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ON THE STABILITY OF TWO-DIMENSIONAL
PARALLEL FLOWS

PART IHI.—STABILITY IN A VISCOUS FLUID*
BY
C. C. LIN**

Guggenheim Laboratory, California Institute of Technology

11. General considerations. The investigations in Part Il1* of the stability char-
acteristics of a parallel flow in an inviscid fluid led to very useful information. In
the first place, they enable us to visualize the effect of pressure forces very clearly.
In the second place, the results can be used as a guide for studying the stability prob-
lem in a real fluid, since instability is expected to occur only for sufficiently large
Reynolds numbers. Thus, if we know the general characteristics of “inviscid stability”
for a given velocity distribution, some stability characteristics in a real fluid can be
obtained by considering a modification of these results by the effect of viscosity. Such
a consideration was first made by Heisenberg, [14]f who demonstrated that the ef-
fect of viscosity is generally destabilizing at very large Reynolds numbers. There are,
however, a few pdints to be supplemented in his discussion. We shall therefore study
this problem in some detail in §12.

To get a good understanding of the stability problem, we want to know the fol-
lowing points for any given class of velocity distribution. First of all, we want to
know whether this class of flows is stable for all Reynolds numbers. Secondly, if it is
stable for certain Reynolds numbers with respect to disturbances of certain wave-
lengths, but unstable under other conditions, we want to know the general nature of
the curve cfia, R) —0 which separates regions of stability and instability in the a, R
plane. Thirdly, such a curve will be expected to show a minimum in R, below which
all small disturbances are damped out. It is therefore desirable to be able to calculate
this minimum critical Reynolds number rapidly.

In the next section, we shall solve these problems for two classes of flows; namely,
(a) velocity distributions of the symmetrical type, and (b) velocity distributions of
the boundary-layer type. Indeed, it will be shown that in these cases the flow is always
unstable for sufficiently large Reynolds numbers, whether the velocity curve has a point
of inflection or not. The curve of neutral stability cfia, R)= 0 will be shown to belong
to either of the types shown in Fig. 9. When the velocity curve has no point of inflec-
tion, the two asymptotic branches of the curve have the common asymptote a =0

* Received July 18, 1945. Parts | and Il of this paper appeared in this Quarterly 3, 117-142, and
218-234 (1945).

** Now at Brown University.

f The figures in brackets refer to titles in the Bibliography at the end of Part I.
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(Fig. 9a). When there is a point of inflection, one branch has the asymptote a =0,
while the other has the asymptote a =as>0 (Fig. 9b). In either case, it will be shown
that the region inside the loop is the region of instability. It should be observed how
these results fit in with those of Rayleigh and Tollmien for the inviscid case, and
with the destabilizing effect of viscosity noted by Heisenberg for large Reynolds
numbers. Simple formulae will be derived to express the asymptotic branches of the
curves in Fig. 9. In fact, it is by means of these asymptotic behaviours and a criterion
of stability of Synge [63], that the.results mentioned above are established. Simple
rules will also be given, by which the minimum critical Reynolds number can be very
easily obtained from quantities involving very simple integral and differential ex-
pressions of the velocity distribution w{y). Very little numerical labor is involved for
the calculation in any particular case.

Heisenberg also discussed the general shape of the curve c,(a, R)= 0. However,
his argument does not appear to be very decisive, and some of his results are not well
stated. He did not obtain the asymptotic forms of the a(i?) curve as given below. He
also tried to estimate the order of magnitude of the critical Reynolds number, but
did not try to make an approximate calculation in terms of simple differential and
integral expressions of w(y) (loc. cit., p. 600).

In order to obtain definite numerical results, which may be subjected to experi-
mental, verification, we shall apply our theory to the stability problem of special
velocity distributions. In 813, we shall give the results of calculation of the neutral
curves in (a) the Blasius case and (b) the.Poiseuille case. The method of calculation
and its numerical accuracy will be given in the Appendix. Frequent reference to the
equations in it will therefore be made in the following sections.

12. Heisenberg’s criterion and the general characteristics of the curve of neu-
tral stability. We shall now proceed to study the general stability characteristics in
a viscous fluid as indicated above. In the first place, we shall develop Heisenberg’s
criterion in a slightly improved form. We shall then restrict ourselves to velocity dis-
tributions of the symmetrical type and of the boundary-layer type. For these cases,
we shall prove the results summarized in the next section

a) Heisenberg’s criterion. Along the neutral curve

d(a,R) = 0

(if it exists), all the parameters a, ¢, and R are functions of one of them, say, R. Let us
restrict ourselves to cases where a and c do not approach zero along the neutral curve
as R becomes infinite. Then, the approximations (6.27) are valid for sufficiently large
values of R. By using (6.26), (6.24) and (6.27), we can transform (6.13) into the fol-
lowing:

@ g—Fi/A | «

£ *"Kintl(c) = —= = = = ] £ «2Kin(c) tmw{ (1l —c) £ ainK2ri(c) |

n—o V \CtR\I c) Vn—o n-0 '
pAH  r n

£ainH,:n(c) + wiif] a222+i(i;)! -
VMcT61 n-0 '

If there is an inviscid neutral disturbance with c=c,, a —as, we have

T. Kin+l(c,) = 0.
n—o
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Hence, when a=as, and c=c,+Ac, differing but slightly from cs, we have

¢ a,nKn{Q) T,a,nH 2(c,)
e~*/4 ) e*'4 ) [ |
= - et e re et —= — e (12.1)
\/a»22(l )5 “ 2 / \/a sRc\ - n o,
r{:g i/ /N 2V
(g=0)
Similar considerations of (6.14), (6.15), and (6.17) give respectively
Zirtid X “«7?2ml(c,)
Ac = —= — - , (12.2)
V. &i ,
X a. A2n2C)
2 a3lixn(c,
ca ©)
Ac = —7= e > (12.3)
Vadx “ o,
X < 0-2nH(C3
X]a, Hn@cs) + (1 —c) X)a>+
0 n=I n=0
Ac=H = —— (12.4)

\ZasRca .‘ZUX"Z)(Cj a {1 —c,?z XO 2n+li'rslx+i{‘c.}
n_

In general, it is not very easy to determine whether Ac,->0 or <0. However, when
¢, and a, are both small, but not zero, all the above equations will reduce to

Ac = erili\/a,Rc* K{ (c.), (12.5)

after we make use of the reductions corresponding to (1) and (2) of the Appendix.
Now, when c is small,

. Cw 1 w" .
Ki(c) = dy(w - ©~2= —— (log c + in) + 0(1);
Jy., w{C w13

hence, it can be easily verified that K( (c) is approximately real and positive for small
real values of c. Hence, (12.5) shows that Aci>0 in every case. The disturbance with
wave length 2ir/as, neutrally stable in the inviscid case, is unstable when viscous
forces are considered. This result was first obtained by Heisenberg, and may be
formulated as follows:

Heisenberg’s criterion. If a velocity profile has an “inviscid,” neutral disturbance
with non-vanishing wave number and phase velocity, the disturbance with the same wave
number is unstable in the real fluid when the Reynolds number is sufficiently large.

In Heisenberg’s original discussion, only the first type of motion is considered.
The last equation on p. 597 of his paper is essentially-our equation (12.1) with all
the terms in a2dropped. Evidently, the above arguments hold only for a,, cs8 0. It will
be seen later from Fig. 9 that one neutral disturbance with a = 0 and c= 0 for infinite
R, is actually stable for finite values of R.
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b) Asymptotic behavior of the neutral a{R) curve. We shall now study the general
asymptotic behavior of the neutral curve, assuming that it exists. The answer to the
existence problem will be evident during the course of the investigation. For large
values of aR, we would generally expect z of (6.28) to be much greater than 1, but it
is also possible for z to approach a finite value or zero. We shall therefore discuss both
possibilities.

For large values of z, we have approximately,

Jr=1  Jt= 1/V2ir= wf/VAR?, (12.6)

where Ji is small. If we refer to (5) and (7) of Appendix, we see that the imaginary
part v of the right-hand side member of those equations depends on that of w{cKi(c)
and those of the integrals Hi, Hi, M's and N's. If a and c are small, which will be
verified a posteriori, we have only the contribution from the first term; thus,*

vV — —irwi RYE for w=c (12.7)

By using (12.6) and (12.7), we see that the equations (8) in the Appendix can be
approximated by

u=1, (12.8)
and

v = | cw0 = w{/\/2aRc3 (12.9)
w

These are the equations for determining a relation a(R), if we eliminate ¢ between
them.

In the case where aRc3approaches a finite limit as aR—*< cmust approach zero.
Hence, v must approach zero, and from (8) of Appendix, Ji must also approach zero.
From the curve for J,(z), we see that this happens for z=2.294, for which y r=2.292.
Then, using (9) of Appendix, (12.6), and (12.7), we have

aR = w{h3c3 Z = 2.294, (12.10)

and
« = Jr= 2292 (12.11)

The two types of relations (12.8), (12.9) and (12.10), (12.11) evidently correspond
to two different branches of the a(R) curve (cf. Fig. 9). These conditions can be
satisfied in cases (2a) and (3) of section 6 (cf. (11.5), (11.7) of Appendix), but it
appears to be difficult in case (2b) (cf. (11.6) of Appendix).

Case (2a). Symmetrical velocity distribution with symmetrical <{y). We consider
the cases where both a and c are small. By using (12.5) and noting that u takes on a
finite value in either (12.8) or (12.11), we see that we must have

u ~, where Z70= #i(0) = f * wady, (12.12)
Hik2 J
*In fact, the other terms never give considerable contributions to the imaginary part even for only
moderately small values of aand C. This pointwill be discussed in the Appendix. The approximation (12.7)
will be used for all later calculadons.
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i.e., c must approach zero as fast as a2 The asymptotic behavior of the a(R) curves
as given by (12.8)—12.11) are as follows:

R
R

{wiV2"Huw'72a~11, c = {Hw/w[)a\ (first branch), (12.13)

wigz/JTHio)3a~7, ¢ = (HwJTwf)a2 (second branch), (12.14)

where J T=2.292, z=2.294 approximately.
Case (3). Boundary-layer profile. Here, the equation corresponding to (12.12) is
(cf. (7) of Appendix)
u — W c/a, (12.15)
i.e., c must approach zero as fast as a. Note that in the previous case, the relation
(12.12) depends both on w{ and on f Ww"dy. Here, it depends only on the initial slope
of the velocity curve w{. The two branches of the a(R) curve for large values of R are

R — (wi n/2irav o' Ja:~6 c = alvv{, (first branch), (12.16)

and
R = w{{z/Jrya-\ c=ajrwi (second branch), (12.17)

where Jr=2.292, z—2.294 approximately.

Effect of varying curvature in the curve of velocity distribution. In either case, the
second branch of our asymptotic curve depends very little upon the shape of the
velocity profile, while the first branch depends very much upon it through the term
Wo'. This fact will enable us to correlate our present results with the inviscid inves-
tigations of Rayleigh and Tollmien, as discussed in Part II.

In all the cases considered, we have w" <0 for y<yi but sufficiently near to it.
If w"(y) never vanishes for yi<y<yi, we can replace wi' by w{' in the expressions
(12.13) and (12.16). In general,

won [niV
wo' = wi -1 c+ {-—_ — —)C2+ oo,
Wi 2wi2 2wi3 /
Now, for a flow which is essentially parallel, the boundary condition AA\p =0, which
holds on the solid wall for all two-dimensional laminar flows, can be easily verified
to be equivalent to w{" =0. Hence, we have
w iv
W = wi + — - Q+ eeo,
2wiz
Thus, if w{' =0, but w" does not vanish for y\<y <y 2 we have

R= {2w'*/n'iH\o(wuf\a - I\ for case (2a), (12.18)
and

Rr= {Iw[li/%i{wiv)2)a~i\ for case (3). (12.19)
In case the velocity profile shows a point of inflection,

wi =0 for c=c,
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Then, we have approximately
w'o' = (wiv 2w(9(c~ —c]). (12.20)

It can now be seen from (12.13) and (12.16) that R becomes infinite as c approaches
c,. Let the corresponding value of a be denoted by a,. Then instead of (12.18) and
(12.19), the following relations hold:

Thus, for either a symmetrical or a boundary-layer distribution with a flex, we have
R~ (a —a3 2 (12.23)

as R —eo0, a—>a,, c—>¢,. In all these approximations, we assume asand c, to be so small
that the previous approximations still hold, but the qualitative nature of our conclu-
sions cannot be changed for moderate values of a, and c,.

The general characteristics obtained from our foregoing discussions are summa-
rized in Table Il, and are indicated by the asymptotic branches of the solid lines in
Fig. 9. Let us proceed to discuss their significance.

i) It may be expected that the region between the two asymptotic branches of the
curves represents a region of instability. Thus, every symmetrical or boundary-layer
profile is unstable for sufficiently large values of the Reynolds number. This point will be
substantiated below.

ii) In the cases where w{' >0, the two branches of curves approach the two differ-
ent asymptotes a = 0 and a=a,, leaving afinite instable region for infinite Reynolds
number. In the other cases, the two branches approach the same asymptote a =0,
leaving only the possibility of a neutral disturbance of infinite wave-length at infinite
Reynolds number. These results agree with Heisenberg’s criterion and the results ob-
tained from the considerations of an inviscid fluid in Part Il of this work. It thus ap-
pears that the inviscid disturbance with a =0, c=0 is actually not as trivial as it
may first appear to be, for it is actually the limiting case of neutral disturbances in a
real fluid.

c) Existence of self-excited disturbances.* To establish the actual existence of self-
excited disturbances, we try to show that c¢;>0 at least in the neighborhood of the
neutral curve. Indeed, we may regard c as a function of the two independent param-
etersa and R' =aR, and show that (dCi/dR")a< 0 for the first branch of the curve. This
is analogous to Heisenberg’s criterion, and demonstrates the same general conclusion
that the effect of viscosity is destabilizing at large Reynolds numbers. To fix our ideas,
we shall carry out the analysis for the case of symmetrical profiles. The other case
can be carried out in a similar manner.

We begin with the equation

(6.14)
mM@iQ  $31
where/2(a, ¢) and/4(a, c) are given by (6.26) and fin/fiii is given by (6.28). By using
those relations, we can transform (6.14) into
*This section was inserted late in 1944 after discussions with Prof. C. L. Pekeris. He mentioned the

possibility that the neutral curve might be a curve of minimum damping with stable regions on both sides
of it. See also Schlichting’s calculations [52].
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J(z) = 42y | ~p2 H---
or, by further using (6.30) and (6.24),
7(a)- 1=wie'E a"Kin(c)/ E a2"tfan.i(c).
|

/ n<»l

We now regard a as fixed and consider the variation of cwith R" or z, which is a known
function of cand R'. Taking logarithmic derivatives on both sides, wehave

). 5T > (12.24)

7(s) _ 1 tc K U ¢) E «2*/7T2n-1(c) 1 az
So far, a, ¢, and z are arbitrary. On the neutral curve, c and z are real, and we may

use the relation (12.13) if we are on the first branch of the neutral curve with large
values of R'. Indeed, for large values of z, (12.6) gives

7(s) 3
700 - i 2s

3dz 1 dR' 3 dc
2z 2 R’ 2 ¢

and

By using these relations, it can be easily verified that (12.24) leads to

E cx~KL(0) E

dR'  3dc

2R" 2 _
E <2°Kin(c) E «2m2rel(i)

Remembering- that c=0(a?2 and noting that

1

V\b -
Ki(c) = Mc Mo (logc+ V) + 0 (1),

where 0 (1) is real, we can reduce the above equation to

dR™  3dc ( wo ) 1d [wicwo )
-+ — = dcd1+ Mic— — (logc+ 1> — 4o — (logc+ 1ity> ,
2R 2¢C | Mo3 ;o de ( M3 ;
or
1 dR* 3de,(  d ~wi'dub " " 12.25)
= e c— —-(logc+ i .
2 R 2c | dcL wo3 J Im

For small values of c, the expression in the brackets has a positive real part and a
negative imaginary part. Hence, (dc/dR")a has a negative imaginary part. This com-
pletes the proof. Indeed, if w{* does not vanish, we have
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der\ C
(;dR'ja 3R
<dCi\ 2y G

I i?2'-76.
\dR"Ja ow{ R’

(12.26)

In the above derivation, it should be noted that all approximations are made by
neglecting small terms of higher orders in comparison with some terms which have
been retained. Thus, the conclusion of stability or instability would not be altered by
those terms of higher orders.

d) The minimum critical Reynolds number and the minimum critical wave-length.
Having demonstrated the instability of the symmetrical and the boundary-layer pro-
files, we want to answer the following questions. First, does there exist a minimum
critical Reynolds number, below which the flow is stable for disturbances of all wave-
lengths? If so, can we get an approximate estimate of its magnitude? Secondly, does
there exist a minimum wave-length of the disturbance (maximum a) below which the
flow is stable at all Reynolds numbers? If so, can we get an approximate estimate of its
magnitude? We shall see that in trying to answer these questions, we can also roughly
depict the complete a(R) curve, which separates stability from instability.

The existence of these minimum values can be most conveniently inferred from a
condition of stability derived by Synge* from energy considerations. His condition
reads

(gR)2 < (2a- + I)(4od + I)/a2 g=max |w']. (12.27)

This condition insures the existence of a minimum critical Reynolds number. It per-
mits a to become infinite only for R—=0. But we know from our previous considera-
tions thata— or 0 as R—>00. Hence, we would expect that there exists a maximum
value of a, above which there is always stability. The neutral curve must therefore
take the general shape shown in Fig. 9. The asymptotic behaviors of the solid curves
are drawn in qualitative accordance with (12.6), (12.7), and (12.23); the other parts
of the solid curves are arbitrarily drawn to indicate the general shape of the curve.
It is evident that the region outside the curve is the region of stability, and the en-
closed region is the region of instability. Similar conclusions have been reached by
Heisenbergf but his arguments and results appear to be somewhat obscure.

Having established the existence of the minimum critical value of R and the
maximum critical value of a, we proceed to make an estimate of their magnitude.
We shall see that our theory permits us to give a quite good approximation to the
minimum value of aR (cf. (12.30)). Since this roughly corresponds to the minimum
value of R and also to the maximum value of a (as will be clear from the individual
examples given below), we can get a rough estimate of these values by making a rough
estimate of a corresponding to the minimum value of aR.

Using the second equation of (8) of Appendix and the approximation (12.7) for v,
we have approximately

.Y, (2 = v(c) = - irWi e (12.28)

*Synge, [63], eq. (11.23), p. 258. His Xis our a. The condition is originally stated for plane Couette
and plane Poiseuille motion; but it is easily seen that it holds for a general velocity distribution with
2=max|w’\.

f Heisenberg, loc. cit., p. 601.
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R

Fig. 9. General nature of the curve of neutral stability. The dotted curve is curve of
stability given by Synge.

If we recall that z is proportional to c(ai?)1/3, this equation determines (ai?)t/3 as a
function of c. It can then be easily verified that the minimum value of (ad?)1/3 occurs

when
zjl{z) = cv'(c). (12.29)

If the point where this holds is denoted by z=2z0, we have approximately from(11.28)*
ccR = w{*(— (12.30)

* Cf. Heisenberg, loc. cit., eq. (29a), p. 602. He put z0~ I.
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The point 2o is roughly the value where Ji(z) takes its maximum value, because
(12.29) is approximately Ji(z) =0, when c is small. The corresponding value of a
can be approximately obtained by taking

u = Jr{zo), (12.31)

in accordance withthefirst equation of (8) of Appendix, where u is given by the real
part of (5) or (7)of Appendix, as the case may be.
e) Approximate rules. We now proceed to make some rough approximations in

order to obtain simple rules, which are convenient for estimating the minimum criti-

cal Reynolds number. The condition Jt (z0 =0 gives z0= 3.21, where ~(zo) = 1.49 and
Ji(z0 =0.58. The corresponding value of ¢ can be obtained from the second equation

of (8) of Appendix. Putting m= 1.5 in accordance with (12.31) and neglecting second
order terms of X, we have

®1 - 2X) = Ji(z0 = 0.58,
- idvl (1 - 2\)(ww"/wn) = 0.58, (12. 32)

where Xis defined by (4) of the Appendix. To find the value of ¢ from this equation,
it is convenient to plot its left-hand side together with w{y) against y, and read the
value off the latter curve where the former curve gives the value 0.58. The value of
c so obtained turns out to be very close to its maximum value along the neutral
curve, and is approximately the value where R is a minimum.

The values of a and R must be obtained from more rough approximations. With
a consultation of the valuesof the integrals H(c), K(c), M[c) and N(c) given in the
Appendix, we may derive the following reasonable estimates of a:

>\l
/ w2y, for symmetrical profiles, (12.33)
mn
a = wi{c, for boundary layer profiles. (12.34)
These values turn out to be somewhat lower than the accurate values. With an ap-

proximate allowance for these inaccuracies and taking round numbers, we get the
following approximate rules for the minimum critical Reynolds number:

30”1 /HioWwi . .
R = ——-- \ [ e 1 for symmetrical profiles, (12.35)
c3 Vv 0
25w/ .
R = > for boundary layer profiles. (12.36)
c4

The calculations have been carried out for the Blasius case and the plane Poiseuille
case. In the first case, the thickness of the boundary layer is taken so that the initial
slope iswi =2. It is found that

R = 5906 for Poiseuille cdss, |

(12.37)
i?5i = 502  for Blasius case

The quantity 5i is the displacement thickness

lo
/ (1 —w)dy = 0.28673,
0
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where y is measured from the solid wall. These values for the minimum critical Rey-
nolds number agree fairly well with those obtained below from more elaborate numer-
ical calculations.

When these estimates of the minimum values of R and the corresponding values
of a (egs. (12.32)—12.36)) are combined with the asymptotic behavior of the a(R)
curves (eqs. (12.16)—12.17)), the curve of neutral stability in any case can be
sketched with fair accuracy with very little labor.

The maximum value of a on the neutral curve cannot be very well estimated. It
is usually somewhat higher than the values of a given by (12.33) and (12.34).

13. Stability characteristics of special velocity distributions. We shall now apply
our theory to some special cases in order to obtain numerical results comparable
with experiments. We take (a) the Blasius case as a typical boundary-layer profile,
and (b) the plane Poiseuille motion as a typical symmetrical profile. In any case, the
resultant curve of stability limit should have the general shape discussed in the last
two sections. Only the results will be given here; the method of calculation and its
accuracy will be discussed in the Appendix.

a) Stability of plane Poiseuille flow. The velocity distribution of plane Poiseuille
motion is given by

w(y) = 2y —vy2 with w{ = 2, HflO) = 8/15. (13.1)

Table Il. Behavior of R(a) Curve for Large Values of R for Velocity Distributions
with w" <0 for the Main Part of the Profile.

Second branch

te," <0 Wi"=0 Wi">0
Symmetrical profile a-u a~I> (a-a.)"2 a-i
Boundary-layer profile a6 a-10 (a-a.)"2 a4

The two branches of the a(R) curve are given by (cf. (12.13), (12.14))

RUi = 8.44(al-u/6, c = 4a215; )
} (13.2)
R1'3= 5.96(al“T6, c = 0.611a2 j
The numerical results are shown in Table IIl and Fig. 10. The significance of the

column 5 in the table will be explained in the next section. From the figure, we see
that the minimum critical Reynolds number occurs at R113 = 17,.45, or 1?= 5314, agree-
ing very well with our previous estimation.*

Earlier results. The stability of plane Poiseuille flow has been attempted by many
authors. Comparatively recent papers are those of Heisenberg, [14], Noether [36],
Goldstein [6 ], Pekeris [39, 40], Synge [64], and Langer [25]. The papers of Goldstein
and Synge and one of the papers of Pekeris [39] give definite indication of stability
at sufficiently low Reynolds numbers. Heisenberg’s paper is in general agreement

*The values given here are somewhat different from those published before [27], because the com-
putation of Tietjen’s function has been revised.
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with the present investigations. He gave only a very rough calculation, whose result
is reproduced in the figure. It seems that his curve is
R1'3 = 13.4(ad-u/6.

This is different from our present result (13.2) by a numerical factor. It may be noted

Table Ill. Stability of Plane Poiseuille Flow.

c g a R a2 RW
0 2.294 0 04} 7214 0 co
0.05 2.363 0.3056 13.64X105 .6901 0.0934 110.91
0.10 2.448 0.4603 1.243X10s .6544 0.2119 49.90
0.15 2.540 0.6024 31048 .6192 0.3629 31.43
0.20 2.668 0.7506 12024 .5752 0.5634 22.91
0.25 2.868 0.9263 6108 .5161 0.8580 18.28
0.266 3.012 1.0101 5369 L4795 1.0203 17.51
0.270 3.080 1.0414 5314 L4637 1.0845 17.45
0.272 3.21 1.0836 5659 .4358 1.1741 17.82
0.270 3.240 1.0888 5920 L4298 1.1854 18.09
0.266 3.320 1.1007 6602 L4144 1.2115 18.76
0.25 3.495 1.1033 9287 .3836 1.2173 21.02
0.20 3.857 1.0254 26597 .3309 1.0514 29.85
0.15 4.152 0.8824 92529 .2963 0.7787 45.23
0.10 4.458 0.6990 4.9435X 105 .2663 0.4886 79.07

Fig. 10. Curve of neutral stability for the plane Poiseuille case.

that for the values of a for which his curve is drawn, the approximation used in de-
riving (13.2) is no longer legitimate. Noether’swork is based upon a very good mathe-
matical approach, which seems to promise further developments. However, in apply-



1946] STABILITY OF PARALLEL FLOWS 289

ing his method to particular examples, he neglected the terms in a2 in the invisdd
solutions. As is evident from previous discussions, this is bound to lead to the wrong
conclusion that the plane Poiseuille flow is stable (as Noether actually did). The
mathematical analysis in Langer’s work shows that the region of the c-plane for
which ct>0 must go to zero as aR becomes infinite. This is in agreement with present
results. Langer, however, concluded from his analysis that the motion is probably
stable in general. This would be a natural deduction if the effect of viscosity were only
stabilizing. The instability of the plane Poiseuille flow must therefore be attributed to
the destabilizing effect of viscosity. This is a very significant fact and will be discussed
in greater detail in §14.

Pekeris’ second paper [40] is a numerical treatment of (4.1), replacing a deriva-
tive by a ratio of two finite differences. Unfortunately, his method is not suitable for
the purpose, because he has virtually neglected the inner friction layer. In his approxi-
mation, he divided the half-width of the channel into (at most) four equal parts cor-
responding to w =0, 7/16, 3/4, 15/16, 1. From the present work, we know that the
inner friction layer occurs definitely for c<6/16. We know also from our previous in-
vestigations that the function <£€varies very rapidly in the neighborhood of the inner
friction layer. Hence, it is not legitimate to replace g¥ by A<f>/Ay for the interval
(0, 1/4), y being measured from the solid wall here. Also, most of the combinations
of values (a, R) he selected do not correspond to a strong instability. These values
are marked with crosses in Fig. 10.

b) Stability of Blasius flow. For this case, we choose the boundary-layer thickness
to be defined by

y = 5= 6x/\/IRX Rx = ihx/v, (13.3)

where x, y are the dimensional distances from the leading edge and the wall respec-
tively, and «i, v are the dimensional free stream velocity and the kinematic viscosity
respectively.* With this definition, the dimensional displacement thickness is

ii = 0.286735. (13.4)

Such a choice has the convenience that the initial part of the velocity curve can be
very accurately represented by

w(y) = 2y —3yA (13.5)

y being measured from the wall. Also, since the edge of the boundary layer is farther
from the solid wall than that set by Tollmien and Schlichting, greater accuracy can
be expected. To make it easy to compare with other results, all final values are pre-

sented in terms of
«l = asSi, Ri = Rb5i. (13.6)

The two.asymptotic branches of the a(R) curve are given by the following for-
mulae (cf. (12.16) and (12.17)):

i = 2.21(10)* a710 c = 1.74«!, (13.7)
i1 = 0.0622«74, c = 4.00«! (13.8)

* Cf. Goldstein [7], vol. I, p. 135.
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These formulae may be compared with those given by Tollmien.* The complete
numerical result is shown in Table IV and Fig. 11. The minimum critical Reynolds
number occurs at i?i=420, agreeing fairly well with our previous estimation and the
earlier results of Tollmien and Schlichting.

Table IV. Stability of Blasius Flow.

c z a R S cd Ri
0 2.294 0 » 7214 0 00
0.05 2.294 0.0473 81.45 X 10s 7214 0.0136 23.353X105
0.10 2.296 0.1040 4.655X10* 7205 0.0298 1.335X10*
0.15 2.311 0.1730 84555 7135 0.0496 24244
0.20 2.341 0.2588 24783 .6998 0.0742 7106
0.25 2.396 0.3693 9536 .6759 0.1059 2734
0.30 2.481 0.5156 4388 .6414 0.1478 1258
0.35 2.624 0.7149 2358 .5897 0.2050 676
0.40 2.942 1.0778 1477 4967 0.3090 423
0.411 3.21 1.2968 1470 .3459 0.3718 421
0.40 3.540 1.4264 1944 3763 0.4090 557
0.35 4.219 1.2992 5392 .2893 0.3725 1546
0.30 4.382 1.0055 12399 2733 0.2883 3555
0.25 4.685 0.7578 34739 2472 0.2173 9961
0.6
<X
0.5
0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
R.

Fig. 11. Curve of neutral stability for the Blasius case:
----------- presentcalculation,-------- Schlichting’s calculation.

Earlier results. The stability of the boundary layer has been calculated by Toll-
mien and later by Schlichting, approximating the velocity distribution by linear and
parabolic distributions. For the evaluation of the imaginary part corresponding to the
inviscid solutions, they used the exact profile. The calculation of Schlichting is shown
dotted in the figure. Tollmien’s curve agrees fairly well with the present calculations,

* Loc. cit. [73], first paper, p. 42.
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except for asomewhat lower peak. Schlichting also calculated the amplification of the
unstable disturbances [52], and the amplitude distribution and energy balance of the
neutral disturbances [54]. Since the neutral curve in his calculation is inexact, it
might be desirable to repeat some of his work if experimental results were available.
For those calculations, the present scheme promises less numerical labor than
Schlichting’s original work.

14. Physical significance of the results. Prospect of further developments. Let
us now summarize all the results which have been obtained and discuss their physical
significance. In the first place, we may conclude that all the inertia forces controlling
the stability of two-dimensional parallel flows can be considered in terms of the dis-
tribution of vorticity. If the gradient of vorticity of the main flow does not vanish
inside the fluid, then self-excited disturbances cannot exist except through the effect
of viscosity.

In fact, the effect of viscosity is in general destabilizing for very large Reynolds
numbers. Thus, if a wavy disturbance of finite wave-length can exist neutrally for an
inviscid fluid, it will be amplified through the effect of viscosity. Indeed,* if the Reynolds
number of a flow is continually decreased, a disturbance of finite wave-length, which is
damped at very large Reynolds numbers, becomes amplified, unless the wave-length
is so small as to cause excessive dissipation at any Reynolds number. For still smaller
Reynolds numbers, the damping effect becomes predominant, and we have again a
decay of the disturbance. However, for the particular disturbance of infinite wave-
length (essentially a steady deviation), the effect of viscosity may be said to be al-
ways of the nature of a damping.

The effect of viscosity is essentially one of diffusion of vorticity. It can be seen
more clearly from the following considerations. Let us imagine a disturbance originat-
ing from the inner friction layer where the phase velocity of the disturapce is equal
to the velocity of the main flow. During one period 2irl/acU of the disturbance, the
viscous forces will propagate it side-wise through a distance of the order -v/2irvl/acU
= I\/2irfaRc. It is significant to compare this distance with the distance between the
inner friction layer and the solid boundary. For if they are nearly equal, it means that
the effect of viscosity is dominant at least from the solid surface to that layer. This
ratio is approximately

s = %2x/z3 (14.1)

where z is defined by (6.28). This quantity may be regarded as a measure of the ef-
fect of viscosity. Its value is included in Tables Il and 1V. We notice that the value
of 5 decreases from 0.7 to 0.5 as we follow the lower branch of the neutral curve of
stability from infinite Reynolds number to the minimum critical Reynolds number.
Then, as s decreases to zero, we are following the other branch of the neutral curve
to infinite Reynolds numbers. Thus (see Figs. 9, 10, 11), the lower branch is essen-
tially controlled by the effect of viscosity. The effect here is stabilizing, since an in-
crease of Reynolds number gives instability. On the other branch, the effect of vis-
cosity on diffusion of vorticity is predominant in comparison with the effect of dis-
sipation. Here, an increase of Reynolds number gives stability; i.e., the effect of
viscosity is destabilizing. This destabilizing mechanism is essentially to shift the
phase difference between the u and v components of the disturbance. It has been ex-

* See Fig. 9.



292 C. C. LIN [Vol. I1l, No. 4

plained in some detail in Prandtl’s article [42] from the point of view of energy bal-
ance.

If we consider disturbances from the wall and from the inner friction layer, we
may regard the region in between to be wholly governed by the effect of viscosity, if
these disturbances meet after a period. Thus, it is not without significance that the
minimum critical Reynolds number occurs for s= 8 approximately, which may be
regarded as marking the passage from stabilizing effect to destabilizing effect of the
viscous forces.

These discussions hold both for symmetrical velocity distributions and for bound-
ary-layer distributions. In both cases, it has been demonstrated that instability is
essentially caused by the effect of viscosity. These velocity distributions are unstable
whether a point of inflection occurs in the velocity profile or not. Thus, although the
gradient of vorticity plays a part in controlling the stability of the flow, it is by no
means the dominant factor, particularly at low Reynolds numbers. There is thus no
reason to associate a point of inflection in the profile directly with instability. This
removes Taylor’s objection of instability theories based on von Doenhoff’s experi-
ments.* Even if the point of inflection in the velocity profile occurs in the leading
part of the plate in his experiments, the flow there is definitely stable.

There is another objection raised by Taylor against Tollmien’s work on the stabil-
ity of the boundary layer. He questions whether the change of boundary-layer thick-
ness should not have a drastic influence. This point can best be settled experimentally.
So far as mathematical considerations are concerned, it seems justifiable to consider
a boundary layer as a parallel flow; the fractional variation of thickness is very small
over a distance of one wave-length of the disturbance, and the error incurred is only
a few per cent. A fuller discussion of all the errors involved in the theory will be given
in the Appendix.

Another point should be settled by experimental investigations. Since the gen-
eral impression had been that the plane Poiseuille flow was stable, Prandtl suggested
that instability occurred at the entrance flow where the velocity distribution is not
yet parabolic. The present work certainly concludes that such entrance flows are
unstable, if they can be considered as approximately parallel. It is hard to decide
theoretically whether a well-developed turbulence has already been reached before
the parabolic profile is established. This presumably depends upon the conditions of
disturbance at the inlet. The question can be best settled experimentally.

Of the six types of problems mentioned in section 3, Part I, the three types (1),
(2), and (5) seem to be quite settled. The present work on the boundary layer checks
Tollmien’s result approximately, with a minimum critical Reynolds number
Ri = Rdi =420. The minimum critical Reynolds number for plane Poiseuille flow
is found to be 10600 based upon the width of the channel. These values are at least
not in disagreement with the existing experimental results. It would be very inter-
esting if experiments could be carried out to check the theoretical results so far ob-
tained.

Since plane Couette motion is concluded to be stable while plane Poiseuille mo-
tion is concluded to be unstable, it seems interesting to investigate a combination
of them to find out when does the instability begin as one changes both the pressure
gradient and the relative motion of the plates.

*Taylor, loc. cit. [70], p. 308.
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The stability of two-dimensional jets and wakes has never been investigated with
the effect of viscosity included. It seems that a study of the stability of the two-
dimensional wake might give us valuable information regarding the von Karmin
vortex street,—particularly regarding the minimum Reynolds number of its occur-
rence and the width of the street as compared with the size of the body.*

Transition to turbulence. The success of Taylor’s theory of transition [68, 70] to
turbulence in the boundary-layer as caused by external turbulence seems to throw
the instability theories at a disadvantage. However, it seems that Taylor’s work
should be regarded as only one phase of the problem, i.e., concerning cases where
the external turbulence plays the dominant role. In fact, it is not impossible to con-
struct an instability theory, taking account of the free turbulence outside the bound-
ary-layer if this is the main cause of transition. The boundary condition 0/+a0 =0
at the edge of the boundary layer signifies that the disturbance there has equal mag-
nitudes in directions parallel and perpendicular to the wall. This can be easily recon-
ciled with the nearly isotropic turbulence in the free stream. Of course, the theory
can only be pushed to the point where non-linear effects begin to appear. Otherwise,
we have to deal with a very difficult mathematical problem. It is possible that the
beginning of non-linear effect is not far from the actual point of transition. Then the
instability theory should give useful results regarding transition, which might be ex-
pected to check with experiment.

Appendix

In the following paragraphs, we shall describe the methods by which the numerical
calculations are carried out. We shall then give a discussion of the numerical accuracy
involved in the calculations. Special emphasis will be placed on the case of Blasius
flow.

a) Transformation of equations. The basic equations for the determination of the
stability characteristics are given at the end of Part I. To carry out the numerical
calculation in any particular case, we have to evaluate the functions (6.24) which
occur in the equations (6.14), (6.15) and (6.17) through the relations (6.26). It is
found convenient to transform (6.24) into

012 - (1 - c)l - ax23-~1 -

o]

022 = D12 — (1 —c) fT* a2m\nent,
n—o
(1)
012 = (1 - )l - «%)-"(@*IT - ¢ az2nMn. + (1 - ¢)~lw{0i2
0» = Ti"i0i2 + (1 - c)~I~1 - a2"ivy) + (1 - c¢)-w2022
where the functions M n(c) and 7V,,(c) are defined by
Mn = Hn—//2£f, 2
7] H (2)

Nn= Kn—KtH”u nisz2.J

* This problem has been attempted by Heisenberg; see Goldstein’s book [7].
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The principal advantages of such transformations is to bring out the dominant terms
in the functions $12, $12', $22 and 4%'- For the terms in M’s and N’ are usually very
small (particularly for small values of ¢, with which we are usually concerned), while
all the terms in the series of (6.24) are of considerable importance. This point will be
fully discussed below.

The calculation of (6.13) (Case 1) is still quite complicated; it is found necessary
to take (6.15) (Case 2b) as a first approximation. Since we are not going to make any
actual calculation for this case, we shall not go into further details with (6.13). All
the other equations (6.14), (6.15), and (6.17) (Cases 2a, 2b, 3) can be transformed
into the form

£+ « (« + »)

1+ \(u + iv)
with ~(s) defined by (6.31) and X=X(c) defined by
wl(yi —yo) = - c(1+ X). (4)

Thus, X is usually very small. The quantities u and v are real functions of a and c,
different for different cases. For Case 2a we have

U-\-iv= 1T WGH2i/ct>I2

= A =\
w{c§ K x wio)

w{c
(1- a2/ (1~ a#*- ahVi- (5)
where the second form of the right-hand side is derived by using (1). Similarly, for

Cases 2b and 3, we have, respectively,

u-\-iv=1-f-w{ cd>m/$12

\ wic)

+ w{ca1l- a2FI2(1- aW 4- ct'M, )-1(iV3+ a tiVeH--—----- ) (6)
and

II-{-iv=I1+TOIC (22 + ai4>22)/($12+a<#>12)

=WichrH—V\>l/)
]
lc (1-ad72{(1-a2H2-a 4iV4 o) (1-c)2aW 3+ a &@Vd 3}
(7
a2 (l-c)y2(l-aW 4- a 6Af6- )+a(F1i-a2M3---—----- ) (7)

Equation (3) contains the two real equations
7riz) = (1 + X){«(1 + X«) - Xu2}{(1 + X«)2+ (Xu)2}4,
7<(z) = L+ Xp»{(1 + X)2+ (Xt)2}-1 ®

for z, a, c. Thus, for each value of z, we can determine corresponding values of a
and c. Finally, the Reynolds number is given by (cf. (6.28))
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1
aR wo (1 + X) (9)
The actual procedure of calculatipn will be described presently.

b) Procediere of calculation. The calculations required in 813 are as follows: (a) to
find the values of a and z corresponding to each value of ¢ by using equations (8),
with u and v defined by (7) and (9); and (b) to calculate R from (9). To do this, we
may take the following procedure. We first plot Ji against J T, then plot the corre-
sponding right-hand side members of (8) in a similar manner in the same diagram.
Noting that the latter are functions of a and c only, we may plot by drawing curves
of constant a (or constant c). The intersections of this set of curves with the (Jr, Ji)
curve give the desired results.

This procedure is however, very laborious. A simpler method is as follows: As
will be seen below, the imaginary parts of H’s, M's and N ’s appearing in (5) and (7)
are very small compared with that of Ki(c), we can therefore use the approximation

v=uv() = —ta( {ww"/wn) for w —oc. (10)

The following steps are then taken :
i) Calculation of aR. In this step, the auxiliary functions

X(c), w¢(c), v(c)

are required. These are tabulated in Tables V and VI for the cases considered. Having
calculated these functions, we can determine z and u for each value of c\ aR is then

Table V. Auxiliary Functions for Calculating the Stability of the Plane Poiseuille Flow.

c Wo X \Y% w! cRI Hi H, M, iVa

0 2 0 0 0 0.53333 0.21817 0.06038 0.19340
0.05 1.94936 0.01282 0.08482 0.06499 0.46917 0.20696 0.05047 0.20401
0.10 1.89737 0.02633 0.18397 0.10187 0.41000 0.19516 0.04183 0.21636
0.15 1.84391 0.04061 0.30066 0.13015 0.35583 0.18276 0.03441 0.22777
0.20 1.78885 0.05573 0.43905 0.15351 0.30667 0.16982 0.02813 0.23918
0.25 1.73205 0.07180 0.60460 0.17356 0.26250 0.15626 0.02293 0.25000
0.30 1.67332 0.08893 0.80463 0.19121 0.22333 0.14209 0.01872 0.26191
0.35 1.61245 0.10728 1.04910 0.20699 0.18917 0.12729 0.01540 0.27000
0.40 1.54919 0.12701 1.35193 0.22130 0.16000 0.11182 0.01282 0.27062
0.45 1.48324 0.14836 1.73296 0.23438 0.13583 0.09563 0.01087 0.26232
0.50 1.41421 0.17157 2.22144 0.24645 0.11667 0.07875 0.00937 0.23366

determined from (9). In actual practice, a procedure of successive approximations is
used. By taking

«(0) = JTZ(0)), = 700 7V = IJMN), 70 = 7.(s(0) = ®
as the initial approximation for u, z, J r, Ji, we can obtain the successive approxima-

tions by the formulae

(7-"1> = NMi + a}{(i + x«(@)s+ (x,)Z-1
U () =701 T xemy2 T xuzr (@ Fx)0 +)®}_].+XW(| +X«<@'1.
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Table VI. Auxiliary Functions for Calculating the Stability of Blasius Flow.

c \ WA ¢RI Hy Hs Mi Ni
0 0 0 0.60260 0.23513 0.07966 0.17615
0.05 0.00088 0.02194 0.53378 0.22392 0.06975 0.18676
0.10 0.00709 0.06121 0.46995 0.21212 0.06111 0.19911
0.15 0.02406 0.12108 0.41112 0.19972 0.05369 0.21052
0.20 0.05773 0.20469 0.35730 0.18678 0.04741 0.22193
0.25 0.11498 0.31568 0.30848 0.17322 0.04221 0.23275
0.30 0.20438 0.45835 0.26465 0.15905 0.03800 0.24466
0.35 0.33718 0.63751 0.22583 0.14425 0.03468 0.25275
0.40 0.52839 0.85766 0.19200 0.12878 0.03210 0.25337
0.45 0.79820 1.12133 0.16318 0.11259 0.03015 0.24507
0.50 1.17350 1.42576 0.13935 0.09571 0.02865 0.21641
In each approximation, and zw are determined graphically from J'f\

ii) Calculation of a. For this purpose, the additional auxiliary functions

w{cRl = wlcRIiK~c) + -4-4, ffi(c), H3{c), M3{c), Ns(c), *=*
( w(c)
are required. These are tabulated in Tables V and VI for the cases considered. The
methods of evaluating these functions and their accuracy will be discussed below.
For sufficient accuracy in the final results, only the real parts of Hi, M3, N3 are re-
quired, besides w{cRI and Hf. Having calculated these functions, we can determine
the value of a from the real part of the equations (5) or (7). A similar method of suc-
cessive approximations may be used by writing those equations in the forms

\ —oPHs—cPNi .
(t-aWs) ) Pin—M
I-W j-alP «-
[1—cI2H 3—a AN i~ )-(l-¢c)2(aW 3+ aGV6e+ ee»o)

1—dllp
«—w ( cRI
An approximate value of a is put into the right-hand side to obtain an approximation
of the higher order on the left-hand side. For the initial approximation, take ct=10.

c) Numerical accuracy of the calculations. The numerical accuracy of our calcula-
tion as based upon the final equations given in section 6 are limited by several factors:

i) by neglecting quantities of the orders e~p and (aR)~I in the reduction of the
determinantal equations of the boundary-value problems,

ii) by using the inviscid solutions foro i and <2 (error of the order (af?*1)),

iii) by the approximations of the rapidly varying solutions f3 and fn as discussed
at the end of 86,

iv) by the boundary-layer approximation used in setting up the equation of sta-
bility (except in the cases of plane Couette and Poiseuille flows).

Finally, certain numerical approximations have to be used in the actual evalua-
tion of the quantities u and v in equations (11.11). We shall now discuss these factors
one by one.

The inaccuracy due to (i) and (ii) is negligible in all the cases considered, because
aR is always sufficiently large. In connection with (iii), the situation is more compli-
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cated. The first approximation of the asymptotic solution should give an error of the
order of (ai?)_1/2; while the first approximation using Hankel functions should give
an error of the order (aR)~13. It might therefore be thought that the asymptotic
method should always give a better approximation. However, this is not the case.
For the order of accuracy of the first method is based upon a fixed value of y, while
that of the second is based upon a fixed value of 77. Thus, if aR may be allowed to be-
come very large while y —yo remains to be of the order of unity, the first method is
definitely better. This is the case with the quantities $42 and m With <3t and <3u
the situation is different. Here, yi—yo is always small. Except for one branch of the
neutral curve for profiles with a flex, yi—yo goes to zero as aR becomes infinite. Be-
cause of the smallness of y1—yo, the asymptotic solution (which fails to be accurate
in the neighborhood of yo) never gives a good approximation. This is why the other
method has to be used in most of the calculations, and we are limited to an accuracy
of (ai?)~13. We note that the curvature of the velocity distribution does not come
into this approximation. Thus, for better accuracy, a second approximation should
be used, the error being then reduced to the order of (aR)~13 However, since the
error in the method used is only a few per cent, and an improvement in accuracy
would not alter the general conclusions, it does not seem worth while to improve the
accuracy in the light of general interest. Indeed, the inaccuracy due to the other
causes (to be discussed) is also of the same order of magnitude. Another support to
the method used is that it does agree with the asymptotic method when z is large;
there is only a negligible difference (cf. eq. (6.31)).

The effect of the change of the thickness of the boundary layer might be taken
to be more serious than a mere numerical inaccuracy. Taylor regarded this as invali-
dating the existing instability theory of the boundary layer. This question can best
be settled experimentally. For the present, we only want to discuss its effect upon
our boundary value problem. An approximate estimate of this effect may be obtained
by considering the change of the thickness of the boundary layer for one wave-
length of the disturbance. This can be easily verified* to be ir(1.72)2<*.Ri. For the
lowest value of aiRi involved in the calculations of 8§13, this is about 6 per cent.
Thus, the error is not large. Hence, in the physical interpretation of the results, we
need only consider a change of Reynolds number as we pass down stream. One in-
teresting point is the following: as the Reynolds number keeps on increasing, all
disturbances finally become stable, if the linear theory holds throughout. Thus, the
transition to turbulence depends upon the occurrence of the non-linear effect and
hence must depend upon the amount of initial disturbance.

d) Calculation of 4%, 4>n< etc- We shall now discuss the method by which these
quantities are evaluated for the calculation of u and v in the equations (5) and (7).
A discussion of the accuracy of the present method and of Tollmien’s method of eval-
uating these quantities will also be made.

The original question is to evaluate the integrals Hm(c) and K m{c) as occurring in
(6.24). Various methods are possible for carrying out the calculation, including
straightforward numerical integration. The method to be described is an attempt at
a simple one. With the transformations (2), we hope to bring out the dominant terms
of the series (6.24), and the calculations of u and v according to (7) and (9) are based
upon the use of the transformed series (1). We make the following approximations.

* Cf. Goldstein [7], last column of table of p. 157.



298 C. C. LIN [Vol. IIl, No. 4

i) The imaginary part v is chiefly given by that of the first term, namely,
w( c(K\+ \/w{c); this implies that the imaginary part due to H3(c), M3(c), N3(c), etc.
is negligible.

ii) The real part receives also little contribution from those of H3(c), M 3(c), N 3(c),
etc., and hence these need be calculated only approximately.

iii) The series are cut short; terms like Nt, Mi, * + ¢ are entirely neglected.

Let us proceed to justify these approximations.

The justification of (ii) and (iii) is based upon the following two facts.

a) The quantities in the series involved decrease roughly like 1/wl, m being the
number of integrations involved in defining a certain term.

b) For a<|, the terms also decrease as am Thus, the accuracy is not very good
for a> 1, namely for low Reynolds numbers.

But from a consultation of Tables V and VI, and the manner in which the integrals
H 3(c), M 3(c), H 3(c), etc., enter (5) and (7), we see that an error of ten per cent in these
integrals will cause a negligible error in the final results.

The justification of (i) needs more explanation. For definiteness, let us take N 3(c)
as an example. Now,

N3 = Tdyw —o-2f dy{w —e2 f dy(iv—c)~2
*T vi *7 ili *7 ili

This can be expressed asthe sum of the following three integrals:

N3i() =k 3c) - T dy(w-92f dyw - o)-2

J Vi Jy
V2 rv riR
/ dy(w —¢-~2 1 dy{w —¢g2 I dy(w —c)“2
il vo v
N 33(c) = f dy(w —c)~-f dy(w —c)2 f dy(w — c)~2
*7 10 A Vo Y

The third integral is real, because }D}&A further transformation of the last integra-
tion in N3\ and N3 like

i* dy(w —c)~2= 7fi(c) — f dy(w —c)-2

ii 1

gives

N n [jfvi(c)}2 f dy(w —c)2— Ki(c) f dy(w —<c)2 f "dy(w —c) 2
*7 »l J i *Tvi

iV32 = Ki(c) f dy(w —¢-2 f dy(w —c)2
o7 vi *7 0

VO nv rv
/ dy{fw —«c¢)-2 I dy(w —c)51 dy(w —c)~2
ui J ik J ih
Now, the last integral is real because y<yo- Further, it can be easily verified that
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[ *v0 rv r \o rv
dy(w —cY I dy(w —g-~2= | dy{w —0-2 | dy(w —e)2
M ~M J M J \o
Hence, the only term which can contribute to the imaginary partofN3(c) is
{Ki(c)}2 vdy(w —cY- Now, c is usually small so that we may put
'0 w2 1 {wlcY
dy(w - ¢cY = — (yi- y»3=-
w{
Hence,
i 12 | Vayt v —twierxio )2t wie
w —cY — {w{cKxic))2 - -
J M y 3 w{*

Now we have approximately

w{ cKi(c) = 1 —vi.

Substituting into the above expression, we obtain the imaginary part of N~(c) as
—2w{ cv/ZwY. Thiswill give a contribution of approximately —(2/3) [ac(l—c)/w{ }2z
to the imaginary part of ». This is negligible, because the factor preceding » is at most
of the order of 0.02 in our calculations. Hence, it is justifiable to neglect the contribu-
tion of N3 to » With the other terms, the approximation is even better; thus, the
imaginary part of H2(c) is of the order of c3 times that of K\(c), and that of M3(c)
is of the order of c¢6 times that of K\(c).

Having thus justified the approximations described above, the task is to evaluate
Kx(c), Hi(c), Hi(c), M3(c), and N3(c) with proper degree of accuracy. For parabolic
distribution, these integrals can be evaluated exactly; the approximation (ii) is not
necessary. Thus,

tfi(c) = A, (11)
1 +
Ki(c) = - Mog =" 4 vy, (12)
2al - ad .2a3
1 402 3 A log (1 + a) 2a2I ) B {I y 2 i (19
H2(c\ = - 0 a — 10ga2 - — 4l0 - a4 - 1In
=30 a T T o2a3 0 5 9T gy VY
ga2A 1 a + ll\
J( Thbg
(a+ 1 a )
1 ( 54 108 38
J 4 a2 — 64a (14
2251 7 5
RIN3 1 1+3 (1 - 2712)2I 1T a
c) = ——-- + 382 -----mm-- — lo
© 24a2( 2 16a5 g 1 —a
a+ x

(15)
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t 1 -]-a 32a 1-f-a
ImNz(c) = ——<IB log ----—--- + log — —
16a6 ( 1—a 15 2a
2a 1
g1 - )@+ 3a+ 18aa+ 2023 V, (16)
J
where
2a2 1 8 as
az = 1_C| A = a4 ---------- 1————, B = A (17)
3 5 15

These are the equations on which Table V is based, where only the real parts are
given. For any other profile, the rule is as follows:

i) Evaluate K x(c) with as much accuracy as possible. Usually, it is broken up into
two parts. Thus,

Kxc) = Kn(c) + Ku(c); Kn() = f *dy(w - ¢)~\

Ku(c) = f Vdy(w - ¢)-2 (18)
IV

where yx<y,-<y2 The value of y,- is chosen so that K xx(c) can be calculated with suffi-
cient accuracy by developing w as a power series of (y —y 0), while Kn(c) can be evalu-
ated by developing the integrand as a power series of ¢/w.

ii)Evaluate by numerical integration the quantities

Hx0) = fArdyw?2 = (19)
*7 VI
Hi () = - 2 f* wdy (20)
o/ vi
>\2 rv
/ w~ay | w2y, (21)
J VI
\J f v pv
/ Wajy I w~2dy | w2y, (22)
T\
»)/Z u rry
w~ady | whdy | w~2y. (23)
iii) The integral H x(c) is thenvgiven by = Jv
H1l(c) = 5-X0) + Hi (O)c + c2 (24)

iv) The real part of the integrals H2(c), M3(c), N 3(c) are obtained by comparison
with the corresponding quantities for parabolic distribution (Table V). For example,

Iw Vv
M3(c) —M3@Q) = v X corresponding quantity for parabolic distribution. (25)

The idea of the last step is essentially to approximate the given profile with a parabolic

one.
For the Blasius profile, (with w{ =2, y,-—yx=0A). We obtain
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Kn{c) + _“E“: - 0.5615 - 0.3937c - 1.543c2 - 1.803c3- 1.368c4- 5.022c5
w(c
9/ 21 \/ 08- ¢
+ oot — (c2+ —C5-F ee¢J (log—- hit
K 12(c) = 0.7080 + 1.3546¢c + 2.588c2 + 3.860c3+ 5.446c4+ 7.455c6 26)
+ ee e |
1
Ki(c) H ( = 0.1465 + 1.2467c + 1.045c2 + 2.039c3+ 4.078c4+ 2.423c6
w{c
9/ 21 \/ 08- ¢ \
+ "'+ TV +7 “+ mm") (log—r - + “)°
In evaluating these integrals, we take
woo=2(y- yi) - 3(y - yi)4 0g y- yig 04\
w = 1-{09- (y- yi}2 04<vy- yig 09, > 27)
w —1 09g y—yi™~ 1 |/

For the integrals /ii(0) and H{ (0), we make use of the known values of the displace-
ment thickness and the momentum thickness 62.

Si = —; (1.7208) = 0.28673,
(28)
8 = 1—12 (1.32824) = 0.11067.1
Thus,
Ei(0) = 1% h ~ Si = 0.6026, 77/(0) = - 2(1 - SO = ~ 1.4265. (29)

The values of ii“0O), M3(0), iV3(0), as evaluated by numerical integration, are given
in the first row of Table VI. The rest of the table is constructed by following the pro-
cedure described above.

We see that the method of approximation developed above is purely a numerical
one, and the calculation can be done without excessive labor. In any case, even if the
above method does not give satisfactory results, suitable approximations can always
be devised for the evaluation of the necessary integrals. This is the advantage of
using Heisenberg’s form of the inviscid solutions. In the method used by Toilmien,
it is necessary that the profile may be approximated by linear and parabolic parts;
otherwise, the numerical labor is excessive. It is not clear at once what is the effect
of such an approximation on the solutions <Ky). A more serious criticism of Tollmien’s
method is the joining of the inviscid solutions at the point of junction of the two ap-
proximate profiles. Mathematically speaking, such a junction presents an essential
singularity in the coefficients of the differential equation (3.8) or (3.14). Numerically
speaking, serious difficulty would be expected when c is equal or even only very near
to the velocity of junction, because the inviscid solution fails at the critical layer
where w = c¢. Toilmien did not publish how he overcame this difficulty.*

* Toilmien [73], footnote, p. 37.
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THE CYLINDRICAL ANTENNA; CURRENT AND IMPEDANCE*

BY

RONOLD KING and DAVID MIDDLETON
Cruft Laboratory and the Research laboratory of Physics, Harvard University

1. Introduction. The definition and the determination of the impedance of a sym-
metrical, center-driven antenna of small, circular cross section involves three major
problems. These are first the theoretical analysis including the formulation of bound-
ary conditions;second the apparatus and the technique of experimental measurement;

and third the coordination of experiment with theory. Of these
H|2 alf problems only the first is the subject of this paper; the last two
ol are considered in detail elsewhere.l The present discussion is
3 concerned specifically with an analytical improvement in the
solution of the theoretical problem.
The boundary and driving conditions in this analysis are the
-Ri same as implied in earlier analyses,2'3 and the same integral
equation is obtained. However, the present paper introduces a
new approach to the solution of Hallen’s integral equation in
that it replaces a function arbitrarily chosen for reasons of
mathematical convenience in the approximate evaluation of the
equation by a function actually fitted to the true distribution of
— . current. As a consequence, new parameters are introduced to
replace those used by Hallen (or equally those used by Gray1?
| in the successive approximations, and as would be expected the
-h  resulting development shows a more rapid convergence, in so
Fig. 1. Cylindrical far as this is indicated by a relatively small difference between
antenna with hemi- first and second order solutions.
spherical ends. The antenna actually analyzed is a theoretical one in the
sense that no exact experimental analogue can be constructed.
Its properties are summarized as follows:

(1) The antenna is a highly conducting cylinder of small radius a extending un-

broken from 3 = —h to z= +h as shown in Fig. 1. Postulated inequalities are

[ e ek M o el e T et e el el

a«1, a« h, 1)

where 0 = w/c is the phase constant and ¢=3X108 m/sec.
(2) The ends of the antenna at z—z+h contribute nothing to the electrical prob-
lem so that it is correct to write

h, —o at z—+ h ()

(3) The antenna is center-driven by a slice generator consisting of a disk of neg-

*Received Aug. 6, 1945.

1R. King and D. D. King. J. Appl. Phys. 16, 445 (1945).

1E. Hallin, Nova Acta, Royal Soc. Sciences, Upsala 11, 1 (1938).
3R. King and C. W. Harrison, Jr., Proc. I.R.E. 31, 548 (1943).
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ligible thickness at the center, z=0, which is in all respects like any other piece of the
antenna except that a scalar potential difference

Vo —lim (0+r —o0_,) = 0+0 —0-0 ?3)
z—0
is maintained between its faces.
4) All other conductors and all dielectrics are sufficiently far away so that their
individual effects are indistinguishable from the composite effect of the universe as
a whole. If R is the distance from the center of the antenna to the nearest point on
any other conductor or on a dielectric the following inequalities must be satisfied

OR» 1; R » h 4

The degree in which this theoretical antenna can be realized physically is sum-
marized briefly below. Details are found elsewhere.!

(@) A metal wire or rod can be constructed to satisfy completely the properties
assumed in conjunction with (1).

(b) If a solid cylinder with flat ends or a hollow cylinder is used (2) is not exactly
true. A small current exists at the .ends to charge the sharp edges, the end surfaces,
or the inner surfaces of a tube near the ends. This leads to an error in h of the order
of magnitude of a, and a consequent hidden shift in the theoretical impedance curves.
For particular values of h near anti-resonance large errors in impedance are involved.
A solid cylinder of length 2h along the axis with hemispherical ends as shown in Fig. 1
is a satisfactory physical approximation that satisfies (1) and (2).

(c) Itis physically impossible to provide a slice generator. At very low frequencies
a two-wire drive is satisfactory to approximate (3) but in this case (4) can not be
satisfied. At high frequencies where (4) is readily satisfied a two-wire drive involves
adjacent end surfaces and a gap in the antenna which are not taken into account in
the theory. The effects of gap and end surfaces are compensating and may be taken
into account roughly in comparing theoretical and experimental results by including
a lumped capacitance in parallel with the experimentally measured impedances if the
gap is large and a similar capacitance in parallel with the theoretical impedances if
the gap is very narrow and the adjacent end surfaces of the antenna are very close
together.t A vertical antenna of length h over a conducting plane, driven from a
coaxial line, may be a good approximation of a slice generator, but the unavailability
of an infinite, perfectly conducting plane leads to other difficulties.

(d) The condition for the far zone (4) can not be fulfilled at low radio frequencies
(where accurate measurements can be made easily) because it is not possible to get
far enough away from the earth. At high frequencies where this is possible, accurate
measurements are difficult and the dimensions of the antenna and its driving struc-
ture become undesirably small.

The analysis of the theoretical antenna subject to the conditions (1) to (4) dis-
cussed above, can be reduced to one-dimensional form involving the total current 2*
if it is assumed that the cross-sectional distribution of the density of current is inde-

4L. Brillouin, Quart. Appl. Math. 1, 201 (1943).
6L. Brillouin, EI. Communication 22, 11 (1944).
8S. A. SchelkunofF, J. Appl. Phys. IS, 54 (1944).
7R. King and C. W. Harrison, Jr., J. Appl. Phys. IS, 170 (1944).
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pendent of the axial distribution. In effect, this means that the cross-sectional dis-
tribution and the internal impedance per unit length may be obtained from the analy-
sis of an infinitely long cylinder. This is an excellent approximation subject to (1).
At high frequencies the internal impedance per unit length is given by

1 / oyill
DOV 2K <1+>) (si

with a the conductivity in mhos per meter, juthe relative permeability, a the radius
in meters, and 11*=4xX10~7 henry per meter. Subject to this assumption in addition
to (1)-(4) the vector potential at any point z on the cylindrical surface of the antenna
due to the axial current in the entire antenna is given by 3'8'9 1

h
Az= — \Ir I"Rrle-VRdz', 6)
d_A
where
Ri =V(z- §)2+ a2

and Il =1z(z") is the axial current at s'.
The integral equation for the current, originally derived by Hallen,2 isio
4x r> .
—Az= URr'eriMdz'

n

— _J4x

" [Cicoskz+ FosinR\z|—z'J’ I(s)sinR(z — . (8)
Rc

Vo is the driving potential difference maintained by the slice generator at z= 0; Ci is
a constant of integration which is later evaluated using (2); 2?c=cll = 376.7 ohms
= 120x ohms. In practice the conductivity ais usually sufficiently high and therefore
z* sufficiently small so that the last integral in (8) contributes negligibly to the final
result.il For simplicity it is omitted throughout the following analysis. If required
it can be included readily at appropriate points with no change in the formulation.

2. Expansion of the integral equation. In the absence of an exact solution of the
integral equation (8) in closed form, an approximate solution may be obtained by
expanding the integral on the left in a converging power series in terms of an ap-
propriately chosen parameter. If a converging series is obtained and a sufficient num-
ber of terms can be evaluated the choice of the parameter for expansion is unimpor-
tant. If only a few terms in the series can be evaluated readily it is of great importance
to select the parameter in such a way that convergence is so rapid that the sum of
two or three terms gives a satisfactory approximation. The several parameters which
have been used,9'2 including that introduced below, will be discussed critically and
results compared in another paper. The general definition of all such parameters is
formulated below.

8 R. King, Electromagnetic engineering Vol. 1, McGraw-Hill Book Co., New York, 1945, p. 241.
9S. A. Schelkunoff, Electromagnetic waves, D. Van Nostrand Co., New York, 1943, pp. 140, 142 ff.
10 Reference 3, equation (25). The complete derivation is given.

11 R. King and F. G. Blake, Proc. I.R.E. 30, 335 (1942).

I5M. C. Gray, J. Appl. Phys. 15, 61 (1944).
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The solution of (8) may be formulated by expressing 1z in terms of a convenient
reference current such as the input current 10and a distribution function /(z) that
is unknown. Thus let

1z = 70/(2); I =w ), (9a)
so that
= Lf(z")/m » 1,9(z, zn. (9b)

The relative distribution function g(z, z') is defined in (9b). Now let a function 'k(z)
be defined by

~>3) = f g(z, 2')Rik~ieRldzr. (10
J -h

If the relative distribution function g(z, z') were the actual one, it would be correct
to write 1jT(z) for the integral on the left in (8). Whatever the form of g(z, z'), itis
correct to write

—Az= f I1’Rre-~dz' = 128{0) + f [1Z - 119(z, a)]3?2rk-*»>W . (11)
I J-h J -h
The more nearly g(z, z') approximates the true distribution the smaller will be the
difference integral on the right in (11). If g(z, z') can be chosen accurately enough so
that the integral on the right in (11) is considerably smaller than the term 1zAr(z) for
all values of z, it is possible to treat this term as the principal part and the difference
integral as a correction.
If g(z, z') were the true relative distribution function so that the difference in-
tegral in (11) were zero, the function ~(z) would be given by

4% Az

(*) = T . (12)
That is, ¥(*) would be proportional to the ratio of the vector potential on the surface
of the antenna at a point z divided by the total axial current at z. It is clear from (6)
that the vector potential at a point z is determined largely by the current at and
near z, except possibly at a few points where 1z is very small compared with the cur-
rents elsewhere in the antenna. It may be assumed, therefore, that the ratio A zf |z
is reasonably constant and predominantly real at all points along the antenna except
at and near very small or zero values of the current. Clearly, since 1z= 0 at the ends
and A z is not zero there, 'T(z2) is infinite at z= +h. However, the product /,,”~(z) must
remain finite and relatively small at z= *h.

If \k(z) is sensibly constant for most values of z, it must be exactly equal to T(so)
at some point z—=z0, so chosen that ~(zo) is a good approximation of ~(z) except where
Izis small or zero. Let

* = (13a)

so that
*(z) = W *. (13b)

Also let a function y(z) be defined so that
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TE) =T+ 7(0), (14a)
where
7(2) = T(e'er —1). (14b)

If T(z) is predominantly real, 7 (2) is a small complex correction function except at
values of 2 where /* is small or zero. It is to be noted that 7 (2) is infinite at z= +h
but that 1 % (2) is finite and small there.

If g(z, 2%) is not the true relative distribution function but only approximate,
(12) is also approximate, and it is still possible to write (13a, b) and (14a, b) with
T(s) defined as in (10). Substituting (14a) in (11) and using (11) in (8) solved for I,
in the principal term /*T, one obtains

z= —-— {Cicos fiz+ 5Vosin @121}
Rc'l’

BN CERNE [” - 1#(*, 2)]Rrle-Mdz] . (15)

This equation is exact. Like (8) it is an integral equation in the current, but the cur-
rent appears in the integrand of a difference integral that is small. The term 1% (2)
is also small except near points where /* is small or vanishes, as at 2 = th.

A more useful form of (15) is obtained as follows. Let (8) be written with z=h in
the form

0 = —-— {Ci cos fih + +Fo sin fih] f rRihe~igrrdz'. (16)
Ren yJ-h

The term in  has been omitted in (16) just as in (15). Actually (16) is exactly equiva-
lent to (15) when this is written with z=h. In (16)

Ry> = V(h - z'Y + a2 (A7)
The desired equation is obtained by subtracting (16) from (15). It is

1*= —Rr {Ci[cos /3s —cos BA] + JFfjsin 3|2 | —sin j3™]}

SN PR T(s)+ - Izg(z,z')}R\Ie~im'dz'—J UR’\e-”‘dz'j. (18)

This is the final exact form of the integral equation. Its principal advantage over (8)
lies in the fact that all terms on the right involving the current are small if the rela-
tive distribution function g(z, z') is correctly chosen to make the difference terms
small. The expression (18) must be used in preference to (15) because in (18) the
right side vanishes for all values of fill when z=+h as required by (2), whereas the
right side in (15) can not be made to vanish at x= +h when cos fih—0. In this case
the arbitrary constant Ci disappears from (15).

The integral equation (18) can be expressed as the sum of a principal current
(/)0 consisting of the trigonometric terms and a correction current (/*) c given by the
remaining terms. The correction term (/*)ccan then be expanded in apower series
in 1/'T. Thus
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h = (1.)0+ (J«)= = (/,)0+ {IYcy+ (/). + (Jz)c3+ o o« . (19)

Here (/*)*, is obtained by substituting (/*)0in (/*),,; (12)Q+ (12)@ isobtained using
(1z2)o+ (1t)a in (/,)«, etc.
For convenience let

" F.(*) - Fn(A) = Fnz; G,(2) - Gn(h) m Grz (20a)
where
FO(z) = cos fiz; FO(h) = cos f3z; Go(z) = sin (31z|; Go(/t) =sin fih (20b)
Fn(z) = I" ofz, z')Rrle~m 'dz" — f FmMi,z-Rry~m 'dz’ — F,,_i,*7(z), (21a)
V-A T —A
|
FA=- f FXREVE ey

T A

The first and last terms in (21a) may be combined into Fn_i,zT using (10) and (14a).
Expressions for G,,(z) and Gn(h) are obtained from (21a) and (21b) by writing G for
F throughout.

Using (19)—21) in (18), the completeseries solution for 1z may beobtained. The
constant Ci may be evaluated from (16) using (19)—21) as described in references
2 and 3. The resulting wth order current ist3

i m m m m
. . E F,(2)/Tn- D G,,(A)/*» - E G»(s)/*" € F.(A)/*»
j2irvo\ n-0 n-0 n-0 n-0 i .o

RT ) m
‘ | E F,.(A)/T"
\ n—o

This formula may be simplified using (20a, b). The result is

| m \
sin filh —|z|)+ E M, @/T",
AVm j2irvo 23)
(A) RT ) 1
cos A+ E Fn(A)/Tn
n—1
where, in particular,
Mi(z) = Mi(z) + jM[\z)= Fi(z) sin0/t —Fx(h) sin fi| z| + Gx{h) cos fiz
—Gi(z) cos fih, (24)
M2(z) = m\{z) + jM[\z)- Fs(z) sinfih —F2(h) sinfi| z
+ Gi(/«)Fi(z) —Gi(2)Fi(/i) + Gi(h) cos fiz —G2(z) cos fih, (25)

and, as previously defined,2'4'5'6
Fn(h) = an= «, + /an. (26)
With

13C. J. Bouwkamp, Physica 9, 609 (1942). In Bouwkamp's paper G and Fare, respectively, the F
and G functions in this analysis.



308 RONALD KING AND DAVID MIDDLETON [Vol. 1Il, No. 4

Rn = R[ + jBn = M M = ¢/'(0) + jMI\o), 27)
the impedance of the antenna is defined by
¢0 = VI/h, (28)
where 10is given by (23) with z=10. It is
icos Rh+ Xx) «ninn
- jRc*
2w

(Z,)m= (Ro)m+ j(XOm = (29)

sin Bh + ¢

This is a generalization of the formula obtained by Hallén2 and others3'13 as shown
later.

3. Functions and parameters in the Hallén solution. The expressions for the cur-
rent (23) and for the impedance (29) depend upon the constant parameter T and
this in turn depends upon the relative distribution function g(z, z'). The definition of
these quantities involves the following considerations : The relative distribution func-
tion g(z, z') must be so chosen that it is a sufficiently good approximation of the
actual distribution to make the difference integral in (11) small. Furthermore, it must
be sufficiently simple in form that the integral (10) for \k(z) can be evaluated and
separated into a principal, constant, real part | (z0| and a small correction
term y(z) as in (14a, b).

The choice of distribution function made by Hallén depended upon the reasonable
albeit implicit assumption that the vector potential A z at z depends primarily upon
the current at and near z. If contributions from all more distant elements of current
are small, A zmay be evaluated approximately by assuming the current at all points
to be 1zand neglecting retardation. This is equivalent to setting

gu{z, z’) = eiRRI. (30)

The subscript H will be used to designate parameters and functions in the Hallen
analysis. With (30), (10) gives

hdz1 _ h-\-z _ K —
T; = / Y[ e ——— (- sinh- 1 —----- (31)
kRi a a
Alternatively and equivalently
n) —th g |) + 5(2), (32)
where
20
9= TiG = O) =2 ]In—¢ (33)
a

o QM+ 2Kl o

If the function \k//(z) in (31) is plotted as a function of z/a for a range of values of
the ratio h/a, it is found to be moderately constant for large ratios h/a except with
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z near h. Subject to the condition the maximum value of ~//(z) is ft, the aver-
age value is 0 —2+2 In 2= ft—0.614, the value at z= =k is §ft+In 2. For ft> 15 the
average value or the maximum value are satisfactory approximations. In view of the
fact that ¥*(z) becomes smaller at z= +h instead of becoming infinite as it would if
the correct distribution function were used, it is’clear that the curvature of Sft/(z)
is the reverse of what it should be. Therefore, the maximum value ft is probably the
best approximation of 'Sh(z) and this was Hallen's, although not explicitly for this
reason. Thus the Hallen analysis sets

2h
N«(z0) = ‘& = &= 2 In;i (35a)
yH@E) = In~1 - —” + 5(2). (35b)

The Hallen expressions for the current and the impedance are given by (23) and (29)
with ft written for Ik and with appropriately modified functions F,,(z), Fn(h), Gn{z),
and n> 0. The functions with «=0 are independent of the choice of IF. The

Hallen functions are
> h g-ifSlti

Fn,i(z) (FreithnQ - | (F,,_i,*.)//-—l— dz', (36a)
J-h A

b h g-jpRih
-j h(Fn- Ein dz'. (36b)

FnS(A)

Gnji(z) and Gnn{h)are obtained from the above bywriting G for F.These functions
have been evaluatedelsewheres3 for n=*land n= 2. The first orderdistribution of
current and the first order impedance have been calculated and represented graphi-
cally311; the second order impedance has been evaluated by Bouwkamp.13 The Hal-
len formula for the mth order current is

Jsin @h — z|) + 23 Mnll(z)/ftn]
j2-KVQI n— i
=3J- Ao }, (37)
cos ft; + t FnH(h)/Q.»

=

tn \
‘cos /3h + 23
jReQ\ ZI
] (38a)
2X
n=*1
Here
« )l = a[ +jal = Fn,Qi), (38h) = hi + jft = MnH(0). (38¢)

The functions «i and ft are tabulated and represented graphically in references 2, 3,
11; the functions and ft as calculated by Bouwkamp13 using graphical methods are
listed in Table | and plotted in Figs. 2 and 3.

4. Functions and parameters in the improved solution. The relative distribution
function g(z, z') in (30) is the simplest and the most obvious one if an attempt is



310 RONALD KING AND DAVID MIDDLETON [Vol. Ill, No. 4

Table |

Bh a’L a,a R[ R

0 0 0 0 0

0.2 -0.16 0.03 3.07 —

0.4 -0.53 0.13 5.20 0.03
0.6 -1.07 0.39 6.50 0.24
0.8 -1.67 0.80 7.14 0.78
1.0 -2.17 1.31 6.78 1.74
1.2 -2.66 1.84 5.48 3.04
1.4 -3.00 2.31 3.34 4.97
1.6 -3.23 2.73 0.45 7.06
1.8 -3.34 3.04 -3.06 9.33
2.0 -3.33 3.30 -7.03 11.81
2.2 -3.16 3.48 -11.25 13.98
2.4 -2.84 3.58 -16.22 16.08
2.6 -2.35 3.58 -20.83 17.28
2.8 -1.59 3.40 -24.71 17.72
3.0 -0.61 2.99 -27.54 17.50
3.2 0.50 2.27 -29.02 16.85
3.4 1.58 1.37 -29.29 15.75
3.6 2.59 0.28 -28.30 13.84
3.8 3.49 -0.83 -26.35 11.34
4.0 4.33 -2.00 -23.38 8.28
4.2 5.03 -3.09 -19.60 4.73
4.4 5.41 -4.13 -15.14 0.21
4.6 5.46 -5.04 -10.26 -4.84
4.8 5.20 -5.67 -4.21 -10.09
5.0 4.66 -6.08 +2.41 -15.10

made to solve the original integral equation (8) as was done by Hallen. On the other
hand, if the formal solution is carried through to obtain (23) without previously
selecting g(z, z') as has been done in the present analysis, it is perfectly clear that the
leading term in the distribution of current for any value of the distribution function
must be of the form
/. = KMs) (39a)
with .
fi{z) S sin [3th —|z]|). (39b)
K is an amplitude factor independent of s. Accordingly, an approximate relative dis-
tribution function is
/a sin fith —|2'|) Mz')
Ski(z,z) = — — == — = -
" ) sin f)(h —1_51) li(z)

This function is known to be a very much better approximation of the actual current
then the function assumed by Hallen,gu(z,z") = e”?Rl. The function / x(z)=sin j3(/i— |z|)

(40)

actually is proportional to theprincipal part of thecurrent; the functione‘PRlisnot.

Using (40) and (10) we obtain
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Fig. 2. The parameters agand a" as a function of pli.

Fig. 3. The parameters p2and P, as a function of ph.
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i'xi(z) = Jf gxi(z, z')Rrie~midz". (41)
-A

This functioninvolves the factor /i(z)=sin 3(r—|z|) inthedenominator  of the
integrand. Since thisis not a function of z' it is a constant in the integration. There-
fore, it is convenient to introduce the function

M*) = f Mz')Rrle-rdz' (42a)
J-a
so that
iZi2)
**j(z) = — — o (42b)
mfm

The function <MN(Z) can be written in the form

¥i(*) = C(2) sin j&h —S{z) cos fih, (43)
where
C(z) a f cosO0z'Rr'e-W'dz', (44)
-A
S(z) = f sinf3lz'|Rr'e-mdz". (45)
*7 -A

These integrals are evaluated in the Appendix both in general and in a simpler ap-
proximate form. The latter is a good approximation if, as assumed throughout this
analysis, ligy>a2 Curves for C(z) and S(z) as calculated using the simpler forms which
apply in this analysis are given in Figs. 4-7, 20-23 for j3h=ir/2 and tt and for ft
=2 In (2h/a) = 10 and 20. It is to be noted that

di(z) = C(2); {ill = ir/2, (46)
ixiz) - S(z); pk = tt 47)

It follows that the plots of C(z) with /3h=ir/2 are also plots of ~(z); these are given
in Figs. 4 and 5 for ft= 10 and 20. Similarly plots of £(z) with (3h=ir are also plots
of ~i(z); these are given in Figs. 6 and 7 for ft= 10 and 20. The function ~(z) is seen
to have a very small imaginary part so that it and 'Fai(z) ="i(z)//i(z) are predomi-
nantly real, inconfirmation of the assumption made inconjunction with (14). Ac-
cordingly, theparameter 47= |~ (s0[ defined in (13a)may be chosen to be

Tai = |¥ai(0) | = | *i(0) I! = tt/2; (48)
Kl = | - X4) 1= IMh ~ A4 1;  ph=r. (49)
The function
| ¥« (*) |I Al (50)
/i(z)

is plotted in Figs. 4-7. For fih=ir/2 and both for ft= 10 and 20 it is seen to be quite
constant over the entire length of the antenna except near the ends where it becomes
infinite, as it should. For ph —ir the function becomes infinite not only at the ends
but also at the center. The infinity at the center is a result of approximating the



Fig. 4. The functions C(z)="i(z); |yi(0)|/i(z), and
|W z)| //i(z) near resonance, f3h—ir/2, 12= 10.

LY jipom

&%ﬁ) IT\M/Rb)

Fig. 5. The functions C(z)="i(z), |"i(O)|/i(z), and
11Ai(z) | //i(z) near resonance, Ph=ir/2, f2= 20.
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IM*) 1//i(z) near anti-resonance, Bh=ir, 12=10. I~r(2)//i(z) near anti-resonance, Bh=v, 2= 20.
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current by the distribution function/i(z) =sin /3(/i—|z|). With /3h=ir and z= 0, this
vanishes so that Ta;i(z) necessarily diverges. Unlike the infinity at the ends, the in-
finity at z=0 is due to the fact that/i(z) and hence gx(z, z') are approximate and not
exact distribution functions. Actually, the current does not vanish at z=0; it merely is
small so that 'k(z) does not become infinite. The fact that Iz is small at and near
z=0 does not mean that \k(z) necessarily becomes very large. 'F(z) is by definition
proportional to the ratio Az 1z, and Az is determined largely by the current at z
Hence A z,0 is small if J* o0 is, and the ratio may remain moderately constant. Fur-
theremore, since Az at z—h—A/4 is determined principally by the large (near maxi-
mum) currents at and near z=h—A/4, it is affected only very slightly by a small
current at z= 0. Therefore A zat z—Ili—A/4 and 'f'KiQi—A/4) will not be sensibly dif-
ferent if a fictitious zero current is assumed at z= 0 or an actual small current. Ac-
cordingly the function \EUn(/i—X/4| is a good approximation of 1fxi(z) for the actual
current everywhere (including z=0) except near the ends, z= +th.

Although the qualitative argument to show that 'f'A'i(z) is sensibly constant and
approximately equal to |'irAii(A—X/4)| for all values of z except the ends is sound,
it can be verified directly using Hallen’s first order distribution. It has been shown3
that a very satisfactory approximation of the Hallen first order current is given by

/cos j& — cos ph)\ L ) - .
lz= )+Jlljsmp(h—lz|); ?g/3/t< 2ir, (51)

1 —cos fSli /

where Jo" is the component of current at z=0 in phase with the driving potential
difference and 1JI is the maximum value of the component of current in phase quad-
rature with the driving potential difference. Im occurs at z=/i—X/4. With

k = Ii['/An'; N < 1. (52)

it is possible to write (51) in the form
) (. 11 ~ [cos & —cos /3/A

Iz=jlm ssinPth — z ) —jki— —

( \' 1 —cos /A A

With this approximate current, an appropriate distribution function g(z, z') is defined
by

- = jjm2(2). (53)

. 1z sin 3(t —| ' 1) —jk{cos /32" —cos /3//)/(I — cos /3A)
z) = 1z sin /3(h —1z1) —jk(cos /35 — cos /3/»)/(I — cos/3n)

Hz’) r
— N 3z < 2t. (54)

The ratio factor k is negative and small compared with unity. It is plotted in Fig. 8

as a function of /3h from the data of Figs. 9-11 in reference 3. Only values of /3z near

r are used because for /3h not near integral multiples of w the distribution (cos /3z

—cos /3/i) does not differ greatly from sin /3(/i—|z{). At |3/li=1t/2 they are identical.
Using the notation (42a, b),
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*«(*) = — — n (55b)
Mz)
The function  (z) can be written
. . fC(z) — E(z) cos 3
~o(z) = C(z) sin f3z —5(z) cos f3li —jk - ,
L 1 —cos f3i J

where C(z) and 5(z) are defined in (44) and (45), and E{z) is given by

E(z) = f Rr'e-w'dz'. (57)
J-h
HiniPiiiLSfe/c, sriigis W
Hililliil
iiliiiiiB iliH iiliiifaifililli

B‘_llllri"lsiii Sism VWi,
1|11 iiililili”“j

Fig. 8. The quantity k =1{"' /id, as a function of f3h near anti-resonance.

This function is evaluated in the Appendix both in general and in a simpler ap-
proximate form valid when it is possible to write a2«/z2 as in the present analysis.
E{z) is plotted in Figs. 24 and 25 for /3/i= /2 and w and with ft= 10 and 20. The
function ~(z) is necessarily predominantly real because it is known that the first
two terms in (56)—these are identically </q(z—are predominantly real and that k is
small. The functions |?22)| and |™.J/«(z) | = ¥2(@)|/|/2(z)| are shown in Figs. 9 and
10 for fih—wand ft=10 and 20. It is seen that 1U/k”z)] does not become infinite at
z=0, and is reasonably constant and equal to '‘F.kNz—X/4)| = |~(/z—X/4)| for all
values of z except at the ends where it becomes infinite, as it should. Comparison of
Mgs. 9 and 10 with 6 and 7 shown that |z2(z—X/4)| differs only slightly from

X/4) . The difference is greater for the smaller value of ft. It follows that

X/4) is a satisfactory parameter even for/3/z = 1r. If desired \\j/2{h—X/4) | may
be used especially for small values of ft, but the difference is not over about 3% for
ftfelO.
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11YF (h=Xm)lifzU|
PIfiw1

Fig. 9. The functions j/j(z) [, |$i{h—X/4)||/2z)]|, and
jy'iz) |[/|/s(z) j near anti-resonance, fh—x, Q= 10.

Fig. 10. The functions |/2(z)|, |"2(A—X/4)| |/2(z)|, and
[~2(z)|/|/2Az)j near anti-resonance, plt=T, fi= 20.
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The conclusions of the above analysis may be generalized and summarized as

follows: 1. The relative distribution function
sin filh —1z2' 1)

- _ .
9ic(™ 0= g figh —| 2 1)

is a good approximation for all values of h. 2. Suitable parameters for expansion are

Fig. 11. The parameter Eqs. (48) and (49), as a function of fih,
for fi= 10, IS, 20.

[¥m (0)] =|M >)| for fih™Nir/2; |Ni(A-X14)] = |M"XA-X/4)| for fih~ir/2. The fol-
lowing notation will be used from here on
N= (I*mo(0)] = |*i(o0)]; fihgTr/2 =
11 *Ki(h - X/4) | = |Mh - X/4)|; /St «/2.
Since N 1(2) has such a small imaginary part and is so well represented by (58) ex-

cept at the ends of the antenna, the correction function y(z) in (14a) is sufficiently

small to be neglected.
The parameter if/ as defined in (58) is plotted as a function of fih for 12= 10, 15, 20
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in Fig. 11. For fi= 10 the curve in solid line for (3h>ir/2 is A/4)|, the curve
in broken line is \$i(h—A/4)|. The curves for 0 =15, and 20 with Ph>ir/2 are
[il'i(A—X14)j.

5. Distribution of current. The distribution of current is given by (23), the
pedance by (29) with '&(=\p) obtained from (58) or Fig. 11 for the value of h/a in
guestion. The functions Fo(z), FO(h), G0(z), and GO(h) are unchanged; they are de-
fined by (20b). Upon substituting (40) in (10) and using (10) in the form (14a) in
(21a) with n—1, this becomes

F\k(z) = FoPPa-i(z) — f [Foi'Rrle="Rldz". (59)
d

Upon comparing (59) with (36a) written for n =\, it followsthat
Fik(z) = Fm{z) + (» — 0)(Fo)n- (60)
Since Sk(s) is notinvolved in (21b),
FikW = Fin(h). (61)

Upon substituting (60) in (21a) with y(z)= 0 and n = 2, this becomes

Fik{z) = (Fidk'&i{z) — f (Fiti)KRrle~"Kldz". (62)
J A
Using (60) and (61) in (62), this gives
A 1%h
/ (FIZ)UR rle-i»*idz' - (p - il) Fo'-Rr'e-'W'dz'. (63)
-A J-h

Upon comparing (63) with (36a), this time written with n - 2, and using (60) and
(61) as well as (36a) written with n—1, we see that

F2K(z) = (Fu)n®+ ~ V){F®W, +F 2H{z) - (Fitnil
- - f)[(FOW - Fm(z) - (f - tI)(FOIH].
When terms are collected there results,
Fik(z) —F2i(2) + (p —SH(Fu)h + (® —i)Fm(z) + (p — O)(F®@//. (64)
Using (21b) with (60) and (61), we find
FikW = F2H(h) - (\p — G)Em(h). (65)
Subtracting (65) from (64), we have
(F2i)x = (Fit)h + 2(\p — Q)(Fiz)n + (yp — H)2(Foi)//. (66)
Repetition of the above procedure to evaluate (Fnz)K leads to:
(F)K = o (> — ! (P—fO'TFn-i,*)//; n e 0. (67)

Expressions for G (z), G2jr(A), (Giz)K, and (Gni)jr are obtained from (64)-(67) by
writing G for F.
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If the functions F and G are combined to form the functions M as defined in (24)
and (25) for the first two terms, the result is

Mik(z) = Mih(z) + (i — ty sin B(h —|z|), (68)
Mik(z) = Miaf{z) + 2(p — Q)iMUi(z) + (P - b)2sing(h —\z\). (69)

In general,
M, k(z) = Eo 7(;..22)'“ (f ~ b)'Af,_-ill(2); ne o, (70)

where it is understood that

Moh(z) = sin B(h —1z1). (71)
Similarly,
n - 1
FMh) = E ; -((-(-1)..';. P - nt 1. (72)
i—o (N — 1t — 1u!

Upon substituting (70)—72) in (23) the general expression for the mth order
current becomes

| m
(DOm sinR(k - 1z1) + E (Dn+i)mMnll(z)/r
j2xFo
(1*)» (73)
Rd .
cosRh + E (DnmiF,,,(h)/Pn
n-1
where with
Q
X= 1 - (74)
the D ’s have the following significance:
Order?« = 0 1 2 3 4
(DY)m= 1 + X + a2 + X3 + ad + eee
(D))n = 1 + 2x + 3x2 + 4a3
(Di)» = 1 + 3& + 642 + oo (75)
(Di)ym = 1 + da +
(AO* = L + e

It is interesting and significant to note than when the series in (75) are summed
for an infinite number of terms, i.e., m—>00, then

dn~I 1\ 1 \P\n

Dn . (- ) =

eJ-n-iYl —x)j (1 —x)_n - F)) ) a<i; ma 1- (76)

With these values of (D nymand an infinite number of terms, (73) is identical with the
expression (37) obtained by Hallen. Furthermore, if a—0,i f o r all values of fih,
so that (73) approaches (37) as the radius a approaches zero.

It is important to note that if a finite number of terms is used in (73), all terms
belonging to a given order m of solution must be retained and no others. That is, if
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Fig. 12. The quantities D1and Dt for the second order theory as a
function of /&, §=10, 15, 20.

Fig. 13. The quantity Dt for the first order theory as a function
of ph, 2= 10, 15, 20.
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Fig. 14. First order current for Rh=v/2 in units of FJ/60ilD//.

Fig. 15. First order current for /3A= 3jt 4 in units of Vva60 VIDn.
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an mth order solution is evaluated, only terms contributed by Afrx(z) and FnK(h)
with «=0, 1, 2, »++«, m are used. It is readily verified that this is equivalent to
writing

W>.-1+(>7)+0 -7 )

@%)2= 1+ 2~1-17, (77a)

Fig. 16. First order current for = in units of Fj/60 QDn.
The expressions (Z?)2 and (E>2)2 are plotted as functions of j3h for Q= 10, 15, 20, in
Fig. 12. Similarly it is correct to set
(Eno = 1,

Eii=i+ (i-]), (77b)

(77s)1 = I-
The function (Di)i is shown in Fig. 13 for fi= 10, 15, 20.

The first order distribution of current as calculated on the one hand from the
Hallen formula (38) in reference 3, and on the other hand, from (73), are shown in
Figs. 1416 for f3li= tt/2, 3tt/4, x, and with 122= 10, 20. The function/"™ and/" when
(73) is written in the form

(:8)
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are plotted in the figures. Numerical values of £5// are given in reference 3 where £
is written instead of Du.

Apart from the change in the input current which is discussed below in terms of
the impedance, the general shape of the two sets of curves is much the same. The
new, more exact theory leads to a distribution with somewhat greater relative ampli-
tudes nearer the outer parts of the antenna, and with a somewhat larger component
in phase with the driving potential difference. For (sh—ir the first order solution of the
new theory is the same as the first order solution of Hallen’s theory if \p is written for
Sl Since yp is less than 9, this means the new first order distribution is the same as
Hallen’s first order distribution for an antenna of greater radius, but only for (¢h=ir.

6. The impedance. The formula for the impedance according to the new, more

exact theory is
/ m

cos 3+ X (Dnm*anypn
(ZQm = -} ) (79)
(E>i)msin Rh + X) (Dn+i)nB,,/\pn)

where a,, and /3nare defined in (38b, c); cn is tabulated in reference 11; a2in Table I.
Curves for (ROmand (X0mas calculated from (79) are given in Figs. 17-19. Both
second and first order solutions are shown for Q= 10, 15, 20. These are calculated

from
A\ + jAi
(Zo)» = 60" o
By+jBi

where for the second order solution

Ai (Di)\al\ \p + (£>2)10:2 yp,

A2 = — [cos /Sh + (Di)iai/yp + {Di)\ai/\p ],

B\ = (Di)z sin /3h + (DPjifiilip + frixp ,

Bi - (292 Ap + ~Ap, (81)

with (E>1)2 and (E>2)2 given by (77a) and (E>1)1, (E>2)1 by (77b).
For the first order solution

Al = (Bx1)oo1

Ai = — [ip cos /3£ — (E>i)oon],

Bx = yp(Di)i sin ph + /3It

£2 = 0?, (82)

where (E>1)0 and (£>1)1 are given by (77b).

The impedance calculated according to the new, more exact theory differ con-
siderably in some details but not in major outline from that obtained from the
Hallen theory as calculated by King and Blake, it King and Harrison,7 and Bouw-
kamp.13 In general, resistances at antiresonance are smaller and occur at smaller
values of /3/i; resistances at resonances are greater and likewise occur at smaller
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Fig. 18. The input resistance and reactance of a thin, cylindrical,
Fig. 17. The input resistance and reactance of a moderately thin, cylin- center-driven antenna, 0=15, or 7t/a= 9.0X10*, for the first and second
drical, center-driven antenna, ii= 10, or h/a —75, for the first and second order theories.

order theories.
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values of /3t These differences are most significant for large values of the radius of
the antenna. A critical discussion of impedance calculated from the theory here
presented and comparison with experiment and with the theories of Hallen,2'3 Gray, 12
Schelkunoff6't and others is reserved for a sequel to this paper. Accuracy of the re-
sults and convergence of the series involved also will be discussed therein.

OHMS OHMS FIRST ORDER

140 Toocy SECOND ORDER

6000

14000:

H G ‘2000:

m n i

Fig. 19. The input resistance and reactance of a very thin, cylindrical,
center-driven antenna, f2= 20, h/a = 1.1 X104, for the first and second order
theories.

Using a specially constructed coaxial line and driving conditions that approxi-
mate as closely as possible the idealized slice generator D. D. King has measured
the impedance of cylindrical antennas with hemispherical ends. A complete descrip-
tion of the apparatus, of the method, and of the results will be contained in a doctoral
dissertation and in a paper to be published in another journal. A cross-section of the
results involving all of the critical values for fl=10 are shown below together with
the corresponding theoretical results of the theory outlined above. The agreement is
seen to be good for all quantities in the second order theory, only approximate in the
first order theory.
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Tabi-e Il
Anti-
res%r:)ant ly U T t$hantl—+sg Res;gant 2 3:W i?7oat ph—— X qat jsA=»>—
Experimental
Results by 800 1.95 .60 71.5 .098 85 47
D. D. King
Theoretical
Results 860 1.80 61 71.0 .094 88 42.5
Second Order
Theoretical
Results 840 1.27 .39 64.8 .065 67 30
First Order
Appendix: Integral Functions
The Functions C(z) and S(z).
/ h /* h
Rrle~’FRI cos fiz'dz" = | (Ri'ie~iyRl + R rle="Sl) cos fiz'dz’, ()
-h Jo
s@) = F sin fi|z | dz’ = T + Rre~PR) sin fizdzs,  (2)
m2-A 0
where
jR,= V(3 - 292+ «2 (3a) Ri = V(z+ 3)2+ a2 (3b)
These integrals can be written in the form
C{z) = *[li+ 7, + [* + [«], )
S(z):—'2J Ui- ~+fi-hl=  [it—h+h —n], )
where
h = f Rrle-WR'-2)dz = f Rri<rMR'+'-*>dz'i (6)
Jo Jo
/ >h "
R re-rt{RI+l,)dz' = | @)
0 Jo
73 = f hR2'e~MR*-*'W = f RrAa~n™NW | (®)
Jo Jo
—_ 9
h=f RTle-rrndzr = F ©)
Jo Jo

The four integrals (6)-(9) can all be reduced to the form
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by making the changes in the variable and in the upper and lower limits listed in
Table I11.

Table Il
dv .
Integral \% Wlorz'—0 vitfors'=/i
dzf
» ) . . "
h jO(Ri+z-z") =yp[V(2'-s)s+al-(z'-s)] /oj Ri i/3(Ro+z) i/3(RiA—Hi)
i
» jp(Ri-z+2z") =73[V'*(z'-z)H -a2+(z'-z}] ;3 Vv R'Z + i!] R* jfi(Ro-z) i/13(Ru+ja)
. Rj i
h jP(Ri-z-2")-=jp[V (z'+2)sto0s- (z'+2)] if3 'itzl_ nJ — i o L i3(RiA-)
. r
. ~z'+z 1 . i i
It iIS(RE+z+2") =y~ [v'(z'+z)I+a2+(z'+2)] i3 R2 i13(R,,+2) i/3(RiA+HI)

Rosy”~+al, Ui=h-\-z\ Ui=h—z; Rs*= V ,« |+ 05; RiA=\/« i+ a2

In terms of exponential, sine, and cosine integrals,
f' — du=Ei(-jb)- Ei(-ja) =Ci()- Ci(-jSiMb+ijSi@. @1y
J ja U

With (11) the several integrals (6)-(9) may be expressed as follows in terms of the
exponential integral and the sine and cosine integrals

li = - eV{Ei [- MRik~ «i)] - Ei[- jP(R0O+ 2)]} (12a)
= - e»'{Cip{Rik - «1) - Cip(RO+ z) - jSip(RIh- u) + j Si(3RO+ 2)}. (12h)
h = <r»{Ei [- MRn + «1)] - Ei [-jp(RO- *)]} (13a)
= {Cip(RlIh+ un - CiKRo - z) - j Sif}(RIh+ «,) + j Si/3(ir0- 2)}. (13b)
lz= <r»*{Ei [- jp(R?h—nm)] —Ei [—MRo -*)]} (14a)
= t-»*[Cip(Rih- «2) - Cip(Ro - z)- j Sip(R%h- «2) + j Si/3(i20-'*)}.  (14b)
h = Ei [- jp{Rih+ m)] - Ei [- MRo + ]} (15a)
e**{CiP(RIh+ «0 - Cip(RO+ z) -j Sip(Rh+ «,) + j Sip(RO+ z)}. (15b)

Upon combining the several integrals according to (4) and (5),

C(z) = iefAEi [- ffIRu + «)] - Ei [- jfi(Ru - «)]}
+ {Ei [- jp(RIh+ «)]- Ei [- MRih- m)]}. (16a)
C(2) = he'ff{ Ci/3(i22A + W) — Ci/3(i?u —«1) —j Sip(Rih + m2  j Si P(Rih — W)}

+ Ci j3(2%ia + M) — Cil3(i722A — M) —j SiP(Rih + mj)

+ ySil3(i?72A-M 2}. (16b)
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S(z) =y Ei [- jP(Rh+ wWA] + Ei [- - «,)] —2Ei [—j32% + z)]}
+y [iR(RIh+ W)] + Ei [~jB(Rifl- wd] - 2Ei [~jR(RO- 2z)]}. (17a)
S(z) =y e)¥[CiB(Rih + w) + CiB(Rih —ui) —j SiB{Rih + W

j SiB(RIh- wi)- 2 Ci|S(@i70 + 2) + ;2 SiR(RO+ 2)]
+ y e)i2[CiR(Rih + «1) + CiR(R2h- ua) —j SiB(Rih + ul)

—j SiB(Rih —u2 —2 CiR(Ro —2) + j2 SiB(Ro —2)]. (17b)
In trigonometric form
~(2) = cos /xZ[Ci B(Rih + Ui) + CiB(Rih + «i) — Ci R(Rih — «2)
— CiB(i?u —«1) ~ j SiB(Ru + Ui) —j SiB(Rih + «1) + j SiR(Rn, —«2)
+ ; SiB(Rn, - wi]
+ 5 sin /3[Si B{Rik + Ui) — Si B(Rih + «1) + Si B(Rih — «2)
— Si R(Rik —wi) + j CiB(Rik + W) —j CiB(Rih + ui) + j CiB{Rih — w2
-y CiB(Rik - WI)]. (18)
S(z) = 5 cos /3&Z[Si B{Rih + Ui) + SiB(22n + uj) + SiB(RI\ —w2
-T SiR(Ru —ui) —2 SiR(Ro + 2) —2 SiR(Ro —2) + j CiB{Rih + W2
+ j CiB{Rih + W) + j CiB(Rui + Ui) + j CiR{Rih — ui)
—Vy2 CiB(RO+ 2) - j2 CiR(RO- 2)]
—5 sin /Z[Ci B(Rn + ui) — Ci R(Rih + W) — Ci R(Ru, —w2)
+ CiB(Rih —W) —2 CiR(Ro + z) + 2 CiR(Ro —2)
—Y siB(Rik + Ui) + y siR(Rih + wi) + y si B(Rih —w)
—Y SiB(Rih - ui) + j2 SiB(Ro + z) - y2 SiR(RO—2)]. (29)
With
iRo=\/z2+ a2, w= h+ z;, wt= h—z; RZ= y/u\-\- a2; i?u = Vw2 + al

These are exact expressions for the integrals (1) and (2). They are valid for all values
of the argument z and thé parameters h and a.

The integral E{z).

(20)

Let the variable be changed by setting

RRi = /3V (z- z')2+ a2 = VC/2 + V\ (21)

where
U= B(z-2'); V = Ra. (22)
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The integral then becomes

/ “ORn
(jjt + 7s)-iitg-w'+v'nitdU
»Rih
»Rth
(U2+ F2-1/2cos (U2+ V*HHU
»Rn
>
+ i + V.
with / (Ir2+ F2_t/2sin JC2+ V
Rih —\/(h + 2)2 - a2; =\/ (/j—2z2-F a2 (24)

Let the following symbols be introduced:

Cuvx = f (C2+ F2-U2cos (E/2 + 72)1/"N (25)
Jo
Suv x = df0 (U2+ F2*w2sin (C2+ V2Ill2du. (26)
These functions satisfy the conditions Cuv (—x) = —Cuv rg Suv (—x) = —Suv a.

In terms of the notation (25) and (26), the integral (20) becomes
E{z) = Cuv /Rih — Cuv PRIh —j Suv ORih + j Suv @RIh. (27)
This is an exact expression for the integral (20).

Approximate Expressions for C(z), S(z), and E(z).

If the parameter a appearing in rih = V(h+z)2+a2 rih =V (h—z)2\-a2 is small
compared with h, useful approximate expressions for the integrals C(z), S(z), and
E(z) may be derived as follows. Expanding the integral cosine using

Cier= C+Inre—Cig= f u~I(1—cosu)du (28)

where C is Euler’s constant, one obtains

Ci P(Rih —uf) = C + In &Rih — Ui) — Ci 0(Rih — ui), (29)
CiP(RIh- «0 = C+ Inp(Ru - ui) - CiKRih - mi), (30)
Ci/f3(ir0- z) =C+ Inp(Ro- 2) - Ci p(E,, - *)e (31)
However,
Rih - Ui= V(h + 2)2+ a2- (h+ 2), (32)
Rih —ui =VA—22+ a2— (h —2), (33)
Ro —z =\/z2+ a2—z, (34)

are alloforder ofmagnitude o, so that the arguments f3(Rih—ui)and 0(Rih —uf) are
of magnitude (3a. It follows that since the arguments of Ci P(Rih—ui), Ci /3(i?7u—M)
and Ci /3(i?0—z) are small these functions may be expanded in series. The leading



Fig. 20. The function C(z) near anti-resonance, /3fi= ir,

Fig. 21. The function C(z) near anti-resonance, /3A= Tr, fi= 20.
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term in each case is of the order of magnitude |/32a2 so that the Ci terms in (29)-(31)
are negligible compared with the logarithm. Hence,

Ci 8(i72A—«2) —C + In B(Rv, — uj), (35)
Ci B(Rit, — Ui) = C + In B(Rih — ui), (36)
CiB(Ro- z) = C+ InR(RO- 2). (37)

Since the functions Si P(Rih-Ui) and Si /3(i?722—;;2 are of order of magnitude /So,
they are negligible compared with Si /3(i?2AH ;2 and Si (3(Ru+Ui) except very near
the ends z= +h. If Ci/3(i?2il+i<2), Ci fi(Rih+uh), and Ci/3(-Ro+z) are expanded using

(28) and the relation
u+ (u2+ a2

sinh* 1 (38)

and the approximations,
Cip(Ru + u2 = Ci 23m =Cl 2/3(// +2z),m (39)
CiP(Rih + m) = CI 23ui =Cl 2/3(7; - 2), (4)

cl 273, (4

(18) and (19) reduce to the following approximate forms:

Clp(RO+ 2)

C@) = - | cos/[CI23(7; + z) + Ci23(7;,- z) + j Si237;+ 2) + j Si23(7; - 2)]
+  sin/Sz[Si 23(7; + z) —Si 23(7; —z) —j Ci23(7; + z) + j Ci23(7; —2)]
T+ h ~
+ c0s j sinh- 1 Zl_ sinh-i — ’ (ZQ
a a J

S(z) = i cosBz[Si23(7; + z) + Si23(7;- z) - 2Si23|z|
- JCi23(7;+ z) - j Ci23(7, - z) + 2] Ci 2Rz]
+ 1 sin /3z[Cl 213(7; + z) - Cl 23(7; -*)" + | Si 23(7; + &)
—j Si 23(7; —z) — 2/ Si 2/3s] —sinR|z| Ci23z
7|z T —1z~

+ sinBlz sinh*1 £SINA* 1 =eommmmmm
a

. . h+ . 13j1
—2sinB z sinh* sinh* { e—— | (43
a a J

The last factor in (43) is written in the expanded form shown in order to contain
1bi(z) =sinh*“1(7;+z/a)+sinh~1(7,—z/a). The remaining two terms may be written in
the following approximate form if desired,

18 zh o s+ [+ 2+ R

sl+ (z2+ ayie2

sinh-1

" In(h + | z] (4@

The function (42) is shown graphically in Figs. 20 and 21 for (3h—ir; in Figs. 4 and
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Fig. 22. The function S{z) near resonance, /3= 7t/2, fi= 10.

Fig. 23. The function S(z) near resonance, /3/i= 7t/2, fi= 20.
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Fig. 24. The function E{z), ph=*Tc/2, fi= 10, 20.
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5 for /3fi=1r/2. The function (43) is in Figs. 22 and 23 for /3li=71r/2;in Figs. 6 and
7 for f3li=1r.

An approximate expression for E(z) is obtained from (23) by adding and sub-

tracting oeh

(U2 + V2-lIdu,
I'O*IA

* Rizh
/ (f/2 |_ F2)-1/2[1 _ cos (f/2 + T12)1/2~~

0*1*
B2A
(CIl2 + y2-1/2sin (C/2 + 1/2)l/2rfC/
0*1*
a2A
@2+ F2)-1/2 ¢u. (45)
0*U

If the small quantity F=/3ais neglected in the first two integrals in (45) these re-
main everywhere finite and vanish at U= 0. This is not true in the last integral in
which V plays an important part. If V is neglected in the first two integrals both in
the integrand and in the limits, but retained in the last integral, the following ap-
proximate expression is obtained:

0(H-A) 1'0(i+A)
lUJ-1(1 - cos U)dU - j U~xsin Udu
e(z-h) J fi(z-h)
R72A
/ (cr2 + V2l‘adu. (46)
0*u

Because the magnitude of U and not U itself appears in the denominator of the first
integral, this must beevaluated in two steps forthe ranges z'>z andz'<z. It is not
necessary towrite| U\in the second integral becausethe integrand doesnot change
sign as z' passes through z. Hence with U =/3(z'—z) = —U the first integral in (46)
becomes

> D(H-A) n
/ U~K1- cos U)dU - °8(AFA\JU_}I - cos lUSj(HJ

COos
0 d 0(z-h)
*0 (A—*)
i o
/| » _
U-(1- cos U)du. 47)
0

Using (28) in (47), the sine integral in the second integral in (46), and evaluating the
third integral directly, we write (46) in the form:

£(z) = —CilS(t + z) — CiP(h —2) —j Si/3¥h+ 2z) —j Si/h —2)

+ sinh-1 + sinh-i . (48)

Use has been made of the fact that Si /3(z—h) = —Si /3(h—z). The function E(2) in

A0\ 1~ AlhAiarmm ~rvramihiaallvy 53 Fidae 91 AarmA N
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A METHOD OF SOLUTION OF FIELD PROBLEMS BY MEANS
OF OVERLAPPING REGIONS*

BY

H. PORITSKY AND M. H. BLEWETT
General Electric Company

1. Introduction. In problems involving the determination of fields, it often hap-
pens that the region R for which the field is to be determined is difficult to handle
directly, but can be broken up into several overlapping regions Ri, Ri, « mm for each
of which the field can be determined by standard methods. We suppose that the break-
ing up is carried out in such a manner that every point of the region R falls into at
least one of the regions Ri, Rit <+ <. In the following, Schwartz’ “alternating proced-
ure” is applied to the solution of field problems for such regions R.

To illustrate, let us consider the determination of a function u harmonic over the
region R shown in Fig. 1, bounded by two circular arcs ABC and CDA with centers
at 0 and O'. For simplicity we assume that the radii of the two circles are equal and
the boundary values of u are symmetric about the straight line through A and C.
It will be noticed that by completing the circular arcs by means of the dotted curves
AEC and CFA one obtains the circular regions over which the determination of a
harmonic function in terms of boundary values is well known. Here R is the region

bounded by the solid circular arcs ABC and CDA,
while the regions R\ and i?2 are the circular regions
bounded by the complete circles with centers at 0
and O'. The problem then is to utilize the relatively
easy solution of the Dirichlet problem for the circu-
lar regions R\ and i?2 in an efficient manner toward
the solution of the Dirichlet problem over R.
This is done by assuming the values of u over
the arc AFC\ the solution of the Dirichlet problem
for the circle Ri with center 0, based on these assumed values and on the known
boundary values over ABC, is then utilized to furnish the values of u over AEC.
The procedure is then repeated by solving the Dirichlet problem for the circle Ri
with center at O', and the values over AFC are recalculated. By alternating between
R and R’ inthis way, continual improvement of the values of u over both arcs AFC
and AEC results; in the limit this leads to a solution of the Dirichlet problem for the
region of Fig.1l.
In the following we shall illustrate the procedure, not for the Laplace equation

V& = 0, (1.1)

but for the equation
(V2+ £2« =0 (1.2)

which is encountered in wave motion under the assumption of sinusoidal oscillations,
for the region shown in Fig. 2. Other cases of interest in connection with (1.2) which

* Received June 8, 1945.
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can also be treated by the present method are given by the “open end correction of an
organ pipe,” wave passage through a change of width of a channel, T-sections, etc.

2. Wave propagation around a corner. We consider a solution of the differential
equation (1.2) for the region shown in Fig. 2; this solution is to satisfy the boundary
conditions

du
— =0 on DOG, EBF, (2.1)
3«
u = Aieikz + Bie~ikz for large positive x, (2.2
u = AZikv + BZX~ikv for large positive vy, (2.3)

where Ai, Bi, A3and B3are proper constants. Equations (2.2) and (2.3) can be de-
scribed physically by the statement that u be-
haves as a plane wave at infinity. 6 F

The above problem is encountered in the
propagation of a transverse electromagnetic
wave around a corner or through a channel the
section of which is shown in Fig. 2. Here the

channel has an infinite depth in the 2-direction; & I
the field components are assumed to be inde- ° P P }
pendent of 2, and the only non-vanishing mag- 1

netic field component is H,. At the boundaries,
which are assumed to be metallic and perfectly
conducting, the electric field is normal; this Fig. 2.
leads to the vanishing of the normal derivative
of 11Z i.e., dHzZdn —0. Formulation of the field in terms of H, leads to the above
problem.

On account of the vanishing of the normal derivative over the y-axis, reflection

across it is possible, thus extending the region of

B3 A3 Fig. 2 into the region shown in Fig. 3. This re-
flection is carried out in accordance with the
relation

«(_ X, y) = U(Xv y) (24)
In view of this reflection the behavior of u at
x= —< is given by the expression

u = Bxikz + Ai<rikz. (2.5)

As aresult of this reflection the semi-infinite
strip DOCE of Fig. 2 can be replaced by the
2-way .infinite strip of Fig. 3

— 00 < a < co, 0 < Y < 5.

Similar reflectioncan be carried out across the lower boundary y =0 of Fig. 3;
this allows usto replace the semi-infinitevertical channel by a vertical channel ex-
tending to infinity both.up and down. A proper behavior for u at y ——3 can be
obtained from (2.3).
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The general procedure which was outlined in 81 is applied to the present case. First,
we consider the strip 0<y<6 of Fig. 3, and assume values for du/dn over the dotted
part B'CB of its upper boundary. Since du/dn vanishes over the rest of its boundary
and the behavior of u at a is described by (2.2) and (2.5), it is possible to determine
u at any point interior to this strip. This determination is carried out by means of a
Green’s function G. The derivation of G will be described presently; for the present it
will suffice to say that the value of u at an interior point P of the strip is given by the
relation

1 re6 /du\
Up = u(xo yo) = 2Bi cos kxo H I I— )  Gdx. (2.6)
¢tu _b\dy/,l,
G has a pole at P = (#o, yo), and (2.6) requires that G be evaluated on the dotted line
B'CB. After u is determined in this way, differentiation of (2.6) with respect to x
allows one to compute du/dx, and in particular to determine this derivative over AB.
Turning now to the infinite vertical strip 0<x <b, we repeat the same procedure and
determine the function u at any point interior to this strip; in particular, we evaluate
u and du/dy over CB. The process is then repeated.

The definition of the Green’s function for the differential equation (1.2) and the

boundary condition (2.1) for a finite region R is specified by the following:

a) G satisfies (1.2) everywhere in R except at the pole P;
b) dG/dn vanishes along the boundary of R; (2.7)
c) at the pole P, G becomes infinite like —In r*, where r' is the distance from P.

We apply Green’s theorem in the form
J' [«(V2 + kv —Vv(V2 + kQu\dA = J' ~u v—~"ds (2.8)

to the region R, exclude the neighborhood of the point by means of a small circle of
radius e and let e approach zero. This yields the equation

1 r du
© = By aﬁ Gds- <-9>

where the integration is carried out over the boundary of R. In the present case, for
the infinite strip 0<y<b special additional considerations are required. It will be
assumed that in addition to the requirements (2.7) the Green’s function G behaves at
infinity like a divergent plane wave. Solutions of (1.2) which depend on x only are

ikx (2.10)
We consider the wave equation
d2u
= cV2U, (2.11)
dt2
and look for solutions of the form ue+!“‘. If we set k=u/c, we find that u satisfies

Eqg. (1.2), and that eiix represents a plane wave traveling in the direction of positive x
while e~ik< represents a similar wave traveling in the direction of negative x. It will
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be assumed that at x= * the Green’s function G behaves like a divergent plane
wave of the same amplitude atx —+ 0 asat = — « .
It will be assumed that the dimension b satisfies the inequality

b < vik. (2.12)

Physically this assumption means that the width b of the strip is less than half the
wave length X/2 =ir/k of a plane wave at the frequency in question. The effect of this
assumption and the features which arise when it is not satisfied will appear presently.
First, we place the pole P on the y-axis. We shall obtain G as a series in the form

®
G= £i,M, (2.13)

n-0
where w,, are product solutions of the wave equation (1.2), i.e., unconsist of the prod-

uct of a function of x and a function of y; more explicitly,

0= exp [ik- 1 X1 ]

ny (2.14)
Un = COS ——6— exp . («>0).

These product solutions u,, (n > 0) have been chosen so that they don’t become infinite
at a:= =+ a>, while Mvrepresents a divergent plane wave. If the inequality (2.12) were
not satisfied, several radicals in un (n>0) would be imaginary, infinitely large values
of un could not be avoided, and additional stipulations regarding the behavior of G
at infinity would have to be made.

The functions u,, are symmetric about the vertical line x = 0 through the pole P,
and continuous at x = 0. However, du,,/dx is discontinuous at * =0, the discontinuity

being ~
2ik for n= o0,
r [ Mr\ 2 wiry } (2.15)

2al (—)—k2cos ——

Thus each term m, may be considered as representing the wave function correspond-
ing to a sinusoidal distribution of sources* over the line x = 0. The density <« of the
sources is given by the familiar condition from potential theory

/du\
discontinuity in normal derivative = A( —J = — 24rcr, (2.16)

and in the present case is given by

1/ m2 niry
k¥ cos— - o (2.17)
fin~ vV b

* By a “source” is meant here a solution of (1.1) which depends only upon the distance r from a
fixed point, is singular at r= 0 like —Inr,and behaves at infinity like a divergent cylindrical wave.The dis-
tributions of such sources satisfy continuity-discontinuity relations similar to those in the case of log-
arithmic potentials.

for
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For (2.13) this yields

1 /nV mry
a = ANA NAL ~ W cos (2.18)
ITno vV bl

Let us now consider the concentrated point source at the pole P, and express it as a
Fourier series of cosines over the interval £=0, 0<y<b, obtaining

1 2" wiryo nr
a —-——-t — 2 ,COS Yeos—tt (2.19)
b b oz b b

where * =0, y=yo are the coordinates of the pole P. Solving for A,,, we obtain for
the Green’s function G the Fourier series

2x ( 1 o
G=—< exp lik- x\
b {2 11

7 cos (niryo/b) mry

V|nx/by- k> b

+
o
o
w

]

I

i

i

i

i
@D
x
©

—

*m (2'20)

Due to the behavior of G at infinity it is found that after applying the Green’s
theorem (2.8) over the rectangular region —I'<x<I and letting | and I' recede to
infinity, certain additional terms R* and R arise from the boundaries x=1 and *=/".
Equation (2.9) is now replaced by

1 rt du(x,y)

* G = — Gdx + R' + R'1 (2.21)

m(* el yo) 2mJ dy b

where

. dG
r/=—f Y. G- u—)dy (2.22)

2iry 0 \idx dx J

—_ du dG\
R" ——Ff ( — G+ u )dy (2.23)
2ttJ o \ dx dx J X— V

In view of (2.4), (2.2), (2.20), (2.21) and (2.22), Eq. (2.21) can be given the form (2.6).
As explained above, in the present case not (2.6) but its x-derivative will be found
useful. Differentiation of (2.6) yields

d 0, i
0Y) - imisinkoH | TPEEM) Moy (2.24)
3*0 2t «/_6\3y/v_!i 3*0

To obtain this equation, the integral in (2.6) has been differentiated under the in-
tegral sign; this is permissable since the limits of integration are independent of *o.
Since (du/dy)v,b is also independent of *o, only G has to be differentiated. The ex-
plicit form of (2.24) is given by the relation

/du\ i » ©

+
5|ch = (-—-- = - 2kB,sinkb-— fix) \K 0+ £ Kn¥dx, (2.25)
\3*o/|56 bJ_6 n~l
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where
*) = (— , KO= ?exp [- ik(x - 6)],
1(*) Qdy;\/”h p [- ik(x )]
(2.26)
ilfr)'o
Kn= (—1)" cos exp

A similar expression holds for (du/dy0) along CB\

I(*«) = = - 2kB3sinkb - F\(Y)[KO+  Knldy  (2.27)

%dyo)vs»b
where K 0, K nare as in (2.26) but with the coordinates interchanged.

In applying (2.25) one must assume not only/(x) but also Bi. Likewise in applying
(2.27), Bo is required along with g{y). Furthermore, Ai and A3 are essential to the
complete solution. In this connection it is advisable to keep the following relations
between f(x), g(y) and the constants Ai, Bi, A3and B3in mind:

I ors
Ai= Bi I f{x)e~xidx, (2.28)
1 rb
A*=B*~ 5072 0 S(y)e~lkvdy, (2.29)
Akl - Bie~Xb : { " d 2.30
Ko - e~ = — , .
>1kbJ g(y)dy (2.30)
1 rb
AZikh —B3~'Ko= —— | f(x)dx. (2.31)
2ikb J -b

These relations enable one to express A it B\, A3and B3in terms of f{x) and giy).
The relation (2.28) is established by applying (2.6) to u(x0, yo) for so large
that G reduces to its first term in (2 20), and comparing the result with (2.2). A simi-
lar derivation over 0 <x<6 yields (2.29). As regards (2.30) it is established by ex-
panding du/dx in the horizontal strip 0 <y<b in a series of cosines of niry/b and
comparing for large positive x this expansion with du/dx as derived from (2.2); a
similar procedure applied over the vertical strip O<x<b to du/dy leads to (2.31).
In the present example, in view of the geometric symmetry of the region of Fig. 2
about the diagonal OB, any function u over the region can be expressed as the sum
of a function which is odd about this diagonal, and one which is even about it. The
calculations outlined are simplified considerably for even and odd functions u, are
quite similar for the two cases and will be illustrated for the odd case.
In the odd case,
A3= - Ah B3=-B u (2.32)
%) = - (). (2:33)

and the intégral relations (2.28)-(2.31) reduce to

1 rb
og{y) = - 2kBxsin kb - — f /(*) KO+ f) Kn dx. (2.34)
b J-b L »-1
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B1l=

Axeikb — Bxe~ikb =

likbJ-

1oori
I f(x)e lkadx,
t

1 rb

f{x)dx.

2ikb.J-i

H. PORITSKY AND M. H. BLEWETT

[Vol.

(2.35)

After (2.25) has been applied for an initially assumed f(x) curve, the resulting g(y)
shape, changed in sign and plotted against x, can be considered as the next approxima-
tion tof(x), in view of the relation (2.33) and the symmetry of the region about x=y.

From

(du/dy)v~rb-f(x). This yields

A X

1

f fo0re~ikn

4kb sin kbd _b

— . f f(x)[eikb® -
4kb sin kbd _b

(2.35) the coefficients Ax and Bx may be determined

-A\dXx,

INdx.

in terms of

(2.36)

The procedure used consisted in assuming/(x), calculating A xand Bxfrom (2.36),
then applying (2.34) to calculate g(y), and using the shape of the latter with the sign

>0 X

.16 .96
.76
.56
.36

.16

-.36
-.56
-.76

.36 .96
.76
.56
.36

.16

-.36
-.56
-.76

.56 .96
.76
.56
.36

.16

4347
.3025
.1934
.1151
.0682
.0392
.0222
.0126
.0070
.0040

L4143

.2546
.1458
.0806
.0453
.0252
.140
.0078
.0044
.0025

.3348
.1373

.0437
.0133
.0039

Table 1

bG/'Ix

.0613 + .0627*
.1625 + -1841»
.2111 + .29387
.2034+.38527
. 1448 + . 45247
.0545+ .49127

—.0527+ .49917
-.1671+ .47757
-.2756+.42177
-.3567 +

.34107

.0817 + .06277
.2104+.18417
.2587+ .29387
.2379+ .38527
1677+ .45247
.0679+.49127
. 0445+ . 49917
.1625+ .47757
L2730 + .42177
.3632+ .34107

.1612+.06277
.3277 + .18417
.3608+ .29387
.3052 + .38527
.2091+ .45247

.56

.76

.96

-.16
-.36
-.56
-.76

.96
.76
.56
.36
.16

-.36
-.56
-.76

.96
.76
.56
.36
.16

-.36
-.56
-.76

-.0011
-.0003

-.1433
.1255
.1149
.0725
.0429
.0244
.0138
.0078
.0044
.0025

1.1279
.5691
.2862
.1387
.0744
.0410
.0226
.0126
.0070
.0040

6G/2x

.0920+.49127
.0308+.49917
.1545 + .47757
.2686+.42177
.3607+.34107

.3527+.06277
.5905 + .18417
.5194+.29387
.3910+.38527
.2559+.45247
.1181 + .49127

-.0167+.49917
- 1467+ 47757
— 2642+ 41277
-.3582+ .34107

1.6239+.06277
1.0341+ .18417
.6727+ .29387
.4572+.38527
.2874+.45247
.1341+ .49127
. 0079 + . 49917
1419 + 47757
.2616+.42177
.3567 + .34107

111, No. 4
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changed as the starting point of the next step. To prevent the solution from becoming
infinite, at each step f(x) is divided by Ai, thus yielding the case Ai = 1. In the follow-
ing numerical work the assumption 6= 0.2A, kb= 12° is made.

Although from physical considerations one would be able to make a reasonably

Fig. 4.

good guess for the value of/(x), it was felt that in order to test the method thoroughly,
the assumption

along BC, f(x) _(\d_y/)u-b = constant = 1, (2.37)

would be more advisable. Making this assumption, solving for Ai and B1from (2.36)
(with b=0.2X, kb= 12°), and dividing by A u we obtain

bk —eikb sin kb

L = .0634 - .999»,
bk — e~iki sin kb
/du\
f(*) = {ji-) = ¢(1-320 - 1.238t).

The Green’s function was evaluated for five positive and five negative values of x,
and for five values of yo, as shown in Table 1. The real part of this family of curves is
shown in Fig. 4, the imaginary part being merely (ir/b) sin k(x—b). These values, with
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(2.38), were inserted in (2.34), the integration being made graphically with areas
found by the trapezoidal rule, except neary = b.

Asy approaches b, the value of g(y) increases so rapidly that extrapolation for the
curve and the resulting graphical integration is difficult in this region. From physical
considerations based on the fact that in a region which is small compared to a wave-
length the function u behaves like a harmonic function, it may be shown that a fairly
accurate approximation is obtained by assuming g(y) to vary as (y—b)~1¥3 as y ap-
proaches b. By picking two points y* and y2, two constants A and B can be found
such that g(y) = A+B{b—y)~13is fitted to the curve already drawn in this neighbor-
hood fory < .9b;then the area is equal to

I sb ,

I g(y)dy = A(b - y2 + —-(b- y333
The resulting first approximation for du/dx is shown in Table 2. By means of (2.36)
the values of A3 and B3 (the negatives of A\
and Bi) corresponding to these values were

Table 2. found to be B3=.1728-1.006i,A 3= .998 - .102*;
thus B\/A\ =..2735 —.9807.
g(y) = du/dy = (du/dx for In order to keep A\ fixed at the value unity
y corresponding values of x) which we have assumed, we retain this value of

the B\/A\ ratio and rename it B\ as before. We

;2 i{iggj :gg;f.]] must then divide the values of du/dy in Table 2
56 £[1.173-1.103%*] by A\. Reinsertion now into (2.27) gives us the
Ab -£[1.382-1.299*] second approximation to du/dy shown in Table
.96 -£[1.382-1.299~] 3. The correspond
96 £[1.876-1.761%] Bi/Ai —.2658 —960*. The third approximation

is then carried out in similar fashion, with the

the results shown in Table 4. In this case, we
have B\/A\ = .266 —.9647. The approximations to du/dy are shown in Fig. 5. Figure 6
shows the ratio Bi/Ai and thus we see that this ratio is converging toward the value
.266 —.962*, with the absolute value .997.

Table 3. Table 4.

The second approximation. The third approximation.
X fix") = du/dy X fix) —du/dy
.16 £[1.119- .804*] .16 £[1.081- .785*]
.36 £[1.176- .844%] .36 £[1.132- .821*]
.56 £[1.309- .960*] .56 £[1.249- .911%]
Ab £[1.562-1.111%*] Ab £[1.515-1.095*]
.9b £[2.100-1.619*"] .96 £[2.12 -1.557*]

A similar calculation could be carried out for a function which is even about the
diagonal OB. The results of this, together with those already found for the odd func-
tion, would enable us to cover all cases involving a corner with these dimensions.
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Fig. 5.

Fig. 6.
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3. An alternative method of procedure. The procedure described and illustrated
in the preceding sections can also be applied in a different way. Basically, the calcula-
tion was carried out by first assuming the field over the line CB in Fig. 2, then cal-
culating it over the line BA. It is possible to carry out the same calculation by assum-
ing the field over CB not as a function of x or as a curve, but as a Fourier cosine series
in x,

du mrx

cncos —— e 3.1)

fix) = ay V—b_ 0

Similarly, g{y)—du/dx over AB can be converted into a similar Fourier cosine series
iny,
du mry

gly) = o !_&: 23 bn cos

. (3.2)

Applying (2.34), (2.35) and (2.26) to the calculation of g{y) from/(x), we obtain

n miryo
2-, Dm cos ——
0

g(yo)

) 1 fb mrx
— 2kBi sin kb ob 23 CnJI exp [— ik(x —5)] cos dx

1 niryo f * mrx [ (rmr \
—23 23 (—1)"™ cos I cos exp a/ k\k —b))dx. (3.
S b d b FPY Ly jax 3.3
This leads to integrals involving a cosine and an exponential in z. After these integra-
tions are carried out, each one of the coefficients D,, of the expansion (3.2) turns out
to be linearly dependent upon the coefficients C,,. Thus, instead of being given a curve
f(x) and computing from it the curve g(y), one starts with Bi and a series of coeffi-
cients Cnrepresented by the Fourier expansion (3.1) and ends up with the coefficients
Dnby applying (3.4). The explicit relation between these two sets of coefficients is

Do = — 2kBi sin <;5+20§ T0,C,, Dm= 23 Tm,_C, for m> 0, (3.4)
where e
b = (- 1)»*Wa - eT""b)’
2(nV - ¥b2
o mn = (— D" +m+l(Ww2i2 — (DD 1/2{I_i exp f_—2(»T27t2— A5 12|

(W2+ «tt2 — kb~

The matrix P mthus takes the place of the series of curves dG/dx which were given in
Table 1 and shown in Fig. 4. A similar set of equations expresses Cnin terms of Dn
and Bz.

By proceeding as in §2 with the field which is odd about the 45° diagonal OB, it is
clear that for the final field the coefficients D nshould be the negatives of the coeffi-
cients Cn- For the individual successive approximations, this of course is not neces-
sarily the case. The calculation of the next improvement can be carried out by start-
ing with Dn, changing their signs and putting them in place of Cnin (3.4).
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It is possible to replace Dmby Cmin (3.4). A solution of the resulting equations
would lead to a complete determination of the field problem. However, the solution
of the resulting equations itself involves some method of successive approximation;
hence, this procedure is not advisable, and the successive calculation of C's and D's
appears to be preferable, since it agrees in spirit with the method outlined above and
constitutes just a variation of it.
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SOLUTION OF LINEAR AND SLIGHTLY NONLINEAR
DIFFERENTIAL EQUATIONS*

BY

S. A. SCHELKUNOFF
Bell Telephone Laboratories

Considering the practical importance of linear differential equations of the second
order, or the equivalent systems of the first order equations, it is surprising that trea-
tises give little attention to effective and sufficiently general methods for their solu-
tion. The treatises seem to be concerned primarily with power series expansions,
Picard’s method of successive approximations, numerical methods based on difference
equations—methods which in theory are applicable to almost any differential equa-
tion and which are practically useless in the case of wave equations. On the positive
side, in treatises on mathematical physics one finds a very effective asymptotic ap-
proximation which in this country is known as the Wentzel-Kramers-Brillouin ap-
proximation and in England as Jeffries’ approximation and, of course, the Rayleigh-
Schrodinger perturbation method. The former has its obvious limitations and the
latter is suitable only for a special class of boundary value problems.

Our purpose is to call, attention to another perturbation method which we de-
veloped several years ago in connection with the antenna problem. As time went on
the virtues of the method became increasingly apparent. Searching for previous
references to this method, we came across one by Bécherlto a paper by Liouville.2
In Liouville’s paper we have found the Jeffries-Wentzel-Kramers-Brillouin approxi-
mation and a thorough discussion of the usual boundary value problem and associ-
ated orthogonal series but very little that has any direct bearing on the present paper.

The method is based on the idea that solutions of linear differential equations
may be regarded as distorted or “perturbed” sinusoidal or exponential functions—the
same idea which is back of the asymptotic approximation, of the Rayleigh-Schro-
dinger method, and of theSturmian theory. It is hardly surprising that this method
gives better results than Picard’s method which regards the solutions as perturbed
straight lines; but the difference is so remarkable that it deserves a special display in
a separate note. In this paper, we restrict ourselves to an outline of the procedure
and a statement of specific formulas reduced to a point where only simple integra-
tions are needed in any special case. The exposition is based on the second order equa-
tion; the extension to higher order linear equations is simple enough. When it comes
to nonlinear equations, excepting those which are only slightly nonlinear,f the virtues
of the method are not quite clear at present. There is no question that the results

* Received July 6, 1945.

1Maxime Bocher, An introduction to the study of integral equations, Cambridge University Press,
Cambridge, 1914.

*Joseph Liouville, Mémoires sur le développement desfonctions ou parties defonctions en séries dontles
divers termes sont assujettis a satisfaire a une méme équation différentielle du second ordre, contenant un
parametre variable, J. de Math., 2, 16-35, 418-436 (1837).

t The meaning of “slightly” depends on the goodness of results expected from the process. Beyond
that we shall not attempt to define it.
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should be better when compared to those obtained by Picard’s method; but the more
complicated technique for numerical calculations may offset the advantages. This is
something to be explored.

Suppose that our problem is to find the solutions of

dv dl
o = -Z(x)I, i = - Y(X)V, @)
subject to the initial conditions
V = V(@), | = 1), if x = a 2

Picard simply integrates (1) and obtains a pair of integral equations
V(x) =V(a) - f "zW ttw , li*) = 1(a)- J *F(E)F(f)dE. 3)

Thus the stage is set for successive approximationsand the solutionis obtained
in the form of the infinite series

V(X) = Vo(X) + VX(x) + V2X) + m=mm | T(xX) = h(x) + h(x) + 12(x) + =mm , (4)
where
Vo(x) = V(a), vnix) = - [ Z(M«-i(m,
J a
| = = - f i ©)
ox) = 1(a), In(x) = - Y(Z)Vr-i(Z)dZ.
Ja

This procedure is so simple that it would be easy to overlook the fact that in sub-
stance we are regarding the solutions of (1) as perturbations of the solutions of
dv dl
— =0, - =0, (6)
dx dx

and that we are dealing with a special application of a much more general perturba-
tion method. Let*
Z(x) = Zo(x) + Z(x),  Y(| = YO(x) + Y(x), ()

and suppose that the solutions of
dvo v dlo

FX = - ZO(X)IO, _dX = - FO(A)FO, (8)

subject to the initial conditions (2), are known. Then the solutions of (1) are identical
with those of the following integral equations

V(x) = FAQ*) - i Z(mt)Vi(x,m- f* Y(E)V(E)VAx, ok,
Ja Ja
(9)
Kx) = h(x) - fxm m il(x,m - fxvm (0Ohu fe
Ja Ja

* In substance the theorem implied by equations (7), (8) and (9) is hardly new; but we have been
unable to find its statement in just that form.
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where V\{x, £), h(x, £); F2x, £), h(x, £) satisfy (8) and are subject to the following
conditions

vitt, f) = 1, )=0 Faf D=0 I{F =1 (10)

Essentially the procedure is to regard —Z(x)1(x) and —Y'(x) V(x) as known functions
and to write the general solution of the corresponding nonhomogeneous linear equa-
tion. The verification of the identity of the solutions of (1) and (9) is perfectly
straightforward. If Joi(x), /<«(*), are two linearly independent solutions of (8); then,
as the reader can readily verify, —T7£270i, differs from FOonly by a constant
factor. Bearing this in mind, we have

ey - 1) ,

loi(#)l02(f) - lo*(*j/pi(0
h{X, Q = - F"(*) ’

v (x

710i(s)702(*) — 7'02(*)70i(*)

2M* = FO(*)F,.gQ -y Mjc)youQ
2(54=- A1) Froi(*)Fol(*) - F.2*)Foi(x)
F'O(4F, Af) - F'i»(*)F,.i(0

7002 Fa(RIC) - Vaak

Substituting FO#)> 70(x) in the integrands of (9), we obtain Fi(a:), /i(x); continu-
ing the process we obtain solutions in the form (4).

In Picard’s method Z 0{x) = FQ(ic) =0, which is the simplest possible choice. Natu-
rally, the method will work well when Z{x) and F(x) are small; otherwise it is far
better to regard Z0(x) and Fo(x) merely as constants. If we are concerned with a finite
interval, these constants may be chosen as some mean values* of Z{x) and Y(x)—the
average values, for example; then for a=0 (9) become

Similarly,

(12)

Ft*) = Fo#) - fm m coshr,(* - + Ko f Y(i)F(f) sinh TO(x - f)df,
Jo Jo
(13)
=10+ — fX(om sinh - - f ?28V(9 cosh r,,(* - {d
1{x) (%) + o ( sinh ro(x - Qds o $ ( cosh r,,( Pd{
where

Fa(x) = FOcosh Too: — K Olo sinh rCE, r0= y/ZoYo, KO0 = y/ZolYo,

(14)

(o
sinh rOx + 70cosh r 0, FO= FQ0), 70= 70(0).
Ko

70(x)

In practice it is found that these equations represent a great improvement on
Picard’s method and yet the integrations which have to be performed are not more
difficult. If Z(x) and Y(x) are constants, Picard’s method leads to power series—not

* Assuming that Z and Y do not change signs; if they do, it is best (although by no means necessary)
to subdivide the interval.
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a satisfactory form for wave functions. John R. Carson3employed Picard’s method
for approximate solution when zZ{x) and Y{x) are slowly varying functions and suc-
ceeded in summing the series and obtaining the first order correction terms in a usable
form; but any attempt to get the higher order terms by this method would seem to
be out of the question. Theoretically, we should select Z0{x) and Yo(x) as near as
possible to Z{x) and F(x), subject to our ability to solve (8); but the integrations will
be difficult to perform.* Thus we come back to (13) as the best compromise and it
works very well.
In the more explicit form the first order correction terms are

V\{x) = Vo\B{x) cosh To* —A (x) sinh To* + C(x) sinh To*]
— KO0lo[A(x) cosh rCE — B(x) sinh rOr+ C(x) cosh TO&],

Vo 15
li(x) = Ko I-B(*) sinh rOX —A(x) cosh r@E+ C(x) cosh r GJ 19
0
+ 1o[A{x) sinh Tox —B(x) cosh rOx + C{x) sinh r®#<
where
Ax) =— Fp— - Kof\ cosh 2To~,

2JoLKo J
B(x) =— fx— - Krf\ sinh 2rq~, (16)

2JoLKo J

In some instances it is preferable to express the results in terms of progressive
waves; then V{x) = Fo(x)"T Fi(*) and 1(x) = 10(x) + h(x) become
F+(x) = ifQot[e-kL- C{x)e~I"x - £(*)«r»*].
1+(*) = Jo+[e-r& - C(x)e-r°* + E{x)er*];

17)
V-(x) = - Kald\eUx + C(x)"x+ £>(*)>3]*],
I~(x) = 16\eT(x+ C{x)eTx —D(k)e~T,x};
where
D) = A(x) + B(x) = — - KoY\ e*retdi;,
2Jo LKo J
(18)
E(X) = A(X) - B(x) = 2- f*X4r-

20 LAo J

Equations (14) and (15) express the solutions in terms of V and I at the beginning
of a finite interval (0, /); one also often wants the corresponding expressions in terms
of the final values. These are

*John R. Carson, Propagation of periodic currents over nonuniform lines, Electrician, 86, 272-273
(1921).
* This objection would not apply in strictly numerical handling of equations.
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Voix) = V(I) cosh TQ(I - x) + Kol(l) sinh rOZ- ¥*),

Viix) = V(D{[B(x) - 5(0] cosh Toil + x) - [A{x) - A(1)] sinh Toil + *)
- [C(*) —C(]] sinh Toil — x)}
+ Kolil) JE(*) -5(0] sinh FO(/ + *) - [4(*) - ¢(0] cosh rO(/ + x)
- [C(™*) - C(O0] coshrOZ- *)}. (19

h(x) = — {[Aix) - 4.(0] cosh rO/ + *) - [5(*) - 5(0] sinh Toil + *)
- [A® - c(0] cosh Toil - x)}

+ 7(01[Aix) - Ail)]sinhr0(i + *)- [5(*) - 5(0] cosh Toil + x)

- [Cfx) - C(0] sinh roGi - *)}.

Suppose now that the interval is infinite and that z{x) and F(x) are slowly vary-
ing functions. In this case, there exists the Liouville-Jeffries-Wentzel-Kramers-
Brillouin approximation

(20)

where
Kix) = VZix)/Yix), T(x) = VZix)Yix). (21)

To the communication engineer these approximations seem natural even without
formal analysis. He would reason as follows. If the “characteristic impedance” Kix)
is independent of x, a progressive wave moving either to the left or to the right would
suffer no reflection; it is only the sudden changes in the impedance that causes reflec-
tions. Hence the voltage F(jc) and current /(*) associated with the progressive waves
will be proportional to exp+ [/]*r(*)<£*]. If Kix) is a slowly varying function, we
can ignore the reflections and in the first approximation consider the line as con-
tinuously “matched” and thus acting as a transformer. This means that the voltage
will vary directly and the current inversely as the square root of the characteristic
impedance: hence, equations (20).

There are several formal derivations;4 but the one which appeals to us most be-
cause it corresponds closely to the physical argument is also the one which permits
further improvements in the approximation. Let us consider the “transfer parame-
ter” 0

(22)

as the new independent variable. Substituting in (1), we obtain

4John C. Slater and Nathaniel H. Frank, Introduction to theoretical physics, McGraw-Hill Book Co.,
Inc., New York, p. 148 (1933); John C. Slater, Microwave transmission, McGraw-Hill Book Co., Inc.,
New York, p. 73 (1942).
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dv _ dl \%
G T O K(Q) =
Eliminating first I and then V we have
K'(Q) K'(@)

F(0) “ -Efar F'(0) - F=°  7°0)+ -ga r(©)- 7= "

If K(Q) is constant, we have simple progressive waves as anticipated; otherwise, we
introduce new dependent variables in conformity with our idea of voltage and current

transformation
VvV = [frO)]12, I = [tfO)]-V*/. (25)

Incidentally, this is the transformation which should remove the first derivatives from
(24). Substituting, we obtain
7"(0) = 1+ 3Ky K I‘v, 7(©) = f1- (K + 0 l. (26)
4K 2 2K J L 4K 2 2K
We now have not only equations (20) but also the quantitative criterion of their
goodness: (K'/K)2and K™ /2K should be small compared with unity.

To improve on(20), we could repeat the process beginning with (22); but the
analytical work issimpler if we turntoequations (13) and applythem to an infinite
interval, assuming of course that in the entire interval the bracketed quantities in
equations (26) differ but little from unity. Thus, the solutions of

dy
¢ =l1i+IW Jly (27)
are also the solutions of
yx) = y,(*) + T I($)2(£) sinh (x - £)dE, (28)
Jm®
provided the integral is convergent. The solutions asymptotic to are
y{x) N eTz+ f /({)eT*sinh (x —E£)dE, (29)
o

or

y+{x) Gt e~z - \€~Xf f(Od( + \ez f e~~(Qdl
At "

0

y~(x) ~ ez+ \ez f IE)<E - \e~z T enf(QuE. (30)
* Jm
From these equations we can obtain the well-known asymptotic expansions of Bessel
functions as well as expansions of other types.
The case in which 0=ij3x, where is a constant, occurs so frequently that a
repetition is justified. Equations (26) become
3(AT)2  K™-\ faK" (KA.

V"' (x) = - pW + A ™) =-PI'+ — - —rr_J 31
) P 4K* 2KA ) \_2K 4K2J (1)
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and the corresponding integral equations are

F(x) = Vo(x) + / TUTOE T y(g) sin P(x - £)dE
P -4 [*(£)]2 2m ) . (32)
rr K'w [G: (f)]—-||{£) . P(I B
I(x) = 10(x) + - / [ sin P(x - .
2m 41*(0]
Suppose, for example, that K(x) = K 0-{-kx'l then, asymptotically
3ik
V(x) = = A\/IKo + & +
8p(KO+ kx).
ik
1) = e T (33)
VKo + kx 8p(K0+ kx).

In this case, however, the integrals in (32) can be evaluated in terms of sine and
cosine integrals. Moreover, the complete result corresponds closely to the physical
picture of reflection which invariably takes place when waves are traveling in trans-
mission lines or media with variable characteristic impedance K(x). Thus

V(x) = A[y/Ko + kxe-** + Rvy/Ko + kx «**],
-ifix pi&X (33-)
1(*) . + Rz
=4 ~y~Ko "T kx \/K o kx-

where Rv and Ri are the first order reflection coefficients given by

Rv = - 3Ri = - (3/4) exp (2ipk~IK 0 bCi (2px + 2pk~1K 0
iir=\
- i Si (2/3*+ 2pk-'KQ +
-21

The succeeding correction terms represent successive reflections. The entire series re-
sembles an asymptotic solution of the differential equation in question but it appears
to be rapidly convergent.

An another example, take the case of principal waves on a thin cylindrical antenna
when

120 120
K(x) = 120 log (2x/a), K'(X)= ------- > K" {x)
In this case we obtain
F(x) = Ay/~K{x) I'l - — i— 1 ST S +—
L 2|3x (4[log (2x/a)]2 2 log 2(x/a)
(35)
I(*) = 1+-1 / - L + — 1 e~*x

VK(x) 2/3x (4[log (2x/a)]2 2 1log (2x/a) j _
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As the third example we shall take Rayleigh’s equation for a nonlinear oscillator5
g+ (Rtg + i?33 + = 0. (36)
By (13) we have

q(t) = qo(t) ! Ir ' [Riy(r) + Rx3] sin oft — r)dr, (37)
toJo

where qo(t) is a sinusoidal function. If g=0 up to t =0, then qoft) =A sin cot. Substitut-
ing in (37) and integrating, we obtain

q(t) = A sin cat — %(Ri + fwa?d 3/ sin cot— — coi?d Jcos cat — cos 3cot). (38)

For a periodic solution we must have

R1+ WR*A* = 0; (39)
then 1
q(t) = A sin ot —3—chi?aj Jcos ut —cos 3wl). (40)

Equation (39) is precisely Rayleigh’s equation for the amplitude of oscillations; equa-
tion (40) differs from his equation in that ours contains a term proportional to cos cot.
Our approximation satisfies the initial condition g(0)=0 while Rayleigh’s does not.

Originally this work was undertaken to obtain convenient analytic approxima-
tions to a number of problems in wave theory. It has since become apparent, however,
that at least for a certain class of differential equations, the method would be suitable
for numerical solution. The practicability of Picard’s method for this purpose has
already been explored by Thornton C. Fry;6the present method should be quicker.
The rapidity ofconvergence will be discussed in a separate paper.

* Ph. LeCorbeiller, The nonlinear theory of the maintenance of oscillations, I.E.E. Journal, 79, 361—
378 (1936).

8Thornton C. Fry, The use of the inlegraph in the practical solution of differential equations by Picard's
method of successive approximations, Proc. 2d Internat. Cong. Math. Toronto, 2, 405-428 (1924).
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A CYLINDER COOLING PROBLEM*

BY

SAMUEL A. SCHAAF
University of California, Berkeley

1. Introduction. The linear cooling problem for non-homogeneous solids has been
investigated extensively by Rust,1Churchill,2 Carslaw,3 Mersman,4 and others. It is
the purpose of this paper to obtain a solution for the corresponding cylindrical prob-
lem. The method used is that of the Laplace Transform.

2. The Problem. Let us consider an infinitely long circular cylinder of radius a
and initial temperature To, instantaneously immersed in an infinite medium initially
at zero temperature. Let the heat conductivities and diffusivities of the cylinder and
external medium be respectively K, and }¥ (v= 1, 2). Then if r is the distance from the
axis of the cylinder and t is the time, the following differential system is satisfied5by
the temperature functions TV{r, t):

*(d2Tx , 1 O7Y] dTi
h\ \ /

-------- Odr<a t>0, (1)
| dr2 r dr) dt
2 (d2T2 , 1 de{/ dT2 > 0
— r T = = r X )
Meard ¥ a) - it & *>0. @
lim T\ = Ilim T2 t> 0, 3)
r—*a— t—af
. dTx . dT2
lim K\ — lim Ki— t>0, (4)
r-*a- dr e+ dr
lim T\ = To 05 r<g, (5)
)
lim T2—0 r> a (6)
=0

3. Solution. Let the Laplace transform of T,{r, t) be T*(r, s), i.e,

/ e~BT y(r, t)dt s> 0.
0

Applying this transform to (1)~(6), we obtain the corresponding set of ordinary dif-
ferential equations containing s as a parameter;

* Received June 18, 1945.

1W. M. Rust, Jr., Integral equations and the cooling problem, Amer. J. Math. 54, 190-212 (1932).

5R. V. Churchill, A heat conduction problem, Philos. Mag. (7), 31, 81-87 (1941).

3H. S. Carslaw, A simple application of the Laplace transformation, Philos. Mag. (7), 30, 414-417
(1940).

4W. A. Mersman, Heat conduction in an infinite composite solid, Bull. Amer. Math. Soc. 47, 956-964
(1941).

5H. S. Carslaw, Theory of heat conduction, Macmillan New York, ed. 2, 1921, Chapter I.
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2 (d*T? 1 dTi¥)

hi{—— + - } = - To+ sT? Odr <a, (1%
1 dr2 r
. ?
jofUETE p 2 AT sre 1w (2%)
I dr2 r dr)
lim T? = lim Tf, (3%
r+a— r-»a+
] dTf .. dTZ
lim Ki = lim UR . (4%
r—a— dr at dr

The solutione of this system is

rr , Ki(a*Vs)-h(rVs/h

Ti{r,s) = - 1+ ( )-h b @)
S D(Vs)

\ T° a”o (aills) K O(r\/s/h2

ST e — 1 ®
where

ai = a/hi, o2= a/h2  a3=Kiht/Kihi, 9)
D(@a:) = a3Jo (ocix)K0(otix) — 1 0(aix)Ko (ot). (10)

The functionsT,{r, t) may now be obtained by use ofthe complex inversion

formula?
J I» c-ftX

Tr, t) = lim— - 1 e“T*(r, z)dz, c> 0. 11
.9 X% 2iri J ¢ (r. ) (1)
In order to reduce these contour integrals to real integrals we must first establish

the following lemma.
Lemma. D(z) does not vanishfor |arg z\ g fir.
Proof. We choose two numbers A and B, arbitrary except that

0<A< 1<B. (12)

Then since avis positive (f=1, 2, 3), it will be sufficient to show that, when |argz|
2=87r, D{z) does not vanish for any values of avsuch that A ga, (B (v=1, 2, 3). The
proof now follows in four parts.
i) There is a number f?i>0, such that D(z) does not vanish for
A N ar”™ B, |arg z| g \ir, | z| < RIi.

This is true because we may use the ordinary series expansions of the Bessel function8
to write

D = ! b ( 2—oi\-af : | f-B
z a ol\-a 0 - Z),

6G. N. Watson, Theory of Bessel functions, Cambridge University Press, Cambridge, ed. 2, 1944,

p. 79.
7D. V. Widder, The Laplace transformation, Princeton University Press, Princeton; Oxford Uni-

versity Press, London H. Milford, 1941, p. 66.
8G. N. Watson, loc. cit., pp. 77, 80.
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where B(z) is bounded in the neighborhood of z= 0. The result is then evident.
ii) There is a number i?2> o0, such that D{z) does not vanish for

A N av”™ B, |arg z| ™ Y%r, |z]| > i?2
To see this we use the well-known asymptotic formulae for these Bessel functions9
to write
g(«1—a2z

~=r {(03+ 1+ ei) —i(azs— 1+ e)e—2A%H,
22V « 102

D(z) =

where —0asz—°0 for k= 1, 2, uniformly in the a, providing A ;a, "B (v=1, 2, 3).
Clearly, D(z) can vanish only if

But for sufficiently large |z|, say |z| >i?2, the right member is less than unity in
absolute value.Hence for |z| >i?2, this relation cannot holdwith |arg s|

in) D(z)does notvanish for |arg z\ = 8r. Tosee this, we letz=eiiTy (y real).
Thenio

hiery) = Joy), (13)
Ko{e**y) = - ixir[/o(y) - *7.(y).]. (14
Hence
D(yeiiT) = {o03/0 (aiy)Fo(azy) —Jo(ony)Yo (azy)}
+ i{asJo(aiy)/o(«2y) —/o(«iy)/o (ociy) }.
Therefore D(yeiiT) can vanish only if
a3o (cay)Yo(cizy) — Jts{cny)Yi (aiy) = «a/ d(ony)Jo(atiy) — Jo(oiiy)Jo (aiy) = 0.

But this is impossible since it would imply either the existence of a common root for
at least two of these Bessel functions,i or the vanishing of the Wronskian

TF[jo(azy), Foazy)] = — e

ira™y
iv) We consider now the integral (see Fig. 1)

1 f DY2)
— Jjc— *.

From i), it), and in) it follows that D(z) does not vanish on C for all a, such that
A ~a,"B {v—1, 2, 3). Now these Bessel functions are all analytic except possibly
at z= 0. Hencel/ic*!, «2, <8 is continuous.

*« G. N. Watson, loc. cit., pp. 202, 203.

10G. N. Watson, loc. cit., pp. 77, 78.

11t is a well-known result that these Bessel functions have no common roots. See G. N. Watson,
loc. cit., pp. 479, 480, 481.
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Since D(z) has no singularities inside C,f(ax a2 a3 gives the number of zeros of
D(z) inside C. It can therefore take on only integral values; but this implies that
/(«i, a2,a3 is constant.

Finally
W), JIRY
(1, 1, 1) = —mmmmmmmemms ~dz= 0.
2iriJc W{U(z), K&fz)]
Hence/(aj, a2 a3 =0, for all a, satisfying the relation A Therefore D(z) has

no roots inside C. Since the radii R3and Rx (see Fig. 1) are arbitrary, except that

Fig. 1. The contour C, consisting of the circu- Fig. 2. The contours I, Ti, r2, r3Lxand Ly.
lar arcs |[s| =i?3 and |s| = i?< and the line seg- The radius of r3is p.
ments on the imaginary axis joining them. The
only restriction is that Rt<R xand Rx>Ri.

R3<R Xand Rt>R 3 it follows that D{z) has no zeros in the entire right-half plane,
which concludes the proof of the lemma.

We now transform the contour integrals of (11) into real integrals. Let us consider
Ti(r, t) first. According to the lemma just established, D(y/z) does not vanish
for |arg \/s| ~srt, ie., for |argz|®m Hence the integrand in (11) is analytic
for |arg z\ gtr, and_we may (see Fig. 2) replace the integral along I by the sum of
the integrals over -ﬁ: I‘Wéyléu and Using the asymptotic developments, we
easily see that for large z,

Ki(a2/z)10(r\/z/Jtxy
D(Vz)

Therefore as X—»>, the integrals over Tx and f 2 vanish, since ¢>0.
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Near the origin, the term K| (a2Vz)/o(«iVz) dominates the denominator, and
hence

i KO (@A12)IE(r\/z/h Y
Im =
29° D(\fz)

Therefore the integral over P3vanishes with p (see Fig. 2).
On L\, we set z=<9=ir,a > 0. Then, using (13) and (14), we obtain

| r . To r''* e*'1
— | eTi*(r, 2)dz=— 1  -——-
z7rtj L Tj W g
(15)
/ Jo{ra/hi)Yo (ot2<r)-\-iJo(r<r/hi)Jo (0i2<) j

d
I [05/0 (oner) 7 O(a2Xf) —Jo(cti<r)Yo (a2 1+ i [aJo (aia)Jo(aza)—JI0(aia)Jo (aZn)lj :

Oni 2 we set z=az~ir, <r>0, and obtain the conjugate of (15). Adding these and
taking the limit as X—& and p—0, we obtain finally,

- 47> 3r 7 e-N" MralkJJo'M

neh= s J0 A &\Q) a (10)
where
A(a) = [asJO(ctia)Yo(aza) — Jofol\o)YO(a2a)]J a7
+ [azJ0{ci\a)Jo{az) — Ja{a\a)Jo (,aza)]3
Similarly
Tar )= 2Toao r°°e-'2J0 M [JO(ana)Ci(aia, ra/z\ —a0J0 (aio")C(oza, ra/ hi) Jda, 18)
JO a A(cr)
where
C(x, y) = Jo(x)YO(y) - Yo(x)Jo(y), (19)
Ci(x, y) = Ji (x)Yo(y) - Yi (x)JO(y). (20)
These formulae constitute the solution of the differential system (1)-(s).
4, Remarks. Since the Laplace Transform method is essentially a formal one, any

solution obtained in this manner must always be verified. In the present case this is
easily done.2

It may also be shown, under certain conditions as to boundedness and continuity
necessarily satisfied by any physical temperature distribution, that expressions (16)
and (18) constitute the unique solution of the system (1)-(6).13

In conclusion, the author would like to express his thanks to Professor G. C. Evans
for his help inthe preparation of this paper.

122 For anexample ofthe method see H. S. Carslaw and J. C. Jaeger, A problem in conduction of heat,

Proc. Cambridge Philos. Soc. 35, 394-404 (1939).
15 For an example of the method see W. M. Rust, Jr., loc. cit., p. 196.
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ANALYSIS OF NUMERICAL SOLUTIONS OF TRANSIENT
HEAT-FLOW PROBLEMS*

BY

CLARENCE M. FOWLER
U. S. Naval Academy

1. Introduction. The purpose of this paper is to present formal methods for es-
tablishing the convergence of numerical solutions of transient heat-flow problems,
and to derive expressions for these solutions in terms of the initial temperatures and
boundary values.

In general, heat-flow problems are classified under two groups, steady-state flow
and transient flow. Steady-state problems are solved numerically by the relaxation
method. Many papers dealing with the actual numerical work have been written,
and Templel has established the validity of the relaxation method under various
boundary conditions. Moskovitz2 has derived an expression in terms of the boundary
temperatures for the steady-state numerical solution of a rectangular bar.

Although considerable work has been done on the actual application of numerical
methods to transient heat-flow problems, very little has been written about the prob-
lems of convergence and the expression of solutions in terms of initial and boundary
values.3 These last two considerations are the objects of this paper.

Two restrictions which simplify the analysis are placed on the examples consid-
ered here. First, only the one-dimensional slab is considered; secondly, the initial
temperature distribution is assumed to be constant over the slab. However, by ex-
tensions of the methods used, solutions of problems concerning two- and three-dimen-
sional rectangular objects with arbitrary initial temperature distributions are readily
derived.

The various boundary conditions which have been studied include the following:
the temperature at the boundary is given, and is either a constant or a function of
time; the boundary is insulated; there is a constant energy input at the boundary;
there is convection at the boundary. The author has made no attempt to consider all
possible combinations of boundary conditions, but has tried to include enough repre-
sentative cases to illustrate the methods.

The procedure followed throughout the paper has been to consider each example
as a whole, and to derive solutions of the problem and take up a study of the conver-
gence, before proceeding to the next example. In some cases solutions have been ex-
pressed in terms of a set of polynomials which are associated fundamentally with the
difference equation; in other cases they have been expressed in finite Fourier series.

* Received April 11, 1945.

1G. Temple, The general theory of relaxation methods applied to linear systems, Proc. Roy. Soc. London
(A), 169,476-500 (1939).

2D. Moskovitz, The numerical solutions of Laplace’s and Poisson’s equations, Quart. Appl. Math. 2,
148-163 (1944).

3R. Courant, K. Friedrichs and H. Lewy, Uber die partiellen Differenzgleichungen der mathematischen
Physik, Math. Ann. 100, 22-74 (1928).
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Properties of the polynomials needed throughout the paper have been demonstrated
in an appendix.

2. The difference equation and boundary expressions. The basic one-dimensional
difference equation satisfied by the numerical solutions is

Ti-i.i-i + aTXt-i + Tx+i't-i
1*]( = —— s ) ('21)
a+ 2
where
(A*)2
(a+2)a

Here, At is the time interval between successive time values, Arc is the distance be-
tween successive points across the slab, t is the time (in units of At), x is a space co-
ordinate running across the slab (in units of Ax), Tx,t is the temperature in the slab
at time t and position x, a is the thermal diffusivity of the material, and a is the
modulus of the equation.

As usually encountered, the difference equation has a= 0 (Schmidt’s equation).
Dusinberres4 generalized Schmidt’s equation by introducing the modulus. The value
of using an arbitrary modulus lies in being able to select an arbitrary time increment
as well as space increment. This is not possible in Schmidt's equation, since fixing Ax
determines At.

In dealing with convection, insulation, etc., at a boundary, it is always necessary

to make some assumption to determine the numerical

x=o0 | | 2 boundary expression. It should be emphasized that, for

this reason there are several different expressions in use

approximately representing the same boundary condi-

tion. However, it is possible to consider only one of them

here, which is deduced as follows. Figure 1 shows the

Fig. 1 boundary (x=0) and the first two interior points of the

slab. The boundary expression is derived by making a

heat balance over the shaded half-segment. The heat gain by conduction throughout
the time increment At referred to the initial time instant /—I is

- hAAY(TOLi- Ta) + KAAt

where h is the surface heat transfer coefficient, k is the thermal conductivity, Ta
is the ambient temperature, and A is a unit area perpendicular to the slab cross sec-
tion. This quantity is equated to the heat capacity gain %(Ax)cpA(TOt—TO0,t-i),
where ¢ and p are the specific heat and density of the material, respectively. For rapid
surface cooling, it is necessary to keep Ax small, since it has been assumed above that
To.t will represent the temperature of the shaded segment.

After equating the two heat quantities above, and simplifying, we obtain the
boundary condition

+ (@a- 2N)TO.t-i + 2NT,
| oi = > (.2.3)
a+ 2

4 G. M. Dusinberre, Numerical methods for transient heat flow, Trans. A.S.M.E. 67, 703-709 (1945).
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where N, the equivalent numerical transfer coefficient, is given by the relation
N = hAx/k. (2.4)

In the case where a boundary has a constant energy input per unit area, g, an
analysis similar to that given above yields

2r1, 1+ aTot-1 + 22 cs
lot= > (2.53
0+2
where
Q = gAx/k. (2.6)

For an insulated boundary, N =0 and (2.3) becomes

R i
rM:aZFI,I_I aTo,t-\° 2.7)

For simple boundary conditions such as temperature at x =0 held at u0, or tem-
perature at x = | fixed as a function of timef(t), the boundary conditions are simply
TOt=uo or Ti,t=F(t).

3. Convergence. There are two distinct types of convergence to be considered
here. The first type deals with the convergence of numerical solutions as the time
becomes large. The second type shows that as the time and space increments At and
Ax are allowed to approach zero, the numerical solutions become identical with the
corresponding analytic solutions.

From an inspection of (2.1) and. (2.2), it is seen that in applying numerical solu-
tions to any particular example, there are apparently two arbitrary quantities, the
space increment Ax, and the modulus a, which in turn determines the time incre-
ment At. However, it is found from experience that if the value of a is taken too
small, the calculated numerical answers oscillate and ultimately diverge as the time
becomes large. The first type of convergence is concerned with developing criteria
which impose a lower limit on allowable values of a which will then insure numerical
convergence. Each example considered has such a criterion developed, since such
criteria usually depend on the particular boundary conditions. Another related prob-
lem is that of determining the steady-state distribution given numerically. It is shown
that numerical solutions converge to the same steady-state values as those deter-
mined analytically for the boundary conditions under consideration.

Both of the problems discussed above pertain to actual numerical solutions where
the space and time increments are finite, non-zero quantities. The second type of con-
vergence is treated in 811, apart from the main body of the paper, since it does not
deal with numerical solutions as applied, but rather to the limiting case where Ax
and At approach zero. Under these conditions, the numerical solutions become identi-
cal with the analytic solutions for all values of time and position throughout the slab.

4. Particular solutions and contour integration. By substituting Tx,t= F(t) sin zx
into (2.1), F() is found to satisfy the subsidiary difference equation F(t)
= [(a+ 2 cos z)/(a+ 2)]F(t—1) and therefore F(t) = [(a+ 2 cos z)/(a+ 2)]‘, from
which we find as a particular solution to (2.1),

/@ + 22 cos z\ ‘¢
Txt —{)] sin zx. (4.1)
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A similar analysis shows that sin zx may be replaced by cos zx or e'zx.

Using (4.1) and extending it to the two or three-dimensional form, we can write
down immediately solutions in Fourier series and integrals for rectangular objects,
with arbitrary initial temperature distributions. However, such solutions are of little
use as they converge too slowly. Instead of following the standard Fourier develop-
ment, the author has found it expedient to consider only cases where the initial tem-
perature over the slab is zero (which by a change in temperature origin includes any
constant temperature distribution). This restriction, for the one-dimensional slab,
allows the use of a method of contour integration which may be summarized as fol-
lows.

a) Having found that

/a + 2cosz\‘ A(2) B (2)
Txt= | ———I cos zx H sin zx
\ a+z /| L z z

is a particular solution as long as A(z) and B(z) are independent of x and t, we
formally integrate this solution with respect to z over the prescribed path (Fig. 2)
in the complex plane. The solution is (4.2) below, where the functions A(z) and B(z)
are determined so that (4.2) satisfies the boundary conditions of the problem.

1 r (a+ 2cosz\* \dz
T*i= — { ----------------- ) EA(z) €0s zx + B(z) sin zx )—ee (4.2)
iriJ p \ !z
The path P is chosen parallel to the real axis, extending from -f- @ to —co, and is
located a finite distance m above the real
axis, m being determined so that all
poles of the integrand lie below P.

b) The integrand of (4.2) is shown to
vanish over the arc, path R of Fig. 2,
except possibly at the slab boundary
points x =0 or x =1, when t is given the
value zero. Then, as there are no poles
enclosed by paths P and R, it follows
from Cauchy’s theorem that at time
zero 77,0 = 0, except possibly at the slab
boundaries. It follows that (4.2) is the
solution to the problem, for it satisfies

the difference equation, the initial condition TX0= o, and the boundary conditions.

c) Theremaining stepis the evaluation of the contour integral. This is accom-
plished in one of two ways.In either case, the integrand of (4.2) is shown to vanish
over the paths M and N (Fig. 2) or over half these paths.

1) For semi-infinite slab problems, the integral over P is evaluated in terms of an
integral along the real axis and the residues of any poles lying between path P and
the real axis.

2) For finite slab problems, the functions A{z) and B(z) are generally such that
the integrand is even-valued, and therefore the solution (4.2) may equally well be
integrated over the path B (Fig. 2) which is opposite path P. Thus, integration around
the loop consisting of paths P and Q, and the paths M and N shows that the required
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integral is equal to half the sum of the residues at the poles enclosed by paths P, Q,
M and N, since the paths M and N contribute nothing to the integral over the loop.
All analysis of a purely rigorous nature has been omitted from the paper, butall
doubtful cases have been tested for proper convergence and the vanishing of the in-
tegrals over the paths outlined above.
5. Semi-infinite slab. Boundary x =0 held at constant temperature u0, initial
temperature zero. Let us consider the following equation

(5.1)

To prove that this expression is the solution of the problem it is necessary to show
that Tx,0= 0 and that TO0,t—u0.

To show that Tx,0=0, we set i=0 and make the substitution z—R e We then
integrate («0AO exp [ixR exp (nf)]d<E over the path R, $-varying from ir to 0. It fol-
lows that as R—x¢ this integral vanishes, except at g = 0. Therefore, since there are
no poles enclosed by paths P and R, it follows from Cauchy’s theorem that Tx,0=0.

To show that the integrand vanishes over the paths M and N, let us substitute
z—=* R +iy wherey varies from —m to +m, and let R— ;then it follows that these
integrals vanish. TO0.t, the temperature at x = 0, can equally well be integrated over
path Q, since the resulting integrand is even-valued. Therefore, by Cauchy’s theorem,
since there are no contributions from the paths M and N, Po,i= Wb It follows that
(5.1) is the solution to the problem, for it satisfies the initial and boundary conditions.

To evaluate (5.1) it is convenient to integrate around the loop consisting of P,
the half-path M, the real axis indented at the origin by a small semi-circle of radius e,
and the half-path N. In the work that follows, the real axis will be denoted by w to
avoid confusion with the slab position variable.

Since the integrals over M and N vanish, and there are no poles enclosed in the
loop,

a+ 2 CoS ee*A’
mL exp [ixt. exp Jot)
a+?2 /

Regrouping terms and letting e—0, we have as the solution

2 r °°/a+ 2cosw\ 1 dw

TXxt= no 1 --—--—--——---- ( ------- _/) SIn wx W q (52)

L TTt/o \ a+ 2

To express this solution in terms of the polynomials, we expand (a+ 2 cos w)*ac-
cording to (12.7) and substitute into (5.2),

+ 2PQ(/) cos tw] sin wx -—-
w .
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Combining the sine and cosine terms and making use of the identity (12.6a),
Pt-r(t) =P(+r(i), we have

1
/ dw
Txt= « 1- 52 Pr+t(t) sin w{x + r)-—
or
; * 5.3
i- ( a5y P D { + r}P1+(0 (5.3)
where the symbols {x+r}=1, o0, or —1 depending on whether x+ r is greater

than, equal to or less than zero. This notation arises from the fact that
2/ )" (sin iu{x-\-r)/w)dw = {x+r} in accordance with the above convention.
From (5.2) it is easily shown that the solution converges as t—<» when

ada 0. (5.4)

To show that the numerical solution converges to the analytic steady-state solu-
tion for the same boundary conditions when /—co, the following device is used :
Tx,t may be equated to the integrand over the real axis, and added to the sum of all
residues of poles enclosed by the real axis and the path P. The real axis is to be in-
dented with small seini-circlcs at all poles lying on it. In the steady-state value of
the solution, the only contributions which remain as £—x, are those which occur
where z= 2mr. All other contributions, including those along the real axis, drop out
due to the rapidity with which the factor [(o+ 2 cos z)/(a+ 2)]'—0when z+ 2»m, as
¢—>00

In the problem under consideration, there are no polés, and if we take into account
the indentation at the origin, we find that the steady-state solution approaches uO.
This is also the value given by the analytic solution of the same problem.

Although simpler methods would have given the same result in this case, the
method is very powerful, since it may be used on a solution with no further reduction
from the contour integral form.

6. Semi-infinite slab, TO,t polynomial in time, initial temperature zero. Let us
consider the following equation

Ciem!r Ja+2 coszV . ) , S
= ( " ) (m-mmmmmmemee- ei-r<21x(iz. (6.1)
2ri JP\ a+ 2 J
An analysis similar to that in 85 shows that Txo0=0 and also that the integrand
vanishes over the paths M and N.

When x = 0, the integrand is even-valued in z, and therefore has the same value
over path Q as over P. To,t may then be equated to half the sum of the residues at the
poles enclosed by paths P and Q. From (12.8) this becomes

= (6.2

where £5,(£) is a polynomial in t of the wth degree. From prpper combinations of these
polynomials, contour integrals are readily derived for problems in which the boundary
temperatures are arbitrary polynomials in time.

For the particular case where the boundary temperature is linear in time and
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therefore given by To,t = C~(t) —Ct/(a+ 2), as follows from (12.10), the contour solu-
tion is given by,

Cr (a+ 2cosz2\1 dz
<+F — . (6.3)
iriJP\  a+2 J z

TXt=

We indent the origin, integrate as in 85 to obtain

2C r “Ja+ 2cosw\* dw C r T@a + 2aus e’V exp [ixee'4]
mTI,\ a+2 )SmwXxw3 t Jo\ a+2 |/ i«

The first integral, after the expansion of (a+ 2 cos w) ‘in terms of the polynomials and
regrouping as in (5.2), becomes

2C = * o> g
= -52 sin w(x + r)Pr(t) — m
irla+ 2)° r_-(>< w3
By integrating by parts and keeping all terms which do not drop out as e—0, the con-
tribution of this integral is found to be

w

2Cx C Mm+1 ” d
2 (X + )P r() j sin w(x + )
t W

ire Wa+ 2)° r—

The second integral is expanded in terms of e and < and all terms are retained which
do not drop out at the integration limits or as e—0. We then have for this integral

ire 2 a+2

The sum of 7j and h with e—0 then gives for the solution

t X2 1 '?2“ N (6.4)
Txt = C . + NJITrH(i)a; + r .
_a+-2 2 2(a - 2) -t ( ) (X )
where the symbols {x+r} have the same meaning as in (5.3).

An analysis similar to that of 8§85 shows that if a~O, the numerical solution ap-
proaches Ct/{a+ 2) asymptotically as >a> This result also follows from the analytic
theory.

7. Finite slab, length I, boundaries x = 0 and x— held at constant temperatures
M and iti respectively, initial temperature zero. Let us consider the equation

1 C (a+ 2coss\‘r /s . dz
Txt= — 1 (- ) [A(z) cos zx + B(z) sm zx] — > (7.1)
iridJp\ a+ 2 /| z
where thefunctions A(z) and B{z) must be determined to make (7.1)satisfy the
boundary conditions TO0,t= tio and Ti,t=ut. Referring to (5.1) andplacingx=0, we

see that
mo C (a+ 2 cosz\‘dz N

— e -r— J— = «o0. 7.2
irigp\ a+s Iz € (7.2)

Therefore if A(z) =moand B{z) = (mj—cos zl)/sin zI, (7.1) reduces to uoat x =0 and
to M at x —. The solution is therefore
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Mj —«o COS zl . \ dz

T, ,,xf (ix2")"(.Mcoszx + sin zx)— (7.3)
a+ 2 l z

Ftdp J o\ sin zl

The integrand of (7.3) is an even-valued function of z and therefore the solution

may be equated to one-half the sum of the residues at poles enclosed by paths P

and Q (there are no contributions from the paths M and N). Poles occur at z —nir/I,
n any integer. After evaluating the residues and simplifying the result, we have

Txt — Mo+ (mi— Mo) _I
sin (nirx/l) /a + 2 cos (nir/l) ' 7.4)
H 52 (— l)n(«i — M COS M) -----mmmommmmemev 1- i
T X2 ( )l " n \ a2 )

To express this solution in terms of the polynomials, it is necessary to expand
(a+ 2cos (mt)//)*as in (12.7),

Tx.t — Mo + (mj — Mo) —

“ D — Mo i sin (mex/1) [’P 0+ 2P il mT
¥ (—1D"(mj —Mvcos HI) - n L’() _i(h) COS-I

irffa+ 2)°

nirf
+ eem+ 2P Q0O COS

Combining the trigonometric terms and making use of the identity P j_r(i) = P I+T(t),
we obtain the solution in the form

Ti,i — Mo+ (mj — Mo)
2 r+:t " (—Dn ur(x +
o — 52 Pt+M)52 —roeev (m; — M COS Mif)s in -—---e-m- —— (7.5)
ir@a+ 2)™ 1,2 |

However from the initial condition 7+0 =0, it follows that at (= 0, the resulting
sine expansion of (7.4) must be equal to —mo— (ui—u0)(x/1). Therefore the infinite
series in the double summation of (7.5) must equal —T+r+r), where F(x) is the peri-
odic sine expansion of u0+ (ui—u0)(x/l). The solution then becomes

1
Tx,t — Mo + (M;—Mo)-I @+ 2" 52 prvictynx + r). (7.6)
Figure 3 shows the graph of the periodic sine expansion of F(X) =m o+ (m i —m0)(x/2)
which applies to (7.6). In applying (7.6) it is
usually simpler to plot the function and then
pick off the different values of F(x) required
in the summation. It will be noticed that
-V -i; when x+r is a multiple of I, the value of
F(x+r) is zero.
For finite slab problems, it is usually
Fig. 3. possible to get a solution in the form of a
finite Fourier series, in addition to the poly-
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nomial expansion. The derivation of such series is not difficult, but is too long to be
given here in full. The finite series for 87 is
X (AL nrx (a+ 2cos (nr/l)\*

Txt= «w+ («i- «0)—I XI son | (\ P /)> (7-7)
+

where
sin (nir/l)(ui — M cos nr)

/(I —cos (nr/l))

(7.8)

The general method used for obtaining finite series, such as (7.7), consists of a
replacement of the infinite Fourier series as in (7.4) by a finite number of terms of
the same type, such that at t = o the finite series reduces to the same function as given
by the infinite series at t = 0. Such expansions are possible since in numerical methods
the initial temperature must be specified only at a finite number of points. The coeffi-
cients for the terms of such finite series are given bys

2 nrx
A = —
I

iiF(x) sin | !

where F(x) is the function at 1=0 over the interval 0 to I. The A,, of (7.8) were cal-
culated as above with F(x) = n0+ (ui—u0)(x/I).

From an inspection of (7.7) we see that as t—*« the solution converges provided
| {a+ 2 cos (mr/N}(a+ 2)| ¢1. A simple analysis yields the following criterion for
convergence

1) a+ 2 S:2cos2(r/21) |even,

. (7.9)
2) a+ 2¢e 2cos2(r/l) 1 odd.

Equation (7.7) also shows that the numerical solution approaches W+ («z —u0)(x/I)
ast—> ,which is the analytic steady-state solution for the same boundary conditions.

8. Finite slab, length I, insulated at x = 0, held at constant temperature ut at
x=1, initial temperature zero. The boundary conditions are
Tii = M, (8.1)
and from Eq. (2.7),
2rl, i+ aToi-i
To.t — — (8.2)
a 2

Imposing these conditions on the general contour integral (4.2), we find that
A(z) —Mi/cos zI and B(z) =0. The solution is therefore

ui ¢ /a+2 coss\‘coszx dz

Tx,i * (8*8)

S 1
riJp \ a+2 [ cosz z

Poles occur at 2= 0 and 2= (2m+ 1)7t/2/. Evaluating the integral as in 87 and regroup-
ing terms, we obtain the solution

5W. E. Byerly, Fourier's series and spherical, cylindrical and ellipsoidal harmonics, Ginn Co.,
Boston, 1895. pp. 30-35.



370 CLARENCE M. FOWLER [Vol. Ill, No. 4

/la + 2 cos {mr/21) \ ‘ cos (mrx/2l)~

_ ~ " 8.4
L+ - %3( Deen2, o042 fu . (8.4)

An analysis similar to that of 87 yields the polynomial expansion

1
Txt= mj 1- (8.5)
(a+ 2
where F(x) is the cosine Fourier expansion of unity from 0 to I and minus unity from
Ito 21, as is evident from (8.4) and the initial condition Tx,0= 0. It will be noted that
the value of F(x-\-r) is zero when ac+r is an odd multiple of 1.
The finite Fourier series solution is found to be

F7) mr{x ) (a + 2cos (mr/21)
a= i+ Z"sta— — - — e (8.6)
where
sin (mr/21)
An= 0 n even, An= n odd. (8.7)

7(1 —cos (mr/21))
From (8,6) it follows that the convergence criterion is:

1) a+ 27 2cos2 (tt/47) 1even,
2) a+ 24g; 2cos2(ir/2l) 1 odd. (8.8)

Also from (8.6) it follows that as t—»«>, the numerical steady-state solution becomes ui
which is also the analytic steady-state solution for the same problem.
9. Finite slab, length I, constant energy input q at x =1, temperature kept at
zero at #= 0, initial temperature zero. The boundary conditions are (from Eqg. (2.5))
2Ti_i,j_i + aTj,i_i + 2Q
it (9.1) To<—0, (9.2)
a+ 2

where Q=gAx/k. Imposing these conditions on (4.2) we find that A(z) —0 and
B(z) =Q/(sin z cos zI). The solution is therefore

sinzx /a + 2cosz\‘dz
Q C 9.3)

iriJp sinscoszlV a+ 2 /| z
Poles occur at z=0 and z= (2n+ 1)ir/2l (the set z= mr, w+ 0 does not constitute
poles, as the terms sin zx in the numerator also vanish at these points since g is re-
stricted to integral values). After evaluating the residues, regrouping terms and sim-
plifying, we see that the solution becomes
. sin (mrx/2l) (a + 2 cos (mr/21)\*
Tt=Q e-Z (- )R (9:4)

ir13 n sin (mr/21) a+ 2

The polynomial expansion is found to be,
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where F{x) is the sine expansion of x from 0 to 7and of 21—x from 1 to 21, as follows
from (9.4) and the initial condition Tx,0= 0.
The finite Fourier series is

LA mrx /a + 2 cos {nir/2l)\t~
P (9°6)

where

A, = 0 neven, A, = n odd. 9.7)
i(l - cos {mr/21))

From (9.6) the convergence criterion is found to be

1) a--2>2 coszI/ I even,

2) o+27"2 cos2— 1odd. (9.8)
21

From (9.6) it also follows that as /—x> the numerical solution approaches Qx, which
is equivalent to the analytic steady-state solution for the same boundary conditions.

10. Convection at a boundary. When the condition (2.3) is imposed on the gen-
eral contour integral (4.2), A{z) and B{z) are generally such that the evaluation of
the resulting integrals is difficult, due either to the uncertain nature of the poles, or
to the evaluation of a complicated infinite integral.

For the semi-infinite slab with convection into temperature Ta, transfer coeffi-
cient h, the boundary condition is given by (2.3)

2T\V't-i T (U —2N)To,t— T 2NTO

Toll = — — N = hAx/k. (10.1)
aT 2

We assume a contour integral solution of the form,
1 C /la + 2cosz\*® dz

Txt=—1A 10.2
X ividp {Z{[ a+ 2 |/ z ( )

Imposing the condition (10.1) on (10.2) we see that A (z) = NTa/{N —i sin z), and the
solution may therefore be written,

_ NTa C + 2 cos ZY e"*x dz (10.3)

iri Jp\ a+ 2 [/ N—isinz z

The integral (10.3) is to be evaluated in terms of an integral along the real axis
indented at the origin, plus the sum of the residues at the poles enclosed by the path
P and the real axis. Aside from the root z= 0, the denominator includes roots from
the term N —i sin z, which are found to be z= —i log (VA~+I1+AO and the infinite
setz——ilog (VJIp+i—AO0+ (2w-t-I)m. n any integer. However, in the loop of inte-
gration considered, only the residues at the polesz ——i log {V N2+ 1 —AO+ (2«+1 )&
are evaluated, since the other poles lie outside the loop. (N istaken greater than zero,
otherwise the boundary would be insulated and no heat would flow, giving the trivial
solution Tx.t=0.)
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Following the analysis of (5.1), integrating along the indented real axis, and then
letting €—0, we obtain the solution in the form

2N CK/a + 2cosw\‘/N sin wx + sin w cos uec\ dw

Txt—Ta .
7rJo \ a+ 2 [/ \ A2+ sin2w ) w

+ 2irt'X) residuesJ. (10.4)

By a somewhat tedious but straightforward analysis, the residue term may be evalu-
ated and simplified to yield,

A 4NTa|O§ (x/ W2+ 1- N) /fa- 2v N2+ 1\° ;
2,rifRes. = 1L L1 ) (ViVZF I - Ap*
V-AT2 + 1 \ a+ 2 /
n €OS nirx

(10.5)
13 «V + log2 (Viva+ 1 —N)

By choosing a combination of known Fourier expansions for the hyperbolic sine and
cosine, with further reduction, and recalling that in numerical analysis x is always an
integer, we can write (10.5) in the form

Ea- 2VIN/2Z+ LV /] Vn2+ 1- 1
- ra®® — J (

27riE Res. = N- VNz+ 1)~ _
VW+"'i

The final solution therefore becomes

2N C“/a + 2cosw\I/N sin wx + sin w cos ToT\ dw
[ wJo\ a+2 [\ A2+ sinzw ) W

* & 13 1
IVN* + 1 - I\ /«- 2VN* + 1\ 1 (10.6)

Wi ithout evaluating the infinite integral (which is convergent when t—°0 provided
a5:0) we see by inspection of the factor [(a—2ViVr-hl)/(®+2)]i that the criterion
for convergence as /—»<» is,

a”" VN2+ 1- 1. (10.7)

It will be noted that Schmidt’s equation, where a= 0, will not yield convergent
answers if the boundary expression (2.3) is used, since by (10.7) a cannot be zero.
It also follows from (10.6) that the numerical steady-state solution becomes Ta, which
is also the solution predicted analytically for the same problem.

A polynomial expansion may be obtained from (10.6) by using (12.7) to expand
the term (a+2 cos w)1 However, the analysis required to evaluate the resulting defi-
nite integrals is so involved that it is not worthwhile to include the expansion here.

Contour integral solutions are readily set up for finite slab problems involving
convection at either or both boundaries, but it is generally difficult to evaluate these
integrals. However, without evaluating the integrals, but using the method outlined
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in (5.3), we can show that if the numerical work converges at all, it converges to the
correct steady-state distribution as /—«>.

11. Convergence to analytic solution. The theory developed so far has been con-
cerned only with numerical solutions as actually applied. The convergence problems
already discussed have shown what values of a are necessary to insure non-divergent
numerical answers, and also that as the time increases, numerical solutions approach
the same steady-state distribution as that given analytically for the same problem.
These results hold when the space and time increments Ax and At are finite, non-zero
guantities.

It is also possible to show that as the arbitrary increments Ax and At become very
small, the numerical solutions approach the true analytic solution for all values of x
and t, and attain this solution in the limit. The formal procedure used to demonstrate
this limiting convergence consists of a demonstration that the contour integrals de-
rived for the numerical solutions transform into already known contour integral solu-
tions for the corresponding analytic treatment, as Ax and At approach zero. Formal
proofs of this convergence will be given for three of the numerical examples already
discussed. The proofs for other examples are very similar to the ones given here.

The three examples considered with their analytic contour integral solutions are:"

1) Semi-infinite slab, end :r'= 0 kept at temperature wo, initial temperature zero,

wo C dz
T(x', t) = — 1 ewe-a'A ----- (11.1)
iriJp z

2) Semi-infinite slab, convection at x' = 0 into a medium of constant temperature

Ta, initial temperature zero,

T{X','['): ------------------------- (11-2)

3) Finite slab, length I', end x' =0 held at zero temperature, constant energy
input g at x' =V, initial temperature zero,
g r sinzx' dz
T{x\t")=— \  -om g-“**'— m (11.3)
kwidp cos zI'

Equation (11.3) is not given in Ref. 6, but we can easily derive it by imposing the
boundary condition dT/dx —q/k = 0 on the general contour integral considered there.

The notation used in the above equations differs from that used in the present
paper. In order to express these equations in our notation, it is necessary that the
complex variable a be replaced by z, thermal diffusivity K by a, and convection co-
efficient h, by h/k.

T{x", t') has been used to denote the analytic solution at the point x' and the
time t', as distinguished from Txt, the numerical solution at point x (in units of Ax)
and time t (in units of Ai). The path P is the same for both numerical and analytic
solutions, and is the limiting path allowable for the analytic integrals.

In the application of numerical solutions, position and time variables as well as
slab lengths are expressed in terms of the arbitrary time and space increments At
and Ax. In order to discuss the convergence to analytic solutions, it is necessary to
express these quantities in terms of the absolute units used analytically. If M arbi-

6H. S. Carslaw, The conduction of heat, Macmillan Co., New York, ed. 2, 1921, pp. 97-99.
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trary space increments equal one absolute unit, then the absolute space position x’
is given by, . -
{'= kIM or x —Mx". (11.4)

From the relationship Ai= (Ax)2/(a+2)a of (2.2), it follows thatthetime value in

absolute units is
t=t/M2a+ 2a or t= M2a+ 2)al. (11.5)

To show that the numerical solution approaches the analytic solution for Case (1),
when Ax and At approach zero, we substitute (11.4) and (11.5) into the numerical
solution (5.1), obtaining

Uo C (a + 2 cos («*+*)«<! &

____/) (H.6)

Txt=— —
rinQ a+ 2 z

By replacing the variable z by z'/M, we can write (11.6) in the form

"a+ 2cos (z'/M) ( dz

(11.7)
™I p\ a+2 )

The factor [(a+ 2 cos s'/+o0/(a+ 2)]ilJcat2j’ may be approximated by [l —(z))2
/(a+ 2).Mzpil(a+2,a( when M is large, and in the limit becomes exp[ —(z'Yat'\. The
limit of the numerical expression (11.7) as Ax and At approach zero (or as M—=°)
therefore becomes,
«0 C dz' ,
TN = — — > (11.8)
limAco  IMJp Z

which is identical with the analytic solution (11.1).
With convection at a boundary or constant energy input, the values N = hAx/k
of (2.4) and Q —gAx/k of (2.6) become,

N = (11.9) (U -10)

K kM
In Case (2) after substituting (11.4), (11.5) and (11.9) into the numerical solution
(10.3), and then replacing the variable z by z'/M, we obtain
hTa r /a+ 2 cos g\z'/M)V\/Z(‘I+:!)a,' ei2'x' dz'

Txt = . I ---- (11-11)
kriMJp)\ a+2 ) (h/kM) —i sin (z'/M) 7'

As before, the term [(a+ 2 cos z'/ M)/ (a+ 2)]HI<*+*)«< becomes exp[—(z")zaF] in the
limit. The term i sin(z'/M) may be approximated by iz'/M when M is large, We
make these changes, cancel the M outside the integral with those in the term
(h/kM) —(Lz'/M), and let M approach infinity; then (11.11) becomes
hTa I eu'x'e~@)iat" dz'
TIxt = r ;
limAx=0 hride (h/k) —iz' 7'
which is the analytic expression (11.2).
In Case (3), after substituting in (9.3) from (11.4), (11.5), (11.10), introducing
the absolute length V given by I = MI*, and changing the variable z to z'/ M, we obtain
i r sin z x @+ 2 cos (z'/M)\MRaryai ' dz'
kriM 3 p sin (z¥m) cos z'l' \ a+2 / z'

: (11.12)

X.t
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In the limit, the term sin(zV-M') may be replaced by z*/M and as in (11.11), the solu-
tion may be written in the form
g C sinz'x dz'
Txt = ~~ | — , (11.14)
lim Ax-+0 kiridJp coszl (z")2
which is identical with the analytic solution (11.3).

It will be noted that the restrictions on a as given by (9.8) become a”~O when |
(the number of units of Ax in the slab) becomes large. Hence the proof for this con-
vergence to the analytic solution holds only when akO. An analysis of the other ex-
amples treated in this paper shows that for this limiting convergence, all criteria re-
duce to a”o.

12. Appendix. Properties of the polynomials P r(i). The polynomials P r(t)
defined as the coefficients of zrin the expansion of the trinomial (1+az+z21 and are
therefore functions of r, t and the modulus a. Two identities follow readily, the first
by definition, the second by setting z=1 in (12.1),

E* Pr+l(t)zr+* = (1 + az + z)", (12.1)
r—t
T, *Pr+i(t) = (a+ 2)u (12.2)
r—t

By expanding the trinomial in the form [(I+az)+z2]‘and collecting coefficients,
we obtain an explicit formula for P r(i),

The polynomials may be expressed as definite integrals in the following way. By

definition and Cauchy’s theorem
1 r dz
Prt) = — | 1+ az+ z2'-—j
2irlJ c z
where C is a simple closed contour about the origin. By the choice of Casa circle of
unit radius, center at the origin, it follows thatz=e* and

I r2t
PTt) = — (a+2 cos (2)1cos (/| —nskot (12.4)
Writing the equality (l+az+z2*‘=(l+az+z2)i_1(l+az+z2 and collecting coeffi-

cients of zron both sides of the equation, we have the following recursion formula,
which may be used for rapid calculation of the polynomials,

Pr(t) = Pr(t- 1)+ aPri(i- 1) + Prz(t- 1) (12.5)

From (12.3), (12.4) and (12.5), it follows that
P,_r(l) = P<+r(t), (12.6a)
Po(o) = 1, Po(0 = 1, Pr(0) = o, r+ 0. (12.6b)

As an example, the polynomials up to t=3 have been worked out for modulus
a=3 using (12.5) and (12.6), and are shown in Table 1. Thus, P43)=30 and P2U)
= 11,

are
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Table 1
0 1 2 3 4 5 6
0 1
1 1 3 1
2 1 6 11 6 1
3 1 9 30 45 30 9 1

To construct a polynomial array, we start with Po(0) = 1. The polynomials follow-
ing are calculated successively by use of the recursion formula (12.5). As a specific
example, from the formula P 3(3) =P 3(2)+aP2(2)+ P 1(2), we have on substituting the
values presumably already calculated for t-2, P3(3) =6+ 3 X 11+ 6 = 45,

An important identity may be established as follows: we let (a+ 2co0s0)*
=EIl-0”» cos n6. From (12.4),

»2r t
/ Ancos rg>cos (t — ot

0 n-0
from which it follows that A ,_r= 2P r(i), r~t, and .<do= Pi(£)- Therefore

(@a+ 2cos8) ‘= Pj(/) + 2P(i(/) cos9+ eme+ 2 cos rd +
+ 2Poff) cos W (12.7)
The polynomials £2.(t) are defined by,

i« = E?A)" £2py §(a+ 2cosz\l dz

el (12.8)
2 2iri Jc\ a+ 2 | zoawl

where Cis a simple closed contour about the origin. By Cauchy’s theorem, and evalu-
ation of the residue at the pole z= 0, (12.8) becomes,

(—1)"fdn/a +2 cos8\r

(12.9)
2 Ud'K\ -a+ 2-) .« -
The first three polynomials, evaluated from (12.9) are,
£ii0 —~ )(a+ 2) \
m (t) @+ 2)~\+12 () («+ 2)-, (12.10)

N\ )
£6(0 = Na+ 2)->+ 60(N (a+ 2)-2+ 360(j)(«+2)-h
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—NOTES—

ON PLANE ELASTIC STRAIN IN DOUBLY-CONNECTED DOMAINS*
By W. PRAGER (Brown University)

1. Introduction. The stresses associated with a state of plane elastic strain can
be expressed in terms of the second derivatives of Airy’s stress function. If xi, xz, X3
are rectangular Cartesian coordinates, the axis of x3 being normal to the plane
of strain, the stress function <>(xi, X2) satisfies the differential equation AX£=0
(A=32dx2+d2dy2, and the given stresses on the boundary determine the tangent
planes of the stress surface x3=$(xi, xz) at all points of the boundary, when one such
tangent plane is known for each bounding curve. In the case of a singly-connected
domain only one such tangent plane must be known, and it can be chosen arbitrarily
because the stresses define the stress function only to within an arbitrary linear func-
tion of Xi and xz. In the case of a doubly-connected domain, however, two such tan-
gent planes must be known, and only one of them can be chosen arbitrarily. This
paper is concerned with the determination of the second tangent plane in the case
where one of the boundary curves is free from loads. Equations from which this
tangent plane can be determined, were derived by J. H. Michelli from the condition
that the displacements must be single-valued. In the present paper it will be shown
that Michell’s equations are the natural boundary conditions of the variational prob-
lem for the stress function. This remark is of importance when the direct methods of
the calculus of variations are used to determine the stress function for a doubly-
connected domain.2

2. Notations. Basic relations. Throughout this paper Latin subscripts will have
the range 1, 2, 3, Greek subscripts the range 1, 2, and the summation convention
for repeated subscripts will be used. The rectangular Cartesian coordinates xt are
chosen so that the axis of x3is normal to the plane of strain;the position of the origin
and the directions of Xi and x2 are arbitrary. Let e;- be the strain tensor and s<j the
reduced stress tensor, i.e. the stress tensor divided by Young’s modulus. The stress-
strain relations can then be written in the form

6ij = (1 + <Sij ~ OSkkdij, (1)

where a denotes Poisson’s ratio, and 5-3is the Kronecker delta. For the state of plane
strain under consideration the condition that exs= 0 gives

S3Z= OSyy. (2)
The equations of equilibrium in the plane of strain are

* Received Aug. 7, 194S.

1J. H. Michell, Proc. London Math. Soc. (1) 31, 100-146 (1899), Eqgs. (13).

5The necessity of investigating the relations between the natural boundary conditions and Michell’s
equations arose in connection with work done under a contract in Applied Mechanics for Watertown
Arsenal. The author is indebted to the authorities of Watertown Arsenal for the release of this note for
publication.
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Sya,y 0» (3)

where the comma followed by the subscript y denotes partial differentiation with re-
spect to xy. Equation (3) can be satisfied by setting

A0 7 AoXq2/i0, Xui (4)

where 0=0(a;i, #2) is Airy’s stress function, and en=e2=0, ei2= —e2i=1. Since
foxia/i = 8xp, the invariant saa equals A0=0,aa. For a state of plane elastic strain
Asaa= 0, or A"4>= 0, i.e. the stress function is biharmonic.

On the boundary of the domain under consideration the surface stressesr. are
given. If na is the unit vector along the outward normal of the boundary, we have
fa —5yany = €y\eait<j),\"ny. Now ey\Uy = t\, the unit vector of the tangent of the bound-

ary. Accordingly,
fa ~op0 fi/ost (5)

where d/ds denotes differentiation in the direction of the tangent vector t\. Multiply-
ing both sides of (5) by eap and integrating along the boundary, we obtain

0fs® = ecOJfO ta(syas + 0,00). ©)

The given surface forces/,, are thus seen to determine the gradient 0 ,0(5) of the stress
function along a bounding curve, when the gradient 0,0(0) at one point of this curve
is known. In other terms, the stress function 0 and its normal derivative d0/3n are
defined at all points of a bounding curve, when 0 and its gradient are known at a
single point of this curve.

If, in particular, one of the bounding curves is free from loads, the stress function 0
and its normal derivative along this curve equal the values of a linear function daXa-f-b
and of its normal derivative. Establishing the boundary conditions for the stress
function along a bounding curve which is free from loads is therefore equivalent to
determining the three coefficients a\, a2, b of this linear function.

3. The variational problem for the stress function. To the strain e--and the re-
duced stress Sij corresponds the reduced elastic energy U = \eijSij. In the case of plane
strain this energy equals

u 2[(1 -f* <x)sijsij 7s1,'Syyl = v (1 -j- O) [5«05a0 03], (7)

in view of Eqgs. (1) and (2). In terms of the stress function introduced in (4) the en-
ergy is

U = 2(1+ <0 [0,a00,«0 — 0*0,000,00]¢ (8)
According to the variational principle for the stresses the stress function correspond-
ing to certain boundary conditions is then singled out from amongst all functions

which fulfill these boundary conditions and admit continuous derivatives up to the
fourth order, by the fact that it minimizes the integral

E A~ [0a00a0  <r0,0a0,00]") %

where ¢a denotes the element of area, and the integration is extended over the entire
domain. The condition 5F = 0 leads to
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J " [<t>.ap5<t>aP — ,aas<f>ppld(j} — 0 (10)
or
a._%J <paappS4>du _G._‘QJ <$>epp54>nads
4* J' foap\tan0ds — gJ' FpBg)anads = 0. (11)

In the case of a doubly-connected domain with loads on one bounding curve only,
the stress function o and its gradient can be considered as given on the loaded bound-
ing curve. This curve does therefore not furnish any contribution to the line integrals
in (11). On the other bounding curve, we have (P—aaxa-\-b and 4>a—a<e In addition
to the differential equation for the stress function, yiaoW= 0 or AD = O Eq. (11) thus
gives the following equation which must be fulfilled on the load-free boundary:

5a, « d)y1 & A Gtyp7inds | @~ () yds

+>[(1 - é)f 0 afiptads = 0. (12)

Since 5avand Sb are independent, the expressions in brackets must vanish separately.
The second integral in the first bracket can be transformed as follows

J "' 4>tPnpds = J' 4>ppydw = ' (ppn7ds.
The first bracket can therefore be written as
(1 —DEJ <gfxynads —f 0 .PpKyds
With the use oi ny—eyata, the second integral can be further transformed as follows

~ oo fipftyds  6ya”™ o j{iptads € 0,$3dxa

= €y 0 ,m&Gde — eytxr O ,pp)(at"ds.
Equation (12) is thus equivalent to
\x y — (AQ) + eyaxa — (AO0)1ds = 0 13
J(Lycm() y OIS()J (13)

and

fe = 0.
R (14)

The scalar equivalents of (13) are
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1
o

f % — (a®) + x2— (A0)1ds 15
i @9 % ¢ )j (15)

J

and

I
e

J P2 A0 —X— (Aoyjds (16)

ds
Equations (14), (15) and (16) are Michell’s conditions which are thus seen to be the
natural boundary conditions of the variational problem for the stress function. The
manner in which these equations are used in determining o is obvious. Let0Qoi, fa, 03
be the biharmonic functions defined by the following boundary conditions:
1) ooand 50ddn have the prescribed boundary values on the loaded boundary
curve Ci and vanish on the other boundary curve C2;
2) fa=dfa/dn—Qon Ci,
fa = x i and 50i/cbi = Kion C2\
3) fa=dfa/dn =0 on Ci,
fa=x2and dfa/dn =n2on C2;
4) ()3—dd>3dn =0 on Ci,
03=1 and d(j>,/dn =0 on C2
Substituting
0 —fa+ 0101 + 0202 + ¢03

into Eqgs. (14), (15) and (16), we obtain three linear equations from which ai, a2 and
b can be determined.

THE CAPACITY OF TWIN CABLE—II*
By J. W. CRAGGS and C. J. TRANTER (Military College of Science, Stoke-on-Trent, England)

1. Introduction. In a recent paperi (subsequently referred to as “I1”) we have
given a method for determining the capacity of two circular wires surrounded by con-
centric touching dielectric sheaths. The present note gives the extension of the method
to the case in which the dielectric sheaths are not in contact. The problem considered
is the symmetrical one of two infinite parallel circular wires each of radius R\ sur-
rounded by concentric sheaths of radius R2 and dielectric constant K it the distance
between the centers of the wires being 2L (L>i?2). The dielectric constant of the sur-
rounding medium is taken as K 2.

2. The equations for solution. In line with the treatment in “I” we replace R2
by unity, i?i/i?2 by a and L/R 2by s; we also write Ki/K2—K. The potentials Vi, V2
must therefore satisfy (i) the differential equations

V2Fi = 0, agrg 1, ()
V2F2 = o, re£ i, * N oo, (2)

and (ii) the boundary conditions
Vi = 1, 3)

* Received June 19, 1945.
1J. W. Craggs and C. J. Tranter, The capacity oftwin cable, Quart. Appl. Math. 3, 268-272 (1945).
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when r = a,
Vi = Vi, 4) KdVi/dr = dv2dr, (5)

when r=1,
Vi = o, (6)

when x = 0. Here V2is Laplace’s operator in two dimensions and the coordinate sys-
tems are as shown in Fig. 1.

y
Fig. L
3. The analytical solution. As in “I” we write
Fi=1+ Blog~ + Z j(-~) - (¢j) | bncos nd. (7

The conformal transformation for the region r>1, x>0 can be written

re'9g+ ¢
A—T=log —nc> ®
re'9+ e “
where
n=1log(s+ Vi2a—I!)e 9)
The boundaries r= 1, x=0 then become £=0 respectively.
Since Vi is odd in £ and even and periodic in 4, we write
®
Vi = DE + X) sink cos WA (10)
1

The constants 23, B, of (7) and D, dmof (10) are now to be determined from the
boundary conditions (4) and (5).
On the boundary r=I(£=/i), we find from (8) and (9)

1+ cosh ncos 6
COS 77 = -—--———==--————-- — > (11)
cos 0 + cosh fi
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so that 0i£3g mcorrespondsto o5 7g r, and

dv 3E dv dq dVv - sinhm 37
12
3r dr 3£ 33 df cos 6 + cosh wu 3£ (12)
Thus (4) and (5) give
A 1 —ann " .
1—2loga+ ¢, - bncos nd = Dfx dmsinh mix cos tmj, (13)
n-1 Un m-1
A 1+ an
KB + #23 - nbn cos >16
n-i an .
—smh
[z? + 23 m(tm cosh mix cos >7j- . 14)

cos 3 + cosh fx

Multiplying (13) by cos mrj(m=0, 1, 2, » **) and integrating with respect to 7
from 0 to o, we have

Dix = 1- Bloga+ 23 (- I)"«™ bn, (15)
since
I CcOS nddy = (— 1)n7rfT
Jo
and
. A 1 —aa
dmsinh m/x = ¢_i e~""* - bnl m(n), (16)
n_i an
where
2 r >
[>»(«) = — en" Icos ;:3 cos »7PMI. 7)
m J O

Similar treatment of (14) gives for B, bn

KB = —D (18)
and
1 -f ain A
K nbn= 2(— I)n+|e~",‘9—e-n"23lmd,, cosh mixIm(n). (19)
an m-

Expansion of cos »777 in (17) in terms of u= (1 +e_2i+ 2e~" cos 3)-1 leads to

1
Im(n) = (- 1)m’23 (- 1)p”C,,-P*+7- 1ICpe(*"-2P>" (20)

Eliminating D, brfrom equations (15), (16), (18) and (19)we have

1 K

B log a — 1 —KBix = 2BS 4 23 mdmam cosh mix, (21)
2K m-l
L7

— dp sinh pix =, Beep H------ 23 mdmAmp cosh mix, (22)

K m-1
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where
7/l — o2\ g2
5 ~S \1 + a2')~—n
n - a2 tr-Inp
«p =2£ (- DN«+> (23)
P ( ) \1 + a2v
* /1 —o2"\
Amp= S i.. “ ) imit) i)

LV o+ a2"/

Following the procedure of “I ” we retain only a finite number p of the coefficients
dm Writing

K
ym= - tanh m/x, (24)

and eliminating mdmcosh mpt between equations (21), (22) we find

AW + 71 A 12 Aip <4
An A2d-y2 e Aip a2
= 0. (25
A pi A P2 App T yp ap
al a2 «p 2&% -log a+ Kp'j + 45

The capacity is then given by —\KiB.

4, Alternative method of solution. The above treatment provides a satisfactory
basis of computation when X ~ 1. For completeness it is interesting to notice that,
when K < 1, more rapid convergence to the true solution is obtained by eliminating
D and dmfrom equations (13), (14) by treating (13) as a Fourier series in 9 and (14)
as one in 7.

ON A. A. POPOFF’S METHOD OF INTEGRATION BY
MEANS OF ORTHOGONALITY FOCI*

By HOWARD A. ROBINSON (Research Laboratories, Armstrong Cork Company)

In a recently published paperia method is given which allows a marked reduction
of the work necessary in computing the tristimulus values necessary in color specifi-
cation work. The three tristimulus values are defined by the following relations:

X = J ELO)Xx(WR()d\, Y = f ELO)y(WR(\)d\,  Z =3 EL\)z{)R(\)d\,

where £1(X) are tabulated relative energy functions of a known light source L, x(K),
y(X), s(X) are tabulated luminosity functions and R(\) are the experimentally meas-

* Received August 9, 1945
1Quart. Appl. Math., 3, 166-174 (1945).
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ured curves of reflecting power or percent transmission as a function of the wave
length. The product functions Elx, EIJ and Elz have also been tabulated and may
be considered as the 4>k(x) in the original article. Work is now under way in setting up
the necessary scales for the colormetric computations and will be published elsewhere.

It is pointed out in the introduction to Popoff’s paper that the method requires
the construction of certain diagrams, called scales, showing the abscissas of the cen-
troids of certain areas associated with <j>(x). Thus, operation (b) in Section 2 contains
some unnecessary work, since it is unnecessary to find the centroids dr, ir, « ¢ ¢, only
the abscissas of these centroids being required.

BOOK REVIEWS

Elementary eleclric-circuit theory. By Richard H. Frazier. McGraw-Hill Book Com-
pany, Inc., New York and London, 1945. ix+434 pp. $4.00.

“This book is designed as a complete elementary exposition of electric-circuit theory requisite in
the technical foundation of all students of electrical engineering regardless of their expected branch of
specialization—electric power, communications, or electronics” (from Author’s Preface). As such it may
be recommended to readers of the Quarterly, experts in other than electrical fields, who may at times have
difficulty in following the exposition of mathematical methods as applied to electrical problems. They
will find in this book by Professor Frazier, of Massachusetts Institute of Technology, a modern presenta-
tion of the field of remarkably broad coverage in a relatively small volume. The power and generality of
modern methods, such for instance as the various types of network transformations, are very well pre-
sented and thoroughly exemplified. The author has taken great pains to point out possible pitfalls, and
if his reader will give equally great attention to details he will find himself amply repaid. Historical refer-
ences and a selected bibliography enhance the value of this book.

P. LeCorbeiller

Transmission lines, antennas and wave guides. By Ronold W. P. King, Harry Rowe
Mimno and Alexander H. Wing. McGraw-Hill Book Company, Inc., New York
and London, 1945. xv+347 pp. $3.50.

The book is divided into four chapters. The first chapter, on transmission lines, is written by Alex-
ander H. Wing; the second and third, respectively on antennas and on wave guides, is by Ronold W. P.
King; the short concluding chapter is on wave propagation by Harry Rowe Mimno.

The chapter on transmission lines concentrates on those topics which in recent years have interested
research workers in microwave laboratories. Those parts of the theory which are needed in problems of
long line.communication, such as crostalk and interference problems, are not considered; but ample
attention is given to high frequency measurements, impedance matching, suppression of harmonics, etc.
The emphasis is definitely on high frequencies and on relatively short lines .The exposition is good.

The chapter on antennas constitutes one-half of the book. For this reason it is particularly unfor-
tunate that it should contain so much misinformation and misinterpretation. For the most part it would
be difficult for an inexpert reader to recognize what is right and what is wrong. Throughout, the reader is
given to understand that the conclusions are based on rigorous electromagnetic theory. Engineering ap-
proximations in common use are called “very crude” if they are in error by as much as twenty-five per cent
and one is led to believe that those approximations which are called “good” by the author are really good.
Apparently, however, the author has not set a uniform objective standard of quality of approximations.
He declares that his theoretical impedance curves are in “good agreement” with measured impedances.
He does not give the measured values; but measured values from three published sources, and one un-
published but made known to the author, agree among themselves and disagree with King's curves, in
some regions by as much as twenty-five to seventy per cent. These measured values also agree with the
theoretical results published by this reviewer and by Marion C. Gray. These facts are not mentioned in
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the book. The author's attitude seems to be that expressed in one of his latest papers (Jour. App. Phys,,
August, 1945, p. 445): “In many instances disagreement between experimental and theoretical results
may be a better check on the theory than close agreement.”

On pp. 104 and 107 are shown curves relating to the length of the antenna at resonance (which is
defined as the condition for which the input reactance vanishes) and the corresponding input resistance.
On each curve, there is a point marked “sphere.” The captions explain that the sphere is regarded as a
cylinder whose height is equal to the diameter. One of these points is taken from a book by J. A. Stratton
and the other from a paper by E. B. Moullin. The former was calculated for free and not forced oscilla-
tions; in fact, in the case of a transmitting spherical antenna the input susceptance is always capacitive
and the input reactance does not vanish. E. B. Moullin calculated an approximate re-radiation resistance
with reference to the maximum current of a sphere in a certain impressed field and not the input resist-
ance of the spherical transmitting antenna. In fact, the latter resistance depends markedly on the separa-
tion between the two halves of the spherical antenna; if this separation is zero as implied by theauthorof
the antenna chapter of the book, the input resistance becomes equal to zero automatically.

At times the author brands a correct conclusion as incorrect and then gives an incorrect result to
replace it. For example, on p. 223 he purports to show that the effective area of a “half wave” self-tuned
antenna depends considerably on its radius. He assumes that the effective length of the antenna is inde-
pendent of the radius and takes into consideration only the variation of the effective area with input
resistance. Actually, the effective length also varies with the radius and if this effect is included, the effec-
tive area of the half-wave antenna is found to be nearly independent of the radius—a conclusion well
known in the art.

The chapter on wave guides occupies a relatively minor position in the book. It is confined primarily
to detailed descriptions of various types and modes of propagation and the facts are substantially accu-
rate. The inequality (10.1) on p. 251 is unduly restricted; but the fault is not particularly serious. On p.
269 we find: “The upper frequency limit of the TM 0,i mode from the point of view of single mode opera-
tion is the cut-off for the TE\,\ mode.” The statement is not true; but it is clearly an over-sight and is not
likely to cause serious trouble.

The book is concluded with an excellent thumb-nail sketch of factors affecting wave propagation
over the earth. It is hard, however, to pass without comment the author’s apparent approval of recent
efforts to ascribe specific meaning to such general terms as “low, medium and high frequencies.” If these
recommendations are put into effect, the language will needlessly be robbed of valuable general terms.

S. A. SCIIELKUNOFF

Theory of flight. By Richard von Mises with the collaboration of W. Prager and
Gustav Kuerti. (McGraw-Hill Publications in Aeronautical Science, Jerome C.
Hunsaker, Consulting Editor.) McGraw-Hill Book Co., Inc. New York and
London, 1945. X 11+629 pp. $6.00.

This very comprehensive engineering text book is different from similar books in the same class; the
author's extensive knowledge of the basic theories and the fundamental principles is everywhere evident.
According to the preface the book is written primarily for new graduate students. However many of the
chapters require a most thorough preparation in applied mechanics and considerable insight in fluid
dynamics. The book will be of considerable interest to engineers who wish to familiarize themselves with
particular aspects of the problems of engineering aerodynamics. The chapters on airplane performance
control and stability are particularly complete with numerous useful references to experimental results.

Theodore Theodorsen

The simple calculation of electrical transients. By G. W. Carter. Cambridge: At the
University Press, New York: The Macmillan Company, 1945. viii+ 120 pp. $1.75.

In this little book Mr. Carter explains how to use Heaviside's operational method in the transient
analysis of linear networks consisting of a finite number of meshes and does it very well. The method is
explained step-by-step and each step is illustrated by practical examples.

The book is addressed to the engineer who tvants to be able to use the operational method with con-
fidence but is willing to accept some rules on faith. In the brief introductory chapter the reader learns the
characteristics of the circuits to which he can apply the method. There a parallel is drawn between the
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Steinmetz method of steady state analysis and the Heaviside method of transient analysis. In Chapter 2
the differential equation of a simple circuit is solved by successive integrations; this permits the author to
introduce the operator Q, standing for /,;* which is easier to understand than the Heaviside operator p.
It is only after some experience with Q that p is brought into the picture. Gradually the method is de-
veloped and the reader learns to apply it to initially “dead” circuits and then to circuits in any initial
state. The book begins with very simple examples, and it ends with complicated ones; thus, it should be
easy for the student to gain confidence in the application of the method.
S. A. SCHELKUNOFF
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of Table of Contents and German-Engiish
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"The book is written in concise and ‘snappyl
style, but the sequences of logical steps are
clear and the text is always interesting. Refer-
enees to original sources and historical re-
marks are frequent. The latter are sometimes
more than mere paragraphs. At the ends of

chapters are lists of .problems and theorems
to be proved by the reader. These are in many

cases not elementary, but references are
usually given.” Bulletin of the American
Mathematical Society.
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The phase rule and itsapplications

By A. Findlay. Text inEnglish. Eighth
revised edition, xv + 327 pages. 516 x 8I;.
$3.00
“It has established itself as the standard work
on the subject and still remains the best in-
troduction to the phase rule and its applies-
tions. . . . The book is assured of continued
and well-deserved popularity.” Nature.

Polar molecules

t . B A-
By P, Debye. Text m English. 16/ pages.
5J4 x %y2. Originally published at $8.00.
$3.50

“It is thus of great value to all physicists and
chemists who are interested in molecular
structure, and, in suggesting new fields of
work, is of the greatest possible value to
research workers in this and allied subjects.”
Nature.
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set. Text in German with English transla-
tion of Table of Contents and German-
English Index-Glossary, S'/i x 8J4. Volume
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410 pages. Originally published at $14.40

for D 0 sg Thn set Sfiso
T Each vo ume $3.50. The sct-$6.50
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compared with this one as to the richness
and charm of material, and amount of sug-
gcstions which an attentive reader is able to
fe* °B Bulletin of the American
Mathematical Society.
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rr . C
Cours d’analyse infinitesimale
Bv Chj.De La Vallée poussin. Two vol-
u'ie t Text in French. Sr2 x gi/2. Two

volume set—$7 50

The handling throughout is clear, eiegant
concise; the various topics are illustrated
by numerous carefully chosen examples
selected with rare pedagogic skill to develop
a real understanding of the text. ... In the
compass of such a review it is impossible
to point out all the merits of these volumes,
so rich, in varied topics, so lucid in exposition
and elegant m presentation. Bulletin of the
.American Mathematical Society,

To appear In Spring 1946:
Aonhed elasticity

By J- Prescott Text m English. 666 pages.
5'A x 8J4. Originally published at $9.50.
®8-9S

This well-known book provides a presenta-
tion of Elasticity lying midway between that

given by Love in his classical treatise and
that contained in the current textbooks on

Theory of Structures and Strength of Ma-
terials.

“The author , . . has undoubtedly produced
an excellent and important contribution to
the subject, not merely in the old matter which
he has presented in new and refreshing form,
but also in the many original investigations
here published for the first time.” Nature.

For copies oti approval write to

DOVER PUBLICATIONS, DEPT. QD

1780 Broadway

New York 19. N,Y,

New catalogue containing table of contents of these and other
Dover Books of Science will be sent on request, free of charge.
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MATHEMATICAL THEORY OF ELASTICITY
By I. S, Sokolnikoff, University of Wisconsin. Ready in February

Provides a thorough foundation in the mathematical theory of elasticity, with application
to problems on extension, torsion, and flexure of isotropic cylindrical bodies.

X-RAYS IN PRACTICE

By W ayne T. Sproull, Research Laboratories Division, General Motors Corporation.
Ready in January

An authoritative and comprehensive treatment, giving the student, engineer, and technical
man a broad understanding of X-rays, their nature, and the many purposes for which they
may be used.

THE DEVELOPMENT OF MATHEMATICS. New second edition

By E. T. Bell, California Institute of Technology. 618 pages, $5.00

Tells the absorbing story of the.roie of mathematics in the evolution of civilization, from
about 4000 BC. to the present day. The revision contains new material covering recent trends
in modern mathematics.,

ANALYTIC GEOMETRY. New third edition

By Frederick S. Nowlan, University of British Columbia, Ready in January

Distinctive features: the study of plane geometry is base i.upon the use or direction cosines;
the study of conics is based upon the definition of the gereral conic: and polar coordinates are
treated from a new point of view.

Send for copies on approval

McGRAW-HILL BOOK COMPANY, Inc.
330 West 42nd Street New York 18, N.Y.



