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1. Introduction. As a  general rule, a problem  in physics is not considered solved 
unless the  solution can be expressed in analytical form. T he sam e usually holds true 
in the case of engineering problems, although there the a r t  often progresses faster than 
the theory under the im pact of economic forces, and the engineer is often forced to seek 
a solution by m eans of an  experim ental setup, or possibly by means of some numerical 
or graphical process.

T he disadvantage of a num erical or graphical m ethod is its lack of generality, its 
tendency tow ards inaccuracy, particularly  owing to  cum ulative errors, and its in
ab ility  to  exhibit optim um  values for the param eters involved, particularly  if these 
have to  be in num erical ra ther than  in symbolic form. On the  o ther hand, these m eth
ods often yield answers to  problem s th a t the  analytical m ethod cannot handle, and 
furtherm ore are often very effective as teaching aids. T his is particularly  true  of the 
graphical m ethods.

I t  is the purpose of this article to  illustra te  the application of graphical construc
tions to  problem s involving nonlinear circuits, particu larly  those containing vacuum  
tubes. I t  is the w rite r’s hope th a t  some m athem atician  will be sufficiently a ttrac ted  
to  this m ethod to  a ttem p t to  establish it on a more general basis, possibly som ething 
akin to the collection of theorem s of ordinary Euclidean or of P rojective Geometry.

2 . Definition of graphical m ethod. Before proceeding w ith a  description of the 
m ethod it will be desirable to  define it. By graphical constructions are m ean t those 
geom etrical manipulations by which a  solution to  a problem is obtained. I t  m ay be 
necessary to  slide a curve representing a relationship between two variables along 
th e  axis of the independent variable, and to find (geometrically) where it intersects 
ano ther curve representing a second relationship between the two variables. T he 
m anipulations m ay be more involved th an  those of simple translation  along the axis, 
and it is to be stressed th a t  the restriction of ruler and compass constructions is not 
invoked in these m anipulations.

I t  is apparen t th a t  the m ethod is no t th a t  usually understood by the average engi
neer, nam ely, the  p lo tting  of a com plicated generalized analytical expression to  per
m it values to be taken off the graph in order to obviate the need for com puting the 
value of the expression every tim e the problem arises.

3. Simple series nonlinear circuit. As an  elem entary example of a graphical con
struction , let us consider the circuit shown in Fig. 1, th a t  of a diode (two-element
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vacuum  tube) in series w ith a resistance R  and a source of d.c. potential E. I t  is de
sired to find the current flow in th is circuit.

I t  is necessary to  know the voltage-current e —i  relationship for the diode, and 
for the  resistor R. We assume for sim plicity th a t  the la tte r is a linear resistance. 
Then the e — i  relationship is th a t  shown in Fig. 2. T he curve is a stra igh t line m aking 
an angle 9 w ith the voltage axis, such th a t

cot 0 = R, (1)

the resistance of the device. T his slope is constan t and hence R  has a fixed value: 
so m any volts per am pere, or ohms.

On the o ther hand, the diode has the characteristic shown in Fig. 3. Here, for

*  i

negative values of voltage (p ia te  negative to  cathode) no current can flow; while for 
positive values of voltage current flows in such m anner as to generate the curve shown,. 
T he ideal diode would have the following equation for positive p late voltages

i  =  Ae3/2, (2)

b u t actual diodes depart to some exten t from the above equation owing to  such fac
tors as initial velocity of emission of electrons from the cathode, the effect of the sup
porting  m em bers for the cathode and plate, etc.

T he diode is a nonlinear device; first because of the break in the curve a t  the  origin 
and second because even for positive plate voltages the e —i  relationship is usually 
not a s tra igh t line. One can define the resistance as

1) the reciprocal slope of the secant line to  any point of the curve (this is the 
so-called d.c. resistance) or

2 ) the reciprocal slope of the tangen t line to  any point of the curve (this is 
usually called the a.c., increm ental, or variational resistance of the device).

Such concepts have limited u tility  however, since the resistance in either case is no 
longer a constant, b u t a function of the applied voltage or curren t through the device.
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T he graphical m ethod to  be described takes the fundam ental e —i  relationship, or 
term inal characteristic as it has been called by K irschstein, and operates directly w ith 
it. F urtherm ore, the curve does no t have to  be analytic, nor even expressible in the 
form of an equation; it can sim ply be a plot of experim ental data , although this in
volves interpolation between experim entally determ ined points.

T he process of finding the  curren t through the  two in series for the impressed 
voltage E  is essentially th a t of solving the two equations for the  term inal character
istics sim ultaneously under the  condition th a t  the  sum of the voltage drops across 
the two elem ents m ust equal the impressed voltage E. Thus, if the relationship for 
the  one elem ent is i= fi(e ) ,  then  th a t for the o ther is i = f 2(E — e), and it is desired to 
find a common value of i  th a t  satisfies both relationships.

Since one or both  of the above equations m ay be of degree higher than  unity , the 
analytical solution cannot be effected by the m ethod of determ inants, b u t ra ther by 
the m ethod of substitu tion , and finally results in the necessity for solving an equation 
of degree higher than  unity.

T his, however, assum es th a t term inal characteristics can be represented by power 
series. T he graphical m ethod requires no such condition; it operates on the graphical 
plots directly. Thus, suppose the  term inal characteristic of the diode is represented 
by AOB, Fig. 4. L et OC represent the m agnitude of the impressed voltage E.  Through 
C draw  DC a t an angle 6, as shown, such th a t cot 8 = R. T hen  the intersection of CD 
and AOB in D represents the  required solution, in th a t  D F  is the common curren t 
in th is series circuit; OF is the voltage drop in the diode; FC  is the voltage drop in 
the resistor R;  and clearly O F + F C  equals the impressed voltage E.  If E  varies w ith 
time, DC can be shifted back and forth  along the voltage axis a t  positions correspond
ing to the  instantaneous values of E,  and the  intersections will furnish the corre
sponding instan taneous values of the current.

T he above solution represents a well-known method for solving two equations 
sim ultaneously when the equations are of degree higher than  the first or even of 
transcendental natu re . I t  will be of interest, however, to  see how this m ethod is ap 
plied to  a m ore com plicated circuit.

4. T riode tube and  resistance in  series. T he next example will be th a t  of a three- 
elem ent or triode tube in se
ries w ith a  resistance and a 
source of d.c. voltage Ebb- 
T he electrical connections 
are shown in Fig. 5. T he ad 
ditional com plication is th a t 
in the triode the plate cur
ren t is a function of two 
variables; the grid voltage 
and the  plate voltage. T he 
term inal characteristic m ust 
therefore be represented by 
a  three-dim ensional plot in
volving the p late curren t i p, th e  grid voltage eg (which is the  sum of the instan taneous 
value of the  a lternating  signal voltage es and the constan t, d.c. bias voltage E c), and 
the p late  voltage ep.

T r io d e
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T he resulting plot is a curved surface in space. I t  can be represented in two di
mensions by a fam ily of curves which represent discrete projections of this surface 
upon any one of the three coordinate planes. F or the  problem a t hand the  m ost useful
set of projections is th a t upon the ep — ip coordinate plane, in the form of a family of
ep — i p curves with eg as the param eter. This is shown in Fig. 6 (solid lines). Curves 
for which eQ is positive have been om itted for simplicity.

Assume fu rther for sim plicity th a t  R l , the load resistance, is linear. T he current 
through it is a function of b u t one voltage, th a t which m ust be applied across its 
term inals to  produce the above cu rren t flow. To represent its term inal characteristic

in three dimensions, it is plotted as a 
plane whose intersection w ith the ep — ea 
coordinate plane is a  stra ig h t line paral
lel to the ea axis. In  this way the current 
in it is independent of the  ea coordinate, 
and is a  (linear) function of b u t one 
voltage, th a t  corresponding to  the  p late 
voltage ep of the tube. All points of this 
plane representing R l project over to 
the i p — ep coordinate plane as a s traigh t 

FlG' 6‘ line th a t  is also the intersection of the
above R l  plane w ith the i v — ep plane. 

T he stra igh t line m akes an angle 6 with the ep axis such th a t  cot 6 = R l ,  i.e., the 
R l  plane is inclined a t  the angle d to  the e„ — e„ coordinate plane.

T he graphical solution consists in drawing the line of intersection EA a t  the angle 
6 to  the ep axis. T he intersection of EA w ith the tube family of curves gives the com
mon vglue of curren t flowing through the plate circuit of the triode and R l  in series, 
for any given value of grid voltage e„. For example, a t  a  m om ent when the signal 
voltage es is passing through zero, the instantaneous value of the grid voltage e0 is 
sim ply th a t of the bias battery , E c. T he instantaneous value of the p late  curren t is 
BC, where B is the intersection of AC with th a t curve of the p late family for which 
ea= E c. I t  is further to be noted th a t the instantaneous plate voltage ep is OC, and 
the instantaneous value of the voltage drop across R L is EC.

For o ther instantaneous values of eg, o ther curves of the plate family are involved, 
and the process of determ ining the instantaneous values of p late  current, p la te  v o lt
age, and load voltage (across R L) is identical to th a t  described above. T hus, for a 
signal voltage impressed upon the inpu t or grid circuit, the o u tp u t signal voltage be
tween the plate and ground can be found. Such m atters as the amplification of the 
stage, distortion in the ou tpu t, etc., can then be determ ined.

In  passing, we m ay note here th a t the  locus of the plate curren t for various values 
of e0 is the  intersection of the tube surface and the R l  p lane in space. T his intersection 
is a  curve in space, b u t fortunately  its projection on the ep—ip plane is a straigh t line, 
nam ely the intersection of the R L plane itself w ith the ev — i p plane. I t  is for th a t rea
son th a t  the ep — i p fam ily of the tube curves is em ployed; the  graphical construction 
is sim ply the  points of intersection of a straight line representing R l  w ith the above 
plate family.

The above problem can become m uch more com plicated under certain conditions. 
For example, if the inpu t signal voltage is g reat enough, the grid can be driven posi
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tive w ith  respect to  the  cathode, whereupon it draws curren t during the positive peak 
of the a.c. cycle. If the signal source has appreciable internal impedance, then a vo lt
age drop will occur in the source during the above portion of the cycle, and the actual 
voltage applied to the grid will differ from the generated voltage e„

I t  is therefore necessary to  determ ine the actual grid voltage before the p late 
current can be found. A nother complication arises however, in th a t  the grid current 
(and hence the actual grid voltage) is a function not only of the positive grid voltage, 
b u t of the p la te  voltage as well. T his is because the space curren t divides between 
the two electrodes in a  m anner depending upon the  two electrode voltages. A t the 
same tim e the p late  voltage is a function of R l and the grid voltage. T hus the above 
simple graphical construction can become quite involved if merely the inpu t signal is 
increased to a po in t where the grid is driven positive.

5. T he balanced amplifier. Instead  of investigating such details, im p o rtan t though 
they  m ay be, it will be of in terest to  examine ano ther type of circuit very im portan t 
in the com m unication industry. Reference is m ade to the  push-pull or balanced am 
plifier. T he circuit is shown in Fig. 7.

In  (A) is shown the actual circuit, whereas in (B) is shown an idealization or 
equivalent form b e tte r suited for the purpose of analysis. In the actual circuit (A), 
two tubes are em ployed, inductively 
coupled to each other and the o u tp u t 
load resistance r L by  an o u tp u t tran s
former. T he signal on one-grid is 180 de
grees ou t of phase w ith th a t on the other 
grid, as is suggested by the  sym bols + e , 
and — e,. T he bias voltage E c, on the other 
hand, is applied to  bo th  grids in the same 
polarity ; and the p late  supply voltage is 
applied to  the  two tubes in the sam e polar
ity  too, as shown.

T he actual load resistance rL and the 
o u tp u t transform er can be replaced by the 
center-tapped inductance and reflected 
load resistance R l as far as the tubes are 
concerned. T h e  simplified circuit is shown 
in (B), Fig. 7. In using th is equivalent cir
cuit, it  is tac itly  assumed th a t the actual 
o u tp u t transform er is an ideal transform er 
having infinite prim ary  and secondary 
open-circuit inductance, no d istribu ted  ca
pacity , un ity  coefficient of coupling be
tween windings, etc. In the equivalent 
circuit the cen ter-tapped inductance is assum ed to  be infinite in value and to  have 
un ity  coupling between the two halves of the com plete winding. O rdinarily this is a 
reasonable assum ption.

As a result, th e  current in one-half of the winding cannot a t any m om ent exceed 
th a t in the o ther half for otherw ise an infinite counter-electrom otive force would be 
induced in the windings th a t would tend to  prevent such an unequality  from tak ing

Output 
irons fo rm e r

B
F i g . 7.
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place. T he currents in the Avindings can vary , however, provided they rem ain equal 
to  one another a t  all times. F inally, two further assum ptions are m ade, namely, th a t  
the  signal voltages es and — es applied to  the  two grids are a t  all tim es equal and op
posite to one another, and th a t the two tubes have identical term inal characteristics. 
These two assum ptions seem also reasonable.

Consider first th a t  ea equals zero (no signal is applied). T he bias on each grid is £ c, 
and the p late  voltage for either tube is £«,, hence the two plate currents h  and J 2 are 
equal to one another. Since they  flow in opposite directions from the ends of the w ind
ing to  the  center tap , they balance each other m agnetically in the o u tp u t inductance 
and produce no voltage across the ends. C onsequently no curren t flows in the load 
resistance R l-

Now suppose th a t  a signal voltage is impressed such th a t  the  top grid is driven 
positive by an am ount e„i from its norm al d.c. negative bias value of E c, and th a t  the 
bottom  grid is driven m ore negative by an equal am ount, i.e., —e,i. T he tw o plate 
currents will now vary  in opposite directions, nam ely, I \  will increase and J 2 will de
crease. However, the  sum of these two currents flows through the plate power supply, 
and owing to  the infinite inductance of the center-tapped winding, (Ii +  I / ) /2  flows 
down through the  top half of the winding, and an equal am ount flows up through the 
bottom  half, to  combine a t  the  center tap  to  furnish the sum ( i i + J 2) flowing through 
the power supply.

Since ( / i + / 2) /2  is the average between I \  and J 2, it  is equal to neither, and from 
the principle of continuity  of curren t flow, the difference

h  -  K h  +  h )  = 1 ( 1 1 +  h )  -  I 2 =  i ( h  -  h )  (3)

m ust flow through R L. A quick check will indicate th a t  K irchhoff’s cu rren t law is 
satisfied a t  each junction.

T he curren t (I\ — I i ) /2  is the o u tp u t current. In flowing through R l , it sets up a 
voltage drop

E l  =  i ( h  -  I 2)R l . (4)

H alf of this or E l / 2  appears across each half of the o u tp u t winding of such polarity 
th a t  the instantaneous plate voltage of the top  tube is Ebb — ( E l / 2 )  and th a t  of the 
bottom  tube is £¡,¡, +  (£ ¿ 72).

T hus the following facts have been brought to light:
1) T he grid voltages change by equal b u t opposite increm ents from their 

common bias value £ c owing to  the center tap  on the inpu t transform er secondary.
2) T he plate  voltages change by equal b u t opposite increm ents from their 

common supply value £«, owing to  the center tap  on the o u tp u t inductance. M ore
over, the  p la te  voltage increm ents are opposite in sign to  the corresponding grid 
voltage increm ents.

3) T he plate  currents change in opposite directions in the same sense as the 
corresponding grid voltages, b u t no t necessarily to an equal degree. If the tubes 
are nonlinear, as is usually the  case, then the increase in p late  curren t of either 
tube for a positive increm ent in grid voltage is n o t necessarily the same as the de
crease in p late  curren t for an equal negative increm ent in grid voltage.
From  the above facts several graphical constructions are available to  determ ine- 

the p la te  curren t and p la te  voltage variations in the tubes, the o u tp u t curren t and
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voltage, the  power ou tpu t, and the d.c. power input. T he following graphical m ethod 
is preferred by the au thor. In  Fig. 8 is shown the  p late family of curves for either 
tube. If there is no signal input, the only voltages present are the d.c. potentials E bb 
applied to  the two plates and E c applied to the two grids. T he curren t through either 
tube is then /¡, =  EbbB, a direct current.

Now suppose th a t  equal and opposite signal voltages e, and — e, are applied to  the 
grids in addition  to  E c. T hen the curren t in the one tube will increase from BEbb
to  D G , and th a t  in the o ther tube will drop to  F H , as shown. T he plate voltage of the
first tube will drop from OEbb to  OG =  (E bb—Aep), and th a t in the o ther tube will rise 
by an equal amount to  O H  =  (Ebb+ A ep).

I t  is also clear from Fig. 8 th a t  D J represents the difference between the  two cur
rents or (Ji —J2), and J F  represents 2Aep, the  voltage across the o u tp u t inductance 
and previously denoted by E L in Fig. 7. From Eq. (4), it is evident th a t

J F /D J  =  E l/ ( I i  -  h )  =  R l / 2 .  (5)

T hus D F m akes the angle 6 w ith the ep axis such th a t

cot 0 =  R l/ 2 .  (6)

I t  is also evident from the geom etry of the figure th a t  DC =  CF, i.e., th a t  the ordinate 
through Ebb bisects line D F in C.

T he above facts suggest the following m ethod of graphical construction. W e hold 
a rule a t  the angle 6 and slide it up or down until the segm ent between the desired 
ep — ip curves (corresponding to  equal and opposite grid voltage excursions from the 
bias value E c) is bisected by the ordinate through Ebb- T he intersections of the rule 
w ith  the  two Cp—ip curves gives the two instantaneous values of the two tube currents 
Ji and h ,  corresponding to the signal voltages e, and — e, and to the plate load re
sistance R l ,  or ra ther to  R l / 2 .

T hen another pair of equal and opposite grid signal voltages are chosen, and the 
process repeated. T his is continued until as m any pairs of instantaneous grid signal 
voltages have been used as is desired. F o r a sym m etrical signal voltage, such as a 
sine wave, instantaneous values for only one-quarter of a cycle are required.

W hen the  above graphical construction is perform ed, there is obtained a curve
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on the plate family of curves such as th a t shown in broken lines A B C D E  in Fig. 9. 
T his represents the locus of the curren t for either tube over a cycle of grid signal vo lt
age. I t  also represents the term inal characteristic for R l as it appears to either tube 
in  the presence of the other tube.

T he significance of the last sta tem ent is as follow s: the two tubes m ay be regarded 
as two generators connected to  a common load R L. Owing to their nonlinear charac
teristics, the tubes do no t share the load equally th roughout the signal cycle; th a t 
tube whose apparen t internal resistance is lower takes a greater share of the load, 
i.e., furnishes more than  half of the load curren t ( h  — I 2) /2  flowing through R L. As a 
result, R l appears as a  variable or nonlinear resistance to either tube even though it 
is ac tually  a linear resistance, and its term inal characteristic on either tu b e ’s ep — i p 
family of curves is in itself a curved ra ther than  a straigh t line.

Lack of space precludes a detailed discussion of this interesting circuit. However, 
several im portan t features will be presented. As indicated in Fig. 9, the two ep — i p 
curves passing through B and D, respectively, represent equal and opposite grid 
swings. T he corresponding currents I x and I 2 for the two tubes are BF and zero; in 
short, the tube experiencing the negative-grid swing has ju s t reached plate  current 
cutoff.

For ep — ip curves passing through A and E, corresponding to  a still greater grid 
swing for either tube, h  is AG, and I 2 still remains zero. T his means th a t the second 
tube is inoperative over this p a rt of the cycle and acts therefore as if it  were discon
nected. U nder these conditions R L appears to  the operative tube as i?z,/4, which can 
be expected since the 2 to  1 tu rns ratio  of the o u tpu t inductance will produce this 4 
to 1 im pedance transform ation if it is unham pered by the o ther tube.

Portion BA is therefore a  stra igh t line whose reciprocal slope corresponds to  R l / 4. 
I t  is easy to show th a t if i t  were prolonged, it would pass through Ebb- N orm ally 
the tubes are operated so th a t m aximum grid signal voltage drives each tube a lte r
nately  to  cutoff or beyond. M axim um  o u tp u t occurs if i? i /4  equals either tu b e’s 
apparen t internal p la te  resistance a t  the  peak of the cycle. T he plate  resistance of 
either tube is given by the reciprocal slope of the ep — ip curve a t  poin t A. Hence a 
quick determ ination for th e  optim um  value of R l ,  or ra th e r R l / 4, is to draw  a line 
through Ebb a t  an angle equal to th a t  of the ep — ip curve a t  po int A, and calculate 
from the reciprocal slope of this line the value of R l / 4 and hence of Rl-  T he complete
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characteristic can then be determ ined by  m eans of the sliding rule as described pre
viously.

Fig. 8 also reveals an interesting point. CEbb is the average between D G  and FH , 
i.e., it  represents {I\-\-Ii)/2. This is the m id-branch curren t th a t  flows through the 
p late supply, as indicated in Fig. 7(B). For various pairs of values of I \  and J 2 as 
determ ined by the  sliding rule, the average, or (/x-f-Jj) / 2 moves up and down along 
EbbA. T his is a vertical line or ordinate, and indicates th a t  the resistance to the m id
branch current is zero. T his has been tacitly  assum ed; the  o u tp u t inductance and the 
p late supply have been assumed to be free of resistance.

If this is not the case, then a line m ust be draw n through Ebb whose reciprocal 
slope indicates one-half the value of the m id-branch resistance th a t  is present, and 
the  sliding rule m ust be bisected by this line ra th e r than  the ordinate E bbA, as is the 
case in Fig. 8 . From  this follows several fu rther interesting characteristics .1

A nother po int is th a t  n o t only is the locus of the m id-branch current along the 
ordinate EbbA in Fig. 8 , b u t th a t  this current executes two alternations per cycle of 
the grid signal voltage. This m eans th a t  the m id-branch curren t is a t  least double the 
frequency of the  incoming signal; actually, for perfect sym m etry, all the even har
monics generated by the tubes flow in parallel through the m id-branch portions of 
the circuit, while the odd harmonics, including of course the fundam ental, flow 
through the o u tp u t resistance R l ■ Thus, if the tube characteristics are such th a t  the 
second harm onic is quite prom inent, b u t the third (and higher) harm onics áre of small 
am plitude, then  the o u tp u t wave will be a fairly faithful copy of the inpu t grid signal 
voltage and the stage will exhibit little  distortion. Such a tube characteristic is pos
sessed, for example, by the 6L 6 and 807 beam power tubes.

As in the case of the previous constructions for the single-ended tube, various de
grees of com plication can arise. For example, if the grids are driven positive so th a t 
grid curren t flows, the signal voltage a t  the grids will be distorted , and this distortion 
m ust be determ ined separately before the  above construction can be concluded. An
other case is th a t  where the m id-branch plate supply has an internal resistance th a t 
is adequately  by-passed for the even harmonics, all except the d.c. com ponent. This 
represents a particu larly  difficult problem th a t can be solved only by a series of ap 
proxim ations.

6 . Reactive circuits. T he previous circuits contained only resistances, linear of 
nonlinear. If reactances were present, such as the center-tapped o u tp u t inductance, 
they  were assum ed infinite in value and so situated  in the circuit as no t to  have any 
appreciable a.c. com ponents flowing in them . However, m any nonlinear circuits con
tain  reactances of finite value th a t influence the behavior of the circuit directly, and 
hence m ust be taken directly  into account.

Owing to lack of space, only the case of an inductance in series with a nonlinear 
resistance and an a.c. source will be discussed here. Consider the circuit shown in 
Fig. 10. Here a source of a.c. voltage e is in series w ith a nonlinear resistance r and 
inductance L.  T he voltage e is a known function of time, and the term inal character
istic for r and the value of L  is given. I t  is desired to find the current flow in this cir
cuit.

1 See, for example, A. Preisman, Graphical constructions fo r vacuum tube circuits, McGraw-Hill Pub
lishing Co., New York, 1943.
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We have the fundam ental relation
di

e(t) =  ir +  L  — •
dl

(7)

Expressing Eq. (7) in term s of finite increm ents, we obtain

(8)

In Eq. (8), it  is assum ed th a t a t  the s ta rt, the  voltage e has a certain  value e\, the 
curren t i  has a certain value ii, and ¿ =  0. These are the  initial conditions. During a

am ount Aii  and to remain a t  the value i i+ A i i  during the tim e At. T his is of course an 
approxim ation, sufficiently close if At is taken  sufficiently small. U nder these condi
tions Eq. (8) holds.

T he q u an tity  L /A t  has a finite value if At  is finite. I t  can represent the cotangent

ances in series: th a t of r a t  the value A, and th a t of L /A t.  T he graphical construction 
then takes the form shown in Fig. 11, where OA represents the initial value e\, and 
AB the initial current ii. We now suppose th a t  the  voltage changes from e\ to ei+Aei 
in a small chosen tim e interval At, and let OD represent ei+Aei so th a t AD repre
sents Aci.

T he voltage across L  is due to  the change of curren t AA and not due to  i \  itself, 
which has already been established in L. This is indicated by the fact th a t  OA =  ei 
represents the drop across the nonlinear resistance r; there is no voltage drop across L  
for ii a t  the tim e t — 0. Hence, in view of the above, a poin t C is located in line w ith B 
and directly  over D, and through C line EC  is draw n to represent L /A t  such th a t

T he line E C  has been designated by the  au th o r as a  finite operato r because it re
sembles the H eaviside operator Lp.  T he intersection of th is finite operator w ith  the 
term inal characteristic of r in E  gives the  value of Aii, nam ely, E J. H ere BJ repre
sents the  additional voltage drop across r (in addition to  the original voltage drop OA 
owing to i l) ,  and JC  represents the voltage drop ac ro ssL .  In  short, OA +  BJ represents 
(ii+ A ii)r; JC  represents L (A ii /A t) ; and OA +  BC therefore represents ei+Aei, and 
hence satisfies Eq. (8).

— [► Ł +  A  Ł

I-c.

I

A.
e,

D G 
Ą+Ae,

e
F ig . 10. F ig . 11.

small time interval At, ei is assumed to  change instan tly  to  ei+Ae! and remain a t  this 
value during the interval At, and sim ilarly ii is assum ed to  change instan tly  by an

of some angle 6. T hen— as far as Aii is concerned— the circuit consists of two resist-

cot <f. ECB  =  L/At. (9)
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T he point E  is projected over to  F  directly  above C and D, and F D  represents 
then the  new value of cu rren t ¿i+Ai'i, a t  the end of the time interval At. A nother 
small tim e in terval can now be chosen, preferably equal to  the previous one, so th a t 
L /A t  rem ains a t  the same angle to  the e-axis as before. W e suppose th a t  in this new 
tim e interval, e changes from ei+A ei to  ei+ A ei+ A e2. L etting  OG represent the new 
value of voltage, we project F  over to  H directly  above G. T hrough H we draw  H K  
parallel to CE, intersecting the term inal characteristic for r in K .  Then KL represents 
the new increm ent of curren t A iit E L  the  additional voltage drop across r, and LH 
the new voltage drop across L. I t  is evident th a t  Eq. (8) is once again satisfied. I t  is 
also evident th a t  IG  represents (ii+A i’i-l-Aii), the new value of current a t  the end of 
the second tim e interval.

Points B, F , and I represent three points on the overall terminal characteristic for 
L  and r in series for the given function e{t). If e{t) is a periodic voltage, the overall 
term inal characteristic will spiral around counter-clockwise and u ltim ately  form a 
closed curve, the steady-sta te  solution for the given circuit and given function e(t). 
T he initial open branches of this spiral' represent the transien t solution. If r is a 
linear resistance so th a t its term inal characteristic is a s tra ig h t line instead of the 
curve shown in Fig. 11, the closed loop will be an ellipse inclined to both  axes; if on 
the o ther hand r is nonlinear, the closed loop will be some form of distorted ellipse 
depending upon the nonlinearity  of r. I t  can be shown from the graphical construction 
th a t  the tangents to the closed loop a t  the points where it intersects the term inal char
acteristic for r are parallel to the e axis and hence perpendicular to  the i  axis.

7. R elaxation oscillator. Sim ilar m ethods can be developed for r in series w ith a 
condenser C, and for L C r circuits, and for parallel as well as series arrangem ents. 
Owing to  lack of space these will no t be trea ted  here .2 An interesting case is th a t  of a 
nonlinear resistance having a  suitable negative branch, in series w ith a pure induct
ance. For graphical purposes the sim plest form for the term inal characteristic of r 
is possibly th a t  of three intersecting stra igh t lines, as shown in Fig. 12. Such a char
acteristic m ay be approxim ated by a  tube having positive feedback, by a dynatron, 
etc. U sually a d.c. polarizing voltage is required, b u t th is m erely represents a transla
tion of the  axes and does n o t m aterially  change the construction or results as obtained 
in Fig. 12, in which the impressed voltage is assumed to  be zero.

s Cf. Preisman, loc. cit., p. 109.
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Suppose th a t  the initial conditions a t  i =  0 are th a t  e =  0, and th a t  f =  AB, the 
peak curren t for the left-hand portion of r. Then C will be the sta rtin g  point, where 
CO =  AB. Through C the finite operator L /A t  is draw n corresponding to a tim e in
terval At. If At is sufficiently small, L /A t  will be practically  a horizontal line through C. 
In  Fig. 12, L /A t  has been draw n w ith a finite tilt to clarify the construction, and is 
represented by CD. This finite operator curve intersects the term inal characteristic 
for r in D, as shown.

T he curren t therefore decreases from CO to DG. Point D is projected over to the 
i  axis as po int E. From  E, E F  is draw n parallel to CD under the assum ption th a t  the 
second tim e interval is equal to  the first. T he curren t now decreases from D G  to FH . 
Poin t F  can now be projected over to the i  axis and the process repeated. I t  is clear 
from the figure th a t  the intersections will proceed down the right-hand branch of r 
to I, hop over from I to  J, d irectly opposite I, then proceed from J up to  A, hop over 
to  D, and repeat the first set of intersections. As At approaches zero, the finite opera
to r curve approaches a  horizontal position, D G ==C O =A B , and the points of in ter
section become more and more closely spaced so th a t  they  form essentially all the 
points of ID  and JA.

T he overall term inal characteristic is by definition all the points between C and 
K  in th a t the overall impressed voltage has been assum ed zero, so th a t the points 
m ust lie along the i axis, and the curren t range is from C to K . However, a  more sig
nificant term inal characteristic in this case is the relationship between the cu rren t 
and the voltage across either circuit element. T he voltage across the inductance, for 
example, is equal and opposite to th a t across r when taken  in a circuital direction, 
since the algebraic sum of the two m ust equal the impressed voltage, which is zero.

According to this definition, the term inal characteristic is represented by such 
points as D, F , etc.; in this case, it is lines D I, I J , JA , and AD, traversed in the order 
given. T his m eans th a t for the  circuit given, the term inal characteristic is very simply 
given by a quadrilateral involving the  two positive resistance portions of the term inal 
characteristic for r contained between their peak values A and I.

T he tim e required to  traverse these portions depends upon the relaxation tim e 
for L  in series w ith  the increm ental resistance of r for each portion, under the proper 
initial conditions. T he tim e required to  traverse the horizontal portions AD and IJ  
is infinitesimal, and is independent of the shape of the negative resistance portion AI 
provided i t  has no m axim a or m inim a exceeding or less than  A and I, respectively. 
T he device operates continuously as an  oscillator w ith  a period of oscillation deter
m ined by the two relaxation times.

Sim ilar conclusions can be draw n for shapes of r o ther than  three s tra igh t lines. 
F or example, r can have the form of a cubic parabola. T his case has been treated  
analytically  by Van der Pol.3 However, he started  w ith an L C r parallel circuit or 
double-energy condition. For such a circuit the  term inal characteristic is a  closed 
curve or loop th a t exceeds the above quadrilateral in size. As C approaches zero, the 
loop shrinks and appears to have as its  lim it the  above quadrilateral. However, the 
analytical m ethod required th a t some capacity  be present even in this lim it, relaxa
tion case, and it  has been suggested th a t in a  practical circuit there would always be 
some residual s tray  capacitance present.

5 B. Van der Pol, The nonlinear theory of electric oscillations, Proc. I.R .E ., 22, 1051-1086 (1934).
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T here are o ther graphical m ethods for handling the double-energy case, notably  
th a t by L iénard4 and another by K irschstein .5 U nfortunately, these constructions be
come indeterm inate in n a tu re  as C approaches zero, so th a t although the  relaxation 
condition is suggested by them , it cannot be conclusively shown to be the lim it form.

T h e construction given here s ta rts  ou t w ith merely L  and r, and requires no C 
for its argum ent. I t  appears to  give the lim it case directly and presents no indeterm i
nate  considerations. I t  has seemed to the au th o r th a t the necessity for requiring a 
capacity  to  be present, no m atte r how small, was an unnecessary restriction, and th a t 
the  argum ent advanced th a t any  practical circuit would have some capacity , ap 
peared to  be ra th e r irrelevant, since the notion of a circuit is in itself an idealization 
of w hat is really a field problem. In  trea ting  an electrical problem  as a circuit problem 
one assumes th a t  the circuit elem ents are ideal inductances or capacitances or resist
ances and develops the various theorem s on this basis.

S im ilar results can be obtained for a capacitance in series w ith a nonlinear resist
ance having an S-shaped term inal characteristic provided th a t  it is tu rned  through a 
righ t angle from th a t  shown in Fig. 12, i.e., provided th a t it is a single-valued function 
of the  curren t ra th e r th an  of the voltage. A fam iliar example is the  neon tube relaxa
tion oscillator employed to  generate a saw -tooth voltage. I t  is also possible to  develop 
a graphical construction em ploying the finite operator m ethod for an L C r circuit, and 
in this case L  or C m ay be perm itted  to  approach zero, depending upon the position 
of the S-shaped characteristic for r, w ithout the construction becoming indeterm inate. 
For example, the construction reduces to  the form given in connection w ith Fig. 12 
if C is m ade to  approach zero and r has the term inal characteristic shown in the figure.

8 . Conclusions. T his concludes the discussion on some graphical m ethods for solv
ing nonlinear electrical circuits. Simple series circuits involving resistance elements 
only, are very  sim ply solved by finding the intersections of their term inal characteris
tics. T his can then be extended to more com plicated resistances in which the current 
is a function of two voltages, as in the case of a triode tube.

T h e  next circuit considered is th a t  of the ideal balanced am plifier having perfectly 
m atched tubes and feeding the load resistance through an ideal transform er. H ere the 
coupling of the two tubes through this ideal transform er requires a special construc
tion involving the sliding of a rule a t  a fixed angle along the tube characteristics. T he 
wave shape of the o u tp u t and of the m id-branch currents is then discussed, and it is 
shown th a t  owing to  the sym m etry' of the circuit the form er can contain only odd 
harm onics; and the  la tte r, even harmonics.

Finally, a  simple case of a reactive circuit involving a  nonlinear resistance in series 
w ith  an  inductance is treated . H ere the concept of a finite operator curve correspond
ing to  L /A t  is developed and this curve is employed to  solve the circuit. Sim ilar m eth
ods are available for capacitive circuits and for double-energy circuits involving both 
L  and C. T he m ethod is applied to a suitable negative resistance in series w ith an 
inductance, and it is shown in a d irect m anner th a t  this circuit can produce relaxa
tion oscillations.

4 A. Liénard, Élude des oscillations entretenues, R ev. Gen. Élec. 23, 901-946 (1928). See also 
P. LeCorbeiller, The non-linear theory of the maintenance of oscillations, Journal IE E  (London) 79, 361-378  
(1936).

5 F . Kirschstein, Uber ein Verfahren zur graphischen Beliandlung eleklrischer Schwingungsvorgange, 
Arch. Elek. 24, 731 (1930).
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P R E S S U R E  F L O W  O F A  T U R B U L E N T  FLU ID  B E T W E E N  
T W O  IN F IN IT E  P A R A L L E L  P L A N E S *

BY

P. Y . CHOU  
California Institute of Technology

1. Introduction. T he solution of the N avier-Stokes differential equations for the 
steady  lam inar flow through a channel or a circular pipe is well known for its  m athe
m atical sim plicity. T he reason for this sim plicity is th a t  for such flows P ran d tl's  
boundary layer equations hold rigorously for the  entire region of th e  fluid. In o ther 
words th e  boundary  layer extends up to  the  center of the  channel, whereas in the  
case of the  flow around a solid obstacle there is only a th in  layer of viscous fluid a t 
tached to  the surface of the  obstacle.

T he steady  tu rb u len t flow through a channel or a circular pipe is m ore com pli
cated in the  sense th a t  all the equations of m ean m otion and th e  equations of double 
and trip le correlation previously developed1-2 have to  be utilized to  account for the 
m ean velocity d istribu tion  in th e  entire region of th e  channel, and th a t  th ey  can n o t 
be fu rther simplified by physical argum ents as proposed, for example, by  th e  bound
ary  layer theory. However, if we examine the  algebraic equation th a t  represents the  
m ean velocity d istribu tion  across the  channel, we notice th a t  it has functional be
haviour sim ilar to  th a t of the form ula for the m ean velocity d istribu tion  w ithin a 
tu rb u len t boundary layer .3 In  o ther words, the  tu rb u len t flow in a channel bears 
some resem blance to  the  corresponding lam inar flow on the  whole, though its detailed 
s tru c tu re  is much more com plicated as will be seen soon.

In  w hat follows we shall first determ ine the m ean velocity d istribu tion  based upon 
the  equation of m ean m otion and the equations of double correlation, by giving the  
trip le correlations their values in the m iddle of the channel. This procedure leads to 
good results in the  theory  of the spread of tu rbu len t je ts  and wakes (references a t  
the  end of II) , b u t in the  present case it only agrees w ith th e  experim ent in the  central 
portion of the channel, while it fails when the  side is approached. W e shall also see 
th a t  the m ean squares of the  th ree com ponents of the  velocity  fluctuation agree quali
ta tiv e ly  w ith observation in the corresponding region.

T h e  second determ ination given below for the  m ean velocity d istribu tion  utilizes 
equations of m ean m otion and both  the equations of double and trip le  correlation by 
neglecting term s involving quadruple correlations. I t  will be shown th a t  the  trip le 
correlations which represent the  tran sp o rt of tu rb u len t energy play a particu larly  
im p o rtan t role in the  v icin ity  of the  wall of the  channel, and therefore can no t be 
dispensed w ith  for a b e tte r  representation of the  m ean velocity d istribution.

From  th is second determ ination  we shall find th a t neglect of term s involving quad
ruple correlations is justifiable as a first approxim ation. In  o ther words the  equations

* Received Dec. 19, 1944.
1 P. Y . Chou, Chin. Journ. of Phys. 4, 1-33 (1940). T his paper will be referred to hereafter as I.
3 P. Y . Chou, On velocity correlations and the solutions of the equations of turbulent fluctuation, Quart, 

of Appl. M ath. 3, 38-54  (1945). This paper will be referred to as II.
3 N . Hu, The turbulent flow  along a semi-infinite plate  (unpublished).
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of m ean m otion and of the double and trip le correlations are sufficient in trea ting  
tu rbu len t flow problem s even though there is a wall present. Hence the m athem atical 
procedure is com paratively simple in another sense th a t  the building of equations 
satisfied by higher order correlations can be dropped up to th e  present degree of ap 
proxim ation.

T h e  first determ ination  reveals th a t  the  variation of the m ean squares of the tu r
bulen t fluctuation is slower than  the  corresponding variation of the  mean velocity 
d istribu tion  across the  channel, which agrees qualita tively  w ith experim ent. In  view 
of the  fact th a t  m easurem ents of the mean squares of the com ponents of tu rbu len t 
fluctuation have no t been reported system atically  in the lite ra tu re  for the flow under 
consideration, we shall om it the qu an tita tiv e  com parison of the theory  w ith the ex
perim ental d a ta  now available on these quantities.

In  th e  second determ ination  the  m ean velocity d istribution will be calculated by 
assum ing constan t m ean squares of tu rbu len t velocity com ponents across the channel. 
T his is justifiable due to the  slower variation  of these functions across the channel, 
and furtherm ore the mean velocity d istribution remains practically  unchanged in the 
m ajor portion of the  channel—w ith the exception of the  im m ediate neighborhood of 
the  wall— when the  constan t values assum ed for these functions are different from 
each other. T his procedure of assigning constan t values to  the  m ean squares of the 
velocity fluctuations and then calculating the  m ean velocity d istribu tion  can be con
sidered as the initial step in a m ethod of iteration which will be explained in §3 below 
in greater detail.

In  the  final section we shall indicate the  uncertain ties connected w ith the correla
tion integrals pointed ou t before (II, §8). T hey  are probably no t im portan t for the 
m ean velocity d istribu tion , because they  involve possibly the mean squares of the tu r
bulen t fluctuation which are taken  to  be constan t for the present calculation These 
uncertain ties could be removed, if we had b e tte r experim ental inform ation on the var
iation of the tu rb u len t level across the channel and on the velocity correlation between 
two d istinc t points in flows such as the one examined here. In  o ther words the present 
theory  is perhaps sufficient so far as the  mean velocity d istribu tion  is concerned, and 
it points ou t the possibilities for fu tu re  investigations in turbulence along both  ex
perim ental and theoretical lines.

2. Mean velocity distribution based upon the solution of the equations of mean 
motion and of double correlation. As before (I, §4) we take the positive x-axis (x = x l) 
as the direction of mean m otion of the fluid, the y-axis (y =  x 2) perpendicular to the 
two parallel planes forming th e  channel, and the  2-axis (z = x 3) parallel to  these planes. 
T he plane in m id-channel is chosen as the  xs-plane. From  the equations of mean 
m otion we have

tu / p =  — ul<r — vdU/dy, (2 . 1)

where

— dp/pdx = ul/d, <r = y/d.  (2 . 2)

T h e  q u an tity  2d represents the  w idth  of th e  channel and Ur is the so-called friction 
velocity.

E quation  (2.1) defines the  shearing stress r i2 in term s of y  and d U /d y .  Except in 
the  im m ediate neighborhood of th e  wall the  viscous stress is small, so t i 2 is a linear
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function of y. On the wall — vd U /dy  should be equal to Uf, and ri2 should tend toward 
zero as a limit.

The components T 23 and r31 vanish due to symmetry, as pointed out before (I, §4).
From now on for simplicity we shall neglect the action of viscosity in the form of 

laminar stress in all the equations of motion. A physical condition mentioned previ
ously is that all average values over time are functions of y  only. Furthermore in 
the present special case in accordance with the definitions in II, Eqs. (5.3), those 
components of the slowly varying tensors anmik and bik which have a single appearance 
of the index 3 either in i  or k must be both identically zero. The vanishing of these 
functions is based upon the same argument as in the case of r23. The non-vanishing 
equations of the second order correlation (II, (8.2)) then become

2 dU d __________  dU 2v 2vk _
 r i 2 —  +  —- w\w2 =  -  «2111 — in  +  —  (A -  5)q2 -  —  w2 (2.3)

p dy dy dy  3X- X-
1 dU d _________  dU  '  2 v k ____

 T22  ------ 1----- V3\W\ =  — 02112---------- ¿12 —------ WlW2, (2.4)
p dy dy ~ dy  X2

d ________  dU 2v 2v k __
—  w3 = -  o2i22 — b23 +  —  ( k ~  5)q2 —  wj, (2.5)
dy dy  3X2 X2
d _________  dU 2v 2vk _

—  w2w2 =  -  O2 1 3 3  — •- -  ¿ 3 3  +  —  (k -  5 )q2 -  — • w\. ( 2 . 6 )
dy dy  3X2 X2 3

These arc obtained by giving i  and k the sets of values (1, 1), (1, 2), (2, 2), (3, 3), 
respectively.

In the above four equations q is the root-mean-square of velocity fluctuation de
fined by

q2 =  WjW’, (2 .7)

and k is a constant. The slowly varying tensors anmik and bik should obey the diver
gence relations [II, (5.4)]

«2111 +  0-2122 4" «2133 =  0, ¿u +  ¿22 +  ¿33 =  0. (2.8)
The equation of vorticity decay [II, (7.11)] satisfied by Taylor’s scale of micro

turbulence X becomes in the present case

-  14G mwidU /dy  -  70Fq3/ 3 V 3  =  -  2vEq2/ 3 \ \  (2.9)

where E, F  and G are regarded as constants.
The constant G in (2.9) is probably not important, for in the center of the channel 

the term involving G in (2.9) is zero due to the vanishing of d U /d y  there, and in the 
immediate neighborhood of the wall wiW2 vanishes although —d U /d y  is large. Hence 
for simplicity we choose G to be zero. In fact the presence of G would only change our 
results slightly, as will be seen. The physical meaning of neglecting G in (2.9) is that 
the term that represents the creation of vorticity by deformation of the mean mo
tion is negligible when compared with those due to transport and decay.

If G were set equal to zero, Eq. (2.9) yields

\q /v  = V 3 E /3 5 F  =  Rq,

where R q is a constan t num ber,

(2. 10)
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Now we shall su b stitu te  the values of the trip le correlations a t the center of the 
channel into Eqs. (2.3)-(2.6) according to  their odd and even properties as functions 
of y. W e can set

w2w2 = UTa\a, w® =  UTa 2a, w2w2 — UTa3cr, WiW2 =  UTcn, (2-11)

where a i, a 2, a 3 and a 4 are four dimensionless constants. A lthough the factor in 
(2 .11) is introduced for dimensional reasons, it is possible th a t these four constants 
are all independent of the Reynolds num ber of the  mean flow.

If we su b stitu te  from (2.10) and (2 .11) into (2.3), (2.5) and (2.6), add the  three 
together and take into account the conservation relations (2 .8), we find th a t  the  mean 
square of th e  velocity fluctuation q2 satisfies th e  relation

4 „2 
q Ro la  dU~\ 

a -----------------,
Ur da J

(2 . 1 2)
U* 10 Rr

where
a  =  a; +  a 2 +  a 3, R r =  UTd/v\ (2.13)

R r is called the  friction Reynolds num ber.
R elation (2.12) is very  significant, for it tells us th a t  for large values of —dU /da,  

q2 varies as the square root of —adU /da.  W ithin  a large portion of the  channel, 
d U /d a  is proportional to  <r, so the dependence of q2 upon a is fairly linear. This linear 
dependence has been observed to some ex ten t for wf by W attendorf and K uethe4 
and by W attendorf and B aker ,6 and has been an tic ipated  in the  light of von K arm an’s 
law of sim ilarity.

If G were different from zero, the  above procedure would lead to

q2 „  f  dU-] /   /  la  d U \ in

VI “  R'
a dU

c -  1 (1 +  35 G ) -----------
Ur da J

V lO R r( e -  —  —  ) (2.14)
\  UT da /

which has a functional behaviour sim ilar to  th a t  of (2.12) for large values of —dU/dcr.
I t  is ap p a ren t th a t  Eqs. (2.3), (2.5) and (2.6) will determ ine wx, w2 and w3 sepa

rately . H ere we encounter the uncerta in ty  pointed o u t in II , §8 th a t  the  slowly v ary 
ing functions anmih and bik m ay contain powers or even m ore com plicated functions 
of q as factors, and the  existing experim ental d a ta  do n o t provide enough evidence 
for a q u an tita tiv e  com parison w ith these theoretical formulae. If, for the sake of 
m athem atical convenience, we assum e &u, b22 and b33 to be constan t, and a.2iii, <12122 and 
02133, which are odd functions of a, to  be proportional to <r, then iv2, w% and w\  will 
behave very  m uch like q2, th a t  is, when a is near zero, is)\, w% and w% are constants, 
and when a is large and near unity , they  are all proportional to  th e  square root of 
— adU/da.

T he equation for determ ining th e  m ean velocity d istribu tion  is given by  (2.4) 
which can now be w ritten , on account of (2 .10) and the condition th a t  WiW2 is con
stan t, in the form

4 F. L. W attendorf and A. M. K uethe, Physics 5, 153-164 (1934).
ET h. von Kdrmdn, Proceedings of the Fifth International Congress for Applied M echanics (Cam

bridge, Mass. 1938), p. 349.
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1 _  1 dU 2kRTa2
 (w» an n ) -------------- --------------- a; (2.15)
U\ 2 UT da R\U l

here we have set the odd function bl2 equal to zero for simplicity.
As pointed o u t before the  dependence of a 2ii2 upon g in the above equation is also 

not known. If w% and g2 are  both regarded as constants, th e  m ean velocity d istribu 
tion according to  (2.15) is parabolic, which agrees w ith experim ental d a ta  fairly well 
for the range of a from 0 to 0.8, and fails near the walls of the  channel. T his parabolic 
law of velocity d istribu tion  has been suggested by S tan to n 6 in his m easurem ents of 
flows through a circular pipe of which the channel is a lim iting case.

I t  has been calculated, though details will no t be shown here, th a t  this parabolic 
d istribution of the  m ean velocity for constan t g2 and w2 is no t essentially changed if 
we solve for w f, w%, w% and d U /d a  sim ultaneously under the fu rther assum ption 
th a t both a"it an d £>,* are equal to zero. This condition is equivalent to  the  vanishing 
of (C},iWk+oj,j,Wi)/p, which m eans th a t th e  shearing in teraction between the  pressure 
g rad ien t and velocity fluctuations is zero; i t  has been used in je ts  and wakes, as m en
tioned before. T he reason why the velocity d istribution is parabolic even for this 
m ore rigorous trea tm en t is n o t difficult to  see w ithou t going into detailed calculations. 
For in the  neighborhood of <r =  0, both -m\ and g2 are constants, so d U /d a  is p ropor
tional to  cr. W hen the  values of a are near un ity , both  g2 and w% are proportional to 
th e  square root of —adU /da,  and hence m utually  proportional; consequently  Eq. 
(2.15) again shows th a t d U /d a  is proportional to  tr even in the  vicinity  of the channel 
wall. W e should anticipate , by  the  same argum ent, th a t  sim ilar sim ultaneous solu
tions for w l ,w l ,  w \  and d U/da  would hold tru e  even under th e  m ore general condition 
th a t  £>n, £>22 and £>33 be constan ts and (Z2111, 02122 and a 2i33 be proportional to  a as m en
tioned previously.

In  §4 below we shall com pare th e  num erical values of R 0, R r and a  of (2 .12) with 
available m easurem ents.

3. Equations of triple correlation and the m ean velocity distribution. T he non
vanishing equations of the  trip le correlation [II, (8.3)] for th e  p resen t problem  can be 
w ritten  in the  form

dU d ___________ dU  3 dr
3 w * W 2 -----------!-------- W3w 2 =  —  £>21111-— ----------C11H ---------- T i l  ----------- > ( 3 . 1 )

1 d y  d y  d y  p 2 d y

  d U  d  --------------------------  d U  1 /  d r u  d r 22\
2 w i w 1  1 w 2w 3 =  —  £>2u i 2 ----------------C m  4 — -  I 2 t  12 —  ---------(- T n ------------) , ( 3 . 2 )

2 dy dy dy p- \  dy dy J

d U  d  ---------------------------  d U  1 /  d r u  d r 22\
 1 u > iw 2 =  —  £>21122-------------- C122 H--------1 T 2 2 --------------H 2 t  1 2 -------1, ( 3 . 3 )
d y  d y  d y  p-  \  d y  d y  /

1 /  d -
-  C122 4 — - (  T 22

p \  d y

1 d r  12
■ —  C133 4 — : ■ r 33

P 2 d y

3 d-T 22
—  C222 4 -------- T 22 -------- >

P 2 d y

  d U  d  __________  d U
w 2w z  1 W 1W2W2 =  —  £>2h 33 —  C i33 - |— -  r 33 — -— j ( 3 . 4 )

3 d y  d y  d y

d  —  d U
W2 =  — £>21222 C222-4------ T22 —— > (3.5)

d y  d y

• T . E . Stanton, Proc. Roy. Soc. London. (A) 85, 366-376 (1911).



194-5] PR E SSU R E  FLOW  B E T W E E N  PARALLEL PLANES 203

dU  1 dr:22
  _  —  ¿>2X233 —I----------¿233 H "  r 33 ' ’ ( 3 . 6 )
dy dy  p2 ay

These are obtained by  giving i, k and I the  sets of values (1, 1 ,1 ), (1, 1, 2), (1, 2, 2), 
(1, 3, 3), (2, 2, 2), (2, 3, 3), respectively. T he o ther com ponent tensor equations in 
which the  index 3 appears an odd num ber of times, nam ely, (1, 1, 3), (1, 2, 3), (2, 2, 3) 
and (3, 3, 3), are all identically zero, as are the corresponding equations of the  second 
order correlation.

From  the discussions in the previous section it is app aren t th a t  Eqs. (2.3), (2.5) 
and (2 .6) are used to  determ ine th e  mean squares of the  fluctuation com ponents, and 
elim ination of the trip le correlations between these th ree equations and (3.1), (3.3) 
and (3.4) respectively will give a more accura te  determ ination of them . As pointed 
o u t before, existing experim ental d a ta  are no t accura te  enough to  give a q u an tita tiv e  
com parison w ith the  theory, and we shall no t go into these detailed calculations here. 
F urtherm ore Eqs. (3.5) and (3.6) lead to quan tities which are still beyond experi
m ental proof; discussions of them  will also be om itted  for the  present.

T he elim ination of th e  trip le correlation v)\w\ between (2.4) and (3.2) leads to  the  
equation for the m ean velocity d istribution. Before w riting down this equation we 
shall introduce a few more simplifications. In the  first place the  even function ¿>21112, 
which m ay depend upon q as m entioned previously (II, §8), is assumed to be a con
s tan t; likewise the  odd function Cm is taken  to  be proportional to  y  and is pu t in the 
form,

6112 =  2 cUTa/d. (3.7)

I t  is also possible th a t  the dimensionless num ber c m ay be a function of q and there
fore an  im plicit function of the  coordinate y.

T he quadruple correlation w\w% in (3.2) is of the  sam e order of m agnitude as
(wjWi)2 and w f w%- As a first approxim ation we shall neglect all of these term s and it 
will be shown afterw ards in §4 th a t this approxim ation is justifiable. In short, (3.2) 
defines the  trip le correlation W1W2 approxim ately by

  4 /d U
wxw\ = — 2621112 — cUr<r /  —— • (3.8)

/  da

Utilizing the  above relation and (2.10) which is derived from the equation of 
vorticity  decay, we find, afte r setting  612 in (2.4) equal to  zero for m athem atical con
venience, th a t

a dU d UT<y
  ---- -f- c — ---------- — 6cr, (3.9)
UT da da dU

where
da

a — — (to? +  02112) / ! / , ,  6 =  2kRrq / R aU,. (3.10)

T he physical m eaning of th e  th ree term s in the above equation is as follows: th e  term  
in a represents th e  creation of tu rbu len t energy p artly  due to  deform ation of th e  mean 
flow (I, §3(a)) and on account of 02112 p a rtly  contributed by the shear due to  the pres
sure fluctuation the  term  in 6 denotes the  decay of turbulence; the
term  in c denotes the  tran sp o rt of tu rbu len t energy.
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T he definitions of a  and b in (3.10) show th a t  they  depend upon g2 and w%, and are 
therefore functions of a. Since g2 as well as ie | as shown in the  previous section varies 
much m ore slowly than  d U /d a  itself across th e  channel, we shall regard them  as 
constants as the  initial step to  solve for dU /da.  T his initial process can also be re
garded as the  first step in the  m ethod of itera tion  in solving the  present problem  of 
tu rb u len t flow. T he second step will be to  substitu te  this expression obtained for the 
m ean velocity in to  (2.3), (2.5) and (2.6) afte r elim inating the  trip le correlations by 
m eans of (3.1), (3.3) and (3.4), and to  solve for w\,w% and w%. As the  th ird  step  in this 
procedure, we utilize these values of th e  mean squares of the  fluctuation com ponents 
and solve (3.9) again for dU /da ,  and see w hether the  new resu lt agrees w ith  the  solu
tion obtained in the  first step. Obviously this procedure of obtaining a lte rna te ly  the 
m ean velocity and m ean squares of th e  tu rbu len t fluctuation can be extended in
definitely.

In  the  present paper we shall no t follow this refined m ethod of approach; instead 
we shall solve (3.9) by  assigning constan t values to  a, b and c, or to  g2 and w%, and com 
pare the different solutions by varying these constants. T he result will be th a t  except 
in the  im m ediate neighborhood of the  wall of th e  channel, the  different m ean velocity 
distribu tions according to  (3.9) for th e  different sets of a, b and c respectively agree 
well w ith each o ther and w ith experim ent, showing th a t th e  varia tion  of th e  m ean 
squares of the  tu rb u len t fluctuation across the  channel does no t influence the mean 
velocity d istribu tion  very much.

T he solution of (3.9) with constan t a , b and c is

|<r2 =  aU/bUr T +  A 2t (3.11)

where A \  and A 2 are two constants of integration.
If A \  in (3.11) is zero, then  (3.10) gives a  parabolic law of velocity d istribution 

and a m ust be negative, since b according to  its definition in (3.10) is positive. T he 
presence of the term  in A  \ gives the  so-called “logarithm ic law ” of velocity d istribu 
tion which holds true  especially in the  neighborhood of th e  wall of th e  channel. Hence 
the  product cAi can no t be zero. I t  is apparen t th a t  th is exponential term  in U /U T is 
due to  the  presence of the  triple correlation in Eq. (3.9).

T he boundary  conditions used to determ ine the  constan ts cA i, A 2 and the  ra tio  
a/b  are:

when 0- =  0, U =  Uc\ when a — 1, U — 0, — dU/U,dcr — «>. (3.12)

T he value Uc denotes the maximum velocity of the  flow in mid-channel. W e have 
chosen the  derivative —d U / U rdcr on th e  wall of th e  channel to  be infinite. In  fact, 
it  should be R r which is a fairly large num ber. Since we are interested in the mean 
velocity d istribu tion  w ithin the  channel proper, substitu ting  infinity for the  friction 
Reynolds num ber R ,  gives a good approxim ation.

T he boundary  conditions (3.12) render (3.11) in to  th e  following final form,
(,e*uciur -  kUc/ Ut _  !)„! =  _  K(Uc _  u y Ur +  e<ac/u ,[ i  -  e-iw c-m /ur], (3 . 13)

where x =  5 /c a n d  5 /a  =  2 [exp (kUc/ U t ) — kUc/ U t — 1 ]/k.
Equation  (3.13) expresses th e  m ean velocity defect ( Uc— U )/U T as a function of <r 

w ith  two param eters k and UC/ U T- T he presence of these two constan ts m ay appear 
a t  the  first sight to  con trad ic t th e  experim ental velocity defect law form ulated by
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von K am i an ,7 according to which ( Uc— U )/U ,  should be independent of the Reynolds 
num ber of the  m ean flow which, in tu rn , is a function of the ratio  Uc/U , .  A close ex
am ination of the experim ental d a ta  shows, however, th a t  this discrepancy is no t 
serious. In  th e  first place von K arm an ’s velocity defect law can only hold true  in the 
central portion of the  channel and there is a dependence of the  velocity defect upon 
the Reynolds num ber in the  vicinity  of the  channel wall. I t  has been shown th a t  for 
flows in circular pipes U J  UT increases from abou t 19 to  33 when the friction Reynolds 
num ber 2aU r/ v  changes from V lO 5 to  10s, 2a being the  d iam eter of the  p ipe .8 In  the  
second place even form ula (3.13), which does indicate th e  dependence of (U c— U ) /U T 
upon Uc/Ur, can only account for th e  m ean velocity d istribu tion  in the  in terior of 
th e  channel for a given set of constan ts a, b and c in (3.11), and these constan ts have 
to  take ano ther set of values in the  tu rbu len t boundary  layer on the  wall, although 
th e  sam e functional behaviour of (3.11) still prevails w ithin the  layer.3 T his po int will 
be discussed in g reater detail in the following section.

T he q u an tity  UC/ U T in (3.13) is given by experim ent; then the constan t k  is fixed, 
for instance, by passing th e  theoretical curve through th e  experim ental po in t a t  
a — 0.7. In  view of the variation of the  ratio  UC/ U T w ith the  Reynolds num ber of the 
m ean flow, we shall choose a few different values of k and calculate the mean velocity

(1)

T a b l e  1. (U C- U ) / U T 

(2) (3) (4) (5)

Obs. - 0 . 1 0 .0 + 0 .1 0.2151

0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0 0 .0 0
0 .1 0 0 .1 6 0 .0 6 0 .0 5 0 .0 5 0 .05
0 .2 0 0 .3 8 0 .23 0 .2 2 0.21 0 .1 9
0 .3 0 0 .6 6 0 .5 2 0 .5 0 0 .4 8 0 .4 4
0 .4 0 1 .10 0 .9 5 0.91 0 .8 8 0.81
0 .5 0 1 .64 1.50 1.47 1.42 1.34
0 .6 0 2 .33 2 .22 2 .19 2 .15 2 .0 8
0 .7 0 3 .1 3 3 .1 3 3 .1 3 3 .13 3 .13
0 .8 0 4 .2 8 4 .31 4 .3 8 4 .5 0 4 .7 5
0 .9 0 6 .3 0 5 .9 2 6 .1 7 6 .6 0 7 .72
0 .9 3 — 6 .5 8 6.91 7.51 9 .3 0
0 .9 6 8.81 7 .3 9 7 .8 8 8 .74 11.84
0 .9 8 — 8 .12 8 .7 6 9 .93 15.01
0 .9 9 — 8 .6 4 9 .4 0 10.82 18.21
1.00 — 9 .8 6 10.94 13.07 oo

distribu tion . T his will lead to  different values of UC/ U T. B u t we shall see th a t  for all 
these cases th e  m ean velocity  d istribu tions agree w ith each o ther and w ith experim ent 
w ithin the  channel proper.

L et us calculate th e  m ean velocity d istribu tion  for th e  values of k equal to  — 0.1, 0,
0.1 and 0.2151, and determ ine th e  corresponding values of Uc/ U r by passing the  theo
retical curves through th e  experim ental po in t a t  cr =  0.7. T he equations th a t  deter
m ine (U C— U )/U T for k — — 0.1 and 0.1 are  given respectively by

7 T h. von Kdrrndn, Proceedings of the Fourth International Congress for Applied Mechanics, 
Cambridge 1934, p. 70.

8 S. Goldstein, Modern developments in  flu id  dynamics, vol. 2, The Clarendon Press, Oxford, 1938, 
p. 338.



o'2 =  0.2785{Uc -  U )/U T -  1.039 [e0-1«7̂ ' 17 7 -  l], (3.14)

a2 =  -  1 .5870(f7c -  U )/U r +  2 .662[l -  e-*-uu<-u)iuT]m (3.15)

F or the case k =  0, we can get a lim iting equation by letting  k approach zero in 
(3.13), or we can solve (3.9) directly  by setting  b equal to  zero. T he la tte r  procedure 
leads to  *

{Uc -  U )/U t = 10.94[1 -  (1 -  <r2) 1,2]J (3.16)

where 10.94 is the  value of (c /a)112.
T he case when k =  0.2151 is represented by

. <r2 =  1 — g—0.2151 (Uc—U) IU T' (3.17)

This is the solution of (3.11) w ith a set equal to  zero; the  num erical value 0.2151 
s tands for the ratio  b/c.
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F ig . 1. Velocity distributions in a channel.
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T he experim ental values of (U e — U ) /U r which are taken from a paper by Gold
stein9 are given in column (1) of T able 1; the corresponding theoretical values ac
cording to  (3.14), (3.16), (3.15) and (3.17) are tabu la ted  in columns (2), (3), (4) and 
(5), respectively.

From  this tab le  we see th a t as the  value of k  increases from —0.1 to  +0.2151, 
Uc/ U ,  changes from 9.86 to  «>. Hence 0.2151 is the  maximum limiting value of k  

for constan t a, b, c in (3.9). E quation  (3.17) shows in this lim iting case th a t  the  mean 
velocity d istribu tion  in the whole channel is “logarithm ic.”

In  order to  avoid confusion, only the solution (3.14) for x = —0.1 is p lo tted  in 
Fig. 1. T he circles represent D onch’s m easurem ents10 found for Umd /v  equal to 
8.7 X 104, Um being the  average value of U  over a cross section of the  channel. The 
crosses reproduce N ikuradse’s resu lts11 for Umd/v equal to  3.3 X104. I t  is seen th a t 
ap a rt from the  im m ediate neighborhood of the channel wall, agreem ent between 
theory  and experim ent is satisfactory .

4. Relation betw een the p resen t theory  and  som e known experim ental data. From 
the foregoing calculations we see th a t  we can subject to  experim ental tes t no t only 
the  mean velocity defect d istribu tion  (U c— U ) /U r and the  m ean squares of the 
fluctuation com ponents, b u t also th e  relation (2 .10) between A and q and th e  relation 
(3.8) which approxim ates the  triple correlation W\W%. L et us examine relations (2.10) 
and (2 .12) first.

T he experim ental d a ta  used by T aylor in his s tatistica l th eo ry 12 are, in e.g.s. 
units; {7C =  114 cm /sec, t/r =  5.39 cm /sec, p =  0.00123, v = 0A4, d —12.3 cm. Since 
according to  (2.10) R 0 = \ q / v  is a constan t, we can com pute I?o from the  values of 
A and q in the  center of the  channel. In T ay lo r’s tab le  A2 in m id-channel is equal to  
2.9 cm 2, so A is 1.7 cm. T he mean m agnitude of the  velocity fluctuation q a t  this 
point is roughly 1.2 Ur [cf. (4.2) below]. These values then give

i?o =  78.5, R r =  474. (4.1)

W e have shown above in §2 th a t  w\ behaves very much like q2. T he experim ental 
values of iv \[ U \  across the  channel, determ ined by W attendorf and B aker6 for the 
flow w ith Reynolds num ber 109,000, can be represented by

. o  2  1 / 2

w y U T =  0.412(1 +  2 7 .2<r ) . (4.2)

As far as the  order of m agnitude is concerned, wf can be p u t equal to  q2/3 .  By com 
paring (4.2) with (2.12), we find th a t

R oV a/V lO R r ~  3 X 0 .4  =  1.2. (4.3)

If we use a parabolic representation of the  mean velocity d istribution th a t goes 
through the experim ental point a t  tr =  0.7, we have

- 2  <rdU/ U,da =  25.6 <r2. (4.4)

T hen a  in (2.10) becomes 25.6/27.2 =  0.94. P u ttin g  th is value of a  in (4.3), we obtain 
7?o/i?r~ 1 0 X l .4 /0 .94 =  15, while from (4.1) we find th a t  R l / R T~ 1 3 .

8 S. Goldstein, Proc. Roy. Soc. London (A) 159, 473-496 (1937).
10 F. Donch, Forschungsarbelten des Ver. Deutsch. Ing. no. 282 (192,6).
11 J. Nikuradse, Forschungsarbeiten des Ver. Deutsch. Ing. no. 289 (1929).
18 G. I. Taylor, Proc. Roy. Soc. London (A) 151, 456 (1935).
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T his shows the  order of agreem ent between the  two sets of values obtained from 
two entirely different experim ental sources. I t  m ust be pointed out, however, th a t  
the num ber R r = 474 for the  experim ental value of X used in the  above calculation 
m ay be too low for the flow to be in a fully developed tu rbu len t state .

E quation  (2.10) also shows th e  dependence of Ro upon the  quan tities E  and F 
which occur in the  definitions of the  double and triple correlation functions between 
two d istinc t points [II, (6 .8 ), (6.11)]. T he m easurem ent of these functions separately  
will give another check on the value of the num ber R 0 discussed above.

W e next study  the  values of the three constan ts a, 6 and c in Eqs'. (3.9) and their 
physical significance.

(1) k— —0.1. According to  (3.10) b m ust be positive, so c in th is case m ust be 
negative. T he definition of c/a  from (3.13) and (3.14) gives

c/a =  20/0.2785 =  72. (4.5)

Hence a m ust be also negative. If 02112 in (3.10) were zero, a becomes of the order 
of 0.4 and c is equal to 29. From the definition of c in (3.7), we find th a t

cn 2 = 58u l/d ,  (4.6)

which is 29 tim es larger th an  2rndrn/p2dy, a term  of th e  sam e order of m agnitude as
the  one in the  quadruple correlation dw\vi\/dy .  H ence all these term s are negligible as
a first approxim ation.

A fter the  value of c is known, th e  trip le correlation function is determ ined 
uniquely according to  (3.8); the  constan t term  5621112 is fixed by th e  value of wiw% a t
17 =  0 .

By m eans of 6 =  —0 .1c, the  definition of b in (3.10) and the  values of R JR -l  and 
q / /U l  given before, we find the num erical value of k to  be of the order of 16.

(2) k = 0, (c /a)112—10.94, c/a —120. This gives results sim ilar to those in case (1) 
and consequently the term s in the quadruple correlations in (3.2) are still negligible. 
In* this case c and a m ust be negative as in th e  foregoing example. T he m eaning of 
6 =  0 is th a t  the  term  due to  the decay of turbulence in (3.9) is negligible when com 
pared w ith the  o ther two.

(3) k =  0.1. In  th is case c should be positive. T hen  the  definition of c/a  from (3.13) 
and (3.15) gives c /o  =  20/1 .5870~13 , and a m ust be also positive. T h e  condition 
th a t a be greater than  zero changes the  p icture a g reat deal, for then a2ii2 in (3.10) is 
negative and its m agnitude is g reater th an  w\. N evertheless th e  term s in the quadruple 
correlations are still negligible, if th e  absolute value of O2112 is, say, a few m ultiples 
of w%■

(4) k =  0.2151, <x =  0. H ere w effave 6/c  =  0.2151. P u ttin g  th is value into the  defini
tion of 6 from (3.10), we have c~ 1 0 X & X 1 .2 /1 5 , which is abou t 12, if k is of the 
order of 15. T his gives Cm of (3.7) equal to 24U\<j/d, a q u an tity  still abou t 10 tim es 
g reater than  th e  term s involving the quadruple correlations in (3.2). T h e  physical 
significance of a  =  0 m eans th a t in (3.9) the  term  due to  deform ation is sm all when 
com pared w ith  the  term s due to  tran sp o rt of and the  decay of the  tu rb u len t energies. 
Obviously from the  equations of double correlation (2.3)-(2.6) the m agnitude of k
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can be determ ined by m easurem ent of the  mean squares of the velocity fluctuation 
com ponents.

From  the four a lternative  cases discussed above we see th a t although the m easure
m ent of th e  mean velocity d istribution  alone will n o t single out which one is the 
correct theoretical m ean velocity d istribution , m easurem ents of the  variations of the 
higher order correlation functions across the channel will decide this question. For 
example, experim ent on the trip le correlation wxw% in (3.8) will decide w hether c is 
negative or positive, and the  theoretical p a tte rn  for the  mean velocity distribution  
can thus be determ ined.

From  ano ther angle the  above four special cases can also be considered to repre
sent the m ean velocity d istribu tion  in four p arts  of the  channel. In  the  central 
portion, we have negative a and negative c [cf. (3.10), (3.8)]. Since both c and 02112 
can be functions of the coordinate tr, their values m ay change a t the various points 
of the channel. I t  is possible th a t  a m ay eventually  become positive as <r increases 
near the wall, while c which was negative in mid-channel, increases to zero and finally 
becomes positive on the wall of the channel.

According to its  definition in (3.10), b is positive and is a m onotonically increasing 
function of the  d istance from the center; likewise k increases m onotonically with cr, 
if c has already become positive. T his increasing property  of k  as the  wall is ap 
proached is substan tia ted  experim entally. In  H u ’s theory  of th e  tu rbu len t flow along 
a semi-infinite p la te ,3 the mean velocity d istribu tion  in the  tu rbu len t boundary layer 
can be represented by an equation analogous to (3.11), and the value of b/c is equal 
to  0.4 instead of 0.1 as in case (3). Hence our present solution for m ean m otion only 
covers the  channel proper; if the boundary layer on the channel wall is approached, 
the  solution should be replaced by H u ’s result. In  fact it  is well-known experim entally 
th a t the  tu rb u len t boundary  layer on the wall covers the region 30 < i? r(l —tr) <250. 
In  D onch’s m easurem ent10 cited above, R T is equal to  3630, so the  range 0.931 <er 
<0.992 represents approxim ately the  tu rbu len t boundary layer on the  wall and we 
should expect form ula (3.13) to  fail in this region. A rigorous theory to  explain the 
m ean velocity d istribu tion  for the  entire channel including the  boundary  layer 
m ight n o t be impossible according to  present indications, b u t the actual m athem atical 
m anipulation involved would be much more com plicated than  th a t in the  present 
trea tm ent.

5. Conclusion. Based upon the foregoing analysis in the cases of the  four values 
of k for the  m otion of a tu rb u len t fluid through a channel, we m ay conclude th a t  the 
velocity defect d istribu tion  (U c— U ) /U T, which is practically  independent of the  
Reynolds num ber of the  m ean flow within the  channel proper according to  von 
K arm an, is also independent of the  m agnitudes of the tu rb u len t fluctuation when the 
flow has reached th e  steady  tu rb u len t s ta te . T he question as to  w hether the  above 
conclusion can be generalized to  s ta te  th a t  the  double and trip le correlation d is tri
butions across the channel when expressed in term s of the  frictional velocity Ur, 
nam ely, the  ratios wtw ,/U I  and WiW,wk/ a r e  also independent of the  Reynolds 
num ber of the  mean flow and of the correlations-of still higher orders rem ains to  be 
seen theoretically  as well as experim entally. In  any event, the  friction velocity Ur 
probably  plays an im portan t role for tu rbu len t flow problem s involving the presence 
of a wall, as in the  present problem.
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D IF F U S IO N  IN  T U R B U L E N T  F L O W  B E T W E E N  
P A R A L L E L  P L A N E S *

BY

J. C. JA E G E R  
University of Tasm ania

1. Introduction. T he equation of diffusion in a tu rbu len t fluid

d 2X j 1 ~  2 p  d x  d x

dz2 z dz dx

(x stands for tem perature, vapour concentration, or w hatever p roperty  is being s tu d 
ied, x  is m easured in the direction of mean flow and 3 in the  perpendicular direction, 
and p  is a  constan t determ ined by the degree of turbulence of the  fluid) was in tro 
duced by 0 . G. S u tto n 1 and extensively studied by W. G. L. S u tto n ,2 who considered 
a num ber of cases of diffusion in the  sem i-infinite region 3 > 0 . I t  has been shown by 
Pasquill3 th a t  for the sem i-infinite region the  theory is in good agreem ent w ith ex
perim ents, both on evaporation and on hea t transfer.

In this note a num ber of results for sym m etrical flow in the  finite region 0 < z < 2 l  
will be given; it is assum ed th a t 21 is small enough for the power law velocity profile 
to  hold up to  the centre of the region. Such cases are of some practical in terest, and 
m ay provide an indication of the  behaviour to be expected in the m uch m ore difficult 
problem  of h ea t transfer in a circular pipe. Also they  are in teresting  generalizations 
of known solutions of the equation of conduction of hea t in th e  rod 0 < z < 2l, w ith 
constan t tem perature, or flow of heat, a t  its  ends.

T he m ethod used will be th a t of the  Laplace transform ation. W. G. L. S u tton  
(loc. cit.) rem arks th a t  if p — 1/ 2 , equation (1) reduces to  the  equation of linear flow 
of heat, and he gives a trea tm en t of (1) which is a generalization of G oursa t’s t re a t
m ent of the  equation of conduction of heat. I t  is well known th a t  the Laplace tran s
form ation m ethod is particu larly  well suited to  the solution of specific problem s in 
conduction of heat, and th a t its advan tage increases as the  com plexity of the  problem 
increases. T his suggests th a t  the m ethod m ay have the  sam e advantages when applied 
to (1), and, in fact, this proves to  be the case. All the results of W. G. L. S u tto n ’s 
paper can be obtained more shortly  in this way, and explicit expressions for the solu
tions for m ore com plicated boundary  conditions, com posite regions, etc., can also be 
derived.

In Section 2 th e  standard  problem  of evaporation in the sem i-infinite region is 
solved as an illustration of the  m ethod, and for com parison w ith la ter results. In

* Received Dec. 26, 1944.
1 O. G. Sutton, W ind structure and evaporation in  a turbulent atmosphere, Proc. Roy. Soc. (A), 146, 

701 (1934).
1 W. G. L. Sutton, On the equation of diffusion in  a turbulent medium, Proc. Roy. Soc. (A), 182, 48 

(1943). T he notation used here is that of this paper, except that the symbol E  is introduced in (4). The 
variables x  and z in (1) are dimensionless quantities defined in Sutton's paper.

3 F. Pasquill, Evaporation from  a plane, free-liquid surface into a turbulent air stream, Proc. Roy. Soc. 
(A), 182, 75 (1943).
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Section 3 two other results for the  sem i-infinite region are given for com pleteness. In 
Sections 4-6  the  m ost in teresting cases of sym m etrical flow in the region 0 < z <21 
are studied. T he solutions given here are formal only, b u t in all cases they  m ay be 
m ade rigorous by the  verification process described elsewhere.4

E quation (1) has to  be solved in the  region x > 0 ,  and in a prescribed region of z, 
w ith boundary conditions in x

X - * X (0)(z) .  as x —> +  0, (2)
X finite, as x —* oo. (3)

In  all the  problem s considered below x (0)(s) will be zero, th a t  is the tem peratu re  or 
vapour concentration in the fluid is zero in the p lane x =  0 .

T here are also boundary conditions in z, which will be expressed either in term s 
of Xi or of

3x
E  =  -  Bzl~ ^  —  • (4)

dz

T his q u an tity  E  is the  local ra te  of diffusion across the plane z = const., and B  is a
known constan t (defined by  S utton , loc. cit.) involving the fluid and its degree of
turbulence.

T h e  constan t p  in (1) is restric ted  in S u tto n ’s theory  by the  inequality 0 <^> < 1 /3 , 
and we assum e here 0 < p  <  1 .

W ith the  substitu tion
X =  2"i2, (5 )

(1) becomes
1 dif p 2 dtt

 f - --------------------—  Q  =  0 . ( 6 )
dz2 z dz z2 dx

In troducing the  Laplace transform  of w ith  respect to  x, nam ely

0* = f  c~’xQdx, (7)
J  o I

•yve obtain  from (6) the  subsidiary equation5 for 0 *,

d2a* i dn* /  p2\

T F + 7  (8)

2 .  The semi-infinite region z > 0 . Boundary conditions: x (0)(z) = 0> £ > 0 . X = Xo, 
constant,6 when z =  0, x > 0 .  x finite, as z—> » , x > 0 .  H ere (8) becomes

dH2* 1 di2* /  p2\
' s +  —  ) n* =  0 , z  >  0 , (9 )

dz- z dz \  z2 /

4 H. S. Carslaw and J. C. Jaeger, Operational methods in  applied  mathematics, Oxford, 1941, §58, 
and J. C. Jaeger, R adia l heat flow in a circular cylinder with a general boundary condition, Proc. Roy. Soc. 
N.S.W ., 75, 130-139 (1942).

5 For the procedure see, e.g., Carslaw and Jaeger, loc. cit.
5 For shortness, boundary conditions will usually be written in this way; it is implied, of course, that 

X ~>xoas z—* + 0  for fixed x > 0 .



to  be solved with
X* =  zHl* —> xoA, as z —r T  0, (10)

and
X* finite as z —» » .  (11)

T he solution of (9) which satisfies (11) is K p(zs'i), and since

zpK p(zs<l) —r 2,,~iT(p)s~ip as z —» +  0, (12)

it follows th a t the solution of (9), (10), and (11) is

zp21~p
%* =  Xo~ J ( j ) ~ siP~lKp{zSi)' (13)

Now it is known th a t7

jIp-iJsTpizs*) is the Laplace transform of z~p2p~l I e~uu p~1du. (14)
** z*/A x

T hus the  required solution is

1 C "
X =  X o — -  e~"up~1du. (15)

r  (P) J  **/ix-

T his is the  result given by Pasquill (loc. cit., (9)).
I t  follows from (15), or directly  from the  transform  E* of E, th a t

B x  o 2 l~ 2 p x ~ p
E  —» -----------------> as z —> +  0, (16)T ( P )

and
r x B Xo21~2px 1~p ,
I E d x —>------------------1 as z —> +  0. (17)

J o  ( l - p ) T ( p )

3. Two other resu lts  for the sem i-infinite region z > 0 . T he results to be derived 
here are both for the case x co,(2) = 0 > and x(z) finite as z—»<».

I f  the boundary condition at z =  0 is: E —+E0, constant, as z—> +  0, the solution is

E 0z2p
X =
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2B r(i -  p).
Also

• p  n

  I e~uu~p~1du. (18)
-  p)JzV *x

E 0 22p- ' x p , ,x ------------------ , as s _|_ o. (19)
B pT(l -  p)

T his is proved exactly as in Section 2, using (14).

7 S. Goldstein, Operational representations of Whittaker’s confluent hypergeometric function and Weber’s 
parabolic cylinder function, Proc. London M ath. Soc. (2) 34, 104 (1932), (15) and (24). A lternatively the 
result can be obtained by the use of the inversion theorem for the Laplace transformation, subsequently 
deforming the line integral into the contour ( — °o, 0 + ) ;  cf. Carslaw and Jaeger, loc. cit., §39. T he same 
remark applies to the derivation of (18) and (21) below.
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I f  the boundary condition at z =  0 is

hx — 21-2,1 —  =  hx  o, (2 0 )
dz

where h and  %o are constants, the solution is

Xo e— V -  ' ■  du, (21) \P) Jo • • ~
X o z p r  2 J  p{uz) +  otu2pJ - p(uz)

------- — e~xu u v~l -----------------------------------
2p~1r(ÿ ) J  o 1 +  2cm2" cos /nr +  a 2u ip

where a  =  T (1 — p ) 21~2p/hT(p ) .
T o prove (21) the inversion theorem  for th e  Laplace transform ation, (24) below, 

has to  be used, and the line integral m ust be deformed into ( — <», 0 +  ).
T he result (15) was derived for a constan t value of x on the  boundary z =  0. T he 

solution for the  case in which x  is a prescribed function of x on 2 =  0 can be obtained 
from (15) by D uham el’s theorem . T h e  sam e rem ark  applies to  the  cases of Sections 4 
and 6 . Correspondingly, the  solutions of the  problem s of Sections 3, 5 w ith E  a  p re
scribed function of x  on 3 =  0 can be obtained in the sam e way.

4. The region 0 < z < l .  x (0)(s) =  0- X =  Xo, constant, when 3 =  0, .v>0. £  =  0, when 
z — l , x > 0 . T his corresponds to  the region 0 < 3 < 2f w ith flow sym m etrical abou t 
z —l, and w ith x  =  Xo on 3 =  0 and z = 2l, for : t> 0 . Thus, for example, it gives the solu
tion of the  problem  of hea t transfer from the  parallel planes 3 =  0 and z — 2l, both 
m aintained a t  constan t tem peratu re  Xo, and w ith sym m etrical flow between them .

H ere we have to  solve (9) w ith boundary  conditions (10) and

E* =  0, when z =  I. (22)

By (12) the solution of (9) which satisfies (10) is

XozF2l~p
x* =  — — slr-'KpizS*) +  A z pI p(zsi).

T he unknown A  is found by substitu ting  in (22), and we have finally 

Xo2*2 l-Pi»*-‘ [ irp(3J*)/3)_i(fs*) +  I P(zs i)K p^(ls ')}
X* = (23)

X is found from (23) by  using the  inversion theorem  for the Laplace transform a
tion [cf. Carslaw and Jaeger, loc. cit.]

1 /• 7+tco
X =  —  I e’xx*(s)ds  (24)

2irZ y—ia$
Xo2p2 1- p r->+ix e’xs ' ”- l [ K p(zs')Ip„1(ls') +  I p i z s ^ K p - ^ l s ^ d s

= --------------  I   ) (2 5 )
2irir(p) J I p - i ( l s i)

where 7 > 0 .
T he integrand of (25) is a single valued function8 of s. I t  has a simple pole a t 5 =  0 

of residue
2p~ h - pY{p), (26)

8 G. N . W atson, Theory of Bessel functions, Cambridge University Press, Cambridge 1922, §3.71,
(17) and (18)



and simple poles a t s =  — a,/Z2, w here ± a r, r — 1, 2 , ■ ■ • , are the zeros (all real and 
sim ple0) of

J p^ ( a )  = 0. (27)

I t  is easy to  show [cf. Jaeger, loc. cit.] th a t the line integral in (25) is equal to 2iri 
times the  sum of the  residues a t  the poles of its integrand. E valuating  these we get 
finally

X o z ”  “  p{zar/l)

x  =  X o  ~  2 p ~ H p r ( p )  S  j f a )  ( 2 8 )

T he m ost interesting q u an tity  is the value of E  as z—>0. E ither from (28), or d i
rectly by calculation of its transform , this is found to  be

„  5 Xor(l -  p ) ^  i_„(ar)
E  —>-----------------  y ,   j as z —>■ +  0. (29)

V(p)2*r-H*P tX  < ip/p(«r)
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Also, as z—*■+(),

where
I

BxoE 2" (i) 2
E d x - * ~  - P (p \ x / l ) ,  (30)

o 2 ( 1  —  p )

^  =  (31) 
T(p) r- i  a ziT -pJ  p(ar)

For small values of x / l 2 the  value of /*  Edx  given by (30) reduces to the value (17) 
for the  sem i-infinite region, and

(i) 22~2p(x / l  2) 1~”
<t>P W )  f i r r —  • (32)

r  kP)
In  Fig. 1 graphs of these quan tities are shown for p = 1/9, the  value commonly 

found in wind tunnel experim ents. C urve I shows the resu lt (32) for the sem i-infinite 
region, and C urve II the value of 4/ / \ x / l 2) given by  (31) for values of x / l 2 for which 
the difference between (31) and (32) is im portan t. For larger values of x / l 2 th an  those 
shown the  exponentials in (31) are negligible.

In  the case of heat transfer the q u an tity  (30) gives the am ount of hea t taken up 
from the region 0 to  x  of one of the  planes.

5. T he region 0 < z < l .  x (o)(z )= 0 . E —>E0, constant, as s—>0, x > 0 . E  =  0, z= l ,  
,v>0. T his corresponds to the  region 0 < z < 2l w ith  flow sym m etrical abou t z = l, and 
w ith constan t diffusion across the  planes z =  0 and z = 2l.

Here, proceeding as in Section 4, we find

X — --------------------------------------------------------------* (33)
AT(1 -  p)sip+iI 1- p(lsi)

T he m ost interesting q u an tity  to  evaluate in this case is the value of x  as z—> + 0 . 
T his is found to  be

2£0(1 -  p)l-p r  «1
   [ M x / l 2) +  - J  - (34)

* G. N . W atson, loc. cit., §§15.25, 15.21. For the method of calculating their values in practice see 
John R . Airey, Bessel functions of small fractional order and their application to problems of elastic stability, 
Phil. M ag. (6), 41, 200 (1921):



where
_  A T .  _  f  , (3 5 )

™ ' 1 2p(2-  p) r <2 -  p) t ,

and the  a r are the roots of

J i - M )  =  0. (36)

For small values of x / l 2, (34) tends to  the  result (19).
If p = 1 /9  it is found th a t the  difference between (34) and (19) is less than  1% 

for values of x / l 2 up to  0.3, while for g reater values of x / l 2 the  exponentials in (35) are
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-0.3
L O G l0 ( x / l 2 )

F i g . 1 .

alm ost negligible. In  the  case of h ea t transfer, (34) gives the  surface tem peratu re  of 
one of a pair of planes to  which h ea t is supplied a t  a  constan t ra te  per u n it tim e per 
u n it area, and which are cooled by tu rbu len t fluid flowing between them .

6 . Two cases of sym m etrical flow in  the region 0 < z < 2 l .  F irs t let us consider 
boundary conditions x (0)(z) = 0 > and

X =  xo, constant, when z =  0, x >  0 (37)

E  =  0, when z =  21, x  >  0. (38)

H ere the regions 0 < z < l  and I < z < 2l m ust be treated  separately. W e w rite  x i(-i) 
and Ei{z/) for the values of x  and E  in l < z < 2l as functions of zi = 2l — z in this region. 
T he boundary conditions a t  the  surface of separation z =  zi =  / are



A solution of (9) which satisfies (37) is

Xo21- pH p- 1 
X* =  — — ~ z pK p(zs^) +  A z pI  p(zs!) ,

r  (p)

and a solution of (9) w ith  z replaced by zx which satisfies (38) is

X* =  C z { '/_ p (z i5 5) .

T h e unknow ns A  and C are found by substitu ting  in the transform s of (39) and 
(40), which gives

* Xo21- J’zI>H p-3 /_3,(siS!)
vi  ---------------------------------------------------------   ('41 ')

/r(i)[/_,(fa»)/p_i;(/J») +  y ’

with a ra th e r longer formula for x*. As in Section 4, x  and xi are evaluated by the use 
of the inversion theorem  and the results are

Xo21- J,zfr(l -  p) -  r - i / 'V r V i W / p W T ^ W i )
XI =  X o    X,   ■ , ■----------— — ------------------ j (4 2 )

l p r-1 J%- ,(«,) +  J v{aT)
X o2 '-W  "  e~xa' ,l*<xZ~2J p(zctr/l)

X ~  7pTVV> i \ _L T"< \I r y p )  r-l J l(a r) T" J~v[ptr)

w here the a r, (r = 1, 2 , ■ • ■ ), are the positive roo ts10 of

/_ p (a)/p _ i(a) — J  p(ce)Ji—p(a) = 0. (44)

As in Section 4 the m ost interesting q u an tity  is the value of /*  Edx  as z—>0. This is
found to  be

: Bxol2~2p (2) ■>
E d x ~ * T Z  Z ^ p  ( x/ 1 )- (45)o 2 ( 1  — p)

where
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<2b  n \  2 3-2,’ ( l  -  p )  "

4>p x ~ 2 [r(j>)]2 S  « r 2p{^ (“ r) +  ^ ( « O i  ' (46)

For small values of (x / l2), (46) behaves like (32). I ts  value for p  = 1 /9  and for val
ues of (x /l2) for which the  difference from (32) is im portan t is shown in C urve I I I  
of Fig. 1; for larger values of x / l 2 the exponentials in (46) are negligible.

T he result (45) gives the evaporation from the region 0 to  x of the  plane z =  0 if 
there is no flow over the p lane z = 21.

Finally  we consider the case in which th e  boundary  conditions are x (0)(2) = 0 , and

X =  xo, constant, z =  0, x  >  0, (47)

and
X  =  0, when z =  21, x >  0. (48)

Here, proceeding as before and w riting  xi for the value of x in l< z < 2 l ,  E \  for the 
value of E  in this region, and z1 = 2 l—z, we find

10 In the case k =  1/2 when (1) becomes the equation of linear flow of heat, (44) becom es cos 2a =  0 and 
sim ilarly (51) and (52) becom e sin 2a  =  0.
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f e~a'x' llJ p{zar/l) | t - ^ j p W r / i y

Î  Ctl~PJl^(otr) P2r- ”Jl{Pr) .
(  2 2p\  Xo2

_ X o \  2i2p)  m

/Zi V ” Xo2l- ”z[ -  ( e - ^ ' l2J P(ziar/l) e-fc'^JpiziP r/l))

=  2 X 0  V 7 7  +  w  s  i  « 7 ^ - )  ’  (  }

where the  a r are the positive roots of

W  =  0, (51)

and the j3r are the positive roots of

J p-  iQ?) =  0 . (52)

T his problem is th a t  of h ea t transfer between th e  plane 2 =  0 a t  constan t tem pera
tu re  xo, and th e  p lane z = 21 a t  zero tem perature, by  tu rb u len t fluid flowing between.
T he q u an tity  of h ea t taken  up from the  region 0 to  x of the plane z =  0 is determ ined
by

BxoP 2p  (3)/ , A  

s—To J 0 2 ( 1  — p )

where

lim i" Edx  =  ——-------- p'p ’{ x / l ) ,  (53)
’- t o  J 0

,m  2 2p ( l  — p )x  1 +  p +  2p- 
pp (x /l  ) = -----------------------------------:—r- 2(1 + p)

_  23~2p(l -  p) -  ( \

[r(/)]2 ¿ i t  «r2pJU M
and the  a r and /3r arc defined by (51) and (52). For small values of {x/l2), ^ ( x / / 2) 
behaves like (32). For larger values its behaviour for the case ¿> =  1 /9  is shown in 
Fig. 1, Curve IV, and for still larger values th e  exponentials in (54) are negligible.

T he q u an tity  of hea t taken up by the  region 0 to  x of the  plane 2 =  2/ is deter
mined by

Bxol2~2” ( 4 ) ,  , , 2 V

t o  J  0 2(1 — p)
C X X>X0^ (4) 2

lim I Eidx  = ------------- p p { x / l ) ,  (55)
i - T o  2 ( 1 - / » )

where

(4, ... 2p{\ -  p )x  (1 +  2p){\ -  p)
P p ( x / l ) =  ■

( 5 6 )

P 2(1 +  p)
23-2„(l _  p )  co f  g - x  a h  I* e - x f t l l *  |

[ r ( p ) ] 2 h  \a^->‘J l ^ ( « r) ~  ]3 i-2" / 2 (/3r) J  '

A portion of the curve of p ^ (x //2) for p = 1 /9  is shown in Fig. 1 , C urve V; for 
larger values of x / l 2 the exponentials in (56) are negligible, and for sm aller values th an  
those shown in the figure p continues to  decrease rapidly.
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O N  T H E  S T A B IL IT Y  O F T W O -D IM E N S IO N A L  P A R A L L E L  F L O W S  

PART II.— STABILITY IN  AN IN VISCID FLUID*

BY

C. C. L IN
Guggenheim Laboratory, California Institute of Technology

T. G eneral considerations. T he criteria of Rayleigh and Tollmien. A t the end of
P a rt I, we have shown th a t the study  of the stab ility  problem in an  inviscid fluid 
gives valuable inform ation provided it is kept in mind th a t we are ac tually  dealing 
w ith the  lim iting case where the Reynolds num ber becomes indefinitely large. T he 
study  of the stab ility  of two-dimensional parallel flows in an inviscid fluid is usually 
regarded as being quite complete, through the work of Rayleigh and Tollmien. T heir 
results show th a t instab ility  depends very m uch upon the occurrence of a po int of 
inflection in the velocity profile. However, it seems th a t  physical in terp re ta tions of 
such general results are no t well known. Such an in terp re ta tion  will be given in §§9,1 0  
of th is part. T here are also several points in the m athem atical -theory which require 
fu rther developm ent and clarification. These will be brough t ou t for fu rther considera
tion in §§7, 8 .

W e now proceed to  m ake a critical survey of some aspects of the stab ility  problem 
in an inviscid fluid. F irst, let us sum m arize the conclusions obtained by Rayleigh and 
Tollmien. These-can be conveniently described as the  necessary and the sufficient 
conditions for the existence of a disturbance, self-excited, neutral, or dam ped.

1) Necessary conditions for the existence of a disturbance.
a) If the flow possesses a self-excited or neutral mode of d isturbance w ith finite 

wave length, the velocity profile has a flex a t some point y = y „  where y i< y a< y 2. 
Furtherm ore, in the case of a neutral d isturbance, the phase velocity m ust be c = w(y,).

b) If the flow possesses a damped mode of disturbance, no im m ediate conclusion 
can be drawn.

2) Sufficient conditions for the existence of a disturbance. So far, the sufficient condi
tions are known only for sym m etrical and for boundary-layer velocity distributions. 
The results m ay be sta ted  as follows.

a) There is always the neutra l d isturbance given by c =  0, a  =  0 , <p{y) =w{y).
b) If w " { y , ) ~ 0, for y \ < y ,< y i ,  there is a neutral d isturbance w ith c = w{y,)\  fu r

therm ore, if w '" ( y s)?£0 , self-excited disturbances also exist.
Discussion. T he condition w " '(y , )  ^ 0  involved in (2) (b) will be shown to be ac

tually  unnecessary, by an im proved m ethod of proof to be discussed in the next sec
tion. T he s ta tem en t in ( 1) (6) regarding dam ped disturbances differs from the origi
nal conclusion of Rayleigh and Tollmien. Indeed, in the work of Lord Rayleigh, the 
solution is taken to  be valid all along the real axis. Hence, in accordance w ith  the dis
cussion of §5, P a rt I, such considerations do not include dam ped disturbances. How
ever, Rayleigh and Tollm ien did n o t distinguish between an amplified disturbance 
and a  dam ped disturbance, because they  regarded them  as complex conjugates. As 
pointed ou t in §5, th is is no t permissible. In fact, if we accept the original conclusions

* Received M ay 18, 1945. Part I of this paper appeared in this Q u a r t e r l y , 3, 117-142 (1945).
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of Rayleigh and Tollmien, a profile w ithout a flex could not execute any kind of dis
turbance. T his can hardly be reconciled w ith our intuition regarding the s ta te  of 
affairs in a real fluid a t infinitely large Reynolds num bers . 1 According to  the present 
in terpretation , only dam ped solutions can exist. Such a  conclusion is also borne 
out by the investigations for a viscous fluid .2 I t  is to  be noted th a t the neutral and the 
self-excited disturbances, existing under the condition w " ( y , )=  0 , are free from the 
effect of viscosity inside the fluid, because the neutral solution is also regular a t  y = y ,  
where w = c. Hence, we m ay conclude th a t disturbances essentially free from the effect 
of viscosity inside a f lu id  can exist only for  velocity distributions with a flex.

T he results of Rayleigh and of Tollmien discussed above tend to give the im pres
sion th a t the occurrence of a flex in the profile is the decisive factor in the determ ina
tion of instab ility  not only in the case of an inviscid fluid, b u t also in the case of a 
viscous fluid .3 However, the investigation in P a rt I I I  will show th a t this is by no 
me^ns the case. W hen instability  first occurs, as one increases the Reynolds num ber, 
viscous forces still p lay  a dom inant role, and the main characteristics of the behavior 
of th e  fluid w ith  respect to  a d isturbance do not depend upon the occurrence of a flex 
in the velocity curve. Indeed, it is physically im probable th a t a slight change of the 
pressure gradient in the case of a boundary layer—which m ay cause a change from a 
velocity curve w ithout a flex to  one w ith a flex— should cause a radical change in the 
essential characteristics of stability . As we shall see later, the instability  of a boundary 
layer depends more on the outside free stream  than  on the occurrence of a point of 
inflection. I t  m ight be argued th a t the free stream  is analogous to  a point of inflection 
in th a t a vanishing curvature is involved; bu t even if this is adm itted , we m ust still 
note th a t the essential features in this case are not obtained from an investigation 
neglecting the effect of viscosity. Indeed, from inviscid investigations, it is concluded 
th a t a boundary layer w ith zero or favorable pressure gradient is stable, except for 
the very trivial type of d isturbance with infinite w ave-length and zero phase velocity. 
T h e  present investigation shows th a t all boundary-iayer profiles can be unstable, and 
exhibits results in agreem ent w ith the physical suggestion ju s t discussed.

I t  thus seems th a t any conclusion obtained fro?n inviscid investigations must not be 
taken over directly to the case of the real fluid, where the stability phenomenon is largely 
controlled by the effect of viscosity and not decided primarily by the occurrence of a flex 
in  the velocity curve.

Indeed, even when we are m ainly interested in the behavior in the lim iting case 
of infinite R eynolds num bers, the existence of a flex is no t as significant as it m ay 
appear to  be a t  first sight. T he existence of neu tra l or amplified disturbances has so 
far been proved only for symmetrical and boundary-layer types of velocity profiles. 
This m ay no t be true  for o ther types of velocity profiles, e.g., when the walls are in 
relative m otion. T he following example will bring out th is point. L et us consider the 
velocity d istribution w(y) =  A -\-B sin y, y i < y < y ’2, which has a flex a t  y  = 0 if 
y i < 0 < y 2. According to  the above necessary conditions, the only possible neutral

1 This is the objection of Friedrichs, Ioc. cit. (Ref. [5]) p. 209. (The references are listed at the end of 
Part I.) It must also be noted that the non-linear terms are not negligible in the case of an ideal fluid. 
W e shall consistently restrict the magnitude of our disturbances so that the effect of viscosity is always 
more important than the effect of non-linearity.

1 See figures in Ref. [27].
3 See Taylor's discussion on p. 308 of Ref. [70],
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disturbance is the one w ith c — A .  Then the equation of d isturbance (6.21) reduces 
to  <f>"-\-(1 — a-)4> = 0 . I t  has the solution

4>{y) = C sin {\ / l  — a2 (y — y x) }, 

which vanishes a t  y  — y i. If <t>{yz) is also required to  vanish, we m ust have 

\ / l  — a 2 (y2 — y i) =  nir, (n =  integer),
and hence

a 2 =  1 — [nir/(y2 — yi)]2.

Thus, if y 2—yi<ir,  there is no possible neutral d isturbance; if y2 — j i  =  x, there is the 
one w ith a  =  0 ; if ir < y 2 — yi < 2ir, there is one with ay±0 ; in. general, if nm < y 2 — yi 
< (« j +  l)-7r, there are m  neu tra l disturbances with ay^O. In the last case, there are 
also m  points of inflection in the velocity profile.

I t  can thus be seen th a t the general shape of the velocity profile plays a very im
p o rtan t role even in the lim it of infinite Reynolds num bers. Indeed, it  will become 
clear from P a r t  I I I  th a t  the eigen solution w ith eigen values a  = c — 0 is no t as trivial 
as it m ight appear a t first sight, for it ac tua lly  represents a lim iting case with R —>°o. 
This solution exists for sym m etrical and boundary-layer profiles, bu t its existence is 
no t im m ediately evident for o ther types of profiles.

In  spite of all these points against the decisive natu re  of the flex, it m ust be ad 
m itted  th a t  its occurrence certain ly  m akes the m otion com paratively unstable. This 
can be expected from the original results of Rayleigh and Tollmien, and can be seen 
more clearly from the in terpretation  of the mechanism of inertia forces to be given 
in §§9, 10. However, these results m ust not be taken to  indicate any decisive nature 
of a flex. T he essential features of instab ility  can only be obtained through considera
tion of the effect of viscosity.

We shall now conclude this section by m aking some critical discussions of Heisen
berg’s classification of velocity profiles and the use of broken linear profiles for the 
study  of stab ility  problems.

Heisenberg's classification of velocity distributions. Heisenberg a ttem pted  the case 
of flow between solid walls in relative m otion w ith the condition th a t Re(ty — c) van
ishes only once for yi < y  < y 2 (loc. cit., p. 592). Regarding a 2 as small, he approxim ated 
the condition (6.18) by iT i(c)=0  [cf. (6.26), (6.24)]. He then classified the profile into 
four classes: (i ) those for which K f c )  = 0  has a complex root; (ii) those for which 
K f c )  = 0  has a real root; (iii) those for which the real p a r t of K f c )  vanishes for a cer
tain  real value of c; (iv) those for which none of the above three cases is true. Heisen
berg concluded th a t the first class is unstable, the second generally unstable, the rest 
stable.

In discussing the valid ity  of these conclusions, the following poin t m ust be borne 
in mind. If we can show th a t a certain  type of d isturbance exists for a 2 =  0 and 
a R —»co, it m ay also be expected to exist for sufficiently large values of a R  and suffi
ciently small values of a 2. However, the  non-existence of a certain  type of disturbance 
for a 2 =  0 and a R — does not exclude the possibility of its existence for finite values 
of a 2 and aR.  I t  appears therefore th a t we can only expect to  conclude the instability 
of a velocity d istribution  by discussing the roots of 2iCi(c)=0. Thus, ap a rt from some 
flaws in Heisenberg’s m athem atical deductions, only the  first two classes can have 
any decisive significance.



If Ki(c) has a root w ith a positive im aginary part, the m otion is unstable. If Ai(e) 
has a real root, Heisenberg shows th a t the m otion would be unstable when the effect 
of viscosity is considered. T his will be studied more fully in a generalized form in §11. 
However, if Kfic)  has a root w ith a negative im aginary part, we cannot conclude the 
instab ility  of the flow by taking the complex conjugate of X i(c )= 0  (as Heinsenberg 
did). For if

h
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dy(w  — c)-2 =  0 ,

then (cf. Fig. 5)

X

dy(w  — c)-2 =  — 2iriRo, 
c  F ig . S. Path around the critical point in the case £ ¡< 0 .

where Ro is the residue of (w — c)~- a t  yo- In fact Ro= —wé'/wô*.  How Ki(c)  is the 
complex conjugate of J c d y (w  — c)~2. Hence,

Ki{c) = 2x iR 0 = — 2iriwi'./ wô3,

which does no t vanish unless w = 0 . Hence, the equation iT i(c)= 0  tells us nothing 
abou t the existence of the root c or any other root w ith a positive im aginary part.

T hus, H eisenberg’s a ttem p t appears to  be not as successful as T ollm ien’s later 
w ork [75], which a t  least brings ou t th e  characteristic properties of sym m etrical and 
boundary-layer d istributions. A com plete classification of velocity distributions, how
ever, is no t yet existent.

Approximation using broken linear profiles. Some investigations of Lord Rayleigh 
were carried ou t by approxim ating the velocity profile w ith straight-line segments. 
W ith  this approxim ation, the solutions of (6.21) can be expressed in term s of elemen
ta ry  functions. Lord Rayleigh also tried to  verify his conclusions by considering the 
roots of iT i(c)= 0 , using the  same approxim ation for the velocity. However, the re
sults of his investigations are doubtful, because the num ber of roots obtained for 
Ki(c) is equal to  the num ber of corners chosen in the approxim ation. T his was dem on
stra ted  by Heisenberg to be inherent in the m ethod of approxim ation. T he general 
idea is as follows. As discussed above, the  stab ility  condition (6.18) m ay be approxi
m ated by K fic ) = 0  in certain cases. A lthough R ayleigh’s approxim ation m ay be made 
very close so far as the velocity d istribution is concerned, the approxim ation to 
(w — c)~2 is always bad in the neighborhood of the corners. Consequently, the integral 
K\(c) is no t properly approxim ated. In  fact, a continuous broken profile w(y)  does n o t 
allow itself to be continued analytically  to  the complex y-plane w ithout introducing 
discontinuities (cuts). I t  thus appears th a t  all results deduced from the consideration 
of broken profiles m ust be regarded w ith reserve. T he same criticism applies to 
T ie tjen ’s work w ith the viscous fluid. His analysis failed to  give a minimum R ey
nolds num ber below which all small d isturbances are dam ped out.

8. Rigorous proof and extension of Tollmien’s result for the existence of unstable 
modes of oscillation. In this section, we w ant to give a rigorous proof of the existence 
of amplified solutions of (6 .21) satisfying the second and the th ird  boundary condi
tions of (6 .22) when the velocity profile w(y) has a flex a t y = y , ,  i.e.,

w"(y.) =  0 . (8 .1)
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T he idea of the proof is essentially the same as th a t used by Tollmien, b u t the m ethod 
is im proved. I t  has the  fu rther advantage of enabling us to  extend the results to  cover 
cases where w '” (y.) = 0,— a condition which had to be excluded by Tollmien.

According to  previous results, the neutra l d isturbance m ust have a phase velocity 
c equal to

c, = w, =  w(y,). (8 . 2)

L et the  corresponding value of a  be denoted by a s. T he essential idea of the  proof is 
(1) to show th a t there exist eigen-values of c and a > 0  in the neighborhood of the 
values of c, and a„ such th a t the im aginary p a rt of c does not vanish, and then (2) to 
show th a t  the im aginary p a r t is ac tually  positive. T he first sta tem en t can be expected 
and can be readily established, if we can show th a t the left-hand sides of (6.18)-(6.20) 
are analy tic  functions / ( a ,  c) of the two variables a  and c in the neighborhoods of a ,  
and c,. For if this is true, we can always solve f (a ,  c )=  0 for c as an analy tic  function 
of a , (there m ay be more than  one branch), by the im plicit function theorem. Hence, 
there is a t least one value of c corresponding to  every real value of a  in the neighbor
hood of a = a , .  Furtherm ore, by (8.2), this value of c, being unequal to  c„, cannot be 
real, and the first p a r t of our result is established.

T o prove the analy ticity  o f /(a ,  c) seems to be a trivial problem. Nevertheless, we 
shall find below th a t it is impossible to  establish it in the neighborhood of (a, c) = (0 , 0). 
T he chief problem in the proof is to  overcome the difficulty caused by the singular 
point of the differential equation (6 .21).

If w — cj^O, we can w rite (6.21) in the form

w"
4>" — a-<t>-----------------=  0. (8.3)

w — c

L et us now consider a simply-connected region R  of the y-plane which encloses the

y - P L A N E

points y  = y\ and y  — yi, bu t excludes the point y s, the passage from y\  to y 2 being taken 
in the lower half of the y-plane. We consider also a neighborhood S  of m utually  
exclusive w ith the region R. Let us regard the relation

c =  1v{y) (8.4)

as m apping the regions R  and 5  into two regions R '  and S '  of the c-plane (Fig. 6). 
If the m apping is one-to-one, (as can be expected if w 'iy ) ^ 0 for y \< y < y i ) ,  these
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regions will also be m utually  exclusive. Then, if we restric t y  to R  and c to S ',  the 
coefficients of (8.3) are analytic functions of the independent variable y  and the pa
ram eters a  and c. Hence, a fundam ental system  of solutions of (8.3), which we denote 
by 4>i(y, a, c) and tp2( y ; ot, c), are analytic functions of the three variables y, a, and c. 
We understand th a t  y  is restricted to  the region R, c is restricted to the region S',  
while ot m ay be in any finite region enclosing a,.  Thus, (for example),

M a > c )
M:yi; «. d « . c)
<H'(y2; a ,  c) <f>l(y2\ a, c)

(8.5)

is an analytic function of the variables a  and c, as we w ant to prove.
We note th a t  in the neighborhood of (a, c) — (0, 0), the above reasoning fails. T he 

region R  (which has to  enclose the point y = y \ )  and the region S  (which has to  enclose 
the  point where w = c = 0) cannot be taken  to  be m utually  exclusive. In  f a c t , / ( a ,  c) 
presum ably has a singular point a t  the point a  =  0 ( a  logarithm ic branch point). We 
shall discuss this case a little  more closely a t  the end of th is section.

L et us proceed to  show th a t  there actually  exist values of c =  c(a2) w ith a positive 
im aginary p a rt corresponding to  positive real values of a. This is necessary because 
the  usual argum ent of tak ing  complex conjugates has been shown to be invalid. For 
th is purpose, we consider the power series

f  dc\  1 / d 2c \  ,

‘ ~ ‘, +  W . (x “ x,) +  t G w . <x "  x->! +  ■ ■ ■ ■ (8 ' 6)

where X = a 2.4 Since X is restricted to  real values, the im portan t point to  be shown is 
th a t  the first of the derivatives in  (8 .6) for which the imaginary part does not vanish is of 
odd order. Then, by tak ing  values of X slightly greater or sm aller than  Xs, we can al
ways m ake c , - >  0. For these values of c and a 2, we can continue our solution <p(y) 
analy tically  so th a t i t  is given along the real axis between y\  and y2, thus obtaining an 
inviscid solution.

L et us now consider (8.3), w riting X for a 2. We have

w"
=  <p" — \<{>------------------(¡> =  0 .  ( 8 - 0

w — c

Let cp be an eigen function w ith X, c as the corresponding eigcn-values. Then

w"  ( w" dc\
L(4>\) = d>\ ~  -------------<t>\ =  V  + 7  7T TTi <f>’w — c t (w — c)z d \)

where
dtp dtp dc

tpx = -----1-----------
ax dc d \

We distinguish two cases: (1) the point y = y ,  is a simple root of w " (y )=  0; (2) the 
point y  — y ,  is a m ultiple root of w "(y )  = 0 .

In the first case, w " ' ( y , ) ^ 0. In the lim it X—>X„ c—>c„ Eqs. (8.7) and (8 .8) become5

1 Since dX /da t* 0 at a  — a „  the correspondence between a  and X is one-to-one in the neighborhood of 

*,=«:■
6 A subscript r denotes that the parameters X and c are put equal to X, and c, respectively. A sub

script X denotes differentiation with respect to  X.
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w
L,(<j>.) = 4,'.' -  X,0 .  0 , =  0, (8.9)

w — c,

w ( r  / t » . ,
L«(0x») =  4>{'t — Xs0 \ , ---------------- 4>\s — v  + -~r~------- r - ( —  ) r  0*- (8 -1 0 )

w — c, ( (w  —  c,)- \a

From  these, we deduce th a t

d . . ( w" (  dc\  ) ,
0sL>(0x.) — <j>\sL,(<t>,) =  — — <j>\,4>',} =  < 1 +    — ( —- J > <t>'s.

dy ( (w — c ,y  \ d \ / ,)

Now, 0x satisfies the sam e boundary conditions as 0  does, because those conditions 
are satisfied by 0  for each pair of values of X and c, and 0  is an analytic function of 
them . Hence, in tegrating  0„I.1>(0x«) —<j>\,Ls{4>a) between the  lim its (yi, y 2), we have

(  dc\ r  w"  , r Vl ,
y . i „

(“) = - f V2 t f d y/ f U2 w "tf (w  -  c,)-Hy. (8.11)
or

(do

T he denom inator of the above expression is equal to

/ .
(w ',"y  +  %wivy- +  • • • ){wl y  +  \w ',"  y1 +  • • • +  20 !S0 J',;y +  • • • )dy

VI—Vt

v i , r  «-»• ( 1 )
— — 4>u I  V Aq A \y  +  ■ ■ • > dy,

Ws J  vl-v. I y )

where 0 „  is the value of 0 * a t y = y „  and A 0, Ai, ■ ■ ■ are real. Hence, the im aginary 
p a rt of the above expression is ir<t>„w!"'/wi2. Since is real and 0 S5 does no t van 
ish ,6 we have arrived a t  the required result. T he above argum ent is a rigorous form u
lation of T ollm ien’s work.

In case w "{y)  has a m ultiple root a t y  = y„  the proof of Tollmien does not hold, 
b u t the above m ethod can still be carried through. T he restriction m ust be made, 
however, th a t  the point y ,  is a point of inflection where w "(y )  actually  changes its 
sign. T hen, y ,  is a root of w "(y )  of odd m ultiplicity, and the first of the derivatives 
w iv(y,), wv(y,), ■ ■ • which does not vanish is of odd order. Such a point always exists 
when the curvature of the velocity curve has different signs a t y\  and y 2. If  we differ
en tia te  (8.7) 11 times w ith respect to  X, we have the following equation for each value 
of n :

■A „ dr (  w" \
L(<f>\('•>) =  +  2 _, Cr0 >■> I ---------  I. (8 . 12)

r=l d \ r \ w  — c /

L et w " ( y ) have the root y ,  up to the m ultiplicity 2»z +  l ,  m > 0. Then, (8.10) is 
regular in a neighborhood of y  = y s, and the value of (dc/dX)e as given by (8 .11) is 
real. Let us consider the boundary value problem of the differential equation (8.10), 
requiring 0xs to  satisfy the same boundary conditions as 0 «. T he solution can be ob-

8 Tollmien [74], p. 92.
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tained from cj>\(y) by m aking X—*X„ and is m oreover real along the real axis, by a 
d irect consideration of (8 .10).

Continuing the same argum ent w ith equations of the type (8.12) w ith n = 2, 3, 
• • • , 2m and c—>c,, X—>X„ we find th a t

( d-c \  / d 3c \

5 3 ) . '  w . v

/ d2mc \

’ W V .

are all real. Finally, for n = 2m +  l ,  we obtain a relation of the type 

/ dc\~m+l C Vl / d 2m+1c \  C
(2m +  1)! J  J w"4>l(w -  c)~(2m+2)dy  +  (^/x2,„+1 J J  4>>dy  =  real. (8.13)

J u s t  as in the case of the equation preceding (8 .11), it can be easily seen th a t the above 
integral J" 'w "4>2s(w — c)~(2m+2,dy has the im aginary p a rt wl2m+®<j>2s/ ( 2m + l ) \ ( w i ,)<2m+2> 
while the  o ther term  on the left-hand side of (8.13) is real. Thus, (d2m+1c/d \ 2m+1)„ has 
a non-vanishing im aginary part. This is the result desired.

T his com pletes the proof of the existence of amplified solutions near the neutral 
solution c = c„ a = a ,  when the velocity curve has a point of inflection.

T he proof of the existence of amplified solutions near the neutra l solution c =  0, 
a  = 0 cannot be so easily form ulated into a rigorous form. From  the  solutions (4.14), 
it is very  easy to  obtain the solution cf>i which approaches the eigen solution <j> = w(y) 
as c—>0, a 2—>0, w ith a 2 = 0(c). T he solution is

(¡>i =  — cw( (w — c) I (w — c)~2dy
J  VI

X 1 1 +  a2 J '  dy(w — c)2 J '  dy(w — c)~2 +  • • ■ j- . (8.14)

As can be easily verified from (6.21) the condition th a t  4>r be an eigen function is

cw{ +  a 2 r  (w — c)<prdy =  0. (8.15)J I,,
From  this, it follows th a t

/  dc\  l r u*
( — ) = — 7 I w 2d y ,  (8.16)
\ d \ J  o w  i J  Vl

and th a t the im aginary p a r t of (d2c/d\ 2)0 is 2-K(dc/dk)tfw[/w'2, which is positive if 
there is one flex in the velocity profile (wi* > 0 ). However, the real p a r t of (d2c/<Tk2)o 
becomes logarithm ically infinite, and hence the argum ent is no t rigorous. Also, it does
no t seem easy to  m ake suitable modifications and extensions in case w//(y 0 = 0 . I t
should be rem arked th a t T ollm ien’s proof is not essentially different from the argu
m ent ju s t given.

Sim ilar considerations can be applied to  boundary-layer profiles, and sim ilar re
sults can be obtained confirming and extending Tollm ien’s original results.

9. Physical in terpretation  of instability  in an  inviscid fluid. T he fact th a t  th e  in 
stab ility  of a two-dimensional parallel lam inar flow is so closely connected w ith  the 
occurrence of a  po in t of inflection in the velocity profile dem ands a  physical in ter
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preta tion . Since Eq. (6 .21) is essentially the vorticity  equation, we would expect 
w "  = 0 to  indicate a m aximum or m inimum of the vorticity  —w '  of the main flow. 
T his is actually  where the explanation is to  be found.

Since we have neglected the effect of viscosity, a fluid elem ent m aintains its vor
tic ity  th roughout the motion. From  this point of view, a two-dim ensional parallel 
flow m ay be regarded as the m otion of a large num ber of vortex filam ents under the 
action of each other. F ilam ents of equal vortic ity  are arranged in the same layer, and 
the whole flow is built up of a collection of such layers.

T he following physical in terpretation  is based upon the fact th a t  a fluid elem ent is 
accelerated in such a field if it is associated w ith, an excess or a defect of vorticity . 
These considerations were originally developed by von K arm an 7 for the in te rp re ta
tion of the failure of the simple vorticity-transfer theory of fully developed turbulence 
as applied to  the case of parallel C ouette flow. T he idea is developed in greater m athe
m atical detail here in th is section and the next. I t  will be noticed th a t  the considera
tion is essentially two-dimensional, and hence is even more suitable here than  for 
fully developed turbulence, where the fluctuations are essentially three-dim ensional. 
An alternative in terp re tation  of the results of Rayleigh and Tollm icn, b u t still based 
upon vortic ity  considerations, will also be given to  dem onstrate the role of the viscous 
forces.

L et us imagine a d isturbance of the flow such th a t an elem ent E \  of fluid of the 
layer L\  is interchanged w ith an  elem ent E 2 of a neighboring layer Z,2. For definiteness, 
let us suppose th a t the layer L 2 has a higher vorticity  than  the layer L \  in the undis
turbed  state . Since E \  preserves its vorticity , it  will appear to  have a  defect of vor
tic ity  when it is in Z,2. Similarly, E i  appears to have an excess of vorticity.

Let us fix our a tten tion  on one elem ent, say E 2. I t  will be shown in §10 th a t a fluid 
elem ent w ith an excess of vorticity  is accelerated in the  direction of the positive 
y-axis w ith an acceleration T~1f f{v '( ,x ,  y ) } i£o'dxdy, where f 0'( y )  is the gradient of 
vortic ity  of the m ain flow, v'(x, y) is th e  com ponent of the disturbing velocity per
pendicular to the direction of flow, and T is the to ta l strength  of the vortex filaments 
corresponding to  the disturbance. Exam ining the signs of the various quan tities in 
the acceleration formula, we can easily see th a t E 2 is accelerated toward a region of 
higher vorticity  if the gradient of vorticity  does not change sign anyw here in the fluid. 
Thus, E 2 is accelerated tow ard L 2. A sim ilar consideration holds for the  elem ent E\. 
Hence, in either case, the fluid element is returned to the layer where it belonged (by the 
acceleration due to  its in teraction w ith o ther vortex filam ents). The motion is there
fore stable when the gradient of the vorticity does not vanish.

W hen there is an extrem um  of vorticity , an interchange of fluid elem ents on op
posite sides of the extrem um  does not give rise to  an excess or a defect of vorticity . 
Furtherm ore, the gradient of vorticity  vanishes there, and has opposite signs on 
opposite sides of th a t  layer. I t  can easily be seen from the  above acceleration form ula 
th a t  the restoring tendency m entioned above is largely im paired in such a case. T hus, 
exchanged fluid elem ents are n o t as strongly forced back by the action discussed 
above. Such an exchange constitu tes a d isturbance because there is an exchange of 
m om entum . Thus, a d isturbance m ay tend to  persist and perhaps to  augm ent. T he 
m otion is not necessarily stable.

7 Cf. discussions of the vorticity transfer theory of turbulence in his general lecture at the Fourth  
International Congress for Applied M echanics [19]. Some developm ents in that direction were continued 
by C. B. M illikan (unpublished).
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T he above discussion is based on very general considerations and does no t depend 
on the consideration of a periodic w avy disturbance as used in the m athem atical 
analysis. W e shall now support the above argum ent by considering a neutra l wavy 
disturbance, w ith the  understanding th a t if such a  disturbance can persist (except 
for the exceptional case of infinite wave-length and zero phase velocity), the m otion 
is presum ably unstable. From these considerations, the im portance of viscosity in the 
inner friction layer will also be brought out.

L et us consider an observer moving with the phase velocity of a neutra l wavy 
disturbance. H e will observe a sta tionary  p a tte rn  of the flow (see Fig. 7) .8 Closed 
stream  lines are inevitable unless the d isturbance has no ^-component of velocity in 
the critical layer ui = c, for the 
flows on opposite sides of the criti
cal layer are in opposite directions 
relative to  the observer. I t  appears 
unlikely th a t the ^-com ponent of 
the d isturbance should be zero 
th roughout th a t  layer. Indeed, it 
has been shown to be impossible 
m athem atically .9 Thus, whenever 
a neu tra l d isturbance persists, it 
involves a steady  exchange of fluid / / / / / / / / / / / / / / / /  /  /  y j r y y y  y  
elem ents on opposite sides of the
critical layer. p IG 7 Stream lines of a neutral disturbance as observed by

If the effect of viscosity is to  be an observer m oving with the wave velocity,
negligible, fluid elem ents on the
same stream  line m ust have the sam e vorticity . If the g rad ien t of vortic ity  of the main 
flow is zero or small near the critical point, it is easy to  com pensate this small differ
ence of vorticity  by  the vortic ity  of the  superposed flow, while the  “scale” of d istu rb
ance [as measured in order of m agnitude by 11'/ ( d u ' / d y ) \  rem ain the same as th a t 
of the m ain flow. I t  is thus not impossible  to find a neu tra l d isturbance for which the 
effect of viscosity is negligible.  T he m otion m ay be unstable.

On the o ther hand, if the gradient of vorticity  of the main flow is finite, the super
posed small disturbance m ust also give a finite grad ien t of vorticity . T his means th a t 
the “scale” of the d isturbance m ust be very small in the critical layer. T he diffusion 
of vorticity  by the effect of viscosity is then inevitable. I t  is thus impossible  to  find a 
neutral d is tu rb an ce /o r which the effect of viscosity is negligible.  T he m otion is inertially 
stable.

10. Acceleration of vortices in  a non-uniform  field of vorticity. In the foregoing 
physical in terp retation  of inertial instability , we have considered the acceleration of 
an elem ent of fluid in a two-dim ensional parallel flow when this elem ent of fluid does 
no t have the same vorticity  as the surrounding layer. W e are now going to  derive the 
explicit form ula for the acceleration. T he derivation shall be m ade in two different 
w ays: (1) by kinem atical considerations (using vorticity  theorem s); (2) by considera

8 This figure is due to Lord Kelvin (loc. cit.). He pointed out that the facts discussed here are “sur
prising,” but did not attem pt to  explain their connection with the mechanism of hydrodynamic stability.

3 This follows at once from R ayleigh’s original results, if we apply it to  the region between this layer 
and the solid wall (cf. Tollmien, loc. cit., 1935).



tions of the pressure gradient. In  either m ethod, we shall consider a perfect fluid in 
accordance w ith the stab ility  problem  under consideration.

1) First derivation, by kinematical considerations. For definiteness, let us consider a 
two-dimensional flow between two solid walls, which we shall take to  be y =  ± 6. Let 
the velocity com ponents of the main flow be

U = W{y), V  =  0, (10.1)

and those of the secondary flow be

u' =  u'(x, y), v' =  v'(x, y).  ( 1 0 . 2 )

T he d istribu tion  of vorticity  of the main flow is

fo =  fo(y) =  -  w'(y), . (10.3)

and th a t of the secondary flow is
dv' du'

r  = ---------------- (10.4)
dx dy

T he la tte r d istribution shall approxim ate a vortex “a t ” the po int (£0, 770)- T hus, if 
the signs of f '  and are the same (or opposite), we have essentially a small elem ent 
of fluid having an excess (or a defect) of vorticity  near the point (£0, Vo)- 

T he stream  function for the secondary flow is
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with

\p'(x, y) =  — ~ f f  f '(L  v)G(x, y\  £, rfidid-q, (10.5)

d\p' 1 r  r  d
' (x,  y) =  — - —  =  — I I  i ’iM,v)— G{x, y; ?, v)d£dv, 

ay  2 i r J J  dy

dip' 1 c  f  d
v'(x, y) = —— =  — — I I t'(,Z,y) —  G(x, y, £, v)d£dy. 

dx 2ir J  J  dx

( 1 0 . 6)

In these expressions, the  integrals are extended over the whole region between the 
planes. T he function G{x, y; £, y) is the G reen’s function of the first kind for the region 
under consideration. I t  is defined by the following conditions:

d2G d2G
T T  +  T T  =  0 except a t ((• n),dx- dy-

(10.7)
G(x, y; i, 77) --------- log {(* -  £)2 +  (y -  t?)2}1/2 near (f, 77),

G(x, y; £, ij) — 0 over the solid boundaries.

As is well-known, it has the reciprocity property

G(x, y\ £, 77) =  G(f, 7?; a;, y). (10 .8)

For the case of a channel, it is given by the  real p a r t of

( 7 T 7T
/(z) =  -  <log sh — (2 -  z0) -  log ch — (z -  z0) > ,

I 4b 4b )

(z =  x  +  iy, z0 — $ +  ir\, z0 =  £ — irp). (10.9)
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Let us now consider the behavior of a  particu lar elem ent of fluid a t (£, 77) having 
an excess (or a defect) of vorticity  corresponding to the  secondary flow (10.5) and 
(10.6). I t  causes a distortion of the main vorticity  d istribu tion  as indicated in Fig. 8 . 
A fter a very small interval of tim e 8t the vorticity  a t the point (x, y) is changed by 
the am ount

&t(x, y) =  -  v'{x, y)bt$o'(y), (10 . 10)

because it is replaced by a fluid elem ent from below, which retains its original vortic
ity. T his change produces an  effect a t the “vortex ,” i.e., a t  the elem ent of fluid under

O x
F ig . 8. A cceleration of vorticies in a  non-uniform  field of v o rtic ity  (f( (y) > 0 , F > 0 ) .

consideration a t  ( |,  7 7).  I t  can be easily seen th a t the effect is a small velocity w ith 
com ponents

5«(f, v) = —  f  f  — G(x, y ,  £, y)dxdy,
2ir J  J  orj

1 a ' ( 1 0 ' 1 1 }

a®(£ 77) =  -  — f  f  — G(x, y ; £, v)K(x, y)dxdy,
2ir J  J  di

the integrals being extended over the whole region between the planes. D ividing these 
quan tities by 8t and passing to  the lim it 8t—»0 , we have the following com ponents of 
acceleration a t  the poin t (£, 77) :

<**(£. v) = ~  ~  f  f  - y G(x - y> £> v)v'(x, y )U  (y)dxdy ,
2 7 T J  j  07]

ffvd. v) = r -  f  f  t : g (x • y< & y)s» (y ) tx d y .
2ir J  J  a t

( 10. 12)

L et us first consider the y-com ponent of th is acceleration. From  the special form 
in which x  and £ en ter into the G reen’s function [cf. (10.9)], we can also w rite
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<a(£, v) =  - — f  f  v '(x , y)to (y) — G (x , y ; £, r,)dxdy.  (10.13)
2ir J J  dx

If we m ultiply th is equation by f'(£> 77) and in tegrate over the whole region, we have 
the final formula

J J  av(£, 7j)f'(£, v)d&V = f f  y ) } 2to (y)dxdy, (10.14)

upon using (10.6). Before discussing its signifiance, let us first notice th a t

f f a* = 0 (10.15)

if f 'd i i  v) is an even function of £ — £0. i.e., if the vorticity  d istribution f'(£ , 77) has a 
sym m etry  abou t the line £ =  £<>. For then v'{x, y) is an odd function of x —£0 and 
s,(£ , 77) is an odd function of £ — £0, both being the consequence of the fact th a t 
G(x, y ,  £, 77) is an even function of x —£. Hence, we have the conclusion.

If we recall th a t  the vorticity  f '(£ , 77) is spread over a small region, we m ay take 
F =  //£■'(£ 1 v)d%dr] as the strength  of the “superposed vortex .” If  we divide the left- 
hand side of (9.14) and (9.15) by  T, we m ay consider the results as givipg the compo
nents of the “average acceleration.” T he x-com ponent of acceleration vanishes; the 
sign of the y-com ponent depends upon the sign of the superposed vortex and the sign 
of To (y )• T his com ponent of acceleration is the one used in the above physical con
siderations.

I t  should be m entioned th a t in considering the stab ility  of a m otion we deal w ith 
a vortex pair. A lthough this m akes it difficult to obtain a com pact form ula for the 
average accelerations of the individual vortices, a kinem atical consideration such as 
th a t given above (cf. Fig. 8) shows th a t  the general tendency is no t changed. F u rth er
more, the two vortices are soon separated, because they  are situated  in layers of dif
ferent mean velocity.

Another point should be m entioned. If we notice the tendency for the main vor
ticity  to  be swung around the secondary vortex, there is an acceleration of every ele
m ent of fluid toward the vortex. W hatever this acceleration m ay be, it is expected 
to be of m inor im portance, because the effect is spread ou t over the whole field. This 
poin t will be brought out clearly in the following derivation of (10.14), where we shall 
s tudy  the whole phenom enon from the point of view of pressure forces. T he accelera
tion will be identified w ith the negative of the pressure grad ien t divided by the density  
of the fluid, because the effect of viscosity has been neglected. Thus, if we can calcu
late the  pressure d isturbance corresponding to a given velocity disturbance, the left- 
hand side of (10.14) can be calculated.

2) Second derivation, by consideration of pressure forces correlated with vorticity fluc
tuations. To calculate the pressure d istribution from a given velocity d istribution, we 
use for the pressure a differential equation of Poisson’s type obtained by taking the 
divergence of the equations of motion. T hus, if the equations of m otion a re10

10 The usual notation is used: (t =  l ,  2, 3) are the coordinates, m  are the com ponents of velocity,
p  is the pressure, and p is the density of the fluid. Summation over a repeated index is understood. For a 
discussion of this type, see L ichtenstein’s book [26].



dm dm  1 dp
■----- +  U j ----- - = ----------— +  vAm, (i =  1, 2, 3), • (10.16)
dt dxj p dxi

and the equation of continu ity  is

dm/dxi  =  0, (10.17)

we have
A (P/p) = ~<t, (10.18)

where

dm dUj ( d(rn, u a) d(u2, u3) d{m, m)  )

"  =  ^  “  eiye,;' “  =  +  +  ' ( }
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and
1 /  dtii duj  

eij =  — I —
2 \d x

Mi d u , \  1 /  dm dtl,\

Cj 0 1 , 7  2 \ d X j  dx i /

are the  com ponents of deform ation and of ro tation . If we in tegrate  (10.18) under 
proper boundary conditions, <r being known a t the initial in stan t, we obtain  the initial 
d istribu tion  of pressure. T he initial acceleration field is then obtained from (10.16) 
as the negative grad ien t of the pressure, if we neglect the effect of viscosity.

For a perfect fluid, the only boundary condition a t a solid wall is

noii = 0, (10.21)

where m, is the outw ard norm al of the boundary surface. If we m ultiply (10.16) by 
n,-, neglecting the effect of viscosity, we have

1 dp dm
 - =  Vo —  m, (10.22)

p dn ds

where V 0 is the velocity along a stream  line on the boundary, and ds is an element 
of its arc. If we w rite

dtii dli dV0Mi = Foli,  = Fo b l i ——'
ds ds ds

■ where U are the direction cosines of the velocity over the boundary surface, we have

1 dp Fo
 , (10.23)

p dn R

where R  is the radius of curvature of the stream  line, R ~ l = ?iidli/ds. This relation ex
presses the balance of pressure and centrifugal force. W ith a given d istribu tion  of 
velocity, the right-hand side is known. We have thus a potential problem of the second 
kind for the pressure.

Two-dimensional flow between parallel solid walls. R eturning to  the problem  a t  
hand, we have the very  simple boundary condition

dp/dy  =  0 a t y  = +  b. (10.24)



Since the m ain m otion is a two-dimensional parallel m otion, we have

Mi =  w(y) +  m 'O , y), m2 =  v'(x, y ), u3 = 0, (10.25)

where w(y) represents the m ain flow, and u '  and v' give a secondary flow approxim at
ing a vortex. E quation  (10.18) becomes
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( d 2p  b2p \  ( dv* d(u', » ') )

—  (1° ■

l ( d 2p t d2p \  

p

W e note th a t we can w rite a — (Ti-\-a2, where

26)

d{u', v') dv'
cri = — 2 — --------------- ff2= - 2 f 0-------  (10.27)

d(x, y) dx

<Ti depends upon the  s tructu re  of the secondary vortex itself, and <r2 depends upon its 
in teraction w ith the main flow. W e shall also separate the pressure into two p arts  and 
require them  to satisfy (10.24) separately. Thus,

p — pi +  pi, cr = o i +  cr 2,

1 /  d2p\ d2p i \  dpi I
— - A -  d — ) =  -  cn, —  =  0 a t y = ±  b, I
p \ d x 2 dy2 J  dy ) (10.28)

1 /  d2p 3 d2pp\ dp2

p \  dx2 dy2 )
<r2, — 1 =  0 a t y  =  ±  b.

dy2 /  dy

We can reduce our problem  to th a t  of the first kind by looking for the acceleration 
ay(x, y ) in the y-direction, ay = — (1 / p) dp /dy .  If we differentiate (10.28) with respect 
to  y, we have

Gy =  «1 +  « 2, "j

d2cti d2ai dcr\ d2a 2 d2a 3 dcr3 > (10.29)

dx2 dy2 dy dx2 dy2 dy )

w ith a i  =  0, «2 =  0 a t  y =  ± 5 . T he x-com ponent of acceleration is zero, from sym m etry  
considerations. T he solutions of (10.29) are

®i(*. }’) = ~  —  J  J  G{x, y: £, rj) d&V<
■ by U.

« 2O ,  y) =  7 / /  G(~x’ y  1 & ^  ( j ï ~ )  d^ v '

(10.30)

where the integrals are extended over the whole region between the  planes. These 
form ulae give the  d istribu tion  of acceleration. A ctually, it is m ore convenient to  deal 
w ith the in tegrated  quantities

11 -  f  f  a i(x ’ y)io(x, y)dxdy,  (10.31)

h  =  J  J  oi2(x, y )f 0(x, y)dxdy, (10.32)
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J i  = J*J  an(x, y){;'(x, y)dxdy, (10.33)

J 2 = J  J  a 2(x, y)'Ç'(x, y)dxdy. (10.34)

T he first two integrals correspond to the accelerations of the m ain flow by the second
ary  flow itself and by the in teraction; the la tte r  two quantities correspond to  the ac
celerations of the secondary flow by itself and by the interaction. I t  can be verified 
(as will be done presently) th a t

h  =  -  f f  v'2 ~ d x d y ,  (10.35) I 2 =  0, (10.36)

J i  =  0, (10.37) J 2 =  J J  î /2 y -d x d y .  (10.38)

W e note th a t (10.38) is essentially a reproduction of the form ula (10.14), the signifi
cance of which has been discussed above. T he integral I \  is equal to the negative 
of J 2. T his is the above-m entioned acceleration d istributed am ong the fluid elem ents 
th roughout the field. I t  is therefore relatively unim portant. T hus, all the statem ents 
m ade in the  last section have been verified, if we can verify (10.35)-(10.38).

Verification of (10.35)-(10.38). T o verify these equations, let us first examine the 
behavior of the  quantities u ' , v ' , dp/dx, d p /d y  for large values of x. From  the expres
sion (10.9) for the G reen’s function, we see th a t  if f ' vanishes sufficiently rapidly as x  
becomes infinite, we have

vl =  0 ( |  z | - 3), v' =  0 ( |  * | - 2), (10.39)

for large values of x. From  the equations of m otion, we then find th a t

^  =  o (« ') =  0 ( |  * | - 3), — =  0(v') =  0 ( |  * | - 2). (10.40)
dx dy

T his will assure the convergence of the integrals involved and the valid ity  of the steps
taken in the following transform ations.

In  the first m ethod of derivation, we have been m ainly concerned w ith  J 2. We 
shall therefore consider it first. Referring to  (10.30) and (10.5), we see th a t

J t  =  f  f  V ( t , v )  ( ——) d&V-
dy  A ,,

If we now introduce the value of <r2 as given-by (10.27) and replace (f, tj) by (a;, y), 
we have

32
J 2 =  -  2 f  f  ¡/(x, y) — — (ti'fo)dxdy.

J  J  dxdy

On in tegrating  by p arts  w ith respect to  x, we obtain

J 2 — 2 J 'J  v' —  ( v f 0)dxdy = JJ ' j —  (v' 2{ 0) + dxdy.

T he result (10.38) or (10.14) is thereby verified.
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I \ = J 'J "  arfodxdy =  J*J* w(y) — -d xd y

by (10.28). If we note th a t

d(u', v') d (  d u '\  d (  d u ' \  dw dVd(u', v )  d (  d u '\  d (  d u '\
w<j\ =  — 2w ----------- = 2  — I wv' — - 1 — 2 — I wv' ------) —

d(x, y) d x \  dy /  d y \  dx J dy dy2

the above integral is easily transform ed into the  form (10.35). Following an exactly 
analogous process, we have

" ■ / / ” ('■ +  7  I F - ) " 51- 0,

when we make use of (10.27). T he integral J \  has also the significance th a t it is the 
effect of the solid boundaries upon a general flow ^ ' (x ,  y) consistent w ith (10.40), 
because it is independent of w(y). Using (10.30), (10.5), and (10.27), we have

J \  — J  J  a-f  dxdy  =  J  J* i-,) d£dij

, ^ 2 c r u . t v v i dxdy.
J  J  d(x. v)

If we note th a t
d(x, y)

, d(u', v') d (  d u ' \  d /  d u ' \
u —  — = — ( u v ---- ) --------( wV ----- ),

d{x, y) d y \  dx /  d x \  dy /

we see th a t J \  — 0. T he results (10.35 )-(10.38) are thereby verified. W e have thus 
com pleted the investigations indicated a t  the beginning of this section.

N o t e  a d d e d  i n  p r o o f . In a very  early work, [Phil. T rans. Roy. Soc. London (A) 
215, 23-26 (1915)] G. I. T aylor gave a physical in terp re tation  of R ayleigh’s results 
on the s tab ility  of the lam inar m otion of an inviscid fluid, based on m om entum  con
siderations. He also indicated clearly th a t a m otion, stable according to  R ayleigh’s 
criterion, m ay be unstable through the effect of viscosity.

(To be continued)
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O N  T H E  V IB R A T IO N S OF T H E  R O TA TIN G  RIN G *

G. F . C A R R IE R  
Harvard University

1. Introduction. An interesting addition to  the group of problems dealing w ith  
th in  elastic rings is the analysis of the v ibration of a circular ring which is ro ta ting  
w ith constan t speed abou t its geom etric
axis. In  this paper, the small bending v i
brations of the  unconstrained ring are 
analyzed and the frequencies a t  which 
such vibrations can occur are determ ined.
For various problem s of the partia lly  con
strained ring, it is shown th a t  the “free 
v ib rations” differ essentially in character 
from those of the free ring, exhibiting a 
group of na tu ra l modes characterized by 
linear com binations of trigonom etric func
tions. T he forced vibrations of both  the 
free and supported  rings are also trea ted .

2. The dynamic equations. T he three 
equations needed to specify com pletely 
the plane m otion of an elem ent of a ring, 
such as the one shown in Fig. 1, are de
rived from a consideration of the forces 
and m om ents acting  on the elem ent and 
the  com ponents of acceleration of the ele
m ent. T he sum m ation of forces along
o'a ' , the sum m ation of m om ents abou t o' , and the sum m ation of m om ents abou t a ' , 
lead to  this required set of equations, which is

~dr 

.dd

dR 1 dM

F ig . 1. E lem en t of r in g  in initial and  d isto rted  
positions. C en te r of ro ta tio n  is o.

Rd<t> +

dd r\ dd

+  (^P  A ^j  cos (a — v) — ( ^ N  sin (a — d)J dd -  0, (1)

^AT AeJ cos (a — v) +   / l r^  sin (a — v) =  0, (2)

n r)2(rv —
(3)

+

dM  a d2(a — v)
rr =  r k ----------------------   0.

dd c dt2

Here, the notations arc as follow s: d is a polar coordinate of a po int in the undeformed 
ring, referred to  axes ro ta ting  w ith the ring; r and are respectively the radii of 
cu rvatu re of the undistorted  and distorted  rings; b, h and I  are respectively the  w idth, 
thickness and cross-sectional m om ent of inertia  of the ring; R,  r  and M  are respcc-

* R eceived M arch  2, 1945.
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tively  the  tensile force, shearing force and bending m om ent, as shown; N / r  and P / r  
are the com ponents of the external forces in the directions of the tangen t and norm al 
in the undistorted state , as shown; A r and Ae are the com ponents of acceleration in 
the directions of the tangen t and norm al in the undistorted sta te , as shown; E  is the 
elastic m odulus; p is the density ; k= pbhr2; c = Ebh) a = E I / r 2.

In Eqs. ( l) - (3 )  the corrections, arising from the Poisson strains, for the  m om ent 
of inertia expressions, etc., have been om itted as usual. T he formulas needed to  sup
plem ent the above equations are

E l  /  d2u \  1 1 /  a2« \
U ~ —  ( * .  +  « +  —  ) ,  (4a) - » - ( l —  ) ,  (4b)

/  3n\
R = Ebhe$ — c ( Uo T  u  T  — 1

\  SO/

dv\ dll
(4c) a =  — > (4d)

00

T d2u dv
A r ~  r\ ----  — Cd2(l T  llo T  ll) —

l o t 2 dt.

dll
+  2w — 

dt

(4e)

(4f)
r d h

Ae = r \ —-
L dt-

r (  dv d2u \
d<f> =  —  (1 +  ee)d6 =  f 1 H  ---------- ) dd, (4g)

ri \  dO dd2/

where ru0 is the radial displacem ent from the rest position to the ro ta ting  equilibrium 
position, ru is the radial displacem ent from the ro tating  equilibrium  position, rv is 
the tangential displacem ent relative to  the ro tating  axes,1 ee is the tangential strain 
(es = u 0+ n+ dv /dO ), and w is the constan t angular velocity of the ring. Equations (4a) 
and (4b) are the well known expressions for the  bending m om ent and curvature, re
spectively, of a ben t ring;2 (4c) is a one-dimensional form of Hooke’s law; (4d) is the 
ro tational displacem ent of the element, and is found by inspection of Fig. 1; (4e) and 
(4f) are the expressions for the radial and tangential com ponents of acceleration, when 
u and v are referred to  a ro tating  coordinate system  ;3 and g is obtained from Fig. 1 
and Eq. (4b).

T he value of u a is obtained by w riting  u =w =  0 in Eq. (1). A fter substitu tions from 
Eqs. (4), it becomes Ebhu0 = ku)2( l + u 0), or

«o =  (1 -f- uo)kw2/c. (5)

T hroughout this analysis, we shall consider only those v ib rations for which u  and v 
are small com pared to  unity. W e are therefore justified in disregarding term s in u 2, 
uv, etc., as com pared to  u  or v. In  the limit, th a t  is, as the am plitude of u  and v tend 
to zero, the equations obtained in this m anner would be exact. However, the equa
tions so obtained would still be encumbered by term s of the type u%u, ufy, ■ • • , in 
addition to  those found below in Eqs. (6) and (7). W e also neglect these term s since

1 T h is  ra th e r  unconventional n o ta tio n  is used to  provide «», u and  v w ith  dim ensionless properties 
an d  th u s  produce som ew hat less cum bersom e equations.

2 S. P. T im oshenko, Strength of materials, D, V an N ostran d  Co., New Y ork, 1930, p. 459.
3 T hese  a re  easily deduced from  th e  v ec to r form s given in L. Page, Introduction to theoretical physics, 

D . V an N ostran d  Co., New Y ork, 1941, p. 103.
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they  can produce no qualitative changes in the results and since they  will drop out 
a  yway when the procedure leading to Eq. (9a) is introduced. Finally, since the am 
plitudes of P  and N  m ust obviously vanish when u  and v tend to  zero, term s in 
Pit, Pv, ■ ■ • , m ust also be om itted.

Fallowing this procedure, using Eq. (3) to  elim inate r, and substitu ting  from 
Eqs. (4) when necessary, we obtain from Eqs. (1) and (2)

/  dhi 32u \  (  3-u
( --- 1--- - ) ~b ko>2 ( --- b u
\3 9 3 392J  \d 6 2

(  dv\: ( u +  — ) — a
\  eej

a 33v 1 

c dddt2J

3 /  3v\ ( 3 hi 3 u \  du f  32v d u l
N  -f- c — ( u -j ) — a I — 1------) -f- koP •— =  k  b  2cj — .

36 \  36/ \3 9 3 39 )  30 La/2 dlj

3v \

3 0 2 J  

a 3 hi

c aa2a/2 (6)

( 7)

W e m ay easily arrive a t  a single equation in u  only by perform ing on Eq. (6) the 
operation L  where,

a2 a2
L  = c  b k  , (8)aa2 dr-

solving Eq. (7) for L{v), and substitu ting  the expression found by the la tte r step into 
th a t  found by the  form er.4 W e utilize the  abbreviations,

s =  ty /a /k ,  u = co\/ k/a, e =  a/c = /i2/1 2 r2,

and the  equation resulting from the foregoing procedure takes the form,

(TV  a2 \  a2 a2 a2
;  i )  b 4m  b —
I Vaa2 /  3s2 393s 392

{ - +  {2 
La^4 I

/  a 2 
+  2M —  +  1 

Vaa2

f a2
aa2'\392

/  a 2 y

U + i ) -
a2 / a2 
aa2\aa2 

a2
3 s 2

+  3

-  2m2)
363s

+
a2 a 4 1

M2) ------------M2 -------aa2 aa4J
a6

,aa2ar4 +  2m
303s3

a2
aa2

a 4 
aa4 i L y q i ,

aa2/  a i2J j

a2 / p \  3

aa2 V a J +  aa '( — )  -  «[— ( —)  +  2m— ( — )1  +\  a /  _3s2 \  a )  3s \  a /  J  393s2 \  a /
( 9)

This equation govern,s the m otion of the ring, provided the driving functions N  and P  
do not im ply th a t the’deform ations be large. T he valid ity  of this equation m ay be 
partia lly  checked by considering a physically trivial problem. W e consider the freely 
spinning ring (no supports) and suppose N  to P  to vanish. Under these conditions, 
the m otion of the ring which is initially no t deformed from its equilibrium  shape is 
given by it =  (a-B3s) cos (6+pis), v=  —(a+fis)  sin (6+fis).  T h a t is, the ring moves as

4 A  sim ilar procedure will provide an  analogous equation  in v.
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a  rigid body w ith (dimensionless) angular velocity n and translational velocity /3. 
Eq. (9) m ust and does allow this solution for all a  and j8.

In each of those problem s to be considered, Eq. (9), in its present form, leads to a 
solution which is simple in  form b u t which requires the solution of unnecessarily long 
algebraic equations. This com putational w ork m ay be elim inated a t  the  expense of 
small errors in accuracy when we consider only rings for which h /r  is small. In  this 
case, term s in Eq. (9) of order e and e2 m ay be neglected com pared to those of order 
one. This leads to the following equation, which is exact for the  lim iting case where 
u, v, e tend to z e ro :

r  a2 /  a2 \  a2 /  d- y  a2 / a 2 \  a2
Li(u) =  ju2 (  b 3 ] -------- ( -------b 1 ) — 4/j. ---------- ( ----------1 J—L  d92\ee2 / aa2Vaa2 / eeds Vaa2 / a j2_

a2 / p \  a / n \
(9a)

aa2 \  a )  d d \ a  

T he analogous equation in v is

- ) ■a /

In  each of the problems to follow, the expressions obtained from Eqs. (9a) and (9b) 
for the natura l frequencies and am plitudes are valid to  w ithin errors of order A2/V2 
for those frequencies of order (a /k )112. These vibrations m ay be term ed “bending 
v ib rations” since they are essentially inextensional forms of m otion. W hen the  fre
quencies are of order (c /k ) l/2, accurate  results m ay be obtained by direct use of 
Eq. (9). In this paper, we shall use only Eq. (9a) or (9b) since all of the characteristics 
of the effects of ro tation on the  behavior of the ring will appear in the solutions so 
obtained. T he one exception to th is sta tem en t is found in connection w ith the dilatory 
vibrations, This type of m otion can not be predicted by Eq. (9a) or (9b) because these 
equations are those for essentially inextensional m otions.6 W e shall, then, when in
vestigating this mode, refer to  Eq. (9). For this mode, u  and v are independent of 9 
as m ust be those p arts  of P  and N  which excite such a motion. Hence Eq. (9) reduces 
for th is case to

di /  c \  d2
Lo{n) = 

or, in term s of v,

+  3m2 +  .
LdJ4 \  a )  ds2

d2 / P \  d / N \

- ^ ( t ) ’ (9c)

/ a 2 c \  n
¿ 0 «  =  ( - T + - - fP  -  

\ds- a /  a

a2 c \  n  a p
2m  -------  (9d)

a as a

3. T he unconstrained ring. Investigation  of the solutions of Eqs. (9a) or (9b) of 
the  form

un =  Un cos n{9 — fins) +  lVn sin n (6 — p„s) (10)

yields, when N  and P  vanish identically,

5 E q u atio n  (9a) m ay also be derived from  E qs. (6) a n d  (7) by  use of th e  assum ption  th a t  u~rdv/dO<Ku;
th is  excludes th e  d ila to ry  m otion.



1945] VIBRATIONS OF THE ROTATING RING 239

2 j u  ( n 2  —  1 ) ----------------------------------------------

J3n =  -  — —  ±   V T T n -  +  1 = - q , . ±  pn, (10a)
n 2 + 1  >r +  1

where p n and g„ a re  self-defining.
If we fu rther apply  a set of initial conditions, such as

du„
un =  Un cos nd +  IV„ sin nd and ---- =  0, a t 5 =  0,

ds

to the  two solutions defined for a given n by Eqs. (10) and (10a), namely 

un =  Un[a„ cos n {6 +  qns — pns) +  bn cos n(d +  qns +  ÿ„j)]

+  Wn[cn sin n(e - f  qns — pns) +  dn sin n (0 +  qns +  ÿ„s)], (11)

we obtain
qn

cos n {6 +  qns) cos npns H sin n (0 +  qns) sin up
pn

+  W n
Çn

sin n (6 +  qns) cos npns  cos n (6 +  o„j) sin np„s I. (12)
Pn

Each term  in the foregoing bracket defines a possible free vibration of the ring which 
is unconstrained a t  all points against either radial or tangential displacement. Each 
of these term s m ay be in terpreted  as defining a “norm al m ode” of vibration, wherein 
a sinusoidal deform ation of angular frequency np„ travels w ith respect to  the ro tating  
axes a t  an angular velocity6 — qn. T he “nodal po in ts” thus move with respect to co
ordinates fixed in the ring. T he term s “norm al m ode” and “nodal p o in t” have been 
used som ewhat loosely here, b u t they  adhere to  the usual definitions of the term s if 
the  m otion is described relative to axes ro ta ting  w ith velocity i2„=w(w2 — l) /(w 2 +  l) . 

F or the  sta tionary  ring, the  value of the angular frequency reduces to ■

(a /k)1,2iipn =  m(»2 — 1 ) \a /k (n 2 +  1) ]1/2,

which is in agreem ent w ith previously derived resu lts.7
A solution to  Eq. (9a) m ay be obtained for arb itra ry  initial distributions of radial 

deflection Z7o and radial velocity £/<( , provided these initial conditions do not imply 
an extensional m otion. T he restriction

/ ■ 2t  /» 2r

U0{d)de = U i (6)d6 =  0 (13)
0 J  o

is certain ly  sufficient to  insure this provision since it, together with the continuity  
requirem ents,

‘ dv r  2t d~vr  tT dv r  2T d-v
—  d d = \   =  0

J s 35 J  o dOds

allows u-\-dv/dO to vanish for all 9, a t  and shortly  after tim e t = 0.
T he restriction defined by Eq. (13) together with the requirem ent th a t  u be con

tinuous, implies th a t  Ua and Uo m ay be expanded in Fourier series in which the

* pn an d  On are, of course, dim ensionless q u an titie s  w hich define th e  a n g u la r velocities.
7 J .  P . D en H artog , Mechanical vibrations, M cG raw -H ill, New Y ork, 1940, p. 123.
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constan t term  vanishes and in which no term s corresponding to « =  1 will appear, 
since these term s define no d istortion .8 These series m ay be used in conjunction with 
series of solutions of the type given by Eq. (11). T hus the coefficients, and hence the 
m otion, are determ ined. T he m otion due to  rigid body displacem ents m ay, of course, 
be superim posed on such solutions.

4. Forced vibrations. As will be seen in the following section, the investigation of 
the  possible m otions of the  constrained ring requires, as a prelim inary step, the  
determ ination of the  behavior of a ring acted upon by a force d istribu tion  
N / a  = 2A cos nd cos As. T he problem involving a driving function P  of similar 
form is obviously covered by this problem. If we split N  in to  two parts,

N /a  — A [cos (nd — \s)  +  cos (nd +  \s) ] ,

a particu lar solution of the form,

v = b„ cos (nd — Xs) +  cn cos (nd +  Xs) (14)

is easily shown to exist by substitu ting  this expression into Eq. (9b). T he coefficients 
b„ and c„ are readily found when this is done, and are given by

X n(\)  =  bn/A  =  [n ( n  +  I)(pi — q'„) — (n +  1)X2 — 4«/rX] \  (14a)

F„(X) =  c J A  =  [»2(w‘ +  1 ) ( p l  — ql) — (n +  1)X +  4h/A] , (14b)

unless X is one of the values given by X2 =  « 2fi2n. j3„ is either of the values given by
Eq. (10a).

W hen N / a  = 2B cos nd sin Xs, we have

v =  dn sin (nd — \s) — en sin (nd +  \s),

and
dn/ B  =  X n, e j B  =  Yn.

The quantities X n and Y n are useful la ter in the paper; hence the special no tation .
We see now th a t  the m otion of the unconstrained ring resulting from the type of 

loading described is composed of two waves of different am plitudes traveling  around 
the ring w ith equal b u t opposite velocities. We note th a t  there is, for each n, one value 
of X for which there are fixed nodal points in so far as tangential m otion is concerned. 
This value of X is defined by W „ + F n =  0.

I t  follows from the linearity of our equations th a t the driving function N  of the 
more general form,

N /a  = cos nd sin \ ms (15)
m ,n

will correspond to a solution

V =  X) cos M  -  *->ni) +  Omn cos (nd +  Xms). (15a)

T erm s X mn and Ymn are defined as were Wn(X„) and F„(Xm) in Eqs. (14a) and (14b).
T he particu lar problem in which the exciting force is given by

N /a  =  A 0 cos Xs (16)

8 T h is  is seen in the  discussion following th e  in troduction  of E q. (9).
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has no inextensional solutions. As was m entioned previously, we m ust, in this case, 
use Eq. (9d) for the determ ination of v. T he solution has the form v = b0 cos As where 
b0 is given by

b0 X-2 +  e(l -  j+ A 2)
*«(X) =  -7- ■ (16a)

A o 1 +  3e/n2 eA2

T he solution arising from the loading N / a = A o  sin Xs has the sam e coefficient. For 
small X2, a =  yloA-2 cos Xs.

The natu ra l frequency for the d ilato ry  type of vibration is found by letting  the 
denom inator of Eq. (16a) vanish. Its  value is given by

X0' =  [(1 +  3i/x2) /e 1 / 2

R eturning m om entarily to the question of accuracy, we note th a t here as in all 
subsequent problem s the exact values of X n and F„ differ from those obtained in this 
section by term s (in the denom inator) of order «. Our work is accurate then when 
X « £ _1/2.

5. T he supported ring. T he first fact to observe in the investigation of the “free 
v ib rations” of the partia lly  constrained ring is th a t  when N  and P  vanish identically, 
no solutions to  Eq. (9a) which obey the boundary conditions can exist. Specifically, 
we consider the ring to be supported by a num ber of evenly spaced, rigid, radial sup
ports (let there be /  of them ), and suppose the ring to  be so fastened to  these supports 
th a t  radial m otion is unconstrained a t all points, bu t th a t v ( 2 tti / J ,  s) m ust vanish 
for all values of s and for each integer i. The first p a r t of the appendix is devoted to 
the outline of a  proof th a t  Eq. (9b) has no solution under the foregoing conditions. 
Since the same proof holds for Eq. (9), we m ust conclude th a t  the supports exert 
reactions which are to be accounted for in the differential equation by a function N  
which does not vanish identically. T he problem , physically, becomes th a t of determ in
ing w hat periodic forces, applied a t  the supports, are capable of sustaining a  m otion 
wherein the supported points of the ring have no displacem ent (tangentially) a t any 
tim e. (We assum e th a t the supports m ust move a t precisely the speed o>.) M athe
m atically, we m ust determ ine the eigenvalues X,- and the corresponding solutions of 
the differential equation wherein we set P  =  0 and

N /a  = 1 +  2 cos nd
n - J  ,1 J , • • •

[ri cos Xs +  B  sin Xs]. (17)

T his expression defines a loading which m ust correspond to  a m otion which has period 
2 7 r// in 0, since the force is the same a t  each support. W hen J  is even, there m ay also 
be solutions periodic in tt/ J  which don’t  imply extensional motion. We shall not con
sider these, however, since bo th  the procedures and results are analogous in the  two
cases.

W e have already shown [Eqs. (15) and (15a)] th a t  for loadings of the type given 
by Eq. (17), solutions of the form

v{6, î) =  X/ fa» cos (n0 — Xs) +  • • • — en sin («0 — Xs) ] (18)

exist for all X except those for which A* =  Using Eq. (9b) we determ ined all co
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efficients except those of index zero, and these were found w ith the aid of Eq. (9d). 
W e m ay then, in this problem, replace Eq. (9) by the following:

L 0(v') =  U ( N / a ) ,  Li(v -  v') =  (.V -  N ') /a ,  (19)

where the former equation is merely Eq. (9d), v' and N '  are those p arts  of v and N  
which are independent of 6, and the la tte r equation is Eq. (9b). T he solutions are now 
defined by Eq. (18) and the coefficients by Eqs. (14a), (14b), and (16a).

If we now plot for a continuous range of X,
00

<r(X) =  E  X n{\) +  F„(X) =  E  (bn +  cn) /A  = E  (dn +  e„)/B,
n**J n n

we find th a t the resulting graph (Fig. 2) contains two singularities corresponding to 
each n. F urtherm ore, there are two values of X which we m ay associate w ith each n 
for which cr(X) vanishes. One of these lies between the two singularities belonging 
to  n\  the o ther lies to  the right of these values. W e denote the sm aller by X„ the 
larger by X„*.

F ig . 2. Response curve for ring  driven a t  tw o  points. <r(X) is th e  am p litu d e  of th e  m otion of the  
po in ts of app lication  of the  force. T h e  broken section of th e  curve is d raw n to  th e  scale 1:5 . F o r  th is 
curve, m =  3.

We observe now th a t the motion a t the points 2i r i / J  is given by n(0, s) 
=yitr(X) cosX5+5cr(X) sin Xs. T he values X; and \ *  therefore define the frequencies 
for which the  tangential displacem ents a t  the points of support are identically zero. 
T hey are therefore the desired eigenvalues. T he m otion of the ring for any X,- or X* 
is given by

Vi(0, s) =  Z A < X in cos (nO — X,s) +  ■ ■ ■ +  BiYin sin (nO — X,s), (19a)
n

where A  ,• and B i  are determ ined by the initial conditions.
T he question now arises as to w hether linear com binations of the v,- will always 

describe the m otion arising from an initial set of conditions which are a rb itra ry  except 
for the previously prescribed periodicity in 6. An outline of a proof th a t the v { are 
com plete in this sense is included in the appendix. Since the natu ral modes of the 
possible vibrations are described accurately by Eq. (19a) only for the  sm aller values 
of X„ it m ay seem a t first th a t  this question of com pleteness is superfluous. However, 
the com pleteness of such sets of solutions provides an assurance th a t no o ther possi-
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ble solutions of the  equations have been overlooked in the analysis. In view of the
fact th a t  the foregoing procedure s ta rted  wifh a guess as to  the probable form of the
support reactions, this indication th a t  certain initial conditions would no t lead to 
different types of m otibns is helpful. We conclude, then, th a t  all vibrations, arising 
from initial conditions whose Fourier series expansions are such th a t the low index 
term s predom inate, can be closely approxim ated by sum s of the form,

v(6, s) =  £  KiVi{e, s). (20)
i

W e also conclude th a t  the supports will continue to exert exactly those reactions re
quired to  sustain this motion, or in o ther words, those forces required to prevent all 
tangential m otion of the supported points of the ring.

T he problem  of the radially constrained ring m ay be treated  in a m anner similar 
to  the foregoing, w ith  analogous results. W hen the ring is constrained a t  its supported 
points against both  radial and tangential displacem ent, Eqs. (9a) and (9b) m ust both 
be used. S upport reactions of the form

N /a  = A +  2 £  cos cos Xs, P /a  = B | \  +  2 £  cos ndJ  sin Xs,

and solutions of the form

v =  £  an cos (nd — Xs) +  a cos (nd -f- Xs),

u  =  £  bn sin (nd +  Xs) — b sin (nO — Xs),

are assumed to  exist as before. This tim e we find four functions analogous to <r(X) 
which en ter the equations for the m otion of the supported points. W hen th is m otion 
vanishes, these equations become = 0 , vlo-3(X)+i?cr,i(X) = 0 . T he criti
cal frequencies are defined by ai(K)ai(\) — cr3(X)cr2(X) = 0 . Since nothing essentially dif
ferent from the preceding results would be shown, the form ulas for the term s in the a,-, 
the explicit expressions for the v it etc. are om itted.

T he forced vibration problem of the supported ring can now be easily treated . 
For example, let us consider the ring to  be supported as in the first problem of this
section of the paper, b u t to be loaded by a force distribution which m ay be expanded
into the form N i/a  = £ „ J „  cos [nd + vs). T he particu lar solution to  Eq. (9b) corre
sponding to  the loading N i  is found as before, and the function

»(0, s) =  £ g „  cos vs =  G cos vs
n

representing the displacem ent a t  the supports, has an easily evaluated am plitude G. 
Rem em bering th a t a support reaction,

N 2/a  =  A

produces a m otion a t  0 = 2 iv i / J  which is given by £»2(0 , s)= A a{v)  cos vs, we m ay de
term ine from the response curve (Fig. 2) the value of A  such th a t  Acr(v)= —G. T he 
m otion is then given by the solution to  Eqs. (19) corresponding to the loading N i+ N i .  
W hen more than  one value of v enters the problem, the solution is changed only by 
the fact th a t the sum m ation now takes place over two indices.

1 +  2 £  cos nd cos vs
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We note th a t  when v in the problem ju s t discussed is equal to  one of the  X,-, a 
resonant condition exists, as one would expect from the results of the preceding prob
lem. Also, we note th a t when the loading consists of a single term , cos md cos vs, and 
when v is one of the  roots of -Xm-f- F m =  0, the  solution requires no support reactions.

Perhaps the m ost in teresting result of this analysis is the observation th a t, unlike 
m ost problem s of th is sort, the forces exerted by the rigid supports of the v ibrating  
system  m ust be included in the differential equation before the solution can be ob
tained.

6. T he elastically supported ring. A ra th e r in teresting eigenvalue problem arises 
when we consider the ring w ith elastic ra ther than rigid supports. L et us suppose 
again th a t the ring is unconstrained radially b u t th a t the supports resist the  displace
m ent of the points of a ttach m en t by a force, N / a  = — K v(0, i).

Using Eqs. (19) as before, we find th a t the differential equations governing the 
m otion now have the form,

Zo(ri) =  -  K U  [ (̂0, s)], (21a)

L-iiy — »') =  — XT[d(0, i)][2 ^ Z  cos nd], (21b)

For solutions of the form,

» =  2  cos (w® — Xs) +  • • • — S„ sin (nd — Xs)],
71

Eqs. (21a) and (21b) become

a » =  -  K F X n(\),  7 n =  -  K H X n(\),
(» =  0, / ,  27, • • • ). (21c)

0n =  -  K FYn(\),  Sn = -  K H  F„(X),

In  these equations, E =X !n(a»+ /3n), //= 2Z n(7»  +  5n), and the X n and Fn are again 
given by Eqs. (14a), (14b) and (16a).

W hen Eqs. (21c) are added by pairs and then summed over n, the following re
sults are ob ta ined : E [ l + i i ’cr(X)] = 0 , I l [ \  -f-iXo-(X)] = 0 . B ut if F  and I I  vanish the 
solution is the trivial one; hence,

<r(X) =  -  1 IK .  (22)

T his equation defines the eigenvalues and hence the  natu ra l modes a t which the sys
tem m ay vibrate . We note th a t as K  tends to  infinity X approaches th a t  value found 
in the problem of the more strongly constrained ring (as it obviously should). As K  
tends to  zero, the  solution approaches th a t for the unconstrained ring. I t  is again easily 
shown th a t the  set of eigen-functions obtained in th is problem  is com plete in the pre
viously used sense.

A final problem in forced v ibrations follows easily from the foregoing. L et the ring 
be supported as above, bu t w ith the supports ro ta ting  a t  a speed w+i/'X sin \ s ,  
where u  is again constant. Briefly, we replace t>(0, 5) by t>(0, s)+\p  cos Xs, on the right 
sides of Eqs. (21a) and (21b). T he previously used procedures lead to  the  fam iliar 
set of solutions w ith the resonant frequencies obviously defined by Eq. (22).

A p p e n d ix

In  th is  section, we wish to  show, first, th a t  E q. (9b) has no solutions w hich a re  periodic in bo th  0 
an d  r a n d  w hich vanish  a t  d — kir/J, (k= 0 , 1, 2, • • • , P  =  N = 0).
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W e assum e a  solution periodic in 0 an d  w rite  it as th e  sum  of an  even and  a n  odd function  (in 6);

i>(0, s) =  x(0, s) +  y(d, s),

where x(9, s) = x( — 9, s) and  y(0, s) =  — y( — 0, s). In  o rder th a t  v sa tisfy  th e  specified requ irem ents, bo th  
x  an d  y  m u st vanish  a t  th e  prescribed points.

In  an  ab b rev ia ted  form  we w rite  E q. (9b) as Lt{v) =d2v/dOds, where the  operato r L «transfo rm s even 
functions in to  even an d  odd in to  odd. T h is can  be seen by inspection of E q . (9b). T he equation  is now 
separable  in to  tw o parts :

(a) <b>

W e o p erate  on E q . (b) w ith  th e  o p era to r d2( ■ ■ • )/dBdt a n d  su b s titu te  E q. (a) in to  th e  resu lt, ob tain ing

2 d*xLi(x) = ---------1 (c)
00W  K '

w hich has solu tions of th e  form , *=En°» cos nO exp iy ns. All even, continuous, periodic, solu tions of E q.
(c) m ay be w ritten  in th is form  b u t all of such solutions will fail to  van ish  a t  th e  specified points unless the  
o„ van ish  identically , since y,„/yn is irra tio n a l a n d  cos nO never vanishes a t  0 =  0. E quation  (a) th en  reduces 
to  d2y/d0dt = 0. I t  now becom es obvious th a t  th e  so lu tions sough t do no t exist.

Before show ing th a t  th e  functions derived as n a tu ra l m odes of v ib ra tio n  in th e  section on th e  su p 
p orted  ring  a re  capab le  of describing all m otions periodic in 2i r / /  which arise from  a rb itra ry  in itial con
ditions, we in troduce  th e  following n o ta tio n :

X in +  Yin =  t i n , X<[- Xin +  F,-„] =  tin, Xtn +  F*„ =  tin, • • • . (d)

F o r any  m otion described by  E q . (20), th e  possible in itial d isp lacem ents an d  velocities m ay  be w ritten  
00 00 #

»(0, 0) =  X  E [ ( +  A* t i n )  cos nO - f  (B i< t> in  +  sin rtf],
» —0 M—0 ,/, • • •  , .

a, (e)
—— (<?, 0) =  5Z Y j [{Ai^in +  A*tin) sin rtf -f- (B,^i„ +  B*<p*n) cos rtf],
O S  % ri

w here th e  A,-, • ■ • , B ,* a re  to  be de term ined  by th e  in itial conditions. H ow ever, an y  in itial conditions, 
periodic in  2ir/J  can  be w ritten

v(6, 0) =» ^  a„ cos rtf +  f3n sin rtf, —  (6, 0) =  yn cos rtf +  S n  sin rtf. (f)n ds
T his leads to  th e  re la tions,

E ( A l t o n  +  A * 4 , 1 )  = E ( B i 4 > i „  +  B * ,  *„) =  pn, • • • .
X i

T h is se t of equations m ay  be considered a s  a  group to  be solved for th e  Ai, • • • ,  B i *  w henever such 
so lu tions exist. E xcep t for special cases, such a  se t of eq uations alw ays leads to  a  unique set of solutions 
corresponding to  each set of a„, ■ • • , 5„. Since E qs. (f) can  express all th e  specified sets of in itial condi
tions, we see th a t  E qs. (e) can  also accom plish th is  purpose and  hence th e  »,• a re  com plete in (Sthe sense de
fined above.

T h e  case where i equals zero requires a  few ad d itio n al words. T h e  fact th a t  there  is no Oo or So seems 
to  im ply th a t  we have tw o too  few eq uations for th e  d e te rm ina tion  of th e  Ai, ■ ■ • , Bi*. Hewever, there  
is only one root of <r(X) corresponding to  n equal to  zero. H enc e, th e  correct corrcspondenc betw een th e  
ai, • • ■ , Si an d  th e  Ai, • • ■ , Bi* exists.

T h e  proofs ou tlined  in th is  section a re  no t claim ed to  be rigorous. T h ey  are  p resen ted  m erely to  o u t
line the  reasoning by w hich th e  tw o hypotheses m igh t be proven if so desired.
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N O N -L IN E A R  T H E O R Y  O F CURVED ELASTIC SH E E T S*

BY

E . B R O M B E R G  a n d  J . J .  S T O K E R  
New York University

1. T heories of plane and curved shells which neglect bend ing .1 T he problem  to 
be trea ted  here is th a t  of determ ining, under certain conditions to  be sta ted  later, 
the  stresses and strains in a  thin curved elastic sheet in the  form of a surface of revolu
tion held fixed a t  the edges and subjected to  a uniform  pressure norm al to  the sheet. 
T he problem  thus falls under the general class of problem s trea ted  in the theory of 
elastic shells.

In order to obtain a theory  of elastic shells which is m anageable from the m athe
m atical po int of view, it is custom ary to  m ake assum ptions2 of various kinds, in add i
tion to  those of the general theory  of elasticity. These additional assum ptions are 
usually based on the  hypothesis th a t  the shell is very thin. In  w hat follows we shall be 
interested in theories which result when the following assum ptions are m a d e :

1) T he strains due to  the norm al stress on elem ents parallel to  the surface of
the shell are small enough to  be neglected safely.

2) All stresses are constan t over the thickness of the shell.
T he first assum ption is alm ost always m ade by w riters on the subject of th in  shells. 
T he second assum ption of course rules ou t w hat are usually called bending stresses.

A linear theory of shells, w ith a considerable num ber of practical applications, has 
been worked out on the basis of the above two assum ptions. I t  is usually referred to 
as the m em brane theory  of shells.3 T he salient feature of the  theory  is th a t  it is “s ta ti
cally determ ina te” since the stresses can be obtained from the equilibrium  conditions 
alone w ithout reference to  the elastic deform ations. T his results in a very g reat sim
plification, by  com parison w ith theories which do no t neglect bending. However, the 
simplification is coupled w ith  a t  least one ra th e r serious d isadvantage: it tu rns ou t 
th a t  it is no t possible to  satisfy the kind of boundary conditions which it would be 
natu ra l to  impose in these problems, since the  order of the system  of differential equa
tions is too low. For example, the condition of a fixed edge (th a t is, the condition 
requiring the displacem ents a t  the  boundary to  vanish) cannot be satisfied in general.

M ost w riters on the m em brane theory  of shells a ttr ib u te  the difficulty regarding

* Received M ay  1, 1945.
1 T h e  th eo ry  developed in th is  p ap er is an  ou tg row th  of a  research pro ject carried  ou t b y  the-College 

of Engineering  of N ew  Y ork  U niversity , un d er a  c o n trac t w ith  th e  W ar P roduction  B oard. T h e  investiga
tion , w hich w as largely experim ental in ch arac te r, w as concerned w ith  th e  feasib ility  of co n stru ctin g  
buildings c ircu lar in form  w ith  a  th in  steel roof su p p o rted  by  excess a ir  pressure on th e  inside of the  bu ild 
ing. T h e  design problem s which a rose  led to  th e  theo ry  presented  here. In  th is case th e  shee ts considered 
were so th in  th a t  there  was no d o u b t ab o u t th e  v a lid ity  of neglecting bending stresses.

1 F o r  a n  exhaustive  classification of th e  very  num erous possibilities here, see th e  recen t p ap er of
Chien [3]. (H ere an d  in w h a t follows, num bers in square  b rack e ts  refer to  th e  b ib liography  a t  th e  end of 
th e  paper.)

5 F o r  full trea tm e n ts  of th is  th eo ry  an d  references to  th e  lite ra tu re , see th e  books of F liigge [5] and  
T im oshenko [12],
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boundary conditions to  the fact th a t  bending is neglected, and it  is true  th a t  use of 
the linear bending theory  does m ake it possible to  impose physically reasonable 
boundary conditions. However, there are cases in which the shells are so thin th a t 
the  bending stresses are small com pared w ith the “m em brane” stresses.4 I t  seems not 
to  have been noticed th a t  a theory  which neglects bending stresses, but which neverthe
less makes it possible to satisfy physically reasonable boundary conditions, can be obtained 
by taking account of certain non-linear terms in  the relations for the strains as functions  
of the displacements. T his paper has as its m ain purpose the developm ent of such a 
non-linear theory.

Our theory  is a generalization of an already existing non-linear theory for the case 
of a plane sheet5 supported in some way a t  its boundary and subjected to norm al pres
sure p. I t  is useful for our purposes to  discuss the  theory  of plane sheets from a num-

F ig . 1.

ber of different points of view, w ith  the object of com paring and contrasting  this 
theory  w ith the theory  of curved sheets to  be presented later. T he undeform ed posi
tion of the sheet is taken as the ary-plane, the system of stresses in the sheet is denoted 
by <?x, Gy, and r»„ and the displacem ent com ponents by u, v, and w. In  Fig. 1 the 
no ta tion  for the  stresses crr and cr̂ , in polar coordinates (r, <p) is also indicated.

T he equilibrium  conditions for the stresses a x, gv, and r „  in the  sheet are

da j
■ +

dr.
= 0,

dr X V  da y+  =  o.
dx dy ' dx dy 

T he equation of equilibrium  for the  direction norm al to  the sheet is

d2w 

dy2

d2w d2w
av — -  +  2TXy --------- h c I

dx2 dxdy
= -  p/h ,

(1. 1)

( 1 . 2)

4 T h e  p resen t investigation  was prom pted  b y  th e  necessity  of dealing w ith  ju s t such a  case.
5 T h e  w ord “sh ee t” is em ployed here in a  noncom m itta l w ay. In th e  course of ou r discussion a  m ore 

precise significance will be given to  th e  phrase  “theo ry  of th in  sh ee ts .”
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where h is the thickness of the sheet and p  is the pressure. T he non-linear character 
of the theory under discussion stem s from the  retention of certain  quadratic  term s in 
the  relations for the strains ex, ev, y xy in term s of the displacem ents:6

du 1 / d w \ 2 dv 1 / d w \ 2
<=* =  —  +  —    , =  — +  —   ,

dx  2 \ d x j  dy 2 \ d y  /
(1.3)

du dv dw dw
7  xy = ------ 1--------- 1-------------------■

dy dx dx dy

T he stresses and strains are assumed, as usual, to obey the stress-strain  relations

1 1 2(1 +  v)
( o r  vt̂ y)i Gy (.Gy ro* x) , 7  xy — ' “  ~~~TXv>

E E  E

where E  and v are the modulus of elasticity  and the Poisson ratio, respectively. 
F inally, we have the “com patib ility” equation

( /  d2w V  d2w d2w)

v!(' -  +  " ) = £ f c ) - 5 T  ! ? } •  (1'4)

in which V2 is the Laplace operato r.7 T his equation is an integrability  condition for
Eqs. (1.3), expressed in term s of a x, <ry, and u> by the use of (1.1) and the stress-strain 
relations.

Two different kinds of conditions will be considered a t  the boundary C of the
sheet. In one case we prescribe the displacem ents u, », w a t  the boundary;

u =  u(C), v =  »(C), w =  0. (1-5)

In the o ther case, instead of the displacem ents u  and » we prescribe the norm al and 
shear stresses cr„ and r n a t the boundary;

<?n =  <r„(C), t„ =  r„(C), w = 0. (1.6)

T h a t we m ay impose the boundary conditions (1.6) is clear; the differential equations
(1.1), (1.2), and (1.4) together w ith the boundary conditions (1.6) constitu te  the 
com plete form ulation of a boundary value problem for the determ ination of the 
functions a x, av, r xy and w. T h a t the conditions (1.5) m ay be imposed could be seen 
readily by form ulating our problem  in term s of the displacem ents u, v, w alone, b u t 
we refrain from doing so here. T he conditions (1.5) m ean th a t the edge of the sheet 
is stretched in its plane by a fixed am ount, which does no t depend upon the applied 
norm al pressure p. T he conditions (1.6), on the  o ther hand, mean th a t the  stress a t 
the edge is held fixed while the displacem ents there will depend upon p.

6 N otice  th a t  of th e  th ree  q u ad ra tic  term s occuring in th e  usual expression for the  stra ins , only th e  
one involving w is re ta in ed  in (1.3). T h e  m o tiv a tio n  for th is is th a t  th e  o rder of m agn itude  of th e  d is
p lacem ent w norm al to  th e  sheet can be expected to  differ from  th a t  of th e  d isp lacem ent parallel to  th e  
plane of th e  sheet. T h e  experim ental resu lts  (see th e  paper by  E ck [4]) confirm  th e  v a lid ity  of th is a ssu m p 
tion  from  th e  physical p o in t of view.

7 T hese  differential equations were first ob tained  by Fopp l [6 ] in 1907. T h ey  can also be ob tained  by 
neglecting th e  te rm s referring  to  bending  in th e  non-linear theo ry  of p lates developed b y v .  K drm dn [l 1 ]. 
T h e  eq uations have been solved by  H encky  for th e  case of a  c ircu lar sheet [9 ] an d  a rec tan g u la r sheet
[10]. B ourgin [2] has trea te d  th e  case of th e  rectan g u la r shee t by  m ethods d ifferent from  those of H encky,
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F or the purpose of com parison w ith our new theory of curved sheets, which we 
develop only for the  ro tationally  sym m etric case, i t  is convenient for us to  form ulate 
the  plane sheet theory  in polar coordinates assum ing all quantities to  depend only on 
the coordinate r.

T he differential equations corresponding to  (1.1), (1.2), and (1.4) are for this case I

—  (rar) =  cr*, (1 .1 )'
dr

I d /  d w \
~~ ~ 7 ( ro>CW ) =  ~~r dr \  dr /

d E  / dw  \ 2
T ( _ ) .  (1.4)'

For the purpose we have in view it is no t necessary' to  w rite down the strain-displace- 
m ent and stress-strain relations in polar coordinates. T he boundary conditions (1.5) 
a t  the edge r = R  become

ii =  u(R), w — 0, (1-5)'

in which u refers to the radial displacem ent a t  the edge. T he alternate  boundary con
ditions (1.6) become

o> =  oy(2?), w =  0. (1-6)'

We consider three different specializations of the non-linear plane sheet theory as
a  basis for com parison w ith the theory  of curved sheets to  be developed later. These 
are: Case (a), a d irect linearization of the differential equations; Case (&), the classical 
linear m em brane theory; Case (c), the problem  of Foppl-H encky. We proceed to  dis
cuss these th ree cases in order.

C a s e  (a). A  direct linearization of the differential equations. If we simply neglect 
the non-linear term s in (1.2) and (1.3) we obtain the relations V2(cr*+cr,,) =  0, p = 0. 
T he sheet is therefore not deflected laterally ; it is sim ply in a s ta te  of plane stress. 
From  our point of view, such a linearization thus leads to a “triv ia l” problem.

I t  is w orth while to point o u t th a t  the solutions for Case (a) are also solutions of 
the non-linear sheet theory  if we impose the  condition th a t the  norm al pressure p  be 
everywhere zero.

C a s e  (b). The classical linear membrane theory. T he well-known linear theory  of 
tig h tly  stretched  plane m em branes can be obtained from the non-linear sheet theory 
as an approxim ation to  the solution of the boundary value problem in a special case. 
T he approxim ation, as we shall see, results from a  developm ent in the neighborhood 
of Case (a). T he special case of the non-linear theory  in question arises when the 
boundary condition is taken in the  form (1.6) w ith <rn assumed to  be a  constan t <x>0, 
r„ to  be ze ro :

<f„ =  <r >  0, t„ =  0, w — 0. (1-7)

Furtherm ore, we m ake the  im portan t additional assum ption th a t  the applied norm al 
pressure p is small com pared w ith d. In  o ther words we assum e the m em brane to  be 
tigh tly  stretched and then deflected by a relatively small norm al pressure.

W e can solve this boundary value problem  by a  pertu rbation  m ethod consisting 
of a developm ent in the neighborhood of the solution for the case in which w = 0,
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p = 0 ( th a t is, in the neighborhood of th e  undeflected s ta te  of the  stretched sheet). 
T he well-known linear m em brane theory results as the second step in such a develop
ment. W e need only develop <rx, <rv, t xv, and w in term s of the param eter e defined by 
e — p /a ,  as follows:

(0) , 2 (2) ,
<yz =  Vi +  e <Tx +  • • • ,

(0 ) 2 ( 2 )
T xy T xy -f -  € T xy “T  ’ * * i

The stresses (including the stress a a t  the boundary) are of lower order in e than  the 
deflection w and the applied pressure p. Insertion of relations (1.8) in the differential 
equations (1.1), (1.2), (1.4) and the boundary  conditions (1.7) leads to  a sequence of 
linear boundary  value problem s for the determ ination  of the coefficients in the per
tu rba tion  series. For the term s of zero order in the stresses one finds readily the solu
tion <jx = 0-£o)=cr, in o ther words the zero order term s represent a s ta te  of
uniform tension throughout the sheet. T he zero order term s are also, evidently, the 
solution for the linearized sheet theory  of Case (a). T he differential equation for w m 
is then readily found to  be

V2a>W =  -  1 /h ,  (1.9)

while the boundary condition is, of course,

WM(C) =  0. (1.10)

E quations (1.9) and (1.10) are those of the classical linear m em brane theory  (for 
un it norm al pressure). For the applicability  of this theory  the essential condition is 
th a t  the applied pressure p  should be small com pared w ith the initial stress a in the 
sheet. W e note also th a t this theory  results when the  stress is prescribed a t  the bound
ary  ra th e r th an  the displacem ent in the plane of the sheet; in o ther words, the  linear 
m em brane theory requires th a t the edge of the sheet be free to  move in the aty-plane.

C a s e  (c ) .  The problem of FoppUHencky. T he boundary value problem  which leads 
to  our Case (c) is th a t  resulting from the choice of (1.5) as boundary conditions for 
the non-linear sheet theory. T his theory  is sometimes referred to as the large deflection 
theo ry  of m em branes. I t  is no t assum ed, as in the above Case (b), th a t  the norm al 
pressure p  is small com pared w ith the initial stress in the sheet. In  fact, we assum e for 
the Case (c) th a t  the displacem ents u and v a t  the boundary as well as w are zero. 
We shall refer to this problem 8 on occasion as the problem of Foppl-H encky. Our 
boundary  conditions of course m ean th a t the sheet was initially unstrained. T hus the 
stresses in the sheet are built up only as the norm al pressure p  is applied, and conse
quently  the procedure outlined above for Case (b) is entirely  inapplicable.

As already sta ted , our purpose is to generalize the non-linear sheet theory (c) to the 
case of curved sheets. T he essential step for th is purpose consists in developing suitable 
non-linear straip  relations for the  curved sheet analogous to  those (cf. (1.3)) for the 
plane sheet. However it is no t entirely  clear a priori in the case of curved sheets ju s t 
which of the quadratic  term s in the  strain  equations should be retained and which 
rejected. Section 2 is devoted to  a derivation  and discussion of the strain  expressions

8 T h e  previously c ited  papers of H encky  [9, 10] an d  B ourgin [2] a re  concerned w ith  th is  problem . 
T h e  problem s for th e  case in w hich th e  b o u ndary  d isp lacem ents u an d  5 a re  n o t zero (i.e. th e  case of an 
in itia lly  stre tch ed  sheet) a p p ea r no t to  have been trea ted .

(0 ) 2 ( 2 ) 
crv =  cr„ -+- e crv ~ r  • • 

(i) , 3 (2) ,w — ew -f- e w +
(1.8)
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used la ter as the basis for our theory. T he discussion is confined to  the case of the 
rotationally  sym m etric deform ation of a surface of revolution. Only two displace
m ents are involved in this case, the displacem ent u  along a m eridian and the displace
m ent w along the norm al to  the sheet.

Once expressions for the strains in term s of the displacem ents are available, 
it becomes possible to  set up the integral for the potential energy in the sheet (as
sum ing Hooke’s law to hold) in term s of the displacem ents u  and w. T he equilibrium 
conditions can then be found as the E uler variational equations minimizing the po
ten tial energy. T he result is a pair of second order non-linear differential equations for 
u and w which perm it the boundary condition ii = w — 0 for a fixed edge to be imposed.

F or m ost purposes it is, however, more convenient to form ulate the curved sheet 
theory in term s of the two com ponents ae and tr# of the stress in the sheet along and 
perpendicular to a m eridian curve, respectively, and the displacem ent w norm al to 
the sheet, ra ther than  in term s of the two displacem ents u and w. T his is carried out 
in Section 3. In Section 4 the general theory is specialized for the case of the spherical 
sheet. T he result is a set of differential equations for the curved sheet analogous to
(1.1) and (1.2) for the plane sheet. In  Section 5 a simplification in the theory for the 
spherical sheet is introduced which is valid for a spherical segm ent of small curvature 
(and probably also for all cases of spherical sheets). T he differential equations of Sec
tion 5 are

d
(crj sin 9) = a$ cos 6,

d9

1 d 

R dd'

/  d w \  (  Rp \
( ae sin 9 ----- ) =  — I -------- b a¿ +  ae) sin
V d9 J  V h )

d9
(o> tan 9) +  (1 +  v tan2 9)ae

E l  dw 1 ( d w \ 2)
=  — <u> tan2 9 +  tan 9 ------ 1------( ------I > .

R  I d9 2 R \ d 9  J  !

( 1 . 11)

T he independent variable 9 is the  la titude angle m easured from the pole of the sphere. 
These equations are exactly analogous to  Eqs. (1.1)', (1.2)', and (1 .4 )'.9 W e refrain 
from w riting  th e  stress-strain and strain-displacem ent relations which are needed for 
a com plete form ulation of the problem.

As boundary conditions a t  9 = 60 we assum e either

or
ü = ti(90) , w — w(9 o), 

a 0 =  as(9o), w =  w(9o).

(1.12)

(1.13)

A t the pole 6 = 0 we require all quantities to  remain finite.
W e wish to  consider the three special cases in connection w ith Eqs. (1.11) which 

are analogous to the three cases discussed above in connection w ith the plane sheet. 
These a re : Case (a ), a d irect linearization; Case (b), the analogue for curved sheets of

9 If  we w ere to  allow R  to  ten d  to  infinity  while 0 ten d s to  zero in (1.11) in such a  w ay th a t  R8-+r, 
th e  resu lt w ould be the  differential equations (1 .1)', (1 .2) '  an d  (1 .4)'. (T he norm al pressure p an d  th e  dis
p lacem ent w a re  tak en  positive in the  d irection tow ard  th e  cen ter of th e  sphere.)



252 E. BROMBERG AND J. J. STOKER [Vol. I l l ,  No. 3

the  classical linear m em brane theory; Case (c), the  analogue of the Foppl-H encky 
problem for curved sheets. W e consider these cases in order.

C a s e  (a). A  direct linearization. In  con trast to  the corresponding case in the plane 
sheet theory, we observe th a t neglect of the non-linear term s in (1.11) does not lead 
to  a trivial problem. W e obtain, in fact, the equations

^ \ R-P— (<75 sin 6) =  cos 9, os +  =  — - —  :
dd h

d E  (  d w \
— (o> tan 6) +  (1 +  v tan2 8)<re = —  ro tan2 9 +  tan 9 — J. 
d9 R  \  d9 J

These are the differential equations of w hat is called the “m em brane th eo ry ” of th in  
shells. One observes th a t the order of the system  (1.11)' is tw o less than  th a t of (1.11) 
T he stresses can be obtained from the first two equations of (1.11)' w ithout reference 
to the strains and displacements. I t  is, however, no t possible to  satisfy in general the 
kinds of boundary conditions which would be natu ral in the physical situations en
countered in the  applications. One such case is th a t  of a fixed edge, which would im ply 
the  condition w =  0 a t  the  boundary. T h a t this condition cannot be satisfied, a t  least 
in the case p  = const., is readily seen : the only solution of (1.11)' th a t is finite a t  0 =  0 
is given by

pR
<re =  «r* =  , w =  p R 2( 1 -  v)/2Eh. (1.14)

2 h

All three quantities are constan t th roughout the shell.
As in the corresponding Case (a) for the plane sheet, the solution (1.14) of the 

linear equations (1.11)' is also a solution of the  non-linear equations (1.11) if proper 
restrictions are imposed. Instead of prescribing the boundary values ¿r9 and w in (1.13) 
arb itrarily , we would require them  to have values consistent w ith (1.14).

C a s e  (b). The analogue for curved sheets of the classical linear membrane theory. T he 
theory  of curved sheets analogous to  the classical linear m em brane theory  for plane 
sheets seems no t to  have been developed. For the case of a spherical sheet we can ob
tain  such a theory  from Eqs. (1.11) w ith  the boundary condition (1.13), in which, 
however, we assum e and w to  have values consistent w ith (1.14) and set p —p w . 
However, we assum e th a t the pressure p  in (1.11) is given by

p = p w  +  epm, (1.15)

in which € is a small (and, of course, dimensionless) param eter. T he theory  we desire 
then results from the term s of first order in the  developm ent of the solution by per
tu rbations w ith respect to e. We set

(0) , (1) , 2 (2) 
w =  w +ew.’ + e w  + ■ • • • ,  "j

<7« =  <re +  tcre +  • • • , > (1  - 1 6 )

(0) (1) _L0 >  =  <7* +  i(7# +  • • • , J

and insert these series together w ith (1.15) in the differential equations (1.11) and 
the boundary conditions

j ,  =  j*  =  -  p W R /2 k ,  w =  pWR'-( 1 -  v)/2Eh.  (1.17)
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T he term s of zero order in (1.16) are then readily found to be those which would re
su lt from the linear theory— in other words <xf\ and ww  have throughout the 
sheet the constan t values prescribed a t the boundary in (1.17). T he first order term s 
are then found to satisfy the linear differential equations

dd
r (1) • a) (1)(cre sin 6) = tr# cos i

1 d /

R  d6 V
(0) . d w m  \

ce sin 6 --------
dd )

Rp m (D <b\ .
(T o  ~T~ c r $  1 S Isin e,

d

de
 — (o-ÿ } tan 0) +  (1 -f- V tan2 0)<r« ' =  — f

R  \

dww  (i) 2
tan 6----------(- w tan 6

de ') •

(1.18)

and the  boundary conditions
_d)
oo =  0,

.cu =  0. (1.19)

E quations (1.18) and (1.19) are analogous to  (1.9) and (1.10) for the corresponding 
case of the  plane sheet. I t  m ust, however, be adm itted  th a t this “theory  of tightly  
stretched  m em branes” for the sphere is som ewhat artificial because of the fact th a t 
the “s tre tch ed ” s ta te  is one for which the initial radial displacem ent w cannot be held 
zero a t  the  boundary.

C a s e  (c). The analogue of the Foppl-Hencky problem for curved sheets. T he differ
ential equations (1.11) are to be solved for a prescribed pressure p  when the edge of 
the  sheet is considered fixed, i.e., under the boundary conditions w — 0 and « =  0. 
In  this particu lar case the  condition u = 0 can be replaced by the condition th a t the 
stra in  in the direction of the boundary curve is zero, which implies the condition 
o-4, — v<to = 0 on and <xe a t  the boundary. T he analogy w ith the corresponding case 
for the plane sheet is, as we see, exact in every respect.

I t  should now be app aren t th a t  some such term  as “sheet theo ry” is needed in 
addition to  the term  “m em brane theo ry .” This is brought ou t by Table I which lists 
th e  Cases (a), (b), and (c) together w ith  the  present terminology. As we note, the 
phrase “m em brane theory'” is already applied to  cases which have alm ost nothing in 
common. Consequently we would recommend (in accordance w ith  a suggestion made 
by Bourgin [2]) th a t  all of these theories which neglect bending be referred to in

T a b l e  I .

Cases Plane Curved

(a) Plane stress M em brane theo ry  of shells

(b) M em brane w ith  sm all deflections —

(c) Large deflection theo ry  of m em branes —

general as sheet theories. T he Cases (a) and (c) could then be referred to  as linear and 
non-linear sheet theories respectively, while the  term  m em brane theory m ight be re
served for the Cases (b), i.e., for theories of initially stretched sheets which s ta r t  w ith
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the  linear sheet theory  as a first approxim ation and then proceed to  a second approxi
m ation by a developm ent in the neighborhood of the solution to the linearized prob
lem. T his term inology will be used in the rem ainder of this paper.

In Section 3, the differential equations for the curved sheet theory are obtained, 
as we have already indicated, by variational m ethods. In  th a t section also, the s ta 
bility  of the extrem al solutions for both  the linear and the non-linear sheet theories 
[Cases (a) and (c)] is considered. A t first sight one would be inclined to th ink  th a t 
the solutions in the  two cases would no t differ greatly  as fa r as stab ility  is concerned 
if the pressure, thickness, etc., are the same in both cases. This is, however, no t true. 
On the basis of the linear curved sheet theory, the solutions would appear to  be stable 
w hether the pressure p  is inward or outw ard, th a t  is, w hether the  sheet is in compres
sion or tension, respectively. On the basis of the non-linear curved sheet theory, how
ever, the solutions are unstable when the pressure is such as to cause the stress as 
in the  sheet to  be a  com pression.10 T his result follows through consideration of the 
Legendre condition for our variational problem. In the case of the spherical sheet the 
stress ao, as given by the linear theory, is a compression when the norm al pressure p  

is positive (i.e., when the  pressure is directed toward the center of the sphere). I t  also 
seems certain  th a t  the non-linear theory  will yield the same relation between the  signs 
of <t o  and p  for the  case of the spherical sheet, unless the displacem ents are very 
large. Consequently, we have assum ed in our num erical work th a t  the pressure p  is 
negative, i.e., is directed outw ard, in order to avoid unstable cases.

In  Section 5 the non-linear curved sheet theory [Case (c)] is form ulated in detail 
for the special case of a spherical segm ent of small curvature. T he differential equa
tions for the spherical sheet can be solved by power series in the  independent variable. 
G raphs showing the d istribu tion  of the stresses and the  norm al deflection w along a 
m eridian in a particu lar num erical case are given in Section 6. Perhaps the  m ost s trik 
ing feature of these results is th a t  the  non-linear sheet theory  [Case (c)] yields results 
which do no t differ g reatly  from those of the linear theory  [Case (a)] except near the 
edge of the sheet. In particu lar, the stresses and the norm al displacem ent w are nearly 
constan t over m ost of the  interior of the sheet, b u t change ra th e r rapidly near its edge.

T his observation indicates th a t  we have to  deal here w ith a boundary layer effect. 
In Section (7) the existence of such an effect is deduced and trea ted  explicitly. I t  
tu rns out upon introduction of proper dimensionless variables in the original differ
ential equations th a t only one param eter k rem ains in the transform ed differential 
equations. T he q u an tity  k is given by

k — p R /E h ,  (1.20)

in which p  is the norm al pressure on the sheet, R  the radius, E  the m odulus of elastic
ity , and h  the thickness of the sheet. If k  is allowed to  tend to  zero in the  transform ed 
differential equations the result is in the lim it the differential equations of the linear 
sheet theory  w ith  a consequent lowering of the order of the system . Hence some 
boundary condition m ust be lost a t  the edge on the transition  to  the value x =  0. T he 
solutions of the boundary value problem for kf^O can therefore no t be expected to 
converge uniform lj' a t  the boundary to  the solution of the problem for x =  0. I t  is

10 C om parison w ith  th e  analogous cases (a) a n d  (c) for th e  p lane shee t th eo ry  is illum inating . I t  is 
c lear th a t  th e  p lane sheet w ould be stab le  un d er edge com pression if no  la te ra l deflection w ere to  be per
m itted , b u t decidedly unstab le  under com pression if such a  la te ra l co n stra in t were no t im posed.
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possible to trea t the boundary layer phenom enon by introducing a new independent 
variable which depends upon k  in such a w ay as to stretch the boundary layer to 
infinity as k—>0, w ith the result th a t the convergence of the solutions becomes uniform 
w ith respect to  k. a t the edge. One notices th a t the value k =  0 corresponds, according 
to (1.20), to the value zero for the pressure p.

T he boundary layer solution is given in this case very sim ply by an exponential 
function. I t  could be used to estim ate the stresses in practice in cases for which k is 
small (and, of course, negative). In the usual cases it is not difficult to see th a t k will 
be of the order of —0.0005 in practice, since p R /2 h  is the stress when p is constant, 
according to the linear theory, and hence k is a q u an tity  of the order of the longitudi
nal s tra in s.11

I t  is clear th a t the non-linear sheet theory  could be worked out in detail ra ther 
readily in o ther cases such as those of the cylindrical and conical sheets. I t  would 
also be of in terest to consider the case of the spherical 
sheet w ith  a hole, so th a t  two d istinc t boundary curves 
would exist. Various com binations of boundary condi
tions a t  the  two edges.should be considered; boundary 
layer effects could then occur a t  both  edges.

From  the  point of view of the practical applications, 
ano ther question is of interest. I t  is clear th a t  bending 
effects will dom inate the “sheet effects” near the edge of 
the  sheet if the  sheet is th ick  enough. T h is  question is 
under investigation a t the present time.

2. Expressions for the longitudinal strains. We as
sum e the curved sheet to be the  surface of revolution ob
tained  by  ro ta ting  abou t the y-axis the m eridian curve C,

x = x(£), y = >'(£>•
T he param eter § is taken  to  be the  arc  length of the  curve. W e consider only deform a
tions which preserve ro tational sym m etry, so th a t the deform ation is com pletely de
scribed by the displacem ent com ponents u  and w along the m eridian and along the
norm al to the surface respectively.

I t  is convenient to  introduce the angle 9 between the  y-axis and the norm al to  the 
m eridian. These no tations are indicated in Fig. 2.

T he longitudinal strains in the sheet are defined in the usual way. If ds1 is the de
formed length of the line elem ent originally of length ds, then the strain  t  in the direc
tion of the elem ent ds is defined by

( £ ) ' . , +  2 ,  (2.2)

I t  is useful to introduce the following relations between the original position (x, y, z) 
and the deformed position (x1, y1, z1) of any  point P  on the sh ee t:

u  T h e  effect of th e  edge co n stra in t seems to  be  such a s  to  cause th e  stresses a t  th e  edge to  be low er in 
value  th a n  in th e  in te rio r of th e  sheet. T h u s it seems likely th a t  th e  usual p ractice  in engineering design 
of ignoring th e  edge effect leads to  estim a tes for th e  stresses w hich a re  to o  high, i.e., a re  on th e  side of 
safety . Of course, we are  en titled  to  draw  th is  conclusion here only in case th e  sheet is in tension .

F ig . 2.

(2 . 1)



x 1 =  x +  u cos 9 — w sin 9, y 1 =  y — u sin 0 -f- w cos 6, z1 = z.

By m aking use of these relations the strains e« and e$ in the direction of a m eridian 
and a parallel (i.e., a curve 0 =  const.) are easily com puted by using (2.2). W e obtain
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1 (du  \  1 /  d w \ 2 1 1  /d u  \ 2
=  — (  w )H  ( u H M  ( ---------w ), (2.3)

p \dd J  2p- V, do J  2 p2 \dd  J

u cos 6 — iv sin 6 1 ( u  cos 0 — w sin 0 \2
«* =  +  - ( ----------------------  ■ (2.4)x  2 \  x /

T he q u an tity  p is the radius of cu rvatu re ot the m eridian curve and £ is, of course, 
the abscissa of the point P .

Ju s t as is done in the analogous case of the plane sheet, we retain only certain of 
the quadratic  term s in the strain  expressions, which then am ounts to the assum ption 
th a t  these non-linear term s are considered to  be of the same order as the linear term s. 
T hus it would be logical to reject the third term  on the right hand side of (2.3) and 
the  second term  on the righ t hand side of (2.4), since they are squares of the linear 
term s. W e shall follow this procedure and thus take for the strains the expressions

1 /  du \  1 /  d w \ 2
ee =  — ( — — w ) H ( u d ), (2.5)

P \dd  )  2P2 \  dd J

u  cos 9 — w sin 9
e* = ------------------------ (2.6)

a;

T he following special cases are of in te re s t:
a) The sphere.n Here p —R  (the radius of the sphere), and we find from (2.5) and 

(2.6) th a t

€8
1 / d u  \  1 / dw \ 2

=  — (  w ild  (  V i t ) ,  (2.7)
R \ d d  )  2 R d \d 9  )

1
=  — (u cot 9 — w). (2.8)

b) The circular cylinder. Here p = « > , d=Tr/2, x  = a (the radius of the cylinder), 
and £ = y . W e find th a t

du 1 / d w \ 2 w
=  _  +  _ ( _ ) ,  (2.9) £* = ----------  (2.10)

ay  2 \  dy  /  a

c) The circular cone. Here p =  « ,  6 = y  = const. T he strains are given by

du 1 / d w \ 2
€8 =  cos 7 ------ 1 cos2 y I -----  ), (2.11)

dx 2 \ d x /

u cos 7  — w sin 7 
e,    ■ (2 . 12)

l! T hese  expressions coincide w ith  those used by  F riedrichs [7 ]. S im ilar expressions were used earlier 
by Biezeno [l ].
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3. Form ulation of the  boundary value problem  for a shee t with fixed edges. On
the assum ption th a t H ooke’s law holds for the relation between the strains ee and 
defined above and the corresponding norm al stresses cre and cr̂ ,,13 we have for the po
ten tial energy V  of the sheet the expression

C fo /  1 Eh  ' „ . \
V =  2tt ( --------------- [e? +  e\ +  2Veee+] -  pw xdt-, (3.1)

J  \  2 1 — v2 /

in which p  is the norm al pressure on the sheet counted positive in the direction of the 
inward norm al. T he quantities £ and x(£) are the arc length and abscissa of the m e
ridian curve, and h is the thickness of the sheet. T he quantities v and E  are the elastic 
constants.

T he potential energy could be expressed in term s of the displacem ents u  and w 
by  replacing ee and e* in term s of these quantities through (2.5) and (2.6). T he varia
tional equations for the m inimum problem would then clearly be a pair of non-linear 
ordinary differential equations for u  and w, each of which would be of the second 
order. W e shall no t w rite these equations down since in the  following we wish to work 
w ith  the stresses ere and oq,, and the  displacem ent w as dependent variables. However, 
we do wish to draw  one conclusion from the existence of two such equations. The 
differential equations for u  and w are of the proper order to perm it imposition of the 
boundary condition u = w = 0 appropriate  for a fixed edge.

T he variational equations resulting from (3.1) are

1 d
— —  (xae) 
x a£

r  de (  dw u \  a $ cos 01
- H r  +  - )  +  - —  = 0> (3-2)_ p \  p /  x  J

( dw u \  1  r  <re <r¿ sin 6 p ~I ■'
 j J - f - -----1--------------- b — =  0. (3.3)

d-í p / J  L p  x h J

d?
1 d 

x d£

T he q u an tity  p in these equations represents the radius of curvature of the m eridian 
curve; the  quan tities p, d, and x  are, of course, given functions of £. In  deriving (3.2) 
and (3 3) use was m ade of the stress-strain  relations

Eee — ue — vv$, Ee$ =  a$ — vcre, (3.4)

and of (2.5) and (2.6) in order to  introduce ere and cr̂  as dependent variables. E q u a
tions (3.2), (3.3), (3.4), (2.5), and (2.6), together w ith appropriate  boundary condi
tions, yield the com plete form ulation of the boundary value problem s we consider 
here. W e note th a t there are six equations for the  six quantities u, w, ere, cq,, ej, e$.

For the m ost part, we are concerned w ith the case of a sheet w ithout a hole a t the
axis of sym m etry, so th a t  the q u an tity  * in (3.2) and (3.3) has the value zero where
the m eridian curve crosses the axis, which we m ay assum e to occur for £ =  0. In this 
case we would require the solution to be regular a t £ =  0. A t an edge £ =  £o of the sheet 
we require u — w = 0, for a fixed edge. In view of (2.6) we see th a t this implies €¿ =  0; 
hence we m ay prescribe the following conditions a t  a fixed edge:

j  w =  0, (3.5)

s [Ee* = 0 4  — vcre = 0. (3.6)

In  th is way we express the boundary condition in term s of w, er«, and o>.

13 On accoun t of sym m etry  th e  shear stresses in the  coord inate  d irections a re  of course zero.
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We rem ark th a t  the so-called m em brane theory  of axially sym m etric shells results 
from the above theory when all non-linear term s in ae, a$, u, and w are rejected.

W e have already sta ted  in the in troduction th a t the solutions of the variational 
equations (3.2) and (3.3) are unstable when the  “rad ia l” stress ae is negative (i.e., 
when it is a compressive stress). On the o ther hand, it was sta ted  th a t the solutions 
of the linear sheet theory are stable w hether as is positive or negative. T he conclusion 
regarding the instability  in the non-linear case results im m ediately from the fact th a t  
the Legendre condition on the second variation of V  is no t satisfied if ae is negative, 
which m eans th a t the extrem als do no t render V  a m inim um  in this case. T he Le
gendre condition14 for a m inimum in our case requires th a t the q u an tity  A given by

A =  FU(U(FW(W( — T l£u>£ (3.7)

should be positive. T he quan tity  F  is the integrand in (3.1) and subscripts denote 
differentiations. I t  tu rns out th a t the q u an tity  A can be expressed in the form 
A =47r2/i2£ ( l  —t 2)-1xVs. T he right hand side has the sign of ae, and consequently the 
Legendre condition is violated a t  all points where ae is negative.

In the special case of the spherical sheet, it is possible to p u t the sign of ae in rela
tion to th a t of the applied pressure p. If the boundary conditions are specialized in 
such a way th a t the solution of the linear sheet theory results, we know [cf. (1.14)] 
th a t  p  and ae are opposite in sign, so th a t the solutions in this case are unstable when p 
is positive, i.e., when p  is directed tow ard the  center of the sphere. Since it is no t pos
sible to give the solutions explicitly in the general non-linear case, we have not been 
able to prove readily th a t as and p  are opposite in sign in th is case; b u t if the dis
placem ents remain small there can be little  doub t th a t  p  and ae differ in sign in these 
cases also. In  our fu rther discussion of the spherical sheet we have therefore assumed 
always th a t p  is negative, i.e., th a t  it is directed outw ard from the center of the 
sphere.

T he linearized sheet theory  results from (3.1) when all term s of degree higher than  
the second in u  and w and their derivatives are neglected.at the outset. If th is is done, 
the  Legendre condition for the resulting variational problem becomes A =  _FU{„{> 0 , 
w ith

2-irxEk
A =  ------------- , (3.8)

1 -  v*

which is always positive, since x  (the coordinate m easuring the d istance from th e  axis 
of the  sheet) is always positive. Hence the  Legendre condition is always satisfied in 
the case of the linear sheet theory, and we expect all solutions to  be stable. T he reason 
for the  stable character of all solutions given by the linear theory, as contrasted  w ith 
the  unstable character of some of the solutions given by the non-linear theory, is th a t 
the  linearization is equivalent to  the imposition of a constra in t powerful enough to  
cause stab ility  in all cases.

4. The spherical sheet. In the special case of the sphere we m ay w rite £ = Rd, 
p — R, and x  = R  sin 6, R  being the radius of the sphere. T he differential equations for 
the sphere are

14 See, for exam ple, R . C ou ran t an d  D . H ilbert, Methoden der mathematischen Physik, vol. 1, Ju liu s
Springer, Berlin, 1931, p. 184.
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d 1 /  dw \
— (txe sin 6) =  — ------ \- u I a  sin 0 +  a* cos 6, (4.1)
dd R  \  d6 )

1 d r  /  dw \
 a «  h u sin
R  dO L \  dO )

T he system  of equations is completed by the two strain-displacem ent relations (2.7) 
and (2.8) and the stress-strain  relations (3.4).

As boundary conditions a t a fixed edge 0 — 6o we have [cf. the rem arks preceding
(3.5) and (3.6)]

w =  0, (4.3) o* — vc a — 0. (4-4)

In  case the sheet has no hole a t  the axis, we require the solutions to  be regular a t  0 — 0.
I t  is of in terest to  consider the special case of the complete sphere, in which the 

boundary conditions would become regularity  conditions for 0 =  0 and 6=ir. In case 
we assum e th a t  the load p  is constant, it is readily verified th a t  a solution of our dif
ferential equations which satisfies the regularity  conditions is u =  0, w =  p R 2( 1 — v)/2Eh, 
0's =  oV=  —p R /2h .  I t  could also be shown th a t  this is the unique solution to  this prob
lem. W e observe th a t this solution is identical w ith th a t  furnished by the linear sheet 
theory  (a) of shells. In o ther words, the non-linear term s have no influence on the 
solutions for the full sphere in case the applied pressure p  is constant. If p  is not con
s tan t, however, the non-linear term s will influence the results for the full sphere.

5. T he spherical segm ent with sm all curvature. T he differential equations of the 
Foppl-H encky theory  for the deflection of a radially sym m etric plane sheet are con
tained in the  above equations as a lim it case. W e need only allow R  to tend to infinity 
while 6 approaches zero in such a way th a t  the product R  sin 0 approaches a finite 
lim it r, and r is thus the polar coordinate which locates points in the plane sheet. 
T he resulting equations (1.1)' and (1.2) ' have already been given in the introduction. 
In passing to the lim it, one observes particularly  th a t the term  u in the second paren
thesis on the righ t hand side of (2.7) drops out, so th a t the non-linear term reduces to 
\{dw/drY .  As a consequence of this, the variational equations for the case of the plane 
sheet are m uch sim pler than  (4.1) and (4.2), since the term s corresponding to the 
first term  on the righ t hand side of (4.1) and the term  u in the parenthesis on the left 
hand side of (4.2) disappear.

I t  is clear th a t  we could also simplify our equations for the spherical sheet quite 
considerably by om itting  the non-linear term s involving u  in the expression (2.7) 
for €9. I t  would seem fair to  expect th a t such a simplification would be justified for the 
special case of ra th e r flat spherical sheets. We recall th a t  the choice of the expressions 
for the  strains in term s of the displacem ents was in any case som ewhat a rb itra ry . A t 
the beginning, we m ight have considered the displacem ent u  as negligible compared 
w ith  th e  q u an tity  dw/dO, since we expect the order of m agnitude of the displacem ent 
w  in the  direction of the  applied load to  differ from th a t  of the displacem ent u. In 
o ther words, it m ay well be th a t this term  could be neglected even for sheets of ra ther 
large cu rv atu re .15 In  w hat follows we shall neglect this term .

sin (4.2)

16 I t  m ig h t be no ted  th a t  th e  lim it problem  w hich leads to  th e  bo u n d ary  lay er phenom ena (to  be 
trea te d  in th e  n ex t section) is the  sam e w h e th er th e  term s in th e  d isp lacem ent u un d er discussion here a re  
re ta in ed  or no t. T h is is a n o th e r valid  reason for considering these te rm s to  be negligible in m ost cases.
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One result of this assum ption is th a t the variational equations no longer contain 
the function n ,  b u t only w,  erg, and o>. We can obtain a th ird  equation in these same 
quantities— a “com patibility  equation”— by elim inating u from (2.7) and (2.8) and 
then replacing eg and e$ by ag and a<* through use of the stress-strain relations. T he 
result is the system  of equations

— (o-fi sin 6) = a a cos 0, 
dd

-Rp1 d dw r
R d9

O-0— -  sin 9 
d9 "  L

 (o> tan 0) +  (1 +  v tan2 9)ae
dd

= ° - \ 
R  L

+  <70 +
n

w tan2 9 -f- tan

sin 9,

dw  1 / dw \ 2' 

d9 +  2 R \ d 6 )  .

(5.1)

(5.2)

(5.3)

&  ( IN  R A D IA N S )

F ig . 3. N orm al d isp lacem ent.

These equations are identical w ith Eqs. (1.11) which served as the basis for the dis
cussion of the curved sheet theory  in the introduction.

W e are interested in solving the differential equations (5.1), (5.2), (5.3) for the 
case of a spherical segm ent w ithout a hole abou t the axis 0 =  0 and w ith a fixed edge 
a t 6 = 6o. T his means th a t we require the solution to  be regular a t  0 =  0 and to satisfy 
a t the edge 0 =  0O the conditions

w =  0 , (5.4) cr̂  — vcre = 0. (5.5)

6. N um erical solution of the  boundary  value problem  for the flat spherical seg
m ent. O ur principal object in th is paper is to present a  new theory  of th in  sheets and 
to  com pare and contrast it w ith o ther theories, ra th e r than  to  give num erical solu
tions for the resulting boundary value problems. However, we have obtained approxi-
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m ate num erical solutions of the boundary value problem form ulated in Eqs. (5.1) to
(5.5) of the preceding section, and will report the results briefly in this section.

T he graphs of Figs. 3, 4, and 5 indicate the results of an approxim ate solution19

0.50

0.48-

0 4 6

kE
0.44

0.42

0.40

Si ( in  r a d ia n s )

F ig . 4. C ircum feren tia l stress.

BOUNDARY LA YER  SOLUTION ,-K =, 1.56 X I0~3 

— L I MI T SO LU T IO N , K = 0

PO W ER S E R IE S — 
-K = 1-56 X I0-3

\

0.00 0.04 0.06 0.12 0.16 0.20

3  (IN  RAD IANS)

F ig . 5. R ad ia l stress.

18 T h e  solution was ob tained  in th e  form  of a  developm ent in powers of th e  independen t v ariab le  0.
Only four te rm s in th e  series (which a p p ea r n o t to  converge very  rap id ly ) w ere re ta in ed  in calcu la ting  
coefficients. On th e  g raphs these solu tions a re  m arked  “power series, — k=  1.56X 10-3. ”
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for the case in which the value 90 of 9 a t  the edge of the sheet is 0.2 rad., and the  di- 
mensionless p aram eter17 K = p R / - E l i  has the value — 1.56X 10-3, and r =  0.3. (This was 
one of the cases treated  as p a r t of the project m entioned in the footnote a t the be
ginning of the paper.^ T he strain  everywhere in the sheet is abou t —1 (1— v ) k  in 
value. T he graphs show values of w /kR , —<t$/kE, and — a g / n E  as functions of 9. 
Each graph contains th ree cu rv es : a do tted  curve giving the result of our approxi
m ate solution; and two solid curves which refer to  the lim it solution obtained as k—>0. 
T he m ethod of obtaining the lim it solutions is explained in the next section. One ob
serves th a t  the curves m arked “boundary layer solution” approxim ate those of our 
num erical solution ra ther well, a t least for the stresses. We have some reason to think 
th a t a more accurate solution of the boundary value problem would show the bound
ary  layer solution to  be a b etter approxim ation to  the actual solution than  our graphs 
indicate. We note th a t  the curves m arked “limit solution, x =  0” are those which 
would be obtained from the linear sheet theory.

7. The boundary layer problem . A boundary  layer effect has already been m en
tioned a num ber of times in connection w ith  our boundary' value problem. T he graphs 
of the solutions in the preceding section furnish a h in t regarding the character of this 
phenom enon. T he solutions in the interior portion of the sheet appear to be relatively 
constant, approaching there the values furnished by the linearized theory (i.e., those 
of the theory  usually called the m em brane theory' of shells). However, tow ard the 
edge of the sheet, the solutions appear to change ra ther abruptly . T his is consistent 
w ith the repeatedly m entioned fact th a t  the condition for a fixed edge cannot be satis
fied in the linearized theory. T he purpose of the present section is to  trea t this bound
ary  layer effect explicitly.

A necessary step in any trea tm en t of boundary layer phenom ena18 consists in the 
in troduction of appropriate new variables and param eters. In the present case it is 
convenient to introduce new dimensionless dependent variables replacing eg, e*, ay, ay, 
•w and u  by the relations

sg = gs/ E k, =  g$/E k, (7-1)

eg = tg/K, e$ =  zJ k, (7.2)

w =  w/ R k, fj. — u/ R k, (7.3)

in which the im portan t dimensionless param eter k is defined by the relation

k =  p R /E h .  (7.4)

W e assum e here th a t  the applied pressure p is constant. In  term s of the  new q u an ti
ties, the fundam ental differential equations (4.1), (4.2), (2.7), and (2.8) become, in 
order

d /do) \
— (s6 sin 0) — k [ -----b p j sg sin 6 +  cos 9, (7.5)
dd \d9 )

+  p j  sin =  — [l +  sg +  „ ]  sin 6, (7.6)K ■
dd

17 In  th e  nex t section it will be seen th a t  60 a n d  k a re  th e  only essential p aram eters, once th e  value of 
th e  Poisson ra tio  v is fixed.

18 Such bo u n d ary  layer effects have been w ell-know n for m any  years in fluid m echanics. T h ey  occur 
also  in problem s in e lasticity  o th er th a n  those considered in th is paper. (See, for exam ple [7, 8 ].)
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/ dfx \  k ( d o  \ 2

e' " ( « “ ")  +  T U  +  '‘) '  (7'7)
=  (fi cot 0 — w). (7.8)

T o obtain a com plete system  of equations we add the stress-strain relations:

ee — se — v s (7.9) e$ — s# — vsg. (7.10)

As boundary conditions we require all quan tities to  be regular a t 0 =  0, while a t  0 =  0O 
the condition of a fixed edge is prescribed,

co =  0, (7.11) s , -  vs* =  0. (7.12)

We now observe th a t if x is allowed to  approach zero in these differential equa
tions, the result is a set of differential equations for the lim it quantities which are 
identically the same as those of the linear sheet theory19 (when form ulated in term s 
of our dimensionless variables),

d
— (se sin 0) =  s$ cos 0, (7.13) J« +  =  — 1, (7.14)
dd

ee = —  — co, (7.15) e* = /t cot 0 — co. (7.16)
dd

Obviously, the boundary conditions (7.11) and (7.12) cannot be imposed in this lim it 
problem. In  fact, the  solutions of (7.13) and (7.14) are com pletely determ ined by the 
regularity  conditions a t  0 =  0 alone. T his solution is, as we know, Se = St,= —\,  
co =  5 (l — v), n — 0. In  the lim it, therefore, the boundary conditions a t  the edge, in 
general, will no t be satisfied. I t  follows th a t  the solution of the  boundary value prob
lem form ulated in (7.5) to  (7.12) will not converge uniform ly a t  the boundary to  the 
solution of the  lim it problem  as x—»0 , and this is the essential characteristic of a 
boundary layer effect.

I t  is, however, reasonable to  expect th a t  the solutions do converge in the interior 
(i.e., for 0 ^ 0 < 0o < 0o, where 00 is a  constant) as k—>0 to the solutions of the limit 
problem for  x =  0 . T he graphs of the preceding section confirm this to  some extent.

I t  is possible to  give an explicit trea tm en t of the boundary layer effect. Such a t r e a t
m ent can be obtained through the introduction of a new independent variable which 
replaces 0 and which depends on x in such a way th a t the solutions are m ade to  con
verge uniform ly a t  the boundary in the lim it as x—»0. W hat one w ants, roughly speak
ings is to stretch  the boundary layer as x—»0 in such a way th a t its w idth does not 
shrink to zero. In  our case, this can be accomplished by introducing as a new inde
pendent variable the q u an tity  77 defined by the relation

,  =  — i — ( 0 - 0  0). (7.17)
V — X

19 I t  is perhaps of in te res t to  observe th a t  th e  lim it s itu a tio n  characte rized  b y  k—>0 can  be achieved 
by  allowing th e  pressure p to  approach  zero. H ow ever, if p  is sim ply  se t equal to  zero in th e  original d if
ferentia l eq uations (4.1) a n d  (4.2), th e  o rd er of th e  system  is no t decreased. T h u s th e  in tro d u c tio n  of 
new d ep enden t variab les th rough  division of th e  original ones by  <t is an  essen tia l step  in th e  tre a tm e n t 
of the  b o u ndary  layer effect.
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The reason for the minus sign under the radical is that we wish to consider only cases 
for which the solutions are stable, which means cases in which k  is negative. (Cf. the 
remarks at the end of Section 3.)

If we introduce the new independent variable in Eqs. (7.5) to (7.8) and then allow 
k  to tend to zero, we obtain the set of limit differential equations

d  /  d u \

(7.18) 7 r , \ SS7 v)  =  (1 +  Se +  S^ '  (7 ' 19)

(7.20) ê , — ß  cot 0o — w =  s# — wj, (7.21)

for the range — w CtjSsO, where 77 =  0 corresponds to the edge of the sheet. This sys
tem of equations, which has the same order as the original system, yields the bound
ary layer “resolution” which we seek. The boundary conditions at 7 7 = 0  are given by 
(7.11) and (7.12). At 7 7=  — »  we expect all quantities to tend to the values furnished 
by the solution of the interior limit problem given above. Thus we expect to to ap
proach the value ¿(1—r) as 77—>— «3 .

Since the boundary layer differential equations have constant coefficients, they 
are readily solved by exponentials. One finds, for example, that w satisfies the differ
ential equation

d 2co
—  -  2« =  -  1 +  *, (7.22)

so that the homogeneous equation is solved by real exponentials.20 The solution of 
(7.22) which satisfies the conditions at 7 7 = 0  and 77 =  — <x> is

o> =  K1 -  «')(«’'*' ~  1). (7.23)

The results for the other quantities are easily found to be

M =  0, (7.24) se = - h  (7.25)

* * =  -  M l + (1 -  !)}•  (7-26)

The graphs of Figs. 3, 4, and 5 contain in each case a curve marked “boundary
layer solution, k — — 1.56X10-3.” These curves were obtained from (7.23), (7.25), and
(7.26) by réintroduction of 6  as a variable through use of (7.17) with k =  — 1.56X 10“3. 
Comparison with the curves for the numerical solution of the original boundary value 
problem indicates that such a “compressed” boundary layer solution may furnish a 
fairly good approximation to the values of w  and <j o  near the edge of the sheet if k  is 
not too large.
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A FO R M U L A  FO R  T H E  SO L U T IO N  O F A N  
AR BITR A R Y  ANALYTIC E Q U A T IO N *

B y D . R . B L A S K E T T  a n d  H . S C H W E R D T F E G E R  ( University of Adelaide)

In  this note a proof will be given of a formula which has been s ta ted  w ithout 
proof by E. Schroder.1 T he fact th a t  he has expressed some doubts as to  its general 
valid ity  m ay have caused it  to  fall in to  oblivion although it seems to  be of some theo
retical and practical in terest, like several o ther results of Schroder’s to  be m entioned 
below. Since m oreover the  tru e  n a tu re  and sim plicity of the  form ula is ra th e r con
cealed in Schroder’s discussion, it m ay be w orth while to  en ter into the m a tte r again.

T he form ula in question is a consequence of the  following theorem  which a t  once 
describes its exact realm  of valid ity :

T h e o r e m  I. Let w  = /(z ) be an analytic junction, regular in  a domain  A of the com
plex z-plane. Let a  be an interior point of A and a simple root of / ( z ) ;

/ ( “ ) =  0, / '( a )  ^  0.

Further let z 0 be a point in  A “not too fa r  f ro m ” a  (in  practice z0 is a first rough approxi
mation to the root a ) . Then, denoting by z —f ~ l{w) the inverse function of f (z )  one has

v ' /  ^„ /(* °Y  ( dT K v > )\  (  , d f - ^ w ) \a = ( -  I ) - ---- —  ( — ------- 1 =  exp I -  /(z 0) —   ) (1)
VaaO Vl \  dw /  W * n f ( z 0 )  \  dew /  U > ™ / ( r 0 )

•where the exponential function operates symbolically on the differential symbol.

In th is form the theorem  is a corollary to  th e  m ain theorem  on the  analy tic ity  
of the inverse of an analy tic  function. To prove (1) we m ake use of the  fact th a t  be
cause f ' i a ) ^ 0 th e  function /(z ) is simple (schlicht) in a certain  neighborhood of 
the po in t z =  a .2 H ence the  in v e rse /-1(w) exists in a circle K  of radius p > 0 round the 
po in t w = 0. M oreover it is analytic in K .  T hus we m ay choose zo in a  neighborhood 
of a  such th a t a  circle k round wa=f(zg) (in the  w-plane) contains 0 and is wholly 
contained in K .  In  k the fu n c tio n /_1(w) is given by its power series

f~l(w) =  E  — ( — ; ) - { w -  f { z 0)Y
„_o \  dw“ /*_/(*<,)

whence for w = 0 follows the  form ula (1). E vidently , for z0, any  point z near a  can 
be chosen for which w = f(z )  lies in a circle of radius p /2  round 0.

T o obtain  Schroder’s form ula we in troduce the  operators S'* (ju =  0, 1, 2, • • • ) 
defined as follows:

* R eceived O ct. 30, 1944.
1 E . Schröder, Über unendlich viele Algorithmen zur Auflösung der Gleichungen, M athem atische  A n

nalen  2, 317-365 (1870); in p a rticu la r  cf. §§4 an d  5 of th is paper.
1 Cf. G . Ju lia , Principes géométriques d’analyse, P rem ière P artie , P a ris  1930, p. 16-17.
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m  ^  i  < r w » .

T hen

s 'f{z) =  H n r  ’ 5'/(2) =  (  a ,+ )\  d w 2 / w * . f W  \  d w ,+ l  /„ ,= /(« )

which is easily shown by induction. Therefore th e  expansion (1) is identical w ith

« =  *d +  E  ( - 1)’
y ~ l V l

„  N 1 /(*>y  / ' W  , /(2o)3 / W " ( * 0  -  3 /"(z0)2
=  20 — /(zo )  { - • • * .  (¿)

A  /'(zo) 2! /(a ,)»  3! /'(z„)5

T his was no t the  way in which the  form ula (2) was actually  discovered. I t  ap 
peared ra th e r as a plausible consequence when dealing w ith ano ther m ethod of ap 
proxim ate solution of an ana ly tic  equation. A lthough no proof could be given on 
the  basis of this m ethod, it tu rn s  ou t to  be of some in terest here as it shows th a t  the 
partia l sums of the infinite series (1) or (2), i.e., the expressions

*.(*) =  E  ( -  1)^  =  E  ( -  l ) '  ^  5—/ ( Z) (3)
, _ 0  V i \  d w "  /  u ,- /(z )  v l

can be used for an itera tive  approxim ation of the  root a\

T h e o r e m  II . For each n =  1 ,2 , • • ■ the recurring sequence

a 0 =  z0, <Xm =  $„(am_i), (m = 1, 2, • • • ) (4)

has the root a  as its limit and then also

$„(«) =  a, (a) =  0, • • • , 4>r5(a) =  0. (4')

T his is one of the  results of Schroder who has discussed in detail (I.e.) several 
such itera tive  algorithm s (“A lgorithm en erster A r t”) and has thus obtained form ulae 
of considerable practical in terest.3 W e propose here ano ther trea tm en t of the  problem 
of itera tive  approxim ation which leads im m ediately to  a proof of Theorem  II.

W e m ake use of the fact th a t  if a  is a simple root of the equation f ( z ) = 0 , a func
tion d>(z) can be found for which a  is an a ttra c tiv e  fixed point, i.e.,4

<j>(oi) =  a, | <j>’(a) | <  1. (5)

T hen  the  recurring sequenceao, «i =  ̂ (ao). a 2 =  0 (a i), • • ■ , if ao is no t too far from a , 
is convergent and has a  as its  lim it. T o strengthen the convergence we m ay replace 
the inequality  in (5) by the condition <j>'{ot) = 0 . Such a function $(z), involving an a r
b itra ry  function h(z), is for instance

5 In  p a rticu la r  th e  read e r’s a tte n tio n  m ay  be called to  the  form ulae (A ,) and  (B \ ) in §12 (p. 352) of 
S chroder’s p ap er. T hese  fo rm ulae  a re  v e ry  exped ien t fo r th e  c o m p u ta tio n  of n th  ro o ts  if a  high degree of 
accuracy  (e.g. m ore th an  20 co rrec t figures) is requ ired . A sim ilar a lgo rithm  has recen tly  been given by  
V. A. B ailey in a  brief expository  a rtic le  Prodigious calculation, A ustra lian  Jo u rn a l of Science, 3, 78-80 
(1941), by  which our a tte n tio n  has been draw n to  the  p resen t sub ject.

* Cf. G. Ju lia , loc. c it., p . 23.



268 NOTES [Vol. I l l ,  No. 3

/(z)Ä(z) 
0(z) =  3 + / (* ) •

/ (* )

T hus we m ay impose m ore rigid conditions fu rther strengthening the  convergence, 
viz.,

0 ' ( a )  =  0 , 4>"{a) =  0 , ■ ■ ■ , 4>(n)(a) =  0 , ( 6)

where n  is any positive integer.6
A function 0(z) satisfying the conditions (5) and (6) can be obtained in the  follow

ing way. T he conditions (6) will be satisfied if the  derivative of 0(z) appears in the 
form

=  (J{z))ng{z)f'{z),

the  undeterm ined function g(z) being regular a t  z =  a . I t  rem ains to  ad ap t g(z) to  the 
condition 4>(a) =a.  One has

0(3) =  J  (}(z))ng{z)j'(z)dz =  J  wng{f~l(w))dw

whence, by repeated integration by parts, it  follows th a t

0(z) = n \ Y ,  —  \~r (f(z))n- ,’gy+i(z)
y-o {n — V) !

where g„(z) is the /x-fold itera ted  indefinite integral of for w = f(z ) .  T hus, for
z = a  one has

0 ( a )  =  ( — l ) n» ! g „ + i ( a ) .

Therefore
( -  1)"

gn+1(z) =  —  3
«!

will give a function 0(s) which has all the  desired properties. In  th is w ay one obtains 
the  function $„(3) of (3), and it is evident th a t  this function has the  properties s ta ted  
in Theorem  II.

6 F rom  a  le tte r  of Professor V. A. Bailey we have lea rn t (in M ay  1941) th a t  th is problem  has been 
d e a lt w ith  in som e special cases b y  E . N e tto  in his Vorlesungen iiber Algebra vol. I, T eubner, Leipzig, 1896, 
p. 300. In  th e  sam e le tte r  Bailey has given an  e legan t solution of th e  problem  which, however, does no t 
su it our p resen t purpose. F u rth e r  he has d raw n ou r a tte n tio n  to  the  paper by  L. Sancery , De la metliode 
des substitutions successives pour le calcul des racines des equations, Nouvelles A nnales d. M ath . (2) 1, 
30S-31S (1862), which, however, was n o t accessible to  us.

T H E  CAPACITY OF T W IN  CABLE*

B y  J .  W . C R A G G S a n d  C. J .  T R A N T E R  (Military College of Science, Stoke-on-Trent, England)

1. In troduction. T he problem  of determ ining the capacity  of two long parallel 
cylindrical conductors can be easily solved by the  use of a  conformal transform ation.1 
A simple extension of the m ethod gives the  result for the  case in which each conductor

* Received April 16, 1945.
1 F . B. P idduck , A treatise on electricity, C am bridge U niversity  Press, 1916, p. 77.
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is surrounded by a dielectric sheath  whose boundary is a m em ber of the coaxial sys
tem of circles defined by the boundaries of the conductors. The case in which the 
sheaths are concentric w ith  the conductors is of much greater practical im portance 
and in m any types of cable the sheaths are actually  touching. In this paper we give 
the derivation of the  potential d istribution for this la tte r case together w ith a prac
tical m ethod for the calculation of the capacity.

2. S ta tem en t of the problem . We consider the sym m etrical problem of two circu
lar wires each of radius R\ surrounded by concentric touching sheaths of radius R 2 
and dielectric constan t K\,  the whole being immersed in an infinite medium of dielec
tric constan t K 2.

For infinitely long stra igh t wires, the problem reduces to the determ ination of 
po tentials Fi, V2 satisfying: (i ) the equations

VWi =  0, (1)
for R i£ r < R ? ,  and

V2F 2 =  0, (2)

in the region between the circle r = R 2 and the line .v =  0, where V2 is the two dim en
sional form of Laplace’s operator, the polar coordinates r, 9 are based on the centre 
of one of the conductors and the cartesian coordinates x, y  have origin a t  the point

of con tac t of the  sheaths and axes as shown in Fig 1; (« ) the  boundary conditions

Vi =  1 (3)
when r = Ri, and

F a =  V „  (4) KidVi/dr = K 2dV 2/dr, (5)

when r — R 2, and
F 2 =  0 (6)

when x =  0. Condition (6) is a result of the sym m etry of the problem provided th a t  the 
potential on the left hand conductor is taken as —1.



T he capacity  C per un it length of wire is then given by C —%Q, where Q is the 
charge per un it length on either conductor.

T he capacity  per u n it length is unaltered if we replace Ro by unity  and Ri by 
R i /R i ( = a )  and we shall do this in the subsequent work.

3. T he analytical solution. I t  is natu ra l to  express the potential Vi in the polar 
coordinates defined above. W e therefore w rite
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(7)Fx =  1 +  B  lo g -1  +  £  -  Q  cos nd,

th is being the m ost general solution of (1), sym m etrical in 0 and satisfying (3). 
Conformal representation by the use of

£ — ir) =   =   7- (3)
a; +  iy  1 +  re'B

transform s the region r >  1, a;> 0  in to  0 < £ < 5 , the boundaries £ =  0 , r =  l becoming 
£ =  0 , £ = 2  respectively. T he general solution of (2) satisfying (6) and the  conditions 
of sym m etry  is

/ • 00
/(/) sinh 2£/ cos 2-qtdt. (9)

0

T he constants B, bn of (7) and the  function f( t)  of (9) are now to be determ ined 
from the boundary conditions (4) and (5).

Now on r  =  l (£ =  | )  the relation (8) gives

7/ =  £ tan \6 =  (10)

say, and
dV dV dV

_  j  secs xg —  =  -  i ( l  +  /?*) —  • (11)
dr d£ d£

T h u s (4) and (5) become

“ 1 — a2'1 r  ”
1 — 2? log a +  ¿2 -----------bn cos nO =  I /( /)  sinh t cos ptdt, (12)

ti«l CLn «■' 0
«  1 +  a 2n p

K B  +  K  23 ------------nbn cos nO =  — ¿(1 +  ß2) I tf(t) cosh t cos ßtdt,
n-1 O" J q

(13)

w here K = K i/ K 2.
M ultiplying (12) by cos nd {n — 0, 1, 2, • • • ) and in tegrating  w ith respect to  9 

from 0 to 7T, we have
J  /»  T  / *  »  /% CO

1 — B  log a = — I I f{t) sinh t cos ßldtdd =  I ) sinh tdt (14)
7T J  0 J  0 J  0

since
/ r 00 cos ßt

cos ßtdd =  2 I   dß =  re ‘
0 J  0 1 + ß 2

and



1 — a2n 2 r T C 00
----------- bn = — I I /(/) sinh t cos pt cos tiOdtdd =  I c_ '/(/) sinh t I„(t)dt, (15)

a " % J  o J  o J o

where

2e‘ r  T 4e‘ r  °° cos /31
  I cos nd cos ptdO = ----  I  cos (2n tan-1 P)dp

x J o  x J  o l + P 2

= E  ( -  i y - n- c-p- { 2t y - r .  (16)
p-o ( n  -  P ) !
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In (t)

A pplying F ourier’s integral theorem  to (13), we obtain

t 4B /* “ cos fit 4 ” 1 +  a2" r " cos i8t
— fit) cosh I - ----  I  rf/3 H V   I cos  1
K  tt d 0 1 +  |32 x  „_i an J  o 1 +  P2

dp

” 1 +  a2n
=  2 B e~ ‘ +  e -‘ E  ------ nbnI n{t). (17)

n=l a n

E quations (15) and (17) lead to

where

and

1 -  a2” ” 1 +  a2n
------------bp =  B ap +  E   » W ,p ,  (18)

Kap n- i  a"

/ ’ “ tanh t , „
e~2‘  - I P{t)dt, (19)

n t

(20)
r 00 tanh t

■d np =  I C-2' ---------  Ip{t)Iu{t)dt.
Jo  t

Finally  (14) and (17) give

1 r m tanh t 1 “ 1 +  a 2n
—  (B log a — 1) =  2B e~2t  dt +  —  E  ------------«&»«»• (21)
K  J o  t 2 n_ i  a ”

T he infinite set of equations (18) gives the  values of the coefficients b in term s of B. 
Substitu tion  in (21) yields an equation for B  and the capacity per unit length C can 
then be determ ined from C = —\K \B ,  since

E l  f 2r
4x J  o \  dr A .2 C = Q = - — J  ( — )

T his com pletes the analytical solution.
4. M ethod of computation. In  practice, a  good approxim ation to  the capacity  

m ay be obtained by retaining only a  finite num ber m  of the coefficients bn. E lim inating 
th e m  quan tities [(1 + a 2n) /a n]nbn (« =  1 ,2 , • • - , ni), from the (w + 1) equations (18) 
ar.d (21), and w riting

1  —  a 2 ,1

y  =  ------------------ , (22)
nK(  1 +  a2n)
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we obtain

^ i i  +  7 i A 12 ■ ■ ■ A i m Oil

A 21 A  22 +  72 ' • A i m «2

4̂ ml Am2 ’ ’ ' A  ,„ , , i  T  7  m Oim

&1 a 2 ■ ■ ■ a m  Î  
K ( t

-  log 0 ^ + 4  log —

0, (23)

since

I .

tajih t tt
e~2t---------- dt = log —

o t 2

T he quan tities a„, A np can be easily com puted from Eqs. (19), (20) and (16) w ith 
the help of the resu lt2

J '  (2t)ne~~‘ tanh tdt =  — +  1) — -¿j- ,

where f(w) is the Riem ann Zeta-function, tabu lated  for integral n in J. Edw ards, 
“T he integral calculus,” vol. 2, M acm illan, London, 1922, p. 144.3

T he solution for K  = l differs from the  well-known exact solution for this case by 
less than  0.2 per cent, when only the first three of bn are retained, provided th a t 
For larger values of K  and a it m ay be necessary to  retain  more term s to  achieve the 
desired accuracy b u t for practical values the am ount of com putation required is not 
excessive.

2 W hen «  =  0, th e  resu lt reduces t o /T e~21 ta n h  tdt = log 2 —
2 A four-figure tab le  is given in E . Jah n k e  an d  F . E nide, Tables oj functions, D over Publications. 

New Y ork, 1943, p. 273.

LARG E D E FL E C T IO N  O F CANTILEVER B E A M S*

B y K . E . B IS S H O P P  a n d  D . C. D R U C K E R  (Armour Research Foundation)

The solution for large deflection of a cantilever beam 1 cannot be obtained from 
elem entary beam  theory since the basic assum ptions are no longer valid. Specifically, 
the elem entary theory  neglects the square of the first derivative in the curvature 
formula and provides no correction for the shortening of the m om ent arm  as the 
loaded end of the  beam deflects. For large finite loads, it gives deflections greater than  
the length of the beam! T he square of the first derivative and correction factors for 
the shortening of the m om ent arm  become the m ajor contribution to  the solution of

* R eceived A pril 6, 1945.
1 T h is  problem  was considered by  H . J . B arten , “On th e  Deflection of a  C an tilever B eam ,” Q uarterly  

of Applied M a th ., 2, 168-171 (1944). Previously an  approx im ate  so lu tion  h ad  been o b tained  by  Gross und 
L ehr in Die Federn, B erlin V D I Verlag, 1938.
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large deflection problems. T he following theory which utilizes these corrections is in 
agreem ent w ith experim ental observations.

T he derivation is based on the fundam ental Bernoulli-Eulcr theorem which states 
th a t  the curvature is proportional to the bending m om ent. I t  is assumed also th a t 
bending does no t a lter the length of the beam.

Considering a long, thin cantilever leaf spring, let L  denote the length of beam, 
A the horizontal com ponent of the  displacem ent of th e  loaded end of the beam , 5 the 
corresponding vertical displacem ent, P  the  concentrated  vertical load a t  the free end, 
B  the  flexural rigidity , th a t  is B  = E I ,  when cross-sectional dimensions are of the

same order of m agnitude, and B = E I / { l —v2) for “w ide” beams, where v is the Pois- 
son ratio . T he exact expression for the curvature of the elastic line m ay be stated  
conveniently in term s of arc length and slope angle denoted by s and <£, respectively, 
so th a t if £ is the horizontal coordinate measured from the fixed end of the beam, the 
product of B  and the curvature of the beam equals the bending m om ent M :



whence
1 / 0 0 \ 2 P

— sin 0 +  C. (3)
2 \ d s /  B

T he constan t C can be evaluated directly  by observing th a t  the cu rvatu re  a t the 
loaded end is zero. T hen if 0 O is the corresponding angle of slope

00 /2 P
—  =  \ /  — ' (sm 4>o ~  sin 0 )1' 2. (4)
as V B

T he value of 0 o cannot be found directly  from th is equation b u t it is implied by the 
requirem ent th a t  the beam be inextensible, so th a t
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/2 P  r L r *<> _ / P i 2\ 1/2
y  —  J  ds =  J (sin <t>o -  sin 0)“ 1/200 =  \/2 (5)

In  order to evaluate this elliptic integral, denote P L 2/ B  by a 2 and let

1 +  sin 0 =  2k2 sin2 6 = (1 +  sin 0 O) sin2 0. (6)
Then

/ x / 2

(1 — k2 sin2 6)~ll2ddy sin 0i =  \ / 2 /2 k .  (7)
a

T he next step  is to  represent th e  deflection 5 in term s of a  and an elliptic integral. 
Since

dy d<j> dy 
—  — =  — = sin 0, 
d<j> ds ds

and since we have d<p/ds from Eq. (4),

dy / 2 P
— A /  (sin 0o — sin 0 )1/2 =  sin 0.
r f 0 7  B

T hus

sin 0t/0/  B r<

dy ~ V  2p J , (sin 0o — sin 0 )1/2 

W ith th e  aid of Eq. (6) we obtain

5 \/~2 C sin 000 1 C T/2 (2k2 sin2 0 — 1)00_ V 2  r  ___ sin 000 1 r

2 a  J  o (sin 0 O — sin 0 )I/2 a  J e 12L  2a J  o (sin 0 O — sin 0 )I/2 a J  ti (1 — k2 sin2 0)1

T his equation can be split up into com plete and incom plete elliptic integrals of the 
first and second kinds. In the no tation  of Jahnke and Em de,

8 1
— =  — [F(A) -  F(k, 00 -  2E(k)  +  2E(k, 00], (8) 
L  a

a = F ( k ) - F ( k ,  00,
so th a t

8 2
—  =  1 - — [ £ ( * ) - JS (M 0 ] . (9)L  a
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T he horizontal displacem ent of the loaded end is calculated from Eqs. (1) and (4) w ith 
x  = 0 when cj> = 0. T hus

or

L  — A s /2
— -—  = -----(sin 0 O) 1/2. (10)

L a

From  Eq. (6) we have sin <f>0 =  2&2 —1.
N um erical results can be obtained b y : (1) selecting values of k corresponding to 

tabu la ted  values of the  m odular angle in the elliptic function tables and (2) determ in
ing 0i and a  from Eq. (7). A fter this has been done, S /L  and ( L —A ) /L  can be calculated 
from Eqs. (9) and (10) and plo tted  against a 2 = P L 2/ B .  T he results of these calcula
tions are shown in Fig. 1.

CORRECTIONS TO MY PAPER

O N  T H E  D E FL E C T IO N  O F A CANTILEVER BEAM *

Q u a r t e r l y  o f  A p p l i e d  M a t h e m a t i c s , 2, 168-171 (1944)

B y H . J . B A R T E N  

T his paper is correct up to the equation

9l = f as cos 6 ds.
J  o

T he next step
ddi,
■— • =  aL cos 6l  
dL

is incorrect since 6 is no t only a function of L,  b u t is also a function of s. T his error 
m akes Eqs. (9), (11), and (12) incorrect.

Using the  relation
dd
— =  a(xL — x) 
ds

and the  various steps used in the  original paper, we find th a t

aH*L = F^k,  - 0  -  F(k, 8).

By using 5 as an independent variable we can calculate corresponding values of k and

* R eceived Ju n e  25, 1945.
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aL 2 which in tu rn  are used to 
find corresponding values of 
Fx and Fv. T he corrected 
curves thus derived are shown 
in Fig. 1.

T he au th o r wishes to 
th an k  M. 3VI. Johnson of 
W ashington, D. C. and D.
C. D rucker of the A rm our 
R esearch Foundation  for 
pointing o u t these d iscrepan
cies.
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