+ r2 - (n+1/2)Z)g(r)d5,

and the interpretation yields all the seven parameters k\, k2 pi, pi, pi, w, I, the angle
being the slope of the dome’s flanks. Lack of space does not permit the development of
this general case.

Conclusion. The possibilities offered by the new method for quantitative inter-
pretation of magnetic and gravitational anomalies we attempted to develop in this
work seem to be very large. The mathematical tools, used in the proofs of the final
interpretation rules, are not needed at all in practical applications. If the tables of
functions used and the charts of auxiliary curves for the graphical solution of funda-
mental equations are calculated once for all and plotted, all that remains to be done
in a particular case is the plotting of some auxiliary maps derived from the experi-
mental data and the evaluation of some areas with the aid of a planimeter.

No use of average values in the interpretation is known to the author, with the
exception of the work of K. Jung,3 where only one integral, namely our M(0), is
defined and its value 2fM is used together with remarkable values and distances.

3 K. Jung, Zeit. f. Gcophysik 13, 45-67 (1937).
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CANTILEVER BEAMS OF UNIFORM STRENGTH*

BY

I. OPATOWSKI
Armour Research Foundation

1. The object of the paper, its methods and results. The problem of shaping a
beam from a given amount of material in such a manner as to obtain maximum
strength requires that the maximum stress of each cross section be constant. In the
case of bending, the classical treatment of this problem12'34is based on the theory of
beams of constant cross section, the influence of shearing stresses and of the weight
of the beam being neglected. A collection of solutions of this elementary problem,
for rectangular and circular cross sections, is given in the Hutte handbook for engi-
neers.6 If the strength of the material is relatively low, the weight W of the beam
cannot be neglected. This occurs in certain concrete structures, such as reinforced
concrete bridges, and was demonstrated by Gaede6in his treatment of a cantilever
of rectangular cross section and constant width, the external load being a force F at
the free end.

In the present paper, we shall consider cantilevers of more general cross section
but with the same type of loading, except in 8 where more general loading will be
considered. Let us denote by x the distance from the free end, by A () the area of the
cross sectionand by S(x) the section modulus (S = M/cr, whereM is the bending mo-
ment and eisthe maximum stress). The bending moment M[x) =aS{x) at the dis-
tance x from the free end is then given by

Fx + vy Jf (x - QA(Qdi = *S(x) (1.1)
0

wherey denotes the density of the beam material. The total weight of the beam equals
y f LA(Qdli=W (1.2)
Ao

where L is the length of the beam. Since < is constant along the beam, differentiation
of (1.1) with respect to x yields

* Received March 20, 1944. This work has begun at the University of Minnesota and was completed
at the Armour Research Foundation. Presented to the American Mathematical Society under different
titles at the meetings of September 12-13, 1943 and February 25-26, 1944. The author is indebted to
Professor G. E. Hay for many valuable improvements which were included in the text of this paper.

1F. Grashof, Theorie der Elasticilat und Festigkeit, R. Gaertner, Berlin, 2nd Edition, 1878, pp. 113—
121.

3C. Bach, Elasticilat und Festigkeit, J. Springer, Berlin, 2nd Edition, 1894, pp. 85-88.

3S. Timoshenko, Strength of Materials, part I, 2nd Edition, D. Van Nostrand Company, New York,
1940, pp. 209-210.

4 C. Guidi, Teoria dell' elasticitd e resistenza dei materiali, 11th Edition, Torino, 1925, pp. 135-142.

3Hutte—Des Ingenieurs Taschenbuch, vol. I, 25th Edition, Wilhelm Ernst, Berlin, 1925, pp. 626-629.

8 Gaede, Balkentrager von gleichem Widerstande gegen Biegung, Bautechnik, 15, 120-122 (1937).
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0, (1.1

p+y f A(Qd( as'(x), 5(0)
Jo

0, <5(0) = F, (1.1

yA(x) cr5"(x), 5(0)

where the primes denote derivatives with respect to x. By use of (1.1') we can write

(1.2) in the form
S'(L) =F+ W. (1.29)

We note that (1.1") and (1.1") are forms of the well-known equations of equilibrium
of a beam, Q=M', q=M", where Q, q are respectively the shearing force and load
per unit length.

If the section modulus is assigned, A(x) is given by (1.1") and the problem is
solved. In general however there are no criteria for the choice of the function 5(x);
instead, some geometric characteristics of the cross section are assigned. Problems
of this type are treated in the present paper in a general manner. They involve an
integral equation (cf. Blasius?). Its solution may involve almost any of the classical
special functions. Some simple cases leading to hyperbolic, Bessel and elliptic func-
tions are discussed. The possibility of using Legendre, hypergeometric, Lamé and
some other functions is indicated.

2. The type of beam. Throughout this paper we shall limit ourselves to cantilevers
satisfying the following conditions: the line of centroids is a horizontal straight line
(x-axis); each cross section has a vertical axis of symmetry (F-axis). In the plane of
the cross section we choose a system of orthogonal Cartesian coordinates (U, F) with
origin at the centroid C. In the vertical plane through the x-axis, we choose a system
of Cartesian coordinates (x, y) with origin at the free end and y-axis directed down-
ward. We assume that the curves bounding the cross sections are representable by

the equations
U = u(x)uift), V - v(x)vi(t), (2.1)

t being a parameter. The functions Ui(t), v\(/) determine the shape of the cross sec-
tion, whereas the functions u{x) and v(x) represent the change of the cross section
along the axis of the beam. Any two cross sections are obtainable from each other by
a transformation of dilatation8which depends on the position of the cross sections.
We will choose ii\(t) and vxX{t) in such a manner that u(x) and t»(x) be ~0.

3. General equations. It is easily seen that 5 =//F m where | is the moment of
inertia of thecrosssection about the Z7-axis, and Vmis themaximum  value of F.
Thus, if a isthearea enclosed by the curveU — V =Vi(t) and Rthe corresponding
section modulus, we have

S = Bu(x) >(X)]2 A = ac(x)u(x). (3.1)

If we set a=ay/(crR), the substitution of (3.1) into (1.1), (1.1"), (1.2), (1.2') gives

Fx + ay f (x —Ex<E)i>E)<E = aBu(x) [»(*)]12 (3.2)
Jo

7H. Blasius, Tréger kleinster Durchbiegung und Stabe grossier Knickfestigkeit bei gegebenem Materialver-
brauch, Zeit. f. Math. u. Phys., 62, 182-197 (1914).
8 The writer is indebted to Prof. H. Busemann for this geometric terminology.
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(uvd™ = auv, (mud,,o= 0, 0= i7 (3.2)

« 'iO u(x)v(x)dx = 17/?, (3.3); ofi(uviyxL = F + W. (3.3)
]

If v@) is known, (3.2) is a Volterra integral equation in u{x) with the kernel
(*—E£)/[»(*) ]2*This kernel is a continuous function, within the interval of integration,
if iX0)?i0, because we assume v(x) continuous and by its physical meaning it must
be ~0 for x->0. Therefore, according to the general theory of integral equations,9if
n(0)r*0, Eq. (3.2) has one and only one solution u(x) if Ft+0 and only a meaningless
solution u=0 if F=0. In other words, a cantilever of uniform strength under the ac-
tion of its own weight alone must be such that v(0) = 0.

4, Particular types of cantilevers of uniform strength. These are obtained by as-
suming particular forms for u(x) or w(x).

1). vis constant. The cross sections have constant height. If F 20 the integral of
(3.2") is

u = Fr(ayv)~1sinh (r.v) 4.1)
where r = (a/v)112 Substitution from this equation in (3.3') gives the following condi-
tion for W:

cosh (rL) = 1+ (W/F). (4.2)
If F=0 no solution exists, which is in accordance with the general statement of 83,
because here v(0) 3 0.

I1). v{x) is a linear function of x. The cross sections have linearly varying height.
We may restrict ourselves to the case

ti(@) = ¢ + x. (4.3)

since if x had a coefficient different from =+ 1, the coefficient could be factored out and
included in the function (t). Also, since we agreed to take v(x) *0 (cf. 82) and *=0
represents a point of the beam, ¢ must be ~0. Since dv—=dx, the solution of (3.2",
(33" iswO

« = v=32Zi(2ialv1), (4.4)

where Z\ is a cylindrical function of order 1 which must satisfy the conditions
Zinriv'v') =0, + alal2iZo(2iall2c1?) = F, (4.5)
+ <fldl2izo[2iall2(c + L)12] = F+ W. (4.5Y

The second equation in (4.5) and Eq. (4.5') are obtained by use of the formulald
Zi (x) =Z20(x)—x~2Z1(x). We put

zi(2iaww] = AU jRiax2v'~) + BH™{2ia% %, (4.6)

where J\ and HIJI) are the Bessel and the Hankel functions of the first kind and first
order.10 Equations (4.5), (4.5") then give the following conditions for A, B and c:

9See for instance R. Courant-D. Hilbert, Methoden der mathematischen Physik, vol. I, 2nd Edition,
Julius Springer, Berlin, 1931, pp. 119, 120, 133; or Ricmann-Weber, Die Differential- und Inlegral-
gleichungen der Mechanik und Physik, vol. I, 7th Edition, F. Vieweg, Braunschweig, 1925, pp. 426-428
or E. Hellinger-O. Toeplitz, Enc. d. math. Wiss., vol. Il. 3, pp. 1459, 1460.

10 E. Jahnke-F. Emde, Funktionentafeln mil Formeln und Kurven, 3rd Edition, B. G. Teubner,
Leipzig, 1938, pp. 128, 144-147, 224, 237, 242.
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Aidx{2ia'\m) + BH ?\lia%U) =0, 4.7Y
- AJO(2ia'vV1) + BiEM2ialVv i)y =+ F/(*a'2, 4.7
- AJO[2i(ac £ aL)V2] + BiR™[2i{ac + aL)m\=% (F+ W )/"'*). (4.8)

We discussfirst the case c=0, i.e., v(x) =x (the lower sign in (4.3) has no meaning
here, since v must be §t0). The free end of the cantilever is represented by v=x —0.
Therefore, since //i*(O) = t», the constant B must be zero. Since /i(0) =0 and Jo(0)
=1, Egs. (4.7, (4.7") require that A = —F/(a”aw), and Eq. (4.8) gives

Jo(2iallL 1) = 1+ (W/F).

IfL and W are not related by this equation, the constant ¢ mustbe distinct from
zero. Thedeterminant of the coefficients of (4.7"), (4.7"), considered as equations
in A and B is, by a known relation of Bessel functions,10

fo/(z\)m'v /(z} —Ho (zm%)z')\ /N g 1a'V20'V2, (4.9)

where z = 2iainc112 Since this cannot be zero it is seen that there are no solutions if
F= 0, which agrees with the general result of 83. If F*O, the solutions of (4.7,
(4.7") are

A = £ x(<Tp)~Ic tFHi\2iaVic,\ B= + /)~ \mFiJr{2iamGn).  (4.10)

Substitution from these into (4.8) gives a relation for 1V,n

tta ,V I2[j1(z)HIDa) ~ 31N\z)Jo(r)j = 1+ (W/F), (4.11)

where z—2i(ac)112 f = 2i(actal)in.

I11). u(x) is proportional to [*(a;)]". This includes a circular cross section (« = 1),
a rectangular cross section of constant \vidth (w=0), a rectangular cross section with
the height proportional to the width (w=1), an elliptic cross section with axes pro-
portional to each other (n=1). By a suitable choice of Ui(t) and vi(t) we may reduce
the problem to the case u=vn. The first two equations in (3.2") then give

X = Ji V+1[C2+ 2a(n + 2)-12m + S)* ®*»«]-1I*», (4.12)
0

where C is a constant. The last equation of (3.2"') and Eq. (3.3") give

apc = F/(n + 2), W = [T2+ (n+ 2)(2w + Sf'lfvapEIIf' ~ F. (4.13)

If n= —1 the cross sections have a constant area; this case gives elementary expres-
sions for u(x) and v(x) but the width at the free end is infinite. When n =1, the in-

11 By (4.3) the possible range of L is (0, + °0) or (0, c). The left hand side of (4.11) is within this range
a function of L which increases continuously from 1to + », as may be shown by the theory of Bessel
functionsand by (4.7"), (4.9), (4.10). Therefore for any assigned values of F, W, a, ¢ there exists, in each
case (4.3), one and only one value of L satisfying (4.11). Problems of this type in which the length L is
not assigned but a given amount of material is to be distributed into a cantilever of uniform strength
under the action of F and W or W alone have occurred in some biological fields (cf. C. Holtermann,
Schwendener’s Vorlesungen iiber meclianische Probleme der Botanik, Leipzig, 1909, pp. 18, 19 and O. Fischer,
Enc. d. math. IFtrj., 1V.8, p. 119).
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tegral in (4.12) is hyperelliptic; when « = 0, it is elliptic. If F=0, Eqgs. (4.12) and (4.13)
give
v=al2@m+ 3)(m+ 2)]-1*2 (4.14)
IV. Moregeneral cases. Instead of u and v we introduce new variables w= Mga2,
r —1/v; aisdirectly proportional to the section modulus, and r inversely proportional
to the radius of gyration of the cross section. From (3.2) we obtain

Fx f-ay f (x — Er(E)to(E)dE = crl30)(X). (4.15)
Jo

This is a Volterra integral equation in co(x). From it, or directly from (3.2", (3.3")
we have
S(F) = ot(#)«(#), w(0) = 0, "»'(0) =F, <rpu'(l) =F+ W. (4.16)

Since most of the so called special functions satisfy linear differential equations of
second order, the first equation of (4.16) suggests the possibility of using such func-
tions. The following are some results which may be easily checked. The constants
p, 0, S, a must satisfy the last three equations in (4.16).

IVa). t(x) = p—ge2x co(a) —Zm(nez), where Zm=a cylindrical function (Bessel,
Hankel, etc.), m2=ap, n2=aq.

IVb). t(x) =p —q(cosh x)~2 co(x) =i<f"m,(tanh x), where =an associate Le-
gendre function (Pfi\ €m), ntt—ap, n(n+l)=aq.

IVc). t(x)y =p —qcos x, u(x) =a function of an elliptic cylinder.12

1IVd). r(x) = (p —gqx-\-x2)/(Aaxl), w(x) —a confluent hypergeometric function.12

IVe). T(x) = (p—0gx’)/x~, u(x) =xinZm(nx’n), where Zm=a cylindrical function,1
mx2—Il+4ap, nX2=4aq. If p =0, in order that v be finite 5 must be < 2.

If the function v(x) —I/r(x) is assigned by means of any one of previous expres-
sions for r, the function u=cor2is determined by the corresponding expression for
co(x). In the case of a rectangular cross section, v(x) represents the height and u(x) the
width.

5. The deflection curve. The curvature of the geometric axis of a beam of con-
stant strength in bending is1241/r =h/v(x) where h=tr/(Evm), E being the modulus of
elasticity and vmthe value of vi(t) at the point of maximum stress (cf. §2). We note
that this equation is a form of the well-known relation a=Ey/r. For small deflections
the usual approximation is \/r =dly/dx1 Thus

y(x) = —JI <p(x)dx, <PX) = thX [)@}~Idx, (51)

[o]
since
y(0) = 0, (dy/dx)x L = 0. (5.2)

A simple formula for the deflection at the free end is obtained through integration
of (5.1) by parts. Setting —y(L) = F, we have

f s* L (¢ L /» L

Y = hix | [®(.r)]_1da;j\ + h I [ax)\~'xdx = h | [a(a)]_la:d" (5.3)
( Jo

J X ) x—0 do

u E. T. Whittakcr-G. N. Watson, Modern analysis, 4th Edition, Cambridge University Press, 1935,
pp. 337, 405.
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It is seen from (5.3) that, if v(x) tends to zero as kxnwith h | 2 and k is constant, the
deflection Y is infinite. This would occur, for instance, in the case corresponding to
Eq. (4.14). Such a physically impossible conclusion may be explained by the fact that
a large value of n implies a rapid variation of v(x), i.e., a rapid change of the cross
section, whereas the theory which was used is based on bending of beams of constant
cross section.13More important still, the theory used in this paper neglects the shear-
ing stresses incomparison with the bending stresses. Such a procedure isnot permis-
sible in the vicinity of the free end, and consequently it is understandable that the
theoretical results for this part of the beam differ widely from reality.

6. More general loads. If M(x) is the moment of the external load acting on the
cantilever, we have instead of Eqgs. (1.1"), (1.2")

M"(x) + 7Ax) = <r$"(x),  aS(0) = Af0),  <rS(0) = M'(0), (6.1)
arS'(L) = M'(L) + W. (6.2)

For example, if the beam is acted upon by F and also by a load distributed uniformly
along the axis of the beam of intensity T, we have M(x) = Fx+/Tx*. If n=const.,
we obtain by (6.1), (3.1), and (6.2),

u =f \Fr sinh (rx) + T cosh (rx) — T]/(ayv) (6.3)
cosh (rL) + TiFr)-1sinh (rL) = 1+ (IV + TL)/F, (6.4)

where r=(a/v)V2 If £ =0, Egs. (6.3), (6.4) reduce to (4.1), (4.2). Eqgs. (6.3), (6.4)
may be easily generalized to the case M (x) = *amn.

7. Numerical examples. We consider a rectangular cross section of width 1 end
height H. Then (cf. 83) a—FI, vm=11/2, /3=i72/6, a=6y(all)~1 Let £ =10 ft.,
£=9000 Ibs., u= 75000 Ibs./sq. ft.,, 7 = 150 Ibs./cu. ft.,£ =45X 107 Ibs./sq. ft. These
values correspond to a certain type of concrete.

1). Cantilever of constant height (84, Case I). We put 11=1 and assume the height
z>/[=u= 1.9 ft. From (4.2) weobtain the weight IF=3000 Ibs. Weput £ = [67/(0") ]12
Then £ =0.0795. From (4.1) we obtain the width

u(x) = FR(vy)~Isinh (Rx) = 2.51 sinh (0.0795a;).

At the fixed end we then have u —u(10) «2.21 ft. Equation (5.3) gives for the deflec-
tion F=<r£2£7«0.1 in.

I1). Cantilever with a linearly varying height (84, Case Il1). Let the height at the
fixed end be 2 ft. and at the free end 1/4 ft. In (4.3) we take v(x) =c-(-x. Since
llc= 1/4 ft., iL(c-{-10) = 2 ft., we get |1 = 7/40, c= 10/7 ft. Eqgs. (4.10) give A = —69.1,
£ = 29.0, and from Eqgs. (4.4), (4.6) we, obtain

u=v [—69.1iJi(if) + 29.01[ '(if)], where f= 0.8@3i>7) "' . (7.1)

At the fixed end a= 10, and we thus obtain 2.2 ft. At the free end, v=c and by
(4.4), (4.5) we have the general result u=0. From (4.5") or (4.11) we get the weight
1F«4800 Ibs. From (5.3) the deflection is

Y = 2a(EH)-1[L - clog, (1 + Xc-p] « 0.2 in.

1BA method which takes into account the variability of the cross section was worked out by J. Résal,
Résistance des matériaux, Paris, 1898, pp. 393-405 for rectangular and double T cross sections of con-
stant width.
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—NOTES—

THE INVERSE OF A STIFFNESS MATRIX*
By K. E. BISSHOPP (Armour Research Foundation)

It is well known that torsional vibration problems often require the computation
of latent roots of matrices. Now the usual methodsl give these roots in descending
order of magnitude while in torsional vibration problems we require the smallest
root of the stiffness matrix and then, perhaps, some of the remaining roots in ascend-
ing order of magnitude. It is therefore necessary to find the inverse u~I of the given
stiffness matrix; u~l is called the flexibility matrix. If its roots are in descending order
p\, pi, ¢ ¢+, pk then the required roots of the original stiffness matrix in ascending
order are \/pu 1/pi, s+, 1/p*.

In general it is very difficult to invert a given matrix. The purpose of this note is
to show that a special type of stiffness matrix which occurs frequently can be inverted
with a small amount of work. Let us consider, for purposes of illustration, «+1 discs
with moments of inertia 10, «* «,/,, connected by massless elastic shafts of circular**
cross section. Let c{be the coefficient of stiffness of the shaft between the ith and
(i+1)th discs. Then

ct = GJ./h, 1)

where U is the length of the shaft in question and GJ, is a numerical factor depending
on the material and the polar sectional moment of inertia. The application of La-
grange’s equations2 to the functions representing the kinetic and potential energies
of the system respectively yields a system of linear differential equations. Therefore
the second order time derivatives can be replaced by —pi, so that in the absence of
damping we obtain the following system of algebraic equations in matrix form,

(p'i - a)e = o @

where 6 is the column matrix of the normal mode appropriate to any value of p2for
which Eq. (2) is satisfied. Since the system is capable of a rigid body rotation, p2=0
is a solution and the degree of system (2) can be reduced by unity with the aid of the
substitution

lo0Co+ 1101+ <’ e+ Irfir, = 0,

* From a paper, The use of matrices and normal coordinates in the solution of torsional vibration prob-
lems, read at the spring meeting of the Wisconsin section of the Math. Assoc, of America, at Milwaukee,
Wis., May 13, 1944. Manuscript received August 18, 1944.

1R. A. Frazer, W. J. Duncan, and A. R. Collar, Elementary matrices and some applications to dynamics
and differential equations, Cambridge University Press, Cambridge, 1st Ed., 1938, Chapters I-V.

** For other than circular cross sections, suitable factors can be obtained from the appropriate torsion
functions.

1S. Timoshenko, Vibration problems in engineering, 1st. Ed., D. Van Nostrand Co., New York, 1928,
p. 139.
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which may be looked upon as the orthogonality condition3 for the degenerate fre-
quency p =0. The stiffness matrix u for the reduced system in which the zero root is
absent becomes

Co Co (o) C\ Col2 Col3 Coh
/o I\ li h + 1loh loh loh
Cl Cl 2 2
am 0
h h h 12
Cl c2 (o2]
0 . 0
~t3 TB+T3’
Cn~1
0 0 0

The inverse matrix url—(a-y) may be stated in a convenient form for numerical com-
putation as follows.
If AT=E?_,A, then the jth element in the first row becomes

an = [li/XGJ.X;/)] - E Urn). 4)
When i~ j the ith element in the jth column is

ati = au + (li/GJ.) E h, (5)

((.))i
and when i>j,
an — aii- (6)
As an application, let us consider the case when 10= 181.306 Ib.in.sec.2 h=12=13
= 1,328.61 Ib.in.sec.2 74= 21,557.3 Ib.in.sec.2, 10—30 in., Zi=/3=34 in., 13=62.2 in.,

Table |
. € @ €) (@) 5)
In In InNXM/GJ, An « ¢ -E rw

0 181.306 30. 25,724 .4

1 1,328.61 34. 0.076051 25,543.1 5,439.2
2 1,328.61 34. 0.076051 24,2145 -817,850.
3 1,328.61 62.2 0.076051 22,885.9 -1,595,970.
4 21,557.3 1.23396 21,557.3 -2,936,840.

GJ,= 17,470 X106Ib.in.2 All necessary computations are contained in Table I. From
the second line of this table (n= 1), we obtain immediately

106<n = 1dd i/GJgAo = [col. (5) X col. (3)]/AQ

3T. von Kdrmdn and M. A. Biot, Mathematical methods in engineering, McGraw-Hill Book Co.,
New York, 1940, chapter V, pp. 162—215.
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Equation (4) shows that the remainder of the elements of the first row of u~Il can be
calculated in order from each succeeding line of the table by performing the operations
indicated on columns (3) and (5) respectively. The other elements in the upper right-
hand corner of u~Il then are computed from Eq. (5) which gives for instance when
f=3andj =4,

1063 = 1064+ h X 10VG/.E U = 140.875 + 1.23396 X (34 + 34)

= - 56.966.

The inverse matrix now can be completed quickly by filling in the lower left-hand
corner according to Eq. (6), so that

0.0160803 2.4179 4.7183 - 140.875'

. 0.0160803 0.1678 2.1326 - 98.920
- 106X 0.0160803 0.1678 0.4532 - 56.966
L 0.0160803 0.1678 0.4532 19.786J

ON THE PROBLEM OF HEAT CONDUCTION IN A
SEMI-INFINITE RADIATING WIRE*

By ARNOLD N. LOWAN {Math. Tables Project, Nat. Bureau of Standards)

R. V. Churchilllderives the solution of the problem of heat conduction in a semi-
infinite radiating wire when the initial temperature is zero, and the boundary tem-
perature is a constant. It is the object of this paper to derive the general solution
corresponding to an arbitrary initial temperature distribution when the boundary
temperature is a prescribed function of time.

Let k, ¢, p, s, A, h and a=k/pc denote the thermal conductivity, specific heat,
density, perimeter, cross-sectional area, coefficient of heat transfer, and thermal diffu-
sivity of the wire, respectively. Further, let a=hs/cpA and b=aTi, where Ti is the
temperature of the medium. If the wire is sufficiently thin so that the temperature
may be assumed to be constant over the entire cross section, the problem becomes
one-dimensional and the temperature T(x, t) must satisfy the following differential
equation, initial and boundary conditions:

I/ d 92 \ T t) =b >0,t>0 1
Itim T(x, ) = f{x), (2); T(0, ) = *>) 3
_*0

It is easily verified that the expression
T{x, t) = e~atu(x, I) +n(a:, t) 4
* Received July 17, 1944,

1R. V. Churchill, Modern operational methods in engineering, McGraw-Hill Book Company, New
York, 1944, p. 119.
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satisfies Eqs. (1), (2) and (3), provided the functions u(x, t) and v{x, t) satisfy the
following differential equations, initial and boundary conditions:

du aa 0 >0,t>0 5
dt ? dx2 x ’ ) ©
lim u(x, 9 = ), (6); ;<00 = ea'(), @)
dv dz
me—2a = —av+ b (8); lim v(x, t) = 0, (9); d0. 9 = 0. (10)
dt dx2 o

From Eqgs. (5), (6) and (7), it is clear that u(x, t) is the temperature in a semi-
infinite solid initially at the temperature f(x) and with its bounding plane x =0 kept
at the temperature eatip{t). Using the expression of u(x, t) given by H. S. Carslaw,2

we obtain
e-<u(x, t) = -- _ f Q) {ecq)m dﬂm\

OWfix/at & 0
H — | e~a,<pt —ii)e~z2,ia’it~3,2dri. (11)
2ylxa *70

With the aid of the identity

r“ , \/x ,
I e~aP‘cos fi(x —£)di3 = — lial,
Jo 2v/ai

the first term of (11) may be written in the alternative form

2 FoNYo)
/ | e«0<yE) sin fix sin firdfid™.
o *o
Accordingly, an alternative form of (11) is

26-an f*@ f*D S
e~atu(x, t) = -------- I sin fix sin firdfid®
m

Ho-— f  e~av<p(t — moe~j*air r zI2di). (110

We proceed to the solution of the system (8), (9), (10). The Laplace transform
t)*(@, p) of the function v{x, t) must satisfy the equations

dh* p+ a

= i : (12); s*(0, p) = 0. (13)
da;2 a pa

The solution of the system (12) and (13) is

ve(x, p) = -(1 - e™(FU)7r) = a*(p) - **(p)w*(p) (14)
p{p + a)
2H. S. Carslaw, Mathematical theory of the conduction of heat in solids, Macmillan and Co., London,
1921, 8§81, p. 172.
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whence, by a well-known theorem,3

v(x, 1) = <r()) - <l — ij)w(ri)dr]. (15)
o
From
Ir « ~va(Jd)dt = cr*(p) = —b— -6/(1— —————————— 1—\
Jo B Treri i e

it follows that

<fl = - (@- <r*). (16)
a
If in the known identity4

L J7 e~1/ N ['—me~xitl~22di = e~

we put X=x24a and replace p by p-\-a, we obtain

X r»
1 j e~,le~ate~xI™alt~32dl — e~1"/(-p+a)ia ,
2\Zxa *o
whence
w(x, I) = - a7

2\/ 7ra
In view of (16) and (17), (15) becomes
d(z, ¢) = - I {1- in-g-Mi-dt) + — (1 - e “¥). (18)
2a\/xa *7o fl
Making use of the identity5
50' e-(“2drwHUX = T cosh lab
a
vV \ "INy

/! & / 6 \
H e 2“eerf ( ac ) e26Erf | (ac)
4a \'¢c J 4a \ ¢c. /

and some elementary transformations, we may write (18) in the alternative form

- A{2c,,h T + «--Erf (VST -

-~ Erf(~ +fi) )} W
5See, for example, J. R. Carson, Electric circuit theory and operational calculus, McGraw-Hill Book
Co., New York, 1926, p. 41.
4J. R. Carson, loc. cit., p. 39.
6This is a slight generalization of Churchill’s formula (4), page 120.
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where

Erf(*) ———f e-e'dp.
\Ar™ o
It should be noted that in (18") the function v(x, t) is expressed in terms of tabulated
functions.
The final solution of our problem is given by (4) in conjunction with (11) and (18)
or (11") and (18".

THE SPHERICAL GYROCOMPASS*
By WALTER KOHN (University of Toronto)

In the existing literature on gyroscopesl the theory of the gyrocompass is de-
veloped for the case of a rotor whose ellipsoid of inertia is an ellipsoid of revolution.
The mathematics of this treatment is somewhat involved and, in deducing the differ-
ential equations of motion, approximations based on the smallness of the earth’s
angular velocity are made. In the present communication we shall treat a gyrocom-
pass the rotor of which has a spherical ellipsoid of inertia. The motion of such a
gyrocompass is, of course, covered by the more
general theory usually given, but owing to the
symmetry of the sphere this case allows a con-
siderably simpler, separate treatment in which,
moreover, no approximations are necessary. At
the same time the essential features of gryo-
scopic motion are preserved.

The following system will serve as a simple
model of a spherical gyrocompass. The rotor is a
rigid homogeneous sphere rotating freely about
a light axle which passes through its centre. The
ends of this axle can slide in a smooth horizontal
ring which is concentric with the rotor and
rigidly attached to the earth. When the rotor is
set in rapid revolution about its axle the latter
executes oscillations about the meridian which
will now be examined. Fig. 1.

In the figure theright-handedunittriad,i, j,k,
which is fixed relative to the earth is defined as follows: Ois the center of the rotor;
k lies in the direction of the upward vertical; i lies along the meridian and points
north; j, pointing west, completes the triad. The unit vector, a, lies along the axle
of the gyrocompass and the unit vector, e (in the i, k plane), is parallel to the earths’
axis; thus the angle X, between i and e, is the latitude of the observer.

* Received July 10, 1944.

1Cf. T. Levi Civita and U. Amaldi, Lezioni di meccanica razionale, vol. 2, Zanichelli, Bologna, 1927,
pp. 191-195; or J. L. Synge and B. A. Griffith, Principles of mechanics, McGraw-Hill Book Co., New
York, 1942, pp. 430-433.



NOTES

It is clear that the couple exerted by the ring on the rotor must be of the form
G = G(a X k).

Further, if A is the moment of inertia of the rotor, o> its angular velocity and h its
angular momentum, we have the relation

G = h = /lto
Consequently
<ba = 0, (D; (i-k = 0. 2

Since the gyrocompass has only two degrees of freedom, equations (1) and (2), to-
gether with initial conditions, completely determine its motion.

We observe that« is made up of three parts: the spin of the sphere about its axle;
the rotation of the axle relative to the frame i, j, k; and finally the absolute rotation
ofi, j, korof the earth to which itisattached. Therefore we may write :g>=ja+ 0k + Oe,
where j is the spin of the rotor, d the angle between the meridian i and the axle a,
and 0 the angular velocity of the earth. Differentiation of this relation gives
to=ja+ja + Ok-f-0k, and since the angular velocity of a is Ok+ fie and that of k
is 12, this equation becomes

o= ia T j(ok - ile) X a - 0k -F- 00(e X k). (3)
Substituting (3) into (1) and (2), we immediately arrive at
S—1)Qcos xsino = 0, (4); cos Xsino+ 0 =10 (5)

as the required equations of motion.

The solution of these equations may be obtained in the usual way. From (4) it
follows that s =so+ 11 cos X(cos 60— cos 0), where Jo and do are the initial values of j
and d. Inserting this value of j into (5), we obtain a differential equation for d alone,
which is of the classical type 0=/(0); this can be solved in terms of hyperelliptic func-
tions. If the initial spin jOis great we may replace j in (5) by Jo to obtain the well
known result: the motion of the axle a is identical with the motion of a simple pendu-
lum, the position of equilibrium being in the direction of the meridian.

An interesting property of the spherical gyrocompass can be deduced directly
from Eqgs. (4) and (5) which are exact. For, if we multiply by J and o respectively and
add, we obtain ji=00 =0, which on integration becomes j2+02=constant.2 This
shows that a spherical gyrocompass has an angular velocity of strictly constant
magnitude relative to the earth.

The author is indebted to Prof. A. Weinstein for his advice and criticism.

2 Levi Civita and Amaldi, l.e., derive a corresponding result, namely
$Ab2+ iCs2 —const.

for the general gyrocompass. (A and C are the transverse and axial moments of inertia respectively.)
They then explain it by energy considerations. In fact, however, this equation and therefore also their
reasoning is not strictly accurate. The exact form is

\A'02+ $Cs2+ $(C —A)n2cos2Xsin20 = const.
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