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GRAPHICAL ANALYSES OF NONLINEAR CIRCUITS*

BY

ALBERT PREISMAN
Capitol Radio Engineering Institute

1. Introduction. As a general rule, a problem in physics is not considered solved
unless the solution can be expressed in analytical form. The same usually holds true
in the case of engineering problems, although there the art often progresses faster than
the theory under the impact of economic forces, and the engineer is often forced to seek
a solution by means of an experimental setup, or possibly by means of some numerical
or graphical process.

The disadvantage of a numerical or graphical method is its lack of generality, its
tendency towards inaccuracy, particularly owing to cumulative errors, and its in-
ability to exhibit optimum values for the parameters involved, particularly if these
have to be in numerical rather than in symbolic form. On the other hand, these meth-
ods often yield answers to problems that the analytical method cannot handle, and
furthermore are often very effective as teaching aids. This is particularly true of the
graphical methods.

It is the purpose of this article to illustrate the application of graphical construc-
tions to problems involving nonlinear circuits, particularly those containing vacuum
tubes. It is the writer’s hope that some mathematician will be sufficiently attracted
to this method to attempt to establish it on a more general basis, possibly something
akin to the collection of theorems of ordinary Euclidean or of Projective Geometry.

2. Definition of graphical method. Before proceeding with a description of the
method it will be desirable to define it. By graphical constructions are meant those
geometrical manipulations by which a solution to a problem is obtained. It may be
necessary to slide a curve representing a relationship between two variables along
the axis of the independent variable, and to find (geometrically) where it intersects
another curve representing a second relationship between the two variables. The
manipulations may be more involved than those of simple translation along the axis,
and it is to be stressed that the restriction of ruler and compass constructions is not
invoked in these manipulations.

It isapparent that the method is not that usually understood by the average engi-
neer, namely, the plotting of a complicated generalized analytical expression to per-
mit values to be taken off the graph in order to obviate the need for computing the
value of the expression every time the problem arises.

3. Simple series nonlinear circuit. As an elementary example of a graphical con-
struction, let us consider the circuit shown in Fig. 1, that of a diode (two-element

* Received March 13, 1945.
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vacuum tube) in series with a resistance R and a source of d.c. potential E. It is de-
sired to find the current flow in this circuit.

It is necessary to know the voltage-current e—i relationship for the diode, and
for the resistor R. We assume for simplicity that the latter is a linear resistance.
Then the e—i relationship is that shown in Fig. 2. The curve is a straight line making
an angle 9 with the voltage axis, such that

cot0 = R, 1)

the resistance of the device. This slope is constant and hence R has a fixed value:

so many volts per ampere, or chms.
On the other hand, the diode has the characteristic shown in Fig. 3. Here, for

*

negative values of voltage (piate negative to cathode) no current can flow; while for
positive values of voltage current flows in such manner as to generate the curve shown,.
The ideal diode would have the following equation for positive plate voltages

i = Ae3? 2

but actual diodes depart to some extent from the above equation owing to such fac-
tors as initial velocity of emission of electrons from the cathode, the effect of the sup-
porting members for the cathode and plate, etc.

The diode is a nonlinear device; first because of the break in the curve at the origin
and second because even for positive plate voltages the e—i relationship is usually
not a straight line. One can define the resistance as

1) the reciprocal slope of the secant line to any point of the curve (this is the
so-called d.c. resistance) or

2) the reciprocal slope of the tangent line to any point of the curve (this is
usually called the a.c., incremental, or variational resistance of the device).

Such concepts have limited utility however, since the resistance in either case is no
longer a constant, but a function of the applied voltage or current through the device.
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The graphical method to be described takes the fundamental e—i relationship, or
terminal characteristic as it has been called by Kirschstein, and operates directly with
it. Furthermore, the curve does not have to be analytic, nor even expressible in the
form of an equation; it can simply be a plot of experimental data, although this in-
volves interpolation between experimentally determined points.

The process of finding the current through the two in series for the impressed
voltage E is essentially that of solving the two equations for the terminal character-
istics simultaneously under the condition that the sum of the voltage drops across
the two elements must equal the impressed voltage E. Thus, if the relationship for
the one element is i=fi(e), then that for the other is i=f2(E —e), and it is desired to
find a common value of i that satisfies both relationships.

Since one or both of the above equations may be of degree higher than unity, the
analytical solution cannot be effected by the method of determinants, but rather by
the method of substitution, and finally results in the necessity for solving an equation
of degree higher than unity.

This, however, assumes that terminal characteristics can be represented by power
series. The graphical method requires no such condition; it operates on the graphical
plots directly. Thus, suppose the terminal characteristic of the diode is represented
by AOB, Fig. 4. Let OC represent the magnitude of the impressed voltage E. Through
C draw DC at an angle 6, as shown, such that cot 8=R. Then the intersection of CD
and AOB in D represents the required solution, in that DF is the common current
in this series circuit; OF is the voltage drop in the diode; FC is the voltage drop in
the resistor R; and clearly OF+FC equals the impressed voltage E. If E varies with
time, DC can be shifted back and forth along the voltage axis at positions correspond-
ing to the instantaneous values of E, and the intersections will furnish the corre-
sponding instantaneous values of the current.

The above solution represents a well-known method for solving two equations
simultaneously when the equations are of degree higher than the first or even of
transcendental nature. It will be of interest, however, to see how this method is ap-
plied to a more complicated circuit.

4. Triode tube and resistance in series. The next example will be that of a three-
element or triode tube in se-
ries with a resistance and a Triode
source of d.c. voltage Ebb-
The electrical connections
are shown in Fig. 5. The ad-

Load
resistance

. UV Signal

ditional complication is that VO%J age < Plate Supply
in the triode the plate cur- Voltage

rent is a function of two + *4

variables; the grid voltage ) _HI

and the plate voltage. The B ias Voliage

terminal characteristic must

therefore be represented by Fig.5.

a three-dimensional plot in-

volving the plate currentip, the grid voltage eg (which is the sum of the instantaneous
value of the alternating signal voltage esand the constant, d.c. bias voltage Ec), and
the plate voltage ep.
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The resulting plot is a curved surface in space. It can be represented in two di-
mensions by a family of curves which represent discrete projections of this surface
upon anyone of the three coordinate planes. For the problem at hand the most useful
set ofprojections isthat upon the ep—ip coordinate plane, in the form of a family of
ep—ip curves with egas the parameter. This is shown in Fig. 6 (solid lines). Curves
for which eQis positive have been omitted for simplicity.

Assume further for simplicity that R1, the load resistance, is linear. The current
through it is a function of but one voltage, that which must be applied across its
terminals to produce the above current flow. To represent its terminal characteristic

in three dimensions, it is plotted as a
plane whose intersection with the ep—ea
coordinate plane is a straight line paral-
lel to the eaaxis. In this way the current
in it is independent of the eacoordinate,
and is a (linear) function of but one
voltage, that corresponding to the plate
voltage ep of the tube. All points of this
plane representing R 1 project over to
the ip—epcoordinate plane as a straight

FIG 6 line that is also the intersection of the
above R plane with the iv—ep plane.
The straight line makes an angle 6 with the ep axis such that cot 6=RI, i.e., the

R1 plane is inclined at the angle d to the e,—e, coordinate plane.

The graphical solution consists in drawing the line of intersection EA at the angle
6 to the epaxis. The intersection of EA with the tube family of curves gives the com-
mon vglue of current flowing through the plate circuit of the triode and R in series,
for any given value of grid voltage e,, For example, at a moment when the signal
voltage es is passing through zero, the instantaneous value of the grid voltage eOis
simply that of the bias battery, Ec. The instantaneous value of the plate current is
BC, where B is the intersection of AC with that curve of the plate family for which
ea=Ec. It is further to be noted that the instantaneous plate voltage ep is OC, and
the instantaneous value of the voltage drop across RL is EC.

For other instantaneous values of eg, other curves of the plate family are involved,
and the process of determining the instantaneous values of plate current, plate volt-
age, and load voltage (across RL) is identical to that described above. Thus, for a
signal voltage impressed upon the input or grid circuit, the output signal voltage be-
tween the plate and ground can be found. Such matters as the amplification of the
stage, distortion in the output, etc., can then be determined.

In passing, we may note here that the locus of the plate current for various values
of eOis the intersection of the tube surface and the R 1 plane in space. This intersection
is a curve in space, but fortunately its projection on the ep—ip plane is a straight line,
namely the intersection of the RL plane itself with the ev—ipplane. It is for that rea-
son that the ep—ip family of the tube curves is employed; the graphical construction
is simply the points of intersection of a straight line representing R1 with the above
plate family.

The above problem can become much more complicated under certain conditions.
For example, if the input signal voltage is great enough, the grid can be driven posi-
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tive with respect to the cathode, whereupon it draws current during the positive peak
of the a.c. cycle. If the signal source has appreciable internal impedance, then a volt-
age drop will occur in the source during the above portion of the cycle, and the actual
voltage applied to the grid will differ from the generated voltage e,,

It is therefore necessary to determine the actual grid voltage before the plate
current can be found. Another complication arises however, in that the grid current
(and hence the actual grid voltage) is a function not only of the positive grid voltage,
but of the plate voltage as well. This is because the space current divides between
the two electrodes in a manner depending upon the two electrode voltages. At the
same time the plate voltage is a function of R1 and the grid voltage. Thus the above
simple graphical construction can become quite involved if merely the input signal is
increased to a point where the grid is driven positive.

5. The balanced amplifier. Instead of investigating such details, important though
they may be, it will be of interest to examine another type of circuit very important
in the communication industry. Reference is made to the push-pull or balanced am-
plifier. The circuit is shown in Fig. 7.

In (A) is shown the actual circuit, whereas in (B) is shown an idealization or
equivalent form better suited for the purpose of analysis. In the actual circuit (A),
two tubes are employed, inductively
coupled to each other and the output Output
load resistance rL by an output trans- ironsformer
former. The signal on one-grid is 180 de-
grees out of phase with that on the other
grid, as is suggested by the symbols +e,
and —e,. The bias voltage Ec, on the other
hand, is applied to both grids in the same
polarity; and the plate supply voltage is
applied to the two tubes in the same polar-
ity too, as shown.

The actual load resistance rL and the
output transformer can be replaced by the
center-tapped inductance and reflected
load resistance R 1 as far as the tubes are
concerned. The simplified circuit is shown
in (B), Fig. 7. In using this equivalent cir-
cuit, it is tacitly assumed that the actual
output transformer is an ideal transformer
having infinite primary and secondary
open-circuit inductance, no distributed ca- B
pacity, unity coefficient of coupling be- Fig. 7.
tween windings, etc. In the equivalent
circuit the center-tapped inductance is assumed to be infinite in value and to have
unity coupling between the two halves of the complete winding. Ordinarily this is a
reasonable assumption.

As a result, the current in one-half of the winding cannot at any moment exceed
that in the other half for otherwise an infinite counter-electromotive force would be
induced in the windings that would tend to prevent such an unequality from taking
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place. The currents in the Avindings can vary, however, provided they remain equal
to one another at all times. Finally, two further assumptions are made, namely, that
the signal voltages esand —esapplied to the two grids are at all times equal and op-
posite to one another, and that the two tubes have identical terminal characteristics.
These two assumptions seem also reasonable.

Consider first that eaequals zero (no signal is applied). The bias on each grid is £ c,
and the plate voltage for either tube is £«,, hence the two plate currents h and J2are
equal to one another. Since they flow in opposite directions from the ends of the wind-
ing to the center tap, they balance each other magnetically in the output inductance
and produce no voltage across the ends. Consequently no current flows in the load
resistance R1-

Now suppose that a signal voltage is impressed such that the top grid is driven
positive by an amount e,i from its normal d.c. negative bias value of Ec, and that the
bottom grid is driven more negative by an equal amount, i.e., —e,i. The two plate
currents will now vary in opposite directions, namely, I\ will increase and J2will de-
crease. However, the sum of these two currents flows through the plate power supply,
and owing to the infinite inductance of the center-tapped winding, (li+ 1/)/2 flows
down through the top half of the winding, and an equal amount flows up through the
bottom half, to combine at the center tap to furnish the sum (ii+J2 flowing through
the power supply.

Since (/i+ /2)/2 is the average between I\ and J2 it is equal to neither, and from
the principle of continuity of current flow, the difference

h - Kh + h) =1(11+ h) - 12=i(h - h) ?)

must flow through RL. A quick check will indicate that Kirchhoff’s current law is
satisfied at each junction.
The current (I\—Ii)/2 is the output current. In flowing through R, it sets up a
voltage drop
El = i(h - I2RI. (4)

Half of this or E1/2 appears across each half of the output winding of such polarity
that the instantaneous plate voltage of the top tube is Ebb—(E1/2) and that of the
bottom tube is £j,j,+ (£¢72).

Thus the following facts have been brought to light:

1) The grid voltages change by equal but opposite increments from their
common bias value £ cowing to the center tap on the input transformer secondary.

2) The plate voltages change by equal but opposite increments from their
common supply value £«, owing to the center tap on the output inductance. More-
over, the plate voltage increments are opposite in sign to the corresponding grid
voltage increments.

3) The plate currents change in opposite directions in the same sense as the
corresponding grid voltages, but not necessarily to an equal degree. If the tubes
are nonlinear, as is usually the case, then the increase in plate current of either
tube for a positive increment in grid voltage is not necessarily the same as the de-
crease in plate current for an equal negative increment in grid voltage.

From the above facts several graphical constructions are available to determine-
the plate current and plate voltage variations in the tubes, the output current and
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voltage, the power output, and the d.c. power input. The following graphical method
is preferred by the author. In Fig. 8 is shown the plate family of curves for either
tube. If there is no signal input, the only voltages present are the d.c. potentials Elb
applied to the two plates and Ecapplied to the two grids. The current through either
tube is then /j,= EbbB, a direct current.

Now suppose that equal and opposite signal voltages e, and —e, are applied to the
grids in additionto Ec. Then the current in the one tube will increase fromBEbb
to DG, and that intheother tube will drop to FH, as shown.The plate voltage ofthe
first tube will drop from OEbb to OG = (Ebb—Aep), and that in the other tube will rise
by an equal amount to OH = (Ebbo+Aep).

It is also clear from Fig. 8 that DJ represents the difference between the two cur-
rents or (Ji—J2), and JF represents 2Aep, the voltage across the output inductance
and previously denoted by EL in Fig. 7. From Eq. (4), it is evident that

JF/IDJ = EW(li- h) = R1u/2. (5)
Thus DF makes the angle 6 with the ep axis such that
coto = R1/2. (6)

It is also evident from the geometry of the figure that DC = CF, i.e., that the ordinate
through Ebb bisects line DF in C.

The above facts suggest the following method of graphical construction. We hold
a rule at the angle 6 and slide it up or down until the segment between the desired
ep—ip curves (corresponding to equal and opposite grid voltage excursions from the
bias value E¢) is bisected by the ordinate through Ebb- The intersections of the rule
with the two Cp—ip curves gives the two instantaneous values of the two tube currents
Ji and h, corresponding to the signal voltages e, and —e, and to the plate load re-
sistance RI, or rather to RI/2.

Then another pair of equal and opposite grid signal voltages are chosen, and the
process repeated. This is continued until as many pairs of instantaneous grid signal
voltages have been used as is desired. For a symmetrical signal voltage, such as a
sine wave, instantaneous values for only one-quarter of a cycle are required.

When the above graphical construction is performed, there is obtained a curve
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on the plate family of curves such as that shown in broken lines ABCDE in Fig. 9.
This represents the locus of the current for either tube over a cycle of grid signal volt-
age. It also represents the terminal characteristic for R1 as it appears to either tube
in the presence of the other tube.

The significance of the last statement is as follows:the two tubes may be regarded
as two generators connected to a common load RL. Owing to their nonlinear charac-
teristics, the tubes do not share the load equally throughout the signal cycle; that
tube whose apparent internal resistance is lower takes a greater share of the load,
i.e., furnishes more than half of the load current (h —12/2 flowing through RL. As a
result, R 1 appears as a variable or nonlinear resistance to either tube even though it
is actually a linear resistance, and its terminal characteristic on either tube’s ep—ip
family of curves is in itself a curved rather than a straight line.

Lack of space precludes a detailed discussion of this interesting circuit. However,
several important features will be presented. As indicated in Fig. 9, the two ep—ip
curves passing through B and D, respectively, represent equal and opposite grid
swings. The corresponding currents I xand |2for the two tubes are BF and zero; in
short, the tube experiencing the negative-grid swing has just reached plate current
cutoff.

For ep—ip curves passing through A and E, corresponding to a still greater grid
swing for either tube, h is AG, and I2still remains zero. This means that the second
tube is inoperative over this part of the cycle and acts therefore as if it were discon-
nected. Under these conditions RL appears to the operative tube as i?z,/4, which can
be expected since the 2 to 1 turns ratio of the output inductance will produce this 4
to 1 impedance transformation if it is unhampered by the other tube.

Portion BA is therefore a straight line whose reciprocal slope corresponds to R1/4.
It is easy to show that if it were prolonged, it would pass through Ebb- Normally
the tubes are operated so that maximum grid signal voltage drives each tube alter-
nately to cutoff or beyond. Maximum output occurs if i?i/4 equals either tube’s
apparent internal plate resistance at the peak of the cycle. The plate resistance of
either tube is given by the reciprocal slope of the ep—ip curve at point A. Hence a
quick determination for the optimum value of RI, or rather R1/4, is to draw a line
through Ebb at an angle equal to that of the ep—ip curve at point A, and calculate
from the reciprocal slope of this line the value of R1/4 and hence of RI- The complete
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characteristic can then be determined by means of the sliding rule as described pre-
viously.

Fig. 8 also reveals an interesting point. CEbb is the average between DG and FH,
i.e., it represents {I\-\-1i)/2. This is the mid-branch current that flows through the
plate supply, as indicated in Fig. 7(B). For various pairs of values of I\ and J2as
determined by the sliding rule, the average, or (/x-f-Jj)/2 moves up and down along
EbbA. This is a vertical line or ordinate, and indicates that the resistance to the mid-
branch current is zero. This has been tacitly assumed;the output inductance and the
plate supply have been assumed to be free of resistance.

If this is not the case, then a line must be drawn through Ebb whose reciprocal
slope indicates one-half the value of the mid-branch resistance that is present, and
the sliding rule must be bisected by this line rather than the ordinate EbbA, as is the
case in Fig. 8. From this follows several further interesting characteristics.1

Another point is that not only is the locus of the mid-branch current along the
ordinate EbbA in Fig. 8, but that this current executes two alternations per cycle of
the grid signal voltage. This means that the mid-branch current is at least double the
frequency of the incoming signal; actually, for perfect symmetry, all the even har-
monics generated by the tubes flow in parallel through the mid-branch portions of
the circuit, while the odd harmonics, including of course the fundamental, flow
through the output resistance RimThus, if the tube characteristics are such that the
second harmonic is quite prominent, but the third (and higher) harmonics are of small
amplitude, then the output wave will be a fairly faithful copy of the input grid signal
voltage and the stage will exhibit little distortion. Such a tube characteristic is pos-
sessed, for example, by the 6L6 and 807 beam power tubes.

As in the case of the previous constructions for the single-ended tube, various de-
grees of complication can arise. For example, if the grids are driven positive so that
grid current flows, the signal voltage at the grids will be distorted, and this distortion
must be determined separately before the above construction can be concluded. An-
other case is that where the mid-branch plate supply has an internal resistance that
is adequately by-passed for the even harmonics, all except the d.c. component. This
represents a particularly difficult problem that can be solved only by a series of ap-
proximations.

6. Reactive circuits. The previous circuits contained only resistances, linear of
nonlinear. If reactances were present, such as the center-tapped output inductance,
they were assumed infinite in value and so situated in the circuit as not to have any
appreciable a.c. components flowing in them. However, many nonlinear circuits con-
tain reactances of finite value that influence the behavior of the circuit directly, and
hence must be taken directly into account.

Owing to lack of space, only the case of an inductance in series with a nonlinear
resistance and an a.c. source will be discussed here. Consider the circuit shown in
Fig. 10. Here a source of a.c. voltage e is in series with a nonlinear resistance r and
inductance L. The voltage e is a known function of time, and the terminal character-
istic for r and the value of L is given. It is desired to find the current flow in this cir-
cuit.

1See, for example, A. Preisman, Graphical constructionsfor vacuum tube circuits, McGraw-Hill Pub-
lishing Co., New York, 1943.
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We have the fundamental relation
di
e(t) = ir + La- )

Expressing Eq. (7) in terms of finite increments, we obtain

(8)

In Eq. (8), it is assumed that at the start, the voltage e has a certain value €\, the
current i has a certain value ii, and (= 0. These are the initial conditions. During a

— [P L+A L

s €

A. D
e, AtAeg,

Fig. 10. Fig. 11.

small time interval At, ei is assumed to change instantly to ei+Ae! and remain at this
value during the interval At, and similarly ii is assumed to change instantly by an
amount Aii and to remain at the value ii+Aii during the time At. This is of course an
approximation, sufficiently close if At is taken sufficiently small. Under these condi-
tions Eq. (8) holds.

The quantity L/At has a finite value if At is finite. It can represent the cotangent
of some angle 6. Then—as far as Aii is concerned—the circuit consists of two resist-
ances in series: that of r at the value A, and that of L/At. The graphical construction
then takes the form shown in Fig. 11, where OA represents the initial value e\, and
AB the initial current ii. We now suppose that the voltage changes from e\ to ei+Aei
in a small chosen time interval At, and let OD represent ei+Aei so that AD repre-
sents Aci.

The voltage across L is due to the change of current AA and not due to i\ itself,
which has already been established in L. This is indicated by the fact that OA=ei
represents the drop across the nonlinear resistance r; there is no voltage drop across L
for ii at the time t—0. Hence, in view of the above, a point Cis located in line with B
and directly over D, and through C line EC is drawn to represent L/At such that

cot < ECB = L/At, ©)

The line EC has been designated by the author as a finite operator because it re-
sembles the Heaviside operator Lp. The intersection of this finite operator with the
terminal characteristic of r in E gives the value of Aii, namely, EJ. Here BJ repre-
sents the additional voltage drop across r (in addition to the original voltage drop OA
owing toil), and JC represents the voltage drop acrossL. In short, OA+ BJ represents
(ii+Aii)r; JC represents L(Aii/At); and OA+ BC therefore represents ei+Aei, and
hence satisfies Eq. (8).
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The point E is projected over to F directly above C and D, and FD represents
then the new value of current ;i+Ai'i, at the end of the time interval At. Another
small time interval can now be chosen, preferably equal to the previous one, so that
L/At remains at the same angle to the e-axis as before. We suppose that in this new
time interval, e changes from ei+Aei to ei+Aei+Ae2 Letting OG represent the new
value of voltage, we project F over to H directly above G. Through H we draw HK
parallel to CE, intersecting the terminal characteristic for r in K. Then KL represents
the new increment of current Aiit EL the additional voltage drop across r, and LH
the new voltage drop across L. It is evident that Eq. (8) is once again satisfied. It is
also evident that IG represents (ii+Ai’i-I-Aii), the new value of current at the end of
the second time interval.

Points B, F, and | represent three points on the overall terminal characteristic for
L and r in series for the given function eft). If e{t) is a periodic voltage, the overall
terminal characteristic will spiral around counter-clockwise and ultimately form a
closed curve, the steady-state solution for the given circuit and given function e(t).
The initial open branches of this spiral' represent the transient solution. If r is a
linear resistance so that its terminal characteristic is a straight line instead of the
curve shown in Fig. 11, the closed loop will be an ellipse inclined to both axes; if on
the other hand r is nonlinear, the closed loop will be some form of distorted ellipse
depending upon the nonlinearity of r. It can be shown from the graphical construction
that the tangents to the closed loop at the points where it intersects the terminal char-
acteristic for r are parallel to the e axis and hence perpendicular to the i axis.

7. Relaxation oscillator. Similar methods can be developed for r in series with a
condenser C, and for LCr circuits, and for parallel as well as series arrangements.
Owing to lack of space these will not be treated here.2 An interesting case is that of a
nonlinear resistance having a suitable negative branch, in series with a pure induct-
ance. For graphical purposes the simplest form for the terminal characteristic of r
is possibly that of three intersecting straight lines, as shown in Fig. 12. Such a char-
acteristic may be approximated by a tube having positive feedback, by a dynatron,
etc. Usually a d.c. polarizing voltage is required, but this merely represents a transla-
tion of the axes and does not materially change the construction or results as obtained
in Fig. 12, in which the impressed voltage is assumed to be zero.

s Cf. Preisman, loc. cit., p. 109.
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Suppose that the initial conditions at i=0 are that e= 0, and that f= AB, the
peak current for the left-hand portion of r. Then C will be the starting point, where
CO = AB. Through C the finite operator L/At is drawn corresponding to a time in-
terval At. If At is sufficiently small, L/At will be practically a horizontal line through C.
In Fig. 12, L/At has been drawn with a finite tilt to clarify the construction, and is
represented by CD. This finite operator curve intersects the terminal characteristic
for r in D, as shown.

The current therefore decreases from CO to DG. Point D is projected over to the
i axis as point E. From E, EF is drawn parallel to CD under the assumption that the
second time interval is equal to the first. The current now decreases from DG to FH.
Point F can now be projected over to the i axis and the process repeated. It is clear
from the figure that the intersections will proceed down the right-hand branch of r
to I, hop over from | to J, directly opposite I, then proceed from J up to A, hop over
to D, and repeat the first set of intersections. As At approaches zero, the finite opera-
tor curve approaches a horizontal position, DG==CO=AB, and the points of inter-
section become more and more closely spaced so that they form essentially all the
points of ID and JA.

The overall terminal characteristic is by definition all the points between C and
K in that the overall impressed voltage has been assumed zero, so that the points
must lie along the i axis, and the current range is from C to K. However, a more sig-
nificant terminal characteristic in this case is the relationship between the current
and the voltage across either circuit element. The voltage across the inductance, for
example, is equal and opposite to that across r when taken in a circuital direction,
since the algebraic sum of the two must equal the impressed voltage, which is zero.

According to this definition, the terminal characteristic is represented by such
points as D, F, etc.; in this case, it is lines DI, 1J,JA, and AD, traversed in the order
given. This means that for the circuit given, the terminal characteristic is very simply
given by a quadrilateral involving the two positive resistance portions of the terminal
characteristic for r contained between their peak values A and I.

The time required to traverse these portions depends upon the relaxation time
for L in series with the incremental resistance of r for each portion, under the proper
initial conditions. The time required to traverse the horizontal portions AD and 1J
is infinitesimal, and is independent of the shape of the negative resistance portion Al
provided it has no maxima or minima exceeding or less than A and I, respectively.
The device operates continuously as an oscillator with a period of oscillation deter-
mined by the two relaxation times.

Similar conclusions can be drawn for shapes of r other than three straight lines.
For example, r can have the form of a cubic parabola. This case has been treated
analytically by Van der Pol.3 However, he started with an LCr parallel circuit or
double-energy condition. For such a circuit the terminal characteristic is a closed
curve or loop that exceeds the above quadrilateral in size. As C approaches zero, the
loop shrinks and appears to have as its limit the above quadrilateral. However, the
analytical method required that some capacity be present even in this limit, relaxa-
tion case, and it has been suggested that in a practical circuit there would always be
some residual stray capacitance present.

5B. Van der Pol, The nonlinear theory of electric oscillations, Proc. I.R.E., 22, 1051-1086 (1934).
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There are other graphical methods for handling the double-energy case, notably
that by Liénard4and another by Kirschstein.5 Unfortunately, these constructions be-
come indeterminate in nature as C approaches zero, so that although the relaxation
condition is suggested by them, it cannot be conclusively shown to be the limit form.

The construction given here starts out with merely L and r, and requires no C
for its argument. It appears to give the limit case directly and presents no indetermi-
nate considerations. It has seemed to the author that the necessity for requiring a
capacity to be present, no matter how small, was an unnecessary restriction, and that
the argument advanced that any practical circuit would have some capacity, ap-
peared to be rather irrelevant, since the notion of a circuit is in itself an idealization
of what is really a field problem. In treating an electrical problem as a circuit problem
one assumes that the circuit elements are ideal inductances or capacitances or resist-
ances and develops the various theorems on this basis.

Similar results can be obtained for a capacitance in series with a nonlinear resist-
ance having an S-shaped terminal characteristic provided that it is turned through a
right angle from that shown in Fig. 12, i.e., provided that it is a single-valued function
of the current rather than of the voltage. A familiar example is the neon tube relaxa-
tion oscillator employed to generate a saw-tooth voltage. It is also possible to develop
a graphical construction employing the finite operator method for an LCr circuit, and
in this case L or C may be permitted to approach zero, depending upon the position
of the S-shaped characteristic for r, without the construction becoming indeterminate.
For example, the construction reduces to the form given in connection with Fig. 12
if Cis made to approach zero and r has the terminal characteristic shown in the figure.

8. Conclusions. This concludes the discussion on some graphical methods for solv-
ing nonlinear electrical circuits. Simple series circuits involving resistance elements
only, are very simply solved by finding the intersections of their terminal characteris-
tics. This can then be extended to more complicated resistances in which the current
is a function of two voltages, as in the case of a triode tube.

The next circuit considered is that of the ideal balanced amplifier having perfectly
matched tubes and feeding the load resistance through an ideal transformer. Here the
coupling of the two tubes through this ideal transformer requires a special construc-
tion involving the sliding of a rule at a fixed angle along the tube characteristics. The
wave shape of the output and of the mid-branch currents is then discussed, and it is
shown that owing to the symmetry' of the circuit the former can contain only odd
harmonics; and the latter, even harmonics.

Finally, a simple case of a reactive circuit involving a nonlinear resistance in series
with an inductance is treated. Here the concept of a finite operator curve correspond-
ing to L/At is developed and this curve is employed to solve the circuit. Similar meth-
ods are available for capacitive circuits and for double-energy circuits involving both
L and C. The method is applied to a suitable negative resistance in series with an
inductance, and it is shown in a direct manner that this circuit can produce relaxa-
tion oscillations.

4A. Liénard, Elude des oscillations entretenues, Rev. Gen. Elec. 23, 901-946 (1928). See also
P. LeCorbeiller, The non-linear theory of the maintenance of oscillations, Journal IEE (London) 79, 361-378
(1936).

5F. Kirschstein, Uber ein Verfahren zur graphischen Beliandlung eleklrischer Schwingungsvorgange,
Arch. Elek. 24, 731 (1930).
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PRESSURE FLOW OF A TURBULENT FLUID BETWEEN
TWO INFINITE PARALLEL PLANES*

BY

P. Y. CHOU
California Institute of Technology

1. Introduction. The solution of the Navier-Stokes differential equations for the
steady laminar flow through a channel or a circular pipe is well known for its mathe-
matical simplicity. The reason for this simplicity is that for such flows Prandtl's
boundary layer equations hold rigorously for the entire region of the fluid. In other
words the boundary layer extends up to the center of the channel, whereas in the
case of the flow around a solid obstacle there is only a thin layer of viscous fluid at-
tached to the surface of the obstacle.

The steady turbulent flow through a channel or a circular pipe is more compli-
cated in the sense that all the equations of mean motion and the equations of double
and triple correlation previously developedl-2 have to be utilized to account for the
mean velocity distribution in the entire region of the channel, and that they can not
be further simplified by physical arguments as proposed, for example, by the bound-
ary layer theory. However, if we examine the algebraic equation that represents the
mean velocity distribution across the channel, we notice that it has functional be-
haviour similar to that of the formula for the mean velocity distribution within a
turbulent boundary layer.3In other words, the turbulent flow in a channel bears
some resemblance to the corresponding laminar flow on the whole, though its detailed
structure is much more complicated as will be seen soon.

In what follows we shall first determine the mean velocity distribution based upon
the equation of mean motion and the equations of double correlation, by giving the
triple correlations their values in the middle of the channel. This procedure leads to
good results in the theory of the spread of turbulent jets and wakes (references at
the end of I1), butin the present case it only agrees with the experiment in the central
portion of the channel, while it fails when the side is approached. We shall also see
that the mean squares of the three components of the velocity fluctuation agree quali-
tatively with observation in the corresponding region.

The second determination given below for the mean velocity distribution utilizes
equations of mean motion and both the equations of double and triple correlation by
neglecting terms involving quadruple correlations. It will be shown that the triple
correlations which represent the transport of turbulent energy play a particularly
important role in the vicinity of the wall of the channel, and therefore can not be
dispensed with for a better representation of the mean velocity distribution.

From this second determination we shall find that neglect of terms involving quad-
ruple correlations is justifiable as a first approximation. In other words the equations

* Received Dec. 19, 1944,

1P. Y. Chou, Chin. Journ. of Phys. 4, 1-33 (1940). This paper will be referred to hereafter as 1.

3P. Y. Chou, On velocity correlations and the solutions of the equations of turbulent fluctuation, Quart,
of Appl. Math. 3, 38-54 (1945). This paper will be referred to as II.

3N. Hu, The turbulentflow along a semi-infinite plate (unpublished).
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of mean motion and of the double and triple correlations are sufficient in treating
turbulent flow problems even though there is a wall present. Hence the mathematical
procedure is comparatively simple in another sense that the building of equations
satisfied by higher order correlations can be dropped up to the present degree of ap-
proximation.

The first determination reveals that the variation of the mean squares of the tur-
bulent fluctuation is slower than the corresponding variation of the mean velocity
distribution across the channel, which agrees qualitatively with experiment. In view
of the fact that measurements of the mean squares of the components of turbulent
fluctuation have not been reported systematically in the literature for the flow under
consideration, we shall omit the quantitative comparison of the theory with the ex-
perimental data now available on these quantities.

In the second determination the mean velocity distribution will be calculated by
assuming constant mean squares of turbulent velocity components across the channel.
This is justifiable due to the slower variation of these functions across the channel,
and furthermore the mean velocity distribution remains practically unchanged in the
major portion of the channel—with the exception of the immediate neighborhood of
the wall—when the constant values assumed for these functions are different from
each other. This procedure of assigning constant values to the mean squares of the
velocity fluctuations and then calculating the mean velocity distribution can be con-
sidered as the initial step in a method of iteration which will be explained in §3 below
in greater detail.

In the final section we shall indicate the uncertainties connected with the correla-
tion integrals pointed out before (11, 88). They are probably not important for the
mean velocity distribution, because they involve possibly the mean squares of the tur-
bulent fluctuation which are taken to be constant for the present calculation These
uncertainties could be removed, if we had better experimental information on the var-
iation of the turbulent level across the channel and on the velocity correlation between
two distinct points in flows such as the one examined here. In other words the present
theory is perhaps sufficient so far as the mean velocity distribution is concerned, and
it points out the possibilities for future investigations in turbulence along both ex-
perimental and theoretical lines.

2. Mean velocity distribution based upon the solution of the equations of mean
motion and of double correlation. As before (I, 84) we take the positive x-axis (x =xI)
as the direction of mean motion of the fluid, the y-axis (y = x2 perpendicular to the
two parallel planes forming the channel, and the 2-axis (z=x3 parallel to these planes.
The plane in mid-channel is chosen as the xs-plane. From the equations of mean
motion we have

tu/p = — ul<r —vdU/dy, (2.1
where
—dp/pdx = ul/d, < = y/d. (2.2)

The quantity 2d represents the width of the channel and Ur is the so-called friction
velocity.

Equation (2.1) defines the shearing stress ri2 in terms of y and dU/dy. Except in
the immediate neighborhood of the wall the viscous stress is small, so ti2is a linear
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function of y. On the wall —vd U/dy should be equal to Uf, and ri2should tend toward
zero as a limit.

The components T2s and r3vanish due to symmetry, as pointed out before (I, 84).

From now on for simplicity we shall neglect the action of viscosity in the form of
laminar stress in all the equations of motion. A physical condition mentioned previ-
ously is that all average values over time are functions of y only. Furthermore in
the present special case in accordance with the definitions in Il, Egs. (5.3), those
components of the slowly varying tensors amik and bik which have a single appearance
of the index 3 either in i or k must be both identically zero. The vanishing of these
functions is based upon the same argument as in the case of r23 The non-vanishing
equations of the second order correlation (11, (8.2)) then become

2 du d du v 2vk _
riz2— + —ww2= - Qi — in+ — (A- 502- — w2 (2.3)
p dy dy dy 3X- X-
1 du d du' 2vk
T2 - 3--—-VBW = —02112---------- A2 —----- WIW2, (2.4)
p dy dy ~ dy x2
d du 2v 2vk__
— w3 = - 02A2— bB+ — (k~ 5)g2 — wj, (2.5)
dy dy 3X2 x2
d du 2v 2vk _
— W2W2 = - O2133 — e - 33+ — (k- 5)g2- — ew\. (2.6)
dy dy 3X2 X2 3

These arc obtained by giving i and k the sets of values (1, 1), (1, 2), (2, 2), (3, 3),
respectively.

In the above four equations g is the root-mean-square of velocity fluctuation de-
fined by

q2 = V\/jW', (2 7)

and k is a constant. The slowly varying tensors anmik and bik should obey the diver-
gence relations [I1, (5.4)]

QUL+ 024" AR =0, ¢u+ 2+ ¢(B=0. (2.8)

The equation of vorticity decay [Il, (7.11)] satisfied by Taylor’s scale of micro-
turbulence X becomes in the present case

- 14GmwidU/dy - 70Fq33V3 = - 2vEqZ3\\ (2.9)

where E, F and G are regarded as constants.

The constant G in (2.9) is probably not important, for in the center of the channel
the term involving G in (2.9) is zero due to the vanishing of dU/dy there, and in the
immediate neighborhood of the wall wiw2vanishes although —dU/dy is large. Hence
for simplicity we choose G to be zero. In fact the presence of Gwould only change our
results slightly, as will be seen. The physical meaning of neglecting G in (2.9) is that
the term that represents the creation of vorticity by deformation of the mean mo-
tion is negligible when compared with those due to transport and decay.

If G were set equal to zero, Eq. (2.9) yields

\q/v = V3E/35F = Rq, (2.10)

where Rqgis a constant number,
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Now we shall substitute the values of the triple correlations at the center of the
channel into Eqgs. (2.3)-(2.6) according to their odd and even properties as functions
of y. We can set

w2w2 = UTala, w®= UTazn, ww2— UTa3r, Wiw2= UTen, (2-11)

where ai, a2 a3 and a4 are four dimensionless constants. Although the factor in
(2.11) is introduced for dimensional reasons, it is possible that these four constants
are all independent of the Reynolds number of the mean flow.

If we substitute from (2.10) and (2.11) into (2.3), (2.5) and (2.6), add the three
together and take into account the conservation relations (2.8), we find that the mean
square of the velocity fluctuation g2 satisfies the relation

q4 R’02 la du-\
P — , (2.12)
U* 10Rr Ur dal
where
a=a;+ a2+ a3 Rr= UT/v\ (2.13)

Rris called the friction Reynolds number.

Relation (2.12) is very significant, for it tells us that for large values of —dU/da,
g2 varies as the square root of —adU/da. Within a large portion of the channel,
dU/da is proportional to <, so the dependence of q2upon a is fairly linear. This linear
dependence has been observed to some extent for wf by Wattendorf and Kuethe4
and by Wattendorf and Baker,6and has been anticipated in the light of von Karman’s
law of similarity.

If G were different from zero, the above procedure would lead to

qQ2 ., f a du-] / /[ la dU\in
. ., C- 1(1+ 35G)-—-------- VIORr&e - — =) (2.14)
Vi“ R Ur dal UT da/

which has a functional behaviour similar to that of (2.12) for large values of —dU/dcr.

It is apparent that Egs. (2.3), (2.5) and (2.6) will determine wx, w2and w3sepa-
rately. Here we encounter the uncertainty pointed out in Il, 88 that the slowly vary-
ing functions anmih and bik may contain powers or even more complicated functions
of q as factors, and the existing experimental data do not provide enough evidence
for a quantitative comparison with these theoretical formulae. If, for the sake of
mathematical convenience, we assume &u, b2and b3to be constant, and a2ii, <22and
02133, which are odd functions of a, to be proportional to <, then iv2, wd and w\ will
behave very much like g2 that is, when a is near zero, is)\, w and w6 are constants,
and when a is large and near unity, they are all proportional to the square root of
—adU/da.

The equation for determining the mean velocity distribution is given by (2.4)

which can now be written, on account of (2.10) and the condition that Wiw2is con-
stant, in the form

4F. L. Wattendorfand A. M. Kuethe, Physics 5, 153-164 (1934).

ETh. von Kdrmdn, Proceedings of the Fifth International Congress for Applied Mechanics (Cam-
bridge, Mass. 1938), p. 349.
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1 du 2kRTa2

(w» ann) — a; (2.15)
U\ 2 UT da R\UI

here we have set the odd function bl2 equal to zero for simplicity.

As pointed out before the dependence of aZi2upon g in the above equation is also
not known. If wo and g2are both regarded as constants, the mean velocity distribu-
tion according to (2.15) is parabolic, which agrees with experimental data fairly well
for the range of a from 0 to 0.8, and fails near the walls of the channel. This parabolic
law of velocity distribution has been suggested by Stanton6in his measurements of
flows through a circular pipe of which the channel is a limiting case.

It has been calculated, though details will not be shown here, that this parabolic
distribution of the mean velocity for constant g2and w2is not essentially changed if
we solve for wf, wda wb and dU/da simultaneously under the further assumption
that both a"itand £*are equal to zero. This condition is equivalent to the vanishing
of (C},iWk+oj,j,Wi)/p, which means that the shearing interaction between the pressure
gradient and velocity fluctuations is zero; it has been used in jets and wakes, as men-
tioned before. The reason why the velocity distribution is parabolic even for this
more rigorous treatment is not difficult to see without going into detailed calculations.
For in the neighborhood of <=0, both -m\ and g2are constants, so dU/da is propor-
tional to a. When the values of a are near unity, both g2and wbare proportional to
the square root of —adU/da, and hence mutually proportional; consequently Eq.
(2.15) again shows that dU/da is proportional to treven in the vicinity of the channel
wall. We should anticipate, by the same argument, that similar simultaneous solu-
tions forwl,wl, w\ and d U/da would hold true even under the more general condition
that £n £2and £8 be constants and (2111, 0212 and a23 be proportional to a as men-
tioned previously.

In 84 below we shall compare the numerical values of RO, Rrand a of (2.12) with
available measurements.

3. Equations of triple correlation and the mean velocity distribution. The non-

vanishing equations of the triple correlation [Il, (8.3)] for the present problem can be
written in the form

du d du 3 dr
SW* W2 oo b W3W 2 = — £521111— e C11H  -mmn - Til ———> (3.1)
1 dy dy dy p2 dy
du [0 du 1 dru dr22\
swiw 1 1 W2W3 = — BRU 2 e Cm 4— - | 2112 — s (T e N (3.2)
2 dy ~ dy dy -\ dy dy J
du o [ du 10 dfu dr22\
1 USiw2 = — £521120eeeeeen C122 Mneemook TR --omememeeee H2t 12— 1, (3.3)
dy dy dy g\ dy dy /
du d du 1 dr2
W 2w z 1 WIWZN2= — £2h33 — w— €I a— :mr38 —-— | (3.4)
3 dy dy dy P2 dy
d — du 3 d-T2
W2 = — 22 — B4 T2— > (3.5)
dy dy P2 dy

«T. E. Stanton, Proc. Roy. Soc. London. (A) 85, 366-376 (1911).
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du 1 drz
) ¢ < J E— (233 H " r33 ' ’ (3.6)

dy dy p2 ay
These are obtained by giving i, k and | the sets of values (1, 1,1), (1, 1, 2), (1, 2, 2),
1, 3, 3), (2, 2, 2), (2, 3, 3), respectively. The other component tensor equations in
which the index 3 appears an odd number of times, namely, (1, 1, 3), (1, 2, 3), (2, 2, 3)
and (3, 3, 3), are all identically zero, as are the corresponding equations of the second

order correlation.

From the discussions in the previous section it is apparent that Egs. (2.3), (2.5)
and (2.6) are used to determine the mean squares of the fluctuation components, and
elimination of the triple correlations between these three equations and (3.1), (3.3)
and (3.4) respectively will give a more accurate determination of them. As pointed
out before, existing experimental data are not accurate enough to give a quantitative
comparison with the theory, and we shall not go into these detailed calculations here.
Furthermore Eqgs. (3.5) and (3.6) lead to quantities which are still beyond experi-
mental proof; discussions of them will also be omitted for the present.

The elimination of the triple correlation v)\w\ between (2.4) and (3.2) leads to the
equation for the mean velocity distribution. Before writing down this equation we
shall introduce a few more simplifications. In the first place the even function &2112
which may depend upon g as mentioned previously (lI, 88), is assumed to be a con-
stant; likewise the odd function Cmistaken to be proportional toy and is put in the
form,

6112 = 2cUTa/d. 3.7)

It is also possible that the dimensionless number ¢ may be a function of g and there-
fore an implicit function of the coordinate y.

The quadruple correlation w\w% in (3.2) is of the same order of magnitude as
(wjwi)2and wf wee As a first approximation we shall neglect all of these terms and it
will be shown afterwards in 84 that this approximation is justifiable. In short, (3.2)
defines the triple correlation WiW2approximately by

4 /dU
wxw\ = — 2621112—cUr<r//

. 3.8
i (3.8)

Utilizing the above relation and (2.10) which is derived from the equation of
vorticity decay, we find, after setting 612 in (2.4) equal to zero for mathematical con-
venience, that

a du d Uy
—fCc— —6q, (3.9)
UT da da duU
da
where
a— —(to? + 012)/1/,, 6 = 2kRrg /R aU,. (3.10)

The physical meaning of the three terms in the above equation is as follows: the term
in arepresents the creation of turbulent energy partly due to deformation of the mean
flow (I, 83(a)) and on account of 02112 partly contributed by the shear due to the pres-
sure fluctuation the term in 6 denotes the decay of turbulence; the
term in c denotes the transport of turbulent energy.
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The definitions of a and b in (3.10) show that they depend upon g2and w¥% and are
therefore functions of a. Since g2as well as ie| as shown in the previous section varies
much more slowly than dU/da itself across the channel, we shall regard them as
constants as the initial step to solve for dU/da. This initial process can also be re-
garded as the first step in the method of iteration in solving the present problem of
turbulent flow. The second step will be to substitute this expression obtained for the
mean velocity into (2.3), (2.5) and (2.6) after eliminating the triple correlations by
means of (3.1), (3.3) and (3.4), and to solve for w\,w% and w% As the third step in this
procedure, we utilize these values of the mean squares of the fluctuation components
and solve (3.9) again for dU/da, and see whether the new result agrees with the solu-
tion obtained in the first step. Obviously this procedure of obtaining alternately the
mean velocity and mean squares of the turbulent fluctuation can be extended in-
definitely.

In the present paper we shall not follow this refined method of approach; instead
we shall solve (3.9) by assigning constant values to a, band c, or to g2and w¥ and com-
pare the different solutions by varying these constants. The result will be that except
in the immediate neighborhood of the wall of the channel, the different mean velocity
distributions according to (3.9) for the different sets of a, b and c respectively agree
well with each other and with experiment, showing that the variation of the mean
squares of the turbulent fluctuation across the channel does not influence the mean
velocity distribution very much.

The solution of (3.9) with constant a,band cis

|<r2 = aU/bUr T + A2 (3.11)

where A\ and A 2are two constants of integration.

If A\ in (3.11) is zero, then (3.10) gives a parabolic law of velocity distribution
and a must be negative, since b according to its definition in (3.10) is positive. The
presence of the term in A\ gives the so-called “logarithmic law” of velocity distribu-
tion which holds true especially in the neighborhood of the wall of the channel. Hence
the product cAi can not be zero. It is apparent that this exponential term in U/UTis
due to the presence of the triple correlation in Eqg. (3.9).

The boundary conditions used to determine the constants cAi, A2and the ratio
a/b are:

when = 0, U = Uc\ when a — 1, U —0, —dU/Udcr — «. (3.12)

The value Uc denotes the maximum velocity of the flow in mid-channel. We have
chosen the derivative —dU /U rder on the wall of the channel to be infinite. In fact,
it should be Rr which is a fairly large number. Since we are interested in the mean
velocity distribution within the channel proper, substituting infinity for the friction
Reynolds number R, gives a good approximation.

The boundary conditions (3.12) render (3.11) into the following final form,

(€*uciur - kUd Ut_ N,!'= _ KUc _ uyUr+ e<adu,[i - e-iwc-m/ur], (3.13)

where x=5/cand 5/a =2[exp (kUdUt)—kUdJdUt—1]/k.

Equation (3.13) expresses the mean velocity defect (Uc— U)/UTas a function of <«
with two parameters kand UGU T- The presence of these two constants may appear
at the first sight to contradict the experimental velocity defect law formulated by
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von Kamian,7according to which (Uc—U)/U, should be independent of the Reynolds
number of the mean flow which, in turn, is a function of the ratio UdU,. A close ex-
amination of the experimental data shows, however, that this discrepancy is not
serious. In the first place von Karman’s velocity defect law can only hold true in the
central portion of the channel and there is a dependence of the velocity defect upon
the Reynolds number in the vicinity of the channel wall. It has been shown that for
flows in circular pipes U J UTincreases from about 19 to 33 when the friction Reynolds
number 2aUr/v changes from VI1O5to 10s, 2a being the diameter of the pipe.8In the
second place even formula (3.13), which does indicate the dependence of (Uc—U)/UT
upon Uc/Ur, can only account for the mean velocity distribution in the interior of
the channel for a given set of constants a, band cin (3.11), and these constants have
to take another set of values in the turbulent boundary layer on the wall, although
the same functional behaviour of (3.11) still prevails within the layer.3This point will
be discussed in greater detail in the following section.

The quantity UCQU Tin (3.13) is given by experiment; then the constant « is fixed,
for instance, by passing the theoretical curve through the experimental point at
a—~0.7. In view of the variation of the ratio UGU Twith the Reynolds number of the
mean flow, we shall choose a few different values of kand calculate the mean velocity

Table 1. (UGU)/UT

(1) (2 (©) 4) ®)

Obs. -0.1 0.0 +0.1 0.2151
0.00 0.00 0.00 0.00 0.00 0.00
0.10 0.16 0.06 0.05 0.05 0.05
0.20 0.38 0.23 0.22 0.21 0.19
0.30 0.66 0.52 0.50 0.48 0.44
0.40 1.10 0.95 0.91 0.88 0.81
0.50 1.64 1.50 1.47 1.42 1.34
0.60 2.33 2.22 2.19 2.15 2.08
0.70 3.13 3.13 3.13 3.13 3.13
0.80 4.28 4.31 4.38 4.50 4.75
0.90 6.30 5.92 6.17 6.60 7.72
0.93 — 6.58 6.91 7.51 9.30
0.96 8.81 7.39 7.88 8.74 11.84
0.98 — 8.12 8.76 9.93 15.01
0.99 — 8.64 9.40 10.82 18.21
1.00 — 9.86 10.94 13.07 00

distribution. This will lead to different values of UGU T. But we shall see that for all
these cases the mean velocity distributions agree with each other and with experiment
within the channel proper.

Let us calculate the mean velocity distribution for the values of kequal to —0.1, 0,
0.1 and 0.2151, and determine the corresponding values of UdU r by passing the theo-
retical curves through the experimental point at o= 0.7. The equations that deter-
mine (UG—U)/UTfor k——0.1 and 0.1 are given respectively by

7Th. von Kdrrndn, Proceedings of the Fourth International Congress for Applied Mechanics,
Cambridge 1934, p. 70.

8S. Goldstein, Modern developments in fluid dynamics, vol. 2, The Clarendon Press, Oxford, 1938,
p. 338.
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02= 0.2785{Uc- U)/UT- 1.039[e0-1«?* ' Tr7- 1], (3.14)
a2= - 1.5870(f7c- U)/Ur + 2.662[l - e-*-uu<-u)iuTm (3.15)

For the case k=0, we can get a limiting equation by letting k approach zero in
(3.13), or we can solve (3.9) directly by setting b equal to zero. The latter procedure

leads to *
{Uc- U)/Ut=10.94[1 - (1 - <«912] (3.16)

where 10.94 is the value of (c/a)112
The case when k= 0.2151 is represented by

@ = 1—go25W4Y)IuT (3.17)

This is the solution of (3.11) with a set equal to zero; the numerical value 0.2151
stands for the ratio b/c.

Fig. 1. Velocity distributions in a channel.
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The experimental values of (Ue—U)/Ur which are taken from a paper by Gold-
stein9 are given in column (1) of Table 1; the corresponding theoretical values ac-
cording to (3.14), (3.16), (3.15) and (3.17) are tabulated in columns (2), (3), (4) and
(5), respectively.

From this table we see that as the value of « increases from —0.1 to +0.2151,
UdU, changes from 9.86 to «>. Hence 0.2151 is the maximum limiting value of «
for constant a, b, ¢ in (3.9). Equation (3.17) shows in this limiting case that the mean
velocity distribution in the whole channel is “logarithmic.”

In order to avoid confusion, only the solution (3.14) for x=—0.1 is plotted in
Fig. 1. The circles represent Donch’s measurementsl0 found for Und/v equal to
8.7 X104, Umbeing the average value of U over a cross section of the channel. The
crosses reproduce Nikuradse’s resultsil for Umd/v equal to 3.3 X104 It is seen that
apart from the immediate neighborhood of the channel wall, agreement between
theory and experiment is satisfactory.

4, Relation between the presenttheory and some known experimental data. From
the foregoing calculations we see that we can subject to experimental test not only
the mean velocity defect distribution (Uc—U)/Ur and the mean squares of the
fluctuation components, but also the relation (2.10) between Aand g and the relation
(3.8) which approximates the triple correlation W4 Let us examine relations (2.10)
and (2.12) first.

The experimental data used by Taylor in his statistical theory12 are, in e.g.s.
units; {7C= 114 cm/sec, t/r=5.39 cm/sec, p=0.00123, v=0A4, d—12.3 cm. Since
according to (2.10) RO=\qg/v is a constant, we can compute 1?0 from the values of
Aand q in the center of the channel. In Taylor’s table A2 in mid-channel is equal to
29 cm2 so Ais 1.7 cm. The mean magnitude of the velocity fluctuation g at this
point is roughly 1.2Ur [cf. (4.2) below]. These values then give

i20= 78.5, Rr= 474, (4.1)

We have shown above in 82 that w\ behaves very much like g2 The experimental
values of iv\[U\ across the channel, determined by Wattendorf and Baker6 for the
flow with Reynolds number 109,000, can be represented by

wyUT= 041201 + 27.20) . (4.2)

As far as the order of magnitude is concerned, wf can be put equal to g23. By com-
paring (4.2) with (2.12), we find that

RoVa/VIORr~ 3 X 0.4 = 1.2. (4.3)

If we use a parabolic representation of the mean velocity distribution that goes
through the experimental point at tr=0.7, we have

-2 <rdU/U,da = 25.6<2 (4.4)

Then a in (2.10) becomes 25.6/27.2 = 0.94. Putting this value of a in (4.3), we obtain
7?0/i?7r~10X 1.4/0.94 = 15, while from (4.1) we find that RI/RT13.

8S. Goldstein, Proc. Roy. Soc. London (A) 159, 473-496 (1937).

10 F. Donch, Forschungsarbelten des Ver. Deutsch. Ing. no. 282 (192,6).
1 J. Nikuradse, Forschungsarbeiten des Ver. Deutsch. Ing. no. 289 (1929).
BG. I. Taylor, Proc. Roy. Soc. London (A) 151, 456 (1935).
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This shows the order of agreement between the two sets of values obtained from
two entirely different experimental sources. It must be pointed out, however, that
the number Rr=474 for the experimental value of X used in the above calculation
may be too low for the flow to be in a fully developed turbulent state.

Equation (2.10) also shows the dependence of Ro upon the quantities E and F
which occur in the definitions of the double and triple correlation functions between
two distinct points [Il, (6.8), (6.11)]. The measurement of these functions separately
will give another check on the value of the number R Odiscussed above.

We next study the values of the three constants a, 6 and c in Egs. (3.9) and their
physical significance.

(1) k——0.1. According to (3.10) b must be positive, so ¢ in this case must be
negative. The definition of c/a from (3.13) and (3.14) gives

cla = 20/0.2785 = 72. (4.5)

Hence a must be also negative. If 02112 in (3.10) were zero, a becomes of the order
of 0.4 and c is equal to 29. From the definition of c in (3.7), we find that

cn2= 58ul/d, (4.6)

which is 29 times larger than 2rndrn/p2ly, a term of the same order of magnitude as
the one in the quadruple correlation dw\vi\/dy. Hence all these termsare negligible as
a first approximation.

After the value of c is known, the triple correlation function is determined
uniquely according to (3.8); the constant term 5621112 is fixed by the value of wiwd at
7= 0.

By means of 6= —0.1c, the definition of b in (3.10) and the values of RJR-I and
g//Ul given before, we find the numerical value of k to be of the order of 16.

(2) k=0, (c/a)112—10.94, c/a —120. This gives results similar to those in case (1)
and consequently the terms in the quadruple correlations in (3.2) are still negligible.
In*this case ¢ and a must be negative as in the foregoing example. The meaning of
6= 0 is that the term due to the decay of turbulence in (3.9) is negligible when com-
pared with the other two.

(3) k=0.1. In this case cshould be positive. Then the definition of c/a from (3.13)
and (3.15) gives c/o=20/1.5870~13, and a must be also positive. The condition
that a be greater than zero changes the picture a great deal, for then a2zi2in (3.10) is
negative and its magnitude is greater than w\. Nevertheless the terms in the quadruple
correlations are still negligible, if the absolute value of Q212 is, say, a few multiples
of woom

(4) k=0.2151, «= 0. Here weffave 6/c = 0.2151. Putting this value into the defini-
tion of 6 from (3.10), we have c~10X&X1.2/15, which is about 12, if k is of the
order of 15. This gives Cm of (3.7) equal to 24U\<j/d, a quantity still about 10 times
greater than the terms involving the quadruple correlations in (3.2). The physical
significance of a =0 means that in (3.9) the term due to deformation is small when
compared with the terms due to transport of and the decay of the turbulent energies.
Obviously from the equations of double correlation (2.3)-(2.6) the magnitude of k



1945] PRESSURE FLOW BETWEEN PARALLEL PLANES 209

can be determined by measurement of the mean squares of the velocity fluctuation
components.

From the four alternative cases discussed above we see that although the measure-
ment of the mean velocity distribution alone will not single out which one is the
correct theoretical mean velocity distribution, measurements of the variations of the
higher order correlation functions across the channel will decide this question. For
example, experiment on the triple correlation wxw in (3.8) will decide whether c is
negative or positive, and the theoretical pattern for the mean velocity distribution
can thus be determined.

From another angle the above four special cases can also be considered to repre-
sent the mean velocity distribution in four parts of the channel. In the central
portion, we have negative a and negative ¢ [cf. (3.10), (3.8)]. Since both ¢ and (2112
can be functions of the coordinate tr, their values may change at the various points
of the channel. It is possible that a may eventually become positive as < increases
near the wall, while c which was negative in mid-channel, increases to zero and finally
becomes positive on the wall of the channel.

According to its definition in (3.10), b is positive and isa monotonically increasing
function of the distance from the center; likewise k increases monotonically with a,
if ¢ has already become positive. This increasing property of « as the wall is ap-
proached is substantiated experimentally. In Hu’s theory of the turbulent flow along
a semi-infinite plate,3the mean velocity distribution in the turbulent boundary layer
can be represented by an equation analogous to (3.11), and the value of b/c is equal
to 0.4 instead of 0.1 as in case (3). Hence our present solution for mean motion only
covers the channel proper; if the boundary layer on the channel wall is approached,
the solution should be replaced by Hu’s result. In fact it iswell-known experimentally
that the turbulent boundary layer on the wall covers the region 30 <i?r(l —tr) <250.
In Donch’s measurementl0 cited above, RTis equal to 3630, so the range 0.931 <er
<0.992 represents approximately the turbulent boundary layer on the wall and we
should expect formula (3.13) to fail in this region. A rigorous theory to explain the
mean velocity distribution for the entire channel including the boundary layer
might not be impossible according to present indications, but the actual mathematical
manipulation involved would be much more complicated than that in the present
treatment.

5. Conclusion. Based upon the foregoing analysis in the cases of the four values
of k for the motion of a turbulent fluid through a channel, we may conclude that the
velocity defect distribution (Uc—U)/UT, which is practically independent of the
Reynolds number of the mean flow within the channel proper according to von
Karman, is also independent of the magnitudes of the turbulent fluctuation when the
flow has reached the steady turbulent state. The question as to whether the above
conclusion can be generalized to state that the double and triple correlation distri-
butions across the channel when expressed in terms of the frictional velocity Ur,
namely, the ratios wiw,/Ul and WiWwk/ a r e also independent of the Reynolds
number of the mean flow and of the correlations-of still higher orders remains to be
seen theoretically as well as experimentally. In any event, the friction velocity Ur
probably plays an important role for turbulent flow problems involving the presence
of a wall, as in the present problem.
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DIFFUSION IN TURBULENT FLOW BETWEEN
PARALLEL PLANES*

BY

J. C. JAEGER
University of Tasmania

1. Introduction. The equation of diffusion in a turbulent fluid

d2X j 1~ 2p dx dx
dz2 z dz dx

(x stands for temperature, vapour concentration, or whatever property is being stud-
ied, x is measured in the direction of mean flow and 3 in the perpendicular direction,
and p is a constant determined by the degree of turbulence of the fluid) was intro-
duced by 0. G. Suttonland extensively studied by W. G. L. Sutton,2who considered
a number of cases of diffusion in the semi-infinite region 3> 0. It has been shown by
Pasquill3 that for the semi-infinite region the theory is in good agreement with ex-
periments, both on evaporation and on heat transfer.

In this note a number of results for symmetrical flow in the finite region 0<z<2l
will be given; it is assumed that 21 is small enough for the power law velocity profile
to hold up to the centre of the region. Such cases are of some practical interest, and
may provide an indication of the behaviour to be expected in the much more difficult
problem of heat transfer in a circular pipe. Also they are interesting generalizations
of known solutions of the equation of conduction of heat in the rod 0<z<2l, with
constant temperature, or flow of heat, at its ends.

The method used will be that of the Laplace transformation. W. G. L. Sutton
(loc. cit.) remarks that if p —1/2, equation (1) reduces to the equation of linear flow
of heat, and he gives a treatment of (1) which is a generalization of Goursat’streat-
ment of the equation of conduction of heat. It is well known that the Laplace trans-
formation method is particularly well suited to the solution of specific problems in
conduction of heat, and that its advantage increases as the complexity of the problem
increases. This suggests that the method may have the same advantages when applied
to (1), and, in fact, this proves to be the case. All the results of W. G. L. Sutton’s
paper can be obtained more shortly in this way, and explicit expressions for the solu-
tions for more complicated boundary conditions, composite regions, etc., can also be
derived.

In Section 2 the standard problem of evaporation in the semi-infinite region is
solved as an illustration of the method, and for comparison with later results. In

* Received Dec. 26, 1944.

10. G. Sutton, Wind structure and evaporation in a turbulent atmosphere, Proc. Roy. Soc. (A), 146,
701 (1934).

1W. G. L. Sutton, On the equation of diffusion in a turbulent medium, Proc. Roy. Soc. (A), 182, 48
(1943). The notation used here is that of this paper, except that the symbol E is introduced in (4). The
variables x and z in (1) are dimensionless quantities defined in Sutton's paper.

3F. Pasquill, Evaporation from a plane, free-liquid surface into a turbulent air stream, Proc. Roy. Soc.
(A), 182, 75 (1943).



DIFFUSION IN TURBULENT FLOW 211

Section 3 two other results for the semi-infinite region are given for completeness. In
Sections 4-6 the most interesting cases of symmetrical flow in the region 0<z<21
are studied. The solutions given here are formal only, but in all cases they may be
made rigorous by the verification process described elsewhere.4

Equation (1) has to be solved in the region x>0, and in a prescribed region of z,
with boundary conditions in x

X -*X (0)(z). as X —>+ O, 2
X finite, as X —* oo. 3)

In all the problems considered below x (0)(s) will be zero, that is the temperature or
vapour concentration in the fluid is zero in the plane x = 0.

There are also boundary conditions in z, which will be expressed either in terms
of xi or of

E = - Bzl-* . (4)
dz

This quantity E is thelocal rate of diffusion across theplane z =const.,and B is a
known constant (defined by Sutton, loc. cit.) involving thefluid and itsdegree of
turbulence.

The constant p in (1) is restricted in Sutton’s theory by the inequality 0 <"><1/3,
and we assume here 0 <p < 1.

W ith the substitution
X = 2"i2, (5)

(1) becomes

e —— — Q = 0. (6)

Introducing the Laplace transform of with respect to x, namely
0* = f c¢c~"xQdx, @)
Jo

‘we obtain from (6) the subsidiary equation5for 0%,

d2a* i dn* I p2\
TF+7 3
2. The semi-infinite region z>0. Boundary conditions: x (0)(z) = 0> £>0. X = Xo,
constant,6 when z= 0, x>0. xfinite, as z—», x>0. Here (8) becomes
dH2* 1 dizx [/ p2
'S+ —)yn* = 0, z > 0, 9)

dz- z dz \ z2/

4H. S. Carslaw and J. C. Jaeger, Operational methods in applied mathematics, Oxford, 1941, 858,
and J. C. Jaeger, Radial heatflow in a circular cylinder with a general boundary condition, Proc. Roy. Soc.
N.S.W., 75, 130-139 (1942).

5For the procedure see, e.g., Carslaw and Jaeger, loc. cit.

5 For shortness, boundary conditions will usually be written in this way; it is implied, of course, that
X~>xoas z—*+0 for fixed x>0.
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to be solved with
X* = zHI* —x0A, as z—T 0, (10)

and
X* finite as z—»». (1)

The solution of (9) which satisfies (11) is K p(zs'i), and since
zpK p(zsd — 2,~iT(p)s~ip as z—»+ O, (12)

it follows that the solution of (9), (10), and (11) is

zp2kp

9% = Xo~J(j)~siP~IKp{zSi)' (13)
Now it is known that7
jlp-iJsTpizs*) is the Laplace transform of z~p2p~1 | e~uu p~1du. (14)
> 7*IAX
Thus the required solution is

1 C"

X = Xo— - e~"up~1du. (15)
r (P) J *¥ix

This is the result given by Pasquill (loc. cit., (9)).
It follows from (15), or directly from the transform E* of E, that

Broll~2px~

o e e R > as z—>+ 0, (16)
T(?)
and
rx B X02:~2px +p ,
EdX—>mmmmar s 1 as z—+ 0. (17)
Jo (I-p)T(p)
3. Two other results for the semi-infinite region z>0. The results to be derived

here are both for the case x co,(2) = 0>and Xx(z) finite as z—»<».
If the boundary condition at z= 0 is: E—EQ, constant, as z—+ 0, the solution is

EaQyp o
_ I e~w~p~1du. (18)
2Br(i - p)dzV*x
Also
___E__@_%:_)-__I_)SE__’ as s | o. (19)
BpT(l - p)

This is proved exactly as in Section 2, using (14).

7S. Goldstein, Operational representations of Whittaker’s confluent hypergeometricfunction and Weber’s
parabolic cylinder function, Proc. London Math. Soc. (2) 34, 104 (1932), (15) and (24). Alternatively the
result can be obtained by the use of the inversion theorem for the Laplace transformation, subsequently
deforming the line integral into the contour (—°o, 0+); cf. Carslaw and Jaeger, loc. cit., §39. The same
remark applies to the derivation of (18) and (21) below.
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I f the boundary condition at z=0 is
hx — 21-2,1E = hxXo, (20)

where h and %o are constants, the solution is

Jp{uz) + otu2n - p(uz)
ZBJ}-W +e du, (21)
2p~1r( + T"mZ' cos /nr + aaup
wherea = T(1 —p)21~20/hT(p).

To prove (21) the inversion theorem for the Laplace transformation, (24) below,
has to be used, and the line integral must be deformed into (—<», 0+ ).

The result (15) was derived for a constant value of x on the boundary z=0. The
solution for the case in which x is a prescribed function of x on 2= 0 can be obtained
from (15) by Duhamel’s theorem. The same remark applies to the cases of Sections 4
and 6. Correspondingly, the solutions of the problems of Sections 3, 5 with E a pre-
scribed function of x on 3= 0 can be obtained in the same way.

4. The region 0<z<l. x (0)(s) = 0- X= Xo, constant, when 3= 0, .v>0. £ =0, when
z—l, x>0. This corresponds to the region 0<3< 2f with flow symmetrical about
z—I, and with x =Xoon 3=0and z=2l, for:t>0. Thus, for example, it gives the solu-
tion of the problem of heat transfer from the parallel planes 3=0 and z—2I, both
maintained at constant temperature Xo, and with symmetrical flow between them.

Here we have to solve (9) with boundary conditions (10) and

=0, when z=1 (22)

By (12) the solution of (9) which satisfies (10) is
XozR21~p
x* = —  —slr-'KpizS*) + Azpl p(zsi).
The unknown A is found by substituting in (22), and we have finally
X2*21-Pin*-*[irp(3J*)/3_i(fs*) + 1P(zsi)Kp~(Is')}
r (23)

x is found from (23) by using the inversion theorem for the Laplace transforma-
tion [cf. Carslaw and Jaeger, loc. cit.]

1 /o TH
=—_ 1 e’xx*(s)ds 24
2irZ  y—ih ) ()
_ Xo2p2kp Ir->+ix e’ - I [Kp(zs*)Ip,,AIs') + Ipizs~"Kp-~ls™ds ) 25)
2irirp) ) I p - i (1 s i)

where 7 > 0.
The integrand of (25) is a single valued function8ofs. It has a simple pole at 5=0
of residue
2p~h-pY{p), (26)

8G. N. Watson,Theory of Bessel functions,Cambridge University Press, Cambridge 1922, 8§3.71,
(17) and (18)
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and simple poles at s= —a,/Z2 where tar, r—1, 2, mme  are the zeros (all real and
simple( of

Jpr(a) = 0. (27)

It is easy to show [cf. Jaeger, loc. cit.] that the line integral in (25) is equal to 2iri

times the sum of the residues at the poles of its integrand. Evaluating these we get

finally
Xoz" “ p{zar/l)

X = Xo ~ 2p~Hpr(p) S jfa) (28)

The most interesting quantity is the value of E as z—0. Either from (28), or di-
rectly by calculation of its transform, this is found to be
5Xor (I - n i_,(ar
—>-( ------- p -) \ ) —l )j as z—=+ 0. (29)
V(p)2*r-H*P tX < ip/p(«r)
Also, as z—*m+(),
BxoE 2" g{ 2
Edx-*-~ -Pp\x/l1), (30)
lo 2(1 — p)
where
" = (31)
T(p) r-i amr-pl p(an

For small values of x/l12the value of /* Edx given by (30) reduces to the value (17)
for the semi-infinite region, and

(i) 22-2p(x/19 &
LW ) firr— (32)
r kP)

In Fig. 1 graphs of these quantities are shown for p =1/9, the value commonly
found in wind tunnel experiments. Curve | shows the result (32) for the semi-infinite
region, and Curve Il the value of 4/\x/12) given by (31) for values of x/lI2for which
the difference between (31) and (32) is important. For larger values of x/12than those
shown the exponentials in (31) are negligible.

In the case of heat transfer the quantity (30) gives the amount of heat taken up
from the region 0 to x of one of the planes.

5. The region 0<z<lI. x(0(z)=0. E—>EQ, constant, as s—0, x>0. E =0, z=I,
,v>0. This corresponds to the region 0<z< 2l with flow symmetrical about z=1, and
with constant diffusion across the planes z=0 and z=2l.

Here, proceeding as in Section 4, we find

X — — - * (33)
AT - p)sip+il - p(lsi)

The most interesting quantity to evaluate in this case is the value of x as z—+0.

This is found to be
2£41 - pl-pr 1
q P) p[M x/12 + -«J - (34)

*G. N. Watson, loc. cit., 8815.25, 15.21. For the method of calculating their values in practice see
John R. Airey, Bessel functions of smallfractional order and their application to problems of elastic stability,
Phil. Mag. (6), 41, 200 (1921):
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where
A T . f , (35)
™o g p rk-pt,

and the ar are the roots of
Ji-M) = 0. (36)

For small values of x/12, (34) tends to the result (19).
If p=1/9 it is found that the difference between (34) and (19) is less than 1%
for values of x/12up to 0.3, while for greater values of x/I2the exponentials in (35) are

-0.3
LOGIo(x/12)

Fig. 1.

almost negligible. In the case of heat transfer, (34) gives the surface temperature of
one of a pair of planes to which heat is supplied at a constant rate per unit time per
unit area, and which are cooled by turbulent fluid flowing between them.

6. Two cases of symmetrical flow in the region 0<z<2l. First let us consider
boundary conditions x (0(z) = 0>and

X = xo, constant, when z =0, x>0 (37)
E =0 when z= 21, x> 0. (38)

Here the regions 0 <z<I| and I<z< 2l must be treated separately. We write xi(-i)
and Ei{z/) for the values of x and E in I<z< 2l as functions of zi = 2l —z in this region.
The boundary conditions at the surface of separation z=zi=/ are
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A solution of (9) which satisfies (37) is

Xo02k pHp-1
X* = — —~zpKp(zs®) + Azplp(zs),
r(p)

and a solution of (9) with z replaced by zxwhich satisfies (38) is

X* = Cz{'/_p(zi59.
The unknowns A and C are found by substituting in the transforms of (39) and
(40), which gives
* X02t JzBH p-3/_3(siS!)

Vi (41)
/r(D)[/_,(fa»)/p_i;(3» + y ’

with a rather longer formula for x*. As in Section 4, x and xi are evaluated by the use
of the inversion theorem and the results are

Xo2t 3zfr(l - p) - r-i/'VIViIW /pW TAW i)

= xo Ip >r§i 302)-,(«5 + Jv{al ] “2)
X02'-W " e~xa,I* &2 p(zctr/l)
X~ w5 -1 3 ifar) 2 )
where the ar, (r=1, 2, » m), are the positive roots10 of
/_p(a)/p_i(a) —Jp(ce)di—p(a) = 0. (44)

As in Section 4 the most interesting quantity is the value of /* Edx as z—0. This is
found to be
Bxolz2p (2 =

, Edx~* 17, _ pfp (K1) (45)
where
<b n\ 23-2,(1 - p)
&p X ~ 2 [rG>)]12 S «r2p{~(“N+ ~(«Oi ' (46)

For small values of (x/12, (46) behaves like (32). Its value forp = 1/9 and for val-
ues of (x/12) for which the difference from (32) is important is shown in Curve Ill
of Fig. 1; for larger values of x/12the exponentials in (46) are negligible.

The result (45) gives the evaporation from the region 0 to x of the plane z=0 if
there is no flow over the plane z = 21.

Finally we consider the case in which the boundary conditions are x (0(2) =0, and

X = xo, constant, z= 0, x > 0, 47)

and
x =0, when z= 21, x > 0. (48)

Here, proceeding as before and writing xi for the value of x in I<z<2l, E\ for the
value of E in this region, and z1=2l—z, we find

10 In the case k= 1/2 when (1) becomes the equation of linear flow of heat, (44) becomes cos 2a = 0and
similarly (51) and (52) become sin 2a = 0.



1945] DIFFUSION IN TURBULENT FLOW 217

( 20 Xe2lk 'z fe-axWpfzarl) | t-"jpW r/iy
_Xo\ 2ip) m T Ci~RI(otr) P2 "JI{Pr)
/ziV”  Xo2l-'z[ - (e -"'l2 P(ziar/l) e-fc'"piziPr/l))
= 2X0V 77 +ow s i « 7N -) ! ( }

where the arare the positive roots of

w =0 (51)
and the j3r are the positive roots of

Jp-iQ?) - 0. (52)

This problem is that of heat transfer between the plane 2= 0 at constant tempera-
ture xo, and the planez =21 at zero temperature,by turbulent fluid flowing between.
The quantity of heat taken up from the region 0tox of the plane z=0 is determined
by

. _ BxoP 2 (3)
Iy 0% = b, >
where
,m 2 2p(I —p)x 1+ p+ 2p-
pp (x/1') = —
- 210+ p)
_232p(1 - p) - ( \

[r(H]2 ¢it«rPAUM

and the arand /3 arc defined by (51) and (52). For small values of {x/12), ~ (x//2)
behaves like (32). For larger values its behaviour for the case = 1/9 is shown in
Fig. 1, Curve 1V, and for still larger values the exponentials in (54) are negligible.

The quantity of heat taken up by the region 0 to x of the plane 2= 2/ is deter-
mined by

CX o .
lim T Eidx = s pp Iy, (55)
i-to J 0O 2(L —p)
where

SO 2p{\ - p)x @+ 2p){\ - p)
P e 21 + p)
23-2,,(' _ p) o f g-xah I* e-xftll* |
(56)
[r(p)12 h \ar->JI1"(«r) ~ 13i-2"/2(@3r)d
A portion of the curve of p ~ (x//2) for p=1/9 is shown in Fig. 1, Curve V; for
larger values of x/12the exponentials in (56) are negligible, and for smaller values than
those shown in the figure p continues to decrease rapidly.
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ON THE STABILITY OF TWO-DIMENSIONAL PARALLEL FLOWS
PART II.—STABILITY IN AN INVISCID FLUID*

BY

C. C. LIN
Guggenheim Laboratory, California Institute of Technology

T. General considerations. The criteria of Rayleigh and Tollmien. At the end of
Part I, we have shown that the study of the stability problem in an inviscid fluid
gives valuable information provided it is kept in mind that we are actually dealing
with the limiting case where the Reynolds number becomes indefinitely large. The
study of the stability of two-dimensional parallel flows in an inviscid fluid is usually
regarded as being quite complete, through the work of Rayleigh and Tollmien. Their
results show that instability depends very much upon the occurrence of a point of
inflection in the velocity profile. However, it seems that physical interpretations of
such general results are not well known. Such an interpretation will be given in §89,10
of this part. There are also several points in the mathematical -theory which require
further development and clarification. These will be brought out for further considera-
tion in 887, 8.

We now proceed to make a critical survey of some aspects of the stability problem
in an inviscid fluid. First, let us summarize the conclusions obtained by Rayleigh and
Tollmien. These-can be conveniently described as the necessary and the sufficient
conditions for the existence of a disturbance, self-excited, neutral, or damped.

1) Necessary conditionsfor the existence of a disturbance.

a) If the flow possesses a self-excited or neutral mode of disturbance with finite
wave length, the velocity profile has a flex at some point y=y,, where yi<ya<y2
Furthermore, in the case of a neutral disturbance, the phase velocity must be c=w(y,).

b) If the flow possesses a damped mode of disturbance, no immediate conclusion
can be drawn.

2) Sufficient conditionsfor the existence of a disturbance. So far, the sufficient condi-
tions are known only for symmetrical and for boundary-layer velocity distributions.
The results may be stated as follows.

a) There is always the neutral disturbance given by ¢c=0, a = 0, <p{y) =w{y).

by If w"{y,)~0, for y\<y,<yi, there is a neutral disturbance with c=w{y,)\ fur-
thermore, if w'"(ys)?£0, self-excited disturbances also exist.

Discussion. The condition w"'(y,) ~0 involved in (2) (b) will be shown to be ac-
tually unnecessary, by an improved method of proof to be discussed in the next sec-
tion. The statement in (1) (6) regarding damped disturbances differs from the origi-
nal conclusion of Rayleigh and Tollmien. Indeed, in the work of Lord Rayleigh, the
solution is taken to be valid all along the real axis. Hence, in accordance with the dis-
cussion of 85, Part I, such considerations do not include damped disturbances. How-
ever, Rayleigh and Tollmien did not distinguish between an amplified disturbance
and a damped disturbance, because they regarded them as complex conjugates. As
pointed out in 85, this is not permissible. In fact, if we accept the original conclusions

* Received May 18, 1945. Part | of this paper appeared in this Quarterty, 3, 117-142 (1945).
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of Rayleigh and Tollmien, a profile without a flex could not execute any kind of dis-
turbance. This can hardly be reconciled with our intuition regarding the state of
affairs in a real fluid at infinitely large Reynolds numbers.1According to the present
interpretation, only damped solutions can exist. Such a conclusion is also borne
out by the investigations for a viscous fluid.2 1t is to be noted that the neutral and the
self-excited disturbances, existing under the condition w"(y,)= 0, are free from the
effect of viscosity inside the fluid, because the neutral solution is also regular aty=y,
where w =c¢. Hence, we may conclude that disturbances essentially free from the effect
of viscosity inside afluid can exist only for velocity distributions with a flex.

The results of Rayleigh and of Tollmien discussed above tend to give the impres-
sion that the occurrence of a flex in the profile is the decisive factor in the determina-
tion of instability not only in the case of an inviscid fluid, but also in the case of a
viscous fluid.3 However, the investigation in Part IIl will show that this is by no
me”ns the case. When instability first occurs, as one increases the Reynolds number,
viscous forces still play a dominant role, and the main characteristics of the behavior
of the fluid with respect to a disturbance do not depend upon the occurrence of a flex
in the velocity curve. Indeed, it is physically improbable that a slight change of the
pressure gradient in the case of a boundary layer—which may cause a change from a
velocity curve without a flex to one with a flex—should cause a radical change in the
essential characteristics of stability. As we shall see later, the instability of a boundary
layer depends more on the outside free stream than on the occurrence of a point of
inflection. It might be argued that the free stream is analogous to a point of inflection
in that a vanishing curvature is involved; but even if this is admitted, we must still
note that the essential features in this case are not obtained from an investigation
neglecting the effect of viscosity. Indeed, from inviscid investigations, it is concluded
that a boundary layer with zero or favorable pressure gradient is stable, except for
the very trivial type of disturbance with infinite wave-length and zero phase velocity.
The present investigation shows that all boundary-iayer profiles can be unstable, and
exhibits results in agreement with the physical suggestion just discussed.

It thus seems that any conclusion obtained fro?n inviscid investigations must not be
taken over directly to the case of the real fluid, where the stability phenomenon is largely
controlled by the effect of viscosity and not decided primarily by the occurrence of a flex
in the velocity curve.

Indeed, even when we are mainly interested in the behavior in the limiting case
of infinite Reynolds numbers, the existence of a flex is not as significant as it may
appear to be at first sight. The existence of neutral or amplified disturbances has so
far been proved only for symmetrical and boundary-layer types of velocity profiles.
This may not be true for other types of velocity profiles, e.g., when the walls are in
relative motion. The following example will bring out this point. Let us consider the
velocity distribution w(y) = A -\-Bsiny, yi<y<y’2 which has a flex at y=0 if
yi<0<y2 According to the above necessary conditions, the only possible neutral

1This is the objection of Friedrichs, loc. cit. (Ref. [5]) p. 209. (The references are listed at the end of
Part 1.) It must also be noted that the non-linear terms are not negligible in the case of an ideal fluid.
We shall consistently restrict the magnitude of our disturbances so that the effect of viscosity is always
more important than the effect of non-linearity.

1See figures in Ref. [27].

3See Taylor's discussion on p. 308 of Ref. [70],
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disturbance is the one with ¢c—A. Then the equation of disturbance (6.21) reduces
to $"-\-(1 —a)4>=0. It has the solution

#y) = Csin {\/l —a2(y —y3},

which vanishes at y —yi. If t{yz) is also required to vanish, we must have

\/I —a2(y2—yi) = nir, (n = integer),
and hence
a2= 1— [nir/(y2—yi)]2

Thus, if y2—yi<ir, there is no possible neutral disturbance; if y2—ji = x, there is the
one with a =0; if ir<y2—yi <2ir, there is one with ay+0; in. general, if nm <y2—yi
<(«j+ I)-T, there are m neutral disturbances with ay*O. In the last case, there are
also m points of inflection in the velocity profile.

It can thus be seen that the general shape of the velocity profile plays a very im-
portant role even in the limit of infinite Reynolds numbers. Indeed, it will become
clear from Part 111 that the eigen solution with eigen values a =c¢—o0 is not as trivial
as it might appear at first sight, for it actually represents a limiting case with R —°0.
This solution exists for symmetrical and boundary-layer profiles, but its existence is
not immediately evident for other types of profiles.

In spite of all these points against the decisive nature of the flex, it must be ad-
mitted that its occurrence certainly makes the motion comparatively unstable. This
can be expected from the original results of Rayleigh and Tollmien, and can be seen
more clearly from the interpretation of the mechanism of inertia forces to be given
in 889, 10. However, these results must not be taken to indicate any decisive nature
of a flex. The essential features of instability can only be obtained through considera-
tion of the effect of viscosity.

We shall now conclude this section by making some critical discussions of Heisen-
berg’s classification of velocity profiles and the use of broken linear profiles for the
study of stability problems.

Heisenberg's classification of velocity distributions. Heisenberg attempted the case
of flow between solid walls in relative motion with the condition that Re(ty —c) van-
ishes only once foryi <y <y2(loc. cit., p. 592). Regarding a2as small, he approximated
the condition (6.18) by iTi(c)=0 [cf. (6.26), (6.24)]. He then classified the profile into
four classes: (i) those for which Kfc) =0 has a complex root; (ii) those for which
Kfc) =0 has a real root; (iii) those for which the real part of Kfc) vanishes for a cer-
tain real value of c; (iv) those for which none of the above three cases is true. Heisen-
berg concluded that the first class is unstable, the second generally unstable, the rest
stable.

In discussing the validity of these conclusions, the following point must be borne
in mind. If we can show that a certain type of disturbance exists for a2=0 and
aR—»co, it may also be expected to exist for sufficiently large values of aR and suffi-
ciently small values of a2 However, the non-existence of a certain type of disturbance
fora2=0and aR— does not exclude the possibility of its existence for finite values
of a2and aR. It appears therefore that we can only expect to conclude the instability
of a velocity distribution by discussing the roots of 2iCi(c)=0. Thus, apart from some
flaws in Heisenberg’s mathematical deductions, only the first two classes can have
any decisive significance.
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If Ki(c) has a root with a positive imaginary part, the motion is unstable. If Ai(e)
has a real root, Heisenberg shows that the motion would be unstable when the effect
of viscosity is considered. This will be studied more fully in a generalized form in 8§11.
However, if Kfic) has a root with a negative imaginary part, we cannot conclude the
instability of the flow by taking the complex conjugate of Xi(c)=0 (as Heinsenberg
did). For if

dy(w —c¢)-2 = 0,
then (cf. Fig. 5)

dy(w —c)-2 = — 2iriRo,
C

X Fig. S. Path around the critical point in the case £i<0.

where Ro is the residue of (w—c)~- at yo- In fact Ro= —wé'/wd*. How Ki(c) is the
complex conjugate of Jcdy(w —c)~2 Hence,

Ki{c) = 2xiRO= — 2iriwi'./wb3

which does not vanish unless w =0. Hence, the equation iTi(c)=0 tells us nothing
about the existence of the root c or any other root with a positive imaginary part.

Thus, Heisenberg’s attempt appears to be not as successful as Tollmien’s later
work [75], which at least brings out the characteristic properties of symmetrical and
boundary-layer distributions. A complete classification of velocity distributions, how-
ever, is not yet existent.

Approximation using broken linear profiles. Some investigations of Lord Rayleigh
were carried out by approximating the velocity profile with straight-line segments.
W ith this approximation, the solutions of (6.21) can be expressed in terms of elemen-
tary functions. Lord Rayleigh also tried to verify his conclusions by considering the
roots of iTi(c)=0, using the same approximation for the velocity. However, the re-
sults of his investigations are doubtful, because the number of roots obtained for
Ki(c) is equal to the number of corners chosen in the approximation. This was demon-
strated by Heisenberg to be inherent in the method of approximation. The general
idea is as follows. As discussed above, the stability condition (6.18) may be approxi-
mated by Kfic)=0 in certain cases. Although Rayleigh’s approximation may be made
very close so far as the velocity distribution is concerned, the approximation to
(w—c)~2is always bad in the neighborhood of the corners. Consequently, the integral
K\(c) is not properly approximated. In fact, a continuous broken profile w(y) does not
allow itself to be continued analytically to the complex y-plane without introducing
discontinuities (cuts). It thus appears that all results deduced from the consideration
of broken profiles must be regarded with reserve. The same criticism applies to
Tietjen’s work with the viscous fluid. His analysis failed to give a minimum Rey-
nolds number below which all small disturbances are damped out.

8. Rigorous proof and extension of Tollmien’s result for the existence of unstable
modes of oscillation. In this section, we want to give a rigorous proof of the existence
of amplified solutions of (6.21) satisfying the second and the third boundary condi-
tions of (6.22) when the velocity profile w(y) has a flex at y=y,, i.e,

w"(y.) = 0. (8.1
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The idea of the proof is essentially the same as that used by Tollmien, but the method

is improved. It has the further advantage of enabling us to extend the results to cover

cases where w'” (y.) =0,—a condition which had to be excluded by Tollmien.
According to previous results, the neutral disturbance must have a phase velocity

c equal to
c, = w, = w(y,). (8.2)

Let the corresponding value of a be denoted by as. The essential idea of the proof is
(1) to show that there exist eigen-values of ¢ and a >0 in the neighborhood of the
values of ¢, and a,, such that the imaginary part of c does not vanish, and then (2) to
show that the imaginary part is actually positive. The first statement can be expected
and can be readily established, if we can show that the left-hand sides of (6.18)-(6.20)
are analytic functions/(a, c) of the two variables a and c in the neighborhoods of a,
and c,. For if this is true, we can always solve f(a, ¢)= 0 for c as an analytic function
of a, (there may be more than one branch), by the implicit function theorem. Hence,
there is at least one value of ¢ corresponding to every real value of a in the neighbor-
hood of a=a,. Furthermore, by (8.2), this value of ¢, being unequal to c,, cannot be
real, and the first part of our result is established.

To prove the analyticity of/(a, c) seems to be a trivial problem. Nevertheless, we
shall find below that it is impossible to establish it in the neighborhood of (a, c) = (0, 0).
The chief problem in the proof is to overcome the difficulty caused by the singular
point of the differential equation (6.21).

If w—cj*O, we can write (6.21) in the form

w"

S — = 0. (8.3)
w—c

Let us now consider a simply-connected region R of the y-plane which encloses the

y-PLANE

points y =y\ and y —yi, but excludes the pointys, the passage from y\ to y2being taken
in the lower half of the y-plane. We consider also a neighborhood S of mutually
exclusive with the region R. Let us regard the relation

c = My) (8.4)

as mapping the regions R and 5 into two regions R' and S' of the c-plane (Fig. 6).
If the mapping is one-to-one, (as can be expected if w'iy)~ 0 for y\<y<yi), these
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regions will also be mutually exclusive. Then, if we restricty to R and ¢ to S', the
coefficients of (8.3) are analytic functions of the independent variable y and the pa-
rameters a and c. Hence, a fundamental system of solutions of (8.3), which we denote
by 4>i(y, a, c) and tp(y; o, c), are analytic functions of the three variables y, a, and c.
We understand that y is restricted to the region R, c is restricted to the region S',
while ot may be in any finite region enclosing a,. Thus, (for example),

M a>o M.yl, « d «.C) (8.5)

<H'(y2;a, ¢) <=>l(y2\a, ¢)

is an analytic function of the variables a and c, as we want to prove.

We note that in the neighborhood of (a, ¢) —(0, 0), the above reasoning fails. The
region R (which has to enclose the point y=y\) and the region S (which has to enclose
the point where w=c=0) cannot be taken to be mutually exclusive. In fact,/(a, c)
presumably has a singular point at the pointa =0 (a logarithmic branch point). We
shall discuss this case a little more closely at the end of this section.

Let us proceed to show that there actually exist values of c=c(a?d with a positive
imaginary part corresponding to positive real values of a. This is necessary because
the usual argument of taking complex conjugates has been shown to be invalid. For
this purpose, we consider the power series

f dc\ 1/dzx)\

-~ +FWO (X" X)+HtEG W X" x>+ mEmm (8'6)

where X =a24 Since Xis restricted to real values, the important point to be shown is
that the first of the derivatives in (8.6) for which the imaginary part does not vanish is of
odd order. Then, by taking values of Xslightly greater or smaller than Xs, we can al-
ways make ¢,-> 0. For these values of ¢ and a2 we can continue our solution <p(y)
analytically so that it is given along the real axis between y\ and y2 thus obtaining an
inviscid solution.

Let us now consider (8.3), writing Xfor a2 We have

Let @ be an eigen function with X c as the corresponding eigcn-values. Then

w" ( w" dc\
W) = A = TRt M T T =
where
dtp  dip dc
[px = e o -
ax dc d\

We distinguish two cases: (1) the point y=vy, is a simple root of w"(y)= 0; (2) the
pointy —y, is a multiple root of w"(y) = 0.
In the first case, w"'(y,)”0. In the limit X—X, c—>,, Eqs. (8.7) and (8.8) become5

1Since dX/dat*0 at a —a,, the correspondence between a and Xis one-to-one in the neighborhood of
* =«

6 A subscript r denotes that the parameters X and c are put equal to X, and c, respectively. A sub-
script X denotes differentiation with respect to X
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W
LG>) = 4 - X0. 0, = 0, (8.9)
w —oc,
w ( r [t» .,
L«(0x») = 45{t — XSO \, =meemmmmemmaem s — v+ —~r~———————r—(— ) r 0*- (8-10)
w —oc, ( (w — c)-\a
From these, we deduce that
085(0x) — FE(B) = — = s1e 09l
>(0x.) — >) = — — = <1+ —(—J 54,
dy ( (w—c,y\d\7)

Now, Ox satisfies the same boundary conditions as 0 does, because those conditions
are satisfied by 0 for each pair of values of X and c, and 0 is an analytic function of
them. Hence, integrating 0,,1.2(0x«) —j>\Ls{48 between the limits (yi, y2), we have

(dc\ r w'" , rv ,
i

(“5 ;- f\ztfdy/ f "tf(W - c))-Hy. (8]])

The denominator of the above expression is equal to

or

y (w'"y + %wivy- + see){wly + \w',"yl+ eee + 201Dy + eee)dy
VI—Vt
V i, r«» (1 )
— — 4 VAqg Aly + mme >dy,
Ws Jvl-v. |y )

where 0,, is the value of 0*at y=y,, and AQ, Ai, mmm are real. Hence, the imaginary
part of the above expression is ir<t>,,w!"'/wi2. Since is real and 0 $does not van-
ish,6we have arrived at the required result. The above argument is a rigorous formu-
lation of Tollmien’s work.

In case w"{y) has a multiple root at y =y,, the proof of Tollmien does not hold,
but the above method can still be carried through. The restriction must be made,
however, that the pointy, is a point of inflection where w"(y) actually changes its
sign. Then, y, is a root of w"(y) of odd multiplicity, and the first of the derivatives
wiv(y,), wv(y,), mme which does not vanish is of odd order. Such a point always exists
when the curvature of the velocity curve has different signs at y\ and y2 If we differ-
entiate (8.7) 1 times with respect to X we have the following equation for each value
of n:

o) = + 2'Ac’r’o »dr |( v \| (8.12)
L) r=1 d\r\w —c/ '

Let w"(y) have the rooty, up to the multiplicity 2»z+ I, m>0. Then, (8.10) is
regular in a neighborhood of y =ys, and the value of (dc/dX)e as given by (8.11) is
real. Let us consider the boundary value problem of the differential equation (8.10),
requiring Oxs to satisfy the same boundary conditions as 0« The solution can be ob-

8Tollmien [74], p. 92.
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tained from c¢j>\(y) by making X—*X,, and is moreover real along the real axis, by a
direct consideration of (8.10).

Continuing the same argument with equations of the type (8.12) with n=2, 3,
e e« 2m and c—c,, X—X, we find that

(d-c\  /dx\ [ d2nc\
53)." w v "W V.

are all real. Finally, for n=2m+ I, we obtain a relation of the type

/dc\~rTH-If\/I /d 2m+c \
J

C
@m + 1! w"4l(w - ¢c)~(2mdy + (’\/x2,,,+1\] \] 4=ly = real. (8.13)

Just as in the case of the equation preceding (8.11), it can be easily seen that the above
integral J"'w"48(w—c)~@2m2dy has the imaginary part wiam&E/ (2m + 1)\ (w i, )<om2>
while the other term on the left-hand side of (8.13) is real. Thus, (d2an+c/d\ 2mH),, has
a non-vanishing imaginary part. This is the result desired.

This completes the proof of the existence of amplified solutions near the neutral
solution c=c,, a=a, when the velocity curve has a point of inflection.

The proof of the existence of amplified solutions near the neutral solution c=0,
a =0 cannot be so easily formulated into a rigorous form. From the solutions (4.14),

it is very easy to obtain the solution d5 which approaches the eigen solution $=w(y)
as c—0, a2—0, with a2=0(c). The solution is

Gt= —ew((w—c) I (w—c)~2y

X 11+ a2)' dy(w —02J)' dy(w —cC)~2+ **N-. (8.14)

As can be easily verified from (6.21) the condition that 4be aneigen function is

cw{ + aZJL (w —c)<prdy = 0. (8.15)
From this, it follows that
/ dc\ I ru
(—=)=—71 w2y, (8.16)
\d\J O wilJM

and that the imaginary part of (dx/d\20is 2-K(dc/dk)tfw[/w'2, which is positive if
there is one flex in the velocity profile (wi* > 0). However, the real part of (dZ/<Tk2o
becomes logarithmically infinite, and hence the argument is not rigorous. Also, it does
not seem easyto make suitable modifications and extensionsin casew//(y0=0. It
should be remarked that Tollmien’s proof is not essentially different from the argu-
ment just given.

Similar considerations can be applied to boundary-layer profiles, and similar re-
sults can be obtained confirming and extending Tollmien’s original results.

9. Physical interpretation of instability in an inviscid fluid. The fact that the in-
stability of a two-dimensional parallel laminar flow is so closely connected with the
occurrence of a point of inflection in the velocity profile demands a physical inter-
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pretation. Since Eq. (6.21) is essentially the vorticity equation, we would expect
w" =0 to indicate a maximum or minimum of the vorticity —w' of the main flow.
This is actually where the explanation is to be found.

Since we have neglected the effect of viscosity, a fluid element maintains its vor-
ticity throughout the motion. From this point of view, a two-dimensional parallel
flow may be regarded as the motion of a large number of vortex filaments under the
action of each other. Filaments of equal vorticity are arranged in the same layer, and
the whole flow is built up of a collection of such layers.

The following physical interpretation is based upon the fact that a fluid element is
accelerated in such a field if it is associated with,an excess or a defect of vorticity.
These considerations were originally developed by von Karman7 for the interpreta-
tion of the failure of the simple vorticity-transfer theory of fully developed turbulence
as applied to the case of parallel Couette flow. The idea is developed in greater mathe-
matical detail here in this section and the next. It will be noticed that the considera-
tion is essentially two-dimensional, and hence is even more suitable here than for
fully developed turbulence, where the fluctuations are essentially three-dimensional.
An alternative interpretation of the results of Rayleigh and Tollmicn, but still based
upon vorticity considerations, will also be given to demonstrate the role of the viscous
forces.

Let us imagine a disturbance of the flow such that an element E\ of fluid of the
layer L\ is interchanged with an element E 2of a neighboring layer Z2 For definiteness,
let us suppose that the layer L2 has a higher vorticity than the layer L\ in the undis-
turbed state. Since E\ preserves its vorticity, it will appear to have a defect of vor-
ticity when it isin Z2 Similarly, Ei appears to have an excess of vorticity.

Let us fix our attention on one element, say E2 It will be shown in 810 that a fluid
element with an excess of vorticity is accelerated in the direction of the positive
y-axis with an acceleration T~#f{v'(,x, y)}ifo'dxdy, where fO(y) is the gradient of
vorticity of the main flow, v'(x, y) is the component of the disturbing velocity per-
pendicular to the direction of flow, and T is the total strength of the vortex filaments
corresponding to the disturbance. Examining the signs of the various quantities in
the acceleration formula, we can easily see that E2is accelerated toward a region of
higher vorticity if the gradient of vorticity does not change sign anywhere in the fluid.
Thus, E2is accelerated toward L2 A similar consideration holds for the element E\.
Hence, in either case, thefluid element is returned to the layer where it belonged (by the
acceleration due to its interaction with other vortex filaments). The motion is there-
fore stable when the gradient of the vorticity does not vanish.

When there is an extremum of vorticity, an interchange of fluid elements on op-
posite sides of the extremum does not give rise to an excess or a defect of vorticity.
Furthermore, the gradient of vorticity vanishes there, and has opposite signs on
opposite sides of that layer. It can easily be seen from the above acceleration formula
that the restoring tendency mentioned above is largely impaired in such a case. Thus,
exchanged fluid elements are not as strongly forced back by the action discussed
above. Such an exchange constitutes a disturbance because there is an exchange of
momentum. Thus, a disturbance may tend to persist and perhaps to augment. The
motion is not necessarily stable.

7 Cf. discussions of the vorticity transfer theory of turbulence in his general lecture at the Fourth
International Congress for Applied Mechanics [19]. Some developments in that direction were continued
by C. B. Millikan (unpublished).
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The above discussion is based on very general considerations and does not depend
on the consideration of a periodic wavy disturbance as used in the mathematical
analysis. We shall now support the above argument by considering a neutral wavy
disturbance, with the understanding that if such a disturbance can persist (except
for the exceptional case of infinite wave-length and zero phase velocity), the motion
is presumably unstable. From these considerations, the importance of viscosity in the
inner friction layer will also be brought out.

Let us consider an observer moving with the phase velocity of a neutral wavy
disturbance. He will observe a stationary pattern of the flow (see Fig. 7).8 Closed
stream lines are inevitable unless the disturbance has no *-component of velocity in
the critical layer ui=c, for the
flows on opposite sides of the criti-
cal layer are in opposite directions
relative to the observer. It appears
unlikely that the ~-component of
the disturbance should be zero
throughout that layer. Indeed, it
has been shown to be impossible
mathematically.9 Thus, whenever
a neutral disturbance persists, it
involves a steady exchange of fluid / / /1 /[ [ [ 1111111/ [ /]yjryyyy
elements on opposite sides of the
critical layer. pIG 7 Stream lines of a neutral disturbance as observed by

If the effect of viscosity is to be an observer moving with the wave velocity,
negligible, fluid elements on the
same stream line must have the same vorticity. If the gradient of vorticity of the main
flow is zero or small near the critical point, it is easy to compensate this small differ-
ence of vorticity by the vorticity of the superposed flow, while the “scale” of disturb-
ance [as measured in order of magnitude by 11'/(du’/dy)\ remain the same as that
of the main flow. It is thus not impossible to find a neutral disturbance for which the
effect of viscosity is negligible. The motion may be unstable.

On the other hand, if the gradient of vorticity of the main flow is finite, the super-
posed small disturbance must also give a finite gradient of vorticity. This means that
the “scale” of the disturbance must be very small in the critical layer. The diffusion
of vorticity by the effect of viscosity is then inevitable. It is thus impossible to find a
neutral disturbance/or which the effect of viscosity is negligible. The motion is inertially
stable.

10. Acceleration of vortices in a non-uniform field of vorticity. In the foregoing
physical interpretation of inertial instability, we have considered the acceleration of
an element of fluid in a two-dimensional parallel flow when this element of fluid does
not have the same vorticity as the surrounding layer. We are now going to derive the
explicit formula for the acceleration. The derivation shall be made in two different
ways: (1) by kinematical considerations (using vorticity theorems); (2) by considera-

8 This figure is due to Lord Kelvin (loc. cit.). He pointed out that the facts discussed here are “sur-
prising,” but did not attempt to explain their connection with the mechanism of hydrodynamic stability.

3This follows at once from Rayleigh’s original results, if we apply it to the region between this layer
and the solid wall (cf. Tollmien, loc. cit., 1935).
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tions of the pressure gradient. In either method, we shall consider a perfect fluid in
accordance with the stability problem under consideration.

1) First derivation, by kinematical considerations. For definiteness, let us consider a
two-dimensional flow between two solid walls, which we shall take to be y= + 6. Let
the velocity components of the main flow be

U = W{y), vV =0, (10.1)
and those of the secondary flow be
u' = u'(x, y), Vo= V(X Y). (10.2)

The distribution of vorticity of the main flow is

fo = fo(y) = - w'(y), . (10.3)
and that of the secondary flow is
av’ du’
[ s (10.4)
dx dy

The latter distribution shall approximate a vortex “at” the point (£0, 70- Thus, if
the signs of f' and  are the same (or opposite), we have essentially a small element
of fluid having an excess (or a defect) of vorticity near the point (£0, Vo)-

The stream function for the secondary flow is

\p'(x, y) = —~ f f f'(L v)G(x, y\ £ rfidid-q, (10.5)
with
d\p' 1 rr d dEd
(X, = —-— = — |l i’'iMv)— G{x, y; ? v)dEdv,
(. y) ay 2irJJ )dy oy )
: (10.6)
dip' 1 ¢cf . d s £ \Wded
v'(X, =—= —— | | t'(Zy)— G(X, y, £V .
x, y) ™ 51 ( y)GIX (x, y )dEdy

In these expressions, the integrals are extended over the whole region between the
planes. The function G{x, y; £, y) is the Green’s function of the first kind for the region
under consideration. It is defined by the following conditions:

dG  dx
EQ’ + '5)]' = 0 except at ((* n), o)
G(x, y; i,7) -------- log {(* - £)2+ (y - t)2}V2near (f, 7),
G(x, y; £ij) —Oover the solid boundaries.
As is well-known, it has the reciprocity property
G(x, Y\ £ 7 = G(f, » a, Y). (10.8)

For the case of a channel, it is given by the real part of

/ (| 7h TfZ Q | h Q
z) = - <log sh — - 70 - ogch— (z -z20> ,

(z=x+ iy, z0—$%+ in z0= £—im). (10.9)
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Let us now consider the behavior of a particular element of fluid at (£, 7 having
an excess (or a defect) of vorticity corresponding to the secondary flow (10.5) and
(10.6). It causes a distortion of the main vorticity distribution as indicated in Fig. 8.
After a very small interval of time 8t the vorticity at the point (x, y) is changed by
the amount

&t(x, y) = - v'{x, y)bt$o'(y), (10.10)

because it is replaced by a fluid element from below, which retains its original vortic-
ity. This change produces an effect at the “vortex,” i.e., at the element of fluid under

O X

Fig. 8. Acceleration of vorticies in a non-uniform field of vorticity (f( (y) >0, F>0).

consideration at (|, 7). It can be easily seen that the effect is a small velocity with
components

5«(f, v) = pre Jf Jf o_rj G(x, y, £ y)dxdy,

1 a ! (1011}
a®ETN = - — f f—0G(K, y; £ v)K(x, y)dxdy,

2ird J di

the integrals being extended over the whole region between the planes. Dividing these
quantities by & and passing to the limit 8t—0, we have the following components of
acceleration at the point (£, 7):

HE V) = ~ ~ ff -yG(x-y>£Vv)V'(X, y)U (y)dxdy,
27TJ j  07]
(10. 12)
fivd.v) = p- f f taig(x-y<&y)8»(y)txdy.

Let us first consider the y-component of this acceleration. From the special form
in which x and £ enter into the Green’s function [cf. (10.9)], we can also write
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<d{-;v) = T g f Vet (=60 y; £r,)d><dY- (]013)

2irJ

If we multiply this equation by f(E> 7) and integrate over the whole region, we have
the final formula

\J J av(g, 7)Hf'(£, v)d&V = ff y)}2o (y)dxdy, (10.14)

upon using (10.6). Before discussing its signifiance,let us first notice that

ff d‘ =0 (10.15)

if f'dii v) is an even function of £—£0. i.e., if the vorticity distribution f'(€, 7) has a
symmetry about the line £= &> For then v'{X, y) is an odd function of x —£0 and
s,(E, 7 is an odd function of £—£0, both being the consequence of the fact that
G(x, y, £ 7) is an even function of x —£. Hence, we have the conclusion.

If we recall that the vorticity f'(E, 7) is spread over a small region, we may take
F=//Ew'(E1Vv)d%dr] as the strength of the “superposed vortex.” If we divide the left-
hand side of (9.14) and (9.15) by T, we may consider the results as givipg the compo-
nents of the “average acceleration.” The x-component of acceleration vanishes; the
sign of the y-component depends upon the sign of the superposed vortex and the sign
of To (y)* This component of acceleration is the one used in the above physical con-
siderations.

It should be mentioned that in considering the stability of a motion we deal with
a vortex pair. Although this makes it difficult to obtain a compact formula for the
average accelerations of the individual vortices, a kinematical consideration such as
that given above (cf. Fig. 8) shows that the general tendency is not changed. Further-
more, the two vortices are soon separated, because they are situated in layers of dif-
ferent mean velocity.

Another point should be mentioned. If we notice the tendency for the main vor-
ticity to be swung around the secondary vortex, there is an acceleration of every ele-
ment of fluid toward the vortex. Whatever this acceleration may be, it is expected
to be of minor importance, because the effect is spread out over the whole field. This
point will be brought out clearly in the following derivation of (10.14), where we shall
study the whole phenomenon from the point of view of pressure forces. The accelera-
tion will be identified with the negative of the pressure gradient divided by the density
of the fluid, because the effect of viscosity has been neglected. Thus, if we can calcu-
late the pressure disturbance corresponding to a given velocity disturbance, the left-
hand side of (10.14) can be calculated.

2) Second derivation, by consideration of pressure forces correlated with vorticity fluc-
tuations. To calculate the pressure distribution from a given velocity distribution, we
use for the pressure a differential equation of Poisson’s type obtained by taking the
divergence of the equations of motion. Thus, if the equations of motion arel

10 The usual notation is used: (t=1, 2, 3) are the coordinates, m are the components of velocity,
p is the pressure, and p is the density of the fluid. Summation over a repeated index is understood. For a
discussion of this type, see Lichtenstein’s book [26].
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dm ~dm 1 dp .
Bt Uj-—- = e — + VAm, (i=123), - (10.16)
dt dxj p dxi

and the equation of continuity is

dm/dxi = 0, (10.17)
we have
A(Plp) =~<t, (10.18)
where
dm duj (d(rn, ua) d(u2,ujd d{m, m) )
"= A “ eiye,; “ = + + o }
and
B 1/dM diwg,\ 1 /dm dtl\
eifj = — 11—
2 \dxg 01,7 2 \dXj dxi/

are the components of deformation and of rotation. If we integrate (10.18) under
proper boundary conditions, < being known at the initial instant, we obtain the initial
distribution of pressure. The initial acceleration field is then obtained from (10.16)
as the negativegradient of the pressure, if we neglect the effect ofviscosity.

For a perfect fluid, the only boundary condition at a solid wall is

noii = 0, (10.21)

where m, is the outward normal of the boundary surface. If we multiply (10.16) by
n-, neglecting the effect of viscosity, we have

1dp dm

i VOF m, (10.22)
p dn s

where VOis the velocity along a stream line on the boundary, and ds is an element
of its arc. If we write
2 " dtii — dli . dVor
NEfE ™ =0 hi
ds ds J

d

where U are the direction cosines of the velocity over the boundary surface, we have

1 d Fo
P (10.23)
p dn R
where R is the radius of curvature of the stream line, R~1=?iidli/ds. This relation ex-

presses the balance of pressure and centrifugal force. With a given distribution of
velocity, the right-hand side is known. We have thus a potential problem of the second
kind for the pressure.

Two-dimensional flow between parallel solid walls. Returning to the problem at
hand, we have the very simple boundary condition

dp/dy = 0 at y = + b. (10.24)
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Since the main motion is a two-dimensional parallel motion, we have
M = w(y) + m'O, »v m2 = V'(X, y), LB: 0, (10.25)

where w(y) represents the main flow, and u' and v' give a secondary flow approximat-
ing a vortex. Equation (10.18) becomes

| (d% t 82\ ( dv* d(u’, »")
? ( 26)
Y — (1°m
We note that we can write a—(Ti-\-a2, where
) d{u’, v') dv'
of = — 2 — - ff2= -2 f 0--—--- (10.27)
d(x, y) dx

<Jidepends upon the structure of the secondary vortex itself, and <2depends upon its
interaction with the main flow. We shall also separate the pressure into two parts and
require them to satisfy (10.24) separately. Thus,

p — pit+ pi, a=o0i+ a2
1/dd\ dpi\ dpi |
—-E-d ai:-cn, —p:Oaty:ib,I
p\dx2 dy2 dy ) (10.28)
1/d23 d2op\ dp2
—1=0 at y= % b
p\ dx2 dy2}) dy

We can reduce our problem to that of the first kind by looking for the acceleration
ay(x, y) in the y-direction, ay= —(1/p) dp/dy. If we differentiate (10.28) with respect
to y, we have

Gy = «l + «2 '
dZti dzai  den da2 da3 da3> (10.29)
dx2 dy2 dy dx2 dy2 dy )

with ai=0,«2=0aty= +5. The x-component of acceleration is zero, from symmetry
considerations. The solutions of (10.29) are

@i~ 1) = -~ —JJ Gl y: £ 1) ooy d8
yE (10.30)

«20,y) = 7 1] Gxyl&” (ji~) drv'
where the integrals are extended over the whole region between the planes. These

formulae give the distribution of acceleration. Actually, it is more convenient to deal
with the integrated quantities

11- f f ai(x’y)io(x, y)dxdy, (10.31)

h =JJ ox, y)fox, y)dxdy, (10.32)
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Ji = \]*J an(x, V){;'(x, y)dxdy, (10.33)

J2= J J aZx, y)'C'(x, y)dxdy. (10.34)

The firsttwointegrals correspond to the accelerations of the main flow bythe second-
ary flowitself andby the interaction; the latter two quantitiescorrespond to the ac-
celerations of the secondary flow by itself and by the interaction. It can be verified
(as will be done presently) that

h =-ff v2a~dxdy, (10.35) 12= 0, (10.36)
Ji =0, (10.37) 32= JJ 12y -dxdy. (10.38)

We note that (10.38) is essentially a reproduction of the formula (10.14), the signifi-
cance of which has been discussed above. The integral I\ is equal to the negative
of J2 This is the above-mentioned acceleration distributed among the fluid elements
throughout the field. It is therefore relatively unimportant. Thus, all the statements
made in the last section have been verified, if we can verify (10.35)-(10.38).
Verification of (10.35)-(10.38). To verify these equations, let us first examine the
behavior of the quantities u', v', dp/dx, dp/dy for large values of x. From the expres-
sion (10.9) for the Green’s function, we see that if f' vanishes sufficiently rapidly as x
becomes infinite, we have
vl =0(] z]-3, vi=0( *[-2, (10.39)

for large values of x. From the equations of motion, we then find that
A= ooo(«) =0( -3, —=0(") =0( *[-2. (10.40)
dx dy

This will assure the convergence of the integrals involved andthe validity of the steps
taken in the following transformations.

In the first method of derivation, we have been mainly concerned with J2 We
shall therefore consider it first. Referring to (10.30) and (10.5), we see that

Jt= f fV(tv) (=) d&v-
( )(dyg

If we now introduce the value of 92as given-by (10.27) and replace (f, 4) by (a;, y),
we have

32
J2= - 2 f f j/l(x, y) —— (ti'fo)dxdy.
S y)dxdy( )dxdy
On integrating by parts with respect to x, we obtain
1 1
12— 20" I V= (vigaxay = JJ" j— (29 + dxdy.

The result (10.38) or (10.14) is thereby verified.
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Similar calculations can be carried out for the integrals lu 12, and J\. Thus,

I\ =JJ" arfodxdy = J*J* w(y) — -dxdy

by (10.28). If we note that

. d(u', v) d du'\ d du'\ dw dV
W\ = — 2W e =2 —Iw —-1—2—1w —
d(x, y) dx\ dy / dy\ dx dy dy2

the above integral is easily transformed into the form (10.35). Following an exactly
analogous process, we have

"m//”('m+7 IF-)" 515 0

when we make use of (10.27). The integral J\ has also the significance that it is the
effect of the solid boundaries upon a general flow ~'(x, y) consistent with (10.40),
because it is independent of w(y). Using (10.30), (10.5), and (10.27), we have

n=dd damayy=JF i dedij

, M 2cru.tv v idxdy.
JJ d(x, y)
If we note that

,d(u’, v) d ( du'\ d/ du'\
— —= — (UV ---) - (wV ——- )
d{x, y) dy\ dx dx\ dy /
we see that J\—0. The results (10.35)-(10.38) are thereby verified. We have thus
completed the investigations indicated at the beginning of this section.

Note added in proof. In a very early work, [Phil. Trans. Roy. Soc. London (A)
215, 23-26 (1915)] G. I. Taylor gave a physical interpretation of Rayleigh’s results
on the stability of the laminar motion of an inviscid fluid, based on momentum con-
siderations. He also indicated clearly that a motion, stable according to Rayleigh’s
criterion, may be unstable through the effect of viscosity.

(To be continued)
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ON THE VIBRATIONS OF THE ROTATING RING*

G. F. CARRIER
Harvard University

1. Introduction. An interesting addition to the group of problems dealing with
thin elastic rings is the analysis of the vibration of a circular ring which is rotating
with constant speed about its geometric
axis. In this paper, the small bending vi-
brations of the unconstrained ring are
analyzed and the frequencies at which
such vibrations can occur are determined.

For various problems of the partially con-
strained ring, it is shown that the “free
vibrations” differ essentially in character
from those of the free ring, exhibiting a
group of natural modes characterized by
linear combinations of trigonometric func-
tions. The forced vibrations of both the
free and supported rings are also treated.

2. The dynamic equations. The three
equations needed to specify completely
the plane motion of an element of a ring,
such as the one shown in Fig. 1, are de-
rived from a consideration of the forces
and moments acting on the element and Fig. 1. Element of ring in initial and distorted
the components of acceleration of the ele- positions. Center of rotation is 0.
ment. The summation of forces along
o'a', the summation of moments about o', and the summation of moments about a',
lead to this required set of equations, which is

~dr
Rikt> + dd + ("P A™j cos (a —v) — ("N sin (a —d)Jdd - 0, (1)

dR 1 d™m
+ MAT AeJ cos (a —V) + /I~ sin (a —v) = 0, 2

dd r\ dd

_dm y a8 92y =v)

| 0. 3
dd c dt2 ®

rr

Here, the notations arc as follows: d is a polar coordinate of a point in the undeformed
ring, referred to axes rotating with the ring; r and are respectively the radii of
curvature of the undistorted and distorted rings; b, h and | are respectively the width,
thickness and cross-sectional moment of inertia of the ring; R, r and M are respcc-

* Received March 2, 1945.
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tively the tensile force, shearing force and bending moment, as shown; N/r and P/r
are the components of the external forces in the directions of the tangent and normal
in the undistorted state, as shown; Arand Ae are the components of acceleration in
the directions of the tangent and normal in the undistorted state, as shown; E is the
elastic modulus; p is the density; k=pbhr2;c=Ebh) a=El/r2

In Egs. (1)-(3) the corrections, arising from the Poisson strains, for the moment
of inertia expressions, etc., have been omitted as usual. The formulas needed to sup-
plement the above equations are

EI / dau\ 1 1/ ax\
~ — (*. 4+ «+ =), (4a) - » - ( I — ), (4b)
/ 3o\ dll
R = Ebhe$ ¢ (LT uT —1 (4c) a=—> (4d)
\ so/ (00]
A \TGIZU I T lloT I v (4e)
r~r\ — — 0 — €
lot2 ax ) dt.
rdh dil
Ae = r\—- + 2w— (4f)
L dt- dt
r (  dv da\
K>= — (1 + ee)d6= F1H e dd, (49)
ri \ d dd

where ruQis the radial displacement from the rest position to the rotating equilibrium
position, ru is the radial displacement from the rotating equilibrium position, rv is
the tangential displacement relative to the rotating axes,lee is the tangential strain
(es=u0+n+dv/dO), and wis the constant angular velocity of the ring. Equations (4a)
and (4b) are the well known expressions for the bending moment and curvature, re-
spectively, of a bent ring;2 (4c) is a one-dimensional form of Hooke’s law; (4d) is the
rotational displacement of the element, and is found by inspection of Fig. 1; (4e) and
(4f) are the expressions for the radial and tangential components of acceleration, when
u and v are referred to a rotating coordinate system ;3and g is obtained from Fig. 1
and Eq. (4b).

The value of uais obtained by writing u=w=0in Eq. (1). After substitutions from
Egs. (4), it becomes EbhuO=ku) 1+ u0), or

«0 = (1 -f- uo)kwdc. (5)

Throughout this analysis, we shall consider only those vibrations for which u and v
are small compared to unity. We are therefore justified in disregarding terms in u2
uv, etc., as compared to u or v. In the limit, that is, as the amplitude of u and v tend
to zero, the equations obtained in this manner would be exact. However, the equa-
tions so obtained would still be encumbered by terms of the type u%u, ufy, me e« in
addition to those found below in Eqgs. (6) and (7). We also neglect these terms since

1This rather unconventional notation is used to provide «», U and v with dimensionless properties
and thus produce somewhat less cumbersome equations.

2S. P. Timoshenko, Strength of materials, D, Van Nostrand Co., New York, 1930, p. 459.

3These are easily deduced from the vector forms given in L. Page, Introduction to theoretical physics,
D. Van Nostrand Co., New York, 1941, p. 103.
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they can produce no qualitative changes in the results and since they will drop out
a yway when the procedure leading to Eq. (9a) is introduced. Finally, since the am-
plitudes of P and N must obviously vanish when u and v tend to zero, terms in
Pit, Pv, mme must also be omitted.

Fallowing this procedure, using Eq. (3) to eliminate r, and substituting from
Egs. (4) when necessary, we obtain from Eqgs. (1) and (2)

dw /[ dhi 32\ 3-u 3v\
fu Wy —a( st Jbieg = bu
\ eej 393 39 \d62 3023
a 3hi a 33¥1
¢ a2 ¢ dddt2 (6)
N £ 3( ~ 3w\ I(3hi]:3u\fk du kf32/ dul
fc—(u A —al— %) f koP o— = b 2 — . 7
38" 7 36) 7303 ) 0 La2” 0

We may easily arrive at a single equation in u only by performing on Eq. (6) the
operation L where,

L=c b k , (8)

solving Eq. (7) for L{v), and substituting the expression found by the latter step into
that found by the former.4We utilize the abbreviations,
s = ty/alk, u= coVkl/a, e=alc = 1/i212r2

and the equation resulting from the foregoing procedure takes the form,

(TVaz \ a2 a2 a2 / a2 y a2 / a2
; i b 4m b — . + 3
I Vaa2 3s2 393 392U +1i)- aa?\aa?2
fa2 az2
and 2 aa2n302 ser
/ a2 a2 aa1
POMe Tt P gy V) ar M
a6 a2 a4 .
,aaZ:\r4+ 2m 303s3 aa2 aad IaleTZ/ Yai jI ’
a2 /p\ 3
aavad + aatal ~ DEl@) * 3Nt s03s as &

This equation govern,s the motion of the ring, provided the driving functions N and P
do not imply that the’deformations be large. The validity of this equation may be
partially checked by considering a physically trivial problem. We consider the freely
spinning ring (no supports) and suppose N to P to vanish. Under these conditions,
the motion of the ring which is initially not deformed from its equilibrium shape is
given by it= (a-B3s) cos (6+pis), v= —(a+fis) sin (6+fis). That is, the ring moves as

4A similar procedure will provide an analogous equation in V.
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a rigid body with (dimensionless) angular velocity n and translational velocity /3.
Eqg. (9) must and does allow this solution for all a and j8.

In each of those problems to be considered, Eq. (9), in its present form, leads to a
solution which is simple in form but which requires the solution of unnecessarily long
algebraic equations. This computational work may be eliminated at the expense of
small errors in accuracy when we consider only rings for which h/r is small. In this
case, terms in Eq. (9) of order eand e2may be neglected compared to those of order
one. This leads to the following equation, which is exact for the limiting case where
u, v, etend to zero:

Ui _r_LQ a2/a2b3\ a2/ d- bly " a2 /a2 1\a2
= 22 edeer P Taaabans 0 ) T s aar T Vage.
a2 /p\ a/n\

aa2\ a) dd\a (%)

The analogous equation in v is

Q)

In each of the problems to follow, the expressions obtained from Eqgs. (9a) and (9b)
for the natural frequencies and amplitudes are valid to within errors of order A2V2
for those frequencies of order (a/k)112 These vibrations may be termed “bending
vibrations” since they are essentially inextensional forms of motion. When the fre-
quencies are of order (c/k)I/2, accurate results may be obtained by direct use of
Eqg. (9). In this paper, we shall use only Eq. (9a) or (9b) since all of the characteristics
of the effects of rotation on the behavior of the ring will appear in the solutions so
obtained. The one exception to this statement is found in connection with the dilatory
vibrations, This type of motion can not be predicted by Eq. (9a) or (9b) because these
equations are those for essentially inextensional motions.6 We shall, then, when in-
vestigating this mode, refer to Eq. (9). For this mode, u and v are independent of 9
as must be those parts of P and N which excite such a motion. Hence Eq. (9) reduces
for this case to

/ c\ d2 d2 /P \ d /N\
Lo{n) = +  3m2 + .
Ld4 \ a) ds2 - N (t) (%)
or, in terms of v,
/a2 cc \'n ap
¢ 0« ={-T+ - - P - 2m - (9d)
ds- a / a as a
3. The unconstrained ring. Investigation of the solutions of Eqgs. (9a) or (9b) of
the form
un = Uncos n{9 —fins) + IVnsin n(6 — p,,s) (120)

yields, when N and P vanish identically,

5Equation (9a) may also be derived from Eqgs. (6) and (7) by use of the assumption that u~rdv/dO<Ku;
this excludes the dilatory motion.
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2 ju (n2 — 1)

In= -

—— VTTn-+ 1= -q,.+ pn, 10a
n2+1 >+ 1 a P (102)
where pnand g, are self-defining.

If we further apply a set of initial conditions, such as

du,,
un= Uncos nd + IV, sin nd and —a——= 0, at 5= 0,
S

to the two solutions defined for a given n by Eqgs. (10) and (10a), namely
un = Un[a, cos n{6 + gns — prs) + bncos n(d + g + V,j)]
+ Wn[cnsin n(e -f g8 — prs) + dnsin n(O+ grs + V,,5)], (11)
we obtain

n
cos n{6 + qgns) cos npns H a sin n(0 + qgrs) sin up
pn

+ Wn sinn(6+ gms) cos npms @ cos n(® + 0,)) sin np,,s . (12)
Pn
Each term in the foregoing bracket defines a possible free vibration of the ring which
is unconstrained at all points against either radial or tangential displacement. Each
of these terms may be interpreted as defining a “normal mode” of vibration, wherein
a sinusoidal deformation of angular frequency np,, travels with respect to the rotating
axes at an angular velocity6 —qn. The “nodal points” thus move with respect to co-
ordinates fixed in the ring. The terms “normal mode” and “nodal point” have been
used somewhat loosely here, but they adhere to the usual definitions of the terms if
the motion is described relative to axes rotating with velocity i2,,=w(w2—I)/(w 2+ ).
For the stationary ring, the value of the angular frequency reduces to m

(a/k)L,dipn = m»2— \a/k(n2+ 1)]12,

which is in agreement with previously derived results.7
A solution to Eq. (9a) may be obtained for arbitrary initial distributions of radial
deflection Zo and radial velocity £<(, provided these initial conditions do not imply
an extensional motion. The restriction
/ nd &
ug(d)de = Ui (6)d6 = 0 (13)
0 Jo

is certainly sufficient to insure this provision since it, together with the continuity
iremen
r‘ﬁ?&l dd :\FEI -
Js 35 J o dOds

allows u-\-dv/dO to vanish for all 9, at and shortly after time t=0.
The restriction defined by Eq. (13) together with the requirement that u be con-
tinuous, implies that Ua and Uo may be expanded in Fourier series in which the

*pnand Onare, of course, dimensionless quantities which define the angular velocities.
7J. P. Den Hartog, Mechanical vibrations, McGraw-Hill, New York, 1940, p. 123.
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constant term vanishes and in which no terms corresponding to « = 1 will appear,
since these terms define no distortion.8 These series may be used in conjunction with
series of solutions of the type given by Eq. (11). Thus the coefficients, and hence the
motion, are determined. The motion due to rigid body displacements may, of course,
be superimposed on such solutions.

4, Forced vibrations. As will be seen in the following section, the investigation of
the possible motions of the constrained ring requires, as a preliminary step, the
determination of the behavior of a ring acted upon by a force distribution
N/a =2A cos nd cos As. The problem involving a driving function P of similar
form is obviously covered by this problem. If we split N into two parts,

N/a —A [cos (nd —\s) + cos (nd + \s) ],

a particular solution of the form,

v =D, cos (nd — Xs) + cncos (nd + Xs) 14)
is easily shown to exist by substituting this expression into Eq. (9b). The coefficients
b,, and c, are readily found when this is done, and are given by
Xn(\) = b/A =[n(n + D(pi —d,) —(n+ 1X2—4«/rX] \ (14a)
F.(X) = cJA =D2w + L(pl —ql) —(n+ X + 4h/A] (14b)
unless X is one of the values given by X2= «Zij3, is  either of the values given by
Eq. (10a).

When N/a = 2B cos nd sin Xs, we have
v = dnsin (nd —\s) —ensin (nd + \s),

and
dn/B = Xn, ejB = Yn.

The quantities X nand Ynare useful later in the paper; hence the special notation.

We see now that the motion of the unconstrained ring resulting from the type of
loading described is composed of two waves of different amplitudes traveling around
the ring with equal but opposite velocities. We note that there is, for each n, one value
of Xfor which there are fixed nodal points in so far as tangential motion is concerned.
This value of X is defined by W ,+Fn=0.

It follows from the linearity of our equations that the driving function N of the
more general form,

N/a = cos nd sin \ s (15)

will correspond toa solution
V= X)cos M - *>n) + Qmcos (nd + Xms). (15a)

Terms Xmnand Ym are definedas were Wn(X,,) andF,,(Xm) in Eqgs. (14a) and (14b).
The particular problem in which the exciting force is given by

N/a = AO cos Xs (16)

8This is seen in the discussion following the introduction of Eq. (9).
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has no inextensional solutions. As was mentioned previously, we must, in this case,
use Eq. (9d) for the determination of v. The solution has the form v="b0cos As where
bOis given by
bOX-2+ e(l - j+A2
CO=do 1+ s e ™ (162)

The solution arising from the loading N/a=Ao sin Xs has the same coefficient. For
small X2, a= yloA-2 cos Xs.

The natural frequency for the dilatory type of vibration is found by letting the
denominator of Eq. (16a) vanish. Its value is given by

X0 = [(1 + 3ixdle v

Returning momentarily to the question of accuracy, we note that here as in all
subsequent problems the exact values of X nand F,, differ from those obtained in this
section by terms (in the denominator) of order «. Our work is accurate then when
X«E£_1/2.

5. The supported ring. The first fact to observe in the investigation of the “free
vibrations” of the partially constrained ring is that when N and P vanish identically,
no solutions to Eq. (9a) which obey the boundary conditions can exist. Specifically,
we consider the ring to be supported by a number of evenly spaced, rigid, radial sup-
ports (let there be / of them), and suppose the ring to be so fastened to these supports
that radial motion is unconstrained at all points, but that v(2wi/J, s) must vanish
for all values of s and for each integer i. The first part of the appendix is devoted to
the outline of a proof that Eq. (9b) has no solution under the foregoing conditions.
Since the same proof holds for Eq. (9), we must conclude that the supports exert
reactions which are to be accounted for in the differential equation by a function N
which does not vanish identically. The problem, physically, becomes that of determin-
ing what periodic forces, applied at the supports, are capable of sustaining a motion
wherein the supported points of the ring have no displacement (tangentially) at any
time. (We assume that the supports must move at precisely the speed o>) Mathe-
matically, we must determine the eigenvalues X- and the corresponding solutions of
the differential equation wherein we set P = 0 and

N/a = 1+ 2 cos nd [ri cos Xs+ B sin Xs]. an

n-J,13,%%®

This expression defines a loading which must correspond to a motion which has period
27r/l'in 0, since the force is the same at each support. When J is even, there may also
be solutions periodic in «/ J which don’t imply extensional motion. We shall not con-
sider these, however, since both the procedures and results are analogous in the two
cases.

We have already shown [Egs. (15) and (15a)] that for loadings of the type given
by Eq. (17), solutions of the form

W6,7) = X/ fa» cos (N0 —Xs) + e+ —ensin («0 —Xs)] (18)

exist for all X except those for which A*= Using Eq. (9b) we determined all co-
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efficients except those of index zero, and these were found with the aid of Eq. (9d).
We may then, in this problem, replace Eq. (9) by the following:

Lav) = U(N/a),  Li(v- v) = (V- N'a, (19)

where the former equation is merely Eq. (9d), v' and N' are those parts of vand N
which are independent of 6, and the latter equation is Eq. (9b). The solutions are now
defined by Eq. (18) and the coefficients by Eqs. (14a), (14b), and (16a).
If we now plot for a continuous range of X
o
a9 = E Xn{\) + F,(X) = E (on+ cn/A = E (dn + &,,)/B,
17*J n n

we find that the resulting graph (Fig. 2) contains two singularities corresponding to
each n. Furthermore, there are two values of Xwhich we may associate with each n
for which cr(X) vanishes. One of these lies between the two singularities belonging
to n\ the other lies to the right of these values. We denote the smaller by X, the
larger by X,*.

Fig. 2. Response curve for ring driven at two points. <r(X) is the amplitude of the motion of the
points of application of the force. The broken section of the curve is drawn to the scale 1:5. For this
curve, m= 3.

We observe now that the motion at the points 2iri/J is given by n(0, s)
=yitr(X) cosX5+5cr(X) sin Xs. The values X; and \* therefore define the frequencies
for which the tangential displacements at the points of support are identically zero.
They are therefore the desired eigenvalues. The motion of the ring for any X- or X*
is given by

Vi(0, s) = ZA<Xincos (nO—X;s) + mmm+ BiYin sin (nO — Xs), (19a)
n

where A #» and Bi are determined by the initial conditions.

The question now arises as to whether linear combinations of the v- will always
describe the motion arising from an initial set of conditions which are arbitrary except
for the previously prescribed periodicity in 6. An outline of a proof that the v{are
complete in this sense is included in the appendix. Since the natural modes of the
possible vibrations are described accurately by Eq. (19a) only for the smaller values
of X,, it may seem at first that this question of completeness is superfluous. However,
the completeness of such sets of solutions provides an assurance that no other possi-
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ble solutions of the equations have been overlooked in the analysis. In view of the
fact that the foregoing procedure started wifh a guess asto the probable form ofthe
support reactions, this indication that certain initial conditions would not lead to
different types of motibns is helpful. We conclude, then, that all vibrations, arising
from initial conditions whose Fourier series expansions are such that the low index
terms predominate, can be closely approximated by sums of the form,

v(6,s) = £ KiVife, s). (20)
1

We also conclude that the supports will continue to exert exactly those reactions re-
quired to sustain this motion, or in other words, those forces required to prevent all
tangential motion of the supported points of the ring.

The problem of the radially constrained ring may be treated in a manner similar
to the foregoing, with analogous results. When the ring is constrained at its supported
points against both radial and tangential displacement, Egs. (9a) and (9b) must both
be used. Support reactions of the form

N/a = A + 2£ cos cos Xs, P/la =B|\ + 2£ cosnd) sin Xs,

and solutions of the form

v= £ ancos (nd —Xs) + a cos (nd -f- Xs),

£ bnsin (nd + Xs) — b sin (nO — Xs),

u

are assumed to exist as before. This time we find four functions analogous to <r(X)
which enter the equations for the motion of the supported points. When this motion
vanishes, these equations become =0, vlo-3(X)+i?cr,i(X) =0. The criti-
cal frequencies are defined by ai(K)ai(\) —a3(X)cr2(X) =0. Since nothing essentially dif-
ferent from the preceding results would be shown, the formulas for the terms in the a-,
the explicit expressions for the vit etc. are omitted.

The forced vibration problem of the supported ring can now be easily treated.
For example, let us consider the ring to be supported as in the firstproblem of this
section of the paper, but to be loaded by a force distribution which maybe expanded
into the form Ni/a=£,J, cos [nd+vs). The particular solution to Eq. (9b) corre-
sponding to the loading Ni is found as before, and the function

»(0,s) = £9g, cosvs = G cos Vs
n
representing the displacement at the supports, has an easily evaluated amplitude G.
Remembering that a support reaction,

N2a = A 1+ 2£ cosnd cosVvs

produces a motion at 0=2ivi/J which is given by £2(0, s)=Aa{v) cos vs, we may de-
termine from the response curve (Fig. 2) the value of A such that Acr(v)= —G. The
motion is then given by the solution to Eqgs. (19) corresponding to the loading Ni+Ni.
When more than one value of v enters the problem, the solution is changed only by
the fact that the summation now takes place over two indices.
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We note that when v in the problem just discussed is equal to one of the X- a
resonant condition exists, as one would expect from the results of the preceding prob-
lem. Also, we note that when the loading consists of a single term, cos md cos vs, and
when v is one of the roots of -Xmf- Fm= 0, the solution requires no support reactions.

Perhaps the most interesting result of this analysis is the observation that, unlike
most problems of this sort, the forces exerted by the rigid supports of the vibrating
system must be included in the differential equation before the solution can be ob-
tained.

6. The elastically supported ring. A rather interesting eigenvalue problem arises
when we consider the ring with elastic rather than rigid supports. Let us suppose
again that the ring is unconstrained radially but that the supports resist the displace-
ment of the points of attachment by a force, N/a = —Kv(0, i).

Using Egs. (19) as before, we find that the differential equations governing the
motion now have the form,

Zo(ri) = - KU [0, s)], (21a)
L-ily —»") = — XT[d(0, i)][2”~Z cos nd], (21b)

For solutions of the form,

» = 22[ c0s (W®— Xs) + eee — S sin (nd — Xs)],

Egs. (21a) and (21b) become
a»= - KFXn(\), 7n= - KHXn(),

on= - KEYR(),  Sn= - KH R O Ol (210)

In these equations, E=X!In(a»+/3n), //=2Zn(7» + 5n), and the X nand Fn are again
given by Eqgs. (14a), (14b) and (16a).

When Eqgs. (21c) are added by pairs and then summed over n, the following re-
sults are obtained: E[I+iicr(X)] =0, [\ -f<iXo-(X)] =0. But if F and Il vanish the
solution is the trivial one; hence,

T = - UK. 22)

This equation defines the eigenvalues and hence the natural modes at which the sys-
tem may vibrate. We note that as K tends to infinity Xapproaches that value found
in the problem of the more strongly constrained ring (as it obviously should). As K
tends to zero, the solution approaches that for the unconstrained ring. It is again easily
shown that the set of eigen-functions obtained in this problem is complete in the pre-
viously used sense.

A final problem in forced vibrations follows easily from the foregoing. Let the ring
be supported as above, but with the supports rotating at a speed w+i/'X sin \s,
where u is again constant. Briefly, we replace t>(0, 5) by t>(0, s)+\p cos Xs, on the right
sides of Eqs. (21a) and (21b). The previously used procedures lead to the familiar
set of solutions with the resonant frequencies obviously defined by Eq. (22).

Appendix

In this section, we wish to show, first, that Eq. (9b) has no solutions which are periodic in both 0
and rand which vanish at d—kir/J, (k=0, 1,2, s+« ,P = N =0).
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We assume a solution periodic in Oand write it as the sum of an even and an odd function (in 6);
i0,5) = x(0, 5) + y(d, s),
where x(9, s) =x(—9, s) and y(0, s) = —y(—0, s). In order that vsatisfy the specified requirements, both
X and y must vanish at the prescribed points.
In an abbreviated form we write Eq. (9b) as Lt{v) =d2/dOds, where the operator L«transforms even

functions into even and odd into odd. This can be seen by inspection of Eq. (9b). The equation is now
separable into two parts:

@ H>
We operate on Eq. (b) with the operator d2( mme )/dBdt and substitute Eq. (a) into the result, obtaining
d*x
LI(X) = -=zoe--
0 = g R

which has solutions of the form,*:E'lo»cos nOexp iyms. All even, continuous, periodic, solutions of Eq.
(c) may be written in this form but all of such solutions will fail to vanish at the specified points unless the
0, vanish identically, since y,,,/ynis irrational and cos nOnever vanishes at 0= 0. Equation (a) then reduces
to d3/d0dt=0. It now becomes obvious that the solutions sought do not exist.

Before showing that the functions derived as natural modes of vibration in the section on the sup-
ported ring are capable of describing all motions periodic in 2ir// which arise from arbitrary initial con-
ditions, we introduce the following notation:

Xin+ Yin = tin, X<[- Xin + F.,] = tin, Xtn + F*, = tin, e e+ . (d)
For any motion described by Eq. (20), the possible initial displacements and velocities may be written
o) 00 #
50,00=X B [ (+ A*in) cosnO-f (sicon + sin rtf],
»OM0,/, +ee -
a, . L . ®
—,0) = 5Z Yji  [{Ai"in + A*tin) sin rtf -+ (B,"i,, + B3) cos rtf],
oS % i

where the A-, - me B *are to be determined by the initial conditions. However, any initial conditions,
periodic in 2ir/J can be written

v(6, 0) > "n a,, cos rtf + fsin rtf, ® 6,0 = yncos rtf + sa sin rtf. f
S
This leads to the relations,
E)((Allun"‘A“A,l): Ei(3|4>|..+ B*,’\;): pn, --- .

This set of equations may be considered as a group to be solved for the Ai, ¢+ e+ &i- whenever such
solutions exist. Except for special cases, such a set of equations always leads to a unique set of solutions
corresponding to each set of a,,, me*, 5, Since Eqs. (f) can express all the specified sets of initial condi-
tions, we see that Eqs. (e) can also accomplish this purpose and hence the »eare complete in (Sthe sense de-
fined above.

The case where i equals zero requires a few additional words. The fact that there is no Goor Soseems
to imply that we have two too few equations for the determination of the Ai, mme  Bi*. Hewever, there
is only one root of <r(X) corresponding to n equal to zero. Henc e, the correct corrcspondenc between the
ai, » * m, Siand the Ai, « « m, Bi*exists.

The proofs outlined in this section are not claimed to be rigorous. They are presented merely to out-
line the reasoning by which the two hypotheses might be proven if so desired.
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NON-LINEAR THEORY OF CURVED ELASTIC SHEETS*

BY

E. BROMBERG and J. J. STOKER
New York University

1. Theories of plane and curved shells which neglect bending.1The problem to
be treated here is that of determining, under certain conditions to be stated later,
the stresses and strains in a thin curved elastic sheet in the form of a surface of revolu-
tion held fixed at the edges and subjected to a uniform pressure normal to the sheet.
The problem thus falls under the general class of problems treated in the theory of
elastic shells.

In order to obtain a theory of elastic shells which is manageable from the mathe-
matical point of view, it is customary to make assumptions2of various kinds, in addi-
tion to those of the general theory of elasticity. These additional assumptions are
usually based on the hypothesis that the shell is very thin. In what follows we shall be
interested in theories which result when the following assumptions are made:

1) The strains due to the normal stress on elements parallel to the surface of

the shell are small enough to be neglected safely.

2) All stresses are constant over the thickness of the shell.

The first assumption is almost always made by writers on the subject of thin shells.
The second assumption of course rules out what are usually called bending stresses.

A linear theory of shells, with a considerable number of practical applications, has
been worked out on the basis of the above two assumptions. It is usually referred to
as the membrane theory of shells.3The salient feature of the theory is that it is “stati-
cally determinate” since the stresses can be obtained from the equilibrium conditions
alone without reference to the elastic deformations. This results in a very great sim-
plification, by comparison with theories which do not neglect bending. However, the
simplification is coupled with at least one rather serious disadvantage: it turns out
that it is not possible to satisfy the kind of boundary conditions which it would be
natural to impose in these problems, since the order of the system of differential equa-
tions is too low. For example, the condition of a fixed edge (that is, the condition
requiring the displacements at the boundary to vanish) cannot be satisfied in general.

Most writers on the membrane theory of shells attribute the difficulty regarding

* Received May 1, 1945.

1The theory developed in this paper isan outgrowth of a research project carried out by the-College
of Engineering of New York University, undera contract with the War Production Board. The investiga-
tion, which was largely experimental in character, was concerned with the feasibility of constructing
buildings circular in form with a thin steel roof supported by excess air pressure on the inside of the build-
ing. The design problems which arose led to the theory presented here. In this case the sheets considered
were so thin that there was no doubt about the validity of neglecting bending stresses.

1For an exhaustive classification of the very numerous possibilities here, see the recent paper of
Chien [3]. (Here and in what follows, numbers in square brackets refer to the bibliography at the end of
the paper.)

5For full treatments of this theory and references to the literature, see the books of Fliigge [5] and
Timoshenko [12],
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boundary conditions to the fact that bending is neglected, and it is true that use of
the linear bending theory does make it possible to impose physically reasonable
boundary conditions. However, there are cases in which the shells are so thin that
the bending stresses are small compared with the “membrane” stresses.41t seems not
to have been noticed that a theory which neglects bending stresses, but which neverthe-
less makes it possible to satisfy physically reasonable boundary conditions, can be obtained
by taking account of certain non-linear terms in the relations for the strains as functions
of the displacements. This paper has as its main purpose the development of such a
non-linear theory.

Our theory is a generalization of an already existing non-linear theory for the case
of a plane sheet5supported in some way at its boundary and subjected to normal pres-
sure p. It is useful for our purposes to discuss the theory of plane sheets from a num-

Fig. 1

ber of different points of view, with the object of comparing and contrasting this
theory with the theory of curved sheets to be presented later. The undeformed posi-
tion of the sheet is taken as the ary-plane, the system of stresses in the sheet is denoted
by <x Gy, and r», and the displacement components by u, v, and w. In Fig. 1 the
notation for the stresses cr and o in polar coordinates (r, <) is also indicated.

The equilibrium conditions for the stresses ax, gv, and r,, in the sheet are

daj dr. drxv day _
- =0, + U= (1.1)
dx dy dx dy

The equation of equilibrium for the direction normal to the sheet is

d2aw d2w d2aw
av—- + 2THy - hel = - p/h, (1.2)
dx2 dxdy dy2

4The present investigation was prompted by the necessity of dealing with just such a case.
5The word “sheet” is employed here in a noncommittal way. In the course of our discussion a more
precise significance will be given to the phrase “theory of thin sheets.”
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where h is the thickness of the sheet and p is the pressure. The non-linear character
of the theory under discussion stems from the retention of certain quadratic terms in
the relations for thestrains ex, ev,y xy in terms ofthe displacements:6

du 1/dw\ 2 dv 1/dw\ 2
I T 2 vdx Tdy T 2\dys
X X 2
J y y (1.3)
du dv  dw dw
TXy = -1 ! n

dy dx dx dy
The stressesand strains are assumed, as usual,to obey the stress-strain relations

1 1 21 + v)
E(or vt“y)iE o (& o X, 7Txy—" o —

where E and v are the modulus of elasticity and the Poisson ratio, respectively.
Finally, we have the “compatibility” equation

(/ dwV  daw dw)
VIC-+")=£fc)-5T 12}e (1'4)

in which V2is the Laplace operator.7 This equation is an integrability conditionfor
Egs. (1.3), expressed in terms of ax, 9y, and u>by the use of (1.1) and the stress-strain
relations.

Two different kinds of conditions will be considered at the boundary C ofthe
sheet. In one case we prescribe the displacements u, » w at the boundary;

u = u(C), = »(C), w = 0. (1-5)

In the other case, instead of the displacements u and » we prescribe the normal and
shear stresses cr,,and rnat the boundary;

<h = <r,(C), t, = r,(C), w = 0. (1.6)

That we may impose the boundary conditions (1.6) is clear; the differential equations
(1.1), (1.2), and (1.4) together with the boundary conditions (1.6) constitute the
complete formulation of a boundary value problem for the determination of the
functions ax av, rxy and w. That the conditions (1.5) may be imposed could be seen
readily by formulating our problem in terms of the displacements u, v, w alone, but
we refrain from doing so here. The conditions (1.5) mean that the edge of the sheet
is stretched in its plane by a fixed amount, which does not depend upon the applied
normal pressure p. The conditions (1.6), on the other hand, mean that the stress at
the edge is held fixed while the displacements there will depend upon p.

6Notice that of the three quadratic terms occuring in the usual expression for the strains, only the
one involving W is retained in (1.3). The motivation for this is that the order of magnitude of the dis-
placement w normal to the sheet can be expected to differ from that of the displacement parallel to the
plane of the sheet. The experimental results (see the paper by Eck [4]) confirm the validity of thisassump-
tion from the physical point of view.

7These differential equations were first obtained by Foppl [6] in 1907. They can also be obtained by
neglecting the terms referring to bending in the non-linear theory of plates developed byv. Kdrmdn [l 1].
The equations have been solved by Hencky for the case of a circular sheet [9] and a rectangular sheet
[10]. Bourgin [2] has treated the case of the rectangular sheet by methods different from those of Hencky,
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For the purpose of comparison with our new theory of curved sheets, which we
develop only for the rotationally symmetric case, it is convenient for us to formulate
the plane sheet theory in polar coordinates assuming all quantities to depend only on
the coordinate r.

The differential equations corresponding to (1.1), (1.2), and (1.4) are for this case|

— (ran) = o~ (1.1)
dr
I d/ dw\
F af (oG = -
d E /dw)\ 2
T(_). (1.4)

For the purpose we have in view it is not necessary' to write down the strain-displace-
ment and stress-strain relations in polar coordinates. The boundary conditions (1.5)

at the edge r=R become
ii = u(R), w — 0, (1-5)

in which urefers to the radial displacement at the edge. Thealternate boundary con-

ditions (1.6) become
o> = oy(2?), w = 0. (1-6)'

We considerthree different specializations of the non-linearplane sheet theory as
a basis for comparison with the theory of curved sheets to be developed later. These
are: Case (a), a direct linearization of the differential equations; Case (&), the classical
linear membrane theory; Case (c), the problem of Foppl-Hencky. We proceed to dis-
cuss these three cases in order.

Case (a). A direct linearization of the differential equations. If we simply neglect
the non-linear terms in (1.2) and (1.3) we obtain the relations V2(cr*+cr,)= 0, p =0.
The sheet is therefore not deflected laterally; it is simply in a state of plane stress.
From our point of view, such a linearization thus leads to a “trivial” problem.

It is worth while to point out that the solutions for Case (a) are also solutions of
the non-linear sheet theory if we impose the condition that the normal pressure p be
everywhere zero.

Case (b). The classical linear membrane theory. The well-known linear theory of
tightly stretched plane membranes can be obtained from the non-linear sheet theory
as an approximation to the solution of the boundary value problem in a special case.
The approximation, as we shall see, results from a development in the neighborhood
of Case (a). The special case of the non-linear theory in question arises when the
boundary condition is taken in the form (1.6) with s€massumed to be a constant <x>0,
r,, to be zero:

<, = 9> 0, t, = 0, w —0. (1-7)
Furthermore, we make the important additional assumption that the applied normal
pressure p is small compared with d. In other words we assume the membrane to be
tightly stretched and then deflected by a relatively small normal pressure.

We can solve this boundary value problem by a perturbation method consisting
of a development in the neighborhood of the solution for the case in which w=0,
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p=0 (that is, in the neighborhood of the undeflected state of the stretched sheet).
The well-known linear membrane theory results as the second step in such a develop-
ment. We need only develop <%, v, txv, and w in terms of the parameter e defined by
e—p/a, as follows:

2 (2
¥ = VﬁO) ¥ e<g<) + e, oV = cr,(,O)_'+- ezcr\(/Z) <1 e (1.8)
TXY T§<0y) -f- €2T§(2y) T x ok W — EW(I) £ 63W(2) 4 X

The stresses (including the stress a at the boundary) are of lower order in e than the
deflection w and the applied pressure p. Insertion of relations (1.8) in the differential
equations (1.1), (1.2), (1.4) and the boundary conditions (1.7) leads to a sequence of
linear boundary value problems for the determination of the coefficients in the per-
turbation series. For the terms of zero order in the stresses one finds readily the solu-
tion gx = 04)=cr, in other words the zero order terms represent a state of
uniform tension throughout the sheet. The zero order terms are also, evidently, the
solution for the linearized sheet theory of Case (a). The differential equation for wm
is then readily found to be

V2a>W = - 1/h, (1.9)

while the boundary condition is, of course,
WM(C) = 0. (1.10)

Equations (1.9) and (1.10) are those of the classical linear membrane theory (for
unit normal pressure). For the applicability of this theory the essential condition is
that the applied pressure p should be small compared with the initial stress a in the
sheet. We note also that this theory results when the stress is prescribed at the bound-
ary rather than the displacement in the plane of the sheet; in other words, the linear
membrane theory requires that the edge of the sheet be free to move in the aty-plane.

Case (c). The problem of FoppUHencky. The boundary value problem which leads
to our Case (c) is that resulting from the choice of (1.5) as boundary conditions for
the non-linear sheet theory. This theory is sometimes referred to as the large deflection
theory of membranes. It is not assumed, as in the above Case (b), that the normal
pressure p is small compared with the initial stress in the sheet. In fact, we assume for
the Case (c) that the displacements u and v at the boundary as well as w are zero.
We shall refer to this problem8on occasion as the problem of Foppl-Hencky. Our
boundary conditions of course mean that the sheet was initially unstrained. Thus the
stresses in the sheet are built up only as the normal pressure p is applied, and conse-
quently the procedure outlined above for Case (b) is entirely inapplicable.

As already stated, our purpose is to generalize the non-linear sheet theory (c) to the
case of curved sheets. The essential step for this purpose consists in developing suitable
non-linear straip relations for the curved sheet analogous to those (cf. (1.3)) for the
plane sheet. However it is not entirely clear a priori in the case of curved sheets just
which of the quadratic terms in the strain equations should be retained and which
rejected. Section 2 is devoted to a derivation and discussion of the strain expressions

8The previously cited papers of Hencky [9, 10] and Bourgin [2] are concerned with this problem.
The problems for the case in which the boundary displacements U and 5are not zero (i.e. the case of an
initially stretched sheet) appear not to have been treated.
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used later as the basis for our theory. The discussion is confined to the case of the
rotationally symmetric deformation of a surface of revolution. Only two displace-
ments are involved in this case, the displacement u along a meridian and the displace-
ment w along the normal to the sheet.

Once expressions for the strains in terms of the displacements are available,
it becomes possible to set up the integral for the potential energy in the sheet (as-
suming Hooke’s law to hold) in terms of the displacements u and w. The equilibrium
conditions can then be found as the Euler variational equations minimizing the po-
tential energy. The result is a pair of second order non-linear differential equations for
u and w which permit the boundary condition ii=w —O0 for a fixed edge to be imposed.

For most purposes it is, however, more convenient to formulate the curved sheet
theory in terms of the two components ae and tr# of the stress in the sheet along and
perpendicular to a meridian curve, respectively, and the displacement w normal to
the sheet, rather than in terms of the two displacements u and w. This is carried out
in Section 3. In Section 4 the general theory is specialized for the case of the spherical
sheet. The result is a set of differential equations for the curved sheet analogous to
(1.1) and (1.2) for the plane sheet. In Section 5 a simplification in the theory for the
spherical sheet is introduced which is valid for a spherical segment of small curvature
(and probably also for all cases of spherical sheets). The differential equations of Sec-
tion 5 are

d
crj sin 9) = a$ cos 6,
i’ (ey] )

1 d/ dw\ (Rp

\
ae sin 9 —- = — b a; + ae) sin
R ddV/ w3 vh ¢ ?
(1.19)

I, (o> tan 9) + (1 + vtan29)ae

E I d
=E<Iu>tan29+ tan 9 -—-- (- | >

The independent variable 9is the latitude angle measured from the pole of the sphere.
These equations are exactly analogous to Eqgs. (1.1)", (1.2)', and (1.4)".9We refrain
from writing the stress-strain and strain-displacement relations which are needed for
a complete formulation of the problem.

As boundary conditions at 9=60we assume either

U = ti(90, w — w(90), (1.12)
or
a0 = as(%), w = w(90). (1.13)

At the pole 6=0 we require all quantities to remain finite.

We wish to consider the three special cases in connection with Eqgs. (1.11) which
are analogous to the three cases discussed above in connection with the plane sheet.
These are: Case (a), a direct linearization; Case (b), the analogue for curved sheets of

91f we were to allow R to tend to infinity while Otends to zero in (1.11) in such a way that R8-+r,
the result would be the differential equations (1.1)", (1.2)' and (1.4)". (The normal pressure p and the dis-
placement w are taken positive in the direction toward the center of the sphere.)



252 E. BROMBERG AND J. J. STOKER [Vol. 11I, No. 3

the classical linear membrane theory; Case (c), the analogue of the Foppl-Hencky
problem for curved sheets. We consider these cases in order.

Case (a). A direct linearization. In contrast to the corresponding case in the plane
sheet theory, we observe that neglect of the non-linear terms in (1.11) does not lead
to a trivial problem. We obtain, in fact, the equations

-~ (<Bsin 6) = cos 9, 0s + = —-

dd
d E ( dw\
— (0>tan 6) + (L + vtan28<e = — rotan29+ tan 9— J.
d9 R\ doJ
These are the differential equations of what is called the “membrane theory” of thin
shells. One observes that the order of the system (1.11)' is two less than that of (1.11)
The stresses can be obtained from the first two equations of (1.11)" without reference
to the strains and displacements. It is, however, not possible to satisfy in general the
kinds of boundary conditions which would be natural in the physical situations en-
countered in the applications. One such case is that of a fixed edge, which would imply
the condition w=0 at the boundary. That this condition cannot be satisfied, at least
in the case p =const., is readily seen : the only solution of (1.11)' that is finite at 0= 0
is given by

pR
®= «* = oh w= pRZ1- v)/2Eh. (1.14)

All three quantities are constant throughout the shell.

As in the corresponding Case (a) for the plane sheet, the solution (1.14) of the
linear equations (1.11)" is also a solution of the non-linear equations (1.11) if proper
restrictions are imposed. Instead of prescribing the boundary values ¢9and w in (1.13)
arbitrarily, we would require them to have values consistent with (1.14).

Case (b). The analoguefor curved sheets of the classical linear membrane theory. The
theory of curved sheets analogous to the classical linear membrane theory for plane
sheets seems not to have been developed. For the case of a spherical sheet we can ob-
tain such a theory from Eqgs. (1.11) with the boundary condition (1.13), in which,
however, we assume and w to have values consistent with (1.14) and setp—pw .
However, we assume that the pressure p in (1.11) is given by

p= pw +epm, (1.15)

in which €is a small (and, of course, dimensionless) parameter. The theory we desire
then results from the terms of first order in the development of the solution by per-
turbations with respect to e. We set

0 H, 2
w = vs) 4ew.’§r)ew + 2-)--, 'f
<f« = e + tere  + e ee | > (1-16)
0> = &+ q7) k.. J

and insert these series together with (1.15) in the differential equations (1.11) and
the boundary conditions

j, = j*= - pWR/2k, w = pWR'-(1- V)/2Eh. (1.17)
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The terms of zero order in (1.16) are then readily found to be those which would re-
sult from the linear theory—in other words <xf\ and ww have throughout the
sheet the constant values prescribed at the boundary in (1.17). The first order terms
are then found to satisfy the linear differential equations

i lcré) stn 8) = tf® cos i

1 d/7 © , dwm\ RpM (] <b\ .
Sin 6 -------- To -T-crs 181N € 1.18
R d6\V° dd ) ( $ (1-18)
d dww @M 2
—(@Vy }tan 0) + (1 -f- v tan20<«' = —f tan 6---—------- (w “tan 6
de R\ de e
and the boundary conditions
) = g ) (1.19)

Equations (1.18) and (1.19) are analogous to (1.9) and (1.10) for the corresponding
case of the plane sheet. It must, however, be admitted that this “theory of tightly
stretched membranes” for the sphere is somewhat artificial because of the fact that
the “stretched” state is one for which the initial radial displacement w cannot be held
zero at the boundary.

Case (C). The analogue of the Foppl-Hencky problem for curved sheets. The differ-
ential equations (1.11) are to be solved for a prescribed pressure p when the edge of
the sheet is considered fixed, i.e., under the boundary conditions w—0 and «=0.
In this particular case the condition u=0 can be replaced by the condition that the
strain in the direction of the boundary curve is zero, which implies the condition
04—wt0=10 on and <eat the boundary. The analogy with the corresponding case
for the plane sheet is, as we see, exact in every respect.

It should now be apparent that some such term as “sheet theory” is needed in
addition to the term “membrane theory.” This is brought out by Table I which lists
the Cases (a), (b), and (c) together with the present terminology. As we note, the
phrase “membrane theory" is already applied to cases which have almost nothing in
common. Consequently we would recommend (in accordance with a suggestion made
by Bourgin [2]) that all of these theories which neglect bending be referred to in

Table I.
Cases Plane Curved
&) Plane stress Membrane theory of shells
(b) Membrane with small deflections —
© Large deflection theory of membranes —

general as sheet theories. The Cases (a) and (c) could then be referred to as linear and
non-linear sheet theories respectively, while the term membrane theory might be re-
served for the Cases (b), i.e., for theories of initially stretched sheets which start with
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the linear sheet theory as a first approximation and then proceed to a second approxi-
mation by a development in the neighborhood of the solution to the linearized prob-
lem. This terminology will be used in the remainder of this paper.

In Section 3, the differential equations for the curved sheet theory are obtained,
as we have already indicated, by variational methods. In that section also, the sta-
bility of the extremal solutions for both the linear and the non-linear sheet theories
[Cases (a) and (c)] is considered. At first sight one would be inclined to think that
the solutions in the two cases would not differ greatly as far as stability is concerned
if the pressure, thickness, etc., are the same in both cases. This is, however, not true.
On the basis of the linear curved sheet theory, the solutions would appear to be stable
whether the pressure p is inward or outward, that is, whether the sheet is in compres-
sion or tension, respectively. On the basis of the non-linear curved sheet theory, how-
ever, the solutions are unstable when the pressure is such as to cause the stress as
in the sheet to be a compression.10 This result follows through consideration of the
Legendre condition for our variational problem. In the case of the spherical sheet the
stress ao, as given by the linear theory, is a compression when the normal pressure p
is positive (i.e., when the pressure is directed toward the center of the sphere). It also
seems certain that the non-linear theory will yield the same relation between the signs
of <o and p for the case of the spherical sheet, unless the displacements are very
large. Consequently, we have assumed in our numerical work that the pressure p is
negative, i.e., is directed outward, in order to avoid unstable cases.

In Section 5 the non-linear curved sheet theory [Case (c)] is formulated in detail
for the special case of a spherical segment of small curvature. The differential equa-
tions for the spherical sheet can be solved by power series in the independent variable.
Graphs showing the distribution of the stresses and the normal deflection w along a
meridian in a particular numerical case are given in Section 6. Perhaps the most strik-
ing feature of these results is that the non-linear sheet theory [Case (c)] yields results
which do not differ greatly from those of the linear theory [Case (a)] except near the
edge of the sheet. In particular, the stresses and the normal displacement w are nearly
constant over most of the interior of the sheet, but change rather rapidly near its edge.

This observation indicates that we have to deal here with a boundary layer effect.
In Section (7) the existence of such an effect is deduced and treated explicitly. It
turns out upon introduction of proper dimensionless variables in the original differ-
ential equations that only one parameter k remains in the transformed differential
equations. The quantity kis given by

k — pR/Eh, (1.20)

in which p is the normal pressure on the sheet, R the radius, E the modulus of elastic-
ity, and n the thickness of the sheet. If « is allowed to tend to zero in the transformed
differential equations the result is in the limit the differential equations of the linear
sheet theory with a consequent lowering of the order of the system. Hence some
boundary condition must be lost at the edge on the transition to the value x=0. The
solutions of the boundary value problem for kf*O can therefore not be expected to
converge uniformlj' at the boundary to the solution of the problem for x=0. It is

10 Comparison with the analogous cases (a) and (c) for the plane sheet theory is illuminating. It is
clear that the plane sheet would be stable under edge compression if no lateral deflection were to be per-
mitted, but decidedly unstable under compression if such a lateral constraint were not imposed.
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possible to treat the boundary layer phenomenon by introducing a new independent
variable which depends upon « in such a way as to stretch the boundary layer to
infinity as k—>0, with the result that the convergence of the solutions becomes uniform
with respect to k at the edge. One notices that the value k=0 corresponds, according
to (1.20), to the value zero for the pressure p.

The boundary layer solution is given in this case very simply by an exponential
function. It could be used to estimate the stresses in practice in cases for which k is
small (and, of course, negative). In the usual cases it is not difficult to see that kwill
be of the order of —0.0005 in practice, since pR/2h is the stress when p is constant,
according to the linear theory, and hence kis a quantity of the order of the longitudi-
nal strains. 1l

It is clear that the non-linear sheet theory could be worked out in detail rather
readily in other cases such as those of the cylindrical and conical sheets. It would
also be of interest to consider the case of the spherical
sheet with a hole, so that two distinct boundary curves
would exist. Various combinations of boundary condi-
tions at the two edges.should be considered; boundary
layer effects could then occur at both edges.

From the point of view of the practical applications,
another question is of interest. It is clear that bending
effects will dominate the “sheet effects” near the edge of
the sheet if the sheet is thick enough. This question is
under investigation at the present time.

2. Expressions for the longitudinal strains. We as-
sume the curved sheet to be the surface of revolution ob-
tained by rotating about the y-axis the_ meridian curve C, Fig. 2.

V=% 2.1

The parameter 8is taken to be the arc length of the curve. We consider only deforma-
tions which preserve rotational symmetry, so that the deformation iscompletelyde-
scribed by the displacement components u and w along the meridian and along the
normal to the surface respectively.

It is convenient to introduce the angle 9 between the y-axis and the normal to the
meridian. These notations are indicated in Fig. 2.

The longitudinal strains in the sheet are defined in the usual way. If dslis the de-
formed length of the line element originally of length ds, then the strain t in the direc-
tion of the element ds is defined by

(£)'.,+ 2, (2.2)

It is useful to introduce the following relations between the original position (x, y, 2)
and the deformed position (x1 y1 z1) of any point P on the sheet:

u The effect of the edge constraint seems to be such as to cause the stresses at the edge to be lower in
value than in the interior of the sheet. Thus it seems likely that the usual practice in engineering design
of ignoring the edge effect leads to estimates for the stresses which are too high, i.e., are on the side of
safety. Of course, we are entitled to draw this conclusion here only in case the sheet is in tension.
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Xx1= x+ ucos9—wsin9, yl=y —usin 0 -~ w cos 6, 721 =1z

By making use of these relations the strains e«and e$in the direction of a meridian
and a parallel (i.e., a curve 0= const.) are easily computed by using (2.2). We obtain

1€du \ 1/ dw\2 11 /du \ 2
= — w)H {/u H M (e W}, (2.3)
p \dd J 2p- V| do J 2 p2\dd
u cos 6 —iv sin 6 1 (ucosO— wsin0\2
« = X + _2(\ ___________ )_( __________ / u (24)

The quantity p is the radius of curvature ot the meridian curve and £ is, of course,
the abscissa of the point P.

Just as is done in the analogous case of the plane sheet, we retain only certain of
the quadratic terms in the strain expressions, which then amounts to the assumption
that these non-linear terms are considered to be of the same order as the linear terms.
Thus it would be logical to reject the third term on the right hand side of (2.3) and
the second term on the right hand side of (2.4), since they are squares of the linear
terms. We shall follow this procedure and thus take for the strains the expressions

1édu \)H 1( ddW\)2 (2.5)
e= —(— —w u , .
p \dd ) 2P2 dd J
ucos9—wsin9
e* = (2.6)
a

The following special cases are of interest:

a) The sphere.n Here p—R (the radius of the sphere), and we find from (2.5) and
(2.6) that
\ 1 /dw \ 2

1/d \ .
) E(d M oralae V'Y (2.7)
—1 (u cot 9 —w). (2.8)

b) The circular cylinder. Here p=«>, d=Tr/2, x =a (the radius of the cylinder),
and £=y. We find that

du 1/dw\ 2

w
= ay + —2Hy)/‘ (2.9) £5 = e - (2.10)

¢) The circular cone. Here p= «, 6=y =const. The strains are given by

& 7 au 11 {dW\)Z (2.11)
= €0S 7 - cosy | --—-- , .
dx 2 2y\dx/
ucos7 —wsin7
e, [ (2.12)

I! These expressions coincide with those used by Friedrichs [7]. Similar expressions were used earlier
by Biezeno [I].
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3. Formulation of the boundary value problem for a sheet with fixed edges. On
the assumption that Hooke’s law holds for the relation between the strains ee and
defined above and the corresponding normal stresses creand o, B3we have for the po-
tential energy V of the sheet the expression

Cfo/ 1 Eh ' ” . \
VvV = 2tt § --------------- [e?2+ e\ + 2\keet] - pw xdt-, 3.1)
J 2 1—v2 /
in which p is the normal pressure on the sheet counted positive in the direction of the
inward normal. The quantities £ and x(£) are the arc length and abscissa of the me-
ridian curve, and h is the thickness of the sheet. The quantities vand E are the elastic
constants.

The potential energy could be expressed in terms of the displacements u and w
by replacing ee and e*in terms of these quantities through (2.5) and (2.6). The varia-
tional equations for the minimum problem would then clearly be a pair of non-linear
ordinary differential equations for u and w, each of which would be of the second
order. We shall not write these equations down since in the following we wish to work
with the stresses ere and oqg, and the displacement w as dependent variables. However,
we do wish to draw one conclusion from the existence of two such equations. The
differential equations for u and w are of the proper order to permit imposition of the
boundary condition u =w =0 appropriate for a fixed edge.

The variational equations resulting from (3.1) are

1 d r de ( dw u\ a$ cos 01
X a ) PRt prt-x =0 (3-2)
1 d (dw . u\l r<e T sin6  p- in
N SRR RS B Acistuc b— =0 (3.3)
x d& ¢ pll Lp X hJ

The quantity p in these equations represents the radius of curvature of the meridian
curve; the quantities p, d, and x are, of course, given functions of £ In deriving (3.2)
and (3 3) use was made of the stress-strain relations

Eee —ue —w$, Ee$ = a$ — wore, (3.4)

and of (2.5) and (2.6)in order to introduce ere and o™ as dependent variables. Equa-
tions (3.2), (3.3), (3.4), (2.5), and (2.6), together with appropriate boundary condi-
tions, yield the complete formulation of the boundary value problems we consider
here. We note that there are six equations for the six quantities u, w, ere, cq, €j, €$.

For the most part, we are concerned with the case of a sheet without a hole at the
axis of symmetry, so that the quantity * in  (3.2) and (3.3) has the value zerowhere
the meridian curve crosses the axis, which we may assume to occur for £= 0. In this
case we would require the solution to be regular at £= 0. At an edge £= fo of the sheet
we require u—w =0, for a fixed edge. In view of (2.6) we see that this implies € =0;
hence we may prescribe the following conditions at a fixed edge:

j w=0, (3.5)
S [Ee* = 04 —wvre = 0. (3.6)
In this way we express the boundary condition in terms of w, er and 0>.

130n account of symmetry the shear stresses in the coordinate directions are of course zero.
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We remark that the so-called membrane theory of axially symmetric shells results
from the above theory when all non-linear terms in ae, a$, u, and w are rejected.

We have already stated in the introduction that the solutions of the variational
equations (3.2) and (3.3) are unstable when the “radial” stress ae is negative (i.e.,
when it is a compressive stress). On the other hand, it was stated that the solutions
of the linear sheet theory are stable whether as is positive or negative. The conclusion
regarding the instability in the non-linear case results immediately from the fact that
the Legendre condition on the second variation of V is not satisfied if ae is negative,
which means that the extremals do not render V a minimum in this case. The Le-
gendre condition¥for a minimum in our case requires that the quantity A given by

A= FUUFWW — T I (3.7)

should be positive. The quantity F is the integrand in (3.1) and subscripts denote
differentiations. It turns out that the quantity A can be expressed in the form
A=47r2iE (I — 2-1xVs. The right hand side has the sign of ae, and consequently the
Legendre condition is violated at all points where ae is negative.

In the special case of the spherical sheet, it is possible to put the sign of ae in rela-
tion to that of the applied pressure p. If the boundary conditions are specialized in
such a way that the solution of the linear sheet theory results, we know [cf. (1.14)]
that p and ae are opposite in sign, so that the solutions in this case are unstable when p
is positive, i.e., when p is directed toward the center of the sphere. Since it is not pos-
sible to give the solutions explicitly in the general non-linear case, we have not been
able to prove readily that as and p are opposite in sign in this case; but if the dis-
placements remain small there can be little doubt that p and ae differ in sign in these
cases also. In our further discussion of the spherical sheet we have therefore assumed
always that p is negative, i.e., that it is directed outward from the center of the
sphere.

The linearized sheet theory results from (3.1) when all terms of degree higher than
the second in u and w and their derivatives are neglected.at the outset. If this is done,
the Legendre condition for the resulting variational problem becomes A= RX{>0,
with

A= e , (3.8)

which is always positive, since x (the coordinate measuring the distance from the axis
of the sheet) is always positive. Hence the Legendre condition is always satisfied in
the case of the linear sheet theory, and we expect all solutions to be stable. The reason
for the stable character of all solutions given by the linear theory, as contrasted with
the unstable character of some of the solutions given by the non-linear theory, is that
the linearization is equivalent to the imposition of a constraint powerful enough to
cause stability in all cases.

4. The spherical sheet. In the special case of the sphere we may write £=
p —R, and x =R sin 6, R being the radius of the sphere. The differential equations for
the sphere are

14 See, for example, R. Courant and D. Hilbert, Methoden der mathematischen Physik, vol. 1, Julius
Springer, Berlin, 1931, p. 184.

Rd,
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d ) 1/ dw \ .
— (esing) = — -——-- \-u la sin O+ a* cos 6, (4.1)
dd R\ d6 )
1 dr /dw \
a« hu_ sin sin (4.2)
R dOL \ dO )

The system of equations is completed by the two strain-displacement relations (2.7)
and (2.8) and the stress-strain relations (3.4).

As boundary conditions at a fixed edge 0—6owe have [cf. the remarks preceding
(3.5) and (3.6)]

w = 0, (4.3) o* —vca— 0. (4-4)

In case the sheet has no hole at the axis, we require the solutions to be regular at 0—O0.
It is of interest to consider the special case of the complete sphere, in which the
boundary conditions would become regularity conditions for 0= 0 and 6=ir. In case
we assume that the load p is constant, it is readily verified that a solution of our dif-
ferential equations which satisfies the regularity conditionsisu=0,w=pR2(1—v)/2Eh,
Os=oV= —pR/2h. It could also be shown that this is the unique solution to this prob-
lem. We observe that this solution is identical with that furnished by the linear sheet
theory (a) of shells. In other words, the non-linear terms have no influence on the
solutions for the full sphere in case the applied pressure p is constant. If p is not con-
stant, however, the non-linear terms will influence the results for the full sphere.

5. The spherical segment with small curvature. The differential equations of the
Foppl-Hencky theory for the deflection of a radially symmetric plane sheet are con-
tained in the above equations as a limit case. We need only allow R to tend to infinity
while 6 approaches zero in such a way that the product R sin 0 approaches a finite
limit r, and r is thus the polar coordinate which locates points in the plane sheet.
The resulting equations (1.1)" and (1.2)' have already been given in the introduction.
In passing to the limit, one observes particularly that the term u in the second paren-
thesis on the right hand side of (2.7) drops out, so that the non-linear term reduces to
\{dw/drY. As a consequence of this, the variational equations for the case of the plane
sheet are much simpler than (4.1) and (4.2), since the terms corresponding to the
first term on the right hand side of (4.1) and the term u in the parenthesis on the left
hand side of (4.2) disappear.

It is clear that we could also simplify our equations for the spherical sheet quite
considerably by omitting the non-linear terms involving u in the expression (2.7)
for €9. It would seem fair to expect that such a simplification would be justified for the
special case of rather flat spherical sheets. We recall that the choice of the expressions
for the strains in terms of the displacements was in any case somewhat arbitrary. At
the beginning, we might have considered the displacement u as negligible compared
with the quantity dw/dO, since we expect the order of magnitude of the displacement
w in the direction of the applied load to differ from that of the displacement u. In
other words, it may well be that this term could be neglected even for sheets of rather
large curvature.’5 In what follows we shall neglect this term.

161t might be noted that the limit problem which leads to the boundary layer phenomena (to be
treated in the next section) is the same whether the terms in the displacement U under discussion here are
retained or not. This is another valid reason for considering these terms to be negligible in most cases.
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One result of this assumption is that the variational equations no longer contain
the function n, but only w, erg, and 0> We can obtain a third equation in these same
guantities—a “compatibility equation”—by eliminating u from (2.7) and (2.8) and
then replacing egand e$ by ag and aZthrough use of the stress-strain relations. The
result is the system of equations

— (ofisin 6) = aacos 0, 5.1
o ( ) (5.1)
1d dw r-Rp )
@—-sin 9 + D+ sin 9, (5.2)
R d9 do " Ln
dw 1 /dw\ 2
(o>tan 0) + (1 + vtan29ae = ° -\w tan29 -f- tan (5.3)
dd R L d + 2R \d 6) .

& (IN RADIANS)
Fig. 3. Normal displacement.

These equations are identical with Eqgs. (1.11) which served as the basis for the dis-
cussion of the curved sheet theory in the introduction.

We are interested in solving the differential equations (5.1), (5.2), (5.3) for the
case of a spherical segment without a hole about the axis 0= 0 and with a fixed edge
at 6=6a This means that we require the solution to be regular at 0= 0 and to satisfy
at the edge 0= 00the conditions

w =0, (5.4) o™ —wvoe = 0. (5.5)

6. Numerical solution of the boundary value problem for the flat spherical seg-
ment. Our principal object in this paper is to present a new theory of thin sheets and
to compare and contrast it with other theories, rather than to give numerical solu-
tions for the resulting boundary value problems. However, we have obtained approxi-
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mate numerical solutions of the boundary value problem formulated in Egs. (5.1) to
(5.5) of the preceding section, and will report the results briefly in this section.
The graphs of Figs. 3, 4, and 5 indicate the results of an approximate solution®

Si (in radians)
Fig. 4. Circumferential stress.

BOUNDARY LAYER SOLUTION ,-K 51.56 X10~3

0.50
— LIMIT SOLUTION, K=0

POWER SERIES—
-K =1-56 X10-3

0.48-

046

KE

0.44

0.42

0.40

0.00 0.04 0.06 0.12 016 0.20

3 (IN RADIANS)
Fig. 5. Radial stress.

18The solution was obtained in the form of a development in powers of the independent variable 0.
Only four terms in the series (which appear not to converge very rapidly) were retained in calculating
coefficients. On the graphs these solutions are marked “power series, —k= 1.56X 10-3.”
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for the case in which the value 900of 9 at the edge of the sheet is 0.2 rad., and the di-
mensionless param eter]]K:pR/'E | has the value —1.56X10-3, and r = 0.3. (This was
one of the cases treated as part of the project mentioned in the footnote at the be-
ginning of the paper.® The strain everywhere in the sheet is about —1(1—)« in
value. The graphs show values of w/kR, —<t$/kE, and —aglﬂE as functions of 9.
Each graph contains three curves: a dotted curve giving the result of our approxi-
mate solution; and two solid curves which refer to the limit solution obtained as k—0.
The method of obtaining the limit solutions is explained in the next section. One ob-
serves that the curves marked “boundary layer solution” approximate those of our
numerical solution rather well, at least for the stresses. We have some reason to think
that a more accurate solution of the boundary value problem would show the bound-
ary layer solution to be a better approximation to the actual solution than our graphs
indicate. We note that the curves marked “limit solution, x= 0" are those which
would be obtained from the linear sheet theory.

7. The boundary layer problem. A boundary layer effect has already been men-
tioned a number of times in connection with our boundary' value problem. The graphs
of the solutions in the preceding section furnish a hint regarding the character of this
phenomenon. The solutions in the interior portion of the sheet appear to be relatively
constant, approaching there the values furnished by the linearized theory (i.e., those
of the theory usually called the membrane theory' of shells). However, toward the
edge of the sheet, the solutions appear to change rather abruptly. This is consistent
with the repeatedly mentioned fact that the condition for a fixed edge cannot be satis-
fied in the linearized theory. The purpose of the present section is to treat this bound-
ary layer effect explicitly.

A necessary step in any treatment of boundary layer phenomenal8consists in the
introduction of appropriate new variables and parameters. In the present case it _is
convenient to introduce new dimensionless dependent variables replacing eg, e*, ay,
swand u by the relations

sg = gs/E K, = g$/Ek (7-1)
eg = tg/K, e$ = 2] Kk (7.2)
w= w/RK . — u/RK, (7.3)

in which the important dimensionless parameter k is defined by the relation
k = pR/Eh. (7.4)

We assume here that the applied pressure p is constant. In terms of the new quanti-
ties, the fundamental differential equations (4.1), (4.2), (2.7), and (2.8) become, in
order

d (s6sin 0) k/?o) b p.jsg sin 6 9 (7.5)
— (S6bSsIn —K |- Sg SIn + COS Y, .
dd g - Py

K:id + pjsin = — ][l + sg+ ,]sin 6, (7.6)

17 In the next section it will be seen that 60and kare the only essential parameters, once the value of
the Poisson ratio V is fixed.

1BSuch boundary layer effects have been well-known for many years in fluid mechanics. They occur
also in problems in elasticity other than those considered in this paper. (See, for example [7, 8].)
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/ dfx \ k (do \ 2
e (« )T U Y 7
= (fi cot 0 —w). (7.8)

To obtain a complete system of equations we add the stress-strain relations:
e —se — Vv s (7.9) e$ — st — vsg. (7.10)

As boundary conditions we require all quantities to be regular at 0= 0, while at 0= 00
the condition of a fixed edge is prescribed,

®= 0, (7.11) s, - vs* = 0. (7.12)

We now observe that if x is allowed to approach zero in these differential equa-
tions, the result is a set of differential equations for the limit quantities which are
identically the same as those of the linear sheet theory19 (when formulated in terms
of our dimensionless variables),

d
@ (se sin 0) = s$ cos 0, (7.13) e + = —1, (7.14)

ee = pY —m (7.15) e* = /tcot0 —a (7.16)
Obviously, the boundary conditions (7.11) and (7.12) cannot be imposed in this limit
problem. In fact, the solutions of (7.13) and (7.14) are completely determined by the
regularity conditions at 0=0 alone. This solution is, as we know, Se=St=—\,
o= 5(l —v), n—0. In the limit, therefore, the boundary conditions at the edge, in
general, will not be satisfied. It follows that the solution of the boundary value prob-
lem formulated in (7.5) to (7.12) will not converge uniformly at the boundary to the
solution of the limit problem as x—0, and this is the essential characteristic of a
boundary layer effect.

It is, however, reasonable to expect that the solutions do converge in the interior
(i.e.,, for 0" 0< 00 <00 where 00 is a constant) as k—#® to the solutions of the limit
problem for x=0. The graphs of the preceding section confirm this to some extent.

It is possible to give an explicit treatment of the boundary layer effect. Such a treat-
ment can be obtained through the introduction of a new independent variable which
replaces 0 and which depends on xin such a way that the solutions are made to con-
verge uniformly at the boundary in the limit as x—0. W hat one wants, roughly speak-
ings is to stretch the boundary layer as x—0 in such a way that its width does not
shrink to zero. In our case, this can be accomplished by introducing as a new inde-
pendent variable the quantity 7 defined by the relation

, = —i— (0-00. (7.17)
vV — X

191t is perhaps of interest to observe that the limit situation characterized by k—#0 can be achieved
by allowing the pressure p to approach zero. However, if p is simply set equal to zero in the original dif-
ferential equations (4.1) and (4.2), the order of the system is not decreased. Thus the introduction of
new dependent variables through division of the original ones by <is an essential step in the treatment
of the boundary layer effect.



264 E. BROMBERG AND J. J. STOKER [Vol. 11I, No. 3

The reason for the minus sign under the radical is that we wish to consider only cases
for which the solutions are stable, which means cases in which « is negative. (Cf. the
remarks at the end of Section 3.)

If we introduce the new independent variable in Egs. (7.5) to (7.8) and then allow
« to tend to zero, we obtain the set of limit differential equations

dsq d /[ du\
=0 (7.18) 7rASSTV) = (L + Se+ SN (7°19)

N
0= df,’

for the range —w CtjSsO, where 7= 0 corresponds to the edge of the sheet. This sys-
tem of equations, which has the same order as the original system, yields the bound-
ary layer “resolution” which we seek. The boundary conditions at 77=0 are given by
(7.11) and (7.12). At 17= —» we expect all quantities to tend to the values furnished
by the solution of the interior limit problem given above. Thus we expect to to ap-
proach the value ¢(1—r) as 7——«3.

Since the boundary layer differential equations have constant coefficients, they
are readily solved by exponentials. One finds, for example, that w satisfies the differ-
ential equation

(7.20) e\ —B cot o —w = s#t —wj, (7.21)

d 20
— - 2«= - 1+ * (7.22)

so that the homogeneous equation is solved by real exponentials.2 The solution of

(7.22) which satisfies the conditions at 77=0 and 7= —<is
o= K1 - «)(«™* ~ 1) (7.23)
The results for the other quantities are easily found to be
M= 0, (7.24) se= - h (7.25)
**= - MI+ (1- N}e (7-26)

The graphs of Figs. 3, 4, and 5 contain in each case a curvemarked “boundary
layer solution, k——1.56X10-3.” These curves were obtained from (7.23), (7.25), and
(7.26) by réintroduction of ¢ as a variable through use of (7.17) with « = —1.56X10%3
Comparison with the curves for the numerical solution of the original boundary value
problem indicates that such a “compressed” boundary layer solution may furnish a
fairly good approximation to the values of w and s near the edge of the sheet if « is
not too large.
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—NOTES—

A FORMULA FOR THE SOLUTION OF AN
ARBITRARY ANALYTIC EQUATION*

By D. R. BLASKETT and H. SCHWERDTFEGER (University of Adelaide)

In this note a proof will be given of a formula which has been stated without
proof by E. Schroder.1The fact that he has expressed some doubts as to its general
validity may have caused it to fall into oblivion although it seems to be of some theo-
retical and practical interest, like several other results of Schroder’s to be mentioned
below. Since moreover the true nature and simplicity of the formula is rather con-
cealed in Schroder’s discussion, it may be worth while to enter into the matter again.

The formula in question is a consequence of the following theorem which at once
describes its exact realm of validity:

Theorem I. Let w=/(z) be an analyticjunction, regular in a domain A of the com-
plex z-plane. Let a be an interior point of A and a simple root of/(z);

/(“y =0, I'(a) ~ O

Further let zObe a point in A “not toofarfrom™a (in practice zOis a first rough approxi-
mation to the root a). Then, denoting by z —~I{w) the inversefunction off(z) one has
v ALI(RCY (ATKv>)\ ‘ A df-2w)
a= - )t — (— 1 =explt- /(20 — 1
VaaO ( ) \/I % dW /W*nf(zO) p\ ( Q (hN /\)u>'M 1(r0) ( )
ewhere the exponential function operates symbolically on the differential symbol.

In this form the theorem is a corollary to the main theorem on the analyticity
of the inverse of an analytic function. To prove (1) we make use of the fact that be-
cause f'ia)”0 the function /(z) is simple (schlicht) in a certain neighborhood of
the point z=a.2 Hence the inverse/-1(w) exists in a circle K of radius p> 0 round the
point w=0. Moreover it is analytic in K. Thus we may choose zo in a neighborhood
of a such that a circle k round wa=f(zg) (in the w-plane) contains 0 and is wholly
contained in K. In k the function/_1(w) is given by its power series

f~lw) = E —(—:; ) -{w- f{zOY
o\ dwe <e<)

whence for w=0 follows the formula (1). Evidently, for z0, any point z near a can
be chosen for which w=f(z) lies in a circle of radius p/2 round 0.

To obtain Schroder’s formula we introduce the operators S* (ju=0, 1, 2, s )
defined as follows:

* Received Oct. 30, 1944.

1E. Schroder, Uber unendlich viele Algorithmen zur Auflésung der Gleichungen, M athematische An-
nalen 2, 317-365 (1870); in particular cf. 884 and 5 of this paper.

1 Cf. G. Julia, Principes géométriques d’analyse, Premiére Partie, Paris 1930, p. 16-17.
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m N i <rw».
Then

s'z) = H g2l jwerw 512) = ( &t D=1

which is easily shown by induction. Therefore the expansion (1) is identical with

«= *d+ E (- 1)
y~I VI

1 1>y I'W , [(20)3 /W " (*0 - 3/"(z02

/'(z0) 21 /(a,)» 31 I'(z,,)5 {-ee™. ()

, N
= 20—/{z0)
A
This was not the way in which the formula (2) was actually discovered. It ap-
peared rather as a plausible consequence when dealing with another method of ap-
proximate solution of an analytic equation. Although no proof could be given on
the basis of this method, it turns out to be of some interest here as it shows that the
partial sums of the infinite series (1) or (2), i.e., the expressions

() =E (- =E (- )" 53 ©

PN dwr uelz) vi
can be used for an iterative approximation of the root a\
Theorem Il. For eachn= 1,2, .« m the recurring sequence
a0= z0 om = $,.(ami), (m=12 900°) (4)
has the root a as its limit and then also
$.(<) =a (@ =0, e, 4>r5a) = 0. (4

This is one of the results of Schroder who has discussed in detail (l.e.) several
such iterative algorithms (“Algorithmen erster Art”) and has thus obtained formulae
of considerable practical interest.3We propose here another treatment of the problem
of iterative approximation which leads immediately to a proof of Theorem 1I.

We make use of the fact that if a is a simple root of the equation f(z) =0, a func-
tion d>z) can be found for which a is an attractive fixed point, i.e.,4

) = a, | @) | < 1 ®)

Then the recurring sequenceao, «i = *(a0). a2= 0(ai), « * m, ifao isnot too far from a,
is convergent and has a as its limit. To strengthen the convergence we may replace
the inequality in (5) by the condition g={a&) =0. Such a function $(z), involving an ar-
bitrary function h(z), is for instance

5I1n particular the reader’s attention may be called to the formulae (A,) and (B\) in 8§12 (p. 352) of
Schroder’s paper. These formulae are very expedient for the computation of nth roots if a high degree of
accuracy (e.g. more than 20 correct figures) is required. A similar algorithm has recently been given by
V. A. Bailey in a brief expository article Prodigious calculation, Australian Journal of Science, 3, 78-80
(1941), by which our attention has been drawn to the present subject.

*Cf. G. Julia, loc. cit., p. 23.
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1(2)A
0@) = 3+/(*)e (2)A(2)
1(*)

Thus we may impose more rigid conditions further strengthening the convergence,

viz.,
0'(a) = 0, 4>"{a) = 0, mmm, &Xn)(a) = O, (6)

where n is any positive integer.6
A function 0(z) satisfying the conditions (5) and (6) can be obtained in the follow-
ing way. The conditions (6) will be satisfied if the derivative of 0(z) appears in the

form
= (H{2)){2)f'{2),

the undetermined function g(z) being regular at z=a. It remains to adapt g(z) to the
condition 4>(a) =a. One has

0®) = J 0@m@i@d = J wiglt-1w)dw
whence, by repeated integration by parts, it follows that

0(z) = n\Y, — \~r (f(2))n,gy+i(2)
y-0 {n —V!
where g,,(z) is the /x-fold iterated indefinite integral of for w=f(z). Thus, for

z=a one has
0(a) = (— I)n»lg,+i(a).

Therefore
(- "
gn+1(z) = — 3
«!
will give a function 0(s) which has all the desired properties. In this way one obtains
the function $,,(3) of (3), and it is evident that this function has the properties stated
in Theorem 1I1.

6From a letter of Professor V. A. Bailey we have learnt (in May 1941) that this problem has been
dealt with in some special cases by E. Netto in his Vorlesungen iiber Algebravol. I, Teubner, Leipzig, 1896,
p. 300. In the same letter Bailey has given an elegant solution of the problem which, however, does not
suit our present purpose. Further he has drawn our attention to the paper by L. Sancery, De la metliode
des substitutions successives pour le calcul des racines des equations, Nouvelles Annales d. Math. (2) 1,
30S-31S (1862), which, however, was not accessible to us.

THE CAPACITY OF TWIN CABLE*

By J. W. CRAGGS and C.J. TRANTER (Military College of Science, Stoke-on-Trent, England)

1. Introduction. The problem of determining the capacity of two long parallel

cylindrical conductors can be easily solved by the use of a conformal transformation.1
A simple extension of the method gives the result for the case in which each conductor

* Received April 16, 1945.
1F. B. Pidduck, A treatise on electricity, Cambridge University Press, 1916, p. 77.
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is surrounded by a dielectric sheath whose boundary is a member of the coaxial sys-
tem of circles defined by the boundaries of the conductors. The case in which the
sheaths are concentric with the conductors is of much greater practical importance
and in many types of cable the sheaths are actually touching. In this paper we give
the derivation of the potential distribution for this latter case together with a prac-
tical method for the calculation of the capacity.

2. Statement of the problem. We consider the symmetrical problem of two circu-
lar wires each of radius R\ surrounded by concentric touching sheaths of radius R2
and dielectric constant K\, the whole being immersed in an infinite medium of dielec-
tric constant K 2

For infinitely long straight wires, the problem reduces to the determination of
potentials Fi, V2satisfying: (i) the equations

VWi = 0, 1)
for Ri£Er<R?, and
VF2= 0, 2

in the region between the circle r=R2and the line wv=0, where V2is the two dimen-
sional form of Laplace’s operator, the polar coordinates r, 9 are based on the centre
of one of the conductors and the cartesian coordinates x, y have origin at the point

of contact of the sheaths and axes as shown in Fig 1; («) the boundary conditions

Vi=1 3)

when r =Ri, and
Fa=V, 4) KidVi/dr = K 2vadr, ®)

when r—R 2 and
F2=0 (6)

when x= 0. Condition (6) is a result of the symmetry of the problem provided that the
potential on the left hand conductor is taken as —L1.
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The capacity C per unit length of wire is then given by C—%Q where Q is the
charge per unit length on either conductor.

The capacity per unit length is unaltered if we replace Ro by unity and Ri by
Ri/Ri(=a) and we shall do this in the subsequent work.

3. The analytical solution. It is natural to express the potential Vi in the polar
coordinates defined above. We therefore write

Fx = 1+ Blog-1 + £ - Q cos nd, )

this being the most general solution of (1), symmetrical in 0 and satisfying (3).
Conformal representation by the use of

£—in =

= T Q)
a+ iy 1+ re'B
transforms the region r> 1, >0 into 0<£<5, the boundaries £=0, r=1 becoming
£=0, £=2 respectively. The general solution of (2) satisfying (6) and the conditions

of symmetry is /@

/(/) sinh 2£/ cos 2-gtot. 9)
0
The constants B, bnof (7) and the function f(t) of (9) are now to be determined

from the boundary conditions (4) and (5).
Now on r=1 (E=|) the relation (8) gives

7= £tan \6 = (10)
say, and
dv ) dv i dv (1)
secsxg — = - i(l + [7%)— o
dr - gd£ de£
Thus (4) and (5) become
“ 1—azl r”
1—22loga+ (2 - bncos nO= | /(/) sinh t cos ptdt, 12)
ti«d a0
« 1+ a2n p
KB + K23 ——-mmoeerem- nbncosnO= —¢(1 + R | tf(t) cosh t cos Rtdt, (13)
nl o Jq

where K=K i/K 2
Multiplying (12) by cos nd {n—0, 1, 2, <+ ) and integrating with respect to 9
from 0 to 7T, we have

J I» T * » 1% o
1—Bloga=— 1 | f{t) sinh tcosBldtdd = | ) sinh tdt (14)
1JO Jo JoO
since
r @ cos Rt
cosfRtdd = 2 1 dB = re *
0 JO 1+R2

and
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1 —a2n 2 rT . . Cm .
——————————— bn=— 1 I /(/) sinh tcos pt cos tiOdtdd = | c¢_'/(/) sinh tl,,(t)dt, (15)
a" %Jo Jo Jo
where
2 r T 4e r ® cos /3L
In(t) I cos nd cos ptdO = — | cos (2n tan-1 P)dp
x Jo x Jol +P2
= E (- iy-ncp{ 2ty-r. (16)
p-o (n - P)!

Applying Fourier’s integral theorem to (13), we obtain

t 4B [ cos fit 4 7 1+ a2' r" cos i
— fit) cosh I - — 1 MH V. | cos 1dp
K tt do 1+ |32 X i an Jo 1+ P2
" 1+ ann
= 2Be~*+ e-‘E - nbnl n{t). a7
= an

1- azr 71+ an
____________ bp= Bap+ E »W ,p, (18)
Kap n-i a"
where
/|« tanh t )
e~2 S1P{t)dt, (19§
n t
and
ol Ir (li)c2 tanh t | | d
= Ry, SRR t t)dt.
=l ; p{tIu{t) (20)
Finally (14) and (17) give
1 rm tanh t 1 % 1+ an
— (Bloga—1) = 2B e~2t dt+ — B ---ooeeee- o (21)
K Jo t 2 ni a”

The infinite set of equations (18) gives the values of the coefficients b in terms of B.
Substitution in (21) yields an equation for B and the capacity per unit length C can
then be determined from C= —\K\B, since

_ _ E1I f 27
=9 =-79, (wA
This completes the analytical solution.
4, Method of computation. In practice, a good approximation to the capacity

may be obtained by retaining only a finite number m of the coefficients bn. Eliminating
them quantities [(L+a2n)/an]nbn («= 1,2, « - ni), from the (w+ 1) equations (18)
ar.d (21), and writing

R — (22)
nK(1+ a2n)
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we obtain
ANdio+ T AL mmm Aim oil
A2 AR+ T2« Aim «2
0, (239)
Mml Am2- AniT Tm om
&l a2mmm am TK - log0™+4 log—
since
tajih t T
e~2t---2mmem- = log —
l o t 2

The quantities a,,, Anpcan be easily computed from Eqgs. (19), (20) and (16) with
the help of the result2

J' (2t)ne—‘tanh tdt = — + 1) — <j-,

where f(w) is the Riemann Zeta-function, tabulated for integral n in J. Edwards,
“The integral calculus,” vol. 2, Macmillan, London, 1922, p. 144.3

The solution for K =1 differs from the well-known exact solution for this case by
less than 0.2 per cent, when only the first three of bn are retained, provided that
For larger values of K and a it may be necessary to retain more terms to achieve the
desired accuracy but for practical values the amount of computation required is not
excessive.

2When « = 0, the result reduces to/T e~2ltanh tdt=1log 2 —

2A four-figure table is given in E. Jahnke and F. Enide, Tables oj functions, Dover Publications.
New York, 1943, p. 273.

LARGE DEFLECTION OF CANTILEVER BEAMS*
By K. E. BISSHOPP and D. C. DRUCKER (Armour Research Foundation)

The solution for large deflection of a cantilever beamlcannot be obtained from
elementary beam theory since the basic assumptions are no longer valid. Specifically,
the elementary theory neglects the square of the first derivative in the curvature
formula and provides no correction for the shortening of the moment arm as the
loaded end of the beam deflects. For large finite loads, it gives deflections greater than
the length of the beam! The square of the first derivative and correction factors for
the shortening of the moment arm become the major contribution to the solution of

* Received April 6, 1945.
1This problem was considered by H. J. Barten, “On the Deflection of a Cantilever Beam,” Quarterly

of Applied Math., 2, 168-171 (1944). Previously an approximate solution had been obtained by Gross und
Lehr in Die Federn, Berlin VDI Verlag, 1938.
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large deflection problems. The following theory which utilizes these corrections is in
agreement with experimental observations.

The derivation is based on the fundamental Bernoulli-Eulcr theorem which states
that the curvature is proportional to the bending moment. It is assumed also that
bending does not alter the length of the beam.

Considering a long, thin cantilever leaf spring, let L denote the length of beam,
A the horizontal component of the displacement of the loaded end of the beam, 5the
corresponding vertical displacement, P the concentrated vertical load at the free end,
B the flexural rigidity, that is B =EI, when cross-sectional dimensions are of the

same order of magnitude, and B=E I/{l—v2) for “wide” beams, where v is the Pois-
son ratio. The exact expression for the curvature of the elastic line may be stated
conveniently in terms of arc length and slope angle denoted by s and < respectively,
so that if £ is the horizontal coordinate measured from the fixed end of the beam, the
product of B and the curvature of the beam equals the bending moment M :
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whence
1/00\2 P
— sin 0 + C. 3)
2\ds/ B

The constant C can be evaluated directly by observing that the curvature at the
loaded end is zero. Then if 00is the corresponding angle of slope

00 /2P )

— =\/ —"(sm %o~ sin0)12 4)
as v B

The value of 0ocannot be found directly from this equation but it is implied by the
requirement that the beam be inextensible, so that

/2P JrL r % /P i2\ 12

y ds = J (sin €o- sin 0)“2200 = \/2 (5)

In order to evaluate this elliptic integral, denote PL2B by a2and let

1+ sin 0 = 2k2sin26 = (1L + sin 0Q sin20. (6)
Then
x/2
/ (1 — k2sin26)~112idy sin 0i = \/2/2k. @)
a
The next step is to represent the deflection 5 in terms of a and an elliptic integral.
Since )
dy dp dy
— — = — =3in0,
d>ds ds
and since we have d<p/ds from Eq. (4),
dy /2P
—A/ (sin 0o —sin 0)12 = sin 0.
rf07 B
Thus
I'B < sin 0t/0

dy ~V 2pJ, (sin 0o —sin 0)12
With the aid of Eq. (6) we obtain
5 V2 € ___ sin0000 1 €T2 (2k2sin20 — 1)00
L 2aJo (sin00—sin0)I2 aJdt (1 — k2sin20)112

This equation can be split up into complete and incomplete elliptic integrals of the
first and second kinds. In the notation of Jahnke and Emde,

TS: Ti [F(A) - F(k, 00 - 2E(k) + 2E(k, 00], ®)

a=F (k)-F(k, 00,
so that
2

8
— = 1-—[£(*)-IS(MO]. (9
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The horizontal displacement of the loaded end is calculated from Eqs. (1) and (4) with
x =0when ¢=0. Thus

or
L —A s/2

— -— = —(sin 0012 (10)
L a

From Eq. (6) we have sin $0= 2&2—1.

Numerical results can be obtained by: (1) selecting values of k corresponding to
tabulated values of the modular angle in the elliptic function tables and (2) determin-
ing Oi and a from Eq. (7). After this has been done, S/L and (L—A)/L can be calculated
from Eqgs. (9) and (10) and plotted against a2=PL2B. The results of these calcula-
tions are shown in Fig. 1.

CORRECTIONS TO MY PAPER
ON THE DEFLECTION OF A CANTILEVER BEAM*
Quarterly of Applied Mathematics, 2, 168-171 (1944)

By H. J. BARTEN

This paper is correct up to the equation

91 = f as cos 6ds.
Jo

The next step
ddi,
m— = al cos 6l
dL

is incorrect since 6 is not only a function of L, but is also a function of s. This error
makes Egs. (9), (11), and (12) incorrect.
Using the relation

dd
— = a(xL—x)

s
and the various steps used in the original paper, we find that

aH*L = FAk, -0 - F(k, 9.

By using 5as an independent variable we can calculate corresponding values of k and

* Received June 25, 1945.
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aL2which in turn are used to
find corresponding values of
Fx and Fv. The corrected
curves thus derived are shown
in Fig. 1.

The author wishes to
thank M. 3. Johnson of
Washington, D. C. and D.
C. Drucker of the Armour
Research Foundation for
pointing out these discrepan-
cies.
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