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SOME NUMERICAL METHODS FOR LOCATING ROOTS 
OF POLYNOMIALS*

BY

T H O R N T O N  C. FR Y  
Bell Telephone Laboratories

1. Introduction, I t  is the purpose of th is paper to discuss the location of the roots 
of polynom ials of high degree, w ith particu lar reference to  the case of complex roots. 
This is a problem w ith which we a t  the  Laboratories have been much concerned in 
recent years because of the fact th a t  the  problem  arises ra th e r frequently  in the design 
of electrical networks. I shall no t give any  a tten tio n  to stric tly  theoretical methods, 
such as the exact solution by elliptic or autom orphic functions: nor to  the develop­
m ent of roots in series or in continued fractions, though such m ethods exist and one 
a t  least— developm ent of the coefficients of a quadratic  facto r1— is of g reat value in 
im proving the accuracy of roots once they are known w ith reasonable approxim ation.

Instead, we shall deal w ith ju s t two categories of solutions: one, the  solution of 
the equations by a succession of rational operations, having for their purpose the 
dispersion of the  roots; the other, a m ethod depending on C auchy 's theorem  regarding 
the num ber of roots w ithin a closed contour.

PART I— M A T R IX  ITER A TIO N

2. D uncan and  Collar. We shall tre a t the first category by a m ethod recently 
elaborated by D uncan and" Collar in two papers in the Philosophical M agazine .2 I do 
not know how thoroughly these w riters appreciate the  close relationship of their work 
to th a t  of the o ther w riters whom I shall m ention in the course of m y presentation. 
T he fact th a t  their in terest was prim arily  concerned w ith certain broad dynam ical 
problem s m ay perhaps have inhibited them  from taking some of the  steps which I 
shall take in their nam e. B ut they a t  least possessed the essential idea, and exhibited 
qu ite  sufficient ab ility  in the developm ent of it to w arran t the assertion th a t m y 
presentation only differs from theirs in detail—som etimes details of omission, some­
tim es details of am plification.

* Received Dec. 26, 1944.
1 The essence of this method is contained in a section of Legendre's E ssai sur la  théorie des nombres. 

It is also attributed to Bairstow by Frazer and D uncan. It was developed independently, and perhaps 
som ewhat more fully, by the present writer; but the extensions seem so obvious that it has not appeared 
to warrant separate publication.

2 W. J. Duncan and A. R. Collar, A method fo r the solution of oscillation problems by matrices, Phil. 
Mag. (7) 17, 865-909 (1934) ; Matrices applied to the motions of damped systems, Phil. Mag. (7) 19, 197-219  
(1935).



3. The fundam ental identity . We begin by noting th a t  the X-determ inant
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-  n  ( x + x,) (i)

flu +  X «21 0-nl

D ( \ )  =
On 022 "f“ X ■ • a n 2

a \n 02 n a nn ~i" X

is the characteristic function3 of the m atrix

M  =  |JW| (2)
and its  determ inan t

A =  j ais | . (3)

I t  is obviously a polynomial of degree n, which we m ay write

■D{\) =  X" +  M n_1 -  M "~2 +  • • • ±  pn. (4)

Any q u an tity  which satisfies the equation

D (\)  =  0 (5)

and obeys the  associative and com m utative laws of algebra— w hether it be a num ber
or not— m ust also satisfy the relation

X* =  -  +  p 2\ n~ 2 H +  p n ,

and if we m ultiply this by X throughout and then elim inate X" we get
„ n - f l  , 2 n —1 , . . n— 2

X =  (pi +  />2)X — ( p ip !  +  p  l ) \  +

which is of the  form
n + 1  ( n + l )  n - 1  ( n + 1 )  n - 2

X =  p i  X +  p i  X +

Sim ilarly, by a continuation of the same process we m ay get a succession of equa­
tions, all of the  form

m (m) n—1 (m) n—2 , ,
X =  p i  X +  p-i X +  • • • . (6 )

W e call the typical polynomial on the  right of (6) / m(X): graphically it represents a
curve of degree n — 1 passing through the n points —X,-, ( — X,)m. B ut we do no t wish
to emphasize this geom etric in terp re ta tion  b u t ra th e r the formal algebraic fact th a t  
our derivation  has required only the elem entary rules of algebra and the relation (5), 
and th a t  when these rules are satisfied

X”1 =  f m(\).  (7)

Suppose, now, th a t  we expand the quotien t f m(K )/D (\)  in partia l fractions. T he 
result is

/m®X) ^  , J-rn ( Xjj I

D(\)  ,_i X +  \ j  I I  ( — Xj +  X*)
w

3 T he unconventional pecularities of sign in (1) and in (4) below happen to be convenient for our 
purposes later on.
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B u t / m( —X,) =  (~ X ,)m by (7), and D (\ )  =  H (X + X ,) by (1). Hence

j - l  X j /

Now (9) is an algebraic identity , and though we have used the process of division 
in setting  it up, it does not require division by X as a process of verification. Hence 
it is again tru e  th a t if X is any q u an tity  which obeys the  d istribu tive and associative 
laws, such for example as a differential operator, and which satisfies (5),

X“ =  Z  ( - ( i o)
1

where

a «
k ^ j  \  A j /

N ote th a t the quan tities denoted by x^X) are polynom ials of degree n — 1 in X and are 
independent of ini.

4. M atrices. We next observe th a t, though m atrix  m ultiplication is no t in general 
com m utative, it is so if we restric t ourselves to certain  groups. In particu lar, if we 
begin w ith the un it m atrix  I ,  any  o ther m atrix  M ,  and all scalar quan tities (i.e., 
num bers), then all m atrices which can be formed from these by a finite num ber of 
additions or m ultiplications are com m utative. For obviously M  is com m utative with 
itself and its powers, and w ith I,  and w ith scalars, which observations together 
w ith the  associative law are sufficient to w arran t the  general s ta tem ent. 

Furtherm ore, we know from the H am ilton-C ayley T heorem 4 th a t

D{M) =  0,

where D ( \ )  represents, as in §3, the characteristic function of M.  In  o ther words, 
M  satisfies all the requirem ents imposed upon X in deriving the  iden tity  (10), whence 
we conclude th a t

(12)

where x /  (M )  is a m atrix  independent of m.
As a final step, we m ultip ly  this equation throughout by an a rb itra ry  m atrix  

K -—which need not be com m utative with the rest, since we shall perform no further 
operations— thus obtaining

~M '"K  « ; ( f f v j ) , . I S )  (13)

where — x /  (M )K  is again independent of m.
This is the fundamental identity upon which Duncan and Collar rely for their method. 

I t  is equivalent to  n 2 equations of sim ilar form connecting corresponding elem ents in 
the various m atrices. For example, if a m is w ritten  for the elem ent in the f-th row and
j- th  column of M mK ,  and i j  for the correspondingly placed elem ent in irf.M),  it m ust
be true th a t

am =  e f  — Xi) m +  en(— X2) m +  • • • +  e„ (— \ n) m■ (14)

* M . Bocher, Introduction to higher algebra, M acM illan , New Y ork, 1929, p. 296.
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We again recall th a t  —X,- is a root of the characteristic equation of M —th a t is, 
of the polynomial Z3(X)—~and hence is a num ber. T he  set —X; are, in fact, ju s t the 
roots which we wish to  obtain. Similarly, the e /s  are numbers independent of m. But 
a m is a numerical function of m.

5. T he roots. Suppose now, th a t  one of the roots which we will call —Xi, is larger 
in absolute value than  all the  rest. T hen if we select corresponding elem ents a m and 
a m+1 from two consecutive orders of M mK  we will have

as — Xl

1 + — ( ^ )  +  
e\ \A i/ C i\X [/

K — ( —)  k r — ( — ') +
e\ \  i /  e\ \X i7

1 +

and hence obviously

lim = _  X]. (15)

In other words: i f  an arbitrary matrix K  is multiplied repeatedly by M, and i f  its 
characteristic equation has a largest root, then the ratio of corresponding elements in two 
consecutive products approaches this largest root as a limit as m —r <x>.

Similarly, we readily find tha t

CLm-\-l &m

CLftt— 1a

whence if |X2 and X2 are greater than  all o ther X’s | ,  (w hether they  are them ­
selves equal or no t), we again have

^m-fl CCm 

OLm Ctm— 1
lim

CLm  CL m — 1

CL m—1 CLm~ 2

— ( — X i)(— Xi). (17)

In  the same way it can be shown5 th a t  provided X j|, • • • , X,| are all greater than  
X,-+i * X„

lim

in-f-1

77i -f-1—2 ’ ' OCm

ttm+l CL fti * 1+2

O tm + i—  2 * CL m

C Lm -\-i— 3 * & m — 1

CLni OLm - l  ■ OLm—  i - f l

=  ( -  X J ( -  Xi) ■ ■ • ( -  X,). (18)

5 A. C. Aitken, Proc. Royal Soc. Edinburgh 46, 289-305 (1926), obtains formulae equivalent to 
these in a discussion of Bernoulli’s method.
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These equations are sufficient to determ ine all the roots in the particu lar case 
where

Xl >  X; >  X3 | • • • >  X„ | .

6 . Exam ple. As a simple example we m ay take

in which case

3 1 1
M  = K  =

2 2 0

3 11 43
M K  =

2
M -K  =

10
M*K  =

42

171 683
M*K  = , M SK  =

170 682

T aking the ratios of the first elem ents of consecutive m atrices we get as the 
successive approxim ations to  -  X |,

11/3 =  3.667, 43/11 =  3.909, 171/43 =  3.977, 683/171 =  3.992.

Sim ilarly we find th a t

171 43 

43 11

43 11

11 3

=  4 and

683 171

171 43

171

43

43

11

=  4,

which should be the p roduct of X2 and X2.
T he characteristic equation in this case is, however,

Z)(X) =
X +  3 1

2 X +  2
=  X5 +  5X +  4,

and its roots are —1 and —4. The approxim ation is obvious.
7. Complex roots. So far we have considered only real roots: for obviously, since 

complex roots occur in conjugate pairs (the coefficients being assum ed to be real) 
there can be no largest one. Suppose, then, th a t  X* =  X and th a t  all o ther roots 
are sm aller in absolute value. T hen  by (17),

Xi X2 =  lim

Ct m -r 1 CCm

dm OCtn—1

OLm Ctm—1

Oim—i OL m—2

(19)

T his gives us the  absolute value of the  roots. I t  does not, however, determ ine the 
angles. T o get this, we can best return  to  equation (14) and w rite (retaining only the 
leading term s)

«m =  « i ( -  XO”1 +  et ( -  X2) ’\
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W riting the sim ilar equations for m — 1 and m + 1, and elim inating ei and e2, we get

XiX2a:m_i +  (Xi +  X2)o;m +  a m+i =  0.

Substituting the value of XiX2 as given by (19) we get finally

— ,(Xi +  X2) = lim

&m + l &m— 1
Olm CLm—2

Otm « m -1

^  f?i— 1 &m—2

( 20)

T his, together w ith (19) is sufficient to determ ine the pair of roots.
As w ritten , the  formula applies even if the roots are real.6 W hen they  are complex 

it is best to w rite —X i= — T hen obviously we need only replace the  XiX2 of
(19) by p 2, and the — (Xi+X2) of (20) by 2p cos p.

Similar, b u t more com plicated, formulae can be obtained when more th an  two 
roots have the same absolute value.

8 . The m ethod of D aniel Bernoulli. We now note th a t any polynomial in X, which 
we take in the form

±  Pn (4)D { \ )  = X' +  M ’,_1 - M "-2 +  • -■ Pn

as before, can be written as

X 1 0 0 0

0 X i 0 0

D { \ )  =
0 0 X 0 0

0 0 0  • • • X 1

pn Pn—1 Pn-2 ' ’ ‘ p i p i

B ut this is the characteristic function of the matrix

0 1 0 0 0

0 0 1 0 0

M  =
0 0 0 0 0

0 0 0 0 1

pn pn—1 pn -1 ’ ‘ ‘ p i p i

( 2 1 )

(2 2 )

Hence if we choose for K  any matrix whatever, we m ay solve for the largest roots by 
any of the equations of §§4 and 6.

I t  is particularly convenient to take K  in the form

• It is not even necessary that they be equal in absolute value, though unless they are equal (or 
nearly equal) (15) will obviously be a more convenient formula.
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T hen we have

0 0 0 • «0

0 0 0 • «i
K  = 0 0 0 • a. 2

0 0 0 • a „_ i

M K  =

0 0 0  • • a i

0 0 0  • ■ a 2

0 0 0  • ■ a 3

0 0 0  ■
n—1

' jL j  p n - i01]
j'-O

(23)

which is again of the  sam e form as K .  If we denote by we also have

M?K  =

0 0 0 ■ a 2
0 0 0 • ot.
0 0 0 ■

0 0 0
n—1
2 ^  P i—la n—i
j -  0

And in general
0 0 0  • • a m

0 0 0  • • a m-f-l

M mK  = 0 0 0  • • Otm+2

0 0 0 • * 1
where

¿—0
k >  n — 2, (24)

T his entire set of m atrices, however, is characterized by a simple sequence of a s ,  
of which the  defining equation is (24). Obviously, it is also tru e  th a t  any set of four  
consecutive a s  in  this sequence also constitutes a set of corresponding elements from four  
cotisecutive matrices of the set M mK .  Hence, the  use of the symbol a  in th is connection 
is consistent w ith its use in §§3-6. B ut (24) is the  recursion form ula used in Ber­
noulli's m ethod of solution as developed by  Euler, Lagrange and A itkcn. Hence this 
particu lar special case of the  results of D uncan and Collar is identical with Ber­
noulli’s method.

Concerning this m ethod W hittaker and Robinson7 say: “Though hard ly  now of 
first-rate im portance, it is interesting and w orthy  of m ention .” Our tests a t the

7 E. T . W hittaker and G. Robinson, Calculus of observations, 2nd ed., Blackie & Son, London, 1929.
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Laboratories, however, have shown it as good as any o ther m ethod in the case of 
complex roots. Such inferiority as it m ay have com pared to  the  root-squaring m ethod 
as regards speed is qu ite  com pensated by the fact th a t  it is self-correcting: th a t  is, 
an error a t  any  stage of the process merely prolongs the  calculations, b u t does no t 
invalidate it.

9. T he m ethod of R. L. D ietzold. A nother form into which the general results of 
D uncan and Collar can be thrown is obtained by using the  conjugate form of (21) 
together with the sam e m atrix  for K  as before. D enoting the conjugate of M  by M ' , 
we have from (22) and (23)

0 0 0 • ■ • pn < X n - l

0 0 0 ao +  p,,-\ctn-.i

M 'K  = 0 0 0 ■ ■ ■ a i +  i

0 0 0 a B_2 +  pian- i
If, then , we define

ao  p n d n —1, Oij —j-  p n—jCCn—l, (25)

M 'K  becomes identical w ith (23), except th a t  all the a ’s are prim ed. In general, if 
we set

(m) (m-1) (*•— 1)
ay =  a y - i  +  pn-,-an- i  , (26)

and understand th a t v&l is zero for all m, we have

M  K

0 0 0  ■ • a o

0 0 0  •
(m)

• a i

0 0
\

0  •
(m)'

• a 2

0 0 0  •
(m)

a „ _ i

(27)

In th is case, as in all others, the  index m  is the one which is to  be varied in using 
form ulae such as (16)-(20).

T his v arian t of th e  general scheme of Duncan and Collar was developed by M r. 
R. L. Dietzold of th e  Bell Telephone Laboratories, b u t has no t been published. 
As com pared w ith Bernoulli’s, it has the  m erit of using a large num ber of simple 
operations instead of a small num ber of com plicated ones. I t  is approxim ately as fast, 
and like all schemes based on D uncan and Collar's results, it  is self-correcting.

10. The m ethod of Graeffe, T here is also a close connection between D uncan and 
C ollar’s processes and the root-squaring m ethod. T his m ethod, which is usually 
a ttrib u ted  to  Graeffe, seems actually  to have been developed first by  Dandelin, and 
has had the a tten tion  of a long list of m athem aticians, including Lobachevski, Encke, 
Brodetsky and Smead, and Hutchinson.

T his connection can best be established8 by recalling th a t the roots —X, of the

8 M. Bocher, Introduction to higher algebra, M acM illan, New York, 1929, p. 283, Theorem 3.
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m atrix \ I - \ - M  are invarian t under transform ations of the type T~l [ \I- \-M ]T .  
F urtherm ore, it is possible to  find a transform ation of this sort which will throw  M  
into the form

M* =  T~lM T  =

At 0 • • 0

0 A2 • ■ 0

0 0  • ■ A„

and hence A /+ ik f into the form \ I - \ -M * ,  since T~lI T  is obviously I.
T his sam e transform ation, however, carries M m into M*m, as we readily see from 

the  identity

T - ' M ”'T  =  T~X(M T T ~ 'M T  ■ ■ ■ T~lM )T

=  {T~XM T )(T ~ 'M T )  • • • (T-'-MT)

Hence the characteristic equations of M n and M *m m ust also have identical roots. 
But, obviously,

M

A x • 0

0

m

A2 • 0

0 0

til
■ A„

so th a t the  roots of its characteristic equation, and therefore also those of the  char­
acteristic equation of M m, m ust be — A"1.

B ut if we take K  — I  in Duncan and Collar’s process of m atrix iteration, the suc­
cessive m atrices obtained are M m. Hence the whole process m ay be regarded as one 
which sets up a sequence of characteristic equations with roots — A,-, —A' • • • and 
in general — AJ*.

In the root-squaring process as originally developed only the  powers —<4, —A*, 
— A®, were obtained, which corresponds in m atrix  term s to  getting  first the 
product of M  by M,  which is M 2; then the product of M 2 by M 2 which is M i , and so 
on. T hus high powers are reached w ith a sm aller num ber of m atrix operations, which 
is theoretically  desirable. P ractically , however, the superiority  is no t so apparen t. 
For the  zeros of (22) are rapidly replaced by num bers in forming powers of M ,  so 
th a t  a m ultiplication such as M 8 i¥ 8 involves m any more arithm etical operations 
than  a m ultiplication of the form M -M *.  Furtherm ore, an error a t  any point of the 
root-squaring m ethod perpetuates itself, whereas in the o ther m ethod an error a t 
any stage is merely equivalent to  s ta rting  over again w ith a new value of K,

O ur experience leads us to believe th a t the m ethods of §§8 and 9 are generally 
to be preferred, a t least when com putations are to  be performed by a clerical staff of 
com puters.

l b  T he m ethod of Bernoulli as developed by Lagrange. There is also a very  close-
connection between the itera ted  m atrix  M m and a  developm ent of Lagrange s which 
ho characterizes as based upon th a t  of Daniel Bernoulli. In it, he notes th a t
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£>'(X)
D(X) X +X,- X X2 X3 X4

(28)

where

=  ( -  Xi)" +  ( -  X *)" + . . . + ( _  x , ) - ; ( 2 Q )

and it is the quo tien t sm/ s OT_i which Lagrange uses. Obviously, these are ju s t the sums 
of the  elem ents in the principal diagonals of M *m. B ut L agrange’s m ethod of obtaining 
them  by dividing J9(X) in to  its derivative is preferable. Besides, in spite of w hat 
m ight a t  first be assum ed, it is self-correcting.

I t  is of historical in terest to  note th a t  a very sim ilar developm ent was worked ou t 
by Legendre9 independently  of Lagrange, and a t  abou t the  sam e time. Both of these 
writers, however, knew of earlier work by Euler, who had carried ou t a sim ilar de­
velopm ent using instead of D ' (X) an arb itra ry  polynom ial of degree n — 1, which

0 -  PLANE

d ~

\

m erely has the effect of replacing the  Jm’s in the  right-hand m em ber of (28) by the 
a m’s defined by (14). In o ther words, the m ethod of E uler was exactly equivalent to 
th a t of Duncan and Collar, except th a t in the former there was no obvious criterion 
for the choice of a convenient form of num erator, whereas it is easy to  choose m atrices 
K  which will lead to  a simple succession of operations, as we have illustra ted  in 
Sections 8 and 9.

PART II— CONFORM AL M A PPIN G

12. T he m ethod of Routh. T he second group of m ethods to which I wish to refer 
are all founded upon a well-known theorem  of Cauchy. If we represent the  complex 
variable X by one plane, and the  complex variable D  by another, then the  equation

D { \ )  =  X" +  M " - 1 -  M H~ 2 +  • • • p p n ,  (4 )

m ay be looked upon as a transformation by means of which the X-plane is mapped 
upon the D-plane. The correspondence between X and D,  however, is no t 1 11 b u t  in 
general n: 1; and hence a simple closed curve C in the X-plane (Fig. 1) passes into a 
much more complicated curve C'  in the D-plane. In  regard to the curve C'  the the­
orem in question says th a t  the number of times it loops around the origin is exactly 
equal to the num ber of roots of D (k )=  0 which lie inside C.

8 Legendre's developm ent was in terms of the reciprocal powers of the roots, instead of their direct
powers. Otherwise the two were identical.
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This rule appears first to have been applied by Routh  to the problem of determ in­
ing the num ber of roots with positive real parts, a problem which interested him be­
cause of its relation to the stability of linear dynamical systems. For this purpose he 
used as the contour in the X-piane the imaginary axis closed by a semicircle of infinite 
radius, thus enclosing the entire right half of the plane. For this particular contour 
he explained in great detail how from the sequence of intersections of C' with the 
real and imaginary axes the num ber of roots could be found without more definite 
information as to the shape of C' . He also developed a sequence of functions, similar 
to Sturm functions, by means of which the number of roots could be determined 
from the polynomial directly w ithout even knowing the real and imaginary inter­
cepts of C .  He did not extend either of these studies to the point of locating the roots 
more exactly, b u t  both are capable of such extension and have actually been used.

13. T he m ethod of G. R. Stibitz. The second method— the one using functions 
similar to the Sturm functions—was developed further by G. R. Stibitz of the Bell 
Telephone Laboratories. He observes, first, th a t  the method can also be used to find 
the num ber of roots with real par ts  greater than Xq. To do this, it is merely necessary 
to replace X by X—Xo in the polynomial (4), and then proceed as outlined by Routh. 
By carrying out this process for enough values of Xo, the roots can be segregated within 
strips parallel to the imaginary axis. Then by a definite routine (resembling in its 
essentials the Weierstrass subdivision process in point-set theory) the real values of 
the roots can be found to any desired degree of approximation. When this has been 
accomplished, the imaginary parts  are determined a t  once as a ratio of two of the 
Sturm-like functions.

Stibitz has developed complete schedules for the com putations required in solving 
polynomials by  this method, for all values of n  up to 10. T he method has been tried, 
and works reasonably well, though perhaps not as rapidly as those explained in 
Sections 8 and 9. I suspect th a t  the decision in this case, however, m ust remain a 
conditional one; for the computational routine of S tib itz’ method is complicated 
(i.e., varied) as compared with the extremely simple (i.e., repetitive) routines of 
Sections 8 and 9. For this reason, it is not as well adapted to use in an industrial 
computing laboratory. In the hands of a m athem atician  who thoroughly understood 
its theoretical origin it might show up much better.

14. T he m ethod of A. J . K em pner. K em pner’s m ethods10 resemble more nearly the 
o ther portion of R o u th ’s work. He chooses as his contour C a circle of radius r about 
the origin as center. Then X =re{\  and (4) becomes

D(\)  =  [rn cos n6 +  p\.rn~l cos (n — 1)0 — p ^ r cos (n  — 2)0 +  ■ • • ]

Hr- i [ r n sin n d  -j- p\rn~l sin (» — 1)0 — p%rn~2 sin ( n  — 2)0 + • • • ] .

Thus the real and imaginary parts  of D  are trigonometric sums, which, as Kempner 
remarks, could be calculated by means of a harmonic synthesizer, such for example 
as the Michelson “analyzer.” T hus two curves would be obtained, one giving the 
real p a r t  of D, and the other its imaginary part, both as functions of 6. From this 
point on, Kempner suggests two possible routines. First, to regard these curves as 
parametric representations of D, and from them construct the curve C' itself. Second, 
to keep them as separate curves and not bother further about C'. In both cases, he

11 University of Colorado Studies 16, 75 (1928); Bulletin of the Amer. M ath. Society 41, 809 (1935).
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develops rules very sim ilar to R o u th ’s for finding the num ber of roots directly  from 
the sequence of in tercepts w ith the axes.

H e uses this routine to  segregate the roots in annular rings, and then tracks down 
their absolute values by a  su itab ly  chosen succession of in term ediate circles. T he 
angle of any root is, of course, au tom atically  determ ined as the  value of 6 a t  which 
the  real and im aginary p arts  of (30) vanish when r is given th e  particu lar value 
appropriate  to th a t  root.

K em pner also m entions the possibility of applying the  m ethod to  sectorial in ­
stead of annular regions, bu t does no t develop this idea to a significant degree.

15. The isograph. K em pner’s method was also developed independently, but 
somewhat later (1934) a t  Bell Telephone Laboratories, and led to the construction 
of a machine, called the isograph, which draws the curve C  corresponding to a circle 
of any radius r.

Since the independent variable in plotting the curves is an angle, w ha t  is required 
for the isograph is a  rotating unit th a t  provides two linear motions—one proportional 
to the sine and the other to the cosine of the angle. T here would have to be ten of 
these units to provide for the ten variable terms of a tenth  degree equation, and while 
the first unit moves through an angle 0, the second unit m ust move through an angle 
26, the  third unit through an angle 36, and so on. Then  by providing a means of 
summing the sine and cosine motions separately, and allowing these sums to control 
two perpendicular motions of a pencil and drawing board, a closed curve will be de­
scribed as 6 increased from 0 to 360 degrees.

To  secure motions proportional to the sine and cosine of the angle of rotation, 
the isograph utilizes the “pin and s lo t” mechanism illustrated in Fig. 2. Here an arm 
rotating about a fixed point carries a pin arranged to slide, by means of a rectangular 
block, in rectangular slots cut in two slide-bars, each of which is free to move back 
and forth in one direction only— the two motions being a t  right angles to  each other. 
These motions are equal to the length R  of the arm times the sine and cosine of the 
angle of rotation.
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T he ten units provided are geared to a common driving m otor, b u t the gearing is 
designed so th a t when the arm  of th e  first un it moves through an angle 6, th a t  of the 
second un it will m ove through an angle 26,  th a t of the th ird  through 36, and so on.

T o provide for summing up all the sine term s and all the cosine term s, the ends 
of all the slide-bars carry  pulleys so th a t a single wire m ay be carried around all the 
sine pulleys and ano ther around all the cosine pulleys as indicated in Fig. 3. S ta tion-

ary  pulleys are m ounted between the m ovable ones so as to keep the direction of 
pull on the wires in line with the m otion of the slide-bars. These wires control the 
relative m otions of a pencil and drawing board to plot a curve as the angle is varied 
from zero to th ree hundred and sixty degrees.

T he construction of the ro ta ting  elem ents is shown in Fig. 4. T he drive shaft 
passes through the  bed plate and is fastened to the  center of a steel bar th a t ac ts as 
the arm  of Fig. 2 . This bar is grooved to receive the pin of the “pin and slo t” m echa­
nism. In order th a t the pin m ay be adjusted  for different crank lengths, corresponding 
to the coefficients ptfn-k  of the  various term s in the equation, a rack is cu t along 
one edge of the groove so th a t a pinion a ttached  to  the pin m ay m ove it along the  bar. 
A fter ad ju stm en t the  pin is secured in place by a set-screw.

T he top of the bar carries a carefully g raduated  scale to  which the center of the 
pin m ust be set accurately. T he scale is m ade visible a t the center of the  pin by  con-
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structing  the la tte r  as a hollow cylinder. A vernier scale w ithin the  cylinder enables 
the effective arm  length to be ad justed  very exactly to  the  desired value on either 
side of the  center— one side for positive coefficients and the o ther for negative. T he 
to ta l range of ad justm en t is th ree inches.

T he  hollow pin tu rns in a rectangular bronze block which fits the  slots of two 
slide bars, one for the sine m otion and one for the  cosine motion. T he slide bars are 
identical steel plates running in bronze ways set accurately a t  right angles to  each

F i g . 4 .

other. A t the end opposite to the slot each plate carries a pulley around which is 
passed the wire th a t  sums up the sine or cosine motions of the ten elements. One 
end of each wire is fixed. T he  other end of the cosine wire is led by pulleys to the 
drawing board, which consists of a thin aluminum sheet mounted on ball-bearing 
rollers so th a t  it is free to move back and forth in only one direction. A counterweight 
fastened to the other edge of the board keeps the wire under constant tension. T he 
free end of the sine wire is led by pulleys to a counterweighted pencil carriage, which 
is mounted with ball bearings in a fixed guide crossing the  drawing board a t  right 
angles to its direction of motion. Thus the board is displaced back and forth in 
proportion to the sum of the cosine terms, and the pencil is displaced back and forth
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in a perpendicular direction in proportion to the sum of the sine term s; and this com ­
bined m otion gives the  desired curve.

In operation, the isograph has given accuracies of one per cent or b e tte r: and of 
course gives them  quite rapidly. In fact, the m ost rapid m ethod we have a t  present 
is th a t  of using the  isograph to  obtain this degree of accuracy, and then im proving 
it either by the  m ethods explained in §§8 and 9, or by successive approxim ation to 
the qu ad ra tic  factors.

16. Conclusion, In conclusion I wish merely to po int o u t th a t  in none of the 
m ethods which I have described is com putation  w ith complex num bers involved. 
T hey  are all real m ethods. A t present th is seems to be a fundam ental requirem ent 
imposed upon us by commercial com puting m achines, since the m ultiplication of two 
complex num bers on such m achines requires six, and division eight, separate opera­
tions. If th is restriction were removed, o ther m ethods m ight conceivably prove to be 
more rapid.

P artly  w ith this in mind, and partly  because we m ust frequently  deal with com ­
plex quantities in o ther connections, we are a t present developing a com puting 
m achine for complex quantities. W hen it is com pleted, as we hope it will be in the 
course of the  present year, we shall undertake a fu rther study  of m ethods which now 
are clearly ruled ou t by mechanical lim itations.*

PO STSC RIPT BY R. L. DIETZO LD

W hen the  foregoing paper was w ritten , it  was intended for im m ediate publication. 
By coincidence, however, several o ther papers of sim ilar character appeared a t  ju s t 
abou t th a t  tim e, and Dr. F ry  concluded th a t  the subject was of too limited in terest 
to ju stify  publishing another.

Since then, the situation  has changed in several ways. F irst, the  in terest in m eth ­
ods of num erical com putation has g reatly  increased, largely because w ar activ ities 
have led to  m uch work of th a t  kind. Second, the specific problem  of root-finding has 
become a live one because its fundam ental im portance in linear dynam ics is more 
widely recognized. Finally, a few new m ethods of itera tion  have been evolved and 
some new types of com puting m achines developed. T he paper therefore now has a 
timeliness which i t  lacked when w ritten , b u t a few com m ents are required to bring 
it up to date . T he m ost im portan t of these a re  noted in the  following paragraphs.

In  the Bell Telephone L aboratories the  available com puting equipm ent has been 
m aterially  im proved through the  developm ent of the  relay com puter by  S tib itz  and 
this inevitably  reacts upon the  relative convenience of various m ethods of solution. 
A lthough the relay com puter is very flexible in respect to  the type of problem it  can 
handle, it is particu larly  well suited to itera tive processes such as Bernoulli's m ethod 
of root extraction ; for once the proper instructions have been set into the control 
tape which governs the machine, all successive operations are perform ed w ithout 
further supervision. T he sim plicity of Bernoulli's rule, which requires only th a t the 
m achine accum ulate n — 1 of the a ’s, each m ultiplied by the appropriate  coefficient 
from the polynomial, recom m ends it for m echanization. T he instructions are easiiy

* T h is  machine was placed in service in 1940 and was demonstrated a t the summer m eeting of the  
A m erican M athem atica l Society in Hanover, New Hampshire in September of that year. T h e  re lay  com ­
puters referred to  in Dr. D ietzo ld’s postsc rip t are still more versatile devices which hav e  been developed 
since th a t  tim e.



104 T H O R N T O N  C. F R Y [Vol. I l l ,  No. 2

set up, and the machine is not required to recall very many numbers a t  any stage in 
the process. Bernoulli’s m ethod is likewise well adapted to computing equipment of 
the punched-card type, provided only th a t  the accumulator is designed to recognize 
algebraic sign.

One of the routines which may be set up in a relay computer enables the algebraic 
operations to be performed on complex numbers with the ease th a t  the same opera­
tions are performed on real numbers with a mechanical computing machine. The 
availability of this aid makes N ew ton’s method useful for root improvement in the 
complex domain, and some on the Laboratories’ computing staff prefer it to Bair- 
s tow’s method, although the margin of choice is not great.

Bairstow’s variation of N ew ton’s method avoids com putation with complex 
quantities  by improving the coefficients of a trial quadratic  factor. T he  trial factor, 
say Q(X) =X2+oX-|-6, is divided twice into the polynomial, and the rates of change of 
the remainder coefficients found from the second remainder, as in H orner’s process. 
T he method has by now been sufficiently publicized;" nevertheless, it  can be given 
here, since it is short to state. T he polynomial being expressed as

Z)(X) =  (foX +  So) +  Q (X )(n X  +  Si) +  Q 2( \ ) ( l B +  /iX +  • • • ) ,

im proved coefficients for Q are

r0

So

r i

Sl
a = a

ar, — Si r i 

'brj Si

V = b +

ari — Si r0 

br i s0

ar, — si hi 

br i Si

N ew ton’s method typifies a class which is deliberately excepted from trea tm ent 
in F ry ’s paper; methods in this class are characterized by the property  th a t  only some­
times do they lead to a solution. New ton’s method, for example, can never lead to  a 
complex root if the iterative process is s tarted  from a real trial value. Bairstow’s 
method has a similarly restricted region of convergence and was, quite properly, 
advanced by him only as a means for improving roots already located approximately.

M ethods which sometimes fail to converge may still be very useful if, in appli­
cation, they converge often enough and fast enough. N ew ton’s method and its var ia­
tions, however, almost always fail unless they can be s tarted  from values closely 
corresponding to roots. B ut in 1941, Shih-Nge Lin revealed an algorithm12 remarkable

11 Bairstow gave the method only in Reports and Memoranda No. 154, Advisory Com m ittee for 
Aeronautics, Oct., 1914 (H. M l Stationer’s Office), but it was made generally available by Frazerand D un­
can, Proc. Royal Soc. London 125, 68-82 (1929). H itchcock offered the method as A n improvement on 
the G.C.D. method for complex roots, Jour. M ath. Phys, 23, 69-74 (1944). H itchcock proposes that the 
roots be improved by this method after only approximate location by the G .C .D . method, which he gave 
in Jour. M ath. Phys. 17, 55-58 (1938). T he G .C .D . method is nearly identical with the method of G. R. 
Stibitz, described by Fry. Bairstow’s method was also rediscovered by Friedman, whose work is noted in 
Bull. Amer. M ath. Soc. 49, 859-860 (1943). Bairstow’s formulae give the leading terms of series develop­
m ents of the coefficients by Fry, who concluded, after an investigation of the convergence, that the ex­
pansion was suitable only for root-improvement.

u  A  method of successive approximations of evaluating the real and complex roots of cubic and higher 
order equations, Jour. M ath. Phys. 20, 153 (1941).
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both for sim plicity and convergence. By L in ’s m ethod, the polynom ial is divided 
only once by a trial quadratic  factor; if13

D (X ) — p 0 -j- p i \  -f- p2^ +  ■ ■ ■

— (reA +  io) +  Q(X)(qo +  ¡?A +  ‘

im proved coefficients for Q are

Qopi ~  qlpj P*a —   , — —  .
?o

If it converges, the process determ ines the factor corresponding to the roots of 
least absolute value; thus a suitable initial choice for Q is

+  (pi/pi)^  +  [po/pi)-

In application, the process does very often converge, although som etim es slowly. 
W hen the convergence of L in’s m ethod is slow, B airstow ’s m ethod offers a valuable 
supplem ent. L in ’s m ethod is used until the size of the rem ainder indicates th a t an 
approxim ation to a quadratic  factor has been obtained; B airstow ’s process, s tarted  
from a sufficiently close approxim ation, will converge, and when it converges, it 
converges rapidly.

T he com bination of these two m ethods provides useful, and usually adequate, 
equipm ent for the work a-day solution of polynomial equations. In recalcitran t cases, 
m echanical aids are particularly  helpful. Bernoulli’s m ethod is always available, but 
is quite likely to be slow in cases for which Lin 's m ethod has already failed. This 
makes little  difference if the itera tive process is performed au tom atically  by a relay 
com puter, bu t recom m ends devices to accelerate the convergence if the com putation 
m ust be perform ed w ithout aid. An efficient: device for accom plishing this is given by 
A. C. A itken in a very full discussion14 of numerical m ethods for evaluating the 
la ten t roots of m atrices.

Like m ost of those who use m atrix m ethods, A itken is concerned not solely with 
the solution of polynomial equations, bu t ra ther with the more general problem of 
determ ining the characteristic roots (and also the characteristic vectors) of m atrices. 
Prelim inary reduction of the m atrix  to the rational canonical form involves so m any 
operations ,15 th a t  one would commonly s ta r t the general problem with a  m atrix  M  
having few vanishing elements. In this event, we lose one of the reasons for preferring 
Bernoulli’s m ethod (i.e., repeated m ultiplication by M) to m atrix powering by the 
root-squaring m ethod, for the la tte r m ethod arrives a t high powers of M  with fewer 
operations, thus providing ano ther m eans for hastening the convergence. T he ad ­
vantage is, however, partly  illusory except for the lim ited class of com puters who are 
so unerring th a t they can afford to sacrifice the self-correcting feature of the former 
procedure.

*5 A  departure from Fry's notation is convenient here.
14 Proc. Royal Soc. Edinburgh 57, 172-181 (1937).
16 Harold W ayland, Expansion of determinantal equations into polynomial form , Quarterly Appl. 

M ath. 2, 277-306 (1945).



106

T H E  K A R M A N - T S I E N  P R E S S U R E - V O L U M E  R E L A T I O N  I N  THE 
T W O - D I M E N S I O N A L  S U P E R S O N I C  F L O W  O F  

C O M P R E S S I B L E  F L U I D S *

BY

N. C O B U R N  
University of Texas

13 Introduction. T . v. K arm an and H. S. Tsien1 have trea ted  the two-dimensional 
subsonic flow of a perfect, irro tational, compressible fluid by replacing the ad iabatic 
pressure-volum e curve by the tangen t line draw n a t  an a rb itra ry  point of this curve.

F irst, we shall discuss the applicability  of the K arm an-Tsien idea in the supersonic 
range. Secondly, we shall show th a t when the K arm an-Tsien relation can be used 
(fairly uniform com pletely supersonic flow), the characteristics form a Tschebyscheff 
net (fish net) .2 However, we shall be concerned with those regions of the physical 
plane which can be m apped into a Tschebyscheff net in a unique one-to-one manner. 
Hence, we shall no t study  the onset of shock. F urther, we shall show th a t if the di­
agonal curves of the net of characteristics are draw n so as to correspond to  equi­
d istan t values of the arc length param eter along the characteristics, then these 
diagonal curves will be the families of equipotentials and stream  lines. Analytically, 
this last result m eans th a t  the determ ination of the stream  lines depends upon two 
a rb itra ry  functions of one real variable. I t  is shown th a t  the angle between the char­
acteristics and the angle formed by a tangen t to a stream  line and the x-axis can be 
determ ined in term s of these functions. F urther, the m agnitude of the velocity and 
the density depend upon only the former angle and the M ach num ber of the flow. 
In particular, if a  known stream  line coincides w ith the x-axis, i t  is shown th a t only 
one arb itra ry  function enters into the problem of determ ining the stream  lines. Even 
in this last case where the data  are of a simple D irichlet type (sym m etric flow about 
the x-axis and a known external boundary stream  line— as in the je t problem), the 
direct problem cannot be solved easily. Hence, an analytical-geom etrical m ethod is 
outlined for solving the problem indirectly. A particular example is studied. Finally, 
in an  appendix, we furnish another proof (analytical) of the fact th a t  when the 
K arm an-Tsien relation is applicable, the characteristics form a Tschebyscheff n e t and 
conversely.

2 . Extension of the K arm an-T sien  m ethod to supersonic flow. In  this section, we
shall show th a t  the Karman-Tsien method may be extended to the supersonic flow of 
a perfect, irrotational, compressible fluid. If we denote the pressure by p ,  the density 
by p, the ratio of the specific heats by 7 , the adiabatic relation is

pp~y = constant. (2 . 1)

’ R eceived O ct. 16, 1944.
1 T. von K irm än, Compressibility effects in aerodynamics, Journal of Aeron. Sciences 8 , 337-356  

(1941).
H. S. Tsien, Two-dimensional subsonic flows of compressible fluids, Journal of Aeron. Sciences 6, 

399-407 (1939).
1 L. Bianchi, Lezioni d i geometria differentiale, vol. 1, Enrico Spoerri, Pisa, 1922, pp. 153-162.
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Replacing the isentropic curve (2.1) by the tangent line drawn a t  the point (p f1, pi) 
in the pressure-volume diagram (or by a hyperbola drawn a t  the point (p 1, pi) in the 
pressure-density diagram), Tsien obtains the relation

2 2 - 1 - 1
p i  -  P =  «iPi(p — Pi ), (2 . 2)

where a\ is the velocity of sound corresponding to (pi, pi). By use of (2.2), it is easily 
shown th a t  the Bernoulli relation becomes (where w is the velocity)

2 2 2 2 ,-2  - 2. 
w  —  W i =  a ip i ( p  — P i  ) .  ( 2 . 3 )

Further, by use of (2.2) and the definition of o2 ( that is, a'2 = dp /dp), it follows th a t

2 2 2 2 2 
a p =  «ipi =  k  , ( 2 , 4 )

where k is some constant. Hence, (2.3) can be transformed into the following forms:

/ w \ ?  / W \ \ 2 /  P l \ 2 2 2 2 2 2 ,
( —  , -  : — = ^ — J -  1, (2.5) w -  a = Wi  — Oi =  I , (2.6)

where I is some constant
In the following, we shall assume th a t  the point (pi, pi) corresponds to a super­

sonic s tate  of the fluid. From (2.5), we see th a t  as w increases, p decreases. Further,
from (2.4), we see th a t  as p decreases, a increases. As noted by Tsien, the first result
is in accord with the physical facts; the second result is in contradiction to known 
physical facts. However, (2.6) furnishes some useful information. Since the density pi 
corresponds to a supersonic s ta te  of the fluid, the equation (2.1) is valid for this pi 
and the corresponding pi. Hence, by well known results, wi is larger than a\. Thus 
from (2.6), we see th a t  w  is always larger than a. T h a t  is, the fluid is always in a super­
sonic s ta te  in this sense of the term. However, by dividing (2.6) by c2 and noting that 
as w increases, p decreases, and a increases, we see th a t  as w increases, w /a  decreases. 
This ratio approaches the limiting value 1 as tu  tends to infinity. Hence, the behavior 
of w /a  is contrary to th a t  of a real fluid.

Perhaps the best indication of the permissible values of w which can be used for 
a given Wi is obtained by following the procedure of Tsien. If we consider the upper 
limit of the useful values of w as occurring for p = 0, we find th a t  the corresponding p 
is given by

( 2 . 7)
P a \p \

Substituting this value of p into (2.3), we obtain the relation

( - Y _ ,  +  . ±  T P '  + 1 Y - 1 I .  (2.8)
W  (» . /« f lL V « ; ,,  }  J

Since the values of pi, pi satisfy (2. 1), we find
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T hus (2.8) becomes

( 2 i o>
If 7  is taken as 1.4, a simple computation reveals th a t  as Wi/ai goes from 1 to the 
ratio w/wi  runs from 1.7 to 1. T h a t  is, for large values of the ratio W\/a\, the range of 
applicability of formula (2 .2) is severely restricted as regards the upper limit of w. 
Hence, the Karm an Tsien relation should be useful in the supersonic range for a 
fairly uniform fluid flow. Further, as we shall show in the next section, the character­
istics in this case form a Tschebyscheff (fish) net. We shall not be concerned with the 
onset of shocks.

3. The geom etry of the characteristics for the relation (2 .2). If u(x, y) and v(x, y) 
denote, respectively, the x  and y  components of the velocity for the steady flow of a 
fluid a t  any point P  of the plane region considered and p(x, y) denotes the density of 
the fluid a t  P,  then from the equation of continuity it follows th a t  a stream function
\p{x, y) exists such tha t

dp dp
pu =  — i pv = --------   (3.1)

dy dx

Further, since the m otion is irrotational, a velocity potential exists such that

dip dip
u = — I v = - -  • (3.2)

o.r dy

For a given pressure-density relation, the Bernoulli relation determines p as a func­
tion of u2+ v2. Hence (3.1), (3.2) constitute a non-linear system. Eliminating the par­
tial derivatives of p from the continuity  relation by use of the Euler equations, 
we find th a t  <p(x, y) satisfies3

d2p d-p d2P
(a2 _  „ 2) _  2uv — -  +  (a2 -  V2) = 0 . (3 . 3)

o x‘ dxdy dy1

In the supersonic range, the equation (3.3) is hyperbolic. L et us denote the equa­
tions of the two param eter family of characteristics of (3.3) by

•* =  *(<*. 13). y  =  }'(<*> /S)> (3.4)

where a  =  constan t and ¡3 = constan t are the param etric equations of the characteris­
tics. We denote the arc length elem ent of the net formed by the characteristics by

ds2 =  A 2(da)2 +  B 2{d$)2 +  Cdadfr, (3.5)

where A 2, B 2, C are the m etric coefficients of the net. I t  follows from (3.3) th a t the
projections of the velocity vector on the normals to the characteristics have the 
m agnitude a. This m eans th a t the projections of a vector, normal to the velocity
vector and of m agnitude equal to th a t of the velocity vector, on the tangents to the
characteristics have the m agnitude a. Also, the projections of the velocity vector on 
the tangen ts to the characteristics have the m agnitude \  u2-{-v2 — a2. F u rther, from

* R. von M ises and K . O. Friedrichs, Fluid dynamics, Brown University, Providence, R. I., 1941, 
p. 230.



(3.1), it follows th a t  p-1 times the gradient of ip is a vector, normal to the velocity 
vector and of magnitude equal to th a t  of the velocity vector; and, from (3.2), it fol­
lows th a t  the gradient of 4> is the velocity vector. From the above properties of the 
characteristics and those of the gradient, it  follows th a t

dip d\p
- - =  pa A , = — paB, (3 .6)
da 5(3

d ip  dip
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— = \ / u 2 +  v2 — a2 A, -  =  V « 2 +  v2 — a2 B. (3.7)
da '* 90

We shall prove th a t the net of characteristics forms a Tschebyscheff net, when the 
Kdrmdn-Tsien relation is applicable.

From (2,4), (2.6) and (3.6), (3.7), we find

dip d\p dip dp
—  = k A ,  - =  — kB, (3.8) —  =  M ,  - =  IB.  (3.9)
5 a 5(3 ' da 5(3

T he in tegrability  conditions for (3.8), (3.9) furnish the result

dA dB
= 0. (3.10)

5(3 da

Hence A  and B  arc functions of a  and (3, respectively. By proper choice of scale fac­
tors, A  and B  m ay be assigned the value unity. T he new param eters a  and (3 are then 
arc length param eters and the net is a Tschebyscheff net.

Next, we shall derive a result sim ilar to th a t obtained by von Mises4 in plane 
p lasticity : when the Kdrmdn-Tsien relation is applicable and the diagonal curves of the 
characteristics are drawn so as to correspond to equi-distant values of the arc length pa­
rameter along the characteristics, then these diagonal curves will be the families of equi- 
potentials and stream lines.

Since (2 .2) is valid, we see from our previous result th a t a  and ¡3 m ay be chosen 
as arc length param eters. Hence, the nets

a +  (3 =  2£ =  constant, a — (3 =  2-q ~  constant, (3.11)

represent, respectively, the diagonal curves of the net of characteristics, correspond­
ing to  equi-intervaled values of the arc length param eters a  and (3. F urther, from (3.8), 
(3.9), we obtain

4> P
a +  (3,= — j a — (3 =  -  • (3.12)

I k

Hence, the diagonal curves £ =  constan t and ? ;= constan t represent, respectively, the 
equipotentials and stream  lines.

W ith the aid of our previous results and known properties of Tschebyscheff nets, 
we obtain some additional results. The general representation of the stream lines in  the 
supersonic range for the Kdrmdn-Tsien relation depends upon two real arbitrary fu n c ­
tions. I f  one stream line coincides with the x-axis, these two functions are equal except for

4 R. von M ises, Bemerkung zur Formulierung des mathematischen Problems der Plaslizilätstheorie, 
Zeitschr. für angew. M ath, u, Mech., 5, 147-149 (1925).



a constant. Further, the velocity and density depend only upon the angle between the char­
acteristics and the Mach number of the flow.

For a Tschebyscheff net, it is well known2 th a t  (3.5) may be written in the form

ds2 =  (da)2 +  2 cos udadß +  (dßfl, (3.13)

where to is the angle between the two families of characteristics of the net a t  any  point. 
Further, it is known th a t  w may be expressed in terms of two arbitrary functions F(a) 
and G(ß) by the relation

to =  F ( a ) +  G(,3). (3.14)

Finally, the general representation of the net is given by

/ a r* ß
cos F ( t ) d t I  cos G(t)dt, (3.15)

/ a /■» ß
sin F(t)dt — I sin G(t)dt. (3.16)

Introducing the parameters along the equipotentials and stream lines from (3.11), 
we find th a t the above equations become

ds2 =  4 cos2 — (d£)2 +  4 sin2 - (dij)2, (3.17)
2 2

c o = F ( i  +  1?) + G ( i - 1J), (3.18)

/ H i r  C—n.
cosF(t)dt cosG(t)dt, (3.19)

/ f+ i r  I-1
sin F(t)dt — sin G(t)dt. (3.20)
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A nother relation of the form (3.18) can be obtained by introducing the angle 
$(£> v) w.hich the tangents to the stream  lines (r; = constant) form with the x-axis.
L et the equations of a stream  line be

x = a;(j), y =  y(s), rj =  constant, (3.21)

where s is the arc length param eter along the stream  line. From  (3.19), we find by
differentiation

=  [cos f .(s  I .V ) 1  cos G(i -  77)] • (3 .22)
ds ds

By use of the well known addition formulas of trigonom etry, (3.22) becomes

-F (f +  n) -  m  -  v)dx
— = 2  cos 
ds

m  +  iti +  c ( i  -  v ) i■ cos
2 J

From  (3.17), we find th a t along ?/ =  constant

K (3.23)
Ads



1945] T W O -D IM E N S IO N A L  S U P E R S O N IC  FLO W 111

Substituting (3.24) into the right-hand side of (3.23), we obtain

dx  m |  +  v) -  G(£ -  v)~ , ,
— =  cos -  —— — ------------  (3.25)
ds L 2

From (3.25), we find th a t  except for a constant

20 =  F((  +  v) -  G(i -  ij). (3.26)

By use of (3.14), (3.15), (3.16), and (3.26), the magnitude of the velocity w  and
the density p may be shown to be expressible solely in terms of o> and the Mach
number of the  flow. Thus, from (3.2), (3.12)

/ da  dfi\ (d a  3/3\
„  =  / ( _ +  - 1 ) ,  0 =  j ( _ + _ ) .  (3.27)

\ d x  d x /  \ d y  dy/

Hence, by interchanging the independent and dependent variables, it follows tha t

' . ( * ’' - ¡ 4  (3.28)
D \d)3 d a /  D \ d a  3/3/

where
3a: dy dx dy

D = --------- ■ (3.29)
da 3/3 3/3 da

Computing the partial derivatives by use of (3.15), (3.16) and simplifying by use of 
(3.14), (3.26), we obtain

u — 21 sin -|to cos 0,/sin g j , v = 21 sin M  sin 0/sin w. (3.30)

Hence, for the magnitude w  of the velocity, we find

21 sin
w =  - (3.31)

sin o)

From (2.6), we see th a t  P is equal to a\. Making this substitution in (3,31) and 
dividing the resulting equation by w it we obtain

_ 2y H  -  (ai/w i)2 sin $cj 

Wi sin w

In Fig. 1, these curves are plotted for the following values of the Mach number, 
Wi/ai =  1.5, 2.0, 2.5, 3.0, 4.0. Note, by  the discussion following equation (2.10), as 
Wi/ai varies from 1 to °o, the permissible values of the upper bound of w/wi  varies 
from 1.7 to 1. In each case, the upper bounds are to be determined by use of (2.10). 
The dotted  lines in Fig. 1 denote these upper bounds. Other useful results m ay be 
obtained by combining (3.31) with (2.6) and (2.3). Thus, dividing the equation 
w2 — a2=P  by w2 and inserting the value of w  as determined from (3.31) into the 
right-hand member of the resulting equation, we find after a few trigonom etric sub­
stitutions

w 1
—  =   -------- (3.33)
a sin I co
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This equation is of value in determ ining the lower lim it of the ratio w/a,  namely, 
\ ' 2 ,  for w=»7t / 2 . Again, inserting the value of w as determ ined from (3.31) into the 
left-hand side of (2.3), dividing the resulting equation by au and replacing the term 
I2Jfrf by vJ\/d\ — \ (see 2 .6), we obtain

p sm  a)
- =  -------- , ■~===~ ^ =  • (3.34)
Pi 2 sin2 %w\/\wi/ai)2 — 1

These curves are plotted in Fig. 2 for the values of the M ach num ber as indicated
above.

w
w,

An im portan t case in practice5 (the je t problem) is th a t for which one stream  line 
is a stra igh t line. In this case, if we assum e th a t the stream  line coincides w ith the 
a:-axis and is 77 =  0, (3.26) furnishes the result

F ( 0 = G ( t ) .  (3.35)

Under properly given D irichlet data , the function F(£) can be determ ined and the 
representation of all stream  lines can be obtained from (3.19), (3.20). Thus, if f?(£, c) 
is known along some known stream  line 77 =  c, then the equations (3.26) and (3.35) 
furnish the result

m ,  C) =  F tt  +  c) -  F(s -  c). (3.36)

The equation (3.36) can be solved for F{£) by use of the theory of difference equations. 

1 J. Ackerct, Gasdynamik, Handbuch der Physik, vol. 7, pp. 318-322.
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U nfortunately, 0(£, c) is unknown; 0(j), where 5 is the arc length param eter, is known. 
Hence, one m ust solve problem s by an indirect method. T hat is, one m ust introduce 
a function M |)  and then determ ine the corresponding stream  lines.

In calculating the stream  lines for particular functions F(£), the following ana ly ti­
cal-geometrical scheme appears to be the most satisfactory. F irst, obtain two curves

P
P.

F ig . 2.

of the generating Tschebyscheff net (one of each family) by use of equations (3.15), 
(3.16). T h a t is, determ ine the curves

/ a /» a
cos F(i)dt, y\ =  I sin F(t)dt,

/
H r  t

cos F(t)dt, yi =  — I sin F(t)dt.

(3.37)

(3.38)

To obtain  the initial point of each curve in the x, y  plane, we com pute one set of 
values of (*, y) by use of (3.15), (3.16), for some set of values of (a, (3) such as «  =  0, 
/3 =  0. By translating the curves along each other, the complete Tschebyscheff net 
m ay be obtained. However, the translation m ust furnish curves of the families which 
correspond to equi-distant values of a  and in order th a t the diagonal curves be 
stream  lines. In view of (3.15), (3.16), this means th a t the abscissas of the initial 
points of two corresponding curves m ust be equal.



Finally, as an example of this method, let us consider the case F(t) = a rc  cos t. From 
(3.37), (3.38), it follows tha t

o r  a _________1
=  — > Vi = ~  \ / l  ~  a 2 H arc sin a, (3.39)

2 2 2

¡82 0  .   1
Xi =  > >'2 =  — ~ v  1 ~  0" — ■ - arc sin |S: (3.40)

114 N. C O B U R N  [Vol. I l l ,  No. 2

F ig . 3.

T he Tschebyscheff net and the resulting stream  lines, obtained by the procedure 
outlined in the preceding paragraph, are illustrated in Fig. 3. By use of a pro tractor 
and the graphs of Figs. 1 and 2, the values of w /w i  and p /p i can be immediately de­
term ined a t  each point of the plane.

In concluding, it should be pointed out th a t  it would be highly desirable to obtain 
a mechanical m ethod for constructing the Tschebyscheff net when two stream  lines 
are known. This would furnish a direct solution to the problem of the uniform flow 
of a supersonic je t. I t  appears th a t a more thorough understanding of the relation 
between Tschebyscheff nets and their diagonal curves is needed.



A P P E N D IX

First, we shall give an analytic derivation of relations (3.6), (3.7). Since the pro­
jections of the velocity vector on the normal to the characteristics have the magni­
tude a, it  follows th a t

fi M r) Tt!
(A .l)
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dy dx
a A = u ------ v —

da da

dy dx
aB =  « - — v —

' dp dp
( A .  2}

Further, by projecting the velocity vector on the tangents  to the characteristics, we 
obtain

_ ____ ____ dx dy jVPtL
u 1 — v2 — a1 A — u — P  v\—‘> (A . 3)

da da

— __________d x  dy
a 2« 2 +  d2 — a2 B = u - +  v — ■ (A. 4)

dp dp

Solving relations (A.l), (A.2) and (A.3), (A.4) for u, v, we find

\ / u 2 +  d2 — a2a /  dx dx
B —  + A

D V da dp.

a , dy'
, B —  +  A

D K da dp.

D \  dP
' ( i p L g t m
\  dP Oaf

v/K1 +  t)1 — u2 /  dx d x \
\ B  A ¡ 8 )
V da dp/D

(A. 5) 

(A .  6)

where D is the Jacobian of the transformation (3.4). By interchanging dependent 
and independent variables, (A.5), (A.6) become

/  d a  d p \   /  da  d\8 \
u =  a i d  B — I =  \  it- +  d2 -  a21 A  b B — I, (A .7)

\  dy d y )  \  dx d x)

/  d a  d P \   (  da  d P \  '
v = — a[ A  B - )  =  \ / u 2 +  v2 — a2 [ A  J- B — ). (A . 8)

\  dx d x )  \  dy d y )

From (A .l) ,  (A.8) and (3.2), we find (3.6), (3.7).
Next, we shall show th a t  the K&rm&n-Tsien relation (2.2) is valid, i f  the net of char­

acteristics form a Tschebyscheff net.
Since the net of characteristics is a Tschebyscheff net, we may consider the metric 

coefficients A  and B  as having the value unity. Hence, from (3.6), (3.7) and the chain 
rule for differentiation, we obtain
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With the aid of (3.1), (3.2), we m ay write the integrability conditions of (A.9),
(A. 10) in the form

d
■ pa =  0, (A. 11) - v ' u 2 +  v 2 -  a1 = 0, (A. 12)

ds dn

where d/ds  represents differentiation along a stream line and d / d n  represents differ­
ential along an equipotential. If we assume th a t  a relation exists between p  and p, 
then by use of the definition of a2 (defined as dp /dp),  we find from (11)

d-p dp
p —  + 2 - r  =  °. (A -13)dp 1 dp

Further, from the generalized Bernoulli relation

dP  1 dp
u 2 +  v- +  2 .P(p) =  constant, -=  —■ -i (A. 14)

dp p dp

we find th a t  (A.12) reduces to ( A .13). Integrating (A.13), we obtain (2.2).
The au thor wishes to thank  Professor W. Prager and Dr. L. Bers of Brown Uni­

versity for valuable criticisms and suggestions. Further, he is indebted to the R e­
search Institu te  of the University of Texas for a grant which permitted the construc­
tion of the diagrams.
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ON THE STABILITY OF TWO-DIMENSIONAL PARALLEL FLOWS
PART I.— GENERAL THEORY*

BY

C. C. LIN
Guggenheim Laboratory, California Institute of Technology

1. Introduction. T he study  of the stability  of laminar motion and its transition 
to turbulence dates back to the time of Helmholtz and Reynolds [46], and had 
already a ttrac ted  great a tten tion  a t  the end of the last century.** Since th a t  time, 
the subject has not only become a major problem for workers in hydrodynamics, 
bu t  has also a t trac ted  the atten tion  of people like Lord Rayleigh [43-45], Lord 
Kelvin [20- 21], Lorentz [29], Summerfeld [58], and Heisenberg [14], whose chief 
interest is no t limited to the s tudy of mechanics. Although numerous contributions 
have since been made, the subject has remained one of considerable dispute, as can 
be seen from the two general lectures given by Taylor [70] and by  Synge [63] as 
late as 1938. Still more recently, there appeared the work of Gortler [8, 9] and of 
Thom as [71 ].

M ost of the work on the stability of laminar motions has the following final aims.
1) The first aim Is to determine whether a given flow (or a given class of flows) 

is ultimately unstable for sufficiently large Reynolds numbers. For this purpose, it 
is desirable to obtain some simple general criterion which will give a rapid classifica­
tion of velocity profiles according to their stability.

2) The second purpose is  to determine the minimum critical Reynolds num ber a t  
which instability begins. I t  is often easier to find sufficient conditions for stability 
than  to find the condition for passage from s t a b i l i t y  to in s ta b i li ty '.

3) Finally, we w ant to understand the physical mechanism underlying the 
phenomena by giving theoretical interpretations and experimental confirmations of 
the results obtained from m athem atical analysis.

Although numerous a t tem pts  have been made in these directions, especially for 
the apparently  simplest cases of parallel flows in two dimensions, our knowledge is 
still very meagre. The classical case of plane Pouiseuilla motion has remained an un­
settled problem ,| and no satisfactory general results have been reached regarding the 
stability of a real fluid. T he best-known general criterion is th a t  of Rayleigh (1880) 
and Tollmien [74], classifying profiles according to the occurrence of a flexff with re­
spect to the stability of a fluid a t  infinite Reynolds numbers. However, the sig­
nificance of their results has been too much exaggerated and often misunderstood, 
and no physical interpretation has ever been given. T he present work offers such an 
interpretation, bu t  also shows th a t  the results can only give some indication regarding

* Received March 3, 1945. An abstract of this paper has already appeared under the same title  [27].
** In 1888, the problem was proposed by Rayleigh and Stokes as the subject for the Adams Prize 

Essay. Cf. p. 321 of Ref. [21 ], and also the footnote on p. 267 of'Ref. [44].
t  Cf. Synge’s lecture [63].
f t  Following Professors Frank Morley and H. Batem an, we shall use the word “flex’’ for “point of 

inflection.’’
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the instability of a real (viscous) fluid. This will be discussed in more detail below.
The chief aim of the present work is to try  to answer the three questions men­

tioned above for two-dimensional parallel flows. This work is divided into three parts. 
P a r t  I (the present paper) deals with the general mathematical theory, with par­
ticular emphasis on a ttem pting  to clarify the mathematical difficulties involved in 
the solution of the equation of stability. P a r t  II  deals with the s tability problem in an 
inviscid fluid (infinite Reynolds numbers). P a r t  I I I  deals with the problem in a real 
fluid. T he following results have been obtained.

1) I t  is shown th a t  all velocity distributions of the symmetrical type and of the 
boundary-layer type are unstable for sufficiently large (but finite) values of the 
Reynolds num ber (P ar t  I I I) .  The plane Poiseuiilc motion is included as a special 
case.

2) A simple approximate method is obtained by which one can calculate the 
minimum Reynolds number marking the beginning of instability with very little 
numerical labor (P ar t  II I) .

3) T he tendency toward instability of a profile with a point of inflection is in ter­
preted by considering the distribution of vorticity (P ar t  II). The effect of viscosity is 
considered as diffusing the disturbance from the “critical layer” inside the fluid and 
from the solid boundary. A very simple quan ti ty  is thereby derived which serves as 
a measure of the  effect of viscosity (Part  I I I ) .  This can also be easily connected with 
the general mathematical theory.

As numerical examples, we have worked ou t  the curve of neutral s tability for the 
Poiseuille case and the Blasius case. Comparisons with existing results are discussed 
(P ar t  I I I ) .  T he relation between instability and transition to turbulence is also dis­
cussed in P a r t  I I I  of this work.

Since some of the present results differ markedly from customary beliefs, it is 
necessary to trace the history of the existing lines of thought in order to give proper 
recognition to earlier ideas and results used in the present work, and to analyze all 
the results in disagreement with present conclusions. This requires the repetition of 
some known results when they fall into the present line of treatm ent.  T he review of 
literature is not intended to be exhaustive; only the necessary references are cited. 
A more complete bibliography up to 1932 has been given by Bateman [2],

2. Historical survey of existing theories. There seem to be two schools of thought 
in regard to the cause of transition from steady to tu rbulen t conditions. One school 
contends th a t  transition is due to a definite instability of the flow, i.e., to a condition 
in which infinitesimal disturbances grow exponentially. T he second school regards 
the motion in most cases as definitely stable for infinitesimal disturbances bu t  liable 
to be made turbulen t by suitable disturbances of finite magnitude or by a large 
enough pressure gradient. Both schools, however, generally agree th a t  the fluid can 
be considered as incompressible and th a t  its motion is governed by the Navier- 
Stokes equations of motion. Since the agreement between theory and experiment has 
not been very satisfactory, it has also been proposed th a t  the cause of transition 
m ust be traced back to the effect of compressibility or to the possible failure of the 
Navier-Stokes equations. T he  present work tends to confirm the simplest point of 
view th a t  the motion in most cases is definitely unstable for infinitesimal disturbances 
governed by the Navier-Stokes equations for an incompressible fluid.

The theory of finite disturbances dates back to Reynolds [46] and Kelvin [21].
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I t  was developed by Schiller, Taylor and others.* M athem atical investigations of 
such finite disturbances are mainly based on considerations of energy or of the square 
of the vorticitv of the disturbance, because the solution of the non-linear equations 
satisfied by the disturbance is extremely difficult. A t  the end of P a r t  I I I  we shall 
briefly discuss this line of thought together with the results of the present paper. For 
more details, the reader is referred to the lecture of Taylor [70 | and the papers of 
Synge [62] and Thom as [71 ].

For small disturbances, positive definite integrals of the energy and vorticity of 
the disturbance have been extensively used. These considerations have been discussed 
by Orr [37], Lorentz [29], von K arm an [18], Synge [63, 64] and others. For excel­
lent accounts of this phase of the theory, the reader is referred to the works of 
Noether [35], von K arm an [18], Prandtl [42], and Synge [64], Additional references 
are cited a t  the end of this paper. As is now well-known, this method can only give 
sufficient conditions for stability. Also, since all disturbances are usually allowed, in­
cluding those which do not satisfy the hydrodynamic equations of motion, a larger 
viscous decay is required to insure stability  than when these disturbances are ex­
cluded. Consequently, the limit of s tability is always found to be much lower than 
th a t  indicated by experiment. However, from these considerations, Synge [63] has 
arrived a t  a very convenient form of a sufficient condition for the stability of two- 
dimensional parallel flows with respect to two-dimensional disturbances. This will be 
found very useful for the discussions in P a r t  II I .

To get more concrete results, we have to solve the linearized equations satisfied 
by the disturbance. T he most successful case appeared to be T ay lo r’s trea tm en t of 
Couette flow [67 ] between concentric cylinders. His work was verified by the experi­
ments carried out by himself [67, 69] and by others ¡28 A rigorous mathematical 
investigation in this connection was made by Faxon [4], In fact, it is now known 
th a t  his analysis is a typical case of the stability of a fluid motion where the centri­
fugal force plays a dom inant part. Such cases were first considered by Lord Rayleigh 
[45], who gave a condition for the stability  of an inviscid fluid. M athem atical proof 
of a sufficient condition of stability of Couette flow was recently given by Synge [65 }! 
Extension of T ay lor’s work to the boundary  layer over a curved wall was carried out 
by Gortler [8 , 9], who used numerical methods successfully.

While the investigation of curved flows was uneventful, the investigation of axi­
ally symmetrical flows was no t extensive. T he Poiseuille flow in a circular pipe was 
studied by Sexl [55] with a conclusion of stability. Prandtl [42] gave some discus­
sions of the possible cause of instability in his article in the book “Aerodynamic 
T heory ,” edited by Durand.

The most extensive discussion of hydrodynamic stability seems to be the t re a t­
m ent of parallel flows by attem pting  to solve the eigen-value problem associated 
with the linearized equations governing the disturbance. This line of development 
can be easily traced in the work of Helmholtz, Lord Rayleigh [43, 44], Orr [37], 
Sommerfeld [58], von Mises [31, 32], Hopf [16], P rand tl  [41], Tietjens [72], 
Heisenberg [14], Tollmien [73-75], and Schlichting [52-54]. Other contributions are 
those of Noether [36], Solberg [57], Southwell [59], Squire [60], Goldstein [8j j  
Pekeris [39, 40], Synge [61-65] and Langer [25].

* See Taylor's lecture [70] for references to the works on finite disturbances.
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For convenience, the theory deals with two-dimensional wavy disturbances propa­
gated along the direction of the main flow. Squire [60] has shown th a t  three-dimen­
sional wavy disturbances are more stable than two-dimensional ones. However, 
Prandtl still mentions the possibility of greater instability of three-dimensional dis­
turbances in his article [42 ] appearing after Squire’s paper.

The first s tudy of two-dimensional hydrodynamic stability seems to have been 
made by Helmholtz. He proved the instability of wavy disturbances over the surface 
of discontinuity of two parallel streams of different velocities. Later, Rayleigh [43] 
realized th a t  Helm holtz’s approximation was not good enough to bring out the main 
features of a flow witli continuous velocity distributions. He therefore made an im­

proved approximation consisting 
(a) (b) (c) of several linear profiles joined up

continuously. The vorticity dis­
tribution then has constant values 
in several layers, bu t has a dis­
continuity in passing from one
layer to another. Investigations 
with continuous vorticity distri­
butions were also made Rayleigh’s 
work was mainly concerned with 
an inviscid fluid. Two main results 
were obtained. The first is th a t  in­
stability (in an inviscid fluid) can 

only occur with velocity distributions having a point of inflection. I t  is usually be­
lieved th a t  Lord Rayleigh has also proved th a t  damped disturbances can also only 
occur with such profiles. The possibility of a disturbance for a profile w ithout a flex 
then becomes a paradox [5]. Actually, Rayleigh’s proof does not lead to such a
conclusion. This point will be more fully discussed in §5 and P art  II. Rayleigh’s
second result is obtained from the analysis of broken linear profiles; it substantiates 
the first result by demonstrating definite instability of broken linear velocity distri­
butions of the type shown in Fig. 1(a), and only stability in the other cases. Rayleigh 
[43j supported his result by obtaining the condition determining stability in the 
approximate form

! I i I 
l

F ig. It Broken profiles investigated by Lord Rayleigh. Case 
(a) may be unstable: the other two cases are stable.

L (w — c)~-dy =  0, (2 . 1 )

where w(y) is the velocity distribution, yi and y2 are the coordinates of the solid 
boundaries, and c is a constant the real p a r t  of which represents the wave velocity 
and the imaginary p ar t  of which gives damping or amplification.

Meanwhile, the exact analysis of linear velocity distributions including the effect 
of viscosity was given by von Mises [31, 32], and Hopf [16] and was also studied by 
Rayleigh [4 4 ] ,  The results indicate only stability. P randtl and Tietjens [72] applied 
Rayleigh’s method of approximation to the stability  of the boundary' layer, taking 
account of the effect of viscosity. In such an approximation, the inner friction layer 
mentioned above (§1) for continuous vorticity distributions is left out. T he result of 
Tietjens did not give a minimum critical Reynolds number.

I t  was Heisenberg [14] who first successfully studied the stability  of a variable
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continuous vorticity distribution. As a particular example, he demonstrated th a t  the 
plane Poiseuille flow was unstable for sufficiently large Reynolds numbers. Also, using 
the same equation (2 .1) with which Rayleigh supported his approximation with linear 
profiles, Heisenberg pointed out the fallacy in Rayleigh’s method. The essential point 
is th a t  the corners in the velocity profile introduce extraneous roots of the above 
equation for c. Consequently, the results of this type of analysis depend upon the 
manner in which the velocity distribution is approximated.

Heisenberg's numerical computation was, however, incomplete and very rough, 
and his theory was not generally accepted. B etter known are the results of Tollmien 
and Schlichting. T hey  studied the cases of Blasius [73] and plane Couette flow [48], 
using Heisenberg’s theory essentially. T he former case was pursued very much in 
detail. For the latter case, Schlichting followed the idea of Prandtl,  asserting tha t  the 
instability m ay be a t tr ibu ted  to the initial unsteady distribution prior to the forma­
tion of the linear profile. Indeed, the same kind of idea was also suggested by Prandtl 
to account for the instability of Poiseuille flow by ascribing it to the entrance section 
where the profile is not yet parabolic [41 j. This problem will be discussed in some de­
tail later (§14, P art  II I) .

For an inviscid fluid, Tollmien has also proved the instability of boundary-layer 
and symmetrical profiles with a point of inflection [74]. For a viscous fluid, the pres­
ent investigation shows th a t  instability depends upon the general type of these pro­
files ra ther than on the appearance of the point of inflection. The inner friction layer 
plays a dom inant role in determining the instability. A ttem pts to interpret this point 
physically are given by Prandtl [42] and in the present paper.

3 . General formulation of the problem. We shall now formulate the problem of 
the stability of two-dimensional parallel flows mathematically. In the first place, we 
note th a t  if the steady motion is strictly two-dimensional and parallel, the velocity 
distribution m ust be either linear or parabolic (if body forces are absent). We then 
have one of the following: 1) the plane Couette flows; 2) the plane Poiseuille flow;
3) a combination of these two flows. The problem would then be very restricted.

However, there are a large number of cases where the flow is essetilially parallel 
to one direction. These are the cases where the boundary-layer consideration is per­
missible. T he following are im portan t special cases belonging to this class: 4) inlet 
flow between parallel walls, flow in a slightly convergent or d ivergent channel; 5) flow 
along a flat plate; 6) wake behind a cylindrical body, je t  from a narrow slit. Whether 
these flows can be properly considered as belonging to the same class as the above 
three is a question of some controversy. Taylor has criticized Tollmien’s work with 
the boundary  layer on this ground [70]. In the Appendix to P a r t  I I I  of this work, 
we shall t ry  to dem onstrate th a t  this trea tm ent is generally permissible, bu t  th a t  the 
interpretation of the results must be taken up with care. A discussion of Tollmien's 
work will also be found there.

In considering the stability of the main flow, we superpose upon it a hydrody- 
namically possible small disturbance, and consider its behavior. The disturbance is 
small in the sense th a t  the inertia forces corresponding to the disturbance alone are 
negligible and th a t  its behavior is unaltered when its amplitude is (say) doubled or 
halved. I t  is then simplest to consider separate harmonic components with respect to 
time, which m ay be damped, neutral, or self-excited. By considering disturbances 
which are also spacially periodic both in the direction of flow and in the direction
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perpendicular to the plane of sym m etry  of the main motion, Squire [60] was able to 
show th a t  two-dimensional disturbances are less stable than three-dimensional dis­
turbances Hence, im portan t features of the stability problem can be obtained by 
considering two-dimensional disturbances alone. This is an essential difference be­
tween the stability of a parallel flow and of a curved flow. In the latter case, three- 
dimensional disturbances are of utm ost importance.

The consideration of periodic disturbances alone is again a question of some con- 
troversy. ‘Justification has been a ttem pted  and objection has been raised. We shall 
see later th a t  a t  least the difficulties raised are chiefly caused by a misinterpretation 
of the mathematical results.

Adm itting  th a t  we can consider two-dimensional disturbances alone, we have a 
much simplified physical picture a t  hand. If the effect of viscosity is negligible, we 
have the well-known fact of conservation of vorticity for two-dimensional motions. 
Actually, the stability  problem is found to depend both on the inertia forces and on 
the viscous forces. However, the effect of viscosity is also well-known to be one of 
diffusion of vorticity. Thus, im portan t results can be expected from considerations 
of vorticity transfer.

Let us now proceed with the mathematical formulation of the problem. We shall 
give a complete derivation of the stability  equations so th a t  we can see how to settle 
the disputes about the approximations in considering velocity distributions of the 
boundary-layer type.

A dm itting Squire’s work as a proper indication th a t  only two-dimensional dis­
turbances need be considered, we may conveniently consider the equation of vorticity

+  p yd>px — pxk p y =  vA&p, . ( 3 .1)

with the velocity components
dp dp

« =  Pv -  -  v = -  \pz =  V (3.2)
ay dx

and the vorticity
dv du

f  =  , - -  =  -  {Pxx +  Pyv) =  — M'- (3.3)
dx dy

As usual, v is the kinematical viscosity. We may add th a t  Squire's original proof was 
intended for flow bounded between two parallel walls. There is no difficulty in seeing 
th a t  the proof holds also for a fluid extending to infinity * because the boundary con­
ditions for the disturbance are essentially the same.

Let us put
p = T(*, y )  +  p'(x, y, t), (3 . 4)

where x , y ) represents the steady main flow and p '(x ,  y, t) represents the dis­
turbance. M ain flows which vary  bu t  slowly with time can also be treated  this way,
but we shall restrict ourselves to s teady  flows in order to fix our ideas.

If we substitu te  (3.4) into (3.1) the terms corresponding to the main flow cancel 
out. If we then drop the terms quadratic  in fi '(x, y, l) and its derivatives, we have 
the equation

APl +  VyApJ, -  Pi +  W A Iq  -  p l M f y  = vAAP'. (3.5)

* Cf. Ref. [15].
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We shall now assume the flow to be essentially parallel to the £-axis. Using the bound­
ary-layer approximation, we should drop the x-derivative of any  quan ti ty  connected 
with the main flow compared with its y-derivative. But for the disturbance we would 
expect \px and j t o  be of the same order of magnitude. This will be verified a 
posteriori in the specific examples. Fu rther  discussions will be found in the Appendix 
to P a r t  I I I .  With these considerations, (3.5) reduces to

33T
A V i +  * ¿ 2 #  -  *£  -  -  =  (3.6)

dyl

Now we shall make an approximation of the same order by taking for w = T y and 
d'1w /d y 2 = d'6'fy/dy* their local values a t  a given value x 0 of x. Then we may write

A4*1 +  w(y)A\px — w"(y)4>l =  vAA^'. (3.7)

For the boundary conditions, we shall also consider the local boundaries. The problem
is then essentially simplified, and can be treated  similarly to plane Couette and
Poiseuille flows. We consider a main flow between two parallel planes y  = y\ and y  = y% 
with a more or less a rb itra ry  distribution of velocity w(y). Then the disturbance 
\p’{x, y, t) m ust be found as a solution of (3.7) satisfying the conditions u '= v '  — Q 
over the boundaries.

T he usual way of dealing with the solution of (3.7) subject to given boundary con­
ditions is to consider periodic disturbances. We shall refer all velocities to a charac­
teristic velocity U and all lengths to a characteristic length I, and define the Reynolds 
number R  =  IJl/v. T he two-dimensional periodic d isturbance of a field of flow in which 
the main flow is w(y) may be represented by the stream function tp' =<j}(y)eiaix~ct), 
and the linearized differential equation for 4>{y) is

(w — c)(<j>" — a 2<f) — w”<b =  f 4>,v — 2 a 2$"  +  a “V>), (3.8)
a R

as can be easily obtained from (3.7). We shall take a  always real and positive, while c 
may be complex; thus,

c =  c, +  id.  (3.9)

To fix our ideas about the boundary conditions, let us consider a flow between the 
planes y = y \  and y = y i . T he equation (3.8) is then to be solved under the boundary 
conditions

4>{y\) — (), ^(yz) =  o, 4>'{yi) =  0, 4>'(y2) =  o. (3.10)

Let us now forget about the physical problem and consider the differential equa­
tion (3.8) as a linear differential equation of the fourth order in the complex y-plane. 
To be sure, the function iv(y) is defined only for real values of y  between y i and y 2. 
We can of course, consider it  as defined for o ther values of y  by analytical continua­
tion. We shall assume th a t  the function thus defined is holomorphic in every finite 
region with which we shall be concerned. The equation (3.8) then has every point in 
the region under consideration as a regular point, and its coefficients are also entire 
functions of the parameters c, a,  and a R  (regarded as complex variables). By a well- 
known theorem in the theory of differentia! equations, there exists a  fundamental
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system of four solutions of (3.8) which are analytic functions of the variable y and 
of the parameters c, a, and aR,  being in fact entire functions of the parameters. The 
consequences of these simple general analytical considerations appear to have escaped 
serious a tten tion  from earlier investigators. In §§4, 5 of this paper, we shall find this 
type of consideration very im portan t in settling the controversies abou t the question 
of convergence of the series used in the actual solution of equations (3.8) and (3.14).

L et us denote the above-mentioned system of solutions of (3.8) by 0i(y), 4>î{y), 
0 3(y), 0 i (y), the dependence upon the parameters c, a, a R  being understood. T he con­
ditions (3.10) then give rise to the secular equation

F(c, a, aR) =

solve for c, obtaining

0i(yO 02(yi) 0s(y 0

02(y2) 03(y2)

0i (y0 02 (y0 03 (y‘)

0 /  0 ’2) 02 (ys) 03 (y2)

is an entire function of

c = c(a, R)

04.(H'i)

0 j(}'2) 

0 /  0 ' l )

04 O ’î)

=  0 . (3.11)

(3.12)

There may be several branches of the solution, or there may be none as in the case 
when F(c, a , aR)  is (say) exp(aRc). In general, we would expect the solution to be 
unique, or we m ay consider only one branch of the solution.

Since a  and R  are later taken to be real and positive, it is convenient to separate
(3.12) into its real and imaginary parts. Thus,

cr cr(oij 2?)» C{ CrO., R ) . (3.13)

I t  is customary to plot curves of constant c,- or ac, in the aid-plane. T he curve c, = 0  
gives the limit of stability.

We are particularly interested in the case when the Reynolds num ber is very large. 
T he s tudy  of this case is complicated by the fact th a t  the functions 0 1, 0 2, 0 3, 0 4 in­
volved have essential singularities a t  the infinite point of the ai?-plane. From the 
differential equation (3.8) itself, we see th a t  when a R —>c° , we have the equation

( w  — c)(4>" ~  a 20 )  “  ^ ” 0  =  0> (3.14)

which is only of the second order. Thus, two solutions of (3.8) are lost. From detailed 
m athematical investigations, we shall find later th a t  two linearly independent solu­
tions of (3.8), say 0i and 0 2, will satisfy (3.14) in the limit of infinite aR,  except 
along certain s tra igh t lines through the point w = c. T he other two linearly independ­
ent solutions 03 and 0 4 are highly oscillating for large a R  and would therefore disap- 
apear in the limit of infinite aR.  Furthermore, we shall see th a t  0 3 and 0 4 can be so 
chosen th a t  if 03( y i ) » 04(yi), then 03(y2) « 0 4(y2), with corresponding relations for their 
derivatives. I t  then appears plausible th a t  the limiting form of (3.11) for infinite a R  is

0 i b ’i) 02(^1) 

0 l()'2) 0 2 ( y 2)
=  0 , (3.15)

with 0i(y), 02(y) satisfying (3.14).



The condition (3.15) s tates th a t  we are looking for a solution of (3.14) satisfy-

0(3*0 =  0 , 0 ( y 2) =  o , ( 3 .1 6 )

with the other two conditions of (3.10) relaxed. Physically, this means th a t  we allow 
a slipping along the walls y = y i a n d y = y 2. For very large Reynolds numbers, only a 
very thin layer of fluid will stick to the solid, and we have naturally  an apparen t 
slipping. These points will be taken up again more carefully (§6) after a thorough 
mathematical investigation of the solutions.

4. Solution of the equation of Orr and Sommerfeld by methods of successive ap­
proximation. The stability  equation of Orr and Sommerfeld

(w — c)(4>" — a 4>) ~  w”4> = — (0 1V — 2a~4> 4* a 40 ) ( 4 . 1)
a R

has a fundamental system of four solutions, which are analytic functions of y (where- 
ever w(y) is analytic) and which are entire functions of a, c, and aR.  In order to obtain 
useful solutions, it is usual to expand the solutions as power series of a suitable small 
parameter, say, (aid)-1. However, since (aR)~ l occurs with the highest derivative 
in (4.1), the study  of such an expansion becomes very complicated. I t  will be done 
later.

a) Solution by convergent series. An alternative method* is to choose a small p a ­
rameter e related to (aid)-1 and first make a change of variable (yo being an arb i­
tra ry  point so far)

y -  y0 =  tvi 0()O =  x(v), (4-2)

so th a t  (4.1) becomes

(w — c)(x" — a 2<2x) ~  t-w"x     M  ~  2a2e2x"  +  otAt4x), (4.3)
a ide2
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where
Wo

w -  c =  (wq -  c) +  Wo (c??) H (ev)2 +
iv 2 !

w" =  w "  +  w0'" (e„) + ~  (£7,)2 + - - -
2!

(4.4)

The solution is then obtained in the form

4>(y) |  x(v) =  x m (v) +  t x a)(v) T  « S p i  +  ■ ■ • , (4-5)

and the differential equations for the approximations of successive orders carr be ob­
tained by substituting (4.4) and (4.5) into (4.3) and equating all the coefficients of
the various powers of e to zero.

If we take yo to be the point where w = c, the proper choice of the param eter e is

« =  (aid)-1" .  (4.6)

The differential equations for the functions Xi2)(y)> ' ■ * are as follows:

e°; w c' 7, x C0)"  4 - t x i0)iv =  0, (4.7)
en; Wo'j?x<n>"  4- t'x(n)iv f  T„_.i(x), (« £  1).

This method was first used by Heisenberg, loc. cit. [14], p. 588.
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where L„_i(x) is a linear combination of x (0)(.v)< X (1>( J7). • • * . H'rid de­
rivatives. In particular,

¿o(x) = W'(x<0) ~ h 2X (on -  (4.8)
We note th a t  the homogeneous part is the same for all the differential equations 

in (4.7). Hence, if we can solve for the first approximation, the rest can all be obtained 
by quadratures. Indeed, the first equation of (4.7) is Stokes’ equation* for x <0)//, an d 
its solution can be readily expressed in terms of Bessel functions of the order 1/3. 
Thus, for the first equation of (4.7) we have the four particular integrals**

( 0 )  (0 )  
Xs =  V, X3 = f ' d v  r , rfnn'/*firi;;[5(i«„,),/I].

J  J  -foe

x i0> =  1. x r  =  [ ' d r ,  [ ' d n ^ H ^ m a o )̂, / , ]1
j  —so ^  —30

(4.0)

where
a 0 = ( w o ) 1/3. (4.10)

The higher approximations are given by

<«> t  r  ’ , r  , j  (°)n r 1 , m u  , .  (»>/» r ,  to,nr , . )
ii =  —  J  dr, J  </i?<X4 J  dvX) U - i(x) -  Xs J  dr,Xi L „_ i(x ) |  ,

(4.11)

(t =  1,2, 3, 4).

These are the explicit formulae for finding the approximations of various orders. In 
actual calculations, only the initial approximation (4.9) is required. Furthermore, the 
series (4.5) is convergent provided t is restricted so that the series (4.4) are convergent. 
For then the differential equation (4.3) for x(v)< when normalized, has analytic func­
tions of the param eter e as its coefficients. Hence, a fundamental system of its solu­
tions consists of four analytic functions of t.

I t  should be mentioned th a t  if y o is not taken a t the particular point for which 
w = c, the proper param eter to be taken is (a R )~ 112 instead of (aR)~ ll!. In this case, 
all the approximations can be expressed in terms of elementary transcendental func­
tions. However, it is not found particularly advantageous to do so, because the study  
of “crossing substitu tion” (§5) would not be easy. Also, the method is then too much 
different from those used by earlier investigators to allow an easy comparison of 
the results.

b) Solution by asymptotic series. Although the previous method is theoretically

* Cf. the exact treatm ent of (4.1) by Hopf [16] and Rayleigh [44] for the case w ”  =  0.
** N ote  that x and x /  and also x  have no branch point a t tj — 0. T he order of the solutions 

J 0 i, 02, 0j, 04} agrees with T ollm ien’s notation. T hey are {<p3, 04, 0 p, 0 2 ] in Heisenberg's notation. H eisen­
berg gave the solutions 03 and 0 < in terms of Hankel functions in the form

0y -  (» -  C) f - / C  
J  v

—(taw)*1 
3

dr,. ( j  =  1, 2),

(p. 289, and Eq. (19a) p. 591). It can be easily verified that these are the same as x 5 up to a constant 
factor ttio'e and to the proper order of approximation. N ote  that throughout Heisenberg’s paper, i  is to 
be replaced by —» in order to conform to our notation. This can be seen from a comparison of our Eq. (4.1) 
with his Eq. (7a). The difference arises from a difference of notation in the stream function 0 '(x, y, t).
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complete, it is usually more convenient to use asym ptotic series for numerical pur­
poses, particularly in dealing with boundary-value problems. Heisenberg has given 
two asymptotic methods, each of which gives only two particular solutions of (4.1). 
These methods will now be described and investigated m athematically  in more de­
tail, because Heisenberg’s work has received some criticism in this connection.*

The first of these methods is to develop 4>{y) in powers of (aR)~l. We put

(4.12)

and substitu te  in (4.1). Comparing corresponding powers of (ai?)~l, we have the fol­
lowing differential equations

(w -  c)(4>m " ~  a V 0)) -  w 'V 01 =  0 ,
(w -  c){<t>ik)” -  a - ^ k)) -  w"<t>(k) =  -  -  2a 2<jYi:- 1>" +  a V * - 1'].

U ^  1).
(4.13)

T he initial approximation satisfies the inviscid equation and can be solved by de­
veloping $ <0) in powers of a-. Indeed, two particular integrals of (4.13) are

where

h\(y) =  1,

<¡>1 = (w — c)[h{y)  +  a h2(y) +  a h4(y) +  • J, 1

4>i = (w -  c)[^j(y) +  a k 2{y) +  a  ki(y) +  ■ • • ],

'>2n+2(y) =  f  dy(w  -  c) - 2 f  dy(w  -  c)2h2n(y),
* VI * VI

(n â  0),

(4.14)

(4 . 15)

k\(y) = f  dy(w  -  c )-\  Mt„+3(.y) =  f  dy(w -  c)2 f  dy(w -  c)~-k2n+1®,
J  Ui " v' " VI

(n 2: 0).

The point y\ might have been any fixed point instead of one of the end points; but
it is found convenient to take it  this way.

H aving found two particular integrals for 4>(0), we can obtain the higher approxi­
mations by quadratures. In actual calculations, this is not necessary

Because of the general nature of the Eq. (4.1), 4>(y) is an entire function of aR.  
Hence, the infinite point of the «.R-plane is a singular point, unless <p(y) is independ­
ent of aR.  Consequently, the series (4.12) is asymptotic, unless 4>{y) is a polynomial 
in (ai?)_1. We note also th a t  (4.13) is of the second order, so th a t  only two solutions 
are obtained by this method. T he solutions of (4.13) are entire functions of a 2 and 
hence the series (4.14) are uniformly convergent for any finite region of the complex 
a 2-plane, for a fixed value of y, except when y  is the singular point y<> of the differential 
equation (4,13).f

* Tollm ien, loc. cit., 1929, p. 43.
t  This can also be seen from the series itself. So long as it is possible to run a path of finite length 

from yi to y  on which w  — ct^O, the general terms « ’“As» and a ,l,+1fe,,+i of the two series are bounded by 
A ( a \ f ) ,n/{2 n ) .! and B (a M )tn+l/(2 n - \- \) \ ,  respectively, (A , B, M  being (suitably) fixed constants), and
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In fact, the differential equation (4.13) has a logarithmic singularity a t  the 
point y o. This point is, however, an ordinary point in the exact equation (4.1), 
and the singularity is introduced purely by the method of asym ptotic integration. 
However, the appearance of this singularity gives a serious ambiguity in the deter­
mination of the correct pa th  leading from y\ to y  in order th a t  (4.14) m ay give valid 
approximations to integrals of (4.1) all along the path * The proper way to settle this 
question is to compare the solutions (4.14) with the asymptotic expansions of the regu­
lar solutions obtained by the previous method. This will be done later after we have 
described the second asym ptotic method of Heisenberg for the other two particular 
integrals; for the same kind of problem also arises there.

To obtain two o ther integrals of (4.1) in asym ptotic  forms, let us make the tran s­
formation

= exp |  J gd y j  . (4.16)

Then, we obtain the non-linear differential equation

(w  -  c) { (g2 +  g') -  a ' }  -  w "

= -------   {g4 +  6g2g' +  3 g '2 +  4gg" +  g’"  -  2a 2(g2 +  A  +  a 1) (4 .1 7 )
aK

for the function g(y). We try  to solve this by putting

f ( y )  =  M W 2g„(y) +  gl(y) +  +  • • • . (4.18)

Then, we obtain the set of equations

( w  -  c)go =  -  f | |  (w  ~  c)(go +  2gogi) =  -  f(4gogi +  6gogo),
2 2 3 2 /2 2 2

fit) — c )(g {  +  gi +  2gog2 — a ) — w "  - — f(4gog2 +  6gi +  2g0gigc +  3go — 2a  go),

Hence we can obtain the successive approximations without integration. Thus,

5 go
go «  ±  v i (w  -  c), gi = ---------------------------------------------------(4 .1 9 )

2 go

For definiteness, we define

hence the series converge like the cosine and the sine series, respectively. Heisenberg did not prove the 
convergence of these series, but stated that their convergence can be hoped to be sufficiently rapid for a 2 
of the order of un ity (loc. cit,, 1924, pp. 584, 587). T his was made a point of criticism by Tollm ien floe, 
cit., 1929, p. 431.

* Considerable dispute has arisen in this connection. N ote that it is impossible to dispense with this 
difficulty by remarking that the two different determ inations will differ only by a constant multiple 
of a particular integral. If we draw two paths from yi to y  and obtain such a difference in the solution, it 
is evident that the asym ptotic solution cannot be valid on both paths, because the exact equation (4.1) 
has no singular point at y  =  yo and hence its solution must be single-valued. Although a m istake here 
would not cause serious difficulties so far as the numerical evaluation of the eigen-value problem is con­
cerned, it does lead to misunderstanding and confusion elsewhere. Even after Heisenberg and Toilm ien  
have analyzed this problem in som e detail, they still take the very misleading step of taking the complex 
conjugate of the inviscid equation (Heisenberg, loc. cit., 1924, p. 596; Tollm ien, loc. cit., 1935, p. 88). 
T his point will be,discussed more fully later.
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arg i =  —i arg (w — c) >  0 for w — c > 0. (4.20)

For negative values of w — c, we cannot decide, without further investigation, whether 
arg (w  — c) = +7T or arg (w — c) = — tt. The point yo, where w  = c, appeared in the 
previous asym ptotic  solution as a logarithmic branch point; here it is an algebraic 
branch point. T he determination of the correct pa th  should follow the same criterion 
as the other two integrals, th a t  (4.18) gives two asym ptotic solutions of the exact 
equation (4.1) all along the path. This path  might be expected to be the same as tha t  
in the previous case. All these will be discussed in the next section.

After such a question is settled, substitution of (4.19) into (4.16) and (4.17) gives 
the two asymptotic solutions

u
\  iaR(w — c) dy

4 '

4>i(y) =  ( w  — c)~614 exp j \  iaR(w  — c) jjfyj

(4.21)

where factors of the order exp (a R )~1/2 =  1 + 0  {(aR )~112} are taken as unity.
5. Analytical properties of the solutions. Having thus obtained four asymptotic 

solutions of the equation (4.1), we m ust try  to correlate them with the four solutions 
(4.9) and (4.11), and above all to study the correct determination of path around 
the artificial singularity introduced by the asym ptotic  methods. For this purpose, we 
consider the asym ptotic expansions of the four regular solutions obtained by the first 
method and transfer back to the independent variable y.

Let us recall th a t  the asym ptotic expansions of the Hankcl functions / / j ' i(s).  
/ / $ ( £ )  are given by [76],

ü / ' k i )
( 2 f £ ) r 

( — ir <  arg ? <  2ït) , 

(1/3, r)

(2 i t) '
( — 2t  <  arg i <  tt).

(5.1)

If we pu t 3£ =  2{ica^Y12, then (5.1) becomes

I -  1 (taov) exp
3 /4  I 3 2 5 t i ' / 4  5 t t  i

( iotpvi exp {I  (gr«jj) e — — J 1 +  0 ( ’7

/  7T
-  — <  arg (aov) <  . , 

6 /

' 5).

21) .

/ 3 V g  »/♦ { „  :I (law) exp . i (a 0y )
3 /2

M  +  : / )  | 
12;

117r

6

—3 /2  ,
1 +  0 (l)

IT \

-  <  arg (aov) < j  •

(5.2)
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With the help of these formulae and using the legitimate process of integrating 
the asym ptotic expansions term by term, we obtain

( 0 ) , 0 ) 
Xi +  «Xi

tw it 1 /  , Wo" \
2 +  7  v 1»*“ — H  y +  — y1).2w0 w0 6 \  2 /

(0) (1) Wn I V  o '
X2 +  exs ~  1 +  « —-t? log v ~  l +  •—j- y log y,

W o  W o

(0) - 0/* ( „ . . il'i
xz ~  const. 7? exp (§(aoi?) e

5/4 .3 /2  5xt‘/4 x

6/4
= const, ( j  — jo) exp y/iaRwo  (y — yo) dyH

(0)  - 5 / 4  , 3 / 2  r i / 4 ;
X4 ~  const. 7) exp |-§(a0i?) e )

= const, {y — y o) exp u \  iaRwô {y — y0) dyV

(5-3)

These formulae can be easily seen to agree with the four asym ptotic solutions (4.13) 
and (4.21) to the proper order of approximation, if we replace yi by y 0 in 4>f |  (which 
is permissible).

In evaluating the asym ptotic expressions (5.3), the argum ent aaV m ust satisfy 
both requirements specified in (5.2), i.e.,

— 7tt/6 <  arg (aov) <  t / 6. (5-4)

In  this range, the asymptotic solutions (4.13) and (4.21) hold. Having thus established 
the range of validity of these solutions, we no longer need to make further com­
parisons of the two methods of solution.

A t least three plans are now possible for further numerical work. First, we may 
use the four solutions obtained in the approximate form (4.b). Secondly, we may 
use the four asym ptotic solutions (4.14) and (4.21). Thirdly, we may approximate 
(<M| 4> 2. 03, 04} by the four functions {$f!, Xad x f ] } given by (4.14) and (4.9). 
The first method is very similar to the method used by Hopf [ 16j and Tietjens [72] 
for linear velocity distributions, where the exact solutions are given by functions of 
the general nature  of those in (4,9). For curved velocity distributions, the functions 
Xi0’, Xs do not give <f>i and 0 2 with sufficient accuracy, and this plan is not good. The 
second plan was used by  Heisenberg in his investigation of the stability  of the 
Poiseuile flow; bu t  he also realized th a t  it served only p ar t  of his purpose, and he 
s tated  tha t  the third plan should be used.* Tollmien substantially  adopted the third 
plan for his investigation of the stability of the boundary layer, although he did not 
point out the connection of his method wit'll Heisenberg’s work. Instead of the expres­
sions (4.14) for <(>i and 0 2, he used solutions in the forms of power series in y. These 
solutions arc easily manageable only for linear and parabolic velocity distributions. 
Accordingly, he tried to approximate the Blasius profile with such profiles. Since such 
approximations are not good enough in the neighborhood of the point y  = ya, where 
w = c, his discussion becomes very complicated. In the present work, we base our cal­

* Loc. cit., p. 404.
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culations upon the use of (4.14). I t  will be seen tha t  our method can be applied to any 
profile with good accuracy. A comparison with Tollmien's method will be discussed 
in the Appendix to P a r t  II I .

I t  m ay be added th a t  the adoption of the third plan leaves an error of the order of 
(af?)-1 in c/>i and $ 2, and an error of the order of (a i?)_1/3 in <£3 and <£4. These errors can 
be reduced by including the higher approximations. In practice, this is hardly neces­
sary. A detailed discussion of numerical accuracy will be found in the Appendix to 
P a r t  II I .

Having thus established the region of validity of the asym ptotic solutions, we 
shall try  to settle a few questions of considerable 
dispute, namely, (a) the “crossing substitu tion,”
(b) the inner friction layers, and (c) the complex 
conjugate of the inviscid solution.

a) The crossing substitution. From previous dis­
cussions, it is evident th a t  if we pass from 
y>R e(yo) to y < R e ( y 0) along a path  below the 
point y 0, we are always in a region of the y-plane 
where the above asymptotic solutions hold, and no 
further investigation is necessary. In fact, if c,->0 
(and is small) and R e ( W ) >  0 , the point y 0 is above 
the real axis, and the asym ptotic solutions are valid 
along the real axis of y. In the case of real c, the 
point yo is on the real axis, and there is one point on 
the real axis where the asymptotic solutions fail to 
be valid. In the case c, < 0, and Refwo*)isd), the 
point yo is below the real axis, and the lines 
arg {«o(y — yo)} =  — 77r / 6 , ir/6 intersect the real
axis in two points y f  , y f '  with* y i < y /  <>'/ ^yi-  ative position of the real axis and the
Thus, the asymptotic expressions (4.14) and (4.21) region of valid ity of the asym ptotic
represent one solution for y i ;S y < y /  and solutions in each of the three cases. 

ys < y g y 2, bu t not the same solution for
y |  < y < y j '  ■ I t  is necessary to obtain a suitable “crossing substitu tion” in order to 
obtain the correct solutions for -?r/6 < a r g  {ao(y~yo)| <5w/6  (i.e., in crossing the 
lines arg [a 0{y — y0) } =  —7tt/6, i t / 6). For this purpose, we m ust obtain the asymp­
totic expansion of the Hankel functions H yl  [2 (iac?73/2) / 3 ], ( j  — 1, 2), proper to tha t  
region. T he analytical expression for IIi% would then be quite different from th a t  
given in (5.2). Thus, in crossing the two points y f  and y / ‘ of the real axis , the asym p­
totic solutions fail to be analytic. However, it is to be noted th a t  the failure of
the asym ptotic  solutions along the real axis does no t exclude their use in the in­
vestigation of the boundary value problems to be considered below, so long as we 
are concerned only with the eigen-value problem. I t  is only necessary th a t  these 
solutions be valid in a connected region containing the end-points yi and y-i. I he cal­
culation of the am plitude distribution of the disturbance (the eigen-function) in the 
neighborhood of the inner friction layers, however, is to be made with the regular 
solution, or we can calculate the eigen-function for y /  < y < y / '  by using a proper

* T he whole theory m ust be modified for extremely highly damped solutions for which yr< y i < y 2< y /  ■
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“crossing substitu tion .” Since we are chiefly concerned with the eigen-value problem, 
we shall not go into further details.

In order to make the situation still clearer, let us see what would happen if we try 
to obtain our solutions for y l  < y < y i '  by going along a pa th  above the point y 0- For 
simplicity, let us take the case of real c with wS > 0, and  consider the asym ptotic  
expressions q>̂ ' and 4>f ' given bv (5.3). We have (A, B  being arb itra ry  constants)

, CO) , - 6 /4  ( 3/2 5x1 /4 ,
0 3 ~ , 4 ? ?  e x p  {3  (a o i? )  e  }>, (77 >  0 ) ,

A u r /4exp { § ( « . M  ) W,r " ' \ +  5 « / 4 } , (7? <  0);

(0) -6/4 , 3/2 xi/4,
<f>4 ~  Bri exp ( 5{aov) e J, (77 >  0),
,(0) 1- 6/4 , , 1 , 3/2 - 5x1/4 , * , , I .

4 *  c a .p , 1 1? I e x p | § ( a 0 n  ) e  +  57^ / 4 } ,  (77 <  0 ) .

These are obtained by taking a path  below the point y 0. If we had taken the other
path, then arg (77)=*- for 77 < 0 ,  and we would have the functions 4>f) and 4>f\ which 
agree with 0 3 and <fn for 77 > 0 ,  bu t are defined by

« i f  ~  d  i ,, j -5/\ x p  { ! ( a „ |7 , ! )3/V W/4-5 7 r f /4 } ,

¡ „ r /4 exp { § ( a „ U | ) 3/V r i / J - 5 W 4 } ,

for 77 <0 .  Thus, if A and B  arc taken to be the same, we have

~C0) (0 ) ~<0) ( 0 )
0 3 =  — 104 , 0« = — 103 , for 7) <  0.

Hence if we took 03O) and 0, as the proper determinations, we would have to make 
the following “crossing substitu tion” corresponding to a passage from 77> 0  to 77< 0 :  
0, —>¿04U;; 04o)—>i0-i . If we note th a t  0 3r « 0 i o) both for w — c > 0 and for w — c < 0, 
we would also have the following equivalent change : 031" —>0(O) + ¿ 0 £0>; 0 3°5 — ̂ 0£o,—>030). 
These m ay be compared with Eq. (16), p. 589 of Heisenberg’s paper. In making the 
comparison, we note his definition of the angle of w — c (p. 585), and the difference 
of notation in the fundamental equation of stability.

T he first s tudy  of “the crossing substitu tion” seems to be due to Stokes in con­
nection with the asym ptotic  expansions of Bessel functions. I t  m ay therefore be 
properly designated as Stokes’ phenomenon [76]. We should also compare our re­
sults with the work of Jeffreys [ 17], the W -K -B  method [23] in quantum  mechan­
ics,* and the mathematical investigations of Langer [24] and others.** In those cases, 
a differential equation of the form €30 ” + g ( y ) 0  =  O is considered. If this equation 
is treated by the method of §4 by w rit ing0  =  x<o>(’?)+exil)(??)+ * ‘ * . T — To =  and 
s ( y ) “ ge Igo*Un) * +  1 : the equation for x (0)( l)  is x (0)"A-go VXi0) =  0 as com­
pared with (4.7), x i0)iv—¿7716/0 x (0) ,/= t0. I t  is evident th a t  our 77 corresponds to ¿77 in 
their case. Kramers has shown th a t  the cuts in their asym ptotic  expansions are the 
lines arg (77) =  ±7r/3. Thus, in our case, the cuts should be arg (77) = 7r/6 , 57t/6. This 
agrees with our previous discussions. An im portan t difference is the following. In

* I am indebted to Professor P. S. Epstein for calling m y attention to this comparison.
** For example, S. Goldstein, Proc. Lond. M ath. Soc. (2) 28, 81-90 (1928); C. C. Hurd, Tdhoku 

M ath. Journ. 45, 58-68 (1939) and the papers of \V. J. Trjitzinsky and others quoted there.



1945] ST A B IL IT Y  OF PARALLEL FLOWS 133

their case, the two boundary points on the real axis are separated into two regions of 
the complex plane by the cuts, so th a t  a crossing substitution is absolutely necessary. 
In our case, the two boundary points on the real axis belong to the same region, and a 
crossing substitution is superfluous, so far as the eigen-value problem is concerned.

h) The inner friction layers. There is also a very significant physical interpretation 
associated with the “crossing substitu tion” of the asym ptotic  solutions. The initial 
approximations <£(,0) and satisfy the inviscid equation. Hence, if et > 0 ,  these solu­
tions hold throughout the interval (yi, yi) of the real axis, and the effect of viscosity 
is entirely negligible inside the fluid for sufficiently large Reynolds numbers. If c . ^ 0 ,  
the inviscid solution can never hold all along the real axis, and hence the effect of 
viscosity inside the fluid is not negligible, however large the Reynolds num ber may 
be. The singularity of the asym ptotic solutions means a very rapid change of velocity 
within a small distance so th a t  the effect of viscosity is no longer negligible there. 
Physically, such a point on the real axis corresponds to a layer of fluid where the 
viscous forces play an im portan t role.

Referring to the foregoing discussions, we see th a t  there are two inner friction layers 
for the damped oscillations, one for  the neutral oscillations, and none for the self-excited 
oscillations.

In the neutral case, the first term of (4.1) disappears a t  the critical layer w - c .  
The equation then represents a balancing of the vorticity transferred by the d is turb­
ance and th a t  diffused away by the effect of viscosity. I t  is therefore understandable 
th a t  the effect of viscosity must be predominant there. In the other two cases, w — c 
never vanishes in the fluid, there is the vorticity carried by the main flow (relative 
to an observer moving with the phase velocity cr) and there is always the change of 
vorticity due to amplification or damping. In the case of amplified oscillations, these 
two effects can be in equilibrium with the transfer of vorticity due to the disturbance, 
and the effect of viscosity is completely negligible a t  very large Reynolds numbers. 
In the case of damped oscillations, these effects presumably never balance each other, 
thus resulting in the formation of two critical layers, where the effect of viscosity is 
not negligible.

c) The complex conjugate of the solution <p(y). I t  is often argued,* tha t  if 4>{y) is a 
solution of the inviscid equation with an eigen-value c, then ${y) is another solution 
with the eigen-value £, satisfying the same real boundary conditions on the real axis. 
Thus, to each damped solution, there is always a corresponding amplified solution, 
and vice versa. This argum ent is in direct contradiction to the foregoing discussions, 
because an amplified solution and a damped solution have entirely different charac­
teristics with respect to inner friction layers. I t  appears, therefore, th a t  $(y)  should 
still represent a solution of the same nature as 4>{y).

This is indeed the case, and can be seen more clearly from an examination of the 
complete equation (4.1). If we take the complex conjugate of th a t  equation, and write 
y  for y (which is essentially done in the usual argument), we have

{w(y) — c} {$"  — =  -  {<?iv — 2al$"  +  (5.5)

* Heisenberg, loc. cit. p. 596; Tollm ien, loc. cit., 1935, p. 88. T he failure of such an argum ent would 
indicate that Heisenberg’s classification of velocity profiles on p. 59 of his paper is untenable.
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wty)

The complete stream function $'(x, y, t) satisfying this equation is

Wm y. 0 = Hy)e~iaix-'c,\
Thus, if Im(e) < 0 ,  then lm (e )> 0 ,  and we still have a damped solution. This should 
also hold for the inviscid equation, since it is regarded as a  limiting  case of the viscous 
equation. From the inviscid equation itself, there is no way of telling whether 
lm (e ) > 0  corresponds to damping or to amplification. In fact, the asym ptotic  solu­
tions of Eq. (5.5) (including the limiting inviscid solutions) hold for

— \af6 <  arg {a0(y — yo)| <  1 ir/6, w(y0) = I. (S.6)

Thus, we have a solution <?(y), valid in a region which is quite improper for an asym p­
totic solution of (4.1). [Compare (5.4) and (5.6).] Hence, it is not legitimate to con­
clude th a t  a solution of a different nature can be obtained by taking the complex 
conjugate. T he influence of these discussions upon the usual conclusions regarding 
stability  in an  inviscid fluid will be discussed fully in the next par t  of the paper.

6. The boundary value problems. Having fully investigated the solutions of the 
equation of disturbance, we shall now tu rn  to a 
study of the boundary-value problems which have 
been taken up briefly a t  the end of §3. In general, 
the boundary conditions are essentially th a t  the 
velocities of the disturbance should vanish on the 
solid boundaries, and also a t  infinity if the field of 
flow extends to infinity. However, it is often con­
venient to use equivalent boundary conditions for 
certain types of velocity distributions.

In order not to be lost in too much generality, 
we shall limit ourselves to three classes of velocity 
distributions (as specified below and shown in 
Fig. 3), and select our fundamental interval (yri y2) 
so th a t  iu '(y )^ 0  for y \ ^ y 1ky% We shall define our 
characteristic length so th a t  y2 — y i = l ,  and let 
<t>jm c, a, aR), <pz(y; c, a, aR),  0 3(y; c, a, a R ),

\ c, a ,  a R )  be a fundamental system of solutions 
(4.1) arranged in the order discussed above.

C a s e  (1). Flow between solid walls in  relative 
motion. In this case, the boundary conditions are given by

0 )

(2)

(3)

F ig . 3. T h e  th r e e  ty p e s  o f v e lo c ity  
d is t r ib u t io n s .

4>(y i) = 4>'(y i) = 4>(yO = = °» (6 .1)
because the velocity of the disturbance should vanish on both the solid boundaries. 
The determ inanta l equation corresponding to these conditions is

F i(a, c, aR) =

<f> n  4*21 4> 3i 4>ii

4> 12 <¡>22 <¿>32 <¿>42
f t t f

<P 11 <¿>21 <¿>31 <¿>41
)

<¿>12 <¿>22

=  0 , (6 . 2)

<¿>32 <¿>42

where <¿>11, <¿>11 , etc., stand for 4>i(yi), <¿>1 (j>i), etc. In this and all later discussions, a
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subscript 1 or 2 a ttached to a function of y  shall denote the value of th a t  function a t  
y = y i  or y  — y 2 respectively.

C a s e  (2). Symmetrical flow between solid walls at rest. In this case, it is easily seen 
from (4.1) th a t  the disturbance can be separated into two independent parts, one 
symmetrical with respect to the line y ^ y 2 and the other antisymmetrical. (a) If 0(y) 
is a symmetrical function (antisymmetrical disturbance), then the conditions

(6.3)

hold, and we have the determinantal equation

F2(a, c, aR) =

0  11 0  21 0 3 1  0 4 1

0 11 021 0 31 041
/ / / /

0  12 <¿>22 <¿>32 042

a! "  a ! "  a ! "  a ! "0 1 2  02 2  0 3 2  042

= 0 . (6-4)

(b) If <t>(y) is an odd function of y — y 2 (symmetrical disturbance), then the boundary 
conditions are

0 (3*1) =  0'(3'i) =  0 (3*2) =  0"(3*2) =  0, (6.5)

and we have the relation

c, aR) =

0 11 021  031  041

01 2  0 22  03 2  04 2
/ / / /

011  021  031 041
// // ft ft

01 2  0 22  03 2  042

=  0 . (6 . 6)

Case (3). Flow of the boundary-layer type. In this case, the point y 2 is taken to 
correspond to the “edge” of the boundary layer, beyond which the velocity is sub­
stantially  constant. The boundary conditions to be satisfied a t  yi are the usual ones;

0(.3’i) =  0/(-3’i) =  °- (6.7)

The boundary conditions for y  becoming infinite are to be replaced as follows.* Since 
the particular integral 0 4 becomes infinite as y  becomes infinite, our boundary con­
dition requires th a t  0  is a linear combination of <f>{, 0 2, 03 alone. Thus,

0 *  C ,01 +  C’202 4"- Cs03, (6 .8)

where Ci, C2, Ca are constants of integration. Also, the integral 03 makes practically 
110 contribution for y ' ^ y i  so th a t  we expect 0(y) to satisfy the inviscid equation for 
yèÿs* Here k>" =  0, and hence two particular integrals are e±av. T he condition th a t  
0 —>O as y —>00 excludes the integral eav. Hence, 0  must be proportional to e~av for 
y > y 2. This may be expressed as follows:

0 ' +  «0  =  0 for y è  3*2. 

Hence, we have the determinantal equation

(6.9)

* Cf. T ietjens [72] and Tollmicn [73].
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FA(a, c, aR)
<#>11 0 2 1  <#>31

<#>12 " l"  Û<#>15 <#>22 ""t~ <#><*22 0

0 1 1  <#>21 <#>31

=  o. (6 . 10)

We note that the point yi  can be replaced by any value of 3<>y2- This is equivalent 
to the fact that the thickness of the boundary layer cannot be definitely defined. The 
larger this thickness is taken, the more accurate the results should be .*

The functions F\, Fit F3, and F.4 are entire functions of the parameters a, c, and R. 
Reduction of the equations for large values of aR.  The equations (6.2), (6.4), and

(6.6) can be substantially simplified for large values of aR.  Referring to (4.21), we 
see that = A  (y)e~Y, <fn{y) = B (y )er , where A (y )  and B (y ) are of the order of 
unity, and F is defined by the relation

Y  =  I \ / i a R ( w  — c) dy. 
J u\

Hence, we have the following relations, giving the order of magnitude of certain 
quantities :

<#>32

<#>31

-42
 =  — x iaR(w i — c) H •
<#>31 - 4 1

<#>32 ( ____________ A 1 A î)
—  = \ - V i a R ( w ,  ~ c )  —  +
<#>ai I d i  A i)

—— = I  iaR(w 2 — c )  (- 0 { \ / a i? )l e~r ,
<#>31 \ -4, )

—  = J -  [faRfwj -  ¿j]»'* — -f 0 (a R )l< r '’;
<#>31 I A 1 )

(6 . 11)

<#>< i fi'x <#>42
 =  \ZiaR(w i — c) H <  =

/?-

<#>< i fix <#>41 f i l

where

<#>42 f ------------------------- f i l  f i f i
  =  < x/'iaR(u>2 — c) —  +  — f ep,
<#>4i I fix fix)

042 ( fit .__ )
 = < iaR(wt — c ) -f- 0 ( \ / a R )  > er ,
<#>41 I B \  )

<#>'/,' I ,  , fit )
—  = { fUxRiwt -  c) )3'* -  +  O(aR) \  c’\
041 ( fi l  '

P = f
til

(6 . 12)

\  iaR(w  — c) dy.

It then appears that the sign of the real part of P  is of consequence. It can be veri-

* In later calculation of the Blasius case, we shall t a k e  a boundary layer about 1.19 tim es as th ickas  
that used by Tollm ien.
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fied th a t  it  is always positive when C i > 0 .  For then the path  of integration can 
be taken along the real axis of y, and we have — i r< a rg  (w — c ) < 0 ; consequently, 
— 7r / 4 < a r g  (P ) < t t / 4 .  With reference to (4.21), (6.11) and (6.12), we see th a t  the 
condition P  = niri (« =  an integer), expresses the fact th a t  <f>n 4>n =  <¿>41 4>32' when terms 
of the order (a R ) 1/2 are neglected. This is the corrected form of the first solution of 
Heisenberg as expressed by the condition (27) on p. 5^6 of his paper. Heisenberg 
also s tated  th a t  such a condition can only be satisfied for damped solutions. In fact, 
from the condition ju s t  obtained for c.->0, we see th a t  R efP ) can be negative only 
for highly damped solutions, for which the whole discussion m ust be modified. (Cf. 
footnote on p. 20, §5.)

Neglecting quantities of the order erp and (a R )~ l against quantities of the order 
of unity, we have the following simplifications of Eqs. (6.2), (6.4), and (6.6) for 
Cases (1) and (2).

C a s e  (1). Plow between solid walls in relative motion. We have

f i{a, c) _  <¿>31 <¿>42 / j (a ,  c)

f i(a ,  c) 4>3i 4>n:: /)(<*, c)
(6.13)

C a s e  (2a). Antisymmeirical disturbance in  a symmetrical flow between solid walls. 
We have

/ ’(«, c)/ff la ,  C) =  <¿>31/031- (6.14)

C a s e  (2b). Symmetrical disturbance in  a symmetrical flow between solid walls. We 
have

h W  c) “  <¿>31/<¿>31. (6.15)

In these equations, the funetions/i(a ,  c ) , /2(a, c ) , f 3(a, c) a n d / d a ,  c) are defined as 
follows:

f i(a ,  c)

M m  c) =

4> 11 <¿>12

<f> 21 4> 22

<¿>11 4> 12

ip 21 <¿>22
f f la ,  c) =

4> 11 <¿>12
/

<¿>21 <¿>22
/ /

4> n <¿>12

<¿>21 <¿>22

(6.16)

These functions depend only on a  and c; because we m ay take the inviscid solutions 
for <f> 1 and fa, which are accurate up to the order of (a R )-1. I t  m ay be reiterated th a t  
in computing <f>n, <¿>22, <¿>12. <¿>22' in (6.16), we m ust take the path  leading from J>i to y2 
in the lower half plane.

Case (3). Flow in the boundary layer along a flat plate. In this case we can reduce 
(6.10) to

/* +  af  1 'h i  v L — =*  > (6 . 1 /)
j i  +  a/s <¿>31

if we also replace and <¿>2 by  their inviscid approximations. T he equations (6.13), 
(6.14), (6.15), and (6.17) are the final equations based on which the stability  in­
vestigations are to be made.

The inviscid case. In the limit a R —>00. T he above equations reduce to



f i(a ,  c) =  0  for Case (1) and Case (2b), (6.18)

/ 2(a, c) =  0 for Case (2a), (6-19)

'¡¡i +  a / i  =  0 for Case (3). (6.20)

M athematically , these are equivalent to the solution of the inviscid equation

(w — c)(4>"  — a 20) ~  w ' f l  =  0 (6.21)

subjected to one of the following three sets of boundary conditions 

0 ()'O =  0 (ys) =  0 , 0 (yO =  4>'(y 2) =  0 , <b(yi) =  <{>'(72) +  a 0 (y2) =  0 . (6 . 22)

We have thus arrived a t  the conclusion th a t  some, asymptotic behavior of the stability 
conditions can be obtained by neglecting the effect of viscosity (provided proper care is 
given to the inner friction layer). This was tacitly assumed in the work of Rayleigh 
and others, while Heisenberg pointed out [loc. cit., p. 583] th a t  a proof was neces­
sary in accordance with some remarks of Oseen (38); he also virtually gave the proof.

In the next p ar t  of the paper, we shall therefore consider the simpler problem of 
an inviscid fluid. After a thorough investigation of th a t  problem, we shall investigate 
the effect of viscosity by considering Eqs. (6.13), (6.14), (6.15), and (6.17) in greater 
detail. These results may be compared with the earlier ones of Heisenberg and Toll- 
mien.

Numerical calculations of the stability limit based upon these equations will also 
be carried out for certain im portan t special cases. For all these purposes, the evalua­
tion of the six functions f f a ,  c ) , f 2(a, c ) , f 3(a, c), f A(a, c), </>31/ 0 31, 042/0 42 is necessary. 
We shall discuss this briefly here.

1) Evaluation of / ¡ (a ,  c ) , / 2(a, c ) , f 3(a, c ) , f A(a, c). These quantities arc related to 
the inviscid solutions given by (4.14) with the path  of integration subjected to the 
condition (5.4). Hence, we have
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011 “  — C, 021 *  0 , 011 = » 1, 021  =  — (6.23)

where

012 =  (1 ~  c) -5 ' a 2nH 2n(c), 022 =  (1 — c) X] *-"K 2n±flc),
n—0 n-«0

00

012 =  (1 -  C) “ 1 £  a 2" / /2n-l(c) +  (1 -  cff 'W 2' 012,
n—»0 
00

022 =  (1 -  c)- ' a-nK 2n(c) +  (1 — c)~1W2 022,

Ihn(c) =  h2n(y2), 

P/n+lM  =  ^2n+l(j'2),

Hin-i(c) =  (1 — c)--!i2n(y2), 

K u (c ) =  ( f  -  c y k 2n+l(y 2)

(6.24)

(6.25)

are functions of c alone. In the above evaluations, we have pu t  Wi =  0, in accordance
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with the actual conditions in all the cases considered. We have also chosen the char­
acteristic velocity so th a t  w 2 = 1. Referring to (6.23), we have

/ i (a ,  c) = — c<(>2j, f 2(a, c) =  — e0 22,

/s(a, c) Of Wi<f>22 H 012, /■)(«, c) = ^ 1 0 2 2  +  t  012.
c c

(6 .26)

The actual evaluation therefore depends upon the calculation of the integrals (6.25).
2) Evaluation of 0 31/ 0 31, 042/042- These quantities are related to the highly oscil­

lating integrals 0 3 and 0 4. For values of a R  so large th a t  both (a R ) uzc, (a i?)iy3(l — c) 
»  1, the approxim ate values of 0 3, / 0 3l and 042/042 are given by using (4.21). Thus,

03i eli/4 042 e“ " ' 1
;—r S r S — * -    (6.27)
03i \ ctRc 042 \/“R(i ~ c)

The condition {aR) 1/3(1 — c)i2> 1 is generally satisfied, because c is usually small and 
a R  is usually very large. This is especially true for Eq. (6.13), for it will be seen from 
considerations of an inviscid fluid th a t  this case is relatively stable. For the condition 
(a R ) ll3c » l ,  the situation is different, because c is usually small. I t  is then more con­
venient to approximate 0 3 by x f i v )  given by (4.9) (or with higher approximations, 
if so desired). We then have

03i/03i =  ()'i -  yo)F(z), (6.28)

where

f i ( s )  =   — —- —J S =  — ao(l?l — % ) .  ( 6 . 2 9 )

This function has been calculated numerically by Tietjens for real values of z. We
have made slightly more extensive and more accurate calculations. The present result
differs slightly from th a t  of Tietjens and is here tabulated in Table I and plotted in 
Fig. 4 together with the related function J{z) defined by

j m  = [1 - F ( S) ] - .  (6.30)

T he asym ptotic form of F(z) is

F(z) ~  2~3/2gTt/4, (3 » 1). (6.31)

This agrees with (6.27) if < \ y \~ y o )  =lw0 (y i—yo) is replaced by ~c.
A c k n o w l e d g e m e n t . T he au thor wishes to express his sincere gratitude to P ro­

fessor Theodore von K arm an for suggesting this problem and for his invaluable help 
throughout this work; to Professor Clark B. Millikan for helpful suggestions and for 
the use of some of his unpublished notes, from which much inspiration and assistance 
have been derived; to Professors P. S. Epstein, H. Bateman, Dr. H. W. Liepmann 
and others for m any valuable discussions and suggestions. T he au tho r  is indebted to 
Mr. L. Lees for helpful criticism of the final manuscript.



F ig . 4. T h e  function J(z) shown in its real and imaginary parts (cf. Table 1).

T a b l e  1.— T h e  fu n c tio n s  F{z) and 7 (2).

z Fr F< 7r J i

1 .0 0.89161 -0 .3 5 0 2 5 0.80630 -2 .6 0 5 5 7
1.2 0 .78969 -0 .2 7 3 1 0 1.77012 -2 .2 9 8 5 4
1.4 0.71970 -0 .2 1 2 1 3 2.26836 -1 .7 1 6 6 9
1 .6 0.66931 -0 .1 6 0 0 9 2.44985 -1 .1 8 6 0 0
i  .8 0.63143 - 0 .1 1 2 7 4 2.48104 -0 .7 5 8 9 2
2 .0 0.60144 -0 .0 6 7 4 1 2.43927 - 0 .4 1 2 5 3
2.2 0.57599 - 0 .0 2 2 2 6 2.35196 - 0 .1 2 3 4 8
2 .4 0.55230 - 0 .0 2 3 9 5 2.22724 0.11916
2 .6 0.52773 -0 .0 7 2 0 3 2.06929 0 .31558
2 .8 0.49952 0.12220 1.88566 0.46043
3 .0 0 .46456 0.17391 1.68938 0.54872
3 .2 0.41947 0 .22520 1.49726 0.58082
3 .4 0.36110 0.27193 1.32516 0.56401
3 .6 0.28802 0.30705 1.18429 0.51074
3 .8 0.20352 0 .32130 1.07982 0.43560
4 .0 0.11800 0.30721 1.01118 0.35220
4 .2 0 .04698 0 .26559 0.97361 0.27133
4.4 0 .00240 0.20811 0.96056 0.20038
4 .6 0 .02160 0.14475 0.95989 0.13601
4 .8 0.01477 0.09875 0.97659 0.09503

{To be continued)
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M E T H O D S  O F  R E P R E S E N T IN G  T H E  P R O P E R T IE S  
O F V IS C O E L A S T IC  M A T E R IA L S *

BY

.T. A L FR E Y
Monsanto Chemical Company, Research Department, Springfield, Mass.

Introduction. In a recent paper1 it has been shown th a t  the solution of the first 
and second boundary value problem for linear viscoelastic media can be obtained in 
two steps requiring (a) the solution of an equivalent problem for a perfectly elastic 
medium, and (b) the determination of the response of the viscoelastic material to an 
applied shearing stress (or shearing strain) which is a given function of time. The 
study  of the behaviour of viscoelastic materials in pure shear is accordingly seen to 
be of particular importance. To coordinate various manners of describing this be­
haviour is the purpose of the present paper.

From the m athem atical point of view the behaviour of a viscoelastic material in 
pure shear is represented by a differential relation between the shear stress s and the 
shearing strain e. W e may write this relation in the form

Ps =  2 Qe,

where the differential operators P  and Q are defined by

d m ô m_1
P  « -------1- p m_ i ------- + • • • +  pi,

d tm dtm~l

dn dn~l
i* r  +  ?n-: +■• ■+? <>•

dtn d/ " - 1

The Mi +  n + 1 coefficients p m~i, • ■ • , po, Qn, ■ ; ■ , <?o are 
constants  characterizing the mechanical properties of the 
material. Equation (1) can also be considered as the gen­
eral stress strain relation of an incompressible viscoelastic 
medium. In this case, e may be taken as denoting any 
component of the strain tensor and s as denoting the cor­
responding component of the deviatoric par t  of the stress 
tensor.

While Eq. (1) gives a complete mathematical descrip­
tion of the mechanical behaviour of a viscoelastic material 
in pure shear, it is often found useful to express this be­
haviour in terms of a mechanical analogue, or model, con­
sisting of springs and dashpots. Figures 1 and 2 show 
typical models of this kind.

Models of the first type, shown in Fig. 1, consist of re­
tarded elements (Voigt elements) coupled in series. Each

(1)

I

I

I

Fig. 1. Mechanical model: 
3 Voigt elem ents in series.

* Received Nov. 15, 1944.
1 T . Alfrey, Quarterly of Appl. M ath. 2, 113-119 (1944).
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element is made up of a spring coupled in parallel with a dashpot. In such a model 
the total extension (corresponding to the strain e) consists of n contributions, one 
from each of the n Voigt elements. T he extension «, contributed by the i th  element 
is connected with the load s by means of the relation

s — 2 Giti + ( 2)

where Gi is the spring constan t and ?j; the dashpot constant of the ¿th element, and 
the dot indicates differentiation with respect to time. T he  load s is the same for all 
elements coupled in series, and corresponds to the stress in the viscoelastic body. T he 
mechanical behaviour of the model is defined by n equations of the form (2) in con­
junction with the relation egj]Cei which defines the resulting extension e.

Models of the second type, shown in Fig. 2, consist of another kind of composite 
elements (Maxwell elements) coupled in parallel. Each element is made up of a spring

coupled in series with a dashpot. In such a model the 
total load (corresponding to the stress) is divided 
among the n elements. T he load s, carried by  the i th  
element is connected with the extension e by means 
of the relation

1 1
i =  it +  “ — îii

26 ,• 2 t)i
(3)

F i g . 2. M echanical model:
3 Maxwell elem ents in parallel.

where Gi and i;, have the same meaning as above.
T he extension e is the same for all elements coupled
in parallel and corresponds to the strain of the visco­
elastic material. The mechanical behaviour of the
model is defined by n equations of the form (3) to­
gether with the relation which defines the
resulting load 5.

In a  s tudy  of molecular mechanisms of visco­
elastic deformation, a mode! of the type shown in

Fig. 1 m ay be preferable to the general stress-strain relation (1). In such a study, 
each contribution to the strain may often be identified with some specific molecular 
process, and hence the strain contributions ell- e2, e3, • • • , e„, as well as the total 
strain e, can be said to possess a physical significance. Likewise some authors have 
a ttem pted  to identify the various stress contributions of a model of the type shown
in Fig. 2 with individual “molecular mechanisms of supporting stress.” From the
point of view of mechanics of continua, on the other hand, the formulation ( 1) is 
preferable to any mechanical model, since in any macroscopic study only the total 
stress and total strain are observable quantities.

If the  molecular and the macroscopic methods of approach to viscoelastic be­
haviour are not to become isolated from one another, it m ust be possible to change
readily from one method of description to  the other. I t  is the purpose of this paper
to provide simple techniques for these conversions. T he  paper is divided into four 
parts  corresponding to  the following problems:

1. Given the constants  occurring in the stress-strain relation (1), to com pute the 
constants of the equivalent Voigt model.
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2. Given che constants occurring in the stress-strain relation (1), to compute the
constants of the equivalent Maxwell model.

3. Given the constants  of a Voigt model, to compute the constants  of the equiva­
lent stress-strain relation.

4. Given the constants of a Maxwell model, to compute the constants of the 
equivalent stress-strain relation.

1. Determination of th e  constants of th e  Voigt model.
A . Nondegenerate case. In the standard  or nondegenerate form of the stress-strain 

relation (1), the operator P  is of an order one less than th a t  of Q. The relation (1) thus 
has the form

f ln -  l s  Q n - 2 S

+  pn-2------------ h • ‘ +  P<\S = 2qn ------- ) - ■ ■ ■ +  2 qnt. (4)
a / " - 1 dtn~- dtn

If both the coefficients q0 and qn do not vanish, the corresponding mechanical model 
will consist of n Voigt elements, all nondegenerate. If q„ = 0, one element of the  model 
consists of a spring only, and if go —0 one element consists of a dashpot only. These 
degenerate cases will be considered in the following sections. Cases are also possible 
where some other coefficient vanishes. This does no t affect the form of the resulting 
model or the nature  of the mathematical trea tm ent.

A given Voigt element is defined by its cons 'ants  G and rj. T he compliance J  is 
defined as the reciprocal of G ; J = \ / G .  The re tardation time r  of the element is de­
fined as t  =-r\/G =  Jr\. Our problem is to compute, from the In  coefficients of the non­
degenerate stress-strain relation the 2 m  parameters of the mechanical model. The 
method given below depends upon the fact th a t  both the model and the stress-strain 
relation m ust give the same prediction as to how the total strain will change with 
time when a given stress s(t) is applied. I t  is sufficient to equate the responses to the 
particular stress s ( / ) = P -1. T he general solution of the equation P ^ " -1) =  2Qe is 
the sum of the genera! solution of the associated homogeneous equation ()e =  0 a n d  the 
particular polynomial solution of the complete equation. In the same way, the  re­
sponse of the model to the stress t"~\ is the sum of the general response to a zero stress 
and a particular polynomial response to the stress / n_1. If the response of the model 
is to be identical with th a t  predicted by the stress-strain relation, the constants 
of the model m ust satisfy certain conditions. First, the retardation times r< 
( i  =  l ,  2 ,  • • • , m )  of the Voigt elements are the negative reciprocals of the roots X i  

of the characteristic equation qnx n-\-qn- ■ ■ ■ +  g<# +  2o =  0;

T ; — ----------  (5)
Xi

Thus, the n re tardation times of the model are determined by the general solution 
of the homogeneous differential equation.

In order to complete the specification of the model the particular polynomial solu­
tion m ust now be used. The particular polynomial solution of the equation P ( / r,_l) 
=  2Qe will be of the form

2e(f) — do 'Oil 4~ (¡it2 ~b • • ‘ T" <in-it"~l. (6)

T he coefficients an, m, ■ • • , an- i  are determined in the usual manner.
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In order to obtain the mode! strain e corresponding to the stress s =  / n_1, we con­
sider first the behaviour of a single element under this stress. Equation (2) can be 
written in the form

J iS  =  2  6 ;  +  2 r , £ , ' .

Setting 5 =  / " - ’ and determining the polynomial solution of this differential equation 
for t„ we find

r  /»-i i»-
2*. =  ( n -  1) ^     _ T -----

L (« — 1)! (m —
+  r r

(n — 2)! (n — 3!)

-  ( - 1 j & t m  -  ( - (7)

Since the total strain is e comparison of (6) and (7) shows th a t  the compliances
J i  m ust satisfy the linear equations

@'n — 1 ^ ft,
1 - 1

n
a„_2 =  (n — 1) >_ J i/x i ,

1—1

.z„_3 =  (n ~~ !)(« — 2) ^  J i / x ' i ,

n—1

(8)

a0 =  (n -  1)! } J i / x i

where the retardation times t,- have been expressed in terms of the roots of the char­
acteristic equation in accordance with (5).

T he Voigt model is completely specified when the compliance and re tardation 
time of each Voigt element are determined.

B. Degenerate case; §o =  0. If the coefficient go of the differencial operator Q is zero, 
one of the roots, Xi say, of the characteristic equation vanishes. This indicates th a t  the 
spring constant G of the first element is zero, the element consisting of a dashpot only. 
In this case the compliances J i  can no longer be found from the linear equations (8 ) 
because of the infinite terms 1 /acj, 1/x^, • • • . A param eter may be substituted for 
the zero coefficient g0, the 2n parameters r/i, Gi, t?2, G2, • • • , Gn, may be determined 
in terms of this parameter, and finally the param eter m ay be allowed to approach 
zero and the limiting values of these 2n param eters obtained. However, this involves 
a complicated procedure even in simple cases. T he  following alternative trea tm ent 
of this degenerated case seems preferable.

The total extension € of the model consists of the extension «1 of the degenerate 
first element and the extension e' of the chain of 11 — 1 nondegenerate elements; 
e =  ei +  «/. T he  mechanical behaviour of the degenerate element is given by

1
s =  2e'i, m

Vi
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and th a t  of the chain of n — 1 nondegenerate elements, by a relation of the form

P ’s =  2QV, (10)

where the differential operators P '  and Q' are of the orders n — 2 and n — 1, respec­
tively. Applying the operator Q' to both sides of (9), differentiating (10) with respect 
to time and adding, we obtain

With

P>s +  -Q > s  =  2 Q V  +  e\ )  =  2Q’i. 
Vi

g n - 2  d n - 3

P- = ----------1- p,l_z — 4-
dtn~2

d'"

dl"~
Qn -2

dt"
+  go ,

( 11)

( 1 2)

Eq. (11) becomes

K g„'_A d"~l (  g„'_2\  d n~2 /  q { \  d go "I
l ‘+ ~ ) T  ~ + ( p ,l 3 +  ) - ■ —  +  • • • 4  ( p i  + - 1 -  +  ^

Vi )  &tn V  V ir /  dtn - \  rji /  di 7]! _

= 2
92 d"-1 9

jfr-i  h 9^-2---- — h ‘ ■ ' +  go “dtn dP‘- i dt J
(13)

When both sides of (13) are divided by the coefficient of the highest order term on the 
left-hand side, this equation m ust be identical with the stress-strain relation (1) in 
which go =  0. Comparison of the lowest order terms leads to the relation

vi = qi/p»;

comparison of the highest order terms leads to

Vi qi J

Abbreviating this expression by r, we find by further comparison of coefficients in (13) 
and (1) th a t

g„'_i =  rqn, Qn—2 =  rg„_!, ■ ■ ■ , go =  tq\

/  Po \
p n - 3 =  r  ( Pn~2 ~  ~  gn- j  1J  ,

(  P* \pn—4 f  I pn—2 Qn—2 I,
\  g 1 I

(  P° \Po = r \ p t  g ,J .

(14)

T he differential operators (12) are thus determined, and the procedure outlined under 
1A permits the determination of the constants of the n — 1 nondegenerate elements.
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C. Degenerate case; qn =  0. If the coefficient g„ of the operator Q is zero, one Voigt 
element of the corresponding model consists of a spring only. T he compliance of this 
isolated spring can be shown to equal l / g n_i. A procedure similar to the one developed 
above will permit to determine the constants of the nondegenerate elements.

2. Determination of the  constants of the Maxwell model.
A . Nondegenerated case; A nondegenerate model of the Maxwell type corresponds 

to stress-strain relation (1) in which qn = 0 and g0 =  O (i.e., to a doubly degenerate 
Voigt model). When the operators are of this standard  form, the model will consist 
of m Maxwell elements in parallel. T he  2m  constants of this model can be computed 
from the 2m coefficients of the stress-strain relation by a method which, except for 
the interchange of stress and strain, is almost identical with th a t  of Section 1.

For any given imposed strain sequence e(<), the stress m ust vary  in a definite 
fashion s(t). T he predictions of Eq. (1) and the set of differential equations (3) must 
be identical for every case— in particular, for the strain sequence e(t) —tm. T he  results 
are as follows:

T he m  relaxation times of the m  Maxwell elements are the negative reciprocals of 
the m  roots of the characteristic equation x n'-\-pm- i3c”,-1+  ■ • ■ + / ’i t f+ />o =  0 ;

n- =  -  -  • (15)
Xi

The specification of the model is completed by determination of the m  dashpot con­
stan ts  r?i • • • rjm. These are obtained by solving the following set of m linear equations.

m
a-m -i =  m 7u,

i-i

an =  m'. X) Vi/x,
-i

(16)

where the a; are the coefficients of the particular polynomial solution

s(t) =  Oo +  ad +  a2t2 +  • ■ ■ +  

of the differential equation
Ps =  2Qt

B. Degenerate case; q,.?* 0, go = 0. If the order of the operator Q is one greater than 
th a t  of P  (i.e., if g ^ O ) ,  then one Maxwell element of the model consists of a dashpot 
only. The constant of this isolated dashpot is found to equal g„. A procedure patterned 
on tha t  of Section IB  will permit the determination of the constants of the remaining 
nondegenerate elements.

C, Degenerate case; go^O, qn— 0. If the coefficient go does not vanish, then the 
mode! contains one element which consists of a spring only. T he constant Gi of this 
spring, is found to equal go/po- T he constants of the remaining nondcgenerate ele­
ments can again be determined by a procedure similar to th a t  of Section IB.
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3. Determination of the operators P  and Q from the constants of a Voigt model,
Consider a material whose behavior in shear is reproduced by a model consisting 
of n Voigt elements in series. T he 2n param eters of this model are known. T he equiva­
lent relationship between stress and strain can be determined by either of two 
straightforward methods.

1, T he  method of p a r t  1A can be used in reverse. This immediately gives an opera­
tor which is directly proportional to Q.

(17)

where X is an undetermined multiplier.
The operator P  can subsequently be determined by equating the particular poly­

nomial responses to a stress s =  C _!.
2. T he  mechanical behaviour of the Voigt model is expressed by the following set 

of equations:
s = 2G\t\ +  lyiii,

s — 2 G-it2 +  277262,

s =  2G„«„ +  27j„«'n 

1-1

(18)

T he  n th  equation can be rewritten, as

5  = 2G‘ — X  tij + 2?) — X «*y ( 10)

If each of these equation is differentiated (n — 1) times, a total of n 2 equations will 
result. These equations will contain (n2 — 1) derivatives of the form dre,/d/r. All of 
these derivatives can be eliminated, leaving a differential relation between s and e, 
by multiplying each of the n- equations by an appropriate factor and adding. The 
determination of the factors may, of course, be ra ther cumbersome.

3. T he  problem can, however, be simplified by a judicious combination of m eth­
ods (1) and (2). We determine first the operator \Q  in accordance with (17). We then 
formulate the  set of n 2 equations considered above, n  of the necessary ril factors can 
immediately be written down. They  are obtained from the coefficients of the opera­
tor (17). T he form of the n 2 equations is such th a t  the remaining factors can be evalu­
ated one a t  a time if the above set of n factors is known. T he result of this procedure 
is the desired operator equation.

4. Determination of the operators P  and Q from the constants of a Maxwell 
Model. Consider a material whose behaviour in shear can be reproduced by a model 
consisting of n Maxwell elements in parallel. T he 2n parameters of this model are 
known. The equivalent relationship Ps = 2Qe can be determined by methods almost 
identical with those of Section 3. Only the simplified third method will be repeated 
here.

T he operator P  is given by the equation
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(20)

where X is again an undetermined multiplier. T he mechanical behaviour of the model 
is expressed by the  equations

1 1
€ =     i j  -J--------J,

2 G\ 2tji

(21)

If each of these equations is differentiated (n — 1) times, a total of n 2 equations are 
obtained, involving m2 — 1 derivatives of the form drs /d tr. All of these derivatives can 
be eliminated, leaving the desired stress-strain relation, by multiplying each equation 
by an appropriate  factor and adding. T he n coefficients of the operator (20) provide n 
of these factors. T he  remaining («2~ n )  factors can then be obtained one a t  a time.
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C. H. D IX , C. Y . FU, AND ET H E L  W. M cLEM O RE  
United Geophysical C ompany| Pasadena, California

1. Introduction, T he theory of waves associated with the plane boundary of a 
semi-infinite, isotropic, homogeneous, perfectly elastic medium was first given by 
Lord Rayleigh,1 who discussed the problem for plane waves of fixed frequency. M any 
papers have been written giving trea tm ents  of variations of the problem studied by 
Rayleigh bu t  the t rea tm en t in Rayleigh’s original paper contained most of the results 
of interest for plane waves.

Had Lord Rayleigh realized the great practical importance of his surface waves, 
he would doubtless have included more numerical results in his original paper, and 
the material of the present paper would have been more or less completely included 
therein. Rayleigh waves are im portan t in the seismic method of oil exploration 
since they generally occur as a troublesome noise on reflection seismograms.

In the present paper, we are interested in the theory of the reflection of a plane 
compressional incident wave a t  the free surface. In this theory a cubic expression 
occurs which also occurs in the theory of the Rayleigh waves. Furtherm ore our in ter­
est is primarily in obtaining numerical results, so th a t  examples may be readily pic­
tured. T he  results are primarily of theoretical interest since our waves are never plane 
and the medium is only rarely approximately homogeneous.

2. Reflection a t the free surface. This  problem originally treated by K n o t t2 and 
Zoeppritz3 leads to the relation

R v2 sin 2ri sin 2i — V 2 cos2 2/q

I  v2 sin 2ri sin 2i +  I72 cos2 2r\

where R, I, n ,  i, v, and I7 arc respectively the am plitude of the reflected compres­
sional wave, the amplitude of the incident compressional wave, the reflection angle 
of the shear wave, the angle of incidence, the velocity of the shear wave, and the ve­
locity of the compressional wave.

We may make the substitutions w = sin2 r\ = p 2v2 and 5=X/ja =  2<r/(l —2cr) and ob­
tain

R  4w(l -  w)1/2[l -  (s +  2)w}112 -  (s +  2)1/2(1 -  2w)2

I  4w(l -  ie)1/2[l -  (s +  2)w }112 +  (s +  2)1/2(1 -  2w)2

N(s, w) N 2 ND
«  =  =  ■ -  ■ (1)

D{s, w) ND D2

Now real values of both N(s, w) and D(s, w) are graphed on Fig. 1, for various values

* Received Dec. 2, 1944.
1 Lord Rayleigh, On waves propagated along the plane surface o f an elastic solid, Proc. Lond. M ath. 

Soc. 17, 4-11 (1887).
2 C, G. K nott, Reflection and refraction o f elastic waves, Phil. Mag. (5) 48, 64-97 (1899).
3 K. Zoeppritz, Über Erdbebenwellen VIIB, Göttinger Nachrichten 1919, 66-84.
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of s or a. I t  is seen th a t  the graphs break up into two sets, one for l / ( s  +  2) and 
the other for w ^ i .  When to =  1 / ( s + 2 )  or « f is ï j  the graphs of N  and D  both have 
vertical tangents. I t  will be observed th a t  N  has two or no real zeros between 0 
and 1 / ( j  +  2) while D  has one real zero à  1.09574. T he  double zero corresponds to

F ig . 1.

tr =  0.26308207, w =  0.27969015. For large values of w we h a v e D ~  —2 (s +  l ) ( j  +  2)~1/2?e 
and iV ~  — 8 (s +  2) 1/2ie2. Hence the real zeros for w > 0  are fully accounted for.

There is some interest in the plot of R / I  against i  for various cr’s. This is shown in 
Fig. 2. Observe th a t  the tangent to the curves a t  t =  0° is horizontal and is vertical 
a£ f =  90°. Observe also th a t  a discontinuity exists for cr =  0 a t  7 =  90° since 

2&/J0„-a = '4 t l  and (2?/7),-_8o",0 0 0 /2  = —1- One m ay note th a t  the zeros of 
(R / I )  correspond to i's, for the given a, for which there is no reflection of energy in 
the wave of compressional type. T he change of sign of {R /I )  corresponds to a phase 
reversal.
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*1

F ig . 2.

Since the zeros of N(s, w) are of considerable interest we have plotted against a 
(where to is incidence angle for which 
N  — R  = 0) in Fig. 3. This graph brings out 
a point which is indeed curious, namely if 
a ==0.15 then for i 0 =  87.76° all the reflected 
energy appears in the shear wave, whereas, 
if we add only 2.24° to i  all the reflected 
energy appears in the compressional wave.
Birch4 records Poisson ratios for granite 
blocks of 0.093, 0.096, 0.116, 0.086 and
0.109. These are selected low values. I t  
is established in a later paragraph th a t  
( d i o / d a ) , = —• co for the upper branch 
and (dio/dcr)c„o= 4-0.178 for the lower 
branch and (dig/da)c„ 0.m — oo for the upper 
and lower branches.

4 F rancis B irch, Handbook o f physical constants,
Special P ap er no. 36, Geoi. Soc. of A m er., pp. 73-74
(1942).

4oo
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F ig . 3.



If we rationalize either the denominator or num erator of (1) as indicated we obtain 

y  =  ND m  16(s +  l)w 3 — 8 ( 3 i  +  4 ) w 2 +  8(s +  2)w  — (s +  2). (2)

T he "curves for y  = y(s, w) are plotted in Fig. 4. T he fixed point a t  w = 1.0957444,
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F ig. 4 .

y =  —1.83927 will be noted. I t  corresponds to the w for which dy/ds  = 16w3 —24w2 
+  8i£i—1 = 0 .  Note also th a t

y(ii, w) -  ;y(s2, w) = (5i -  s2)(dy/ds).  (3)

If either N  or D  is zero then y  is zero. Assume y  = 0 while 5 and w vary. Then after 
a few reductions we obtain

d i g  (5 +  1 )2(s +  2) ( d y / d s )
 =  — 2 -      . (4 )
da sin 2i0 (dy /dw )w„Ktl
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This relationship should be kept in mind in connection with the plot of Fig. 2. Note 
th a t  the  double zero of the cubic (2) is the common zero of y  =  0 and dy /dw  =  0 (yield­
ing after elimination of w  the relation 33j3 +  12s2- - 27 s—-30 = 0 ,  so th a t  50 =  1.11043541 
and ff =  0.26308207 while ¿o =  68°51/4 4 " ; i hence the dy/dw  in (4) is zero, leading to 
the vertical tangent. Note th a t  the point cr=*0, ta =  90° is not a ttained on Fig. 3 bu t

F i g . 5 .

th a t  as we approach this point from cr>0, di0/dcr—*— «= because sin 2i 0—>0 where­
as the other factors are bounded away from zero.

3. Rayleigh waves. In the usual theory  of Rayleigh waves6 a cubic equation oc­
curs which, using our 5-notation, can be written in the form,

16(5 +  1) -  8(35 +  4)tl> +  8(5 +  2)ib- -  (s +  2)tf3 = 0 ,  (5)

where Vr/i?, v and Vr  being respectively the velocities of the shear wave and 
Rayleigh wave. T hus when y =  0, w = ih~l. B ut w =  sin2 ri = p 2v2 where p = s m i / V  
=  sin r{/v. Hence p V =  iF /Vr  s o  P  = \ / V r .  Thus p, which for real values o f  i  o r  ri, 
can be interpreted in terms of the reciprocal of the velocity with which the wave

5 B. Gutenberg, Energy ratio of reflected and refracted seismic waves, Bull. Seis. Soc. Amer. 34, 85-102  
( 1 9 4 4 ) .

‘ J. B. M acelwane, Theoretical seismology, Part I, W iley & Sons, N ew  York, 1936, p. 114, Eq. (5.33).
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sweeps along the surface, dt/dx,  has the same in terpretation in the case of the Ray- 
leigh wave.

T he  Rayleigh wave case corresponds to the zero of D(s, w) which in turn yields 
a poristic problem when 7 =  0 .7

T he Rayleigh wave velocities can be readily computed by solving the cubic 
equation or by an inspection of Fig. 4. However, Figs. 5 and 6 show V, v, and 
Vr for the respective cases where /i =  constant =  2 .96X 10lc dynes /cm .2, and where 
k = Gu/3)(3s +  2) = co n s ta n t  =  4 .94X 1010 dynes/cm .2 = modulus of compression for 
various values of <r.

7 T . Sakai, On the propagation of tremors over plane surface, Geophysical M agazine, Tokyo, 8, 1-71
11934).
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G. F. C A R R IE R  
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1. Introduction. I t  is well known th a t  the classical linearized analysis of the vi­
bra ting string can lead to results which are reasonably accurate only when the m ini­
mum (rest position) tension and the displacements 
are of such magnitude th a t  the relative change in 
tension during the motion is small. The following 
analysis of the free vibrations of the string with fixed 
ends leads to a solution of the problem which ade­
quately describes those motions for which the changes 
in tension are not small. T he perturbation method is 
adopted, using as a param eter a quan ti ty  which is 
essentially the amplitude of the motion. The periodic 
motions arising from initial sinusoidal deformations F ig . 1. Displaced elem ent of string, 
are closely approximated in closed form. The method
is applied to  motions no t restricted to a single plane and finally the exact solution for 
the transmission of a localized deformation is indicated.

2. The equations of motion. The equations of dynamic equilibrium of an element 
of the string, deformed into a plane curve as shown in Fig. 1, are

T(x+ûx)

dx

d-H d d2v
T  sin fl =  p/lf 9  — T  cos 6}  — p A  -

dt2 dx d t2
(1)

where p denotes the mass per unit volume, A  the cross-sectional area of the string in 
the rest position, and 0 =  arc tan [u '/ (  1 + « ') ] ,  the primes indicating differentiation 
with respect to x. T he condition of fixed ends implies that,

v'dx =  0 for all t. (2)

The stress-strain relation of the string is assumed in the form,

T  -  T ,  =  E A  { [ ( 1  +  t / )2 +  ( O 2] 1'2 -  1 ) ,  (3)

where To is the tension in the rest position and £  is a constant characteristic of the 
string material. The following dimensionless quantities are introduced to simplify the 
algebraic work

To

E A

T -  To TTX
( £ ) ■ ' • ,  

I \ p A  )

After differentiating Eqs. (1) with respect to x, setting

* Received Jan. 3, 1945.
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sin U =
î ( « ' ) 2 +  ( i  +  » 0 2] 1/2 i  +

cos 6 =  (1 — <p2) Ui,

and eliminating v' between Eqs. (1) and (2), we obtain

ô2 r 92 r
-  [ ( 1  +  t)<p ] =  -  [ ( 1  +  a 2r ) < p ] ,

oÇ* orj*

=  <P,

/ .

[(1 +  r ) ( l  -  S Y ' 2} =  [(1 +  « 2r ) ( l  -  <p2y i 2l
07}

(1 +  a 2 r ) (  1 — <p2 ) l i 2d l ; =  t t  .

(4a)

(4b)

(4c)

These equations rigorously define the motion of the string which is acted on by on 
external forces.

1.0
£
P.

0.5

A T (m ax) 2.0 4.0

F i g .  2 . C om parison of periods ob ta in ed  b y  

linear and non-linear theories.

P  non-linear period 

Po linear period

A d / “a m p litu d e ” y
r ,  4 \  2« )

M otion defined by E qs. (15). ap^O.

50

P
P

25

\  \  

(2 Î \

..........

0.05 0.10
«

F ig . 3. Period v .s. initial tension.*

P non-linear period
= ------- - -------a2 ~  o /K A

P* &r*/pP)*»
(1) vanishing am p litu d e  (linear theory)
(2) a  =  a f =  “am plitude” =  0.05
(3) a  =  0 .10

3. The perturbation procedure. I t  is convenient to choose, as the perturbation 
param eter of the problem, a num ber e which is essentially the amplitude of the m o­
tion.** The two functions <p and r  are therefore expanded in powers of this param eter 
as follows:

f  =  a [« P i  +  « V a  +  « V  +  • • ‘ t =  e2T2 +  e4r 4 + (5)

I t  is easily seen th a t  a reversal of the sign of e should merely reverse the sign of <p. 
Hençe the omission of the even powers of e is justified. In a similar manner the fun- 
tions ri, ra, •. • ■ can be seen to vanish. T h a t  ro vanishes is seen by inspection of 
Eq. (4c), The expressions for <p and r  are now substitu ted  into Eqs. (4), the coeffi-

In F ig  3. th e  o rd in ates should  be labeled P/P*.
* E q u atio n  (15) in d ica tes m ore precisely th e  m eaning of e.
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cients of each power of e are equated to zero, and the following system of equations 
is obtained:

Lo(<pi) =  0,

Lo(<Pi) —

(6 a ) , /A ( r 2)

(6c), £ 1(7-4) =  — a*Lo îpiv>3 '
2 4 

a  ip i'

Y
8 /
2

. / 6?3 V'1 \
Lo(<pi) =  i . i ( r4ipi -f- T21P3), (6e), £ i ( r0) =  — a 2L t +  - -¡-ce2-  ■ +  a4 (6f)

(6b)

(6d)

where

and
d£2

a2 a2
Z-1 "  a 2 ---------------1

dv2 a£2

2 4
a

f  I 4 — v’iv’a +  ■ ~ j  d£ =  0,

(7a)

(7b)

Since each of the operators in the foregoing equations is linear, it  is now a simple 
m atte r  to evaluate successively the <pi and the r,-. For the moment, we confine our 
attention to the motion defined by  choosing as a solution to Eq. (6a) the function,

<Pi =  cos £ cos 77. (8a)

Note th a t  for <pi =  cos «£ cos nr\ the same solution will exist when I is replaced by l /n  
in the definitions of £ and 77. Solving successively Eqs. (6), s tarting with the foregoing 
definition of <pi, and using Eqs. (7) to determine the a rb itra ry  terms appearing in the 
Tf, we obtain

t 2 - cos2 77 +  ■ - cos 2£,
4 S

<P3 = cos £
2 a 2 -

32
• 77 s in  77 T

1 — 9a2
cos 377----- — cos 77

128 128

ce2(9 — ce2)

128
cos 3£ cos 7),

T 4 =

(8b)

(8c)

+

128

ce4(21 — ce2)

5 1 2

1 — 9ce2 3a2
-  77 sin 277 f|---------------(cos 277 +  cos A r t )  cos4

512 512

3ce2 13 — a 2
cos 2£ . . .  — --------  cos 4£ cos 2-n,

2048 4 -  ce2

1 2  177-------- cos2 77 ,
256 J

(8d)
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<Pi — cos £ 

+  • •

9 (1  +  a 2 +

2048
17Z COS r \  q s m  tj

512 ' 4096

(8e)

T he arb itra ry  solutions of Eq. (6a) which m ay be added to each of the <p; as they are 
evaluated have been chosen in such a manner th a t  lim a t ’<pj exists when a  tends to 
zero and ae =  constant = a  * This limiting process, of course, defines the motion 
wherein the initial tension T 0 is zero and the amplitude a is non-vanishing. An in­
vestigation of this problem will simplify the question of the convergence of the func­
tions tp and r  as defined by Eqs. (5) and (8). When a  tends to zero as specified above, 
the symbols r  and rj become meaningless. Hence, we replace them by

T

EA
= ot-Tj and 7) =  as.

The limiting process then yields the following expressions for the ¡pj and the tfj 

aapi =  a cos £,

9 9
a«V 3 =  <l3

- I /  s \ 2 9 9 1
 , — ) cos £ 4~ cos £ — cos 3£ ,

21x 2 /  128 128 J

T , ( j ) c o s  £  +  H i )c o s  *  '  7 ^ ( t ) c o s J Î + A î ) ] ’

f  27 /  5 \ 6S  ( P  [ - I cos t _|_
L 6 ! V 2 /

(9)

«-<72 =    < ! ', '
4

1 cos 2£ 37
 i 2 +  +

16 32 256

«Vi =  ac
s* 13 s2 3s2

128 512

- 156J

3s2 4
cos 2£

128 J (10)

+

« V i =  a
.  1280

+ ]

<P.\ • ,
(Si, b <72^1^3 +  <72 ----

2 8

These solutions m ay also be obtained, of course, by assuming a  equal to zero at

* Such com plem en tary  so lu tions a re  usually  chosen to be consisten t w ith a  given se t of in itial condi­
tions. How ever, it is convenien t here to choose them  so th a t  th e  so lu tion  does no t becom e m eaningless 
when a —*0, at = a. E q u atio n s (15) ind ica te  th a t  th is choice leads to a  solution corresponding to  a  nearly  
sinusoidal in itia l deform ation .
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the outset, expanding ip and <r in powers of a param eter a, and proceeding in the fore­
going manner.

Note th a t  the leading terms of the <p,- define an absolutely converging series for 
all a. Note also th a t  the remaining terms of each ipj are dominated by this leading 
term. In fact, for sufficiently large s, the sum of the remaining terms in each <pj is 
as small as we please compared to this leading term. Although this dominance has 
not been shown to occur uniformly, it is to be expected th a t  the series defined by 
Eqs. (9) and (10) will converge over some range of a. The requirement, “sufficiently 
large 5” introduces no difficulty since the initial value of s may be chosen arbitrarily 
large.

The functions ip and a are now most conveniently written in the forms

¥>(£, s, a) =  afiias, £) +  a3f 3{as, £ ) + • • • ,

«■(£, s, a) = a-g2(as, £) +  a ^ ^ a s ,  £) +  ••■ ,

where the terms of the series defining th e /,• and the g, are easily chosen from Eqs. (9) 
and f l 0 ) . / i  and g2 are composed of the previously mentioned leading terms, and it is 
easily established th a t  they converge to the values

/as  1 \  1 /as  1 \

i f j V ?  v t ) cos f' s’ “ 7 “  AT’ vlL (12)
where cn denotes the elliptic cosine. Energy considerations may be used to show that 
the rem aining/; and g,- are bounded, and it is to be expected th a t  the motion is closely 
described by <p=afi and <j~a2gi when a is sufficiently small. For most materials, a 
value of a 2 greatly in excess of 10“3 will lead to plastic deformations; hence, the motion 
of such strings is well defined.

The motions arising when To is arbitrary, as defined by Eqs. (5) and (8), can also 
be written in the form,

<p =  a e F j ( £ ,  77, e )  +  a 3« 3F 3 ( £ ,  17, «)  +  • • '  +  - P ( £ ,  77, a ,  t ) ,
13)

t  =  e2[G'2(£, 77» «) +  a V G 4(£, v, « + • ■ • ] +  (?(£, V, «» «).

where P  and Q arc those parts of <p and r  which vanish when a  tends to zero and 
ae = a. For this case,

Fi — cn f  - 1 +  ■ - 7 7 , k } cos $, G2 =  - - cn j 1 +  -  7 7 , I j ,

where k = e [2(4 +  e2) ]_1/2. I t  is evident, in view of the foregoing results, that

lim  F ; ( f ,  7 7 , c) =  / ; ( £ ,  as)
6—1 «3

and it is to be concluded th a t  since the series defining the F ; converge as e tends to
infinity, they will also converge for the smaller values of e. Both a  and a t  m ust be
small because of elastic considerations, which indicates th a t  P  and Q will also exist. 
We conclude therefore th a t  the motion of the string, whose “am plitude” a t  is of the 
order of magnitude required by elastic considerations, is adequately defined by  the 
leading terms of Eq. (13). T h a t  is, in the first approximation,
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<p = at en

t  =  —  e n -

, | / l  +  — îj, A ' cos £

m 1 + T I  ?]'
(15)

Figs. 2 and 3 compare the results of this analysis with those of the linear theory.
4. The motion following an  arbitrary initial deformation. T he motions derived in 

the preceding section are obviously those corresponding to initial sinusoidal deforma­
tions. If the perturbation procedure is again carried out, and if for <pi the function 

cos cos ji j  is selected, a  solution will be obtained, the leading terms of 
which contain no powers of a  greater than unity. T he solution so obtained will corre­
spond to an initial deformation, <pi(£, 0) — y "!,&,■ c o s T h i s  predominating part  of the 
solution may, however, be obtained by a simpler, less rigorous, procedure which 
nevertheless leads to identical results. We merely expand (1 —<p2) 1|,!! in the conven­
tional power series and omit in Eqs. (4), <pn+2 as compared to <pn, and a 2 as compared 
to 1. We thus obtain as replacement for Eqs. (4)

d2 • I
  [ i l  +  r)<p} — -----
d e  s e

ô 2t

 =  0,
d e

hence r  =  t ( ij ) ,

/„  ( A  "  T ) 4* '  “•

Finally the first of these becomes

F  a - 2  r T “1 d 2ip d 2tp

L I +  1 i i .  ’»*«■ “  v

(16)

(17)

T he solution corresponding to the initial conditions specified a t  the beginning of this 
section is found by considering th a t  solution of the form ¡p = a } ' , cos ? ( ? ; ) .  where 
^ ,  (0) =  1 for each j .

Upon substitution of this function, Eq. (17) yields the following set of ordinary 
differential equations

+  11 ÿn 1 + (18)

These m ay be written in the conventional operational form

(D +  n ji/'n =  ^ in Y L b W h
4

(19)

and s tandard  integration procedure leads immediately to the integral equation

v r  '
4'n\V) =  COS «7J  — - I

4  J  o
sin n ( z  —  n)'Pn(z) X )  h 'Pj(z)dz. (20)
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The method of successive approximations when applied to this equation will produce 
a converging sequence of solutions. This method is obviously preferable to the direct 
application of the perturbation method, once the equivalence of the results has been 
established, since no minor terms are carried along in the algebraic work, no compli­
m entary  solutions need be added as the integration proceeds,* and the t¡  do not a p ­
pear when the function <p is evaluated.

I t  is of interest to note th a t  when b¡= 0 ior j9± 1, Eq. (20) assumes the form

r ” s
t/'x =  cos 7? — ■ sin (z — ri}fx{z)dz, (21)

4 J 0

and th a t  this equation m ust generate the elliptic function previously encountered. 
When the method of successive approximations is applied to this equation, the series 
obtained is th a t  one found in the first solution obtained in this paper. This function 
m ay be obtained more directly by solving Eq. (18) for this particular set of initial 
conditions.

Perhaps the quickest way to obtain an approximation to the motion for non- 
sinusoidal initial deformation is to be found in the application of a numerical pro­
cedure using finite differences. Equation (17) lends itself readily to such a t rea tm ent 
and  the results are considerably easier to in terpre t  than those found by the more 
rigorous integral equation treatm ent.

S. The three dimensional problem. If we now allow deflections w normal to the 
plane of u, the procedure of the foregoing sections of this paper leads to the equation

( a -2 r T r j flV 9V

and to the equation obtained by interchanging <p and x  in (22). r  is given by the 
integral on the left side of this equation and x  =  h' / ( 1 + ° !2t)- I t  follows immediately 
from the similarity of Eq. (17) and  th a t  given above th a t  the integral equation 
method previously described will provide the solutions to problems of this nature. 
In particular, however, the motions wherein the string a t  any  instant lies in a single 
plane and wherein each particle describes a quasi-elliptical path  is easily determined 
in closed form by considering the deformation expressed in the complex form

ip = ea \p(r¡)e cos £, 

where ^  and n are each real. Equation (22) assumes the form,

T t- r r . T5V d2(p

(23)

which, when separated into its real and imaginary parts, implies,

  m'(v) = c / r ( v )

* W hen dealing w ith th e  differential equations leading to  Eq. (8), it was necessary to  choose com ple­
m en ta ry  solu tions to conform  to given in itia l (or o th e r auxiliary) conditions of th e  problem . In th e  in ­
tegral eq u ation  approach , such conditions a re  alw ays included in the equations.
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(24)

Here, c  is a constant defined by the initial conditions as follows;

S ) ,  =  1, vfr'(0) =  0, n(0) I  0, m'(0) =  c.

When c < 1 + € 2/4 , these initial conditions lead to a solution of Eq, (24) given by

1/2

where

=  [ l .  -  (i

=  c f p~i(s)ds, 
J  n

r  =  7 r - ,

P =  [v (8 +  e2)2 +  32e2c2 +  (8 +  **)], 
2é“

(25)

7  =  — 3  [ \  (8 +  <2) 2 +  32«2c 2 -  (8 +  e2) j.
2tL

Note th a t  as c  tends to l + e 2/4, \p becomes identically unity and the motion of each 
particle is circular. T h a t  is,

= ae cos £e"’vi+'2li. 

When c > l + e 2/4 , integration of Eq. (24) yields,

(|3 +  1)(7 -  1)Z2

7  + P ~  (7 -  1)Z2

(26)

(27)

where

Z — sn / y  +  P /7 -- 1
A /  ~ *v, A /. V  8 V  7.T P

I t  is interesting to observe th a t  the string never passes through its rest position for 
values of c  different from zero. This follows from the fact th a t  tp never vanishes.

The function which rigorously defines the transmission of a localized disturbance 
along the string is easily found by considering those solutions of Eqs. (4) which allow 
the function r  to assume a constant value. Equations (4) become, under this assum p­
tion,

dhi' 0 V
p -  =  --------->

d£2

where

0V  0 V
p 1 ----  =  -

a?2 < v
(2 8 )

P * =
1 +  r

1 +  e r r
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If we now choose

d  = / «  ~  fyh $ = I (1 +  «2’02 -  (O 2}1/2 -  L  (29)
where r  is determined by

- f  {[l+a2r] -̂|«'(e,0)i2}l/Vi = 1,
TT J  0

and w here/(£) is non-vanishing in a small region in f, all equations are satisfied. This 
solution is valid until the deformation reaches a fixed point in the string. When this 
occurs, the reflection phenomenon requires a change in t .  This solution is in agreement 
with th a t  found by  the linear theory except th a t  p  would assume the value unity in 
th a t  theory.
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A  N E W  M E T H O D  O F  I N T E G R A T I O N  B Y  M E A N S  O F  

O R T H O G O N A L I T Y  F O C I *

BY

A. A. POPOFF  
Autom echanical In stitu te, Moscow, U .S .S .R .

1. Introduction. This paper contains a new method of integration which is pa r tly  
graphical, par tly  analytical.1 I t  permits a simple determination of integrals of the 
form f<j>i(x)<f>k(x)dx, where $u(x) is given graphically and M£x) is given either graphi­
cally or analytically. T he  method requires the construction of certain diagrams, called 
scales, showing the abscissae of the centroids of certain areas associated with <£*(x), 
and is based on some properties of the so-called orthogonality foci. Finally, the 
method is applied to interpolation, Fourier analysis, and the evaluation of M ohr in­
tegrals in the  theory of structures.

2. Definite integrals. Let us consider the integral

(x)<j>k(x)dx. (2.1)

If rectangular cartesian coordinates x, y  
are introduced, the functions 4>i(x), 
4>k(x) can be represented b y  curves, such 
as in Fig. 1. We now consider a distribu­
tion of mass along the curve y = 0 ;(x ) ,  
0 i= x g l ,  the mass per unit length in the 
x-direction being <j>*(x). The centroid of 
this mass distribution we shall call the 
orthogonality focus.2 We shall denote it 
by Fa,, and its coordinates by p*, 
(neither pk nor the total mass iL of the 
system depend on <pi(x)). We have

nk =  | <t>k(x)dx. (2.2)
J  0

ilk is also the area under the curve 
y=4>k(x). Since T  represents the mass
moment of the mass distribution about Fig j
the x-axis,

* R ussian  m an u scrip t received F eb . 24, 1944. T h e  p resen t condensed version was prepared  by  Dr. 
L . Bers, B row n U niversity , an d  Professor G. E . H ay , U n iversity  of M ichigan.

1 T h is  m ethod  was announced in  th e  a u th o r’s n o te  en titled  A new method of graphical integration, 
C. R . (D oklady) A cad. Sci. U R SS (N .S.) 38, (1943).

2 T h is  nam e is justified by  th e  p roperties discussed in Section 4.
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1 r 1
P* = f x<f>k(x)dx, (2.3) J a = T / n k. (2.4)

Pk is also the abscissa of the centroid of the area under the curve y=4>n(x).
T he following lemmas can be verified easily:
(a) I f  4>i(x) is a linear function, its graph is a straight line and Fik lies on this l ine ; 

Fik can thus be found immediately i f  pk is known.
(b) I f  the interval (0, I) is divided into two parts, the orthogonal foci of the two parts 

and of the whole are collinear.
These two lemmas permit a graphical determination to any desired degree of ac­

curacy of the point Fik and hence of the integral T. T he  procedure is as follows:
(a) T he interval (0,1) is divided into 2m equal intervals3 (0,1), (li,l2), ■ ■ ■ , (hm~i,/).
(ib) Operation (a) divides the region under the curve y=cf>k{x) into 2m regions. 

We find the centroids dr {r — \,
2, ■ • • , 2m) of these 2m regions,4 
then combine adjacent pairs of 
regions and find the centroids hr 
(r = 1, 2, ■■■ , 2m~1) of the 2m~1 
regions so formed, then combine 
adjacent pairs of these 2m_1 re­
gions and find the centroids t T 
(r =  l, 2, • • , 2“—) of the 2m~-
regions so formed, and so on. In 
the final stage, we find the cen­
troid of the entire region under 
the curve y=<fik(x). In the lower 
part of Fig. 1, we see these cen­
troids in a case when fit = 2.

(c) A diagram, called the scale 
of 4>k(x), is constructed. T he mid­
dle p ar t  of Fig. 1 shows such a 
scale. I t  consists of points ar(r = 1, 2, ■ ■ ■ , 2”’) vertically above ar and all a t  the same
level, points br(r = 1, 2, , 2m_1) vertically above hr and all a t  the same arb itra ry
level slightly below the points aT, and so on.

(d) Operation (a) divides the curve y~4>i{x) into 2m parts. W’e replace each p ar t  
by a segment of a straight line, as shown in the upper p a r t  of Fig. 1, and assume th a t  
the mass is distributed along these segments ra ther than along the curve.

(e) We determine the points A r(r = l ,  2, • • • , 2m) of intersection of these line 
segments with the  verticals through the points aT. We then determine the points 
B r(r=  1, 2, , 2m_1) of intersection of the straight lines joining adjacent pairs of
points A r with verticals through the points br. This process is repeated, until finally 
we arrive a t  the final point

(/) fik, which is the ordinate of F,-*, is determined by measurement; the value T
of the required integral then follows from (2.4).

8 Unequal intervals could also be used.
* I t  is to be noted that areas corresponding to negative values of m ust be considered as corre­

sponding to negative mass.

F ig . 2.
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3. Indefinite integrals. The graphical construction of Section 2 can be applied to 
the indefinite integral j4>i{x)4>k{x)dx, in the following manner (see Fig. 2). An in­
terval (0, /) on the x-axis is taken, and the construction of Section 2 is applied to the 
integral J 0<t>i,i(x)<f>k(x)dx, where 4>i,\(x) =<fii(x) in (0, If) and vanishes elsewhere. This 
yields a point F ik,i with ordinate T he point (h, /<*,i) is' then plotted. T he con­
struction of Section 2 is then applied to the integral f ‘4>it2(x)4ik(x)dx, where 

=4>i(x) in (0, l2) and vanishes elsewhere. This yields a point F,ki2, and the 
point [Is, fik.i) is plotted. In this way we obtain the sequence of points (lT,
0  =  1, 2, • ■ • , 2m). Since

1 r lf i'V ,r — ~ i <pi,r\ ~r)/(*•, r =    I <pi,r(x)4>k(x)dx, (-1-1)
J  0

the curve passing through these points is approximately the integral curve, except 
for the constant factor 1/fi*.

Figure 2 shows this construction for the same functions <£,(:r), <£*(*) considered 
in Fig. 1, in again having the value 2.

4. Some properties of orthogonality foci, (a) If the s-axis passes through the 
point Fik, then /,*  =  0, and by (2.4)

/ .

I
<t>,(x)4>k(x)dx =  0, (4-1)

i.e., 4>i{x) and <f>k(x) are orthogonal. I t  is for this reason th a t  Ftk is called the orthogonal­
ity  focus.

(b) Let us set 4>i{x) =<f>k(x). Then, from (2.4),

1 r  ‘
fkk = ~ i  [Mx)]*dx =  2ft  (4.2)

Î2/; J  0

w h e re /*  is the ordinate of the centroid of the region under the curve y —<f>k(x), 
W e shall now prove the following theorem. The curve y=h4>k{x), where h is 

a constant, has the least mean square deviation from  the curve y  =<pi{x) when

h =  f a / f u-. (4.3)

To prove this, we note th a t  the mean square deviation is a minimum when

— f  [<j>,•(*) -  h4>k{x) \2dx = 0, 
ah*/ o

i .e . ,  w h e n
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(c) Let us draw the horizontal line ¡3 through the point i7,* (Fig. 3), and then ro ta te  
(3 about Fuc through an angle a  to a new position ¡3'. A new curve y  = f>! (x) ¡s i n ­
structed such th a t  the vertical distance from /S' to points on this curve is equal to the 
vertical distance from (3 to points on the curve y^<pi(x). We shall now prove th a t

n 1 r* I —
4>< (%)4>k(x)dx — 4>i(x)4>k(x)dx.

J o  Jo
(4.4)

We have cpi (x ) =<£,■(:*;) +  (pi,— x) tan  a, where, it is recalled, p* is the abscissa of Fik- 
Thus

/ 4>! {x)4>k{x)dx =  I 4>i{x)4>k{x)dx +  tan a (pk — x)<pk(x)dx.
0 J  n J o

T he  last integral vanishes, by the definition of p*, and the desired result is obtained.
I t  is to  be noted th a t  the two 

curves have a  common point I ,  about 
which the curve is “ro ta ted .”

(d) Let us consider the case when 
4>i(x) is linear in each of the intervals 
(0 , h) (/i, I), so th a t  its graph is a 
broken line abed (Fig. 4). We shall 
now show that,  i f  ab is rotated about a 
point M  on ab to a new position a'b', 
then Fik is unchanged i f  cd is rotated 
about a certain point N  on cd in  such a 
way that bc=b'c'.  T he points M, N  
are called conjugate foci. To prove 
this theorem, we use Fig. 4, in which 
A'f, -dL, A i  , A {  are points leading to 
the determination of F,t, following 
the procedure laid down in operation
(e) of Section 2. From the three pairs
of similar triangles Mbb' and MA iA { , Ncc' and N A i A F a A i A  i  and F{tA 2A 2, we 
have

bb' cc

A\A[ ßi — 7! A 2.4 2 Ts ßt

A iA l

A 2 A 2
<*1
a 2

Since bb' = cc', av a lu é  for A iA{ ¡ A 2A {  can be determined from the first two equations. 
Substitution of this value in the third equation yields

a m í l / í L )  +  G!2Yi(l/i3i) =  öl +  ö 2. (4.5)

Thus ¡82 is uniquely determined by f t ;  hence N  is uniquely determined by M.
I t  is easily seen tha t,  if rotations of the above type are carried out about conjugate 

foci, and if 4>l (x) denotes the function the graph of which is a'b'c'd',  then
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fe) Let us denote by F ik and Fu 
the orthogonal foci of the function 
<f>i(x) represented by the broken line 
abed with respect to two functions 
4>k{x) and 4>i(x). We shall now show 
that, there is a unique pair of con­
jugate foci M  {on ab) and N  (on cd) 
such that rotations of ab about M  and 
cd about N  {with bc = b'c') leave both 
F a a r id  Fu unchanged. This follows 
from the fact th a t  jFjk is unchanged 

, if Pi and (Fig. 4) satisfy (4.5), and 
Fn is unchanged if they satisfy a sec­
ond relation of the same form as 
(4.5). Since both these relations are 
linear in 1/|3], l//3j, they can be solved 
for unique values of fii and /Si­

l t  is easily seen that, if rotations 
of the above type are carried out 
abou t such conjugate foci, and if 

<f>! (x) denotes the function the graph of which is displaced position of abed, then
(4.6) holds and also

/• i
4>t (x)<piXx)dx =  I 4>i{x)4>i(x)dx.

0 d  0

Conjugate foci can be used widely in graphical computations dealing with s ta t i ­
cally indeterminate structures.

5. Application of orthogonality foci to the interpolation of curves. Let us consider 
the application of orthogonality foci to the following problem. W e are given two func­
tions or curves 4>,{x) and 4>k{x). I t  is required to find a straight line y = A + B x  such 
tha t  the integral

u (A +  Bx)^-4>kdx, (5.1)

will have the least possible value. We shall now show' th a t  U has the least possible 
value when the straight line y = A - \-B x  passes through the orthogonality foci F ik, Fu, 
where xipfa

We set d U /d A  —d U /d B  = 0 ,  to obtain the equations
/ » I n I e i

4>kdx +  B I x<t>kdx  =  J 4>i4>kdx,
0 ^ 0 *̂ 0

/ »I p i  /» I
%4>kdx +  B I x24>kdx — I xcj>i4>kdx.

o 0 *̂ 0

(5.2)

Let us consider the functions <f>o(x) =  l, 4>i(x) =x , <p2( x ) = x 3. W e have £lo = l, Qi =  £I2, 
^ 2= 313- If the orthogonality foci of <pk with <pn, <f>i, <t>j are denoted by Fka{po, /to), 
Bu(px' fki)i  F*2(p2, fkf), respectively, and the orthogonality foci of <p; with <f>* and <j>i 
are denoted by F ik{pk, f ik), Fa {pi, Fu), respectively, then
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f 4>kdx  =  f i j ,  f  <pkxdx  =  -¿/a/2, f  <f>/.x2dx  =
0 ** 0 

I r> I
4>i<t>kdx =  /,a ■ <f>kdx = fufkol, 

0 «7 0/ .

/ 4>i<Pidx - f u  I 4>kxdx = ¿/¿¡/a/2, 
n *7 o

Thus (5.2) can be written in the form

fkll 2
/I  +  B - — =  / i t ,  4  +  B   =  / ¡ | .

2 / ao 3 / a-i

Since pa, pj are abscissas of orthogonality foci, by (2.3) we have

c  5 /  r ' ,Pi =  . x<f>kdx /  4>kdx = ----
•7 o /  *7 o / ao

Pi =  j '  x2<f>kdx j  x<t>kdx -
2/a2/

3 / A !

Thus (5.5) take  the form

,1 +  Bpic - / ,a ,  4  +  B p i  =» / a ,

(5.3)

(5.4)

(5.5)

whence it follows th a t  4  and 5  m ust be such th a t  the straight line y =A + B x  passes 
through the orthogonality foci Fik, Fu.

In order to construct the straight line y  = A -\-B x  which is such th a t  U  has the 
least possible value, we can proceed as follows:

(a) Scales are constructed for 0 o = l ,  <j>i=x, </>2 =  x 2. These are as shown in Fig. 5 
when the interval (0, I) is divided into 8 equal par ts  (w = 3 ) .

(b) A scale is constructed for <j>a. If the function <pk is given, this can be done ana­
lytically. In any event, it  can be done graphically using the scales in Fig. 5, since it 
involves integrals of the forms fcpkdx, )4>kxdx.

F i g . 5 .
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(c) A scale is constructed for 4>i—x4>k- This also can be done graphically by means 
of the scales in Fig. 5.

(id) T he foci Fik, Fa  are found following the procedure outlined in Section 2. T he 
straight line through Fik, Fn is the required line.

6. Graphical harmonic analysis. Orthogonality foci can be used to obtain the 
Fourier series expansion of a function which is given either analytically or graphi­
cally. If 4>(x) denotes the function, its expansion into a Fourier series of sines or cosines 
will involve the integrals

nirx
4>(x) sin -  — dx  

o I
nirx

d>(x) cos dx
I J  o I

(6 . 1)

where a„, bn are Fourier coefficients.
Difficulties are encountered if the method of orthogonal foci is applied directly 

to the integrals in (6.1). These difficulties are avoided if we write (6.1) in the form

2 f 1£x =  - I 4>{x)4>ti(x)dx,
1 J  0

2 r l 22 r 1 2 r 1
On =  —  I <j>(x)<plli( x ) d x  I (¡>(x)dx

I J  0 I j  0

2 r lc ) d x  I <f>(x)dx

where

2 r  '
bn —— I d>( x)rf>cn(tx)d 

I J o I J

TTX
4>,i(x) = sin - -i 

I

4>cn(x) =  COS
nirx

<j>sn{x) = 1 +  sin

(n =  0, 1, • • • ).

(n = 2, 3. • ■ • ), 

(n =  0, 1, • ■ • ),

{n =  2, 3, • • ■ ),

(6.2)

(6.3)

By the use of the scale of <fro(z) =  1 (Fig. 5) and the scales of the functions in (6.3) 
(Fig. 6), th e  ordinates of the orthogonality foci of <f>{x) with these functions can be 
found graphically by the procedure of Section 2. If we denote these ordinates by 
fo,ftn,fcn,  respectively, then (6.2) takes the form

2 2
«1 =  — /,i£2.l, a» =  —  ( / , Ä n — /(A>) (« =  2, 3, • • • ),

V I

I
(fcn^cn — /oflo) (« = 0, 1, • • ),

(6.4)

where i20, fl.», 12« are respectively the areas under the curve <^o( )̂ =  1 and the curves 
in (6.3) for the interval ( 0 ,1). Now

21
iî.,1 =    !

IT

fid =  I,

U

Hen *  I,

— cos mr\

nir /
{n =  2, 3, ),



whence (6.4) becomes

4 / I  — cos mr\ 1
at =  - f . u  =  2 I /.„ ( 1 +   , -  /o I (n 5  2, 3, • ■ •.),

IT L \  WIT /

= 2 ( /„  -  /o) O  =  0, 1, ■ • • ).

7. Graphical evaluation of M ohr integrals. In the theory of structures, the de­
termination of deflections in bending often requires the evaluation of so-called M ohr
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integrals, which have the form T  = j [ M xM l d x ,  where M z is a function of x  given 
graphically and M i  is a linear function of a; (Fig. 7).

From Fig. 7, we see that

Mx  =  M,\n -xj— b M ba -  • (7-1)

T hus

r  M au r l M da
T  =  I M i  — (I -  x)dx -r I M x -------xdx. (7.2)

J  o I do I

By use of the scale of x  given in Fig. 5, for both of these integrals the orthogonality
foci FAb and FBa can be determined graphically. If M*B and M BA denote the ordi­
nates of these foci, then

7 =  M au (I M  abI) +  M ba^ ^ ra!),

or

T  =  \1{M'Ab M Ab +  M ba M ua).  (7 . 3)

M * b and j j f ja  are called the focal moments.
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— NOTES -

T H E  P R E S S U R E  D IS T R IB U T IO N  O N  A  B O D Y  IN  SH E A R  F L O W *

B y M. R IC H A R D SO N  (Brooklyn Collegel)

Problems involving shear flow have been studied recently by Tsien2 and K uo .3 
T he purpose of the present note is to point out th a t  the pressure distribution on an 
infinite cylindrical body immersed in a two-dimensional shear flow can be obtained 
by means of integral equations, a t  least for a sufficiently smooth contour. A direct 
a t tack  on the boundary value problem for the stream function is avoided. The method 
used is essentially th a t  employed by Prager4 in the case of potential flow.

If the undisturbed shear flow is given by the velocity field

st =  U{\ +  ky), jsv =  0, (1)

where U and k  are constants, then it has constant vorticity equal to — kU. The con­
tinuity equation implies the existence of a stream function \p(x, y) which satisfies the 
Poisson equation

w  =  kU

with the boundary conditions

dip dip
— =  -  IV =  0, -  =  vx = U{1 +  ky)
dx dy

a t  °o, and p  = c, a constant, on the contour C of the cross section of the cylindrical 
body immersed in the usual position in the flow. Let us set \p=4'aJr'Pu where

f  k \
u { y  +  -2 y  )

is the undisturbed stream function and \pi is the disturbance stream function. Then 
V^o =  &£/, and i/a is harmonic in the region E  exterior to C, with the boundary con­
dition

P u  =  c —  ip0„

on C , where the param eter s may be the arc length on C measured from any con­
venient starting  point.

* Received Ju ly  6, 1944.
1 This note was prepared while the author was a fellow in the Program of Advanced Instruction and 

Research in M echanics at Brown University (Summer 1943). The author is indebted to Prof. YV. Prager 
for suggesting the topic and for valuable advice.

2 H. S. Tsien, Symmetrical Joukowsky airfoils in shear flow, Quarterly of Applied M athematics, 
1, 130-148 (1943).

3 Y . H. Kuo, On the force and moment acting on a  body in shear flow, Quarterly of Applied M athem atics, 
1, 273-275 (1943).

3 W . Prager, Die Druckverteilung an Körpern in ebener Potentialströmung Physikalische Zeitschrift, 
29, 865 -869 (1928).



By a well-known theorem  of potential theory, we have

1 r  I  d 1 M i  1 \
Pi(P) -  ’M00) = — ! ( Pi -  log   log — 1 ds (2)

¿tv J  c \  on r dn r /

where n  is th e  exterior norm al, P  is a point in E, and r is the  d istance between P  
and a variable point whose range will be clear from the  context. W e now apply  
G reen’s theorem

r  r  v. r  /  dv d u \
( u V 2v —  vV2u)dA =  — J  — t —  v J  ^ 5>

where n'  is the interior normal and I  is the region interior to C, to the functions 
u =  —p 0 and n =  log (1/r), obtaining

c  f  1 c  a 1 r  dP<> ikU  I log— dA =  I t/'o lo g — ds — lo g — ds,
J  J  i r J  c dn' r J  c dn' r

Using the fact th a t  d /d n 1 = —d/dn  and combining th is with (2), we obtain

1 C d 1 1 r  dp 1 kU r  C 1
pi(P) — =  —  P — log — ds — — I log — ds -j- I I log — dA. (3)

2t  J  c dn r 2ir J  c on r 2ir J  J  i ~ r

The first integral in (3) vanishes because ^  =  c on C, and because

r  d l
: — log —  ds

J  c on r

is the angle subtended by C a t P , which is zero since P  :s outside C. In the second 
integral of (3) we m ay w rite — d\p/dn =v(s) where 11(5) is the (tangential) velocity 
along C. Hence we have

176 NO TES [Vol. I l l ,  No. 2

Let us introduce

1 r  1 kU r  r  1
Pi (P) — P i i ^ )  =  —  j v($) lo g —  ds -f f lo g — dA.

2ir J c r 2 t  J  J  i r

C 1V = I z/(j) log — ds.
J  r r

,(4)

T hen there exist interior and exterior lim its d V i f d n  and d V e/ d n  such th a t

1 / d V t  5TA  • 1 ( d V i  9 F A  r  3 1
— . --------------- 1 = ttv(s) ,------ — -1 ------- 1-------I = I »(/) — log — dt,
2 \  dn dn J  2 \  dn dn J  J  c dn r

so th a t
d v t r  d 1
—  =  -  x o ( j )  +  I v(t) —i log — dt. (5)
dn J  c on r

From (4) and (5), we find th a t the norm al derivative of pi a t  the exterior edge of C 
is given by



where the subscript s indicates the point of C a t  which the quan tity  is to be evaluated. 
B ut

v(s) -------- ■
d n ,  a n ,  a n ,

dto 1 _  1 r  d 1 kU d r  r  1
= ---------- 1-----v(s) --------! m ) —  log — dt — . l o g  — dA.

dn,  2 2ir J c dn, r 2ir dn, J J i r

Therefore, the velocity distribution along C, v(s'), satisfies the integral equation

l r  d l dpQ kU a r  r  l
v(s) H v(t) -  -  log — dt =  -  2 -  log — d A , (7)

tt J  c an, r dn, tt dn, J J j r

or, since the last integral m ay be differentiated under the integral sign,

1 C cos (r,t, n,) kU r  C cos (r, n,)
v(s) +  - v(t) -------------dt = -  2 -  ^  I I  ——  d A , (8)

ir J  c  o n ,  it J  J  i  r

where s and t are points of C, (r ,h n ,) is the angle between the direction st and the 
exterior norm al a t  s, r is the distance from s to  a variable point p  of dA,  and (r, n ,) is 
the angle between the direction sp and the exterior norm al a t  s. This result reduces 
to  P rager’s equation (6a), loc. c it ,,6 for the special case of uniform  flow, th a t is, when 
¿ - 0 .

T he integral equation (7) or (8) for the velocity d istribution  on the contour C 
m ay be solved in general by approxim ative m ethods. Knowledge of the velocity dis­
tribu tion  on C is equivalent to  knowledge of the pressure distribution on C.

Example. Suppose C is a circle of radius a w ith center a t  0. In this case, the in­
tegral equation can be solved explicitly. We have, cos (r ,(l —1/2a. I t  is not
difficult to show th a t

d r  r  l
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dn
log — dA = — ra.

Finally, dpofdn ,=  E/sin 0 +  Uka sin2 6 a t  the point with polar coordinates (a, 6). Hence 
(7) or (8) becomes

r
v{s) = - 2 U sin 9 -  2Uka sin2 9 +  Uka , (9)

2 air

where T  =  Jcv(t)dt is the circulation.
For the sam e example, Tsien (loc. cit., equation 18) finds the stream  function

i  = U

Hence,

( r  ^ sin 8 +  • r2 sin2 0 +  — - cos

dp
v(s) =  =  _  2U sin 9 -  2Uka sin2 6 +  \Uka.  (10)

dr

To reconcile this result w ith (9), we m ust observe th a t we can w rite T =  ro-t-T;, where 
To and Ti are the circulations arising from the undisturbed flow and the d isturbance

6 T he difference in sign is due to  th e  fact that our (rtI) n ,) is the angle supplem entary to that so de­
noted by  Prager.
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flow, respectively. Hence Fo =  f cVa<dt where v« is the undisturbed velocity field given 
by (1) and the subscript t indicates the tangential com ponent. By S tokes’ theorem , 
r o = / / / (curl v 0) IdA = — UkA where A  is the area of I .  Hence in our example, 
r 0= -  Ukira2. If we su bstitu te  this for T  in (9), assuming, as Tsien does,6 th a t  Fi =  0, 
then our resu lt (9) reduces to (10).

? The author is indebted to Dr. Tsien for pointing this out. He had a t first m istakenly supposed that 
T sien’s result was based on the assumption r  =  0.

ON PLASTIC BODIES WITH ROTATIONAL SYMMETRY*
B y C. H. W. SE D G E W IC K  ( University of Connecticut)

Introduction. T he ro tational sym m etry  problem  in p lasticity  was discussed by 
H. H encky1 in 1923. In the present paper some new results are obtained. Furtherm ore, 
the presentation is different from th a t  used by Hencky.

In  th e  following discussion, r and z in the cylindrical coordinate system  (r, 0, z) 
will be replaced by a(r, z) and j8 (r, z) in such a w ay th a t a, ¡3, Q form a curvilinear, 
orthogonal system  T he line elem ent ds will be w ritten in the form

ds2 = A 2da2 +  B 2dp2 +  r2dd2,

where A  and B  are functions of a  and ¡3. Furtherm ore, if the  angle between the curve 
(8 =  const, and the direction of increasing r is denoted by y ,  we will have

dr dr
■ — = A cos 7 , ■ -  =  — B sin 7 , (1)
da d/3

dz . dz
-  — A sin 7 , — = B cos y. (2)

da dfi

From  these, we get

5/1 dy dB dy
=  -  B —  , (3)   =  A -  ■ (4)

5(3 5a da 3(3

T he stress com ponents will be designated by <rn„, o&j, <rw, aag, crae, ergs- In th e  prob­
lem under discussion, <ra9 =  0-̂ 5 =  0 .

I t  Lines of principal stress. Along the lines of principal stress, cra(j =  0. In this case 
the equations of equilibrium 2 reduce to

* Received D ecem ber 5, 1944. T h is  p ap er was w ritten  du ring  th e  sum m er of 1944 while th e  a u th o r  
was a  s tu d e n t in th e  P rogram  of A dvanced In stru c tio n  an d  R esearch in M echanics a t  Brown U niversity . 
T h e  a u th o r  wishes to  express his ap p rec ia tion  to  D r. W . P rag er for suggesting th e  problem  an d  for v a lu ­
able criticism s.

1 H . H encky, Über einige statisch bestimmte Fälle des Gleichgewichts in plastischen Körpern, Zeitschr.
fü ran g ew . M ath . u. M ech. 3, 241 (1923).

3 A. E . H . Love, The mathematical theory of elasticity, 4 th  edition , C am bridge U niversity  Press, 1934,
p. 90.
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1

ABr

' 3
— (Br<raa) 
.dot

c ss  d ae$ d

“  ~ T  T (In P  ~~ ~ 7 ~  7 ~ (ln r) =  ° ‘A da A da

1 f  5 '! %  3 Caa d
 , — (Artrpp) [ -------------- (In r) — •------- — (In A) = 0,
ABr Ldfi J  B dp B d{3

On simplifying, these become

ddan 3 3
 1- ' crac, —  css) —  0 n J?) ¡ f «« ~  —  (In r) —  0, (5)

da da da

dcrgp d d
----------- (c„„ -  css) — (1° W) +  (css — — 0 n r) =  0- (6)

3/3 dp dp

Assuming the  T resca yield condition, we have <raa — agg = 2k, where k is constant. 
Furtherm ore, in the so called “fully plastic s ta te ,” cjs m ust be equal to  either craa 
or css* Let us assum e first th a t  csg= coa. W riting <raap-cr^-\-aes =  3cr, we have & aa 
=  <r +  2k/3,  css =  c  — 4 k j 3. From  (5) and (6), we then  get

da d da 3
 b 2k —  (ln B) = 0, (7) -  -  2k — In (d r) =  0. (8)
da da ! 3d

Elim ination of c furnishes
32

-  - [In (d d r)  =  0 . (9)
3a3p

If above we had assum ed th a t  — we would have obtained

da d da d
.  +  2k — In (5 r ) l  =  0, (7*)  2k — ( l n d ) = 0 .  (8*)

da da 3d dP

These also lead to  Eq. (9), the  solution of which is

A B r = (10)

L et us define a '  and ¡3' by3

da' =  e ' ^ d a ,  d0  =  e ^ H p .  (11)

This transform ation m erely relabels the  families of surfaces a  =  const, and 
d =  const.

Now, the volum e bounded by the  surfaces a, a + d a ,  8 , 8 +dp, 0, d+dd  is equal 
to ABrdadpdd = A 'B'rda'dfi'dB.

S ubstitu ting  for d a ’ and ¿8 ' from (11) and m aking use of (10), we get

A 'B 'r  =  1. (12)

T hus, th e  volum e contained between the co-ordinate surfaces a{ , a i  ; 0 1 , pi  ; 0\, 02 
is given by

f  } * j fa'dP'dd = fa£ -  a () (P i  -  6 0 ( 0 ,  -  60.
J  B v.y.

1 W . Prager, Theory o f plasticity, m im eographed lecture notes, Brown U niversity , R . I., 1942.



I t  follows th a t if the differences a i  ~ a ( , ftf —/3i , 62 — 6 1 are kept constan t for succes­
sive co-ordinate surfaces, the resulting volumes will be equal. T his resu lt is analogous 
to th a t obtained by Boussinesq4 in the  plane problem.

D ropping the prim es for the sake of sim plicity we m ay construct a solution by 
setting  y= g(fi) .

From  (3), A  is then seen to  be a function of a  alone. W e set A = 4>'(a), and obtain 
from (4) B  =<pgr +  h($).  T he first equation (1) leads to

dr
r = <p cos g +  — =  -  g'4>{sin g) +  V.

dp

B ut, according to the second equation (1),

dr
—  =  ~  (4>g'i +  h) sin g. 
dp

Hence h = —/ '/s in  g. T he condition (12) now takes the form

</>' ( u ’ -  (<t> cos g +  I) =  1.
V sin g/

T his can be satisfied by setting  1 = 0, g' cos g = c, — 1/e, where c is a constant. Dis­
carding constan ts of integration we thus obtain

3«
sin g =  c/3, <f>3 = — )

c

7  =  sin- 1 (c/3), 4 A = 3 - : 'V - Ii3a - 2/5,

B  = S W W ' l l  -  e ^ 2]“ 1' 2, r =  3I' 3c - i '3a 1/3[l -  c ^ 2]1' 2.

E quations (2) now give z = 3 ll3c2, 3a in(3. Hence

z / r  =  c m  ~  c 2/32 ] - 1' 2, r 2 +  z 2 =

T he curves a  =  const, and /3 =  const, are thus seen to  be concentric circles around 
r = z  = 0 , and radial stra igh t lines, respectively.

In the above example, it m ay easily be verified th a t, corresponding to a set of 
equid istan t values of a, ¡3 and 9, the  resulting volum es will be equal.

By substitu ting  the  value for B  above in (7) and in tegrating, an expression for a is 
obtained.

2 . L ines of m axim um  shearing stress. Along the lines of maximum shearing stress, 
&a$ — k and <raa= a ^  = o. ae$ will be equal to  cither cr +  & or cr — k. L et us assum e first 
th a t  (XM = v Jrk .  In this case, the equations of equilibrium  ( 2 )  are
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1

A B r

d  k  d  I c r d  ( ( r + £ ) d
-  (Bra) +  P j i  { A h )    (In B) -  g 1 - ,  (In r) =  0,

d a  A  d p  J  A  d a  A  d a

i  r a  k d l d a d
------ . — (d w ) +  — — (B*r) , ---------(<r +  k) -  - (In r ) ------------- (In A) =  0.
A B r ld p  B da j  B dp B d p

These reduce to

4 J . Boussinesq, Lois géométrique de la distribution des pressions, dans un solide homogène et ductile 
soum is d des déformations planes. C om ptes R endus Ac. Sci. P aris  74, 242 (1872).



1945] C. H. W . SE D G E W IC K 181

da k f dr 3A 1
-----(- ------  A- —  +  2.4 r ----
da A Br  L op 30 J
3<r k dr dB 1
-----k ------  B 2 - + 2  Br ----
dp A Br  L da da _

k — (In r) =  0, 
da

-  k — (In r) =  0 .
30

M aking use of Eqs. (1), we obtain

dcr r  i 3 7*1 3
— +  k — sin 7  — 2 —- -  k - (In 1  o,
da r 3 q-_ d a

3ff - B d y ' 3
— +  k — cos 7  + 2 — -  k - (In ri =  0.
3 0 r 3/3 J dp

(13)

(14)

E lim inating  cr, we find

d T — A sin y

30 da.
3 p  cos 7

da L r

371 
+  2 ‘30 J

C arrying ou t the  differentiations and substitu ting  for d A /d  ¡3, d B /da ,  dr /da ,  dr/30  
from Eqs. (1), (3) and (4), we obtain

d2y  | 1

dad0 2r

d y   ̂ dy~
A cos 7    B  sin 7  —-

3/3 da^

A B
 cos 2y  =  0 .

4r2
(IS)

We m ay rem ark th a t  as r - » « ,  Eq. (15) reduces to  th a t governing the case for 
plane strain , i.e., d2y  /dadp  — 0.

I t  is easily seen th a t the only solution of equation (15) having two orthogonal
families of stra ig h t lines occurs when 7  =  45°, i.e., when the two families of stra ig h t
lines are inclined a t  an angle of 45° to  the  axis of sym m etry. This result was obtained 
by H encky .1

If we had assumed above th a t  aee=a — k, our equilibrium  equations would re­
duce to

r) rr — A /)
r) =  0, (13*)

r) =  0, (14*)

da II1

3
—  +  k ------ sin 7 — 2 - +  k -
da _ r da_ da

dcr B dy 3
—  + k ------cos 7  +  2 — - -  k —
30 .  r 30. 30

which also lead to  Eq. (15).
L et us assum e a solution of Eq. (15) in the form 7 = /(a )+ g ( /3). T he equation then 

becomes

2 r[{„4 cos ( / +  £ ) |g ' -  \B  sin ( / +  g )} / ']  -  A B  cos 2 ( / +  g) =  0.

S ubstitu ting  for A  and B  from relations (1), we get

3r 3 l~cos 2 ( /  +  g)~l  ̂ dr d j~cos 2jJ  4 g) 

da 3/3 L r J 3/S da L r J
A solution of (16) is given by r =  C cos-2 ( /+ g )  where C is a constant. W ithout loss 

in generality we m ay s e t / ( a ) + g (5 )  =a~(3.  W e then have
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r — C cos 2(a — fi), 
dr
— =  — 2C sin 2{a — ¡S) =  — 4C sin (a — jS) cos (a — 0). 
da

E quations (1) now furnish

A =  — 4C sin (a — ¡3), B =  — 4C cos (a — /3),

and Eqs. (2) give
z =  -  2C(a +  P) +  C sin 2(a -  jS).

I t  follows th a t the curves a  — const, and (3 = const, are cycloids tangen t to the  lines 
r = C and r *= — C, respectively.

From  Eqs. (14) and (15), we are able to determ ine <r. Substitu ting  our values 
for y ,  A ,  B ,  r and integrating, we find th a t

a =  46(a +  ¡8) +  k In [l — sin 2 (a — ¡3) ] +  const.

A nother solution is obtained by s e t t in g /( a )+ g (d )  = a — P, as before, and substi­
tu tin g  r =  e“+<s(¡& where <t> = <p(a-~{3) is a function yet to be determ ined. A fter m aking 
these substitu tions and carrying out the differentiations, we get

[<£2 — 4>'2] cos 2(a — (3) — 2<j>4>' sin 2(a — /S) =  0

which is satisfied by
<f> =  Cjcos {a — p) +  sin (a — ¡9)].

W e thus have
r = Cea+?[cos (ar — ¡3) +  sin (a —■ (3)].

Using relations (1) and (2), we find th a t

z =  Ce“+iS[sin (a — ff) — cos (a  — /3)].

T he curves a  =  const, and )S =  const, are logarithm ic spirals which in tersect the
stra igh t lines through the  origin a t  an angle of 7r / 4 . T his solution corresponds to  the
solution obtained in 1 .

I t  is Interesting to  see th a t  these netw orks of cycloids or logarithm ic spirals, known 
in th e  case of plane strain , are also adm issible in the  case of ro tational sym m etry.

O N  T H E  T R E A T M E N T  O F  D IS C O N T IN U IT IE S  IN  B E A M  
D E F L E C T IO N  P R O B L E M S *

B y S. TIM O SH E N K O  (Stanford University)

In  a note on the trea tm en t of discontinuities in beam  deflection problem s M r. 
E . Kosko1 a ttrib u te s  to R. M acaulay the  m ethod w hereby the num ber of constants 
of in tegration  can be always reduced to two, independently  of the num ber of forces. 
T his m ethod was, however, originated by A. Clebsch, and is discussed in his book 
“Theorie der E lastic ita t Fester. K orper,5’ 1862, page 389. In  R ussia it  was called the 
Clebsch m ethod and was widely used in textbooks on streng th  of m aterials. I t  was 
also used in G erm an books. See, for example, A. Ffippl, Festigkeitslehre, 5th  ed. 1914, 
page 124.

* Received Jan. 14, 1945.
1 Quarterly of Appl. M ath. 2, 271-272 (1944).
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O N  C E R T A IN  IN T E G R A L S  IN  T H E  T H E O R Y  O F 
H E A T  C O N D U C T IO N S *

By W IL L IA M  H O R E N S T E IN  {Math, Tables Project, Nat. Bureau oj Standards) 

T he integrals

<f> =  x~in  exp :  b2x 1 ix,

\p — I  x~ 1 / 2 exp I  b2x f i x
( 1 )

frequently  arise in the theory  of heat conduction. I t  is the purpose of this note to 
express these integrals in term s of tabu la ted  functions.

By simple transform ations the above integrals m ay be w ritten in the form

b2\  1 J<t>

db
(2)

r x (  b2\  l
<f> = 2 I exp ( — a2X2 — — i \ ,  \[/ — — ■ -

J , / v 7 V XV 2b

L et us consider the integral

u  =  exp — a2X2 — — dX = I FdX. (3)

By obvious transform ations (3) m ay be w ritten  successively in the forms

u — I FdX — I FdX =  -  e~2ab -  |  exp ! -  ai {X +  - ) ¡¿X
^  o 2a J  o L \  aX/ J

=  I ' j g J  _  \ L  ©  I x~2exp ff2( \ +  ) ] d X  
2a a J  i,ac L V aX/ J

-  T T * - *  +  ’ “ / „ V 1 “  c x p L”  “’ ( x +  1 iX

W.L«»[_*,(x+£Oa
ù  =  cosh 2a b  —

a 2 a
n  ( L  +  „ )

-  e2ab (  exp -  a2 ( X +  \  \ d\ ,
J  » „  .  V ax / j

(4 )
6/ac 

. rx
where erf (x) = (2 / V x ) / ,  exp ( —£2)if£.

In an entirely similar manner one finds

\  x  /  b
u =  e_2oi erf ■------

2a \  c

From (4) and (5) one obtains

* R e c e iv e d  M a y  2 , 1945 .

\  7 3 ” r  / 5 \ 21
I +  e ~ 2“1 exp — a2 ( X------ 1

'  J  blac L \ aX/ _
dX. (5 )
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« =  I exp s V  -  "[, )d k

\ ' i r V * T  /  b \  /  b \~= -  cosh 2ab -f- - e~2ai erf j — ac 1 — e'ab erf I  f- ac)
2a 4a L \  c J  \  c /_

Accordingly,
r m (  b?\

4> =  2 I exp | — a2X2  ) d \
J  u v( \  X2/

!al erf { fry t — ~ e2*6 erf .

(6)

V  7T v  IT
—  cosh 2aô H-------
a 2a

(7)

An expression for i/' is obtained by differentiating (7) w ith respect to b in accordance 
with the second Eq, (2).
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