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ON THE PROPAGATION OF SMALL DISTURBANCES IN
A MOVING COMPRESSIBLE FLUID*

BY

G. F. CARRIER AND F. D. CARLSON
Harvard University

1. Introduction. Although the propagation of sound waves in moving media has
received considerable attention [I, ¢ ¢+, 9],1little information is available concern-
ing the propagation of such disturbances in rotational streams or concerning the
propagation of transient rotational phenomena. It is shown in the present paper that
the wave fronts associated with those parts of a disturbance which are derivable from
a potential propagate in a rotational stream according to those laws which they are
already known to obey in an irrotational stream. It is further shown that the rota-
tional disturbances drift with the stream rather than propagate relative to the moving
fluid.

The analysis consists of an application of conventidnal perturbation procedures
to the Navier-Stokes and continuity equations. The equations so derived are treated
according to the theory of characteristics. The results obtained lead to a general ex-
pression for the Mach lines of an arbitrary supersonic flow and also suggest a new
method of wind tunnel calibration which eliminates the necessity of placing an ob-
stacle in that portion of the stream being calibrated. Finally, predictions are carried
out as to the nature of pulses which are formed at a surface and then propagate
through a boundary layer into a uniform stream.

2. The equations of motion. In this analysis, we shall consider the propagation
of small disturbances in fluid streams which are characterized by three functions of
the space coordinates and the time, namely: po (the density), pa (the pressure), and
Vo (the velocity). No restrictions will be applied to these functions except that they
obey the differential equations implying the conservation of momentum, mass, and
energy. These equations, known familiarly as the Navier-Stokes, continuity, and en-
ergy equations, may be written in the forms:

1 i
(v-grad)v + dv/dt A -grad p ;:LI,(M) (1)
P P
divv T dlInp/dl + v-grad Inp = o. (2
du/dt + pd(P~")/dt = Q + — Xx- 3)
P

* Received Jan. 10, 1946.
1Numbers in brackets refer to the bib"



2 G. F. CARRIER AND F. D. CARLSON [Vol. 1V, No. 1

In the foregoing equations, p is the viscosity of the fluid, L symbolizes (A+ <Jgrad div)
where A is the Laplacian operator; Q is the rate of heat accumulation, U is the internal
energy, and x abbreviates the viscous dissipation terms. Discussions of these equa-
tions are conveniently found in [7] and [8]. The necessity of manipulating the energy
equation in the investigation may be eliminated by using the following assumption.
The changes in pressure and density accompanying the disturbance are taken to obey

the law
P/po = (p/po)7 (39

where p, p, v, characterize the disturbed stream; that is, the disturbance is a phe-
nomenon such that the changes in state from undisturbed to disturbed stream are
isentropic. Note that this in no way restricts po and po. The appendix indicates briefly
the fact that while this assumption is by no means rigorously justified, it leads to valid
results.

It is convenient at this point to introduce the small parameter e. Although this
may be done in a fairly arbitrary manner, we shall define it in the following way in
order to avoid any possible ambiguities. Let the initial conditions of any particular
problem be such that at time zero, p=pqg+epj, where the maximum value of pi/po over
the region under consideration is unity. Thus, since we are considering small disturb-
ances, e is a small number compared to unity. Consistent with this notion, we shall
write p= po+ epi+ + ep2+ e e p—po+ epi+ o mm, and v=Vvo+ evit+ ¢ attime
/; and shall require that the series be valid over a range of ~ Since disturbances can
usually be expected to attenuate, it is certainly reasonable to expect that the series
will converge for sufficiently small values of this parameter.

If we now substitute the foregoing forms of p, p, and v, into Egs. (1) and (2),
eliminate the p (except for po) by using Eq. (3"), and collect the coefficients of each
power of «, we obtain:

1
(vo-grad)vo + dv0dt H grad pQ P L(vO
po po
+ e|(vo-grad)vi + (vrgrad)vo+ dvi/dt -f grad

Pi 2Pi P .
grad po T do— grad In po —-- L(yi) + —L(vO~ + eom=10, (4)
P2 Po Po Po
and

d In po/dt + div vo+ vO-grad In po

+ «{div Vi -f Vj-grad Inpo+ vO-grad — ------ (—)\ +eee =0, (5)
1

Po dt \po/)

where, ao=ypo/po-

When, in equations (4) and (5), the coefficients of e° are equated to zero, we find
two of the necessary conditions that the functions po, po, v0, characterize a possible
fluid stream. Since these quantities must vanish identically, we may omit them from
Egs. (4) and (5), and divide the remaining equalities through by e. When we allow
e to approach zero, we see that the mathematically exact solution to the problem is
found by setting the coefficients of ein Eqs. (4) and (5) to zero. Hence, we may expect
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that the functions pi, Vi, so determined will provide a good first approximation to the
behaviour of small amplitude disturbances. This, of course, is the conventional per-
turbation reasoning.

If we had been willing to assume at the outset a functional relationship p=p(p)
applicable both to the stream and the disturbance, the perturbation procedure would
have been unnecessary. The forthcoming techniques could have been applied directly
to Egs. (1) and (2). However, the solution possesses the desired generality only when
we refrain from such restrictions on the nature of the stream. This leads to a choice
between working with the energy equation or using the foregoing procedure; the lat-
ter seems more convenient. As a matter of fact, some of the results of this analysis
differ from those of previous investigators only in that they are obtained for any
stream wherein the medium behaves as a continuum rather than one of a very re-
stricted character.

Recalling now that any vector may be expressed as the gradient of a scalar plus
the curl of a vector and that

(B-grad)C + (Cgrad)B = grad (B-C) + (curl B X C) + “(curl C X B),

one may write
Vi = grad &+ curl A,

and the differential equations defining pi and Vi become

2 Pi o d 2 pi
grad (vo-vi) + a0 I i H curl A + aop— grad In po
po dtJ dt jpo
Ll grad yo + ui X vo+ 00 X Vi = Mr Z,(vi) H F>iT(VQl (6)
P,, PolL po J
and
d / Pi\
A0 H (— )+ Vi-grad Inp0= 0 (7)
dt \po~s

whereco; = curl v<,and d/dt= [vo-grad+3/ch]. When theoperation “curl” is performed
on Eqg. (6), the following equality arises:

don

ip .
= curl <— £(vi) + —L(vo —°0— grad Inpo
dt (0] Po . . Po
Pi . . .
+—grad|o-U|Xv0-uoXV|f. (8)
Po

It is evident by inspection of Eqg. (8) that an identically vanishing initial choice of wi
does not imply that this function will vanish for all time, as for example, is the case
in an irrotational stream. Thus, we cannot omit oi in this investigation.

It will prove useful to define an (artificial) auxiliary potential ~ in the following
manner2 (Eq. (6) implies the existance of this quantity).

1This will allow us to eliminate pi/ po and thus obtain equations in which each unknown has the di-
mensions of a velocity potential.
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dp dA ix I
—grad —+ curl = — L(yi) + — L(vQ —al— grad In po
dt dt po L Po Po
, P1 .
+ —gradpo MI X Vo- oo X Vi=0. ©9

Upon substitution of Eq. (9) into Eq. (6), the latter becomes

: . d dp~\
grad Vo-vi4 dgP! S
Po dt dt A
This however, we may solve for pi/po arbitrarily choosing the “constant of integra-
tion” to be zero.3 We obtain

. dp dip
Pilpo = -I\-/o-curl A - g — (10)
dt  dtA
This may be combined with Eq. (7) to give
d / 1dp\ § drl(dpbo "
A — — + vigrad = — - U_b vo-cur
P dt §a- dtJ Y n po dt \d(t / (ID

It will be shown directly that the wave front propagation can be derived from
Eqgs. (8), (9), and (11), provided we can justify the omission of the term (p/poL(vi)
from Egs. (8) and (9). We note, considering Eq. (8), that if only the terms dcoi(dt
and curl (pt/po)T(vi) were non-vanishing, we would have virtually the equation for
the conduction of heat, that is d<oi/d/=(p/po)Aoi. The “conduction coefficient” is very
small (in air the spreading of vorticity is known to be very slow) so that the term in
guestion may be thought of as one which causes a small dispersive effect. It is to be
understood, then, that this effect is to be superimposed on any results which are ob-
tained by treating the equations from which this term has been omitted. With this
omission we are now ready to apply the method of characteristics.

Hadamard [I] has shown the following facts concerning second order differential,
equations which will be useful in the analysis of the foregoing equations. He con-

siders the equation
n

E dikpik + h=0

in the n independent variables x\, me « xn, where the a-* and h are functions of the
unknown quantity z, the and the first partial derivatives of zwith regard to the x-;
pik —dZ/dxidxkmThe differential equation which defines the characteristic surfaces
(wave fronts) of this equation is given by

n—1 n—
B = £ aikPiPk - E atnPt + =0 (12)
i.k-1 i-1

where P ,= 3.r,,/3x,- when the “surface” is written in the form
Xn ~ Mn(Xi, «' *, XnbH* (12a)

3Any such (actually time dependent) constant could be absorbed in d<p/dt and would contribute
nothing to vi.
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Furthermore, let there be 5 unknown functions Zi, * « < ,z,, and s equations of the form

y*. O,ikpik + bikQik + ‘e + Cikgik + h = 0.
ik

Here the an, bik, mme are respectively the coefficients of the second derivatives of
Zi, z2» » » « . The characteristic surfaces of this system of equations are determined by

the relation
-Bui -Bi2,**+, Bu

B,i B,,

The B ag are analogous to the quantity 8 of Eq. (12). In fact, when a takes the values
1, 2, *me s B is derived respectively from the first, second, ¢ ¢ «sth, equations.
When B takes these values, the B ag are obtained from the aik, bik, ¢ ¢, c«, respec-
tively. The present problem deals with the five unknown quantities 0, 0, and the three
components of A. Eqg. (9) is equivalent to four scalar equations4 if we specify (for
example) that\pand A are to be those solutions for which div A= 0. This is no restric-
tion since only curl A appears in Vj. We may, then, apply the foregoing type of analy-
sis to Egs. (9) and (11) (with po/pi replaced by the expression given in Eq. (10)).
In fact, in order to determine the characteristic surfaces which define a motion involv-
ing the function 0, we need only a brief inspection of Eqg. (9). It is evident that no sec-
ond derivatives of o appear in this equation. Thus, when it is split into its four
subdivisions, we find that the four quantities Bn, « mm, Bn, which appear in the left
column of Eqg. (13), vanish. This implies that Eq. (13) is satisfied when either Bu or
the minor associated with this quantity vanishes. Since the vanishing of the former
involves only the coefficients of derivatives of o, we may assume that this surface
will be associated with the potential type of disturbance. The vanishing of the minor
will correspond to the propagation of disturbances of the rotational type.

If we now compute Bn using, of course, the a« of Eq. (11), we find the same wave
front equation which was found by Hadamard for the isentropic stream. That is,
the time-position correlation of a wave front does not depend on the character of the
stream but only (as the following equation will show) on the local values of the
guantities no, Vo, wo, and do- The first three of these are the components of v0. This
wave front equation, in a form somewhat more convenient for our purposes than
Hadamard’s, is shown below.

dy/dt + Uody/dx + Wady/dz —v0+ aO[l + (dy/dx)2+ (dy/dz)2]112 = O. (14)

Eqg. (8) indicates that whenever ooand o are each non-vanishing in a given region,
a rotational motion oi, is generated continuously. This being so, there is always a
possible “vorticity wave front” coincident with the wave front associated with o.
Hence, if we treat Eq. (8) according to the foregoing method, using the components
of curl A as the unknown function, we find that the determinant vanishes identically.
This is to be expected since the operation which led to Eq. (8) eliminated the higher
derivatives of o while retaining the higher derivatives of A. Hence, formally, the char-

*Any equation of the form curl M+grad Q=C can be reduced to the forms grad Q=P and curl
M = N if one is ingenious enough to separate C into the required parts.
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acteristics method fails to give the desired information. We note that in this method,
however, the only terms which affect the positional nature of the propagation are
those containing second derivatives of the unknown functions. If, in Eq. (8), we
segragate these terms of the required order we find that they comprise exactly the
single term dan/dt. Therefore, in so far as the position of the disturbance is concerned,
we havedwi/dL=o0;that is, the time rate of change of vorticity, relative to an observer
moving with the particle, vanishes. In other words, the rotational disturbance drifts
with the stream instead of propagating relative to it. This statement must be modi-
fied, of course, by the results of the diffusion-implying viscous term which was omitted
in this analysis.

3. The two-dimensional problem. Since, in general, the functions p0, po, vo asso-
ciated with any given stream are not known (even approximately in many cases), it
seems of interest to describe a method of wind tunnel calibration based on the fore-
going analysis (in particular on Eq. 14). This proposed procedure will be seen to have
the advantage that it does not require the insertion of an obstacle into that portion
of the stream being calibrated. Let us consider only tunnels which are bounded by
the side walls z= +b, where b is some constant. In this two-dimensional wind tunnel,
the flow in the neighborhood of z= 0 is essentially independent of z. Let us also restrict
our consideration to disturbances having reflective symmetry about the plane z=o.
Then atz =0, Eq. (14) reduces to

dy/dt + aO[l + {dy/dxy]lli —zo+ u~dy/dx —o. (15)

We now have an equation, linear in the three quantities which we wish to deter-
mine; mo, Vo, and a0. Suppose we generate pulses at several points along some bound-
ary of the stream, say by the use of an electric spark. The wave fronts of these pulses
may be observed (photographed) at successive time intervals. The values of dy/dx
and dy/dt can be determined from the photographs for each pulse throughout the
region it traverses. For each point traversed by at least three pulses, we may form
three simultaneous equations in the unknown quantities by using these experimen-
tally determined values as coefficients in Eq. (15). Figui-es 1 to 4 illustrate such photo-
graphs of sound pulses in a fairly uniform stream of air. The development of the
techniques used in obtaining these Schlieren photographs should be credited to the
authors of [9]. In [9] the details of the experimental procedure are explained quite
fully.

For an isentropic region of the stream (where the stagnation condition is known)
only two pulses are needed since (see [I1])

2 2 2 2
Oo = (flst) — (t — 1)(«0 + Vvo)/2.

Finally, for an essentially one-dimensional stream (e.g., a jet or a slowly converg-
ing channel) Eq. (15) becomes

[2(t + 1) - 2¢7 - LmM2L2 - 2M
»ol/ff.t = (15a)

7 -f i

where n*andy/dt.
When the stream is supersonic, we may generate stationary disturbances (Mach
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lines) by placing very small irregularities in the boundaries of the passage. For this
case Eq. (15) reduces to

o . + a\[M2- 1]12

dy/dx = - [ ! (16)

dg—ug

where M, the Mach number, is given by M 2= (nl+vl)/a% A mesh of Mach lines pro-
ceeding from both edges of the passage give sufficient information to calibrate any
stream known to be isentropic with known stagnationcondition. For aone-dimen-
sional stream, we have the familiar formula for the Mach angle 6

dy/dx = tan0 = (M2 - 1)I2 17)

Note that when one wishes to find the characteristics of a given supersonic stream,
the classical Charpit procedure will always provide solutions for Eq. (16). The equa-
tion analogous to Eq. (16) in three dimensions follows directly from Eq. (14) by
merely dropping the time dependent term.

4. The effect of boundary layers. A problem of considerable interest arises in con-
nection with the ideas of the foregoing section when we inquire into the effect of the
boundary layer on the form of the wave frontwhen the pulseis generatedat the
surface of a boundary (or obstacle). We shalluse theCharpitproceduretosolv
Eq. (15) for this case, using, of course, an idealized group of values for u0, v0, and a0.
The justification of the steps of this procedure are given in [10] and need not be given
here, so we shall proceed formally with this method. The solution obtained will be in
closed form and is readily verified (as a solution of Eq. 15) by mere substitution.

We characterize the stream by the functions

« =0, d0—vwvx/S, for xg 5 Db=» for x ~ 8 ad=a = const.

This simplification of an actual situation is somewhat drastic but useful information
results. We first set £=x/5, i)=y/5, r=at/d, M=v/a, p=dr)/dd q=dr//dr, and Eq.
(15) in the notation of [10] becomes

FEE, v, T,p,q)=*q+ [1L+ p2Jlli- MS=0 for O ™~ ~ |

or
F—qz+ [1+ p2]22- M =0 for 1g f. (18)
We proceed by considering the associated ordinary differential equations
d d drj dE dr
p q ] (19)
F(+ pF, FT+ gF1 — pFp —qFq —Fp —Fq

and choose any solution which expresses p or q in terms of a parameter a. In our case,
(formally)
—dp p2 N\ Wy -
=dq/0 =4 - ) i =-.. (19a)
1 +pae'\Yy )

and g=a is the required solution. When this is substituted into Eq. (18), we obtain
for p in the respective regions

[(@- MU2- 1312 and p= [{a- M)2- 1]12 (20)
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We now determine 7 by the following integration
V—i3=j pd¢ + qdr . (21)

f3is chosentosuit theinitial and boundary conditions; ais determined by the rela-
tion drj/da= 0, and the sign of p must be taken consistent withthat portionof the
wave front under consideration.

For the initial condition 7= o0 at £=r=0 (a point source), and for £al, we have
for that downstream portion of the wave for which p~O,

7= on+ [Ba—MG) —/3(a) (22)
where
[3(@) = a[a2— I]1/2 —arc cosh a (23)
Mi; Mr 4 Tn
a = - +
22 <24)

This solution is valid when £0” £is min (r, 1);
(0= [r2+ M=2]12- 1/M.
When p~ 0, and we must find 77 by writing
v(r, £) = V(r, {o) + f Pd$
which results in the formula b
1?2(r, £) = ar — /3(a) — /3(a — ME) (25)

where a and /3 are still the quantities defined by Eqgs. (23) and (24).
When we consider the upstream portion of the wave front, a must be negative.
By the foregoing procedure we obtain

Jt = air —/3(—ai) + B(ME — a/) (26)
MI; Mr ~ 12
1+ (27)
ai 2 2- ™
or
OiE>0 = —7AE ) + MEr. (28)

This equation is again valid only when £ —fo*

We now consider that portion of the wave exterior to the boundary layer (i.e.
£i?1). We must again extend the integration of Eq. (21), this time into the uniform
stream. Using now p= —[(a —Af)2]1/2, we obtain for the downstream portion

7 =ar+ /[3(a — M) —/3(@)—J" [(a — M)2— 1]i/2.dE
= ar+ Pa- M) - /3()—[(a —M)2—1]«"2$- 1). (29)

When dr]/da is equated to zero we find

v Y\H\/l_ [@- M2 1p2- —[a2 1113 . (0)



Fig. 1. Sound waves proceeding from point
source in nose of vane. Time delay between pulse
generation and photography arc 88 and 263 micro-

seconds. The flow is directed to the left at a Mach
number of .423.

Fig. 2. (Continuation of Fig. 1) Time delays
arc 441 and 700 micro-seconds. Note refraction and
reflection phenomena.



Fig. 3. Sound waves proceeding from flush
sources. Bright spots indicate spark gap locations.
M = .33.

Fig.4. Sound waves from flush sources. M = 51.
Note the poor definition of the wave front positions
in the boundary layer region.
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Egs. (29) and (30) may be considered as parametric equations for £ and f] in terms of
the parameter a for each value of r. In a similar manner we obtain for the upstream
portion

m = air - fi(—ai) + BAf - «0 + [(a, - M)2- 1]>*(& - 1) (31)
and

M - a))2- 1i1wus
1_ + —[ai- 1]*"-- [(f-«,)"'- I f}. (32)

I;/I ai
In Egs. (29) to (32), 1+ JkTga< & and —1S«i> —00e

The solution is now complete except for surface reflections. Note that the velocity
at which the point of contact between boundary and wave front moves is

] IV Tnr
=a(r,0 = T1+
dr ¢
or
d r v-tZhuU2
_y = agjt: + e (33)
dt L 452

Figure 5 illustrates the results of the foregoing section for a stream with Mach
number .50. The peculiar behavior of the solution for r>\/5 leads us to investigate
the rays of the propagation. It has been shown [I, 2, 3] that Eq. (14) implies that the
rays be defined by dx=(la0+ uQdt, dy = (ma0+vQdt, and dz= (naO+Wo)dt, where |, m,
n, are the direction cosines of the outwardly directed wave front normal with the
coordinates axes. In particular, it has been shown that for the conditions prevailing
in the boundary layer specified above, the rays are given by (see [9])

V= oM [arc cosh (MO— AfE) + {mO+ ME){ (MmO — M!j)2 — 1} 1/2]cf (34)

where mOis the value of m~l at the origin. The value of nip for which the ray becomes
tangent to the line £= 1is given by m0=1+ M . However, any ray associated with a
uniform stream which is directed parallel to that stream will maintain this orienta-
tion. Hence, this ray which just becomes tangent to the uniform stream bifurcates
into the curves shown in Fig. 5. Note that no ray which is once reflected back into the
boundary layer will ever leave this region. This implies that a sizeable portion of the
energy of such pulses never leaves the boundary layer. Furthermore, as one can
readily see from the few rays plotted in the figure, the reflections occur in such a
manner that interference as well as the extremely turbulent conditions in such a
region make the observation of waves in such regions improbable. This is borne out
in Figs. 1to 4. One large discrepancy between these pictures and the theory is easily
noticed. The limiting upstream ray given by the theory does not agree too well with
the evidence of Fig. 4. This is due to the fact that the pulse used in the experiment
started as one of finite amplitude (probably traveling initially at a speed of about 200).
This means that at first the wave travels as though it were a small amplitude wave in
a slower stream ; hence, less distortion from the shape which would be expected with
no boundary layer (a family of semi-circles) is the logical result to expect. This, of
course, is consistent with the observations. One other remark is essential in view of
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the initial idealization of the boundary layer. In the actually occurring physical situa-
tion, the boundary layer thickens in the direction of flow and thus the sharp break
in wave front predicted in this theory is not valid. However, the transition from large
velocity gradient to uniform stream occurs in a sufficiently small region so that little
energy transfer from the stream part of the wave to the boundary layer is to be ex-
pected.

Fig. S. Predicted wave fronts for the stream defined in section (4). Wave fronts are illustrated fort= 1
2, V5, 3, S. The dotted curves are rays of the propagation. The sound source is at the origin.

If one wishes to account for the large pulse velocity in a mathematical manner,
he can replace the constant value of aOby a function of the time, large at time zero but
rapidly approaching the steady value. This, of course, makes the calculations tedious.

5. Intensity distribution. In general, it is difficult to obtain a solution for $€from
Eq. (11). However, one very interesting solution for the isentropic uniform stream has
recently appeared. Rott [6] has shown that when no=wo =0, uO=const= —Ma0, Eq.
(11) has a solution of the form

y- C ( \
(1 = —cos (35)
R \ od - M3,
where R = [#2+ (I —Af)(y2+ s2] 12 This solution implies a continuous point source
at the origin and, of course, assumes no boundary layer if the plane (say) y=0is to
be a boundary.
The surfaces of constant phase (characteristic surfaces) are given by
M x+ R

| = const. = X (36)
ao(l - M 2

a relationship which can be shown to satisfy Eq. (14) for the given stream.
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In connection with our pulse problem, we see immediately that we may form a
new solution as the integral

.................... ) de @37)
Jo R \ ao(l —M2/

If Cis properly chosen, this solution corresponds to a pulse of any desired wave form
originating at the origin. The surfaces of constant phase are again given by Eq. (36)
and, for a given value of t, are circles with centers at the points x=MaQ, y=z=0,
and radii aQ.

Suppose we now choose two values of A (say Ai and X2) to represent two character-
istic surfaces whose separation (along a radial line from the origin) we can call the
wave length of the pulse. Then that upstream portion of the pulse at y=z=0 will
have a wave length (X2—Ax)a0(I —M) and the downstream section at y=z =0 will
have a wave length (X2—Xi)ao(l+ili). That is, the ratio of the thicknesses of these
two extreme portions of the pulse is (1+ Af)/(1 —M).

Inspection of Eq. (35) also leads to the conclusion that at these portions of the
pulse the amplitudes vary in the ratio (1—M)/(\-\-M). Thus the amplitude gradients
at these two sections are in the ratio (1—M)2(l-t-Jli)2 Since the density gradient is
essentially the quantity observed in the Schlieren optical system, the foregoing con-
stitutes an explanation of the far superior clarity of the wave front definition in the
upstream portions of the photographs. This argument has assumed that the pulse
started at time zero and has a small thickness to radius ratio at the time of observa-
tion.

Specifically, the amplitude ratio (i.e., the ratio of amplitude at any point on the
wave front divided into the amplitude at the upstream extremum) is given by

LV
Amp. ratio = 1+ M -----emememe- (38)
ao/(l — M)

APPENDIX

We wish to justify here the use of Eq. (3'). We write the energy equation in the
form

R dT

dp~I n
7- + [P>—-=
y —1 dt dt

AT+ —x 3

'olm

p
where T is thetemperature (p=pRT) and x involves a sum of products of the form

(du/dy)(dv/dx), (du/dy)2 e+ m. When, as in the foregoing work, theperturbation
procedure is applied, the terms with coefficient e can be written

1 d{T/To)  d(p/FY) a

ATid " Xi+x: (3a)
7—1 dt dt poRTo Po

where we have grouped the terms not containing derivatives of the unknown func-
tions pi, pi, Vi, Ti in K. Such terms can obviously contribute nothing when the char-
acteristics method is applied. In Eq. (3a) (y—Il)a/R is a ratio of specific heat to
thermal conductivity, and xi involves products of the form (dtio/dy) (dvi/dx),
(duQdy)(dui/dy), e« -».
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If we can show the third and fourth terms of this equation to be negligible, in-
tegration of Eq. (3a) leads to the terms with coefficient ein the expansion of Eq. (30-
Using a dimensional treatment analogous to Prandtl’s boundary layer analysis, we
define a typical length | for the disturbance (say the wave length, if a continuous
wave is considered, or the breadth of a pulse, etc.) and compare first the terms
(y—I)_1v0'grad (ri/r0 and (p/pO(,duddy)(du¥dy). We note that (y —I)-1v0-grad
(7V7°0)~(7—1)“1(20/70)(|»01/1) and

M dicO dul”™ p |VO| |V:]
po dy dy flobo 5 |

so we have the requirement, if the latter term is to be omitted, that po5ad/M|vi|
ii>To/Ti. Since TYT Oand |iy|/ao are of appreciable magnitude (of order unity) in
the same region, this inequality is essentially p05ao//PE>Il. Here, 5is the boundary layer
thickness or other typical dimension of the stream. Thus we see that except for very
restricted regions the above inequality will hold and the term in.question may be
omitted. The other terms in xi admit a similar treatment.

We now compare the terms d(T\/T0)/dt and aATi/RT@o- Note that these are
exactly the terms which would need to be compared in the still air case; that is, no
functions characterizing the stream appear except the slowly varying og. Using the
typical length land the fact that the propagation occurs at essentially velocity do, we
obtain aATi/RTpo~aTi/RTolpo& d(T\/T(i)/dt~ao0T/ITo as a necessary condition.
That is, the number a/adRpo<ZA mThis, of course/is the actual situation* and hence
both terms in question may be omitted. This number is essentially the reciprocal of
a Prandtl number-Reynolds number product.

Acknowledgment. The authors wish to express their appreciation to Prof. H. W.
Emmons for valuable suggestions and for the use of the Harvard high speed wind
tunnel.
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THIN CYLINDRICAL SHELLS SUBJECTED TO
CONCENTRATED LOADS*

BY

SHAO WEN YUANf
California Institute of Technology

Abstract. A single differential equation of the eighth order in the radial displacement is given for
the equilibrium of an element of a cylindrical shell undergoing small displacements due to a laterally
distributed external load. The radial deflection of thin cylindrical shells subjected to concentrated, equal
and opposite forces, acting at the ends of a vertical diameter, is analyzed by the Fourier method. Applica-
tions of the solution of the problem of the infinitely long cylinder to the problems of a couple acting on
an infinitely long cylinder in the direction of either the generatrix or the circumference are also discussed.

1. Introduction. The bending problem of an infinitely long cylinder loaded with
concentrated, equal and opposite forces, acting at the ends of a vertical diameter, is
discussed first. The equations of equilibrium of an element of a cylindrical shell un-
dergoing small displacements due to a laterally distributed external load are reduced
to a single differential equation of the eighth order in the radial displacement. In
this equation the various terms are compared as to the order of magnitude and it is
found that some of the terms are negligible.

The specified loading function is represented by a Fourier integral in the longitu-
dinal direction, and by a Fourier series in the circumferential direction. The integral
representation has the advantage that the boundary conditions are automatically
taken care of, and no subsequent determination of Fourier coefficients is necessary.
The Fourier coefficients and the undetermined function in the Fourier integral in this
case are determined simply from the loading condition. The radial displacement is
represented in a lijre manner with the aid of an undetermined function which is ob-
tained by substituting both radial displacement and loading expressions in the differ-
ential equation. The definite integrals involved in the expression for radial deflection
are evaluated by means of Cauchy’s theorem of residues.

The problem of the inextensional deformation of cylindrical and spherical shells
was treated in detail by Lord Rayleigh in his “Theory of sound.” The assumption
of this type of deformation underlies the solution of many problems of practical im-
portance, such as the determination of stresses in thin cylindrical shells subjected to
two equal and opposite forces acting at the ends of a diameter or to internal hydro-
static pressure. It is found that the results obtained in the case of inextensional de-
formations correspond only to a first approximation of the solution in this paper, and
the stresses in the proximity of the points of application of the forces are not given
with sufficient accuracy.

The expression for the radial deflection of a thin cylinder of finite length is ob-
tained from the corresponding solution for an infinitely long cylinder by using the
method of images. It is seen that the difference of these two radial deflections can be
given by a correction factor included in the expression for a cylinder of finite length.

* Received April 20, 1945.
t Now at Polytechnic Institute of Brooklyn.
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The difference is believed to result from restraining the edges at the two ends of the
finite cylinder. The results indicate that the radial deflection of an infinitely long cyl-
inder has a very long wave length along the generatrix; however, the wave length
decreases as the ratio of radius over thickness decreases. It is believed that the long
wave length phenomenon is due to the elastic reaction along the circumference of the
shell which can be explained by the radial deflection along the circumference.
Deflection curves of cylindrical shells with various lengths are calculated and the
results show that the maximum radial deflection occurs at length over radius ratio
/la~ 20. The radial deflection of an infinitely long cylinder with the radius over thick-
ness ratio a/h —100, becomes zero at about x/a —15 and then reverses its sign. The
edges of the corresponding cylinder with finite length are so restrained that the nega-

Fig. 1. Forces and moments on element of wall.

tive deflection portion of the infinite cylinder is brought to zero at the edges of the
cylinder with finite length. Hence, the maximum deflection of a cylinder with Z/a~20
is greater than that of the corresponding infinitely long cylinder.

The problems of a couple acting on an infinitely long cylinder in the direction of
either the generatrix or the circumference are also analyzed by using the correspond-
ing solution for the radial deflection under a concentrated load. The action of the
couple is equivalent to that of two equal and opposite forces acting at an infinitely
small distance apart.

2. Fundamental equations. The fundamental equations of a cylindrical shell
der the specified loading are obtained from considering the equilibrium of an element
cut out by two diametrical sections and two cross sections perpendicular to the axis
of the cylindrical shell as shown in Fig. 1.

In this discussion the usual assumptions are made; namely, that the material is
isotropic and follows Hooke’s law, the undeformed tube is cylindrical, the wall thick-
ness is uniform and small compared to the radius, the deflections are small compared
to this thickness so that second order strains can be neglected, and that straight lines
in the cylinder wall and perpendicular to the middle surface remain straight after
distortion.

un-
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The notation used for resultant forces and moments per unit length of wall section
are indicated in Fig. 1. After simplification, the following equations of equilibrium are
obtained:*

dNXx dN<,t dM ¥4 dM=*
T =0, a | e f aQ$ —0,
dx (650 dx af>
dN* 3ZX dMx  dM~, N .
= 0y =0 a-T~+ —f— &*= o 0]
*
afﬂ_x+3Q+N4+ ga = 0, _ N~ a=o
dx o>

in which g is the normal pressure onthe element.
If Qxand <* are eliminated fromEqgs.(1) and therelations

N x* ' N $xI HE x& == *X

are used, the six equations in (1) can be reduced to the following three:

dNx dNx*
A Fae
dN* dNx*  dMx< 1 dM*
b a i = 0, )]
d& dx  dx a o>
2 3WX aw, 1 32M* Z*
----------------- ey 1+ “f+ g=o.

a <> dx2 a2 ok a

The relation between the resultant forces and moments and the strains of the
middle surface will be taken the same as in the case of a flat plate:

Eh Eh yEh
N x = (ex + re*), A* = (e* + vex), Arx* = |V** = ->
1—v2 1—v2 2(1 + v)
Mx= - D(Xx+ rZ*), Aff= - £(Z* + vXX, Mx* = - ilf*, = D{1- »)!.*,

where D =EhZ 12(1 —r2) is the flexural rigidity of the shell and h is the thickness.

Resolving the displacement at an arbitrary point in the middle surface during de-
formation into three components— u along the generator, v along the tangent to the
circular section, and w along the normal to the surface drawn inwards—one finds that
the extensional strains and changes of curvature in the middle surface are

du dvn w dv du
e*x = — > e*: ) y** - P >
dx adf) a dx ak>
daw 1daw 1 dv 1 dow 1 dv
X x — J A R— ; A L —— A g
dx2 a2kt a2 df> a do<t> a dx

Hence, Eqgs. (2) can be put int the form of three equations with three unknowns
u, v, w:

da 1+ y du v dw 1—v da
dx2 2 dsdx adx 2 ds2

* See Ref. 5, p. 440.
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d 1+ v da | —v d& 1 dw
ds2 2 dsdx 2 dx2 a ds
(3)
| /Al d3w 133Nj\ A2f/(,\ d2> 4 daf\_O’
12a\3:rBs ds3/ 12a2 \ dx2 ds2

Av4 1 (dv w du\ A/ 3P dj;\ 1—v2

— V*W e +>'—3+ ——-- 2-7r) b I ? =0,

12 a \ds a dx 12a dxds  ds2) Eh
where

= &&=

In the problem under investigation, the quantities u and v are of the order of
magnitude of \/hw/a. Consequently the last term and the third term in the second
and the third equations, respectively, in (3) can be neglected safely.

In order to solve the simultaneous equations (3), one can apply first the opera-
tion d2dx2 and then d2ds2to the first Eq. (3). Solving in each case for the term con-
taining v, and substituting these expressions in the equation obtained by applying
d2dxds to the second Eq. (3), one obtains an equation from which v has been elimi-
nated :

d3w dzw 1+ v A2/ dhw déw \
avhi = v 1 1

ds3 dxds2 B 1—v 12Rdx3132 B dxds\)'

(4)

Similarly, applying d2dx2and d2ch2to the second Eq. (3) and solving for the terms
containing u, and substituting in the first Eq. (3) after applying d2dxds to it, one
obtains an equation from which u has been eliminated:

daw dw A2/ 2 déw 3 —v dsw dsw\
av*v=(2+ r) b H 1 ). (5)
KEWAN 3s3  12\1 —v dx"ds 1 —v dx2Is3  dss)

Applying d/dx to Eq. (4) and d/ds to Eq. (5) and substituting these two equations
into the third Eq. (3), after applying VAto it, one obtains an equation from which
both u and v are absent:

121 —v2 diw 1 (d3w dew déw \
+ + (2 + +

VoW -i _ ( Vv 3+ Vv
ah2 dx* a2\ ds6 dx*ds2 dx2ds*J D

It is evident that the third term in Eq. (6) is neligible in comparison with the other
terms. Equation (6) is reduced to
12(1 - v d*w 1

vewH 7 D Va = 0. (62)
ah2 dx* D

Equation (6a) differs from the differential equation of the flat plate only by the
second term. The flat plate equation can be obtained from equation (6a) by the sub-
stitution of a= <= Consequently, this second term represents the effect of curvature
in the problem of the cylindrical shell.

3. Infinitely long cylinder loaded with two equal and opposite forces. The above
equation will now be applied to an infinitely long thin cylinder loaded, as shown in
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Fig. 2, by two equal and opposite compressive forces P acting at the ends of a vertical
diameter.

Fig. 2. Loads and components of displacements of an infinitely long cylinder.

The difficulties of integrating Eq. (6a) for this type of loading can be circumvented
by replacing the concentrated force P by a distributed load g expressed as function
of the longitudinal and circumferential coordinates, and applied to a small area which
subsequently is reduced to an infinitesimal. This is made possible by representing
the function in the longitudinal direction, by a Fourier integral and in the circum-
ferential direction by a Fourier series. Since g is an even function of both x and s, it
can be expressed by

*

= @ I(A Xd\
q(x, s) = 2+ o Een qncos7 ]/ ( )COS; ) )

The displacement w can be expanded in a similar manner in terms of a function
w(A) as yet undetermined:

ns r > \x
W = 2-i COS= | TffAJ GBS = d\. (8)
»,0,2-m R dO a

It can be shown that the above expression for w satisfies the following requirements:
at the point where the load is applied, the deflection and moment are continuous, and
the slope of the deflection curve vanishes. Furthermore, the deflection vanishes at
infinity. Substituting Egs. (7) and (8) in the differential equation (6a) one obtains
the following relations. For « = 0,

\ X
cos — d\ = 0;
a

therefore,
(<7d2Z>)I(X)

w(X) .
(X/a)i + Eh/a-D

Similarly for n=2, 4, me o,

" - (qrf(X)/D)[(\ay + (nfa)*]*
i = [(A/a)2+ («/a)2]1+ (Eh/a'D)WDY

Hence, the solution of Eq. (6a) is

%

FO3+ 70
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1 ¢ qa(X) XX
w cos — aX
~ 20 HO (A/a)a+ (Eh/aD) a
1 A nsr /(A A2+ («A)2)2 XX
=5 cost (AA)2+ («A)2] o dx. (9)

@J o [(Ald)2+ (n/a)2]4+ (Eh/aD)(X/a)4 a

It is next desired to find gnand/(A). In order to accomplish this the functions gn
and /(A) must be determined from the loading condition. This is shown in Fig. 3.
Since the cylinder is loaded symmetrically with respect to the generatrix and with re-
spect to the circle passing through the origin, only the positive direction need be
considered.

From Eq. (7),
1 C* | %\ Az | %\
/(A) cos — dX, fxX) = — ?(—)cos— d(— ,

a ir Val a \a/

and
=1 when —57" xg 5 ¢ = 0 when x> 5andx < —S.

Therefore

2 Ch Xx (x\ 2 5

/(A) = — lcos —d %— )= —sin A—
tJo \"a/ A a

Similarly gncan be determined from the expansion of the loading function along the
circumference in a Fourier series. With
2 r*2

= — z)dz,
mJ —F/Zq()

where s=s/a, and if s=7r/2, s—ira/2, one obtains
f 4¢ 2 fc S 4?7 . c
o—— 1 qds = —aq, g, = — I gqcosn— ds —— smn —>
iraJ-c ira iral _c¢ a irn a

where cis as shown in Fig. 3. Substituting gnand/(A) in Eq. (9), one finds that
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1 Cm (?qcleraX) sin X5/a Xx

= 0s — dX
2D Jo (X/a)a+ Eh/a2D a
1 “ ns r M (8g/irnX) sin nc/a sin Ao/a[(A/a)2+ (n/a)2 XX
H V cos— : 7 — cos— dX.
D n-tt... alJo [(X/a)2+ (n/a)2l4+ Eh/aD(\/a)4 - a

Next, the case of a concentrated load applied at the origin may be considered.
Such a load can be obtained by making the lengths 25 and 2c of the loaded portion
infinitely small. Substituting

X5 X5 nc nc

P = 4qc5, sin — « —1i sin — « —
a a a a

in the above equation, one obtains
Pa2 cos A(x/a)dX

W =
Dx2J o x4+ J2
2Pa2 " ns ("* [A2+ nZ]2cos (Xx/a)dX
\Y, cos—( [ __________ ?] < (Xx/a) ) .
trD " adJo (A2 + n2]4+ I xa
where
Eha2 [ a\2

In order to evaluate the definite integrals in Eq. (10) Cauchy’s theorem of residues
will be applied. Let us consider the integral

’ cos A(x/a)dX
jfo A+ J2
where the characteristic equation X4+ /2= 0 has four complex roots
X = [ (_ Dil4.

Cauchy’s theorem yields

cos Alx/a)dX _ —t--cJ -siig-"JTUxia) (cos\ tj + sin ﬁj X\ . (11)

Jo A+ J2 25j2 Y 2 a 2 a)

The rational function in the integrand of second definite integral in Eq. (10) can
be expressed in the form of partial fractions,
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where *ai, +<%, * 03 and +a4are the roots of the denominator,

i on= + a*= + A + iB
1r
= + A (= n-~b )2+ ~ — o+ — (w2 — ?)
V2
i
+ V2 4/ (- n2+ t2+ (-Y + D+ W2 _ V)
. . (13)
I «2=1 Q¥= xc + iG
. 1
=& 1] («2+ v)2+ — (m2+
Vo |/ (« ) ( |
i
+ 4/ (n-+ 72+ + N+ (W24
V2 ( n2+ (y ( )
where the asterisk denotes the complex conjugate, and
H= VK=*2+ iA> P=VICH - 1/2, = «2V | + (7/4n22 (13a)
Hence
(A2+ n2d22*xl‘d\
- £ A+ «24+ I
2Zm (< N « o
(7 —igdexaia — = (77— i<xai a
8i?72 | aia2 aia2
«4 . 03 . . )
@+ (j>)eixa" a H---------- 77+ i<eixata™> . (14)
0:304 0:304
Since
0:102 = — n2= 0:304,
Eq. (14) can be simplified as follows. Now
r“ (A2+ 122cos x\/ad\
JO A2+ mD4+ JaM
AX Ax~
«&€-f ) cos b (6—TC) sin— Bxa
4R n2 a a _
Cc* CXi L
+ [OPA - 7B) cos [ (774 + <tBsin— Jg—Clia’y _ (15)
a a

Simplifying the integrals (15) and (11) in Eq. (10), one obtains

w/h 33 - v IranIB 13 x . 1 x\
p/Eh2 P VIJ \cosV T 7+ smy Yad
N B —vd/al\2 A~ coswjla (

7T \ Al N 2.4-ee 1?72 1

g-4/J12(x/a)

AX
@-C+ 7G) cos-
a
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. Ax Cx
+ (@G —ijC) sin *+ \'"4’A - yB) cos
a
. . Cx
+ (tjA + 4=B) sin g (16)
a , .

It is seen that the first term of the above expression is very small as compared
to the second term, and therefore can be neglected without appreciable error. For a

MAXIMUM DEFLECTION ' PARAMETEF

nr tyi iwWnRirAi .swn t _
35x103

Vs
K*

THICKNES vrio

!
30X 103

25x103

W /

20X 103

15 x 103

5X 103

a, 2000
h

Fig. 4

certain value of the a/h ratio, G is found to be very large as compared to B. The terms
containing e~0z,a can then be completely neglected, provided that x/a is not near zero.
In the case when x/a =0 Eq. (16) can be simplified as follows:

I wh - = 3y/2(l - v¥)/a\* y cosns/a v 1+ an
LT/E/FJx/a-o X W , -h---
where
3(1 - vda2
E2= 1+ ¢ 2
4 maf«2

The left side of (17) has a maximum at s=0. Figure 4 shows the variation of this
maximum with the ratio a/h. Figure 5 shows the variation of w along the generatrix
through a point of loading, and Fig. 6 shows the projection of lines of constant w on
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the plane through the axis of the cylinders and perpendicular to the line of action of

the two forces P.
4. A cylinder of finite length loaded with two equal and opposite forces. The ex-

pression for the radial deflection in a thin cylinder of finite length can be obtained
from Eq. (16) by using the method of images.* If one imagines the cylinder of finite
length prolonged in both the positive and the negative *-directions, and loaded with
a series of forces, P, of alternating sense, applied along the generatrix (s/a=0) at a
distance | from one another (see Fig. 7), then the deflections of the infinite cylinder.

cm Fi-Tinw n in/fs nr rinn nar rvi iNnRk~Ai
SHELLS /'LONG THE GENERATRIX

(infinite length)

-4 x10s 3
-2x10? Al Iy <0 40 -0 13 1) 20 43 €0 83 K0
2 x103 \ /

4 x10s \

6x05 // ) ?\*l(h
3|A\ \ /
8xOs \ /

12)( Os /

14x0s
Kitf

18x 10s

Fig. S

are evidently equal to zero at a distance 2/2 from the applied loads P. Hence one may
consider the given cylinder of length I and radius a as a portion of the infinitely long
cylinder loaded as shown in Fig. 7. From Eq. (16) one finds that the deflection of
any point, (3 (at a distance f from the 5-axis) on the shell due to the load P acting at
the center is

Pa2 " cosns/a(

Wa — —emeee i (&C+ t]Jo cos A — + (§6—t]C) sin A —1 e-BU*
2D n—2 . 4 - ¢ a al

+ (A —jB)cosC- L (A + B sin C t] H (18a)

The deflection produced by two adjacent forces a distance | apart is

*This method was used by A. Nddai, Z. angew. Math. Mech. 2, 1 (1922), and by M. T. Huber,
Z.angew. Math. Mech. 6, 228 (1926).
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Pa2 7 cosns/a | -t
wh= — N 2N (<i>0+ t/G) cos yl
2irD ,,=2,4... Rtfi {[

-+ (0G —i)C) sin A

" H eB(I-fla (0C "f*
a

J

+ (0G - ijC) sin i

CYLINDRICAL SHELLS SUBJECTED TO CONCENTRATED LOADS

23

*+.r
cos M

(18b)

Since the terms containing e-ou+0O/“ are all small compared to the other terms, they

Fig. 7. Series of equidistant opposite forces acting on an infinitely long cylinder.

can be neglected without causing appreciable error. One obtains similarly wc, Wd,

The total radial deflection at any point is given by the sum

w = Wa+ Wb+ IVc+ eem
Pa2 cos ns/a
2¢D ,_2,4... Rtfl

"
+ (0C + 1§ rLcosA — e~Bi,a — 2 cos A — cosh B f
a a

— COSs g-2Bl1/o _j_COS 3~ -—- e~3Blla _

t)B) cos C— + (VA + 4B) sin C—Jlr<w«
a a

— ( coszi —I e~Bl/°



22 SHAO WEN YUAN [Vol. IV, No. 1

the plane through the axis of the cylinders and perpendicular to the line of action of
the two forces P.

4. A cylinder of finite length loaded with two equal and opposite forces. The ex-
pression for the radial deflection in a thin cylinder of finite length can be obtained
from Eq. (16) by using the method of images.* If one imagines the cylinder of finite
length prolonged in both the positive and the negative x-directions, and loaded with
a series of forces, P, of alternating sense, applied along the generatrix (s/a=0) at a
distance | from one another (see Fig. 7), then the deflections of the infinite cylinder.

-4x10*

-2 x10s

ox

2x0*

4 x03

"AIS  gx0*
8x0*
04

12 x 0%

14x0*
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Fig. 5

are evidently equal to zero at a distance Z/2 from the applied loads P. Hence one may
consider the given cylinder of length | and radius a as a portion of the infinitely long
cylinder loaded as shown in Fig. 7. From Eq. (16) one finds that the deflection of
any point, j3 (at a distance f from the 5-axis) on the shell due to the load P acting at

the center is

Pa2 ” cosns/a ( . d
Waz= — 2 eeeeee h @CHrG cosA (- (3G iC) sin A -Bda
2tD n24me Rtfl V a

2
+ [(<j>‘\—t]B) cosC * h (iJA+ <)B sin C—r (18a)
a a

The deflection produced by two adjacent forces a distance | apart is

*This method was used by A. Nddai, Z. angew. Math. Mech. 2, 1 (1922), and by M. T. Huber,
Z.angew. Math. Mech. 6, 228 (1926).
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Pa2 “ cosns/a( i-r
Wb (4CH yG) cos xl
2irD Btfi \
- f - *
+ (@G—nC) sin A ——— e Bl i)la4- €€+ yG) cos A
+ (G - tjC) sin A -U TJ ea(i+6)/o] . (18b)

Since the terms containing e~@1+)la are all small compared to the other terms, they

Fig. 6

Fig. 7. Series of equidistant opposite forces acting on an infinitely long cylinder.

can be neglected without causing appreciable error. One obtains similarly w@Qwd,
The total radial deflection at any point @is given by the sum

w = wa+ Wo+ wc+

Pa2 ¥ cosRY@ (f
yB) cosC h (yA+ <-BsthC-L |e& Of/a
2D miizmm R21- flr - a alJ

t f | f |
+ (C+ yG) cosA — e-Bi,a—2cosA — cosh B —{cosA — ¢ Blla
a a

2Al
COS g—2Bl/a _|_c0s 34 --—- g 2Bl[a
a a )
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f f/ I |
2sin A — sinhB — (sin  A— e~B,la —sin 24—r M,,a +

a a\ a a

+ (&6—yC)sh”RL eDtkma—2cosA — cosh B — E sin A 1 c-Bl,a
L a a

I |
sin 24 — e-2Bl,a + sin 3/1 — e~3Blla
a a

+ 2sin A L sinh f E£— | (I:osA — e~Dlla ! —cos 21— e-*Bifa9)(.
a\ a 0 )] }m

We sum the series in the above expression, obtaining

® | 1 e
n e~-nxBHacos mA --- X)[6T»CB-iA)ila  ¢r-miB+HWUa]

mr-1,3** " Aom—l1,3-e

sinh (Bl/a) cos (/1//a)
_sinh2(Bl/a) cos2 ("4Z/a) + cosh2(Bl/a) sin2 (Al/a)_
“ | e~iBla [sjn (Bl/a) cos2(Al/a) — cosh (BI/a) 5|n2(AI/a)]
\% e-mBlla cos m/[

24--m a 2 [sin2(Al/a) cosh2(Bl/a) + cosZ(AI/a) smh2(BI/a)]

[00] 1 1 ©
g—mBIfa gjn fflA. = — — g—in(B+iA)l/aj
m—1,3%** n th—1,3 ¢ =

410 cosh (Bl/a) sin (Al/a)
‘J (nhZ(BI/a) cos2 (Al/a) + cosh2(Bl/a) sm2(AI/a)]
| g-Biia cos (Al/a) sin (Al/a) [sinh (Bl/a) + cosh (Bl/a) ]
m2a. T T T [sinh2 (B/a) cos2 (Alja) A cosh2 (B/a) sin2 (Al/a)]
Thus Eq. (19) is reduced to
w/h 6(1 —v3 (aY "2, cosns/a

p/Eh3=" * \h) n_rr... RIitP

(§=€"h %) cos 5 A

(6 —yC) sin A [ eena
a

f fil
+ (0/1 - 4B)cosC h (yA + <=B sin C—J e~0f/o
a a

sinh (Bl/a) cos (Al/a) — e~B,/a[sinh (Bl/a) cos2(Al/a) — cosh (Bl/a) sin2(Al/a)]
sinh2 (Bl/a) cos2 (/l//a) + cosh2(Bl/a) sin2 (Al/a)

+

X f'(0G —yC) sin A — sinh B — (0C + yG) cos A — cosh B — j
L a a a a

cosh (Bl/a) sin (Al/a) —e~Bllacos (Al/a) sin (Al/a) [sinh(Bl/a) -f cosh (Bl/a)]
sinh2 (Bl/a) cos2 (Al/a) + cosh2(Bl/a) sin2 (Al/a)
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It is obvious that the first two terms of Eq. (20) are equivalent to the solution of
the infinitely long cylinder given by Eq. (16). The remaining terms are evidently the
correction factors due to the restrained edges at the two ends of the cylinder of finite
length. The radial deflection under the applied force can be obtained by putting
fla=0,

w/h 6(1 —v) /«@y2 £ cosns/a
(P/Eh2 7 \n/s Rill2 t
sinh (Bl/a) cos (Al/a) — «*-~*[sinh (Bl/a) cos2fAl/a) —cosh (Bl/a) sin2 (Al/a)]
sinh2 (Bl/a) cos2 (Al/a) + cosh2 (Bl/a) sin2 (Al/a)
cosh (Bl/a) sin (Al/a) —e~B,acos (Al/a) sin (*4i/o)[sinh (Bl/a) + cosh (Bl/a)]
sinh2 (Bl/a) cos2 (Al/a) + cosh2 (Bl/a) sin2 (Al/a)
sinh (Gl/a) cos (Cl/a) —e-oi/a[sinh (Gl/a) cos2 (Cl/a) —cosh (Gl/a) sin2(Cl/a)]

(4-C + ijG)

— &€—10)0)

A A sinh2 (Gl/a) cos2 (Cl/a) + cosh2 (Gl/a) sin2 (Cl/a)
cosh (Gl/a) sin (Cl/a) —e~dllacos (Cl/a) sin (Cl/a) [sinh (Gl/a) + cosh (Dl/a)])
sinh2 (Gl/a) cos2 (Cl/a) + cosh2 (bl/a) sin2 (Cl/a) i

Some applications of the solution of the problem of the infinitely long cylinder.
The problems of a couple acting on an infinitely long cylinder in the direction of
either the generatrix or the circumference can be analyzed by using the solution given
by Eq. (16) for a single load. The action of the couple is equivalent to that of the two
forces P shown in Fig. 8, where limi®o PAx = Tc.

om O
a*]—

-ay >
Fig. 8. Two couples acting on an infinitely long cylinder.

It is easy to see that the deflection for the case when the force P is applied at the
point Oi, at a distance Ax from the origin, can be obtained from the deflection w,
given in Eq. (16), by writing x —Ax instead of x and also —P instead of P. This and
the original w are then added. The radial deflection due to the two equal and opposite
forces applied at 0 and O\ is now obtained in the form

—wt = w(X, ) —w(x —AX, j).

When Ax is very small, this approaches the value

As Tcis the moment of the applied torque and is equal to PAX, the radial deflection
due to this torque is

wt, = — — > (22)

where w is the radial deflection due to the concentrated load P,
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For the radial deflection due to the couple acting along the circumferential direc-
tion one finds similarly (Fig. 8) that

Tc dw
wt, = — — ¢ (23)
P ds
Substituting w from Eq. (16) in Egs. (22) and (23) one obtains for the couple act-
ing along the circumferential direction,

WTi/h 6(L —vd/ a\2 ” cosns/a . .
- N — e N - H - ~ 1
T fens 5 i h(/tr?—z4m f cosAx/a[A(<j>G - vQ B(fC+rfi)}
—e~Bxla sin (Ax/a) [[§C+ ijG)A + B(<pG — qC)J
+ e-ax'acos (Cx/a) [C(VA + &B) - G(<M- ,,£)]
e-°xla sin (Cx/a) [CfoA - ij5) + G(rjA+ <B 1} (24)
while for the couple acting along the generatrix direction,
wTJh 6(1-v3d(a\2 * sinns/a
= —J ] — - | [(OC + VG) cos (Ax/a)
TdEIr 1l h/
+ (G —rjC) sin (Ax/a)]e~Bxla + [(<=A —-gB) cos (Cx/a)
+ (r,A + 4£B) sin (C*/a)]*-®*'»}.- (25)
In the case when a:/a=0,
wrj/h
= 0, atany s/a.
Td Eld

Hence the condition that the slope of the deflection curve dw/dx must vanish under
the concentrated load (x/a =0) is satisfied.
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THERMAL DEFLECTIONS OF ANISOTROPIC THIN PLATES*

BY

WILLIAM H. PELL**
Bell Aircraft Corporation

1. Introduction. Equations governing the deflection of an isotropic thin elastic
plate subjected to a temperature distribution of the form

T(x, y,2) = TAx, y) + zTi{x, y), (1.1)

where the neutral plane of the plate is taken to lie in the ary-plane, have been derived
by Nadai.lHe did not consider the solution of these equations, and they have not
been treated to any considerable extent by subsequent writers in thermo-elasticity.2
The isothermal theory of anisotropic thin elastic plates has been developed principally
by Boussinesq,3 Voigt,4 and Lechnitzky.5 It appears that the only treatment of
thermal effects for the anisotropic plate is due to Voigt,6who considers a simple case
in which no bending of the plate occurs.

The first part of this paper is concerned with the derivation of two partial differ-
ential equations governing the deflection of a thin elastic plate possessing one plane
of elastic symmetry parallel to the faces of the plate, and subjected to a temperature
distribution described by a function of the form (1.1). One of these equations, with
suitable boundary conditions, defines a stress function F\ the other, the deflection
function w. In the second part, recent results in anisotropic plate theory are used to
solve the equation for the stress function with rather general boundary conditions
for the case where To(x, y) isa polynomial in £ and y. The problem of solving the equa-
tion of the deflection is a difficult one, and a solution valid throughout the region
enclosed by the plate is not available. Since the thermal deflection problem for the
isotropic plate is of interest in itself, however, the case of the isotropic circular plate
with radial temperature distribution is considered in the concluding portion, and the
solution is obtained.

2. The thermo-elastic equations for anisotropic plates. Let us consider a thin
elastic plate composed of a medium possessing at each point at least one plane of
elastic symmetry parallel to the middle plane of the plate, which is chosen to lie in
the xy-plane. Let the plate be subjected in its interior to a temperature distribution
given by (1.1). The plate is supposed acted upon by forces on its edge lying in the
middle plane, but to be free of lateral load and body forces.

* Received August 10, 1945.

** This paper was prepared under the direction of Professor I. S. Sokolnikoff, whose valuable assist-
ance and helpful suggestionsare gratefully acknowledged. At the time of writing, the author was a Fellow
under the Program of Advanced Instruction and Research in Mechanics at Brown University.
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The Kirchhoff assumptions of the thin plate theory lead to the well-known funda-
mental relations

dw dw

u=s —z > V— —1Z > (21)
dx ] dy

71 max [JTXX |»jTny |Txy|}, (2.2)

valid throughout the thickness, 2/i, of the plate, where w is the deflection of the middle
surface of the plate, and u and v are the displacements of a point (#, y, z) of the plate
in the x- and y-directions, respectively. To the assumptions (2.1) and (2.2) is adjoined
the following one: the stress tensor r at any point in the plate is the sum

7= 7°+71 (2.3)

where r° is a plane stress tensor generated by TQXx, y) and reactions at the plate edge,
and rlarises from the bending of the plate, i.e., from the action of zT\. It should be
remarked that this supposition is fundamental in the thermo-elastic theory of thin
plates presented here. Together with (2.1) and (2.2) it serves here the same purpose
that (2.1) and (2.2) do alone in the isothermal theory, i.e., they reduce the thermo-
elastic plate problem to one two-dimensional in character.

The generalized Hooke’s law7taking into account thermal effects is expressed by

du
= fflIT\+ + 012Tyy -f- 013Tzz + a-izTxv + 01T,
dx
dv
= fUjTjj + dfiTyy + «237*+ 026Txy + 02T,
dy
dw
= 0137xx + 0237\ + 0337*1 + 0367zK+ 03T,
dz (2.4)
dv dw
---------- poeeeez 0447yx + 0467xx +
dz dy
dw du
........ Lem-eme-= 0457]% + 0657xx + 2057,
dx dz
du dv
F— = 0167** + 0267yy + 036r** + 0667*, + 20qT,
dy dx

where the an are elastic constants and 0<are the coefficients of thermal expansion of
thermal expansion of the medium. For the plane stress system8 (2.4) reduces to

0 0 0
= 0117xx + 0127]], + 0167xy + OIFo,
3™
Advo = 012Zr%* + 02275y + 0267%y + d"To, (2.5)
y
du® dv° 0O o 0
}e- = 0167xx + 0267yy + 0667xL + 2d(sTo.
dy  dx

7A. E. H. Love, Mathematical theory of elasticity, Cambridge University Press, Cambridge, ed. 4,
1927, pp. 151-160.

8 Displacements, strains, and stresses associated with TOwill be denoted by the superscript 0; those
associated with zTi, by the superscript 1.
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W ith the introduction of a stress function F(x, y), one has

0 dF dF dF

XX ~ 2.6
! dy2 dxdy dx2 (2.9)

The resultants of these stresses acting across the thickness of the plate are, respec-
tively,

N = 21Tz Nxy —2iTxyi Ny - 207y

Since the displacements must satisfy a compatibility condition, it follows from (2.5)
and (2.6) that F must satisfy the equation

A227d4:7 °“ 2£li2 or 2«16 ‘ b fl
— 1 — 2°26 T—7--- b (2f1i2 d- u—
v dx4 Zzeéx?ﬁy (et dxay2 ¢ dxdy3 dy4
az 0 az 0 az 0
G2 2ilg b (2.7)
d*2 dxdy dy2

It isassumed that the derivatives appearing in (2.7) are continuous.
The generalized Hooke’s law for the strains and stresses associated with the tem-

perature function zTi permits one to write

/du4 dw4 .
txx — Cii | -------- a\zTx) ¢+ CR( - GzTx* + CB agTi
\ dx \ dy L
/1 rj»> <)»,| \
.dy
X (du4 \ (dv4a \ (dw4
— Clz2| G\:Ti)~b C2(~— — g%Txl+ CB( - 3T
o “\ dx R Kdy oFTxir B g ]
1rdud dw )
+ C26(t [d + d —aeTi
X
y - (2.9
| (du4 /dva \ (dw4 \
TXX = OX3 | = G\zTx) + CB( g% Tjj -f- C33l~-~ axT11
\d x \ly .
/1 rdu4d a»l] \
+e'VTLT+J _wrV
X idu4 R 2A \ Edw4 \
rxy —exel— a-izTi)+ azTl)+ B axTx1l
\d x J \ dy ) \ dz J

du4d &Ti
; ” —a |
+ 6&4 _dy Xn_

The assumption (2.1) gives

du4 daw dv4 d2w 1 édu4 dva
1
dx dx2 dy dy?2 2 \<9y dx/ dxdy
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and (2.9) applied to the third equation of (2.8) yields

dw A 2 € (d2w AN (d 2w \
aXTi= —m Q3 ( a\T1)+ C23(—~~ 0-zT!
dz ¢B( \dx2 ay?2
/ d2w
+ & — 06T 1)f . (2.10)
\dxdy

Now (2.9) and (2.10) are inserted in (2.8) with the result

1 daw daw M
txXz = —chll—- + ¢R2—-+ bl——Db ct\Ti),
dy2 dxdy )
1 / d2w daw daw \
Tyy = - Zl12 + .22 r o+ .26 b oirTy 1, (2.11)
vV  dx2 dy2 dxdy )
i / d2w dav daw \
Txy - - 21;18 + 26— hces b ocut 11,
V' odx2 dy2 dxdy
where
de= Ok ° > h k=120,
33
oG — ¢lifll ~b (2t@2 ~b ¢ 6106, i— 1 26

Noting r*]I=x*=r‘i1]2 +i=0, we may now integrate, with respect to z, the equa-
tions of equilibrium

1 1 1 i | I
dtxx ( drxv _ drx br br dry2
S— g = 0, ~)§/ r ~W 1 » O
dx dy dz dx dy dz
obtaining
r daw d3w d3aw
T x: - 11— ~+ 241, — h (12 + ;ee)
2 L d®3 dxdy dxdy2
daw dT1 dTi
+ CZGFyté+ 1 dx b 'I;j}
(2.12)
h2 f daN d3w daw
el (12 b — b2é26
2 LB Es3t T ) gy dxdy2
d3w dT\ dT{~
+ 22 + «6 b Qi .
dy3 dx dy

The resultants of these stresses acting across the thickness of the plate are, respec-
tively,

™ h r*h

Qx — | Txxdz, Qy — | Tyzdz.
J -h J -h

The following equation expressing the condition of statical equilibrium of an arbi-



1946] THERMAL DEFLECTIONS OF ANISOTROPIC THIN PLATES 31

trary element of the plate may be obtained in the usual way9since the derivation does
not depend on the material composing the plate:

dQx  dQv daw daw daw
— + — + Nxx— + 2NXV + NW = 0.
dx dy dx2 dxdy dy2

The values of Qx and Qy obtained from (2.12) are now introduced, and the result
is the following differential equation for the deflection:

d*w oo d4w d*w ddw
bn ——+ 3bis——— b 2(6x2 + beg) ———- + 3b26 + b2—-
dxi dx3ly dxaly2 dxdy4 dy4
(  dzTx d2T x d2T x
—_— |Fxr2 + Zacdxdy b « dy2

3 ( d2w d2w dand

+ <NXX + 2 Nxv + Nw—->. (2.13)
2h31 dx2 dxdy dy?

Again, the continuity of the derivatives appearing is assumed.

The portion of the :vy-plane occupied by the middle plane of the plate will be
called So] the boundary of SOwill be called Co, and it will be assumed that Co is an
analytic curve. The problem of thermo-elastic deflection is solved if a solution for
each of (2.7) and (2.13) valid throughout So can be found which satisfies appropriate
boundary conditions on CO.

3. The stress function. Since derivatives of F appear in (2.13), the solution of
(2.7) will be considered first. Lechnitzkyl has shown that the roots of the character-
istic equation

QiiH* — 20ie/i3+ (2au -b "es)*2—2a2dfi -b o2= 0 (3.1)
are necessarily complex. These roots will be denoted by /Xi-=a*%fi8x, k —i, 2, where
jSjt*0O. Two cases must be distinguished: and px=ii2

If FPdenotes a particular solution, and fii and jli2are distinct, then the most gen-
eral solution of (2.7) is given by

F(x, y) = Fx@) + ?x(zx) + F2z2 + F2z2 + Fp(x, y), (3.2a)

where Fk(,ZKk) is in each case an arbitrary function of Zk=x+Hky- The T*(Zi) is analytic
in the region Skof the z*-planc which corresponds to the region So of the z-plane under
the transformationll

Z = pkZ + gkz, k=12, (3.3)
where
Ph —2(1 ~ *MWi ™= 1(i — k =1,2. (3.4)
If mi=M2, then

9A. Nidai, loc. cit., pp. 233-235.

10S. G. Lechnitzky, loc. cit.

11A summary of anisotropic plate theory in English can be found in I. S. SokolnikoiT’s Mathematical
theory of elasticity, mimeograph lecture notes, Brown University, Providence, R. I., 1941, pp. 319-329.
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F(x, y) = + zifi(zx) + Gi(*0 + Gi(*i) + *,(*. ?)e (3-2b)

For the plate without holes, Sk is a simply-connected domain, and F*(z*) and Gi(zi)
are single-valued analytic functions in 5* and Si, respectively.

4, The boundary conditions for F. The plane stresses must satisfy the well-
known conditions

Xn=rxxcos (x, n) + rxycos («,Y),
¥A , CcOS (,.» )+ [/, cos far,»),

where X*“, F° are the £- and y-components, respectively, of the force acting on the
edge of the plate, and n is the exterior unit normal to Co- If F is introduced through
(2.6), the boundary conditions on F may be written

dF dF r . o 0
[-i =il (Xn+ iYnds+ c= fi(s) + ifn(s) + c, (4.2)
dx dy Jo
where 5is the arc-length along Co, measured from an arbitrary point with the usual
convention as to positive s, and c=c'+ic" is an arbitrary, complex constant. A
familiar alternative form of (4.2) is

dF \
an [«. Lon Eo (4-3&)
F=9(s), ) (4.3b)

where/ and g are prescribed functions along Co, except for the arbitrary constants
c' and c" appearing in them.

The solutions considered here are assumed to be such that F1 (zk), Fi(zi) and
G{ (zi) are continuous in 50+ C 0. In this case (4.2) and (4.3) hold. To ensure the exist-
ence of such a solution, it is necessary to demand that

f xlds = 0, fYIds =0, (4.4a)
f J/i(s) cos (*,s) + /2(s) cos (y, s) ¥dj = 0. (4.4b)
J

The physical significance of these conditions is of interest. Equation (4.4a) expresses
mathematically the fact that the resultant of the external forces acting on the plate
must vanish, and (4.4b) that the resultant of the external moments must vanish.

The analytical similarity between the boundary value problem presented by (2.7)
and (4.3) and that of the clamped plate under lateral load makes it possible to use
recent results on the lattter problem obtained by Morkovin.22His treatment depends
essentially on the handling of the boundary conditions.

The solution (3.2a) leads to boundary conditions expressed in terms of both 2\
and Zi, along either C\ or C2 (the boundaries of ;u and Si, respectively). Boundary
conditions in terms of a single variable are obtained by mapping conformally a band
of the Zi-plane containing Ck in its interior onto an annular region of a £Vplane con-

2V. Morkovin, Quart. Appl. Math. 1, 116-129 (1943).
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taining in its interior the circumference of the unit circle yk in a way such that Ck
is mapped into yk. By a proper choicel3 of the functions effecting this mapping, the
transforms z\ and z2 of any given value of z on COcan be mapped onto 71 and 72 in
such a way that fi=r2 This common value is denoted by a—e'*. Thus the boundary
conditions contain a alone.

Let
7* = «*($%)> k=1,2, (4.5)

be the functions achieving the desired mapping. Then F has one of the forms

F = <Ei(fi) + $i(?i) + 42rd + -\-Fv, (4.6a)
F = aiifi)*i(ri) + «i(fi)<?i(fi) + Pi(ti) + yfffi) + Fp, (4.6Db)
where <£*(£*) = and 7'i(fi) =Gi(wi(fi)). These functions are analytic and

single-valued in some neighborhoods of 7 and hence possess Laurent expansions

<E*(foy = 23 Ynfcifc, o 1(fl) — 23 FEnlfl. (4.7)

The coefficients .7»* and n,,i are to be determined from the boundary conditions
on F, expressed now on 71 or 72, as desired. If one defines
Ek{cr) — pkOik (cr)cr + qk&k {&)a,
«*'(*) (4.8)
Jk(@) = <r(pkpk + (M*) + [— —2pkdk,
ok (<)

then boundary conditions on 71 or 72 (k —1 or 2, respectively) equivalent to (4.3) are
given by

ds dF 1 ~dF\ _ (dF S dF\
a - *()(— i—-) +//T(<r)i-----—-- fi— ) , (4.9a)
da dllJco 23k Vela; dy/co \d x dy/Gl
[dF dF\ / 3F dF\ da (4.9b)
. + -
)(\Sa: ay kco 77k(d)(’dr e dy/’CO;l'a -
wherelthe left-hand member of (4.9a) is defined by
ds dF' dF dF’
iak m = k(ak) + Jk{ak) —- (4.10)
dak dn_co  PFicl dcTkACO dak. c@

and o'" is an arbitrary real constant.
5. The determination of F. The function F will be determined under the assump-
tion that the edge force vector (4.2) has the formb5

L . . Becepe+ o (5.1)
A dx dy ) cO

u V. Morkovin, loc. cit.

14 After the indicated differentiation of wiCo-jt), <tin Farid its derivative are to be replaced by the com-
mon value <of a, and <2 Note also that =<1

5Since g=¢'s, it follows that {dF/dx)c, and (dF/dy)c, are trigonometric polynomials of order fei.
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where the ¢-are complex constants. The temperature function To(x, y) is taken to be
the polynomial

Tt(x, y) = mi-jxy \ (5.2)

where the t j are real constants, and k is an arbitrary integer greater than or equal

to 0. Then a particular integral
t+2 »

Fp = %_SZE}OhI.I-VY-I (5.3)

of (2.7) can be found without difficulty. The Laurent expansions of «*/£*)> along with
(5.1) and the ¢Vplane transform 6of Fp]coi are now substituted in (4.9). The resulting
equations yield recurrence formulas for the coefficients 7« (or 7 ni and /xnl).

For the case of the circular plate, the contour Cois a circle and the mapping func-
tions are easily found to be

zic = cofc(fity = apk(tk H -V IT=—> k=12 (5.4)
\ h/ Pk

Moreover, ifdk(Ek)are given by (5.4), then a consequence of the single-valuedness of
Fk(zk) and Gi(zi) isthat (4.7) may benitten n

AK(EK) = @.f%vm Kﬂ TI(Fl) = @nl\m H ij (5-5)

The direct mapping function corresponding to (5.4) is
z = afo (5.6)

and hence it follows that

k+
FPlc, = @sﬂ + Cng") ai C(<r). (5.7)

For ¢ =0 the operator (4.10) becomes <r(3/3<r)+5(3/35), and one then obtains

_ ds dFp vz . "
|<ra_é___&_r{_ = @:U + 5,5 ) he Z7(cr). (58)

The coefficients C,, and are in general complex constants.
If ¢4 (<) and 5(<r) denote the right-hand members of (4.9a) and (4.9b) respectively,
then the insertion of (5.1) and (5.6) in A and B yields

A(@ = — E (4n<m+ AnS*), B(a) = E E (En<r”+ 5,5"), (5.9)
2 n0 . 2 no0
where

18This transform is most easily found by using the mapping function s = «o(fo), obtained by setting
k=0 in (4.9), and defining = In this way one achieves a direct mapping from the s- to the fo-plane,
and maps any point of Cointo a point Jowith the same coordinates as that given by the successive map-
pings (3.3) and (4.5).
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C\ n=20,
A, = o+ c2+ ¢ n= 1,
. Ccn+l C—n+1} nN=223 mme, ;1 —1;
(5.10)
& €+ A -c + «=0,
i— ki J - 1 a
Bn SO—cGci+ ¢ « = 1,
Ch+l c1™ .
n=23 9%°¢,,i—1
and the prime on indicates that the term corresponding to 7= 1 is to be omitted.
For convenience in writing, let
*2 _ o
n(c) = X) (n,cr' + nn<r), Acr) = (Aon+ A", 2 = max [&+ 2, —1],
=0 ne;
where
n, = An - D,, An B n Cn, (511)

with An, Bn=0 if ri$zki, and C,, Dn=0 if «"£+3.

If and are such that (5.1) is valid, then condition (4.4a) is satisfied, and
(4.4b) demands that Ci=ci.

The determination of €<and is simplified by using not the boundary conditions
(4.9), but an equivalent set.17 For the case of equal roots these are

Ut(@) + tolenN$(<r) + K<) + $(0 = A(), (5.12a)
u(d)<7<j)'(<r) + ui'(<r)a<f>(a) -f- cnp’(cr)

4 ilk-1k} +7 O M*@T«} o &L

Subscripts have been omitted in the above, since the distinction between the 2\- and
z2planes is not involved in the discussion. Substitution in (5.12) of the series18 (6.4)
for <g(cr) and together with co(cr) from (5.4), then yields recurrence relations for
Y, and /t,. For the explicit form of these rather lengthy formulas, the reader is re-
ferred to the author's thesis.19

It should be noted that equations (5.12) are valid for any given boundary of the

admissible class, provided the functions Il(cr) and A(ff) corresponding to this boundary
are found.

The treatment of the case does not depart materially from that of the case
of equal roots, and hence will be omitted here. 2
6. Extent of arbitrariness in solutions. Since a certain amount of arbitrariness

is present in the functions occurring in the Muschelisvili solution of the plane stress
problem for isotropic media, it is reasonable to ask if this phenomenon persists in the

17 V. Morkovln, loc. cit.

1BThat <and p may be so written is clear after reading Section 6.

18 Thermal deflection of anisotropic thin plates, University of Wisconsin, 1943,
& For details see the reference of footnote 19,
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case of anisotropic media. This question is answered affirmatively below, and the ex-
tent of the arbitrariness determined for the case of equal roots. This arbitrariness
stems in part from the fact that the stress function is here, as in the Muschelisvili
theory, the real part of an analytic function. In addition, it will be noted that the
boundary conditions (5.12) contain three arbitrary constants, and one may expect
this arbitrariness to be manifested in the solution.

mIf the prescribed functions -XiJ(s) and T°(5) satisfy thé conditions (4.4) and are
representable in the form (5.1), then the uniqueness theorem 2l for the first boundary
value problem of elasticity assures one that for a given distribution of temperature To,
the state of stress in the interior of the plate is determinate. Since the stresses are
given by (2.6), it is thus seen that the second derivatives of F are determined in 50.

If one lets Fh be a solution of (2.7) and (4.3), lets F\l)= 2Re{ziFjil)(zi)+G[1)(zi)} be

another solution having the same second derivatives as Fh, and lets

F™ = Fh —F™ = 2 Re {**??2'(*) + G? (z,)} (6.1)
then it follows that

AP A8 iR

(6.2)

dx2 dxdy dy2
throughout So- The real and imaginary parts of Ff]Jand G f]must satisfy the Cauchy-
Riemann equations in Si, and these together with the three equations (6.2) enable
one to show that

Fi'(zi) = —irozi+ @i+ T2,
GEZ)(zj) = (s + ivt)zi + (vi + ivo),
where v, and ?mare arbitrary real constants. Thus the functions (4.7) and
G (fi) = Vi+ ~iviaPi(™i + —~ + &1 (fi)>
(6.3)
Ni(Fi) = vi+ 02+ g+ ivi)api f-—~ + pi (fi)i

describe the same state of stress in So- The arbitrariness in (6.3) is removed by choos-
ing v, and iji so as to simplify $j and pi. The choice made here is such that

A(Fl) = 217“(/“ + TyY Ni(fi) = 2_2|\/m(Vi H ny (6.4)
where 7n =711

For the case jji* "~ i, a more lengthy consideration2shows that one may write

® p” ()] n
PI(PI) = ﬁ_‘zYnl'\fl + —f—yY = Z"?»i‘r» d———l;—)/Y (6.5)
where 722 = 722.

In both cases the arbitrariness is a reflection of that inherent in the values f(s)

2L For details see the reference of footnote 19.
2 See the reference of footnote 19.
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and g(s) which F must assume along Co. The choice of Vi and rji implied by (6.4) (or
(6.5)) is found to dictate the selection of the arbitrary constants in (4.3), or in (4.9),
the modified form of these boundary conditions, and conversely. This somewhat in-
verted method of eliminating the arbitrariness in o and \p\ (or <G and $2) isadopted in
order to have these functions assume the form usual in the Muschelisvili theory.23
7. The differential equation for the deflection; the associated boundary condi-

tions. The coefficients N xx, Nvy, and N xy in (2.13) may now be regarded as known,
and the thermo-elastic deflection problem for the anisotropic thin plate is reduced to
that of solving the partial differential equation (2.13) for w, subject to the appropriate
boundary conditions to be satisfied on Co. For the first and second boundary value
problems of plate theory these are, respectively,

dHns
Mn = m(s), Qn-—————&--: p(s), on CQ (7.1a)
s
and
dw
w— w(s), —a——: w,(s), on CQ (7.1b)
n

where m, p, w, and wnare prescribed functions along Co- The quantities2l M n, I1,,, and
Q,,are the flexural couple, torsional couple, and the shearing force, respectively, which
act on the edge of the plate.

The specialization of (2.7) and (2.13) to the isotropic case will now be given, since
the resulting equations willbe used in the sequel. For isotropic media

1 20+ @)
ait— ) 1—1,2,3, cia — j 1 —4,5,6,
E E
c . . . . (7.2)
an=- —> i,j=1231 j an =0, 1,j = 4,56, 1" ],
ai = a, i = 1,2, 3 ai = 0,1 =4,5, 6,

where E denotes Young’s modulus, a is Poisson’s ratio, and a is the coefficient of
thermal expansion. One easily finds that

E E

NI — R o S

1—M |+ d
&L = > b —¢26 —0, (7.3)

1 — cr-
aE

air = o022 = > «e = 0.
l—a

Using these values of the elastic parameters, one obtains from (2.7) and (2.13) the
equations

V*F = - a£vZ2T0, (7.4)
1 ( d2w . dow d!we

-a(\ + a2+ -\N xz— +2Niy—-+ N yv--1\, (7.5)
D ( 3a:2 dxdy ay?

Is I. S. Sokolnikoff, loc. cit., pp. 243-251.
M These are linear functions of MX, and Hxy.See I. S. Sokolnikoff, loc. cit., p. 326.
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where D =2Ehz/ 3 (I1—<2). Except for changes in notation, these are the same equa-
tions that Nadai® obtains. The quantities (7.2) and (7.3) must also be inserted in
(7.1) in order to obtain the boundary conditions for the isotropic plate.

A solution of the deflection equation (2.13) valid throughout the domain SOand
satisfying the given boundary conditions on CO0, is not available; the same is true of
(7.5) and its associated boundary conditions.% By further specialization, however, it
is possible to obtain the solution of the thermo-elastic problem for a case which is of
some interest. This will be done in the following sections.

8. The istropic circular plate with radial temperature distribution. Let us con-
sider an isotropic circular plate of radius a, and let it be subjected to a temperature
distribution given by

T(X, y,2) = TQr) + zT"r), (8.1)

where r=Va”+y2 and the origin is assumed to be at the center of the plate. As in
section 2, the second derivatives of To and Ti are assumed continuous on Ogrga.
The edge of the plate is taken to be subjected to a uniform force P per unit length of
the arc parameter s.

It has been seen that before the deflection w can be found, it is necessary to solve
(7.4) for F. In the case at hand, Fpcan be found easily whether or not radial symmetry

exists, for if Ais a solution of
VA =-af£r0 (8.2)

then it is also a solution of (7.4). But (8.2) is the well-known Poisson’s equation, and a
solution is at once available from potential theory. Since TOhas radial symmetry in
the present case, however, the Laplacian operator becomes

1 d/ d\
V7T T
and successive integrations of (8.2) give
dt
Fv{r) = - aE Jo _(;JfO Tax)xdx (8-4)

as the particular solution of (7.4) which is needed in F (see (3.2)). For the isotropic
plate, the roots of the characteristic equation (3.1) are /q =jt2=i and their conjugates.
The transformation (4.5) becomes

z = af (8.5)

and if |r| =P, then r-ap. If one letsf P(p)~F p(ap), then from (5.7)

CW =/P(V ~)=/PQ1), (8.6)
and

ds dFpl / d
oa

d\ 1
D(o) = ia = (< + <— ) fP(p) = Vw fp (Venr) = fi (1). (8.7)
da dtiJco \ a da/ Jp_i

MA. Nddai, loc. cit., pp. 264-268.
% Recentwork by S. Bergman gives promise of extension to equations of thetype (2.13) and (7.5).
Bergman considers an equation a special case of which is
Vh< + auzx + 2buxv + cyv,,+ dux+ euy+fu = 0,
where @, b, mm,/ are analytic functions of x and y. See Duke Math. J. 11, 617-649(1944).
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i.e., C(cr) and D(<t) reduce to constants ony. This result is clearly a consequence of the
fact that To is a function of r alone. One finds that

Co = !/»(l), C,=0, j= 1,2 oo |

£o = IfP(I), Dt=0, j=1,2 =. (8'8)
With the edge forces as specified above, it follows that one may write
0, .,0 )
Xxn+ iYn= - Pe
and then (4.2) yields

[ dF . dF\

| b i ) = aP{l—a) + c

\d x dy/coO

This is of the assumed form (5.1), and the constants defined in that expression have
the values

@ = aP, G — —aP. (8.9)
These are now inserted in (5.10) and the result together with (8.8)substitutedin
(5.11). Proceeding as indicated in section 5, one finds thatthe recurrence formulas
simplify to
7i= -y jP+ ¢/p W} >7n=0,»= 2,3, me, [/in=0,n= 23, «-nm (8.10)

The above results in conjunction with (3.2b) enable one to write
I f aE rr ) rr r*
Hr) =y j- P+ -72Jo0 To(x)xdxjr* - aE - JN TAx)xdX. (8.11)

In view of the radial symmetry, it is expedient to write (7.5) in terms of polar coordi-
nates in the form

1 ( dow 3/1 dw\
V> - S (1 <r)VaT i o+ —{N,, — + 2Nri - -
D I' dr2 dr\r ov)
(1 dw 1 daw\)
R
where MMr= 2/iT?r, N re=2lit% A®= 2)it0, and
o 1 dF 1 dF 0 g/1 dF\ o dF
L G —— S — > (T — (I ) Tee = . (8.13)
r dr r2 dd2 dr\ r dd) dr2
With F of the form (8.11), these stresses become
0 aE ra efE rr
Tr= - pH a_ZIJ o To(x)xdx o JI0 T o(x)xdx,
= ~P + ~ |*1T dx+ "T f ~ AX - aET"r), 8.14
ree 22 1o Qax)xdx R o(X)X a r) ( )

rrf = 0.
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Since Ti, Nrr, N re, and Nee are functions of ralone, V2has the form (8.3), and the equa-
tion for the deflection may therefore be written

NHTTY ) - "+ WL

2hr/ aE rr \d 2w
+Dx er-~7J0™ xix)I7
/ aE r T \du
+ (Po+ — J  To(X)X*X - a£T°j - (8.15)

where Po is the constant

Po=7 f “TQx)xdx ~-P. (8-16)
allJo
Equation (8.15) may be integrated with respect to r and an equation obtained
thereby which is not only of lower order than (8.15), but which also has simpler co-
efficients. Noting that

d (/ aE rr \dw\
tlw-v]. ™ Xix)1i;)
/ aE CT \daw / aE rr 8 dw
= yPO y J Tox)xdxj— + yPO0+ — J Tox)xdx —aET —d7
we can carry out the desired integration immediately, obtaining
+ix £ (r—\\
dr\r dr\ drJ)
( )dTi 2h/ 0 akE rrp() f\()1W ki* (8-17)
= « (! + g + o(X)x<fx) — + - -
- dr D\p “Tr2Jo Jdr r

where k\ is a constant of integration. Thus for the thin circular plate under uniform
compression on its edge, and with TO(r) and Pi(r) arbitrary save for certain conditions
of continuity, the problem of finding the thermo-elastic deflection is reduced to that
of solving the third order differential equation (8.17) with appropriate boundary con-
ditions.

A repetition of the above integration is impossible for To and Ti of the general
nature assumed above. Therefore, in order to complete the integration of the equation,
To and Pi will be supposed to have the form2

D m 1 n
Po(r) = — — tosri, Tr{r) = - m----- E hf, (8.18)

LhaE o a(l + @) j-0
where to-, hi are real constants and tn, n are arbitrary positive integers. The solution
of (8.17) may now be sought in the form of a power series. The polynomials To and
Pi are now inserted in the differential equation, and if one makes the abbreviations

17These polynomials may be regarded as approximations to power series representations of Taand 7\.
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loj
bj — > dj= jhj,
J+ 2
the result is
d3w 1 daw (E 2hP 1) dw E
Fr3+ e 1('1;|'2+ |\ i_OUr ~ a0 + -D_m"}_2rJ>(F_ = df-K (8.19)
The obvious replacement
dw
ur) = —- (8.20)
dr

gives an equation of order two, and the further substitution

2hP

0 = — E.M'
¢ D i

then yields

“$(E +g

d 2« | d « »
HY =4
dr2 rodr V- r2

) «= gz) @20)

as the equation to be solved for «. It will be observed that this equation has a regular
singular point at r=0, and that the indices relative to this singular point are *1.
Only the solution of the form

« =TrTE ™r* (8.22)
i-0
will be considered here. This represents the solution relative to r =0 which is bounded
there. It is evident from physical considerations that this boundedness must obtain
for the simply-connected plate, and hence it is sufficient to consider the solution of
the above form. The series (8.22) is now inserted in (8.21) and the following recurrence
relation defining the X-is obtained:

? (dut, j = —1,0 se¢,n- 2
O+ 4)0'+ 2)X32+ WX/+ E Xj-ibj = . (8.23)
-0 (0, J=n- 1 » menm

where X,= 0, ifj <0. These equations permit X, to be expressed in terms of the arbi-
trary quantity X0and the known quantities bo, bi, and d,\ It isnot expedient to give a
formula for X-, since such an expression would be quite lengthy. The first several X-
may be computed with little trouble if m and n are not large, but the labor involved
increases rapidly as these numbers become larger.

Up to now, the series defined by (8.23) is a formal solution of the differential
equation (8.21). It is not difficult to show that this series converges for Ogrga and
hence is actually a solution of the equation. For the discussion of the convergnece
it suffices to consider the series

XA (8.24)

where li=m-\-n+2. If one defines
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M = max {1, |W|, \h\, |&2], == «, \b,\ },

max {|X0L [ Xi[, e++, [\h-i |},

K

and sets E(6) = (h+d)(h-\-2-\-6), repeated use of the recurrence relation (8.23) with
j>n —2 enables one to deduce that

K{M (m+ 1)} ]
XAH(m2)+, <E® E(M+2) £(2w+4) eee E(k(m+2)+i)~ XHn2)+ (8'25)

fork=0,1,2, m <, iassuming the values 0, 1, « <+, m+ Ifor each k. Itmay then be
shown that the dominant series defined by the Hk(m+y+i converges uniformly for any
finite r, and application of the well-known Weierstrass theorem yields the same con-
vergence of (8.24) and (8.22). The desired solution w of the deflection equation is then
obtained by inserting (8.22) in (8.20) and integrating. We obtain

00

w(r) = K<+ K (8.26)

-0
where k is a constant of integration and K,=X,-/(i+ 2). The uniform convergence of
this integrated series on the interval 0 follows immediately from that of (8.22).

Reference to the recursion formula (8.23) reveals that one may write
Ki= X + 5i (8.27)

where £<contains the parameters P, D, It, a, and some or all of the ¢on while 5- con-
tains not only these but also some or all of the ¢i\ Thus the deflection may be written
in the form

w(r) = XoWwo(r) + Wi(r) + Kk, (8.28)

where

wo(r) j2»%t|r|> wi(r) =0 (8.29)
It is clear that Wi(r) is a particular solution of (8.21) and wQ(r) the solution of the
homogeneous equation which is bounded at r=0.

9. The circular plate with clamped and simply supported edge. The constants
Xoand kin (8.28) will be determined by the mode of support of the plate. The assump-
tion of radially symmetric deflection limits one to the consideration of boundary con-
ditions compatible with this type of deflection. The two methods of support most
commonly encountered are those of the clamped edge and the simply supported edge.
The boundary conditions for these are, respectively,

dw "1
—_— :0, W]lr-a = 0, (91)
df Jrowa
and
fdaw a dw
Mr\r-a = H = 0, W]r_o = 0. (92)

_drz rodr

The substitution of (8.28) in (9.1) and (9.2) yields for the plate with clamped edge
the constants
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X0 = _awl‘ la) + awl (a), K= awl' (@) + owlla) wa@) — Wia),
awl' {a) + owl {a) awl' la) + owl la)

and for the plate with a simply supported edge,

wi la) w{ la)
] . Wola) - Wi(a).
wo la) wl 1a)

These quantities are now inserted in (8.28), giving for the plate with clamped edge
the deflection

wlla) .
wir) = WI7I75 jwo(o) - wo(r)} + Wi(r) - Wila), (9.3)

and for the plate with simply supported edge

awl'la) + awlla), . )
wir) = -—- — "~ {Wola) - wo(r)} + Wi(r)- w"a). (9.4)
awl la) +owlW

It will be assumed that wl la) and awl'la)ow | la) do not vanish. It may be
shown that an a which causes the former (latter) to vanish is the radius of the
clamped (simply supported) plate with given temperature distribution Tolr) for which
P is a critical (i.e., buckling) load. The question of stability is not under consideration
here, hence the above assumption is made.

The case m —O0 is of particular interest, for then w contains the Bessel function
of the first kind of order zero. In this case Tolr) reduces to a constant, and (8.21) be-
comes

dhi 1 du [/2hP 1\

Ti+7T+(—|—r_F)u_Sll«"l

If the recurrencerelation iswritten interms of the k<rather than the Ai, the result is

2hP (h,i+2 i — 1,0, 000, »—2
=<

Ki

(i+ 4) «i+2+

1 0 i=n —1n snm,
from which one obtains easily the deflection

[ 12hP\

wlr) = Xo/o( r/jl —— )+ Wio(r) + k.

Here Wio(r) designates the form which w\(r) assumes for m —0. Proceeding as in the
more general case, for the plate with clamped edge we find that the deflection is

_ u rJHL)
/2hP ( /2hP\ 1 V'Y D) \'V D))

y — -h t' d)
+ wiolr) — wiola),

and for the plate with simply supported edge,
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aw(" (ff) + <w{(a)

10. Conclusion. The problem of flexure is considered for a thin anisotropic elastic
plate, subjected in its interior to a temperature distribution of the form

T(X, y,2) = TAx, y) + zTi(x, y).

The usual assumptions of thin plate theory, together with Hooke’s law extended to
encompass thermal effects, permit one to derive two partial differential equations
governing the deflection of the plate. For the isotropic plate these equations specialize
to those given by Nadai. If thermal effects are supposed absent, and N xx, N vy, N xy are
interpreted as arising from edge forces alone, then (2.13) becomes the equation for
the deflection of an anisotropic thin plate stressed in its own plane.

A method is given for determining the stress function F for a plate with edge
forces representable in the form of a trigonometric polynomial, and the determination
of F is carried out for the circular plate.

For the thermo-elastic problem formulated with the above generality, a suitable
solution of the deflection equation is not available. Accordingly, the problem is spe-
cialized to the simpler case of the isotropic circular plate with radially symmetric
temperature distribution and TQr), Ty{r) in the form of polynomials. The solution of
the resulting deflection equation may be found in the form of a power series, and con-
vergence established. Boundary conditions for the clamped and simply supported
plate hre then considered, and the deflection for each of these modes of support de-
termined.
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CONTRIBUTIONS TO THE PROBLEM OF APPROXIMATION
OF EQUIDISTANT DATA BY ANALYTIC FUNCTIONS*

PART A—ON THE PROBLEM OF SMOOTHING OR GRADUATION.
A FIRST CLASS OF ANALYTIC APPROXIMATION FORMULAE

BY

I. J. SCHOENBERG
University of Pennsylvania and. Ballistic Research Laboratories, Aberdeen Proving Ground

Introduction. Let there be given a sequence of ordinates
(« = 0, + 1, £ 2, me),

corresponding to all integral values of the variable x =n. If these ordinates are the
values of a known analytic function F(x), then the problem of interpolation between
these ordinates has an obvious and precise meaning: we are required to compute
intermediate values F(x) to the same accuracy to which the ordinates are known.
Undoubtedly, the most convenient tool for the solution of this problem is the poly-
nomial central interpolation method. It uses the polynomial of degree k —1, inter-
polating k successive ordinates, as an approximation to F{x) only within a unit
interval in x, centrally located with respect to its k defining ordinates. Assuming k
fixed, successive approximating arcs for F(x) are thus obtained which present dis-
continuities on passing from one arc to the next if k is odd, or discontinuities in their
first derivatives if k is even (see section 2.121). Actually these discontinuities are
irrelevant in our present case of an analytic function F(x). Indeed, if the interpolated
values obtained are sufficiently accurate, these discontinuities will be apparent only
if we force the computation beyond the intrinsic accuracy of the yn.

The situation is quite different if y,, are empirical data. In this case we arc to
determine an approximation F(x) which, for x =n, may disagree with y,, by amounts
depending on the accuracy of the data, provided we thereby improve the smoothness
of the resulting approximation F{x). In various applied fields such as Ballistics and
Actuarial mathematics it is at times desirable to compute very smooth approxima-
tions F{x) to an accuracy surpassing by far the accuracy to which the physical or
statistical function involved may be determined. This physically unjustified accuracy
becomes desirable whenever the approximation F{x) enters into numerical processes
of some complexity, such as the numerical solution of differential equations. Modern
electronic computing machines, especially, require a good amount of forced mathe-
matical accuracy in such auxiliary tables in order to avoid the excessive accumulation
of rounding errors in the computation of the solution. These remarks justify the de-
sirability of approximation methods to empirical data furnishing easily computed
approximations F(x) which are very smooth functions of x. Approximations meeting
these requirements are of two kinds: 1. Polynomial approximation, where F(x) is com-
posed of a succession of polynomial arcs meeting with a certain number of continuous
derivatives. 2. Analytic approximations, where F(x) is an analytic and regular func-
tion of x for all real values of x.

* Received Oct. 18, 1945.
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Important work concerning polynomial approximations is to be found in the ac-
tuarial literature under the subject of osculatory interpolation. Of the extensive litera-
ture we mention especially the fundamental work of W. A. Jenkins and the valuable
systematization of the subject by T. N. E. Greville.1Especially important are those
formulae derived by these authors which do not strictly interpolate the given ordi-
nates, but rather combine the operation of smoothing the data and the operation of
interpolation in one formula. Mr. Jenkins discusses interpolation formulae written
in the convenient Everett (or Steffensen) form. Mr. Greville’s starting point is his
elegant, expression of each polynomial arc in terms of the end point values of those
derivatives which are to be continuous on passing from one arc to the next. Each of
these two modes of attack has its peculiar advantages and one or the other seem
indispensable for an algebraic treatment of the subject. The present writer has found
the Lagrange form (explicitly in terms of the ordinates y n) of such formulae preferable
for two reasons: 1. The Lagrange form seems better adapted to computation with
modern desk computing machines and undoubtedly superior for computation with
punch-card machines. 2. The Lagrange form suggests a treatment of the subject by
means of elementary concepts of Fourier analysis which, firstly, affords a more ex-
haustive treatment of the problem of polynomial approximations, secondly, shows
how to extend these methods so as to furnish analytic approximations.

The explicit Lagrange form of the ¢-point central interpolation method, as well
as of all the interpolation formulae of osculatory, interpolation, is extremely simple in
its formal appearance. Indeed, to every such formula corresponds an even function
L(x), defined for all real values of x, in terms of which the corresponding formula may
be written as follows

F(x) = 2] y*L(x - n). 1)
n=»—0
The simplicity of this formula springs from the fact that it depends on the single func-
tion L(x) which describes the formula completely. Incidentally F(x) =L(x) if

yo = 1, y\' = 0 («”™ 0). (2)

Thus every interpolation method of this kind exhibits its corresponding L(x) if we
apply the method to the ordinates (2) (for an example see section 2.121).

The polynomial interpolation formulae arise from (1) if L{x) is a composite poly-
nomial function of arcs defined by various polynomials in successive unit intervals,
such that 1/(x) =Q for sufficiently large values of |x| (for an important example see
chapter Il, formula (11)). The number of continuous derivatives of F(x) is, of course,
equal to the number of continuous derivatives of L{x) for all real x.

We obtain the formally simplest interpolation formula (1) if we choose

sin irx
L{x) = —— ©)

1W. A. Jenkins, Osculatory interpolation: New derivation and formulae. Record of the American In-
stitute of Actuaries, 15, 87 (1926).

Thomas N. E. Greville, The general theory of osculatory interpolation, Transactions of the Actuarial
Society of America, 45, 202-265 (1944).

W. A.Jenkins wrote four papers on this subject of which the above paper is the first. References to
the other three papers are found in the excellent bibliography in Greville’s paper.
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in which case (1) becomes
® sin ir(E —n)
F(x) = X) >» THe — n) (4)
This expression which interpolates the ordinates y,,, is known to mathematicians un-
der the name of the cardinal series.2For this reason we wish to call the general formula
(1) a formula of the cardinal type, referring to L{x) as the basic function ofthe
formula.

The aim of the paper, of which the present Part A is the first, is twofold. Firstly,
we propose to carry through to a certain stage of completion the important actuarial
work concerning polynomial approximations. Incidentally, our work will answer Mr.
Greville’s conjecture (loc. cit. pp. 212-213) concerning the existence of an “ordinary”
interpolation formula furnishing an approximation F(x) composed of polynomial
arcs of degree m+ 2, having m continuous derivatives and such that if the data yn
are the values of a polynomial of degree m —1 then Fix) reduces identically to that
polynomial. In Part B it will be shown how to obtain such formulae for every value
of m. (The case of m —2 reduces to Jenkins’ formula mentioned in section 2. 122.)
Secondly, we shall derive formulae of the cardinal type (1) with basic functions L{x)
which are analytic and regular for all real or complex values of x. The classical basic
function (3) is of course analytic; however, its excessively slow rate of damping, for
increasing x, makes the classical cardinal series (4) inadequate for numerical pur-
poses. Our analytic L{x), derived in chapter IV, dampen out exponentially. In Part B
we will derive similar L{x) which will dampen out even faster: like exp(—Cx2).

The paper is divided into five chapters. In chapter | we discuss the general prob-
lem of smoothing by means of a linear compound formula. This discussion, by no
means exhaustive, is to serve as a guide to what is likely to be useful among formulae
of the cardinal type (1) which smooth and interpolate at the same time. It serves to
restrict somewhat the arbitrariness of the problem. The rather obvious idea of us-
ing cosine polynomials (or series) in this connection affords the possibility of a brief
exposition of this subject in the more scientific manner of E. de Forest, W. F.
Sheppard, E. T. Whittaker, and others, and may be followed up elsewhere.

Chapters Il and 11l form the common foundation of both parts A and B. In chap-
ter 11 we describe the interpolatory properties of the formula (1) in terms of extremely
simple properties of the Fourier-transform

®)

of the basic function L{x) (Theorem 4). Thus we are assured that our formula
(1) will be exact for (i.e., reproduce) polynomials of degree k—1, provided g{u) —1
has a zero of order k at w=0 and g(u) has zeros of order k at all points u=2irn
(m= x1, +2, ««+). This elementary fact is reminiscent of N. Wiener’s fundamental

1 See J. M. W hittaker, Interpolatory junction theory, Cambridge Tracts in Mathematics, 1935, pp.
62-64, for a discussion of the relation between the cardinal series and Stirling’s interpolation series. The
cardinal series was probably first investigated in an important mémoire by Ch. J. de la Vallée Poussin,
Sur la convergence des formules d’interpolation entre ordonnées équidistantes, Bull. Acad. Roy. Belgique,
1908, 319-410.
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description of the closure properties of the family of translation functions {L{x—X)}
in terms of the zeros of g(u). Chapter Ill contains a somewhat general discussion of
polygonal lines, the individual arcs of which are polynomials of degree k —I, joined to-
gether with k—2 continuous derivatives. A generalparametric representation of such
curves is obtained (Theorem 5) which greatly facilitates their use for the purpose of
approximation of data. For k=4 they represent approximately the curves drawn by
means of a spline and for this reason we propose to call them spline curves of order k.
These polynomial spline curves are finally smoothed out, by means of one-dimen-
sional heat flow during the time interval t, into analytic spline curves of order k. An
analytic spline curve of order k is represented by a series of the cardinal type

F(x) = faMk(x - n, 1), (6)

n— @
where the basic function Mk(x, t) is defined as

1 Cc* 2/2 sinu/2\_k
Mk(x,t) = — | e<(“f) & ] cos uxdx, @)
2xJ u )

while the coefficients/,, may be thought of as arbitrary parameters.

The family of functions (6) forms the basis of our work. Its principal advantages
for purposes of numerical approximation spring from two sources: 1) The basicfunc-
tion Mk{x, t) dampens out like exp(—9%-1) (see Ill, formula (39)). As seen from our
Table I, for fc=4 and (= 0.5, we have Mi(x, 1/2) =0 to something like 10 decimal
places for |x| 2:5. This causes the great flexibility of the graph of F(x) on varying
the parameters /,, and the ease in computing F(x). 2) The family (6) contains (or
represents) all polynomials of degree k —I. The simplest analytic family of this type
is obtained for k=Qand />0 when (6) becomes

Fx) = E fn~]= (8)
v Mt
This family obviously still enjoys the first property. However, (8) fails badly in its
ability of representing even the simplest types of curves because of the low value of
k=0. Indeed F{x) =0, for all/,, =0, is the only constant value (8) is capable of repre-
senting.

Chapter 1V contains the chief results of the present Part A. We show how the
family of curves (6) can be used to approximate given data. First we derive an ana-
lytic interpolation formula of the cardinal type (1) which leaves the given ordinates
unchanged (Theorem 8). Secondly we extend the result to a family of formulae de-
pending on a positive smoothing parameter e such as to combine a certain variable
amount ofsmoothing (depending on e) with the operation of interpolation (Theorem 9).

In collaboration with Lt. J. H. Levin, the author has had the opportunity of ap-
plying on a large scale this analytic approximation method at the Ballistic Research
Laboratory, Aberdeen Proving Ground, Maryland. The computations were per-
formed on punch-card machines. The given equidistant data yn were the values of
the drag coefficient of a projectile as a function of its velocity. Since very accurately
computed values of the derivatives F'{x), F”{x) of the approximation F(x) were also
desired, it seems doubtful if any of the existing osculatory interpolation formulae
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would have furnished satisfactory results in view of the complicated trend of the data
to be approximated.

In the last chapter we discuss procedures for the accurate computation of the func-
tions and constants tabulated at the end of the paper. The most noteworthy problem
encountered in this connection is the following: Let

be a Laurent series which converges in aringa < 121</3. We assume furthermore that
/(z) does not vanish in this ring:

F(z) 0, (a<lzl< ). (10

Under these circumstances we have an expansion of the reciprocal

If the coefficients a,, of the expansion (9) are given numerically the problem consists
in finding very accurate numerical values of the co,3A very efficient iteration method
solving this problem has been developed by H. A. Rademacher and the author. It
solves the similar problem of finding the expansion of the nth root of /(z) and gen-
erally of any algebraic function of Laurent series. This subject will be discussed else-
where in a joint publication with Professor Rademacher.

In a sequel to these papers we expect to discuss the fitting of curves of the form
(6) to data, in the sense of least squares. This will be accomplished by constructing
series of the cardinal type (1) which also enjoy the orthogonality property

This construction reduces to the problem of computing the Laurent expansion of the
square root \Zf(z) of an expansion (9).

The author wishes to express his appreciation for the encouraging interest shown
in his work by Dr. A. N. Lowan of the Mathematical Tables Project. He has bene-
fited much by the helpful advice of Dr. L. S. Dederick, Major A. A. Bennett, Lt. J. H.
Levin and others. Especially valuable were the author’s frequent discussions with
Dr. C. B. Morrey. The tables were computed by Mrs. Mildred Young. The author
takes this opportunity of expressing his thanks to the officials of the Ballistic Re-
search Laboratory for their permission to publish these tables.

The reader who is mainly interested in the numerical applications, may pass di-
rectly from this point to the Appendix, where the use of the tables is fully explained
and one example is worked out.

31t should be remarked here that also A. C. Aitken’s computation in 1925 of the coefficients of E. T.
W hittaker’s smoothing method amounted to the expansion in a Laurent series of a certain simple rational
function. See E. T, W hittaker and G. Robinson, Calculus of observations, London and Glasgow, 1940,
pp. 308-312.
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I. DEFINITIONS OF SMOOTHING AND SMOOTHING FORMULAE

1.1. A definition of smoothing formulae. Let {y,} («= ee¢e —2 —1 0,1, 2, ¢o¢)
be a given sequence or “table” which we wish to smooth. This smoothing operation
is ordinarily performed by means of a formula of the following type

F., = y,-pLp+ eee+ yniLi + y, Lo+ ynHlL-i + e + yntl -p, (1)

where the numerical coefficients L, are symmetric about the middle term L0, i.e.,
L,—L-v. The linear transformation (1) if applied to the original sequence {y,} will
transform it into the smoothed sequence {Fn}. By extending the definition of L,,=0
for |W\ >p we may rewrite (1) as

Fh= E vy j . 2

F=—m
If y, =const. =c, we also wish that F,, = c; therefore
EL=1 @3)

is a natural requirement.

When does the formula (1) actually smooth? As an example let p =\ and let the
coefficients L, be (—1, 3, —1). If we now apply the formula (1) to the periodic se-
quence

{?»} = {*°+-0,10, 10, 1 mme }
we obtain
(Fn} = {~me,- 2,3 - 23 - 23 me}

which is a good deal rougher than the original sequence. Obviously this situation de-
serves some clarification.

There seems no doubt that the “smoothness” of a sequence {yn} depends in some
way on its differences of higher order, especially on the sums of their square. We also
notice that the formula (2) agrees with the rule of multiplication of Fourier series.
This suggests the use of such series.

Let us assume for the moment that

E ly»l< (e 4)
nm

We now define a function T{u) by

F(u) = E yneinu (5)
®

and call it the characteristicfunction of our sequence {y,,) ;itis a complex-valued con-
tinuous function of u of period 27r.

Now (5) implies . I
e-IU‘(|I) =E yreinu=E yTHQ].

and by subtracting (5) we get ®

(e-1*- 1)T(u) = E Ayreinu. ' (6)
n=—a

This shows that we obtain the characteristic function of the sequence {Ay,} of first
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differences of {y,} by multiplying the characteristic function T(u) of {y,} by the
factor e~‘u—1. Generally

@

(e~'u- mr{u) = E Lny,einu (m=0,1 2 o¢)e (?)

n*=—s

Since |e~iu—1| =2 |sin(zi/2)], the Parseval relation furnishes the equation

E (Any,)2= — f [2sin (i*/2)]2m| T(u) \Zu (in ~ 0). (8)
n—o 2Imd o
These formulae furnish an expression for the sums of the squares of the differences
of any order in terms of the characteristic function T(u) of the sequence.

Let us now turn to the "smoothed”.sequence {Fn}mLet

@

42U — E Lncinu= Lo+2L,.cosu+ 2LoCOS 2u + e 9
PN )

be the characterstic function of the sequence {in} - We shall also refer to () as
the characteristicfunction of the smoothingformula (2). Notice that <p(u) is always real
and even. By multiplication of the two Fourier series (5) and (9) we obtain, in view
of (2),

TW<j>u) = E Fnein\ (10)

Hence the characteristic function of the “smoothed” sequence {F,,} is obtained by
multiplying the characteristic function T(u) of {y,} by the characteristic function
<) of the smoothing formula (2). By now applying (8) to the sequence{F,,\
obtain

E (A"Fn== = f \2 sin («/2))2m| T(u) |2A"(«))d«, (m ™ 0). (11)

n—m 2ird a
A comparison of the relations (8) and (11) will readily furnish an answer to the ques-
tion: what isa smoothing formula? Indeed, we notice that theintegrands in (8) and
(11) differ only, for each fixed value of m, by the factor gUd4n (11). Thisjustifies
the following definition.

Definition 1. Let Ln he a symmetric sequence of coefficients, i.e., L-,, = L,,. The
formation of the weighted means
®

Fn= E vy>Ln- (n=0,% 1 + 2 meo) (12)

is said to be a smoothing formula if

Ei.= |, (13)
n
E|E» <, (14)
n

while the characteristic function

@®
du) = E Lreinu= Lo+ 2Li cosu +2Lzcos 2u \ . (15)
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satisfies the condition
- 1M <Uagl, (0 g «g 2t). (16)

The necessity of the condition (16) is justified as follows: By a comparison of (8)
and (11), in view of (16), we obtain the inequalities

£ (AnFn2g £ (Any,)2 (M=0,1 2 mee)e

Actually the equality sign in one of these relations will arise only under highly ex-
ceptional or else trivial conditions. This remark should make it clear why the smooth-
ing quality of a formula violating (16) should be highly questionable.

So far we were concerned merely with the ability of a formula (2) to smooth the
sequence. However, the discrepancies between the two sequences also deserve atten-
tion. By subtracting (10) from (5) we obtain

T(«)(1- ) - £ (y» - Fn)einu

and therefore

£ @n- Fry-=i- f 2T1T(u) |21 - <t>{n)Ydu. (17)
N—>» 2irJ o

A comparison of the integrands of (17) and (11) reveals the obvious fact that strong
smoothing may be achieved only if we allow relatively large discrepancies between
F,,and y,,. Indeed, the integral of (17) will be small only if cp(u) differs but little from 1,
while strong smoothing requires as small a fi{u) as possible.

1.11. Examples of smoothingformulae, (a) Our trivial example LO=3, Li=L_i= —1,
L,,=0 (n> 1) has the characteristic function <p(u)=3 —2 cos u. We find <p(u) 2:1, with
<gX(ir) =5, which rules it out as a smoothing formula.

(b) If Ln*"0 for all n, and £L, =1, then (12) is always a smoothing formula
Indeed
I1*(«) | = | £ Lreinu[g £ | L»| = L
Thus
Fn = (j'n-1 + 3n + 3'n+1)/3 (18)

is asmoothing formula with
<) = (1 + 2 cos m)/3.

Let
H(«) = || =]1+ 2cosu|/3 = £ Ln)cos nu.

Since (("™>(m))2= (<pi(u))~ it is clear from (11) that the formula (18) and the formula of
characteristic function <>i(U) have identical smoothing powers. However, since
0 < 1—<Hi(m <1 —$(m) for 2ir/3 <u<Air/3, we see bj' (17) that the formula

an = YA

will alter the sequence {3n} much less than (18) will.
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(c) Generally, our formula (17) shows that it is desirable for an efficient smooth-
ing formula to have its characteristic function satisfy the more restrictive condition
0g U g 1 (19)

1.12. A comparison of smoothing formulae. Again our relations (11) justify the
following definition.

Definition 2. Let 4>i(u) and <2(«) he the characteristic functions of two smoothing
formulae. We say that thefirst is stronger than the second if

I &(«) | N | <fo(«) | » (20)
with the inequality sign holding for some value of u.

Later in this paper we shall set up a basic sequence of smoothing formulae of
progressively greater strength according to this definition. Here we remark only that
two smoothing formulae cannot in general be compared on the basis of this definition.
However, the following remark seems obvious. Let

Fn= £ yJL" (21)
be a smoothing formula of characteristic function <f{u). The iteration, or repetition,
of (21) may be thought of as another smoothing formula and its characteristic func-
tion is found to be (4>{u)Y. Since |<>«)| ~1 obviously

(<E()2S 1969 I
This shows that the formula (21) and the sequence of its successive iterates form a
sequence of smoothing formula of progressively increasing strength.
1.13. Smoothing formulae which are exact for polynomial values of a given degree.
The following definition is in common use.

Definition 3. A smoothing formula (2) is said to be exactfor the degree m if it re-
produces exactly the values {yr.} of a polynomial of degree not exceeding m.

If
Fn= £ vy,Ln, (22)

is to be exact for the degree m, it is obviously sufficient that it be exact for the basic
monomials 1, x, mmm, xm Thus the exactness for the degree m is equivalent to the

relations
®

n" = vLn, {s=0 1 ¢, m. (23)
00
Let us now assumeforsimplicity that the sequenceof coefficients L, tendsto zero
exponentially as n—» «, i.e., we assume the existence of twopositiveconstants A and
B such that
\Ln\”* Ae~BInl
for all values of n. This implies that the function

<pu) = Y,L reinu
n
is regular in the strip
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[lu] < B
of the complex w-plane. Now
00) =
and

ein“00) = Z e"uwnm.

We now expand both sides in ascending powers of u and compare like coefficients.
Since
u2 us
m =1+ - 0"+ - 4w + mEm

we get the identities in n

H ~ (2)*U~2+ (4) <,@).,*4 £ 0 =012 --°).

A comparison with (23) will show that a smoothing formula is always exact for a
highest degree which is always odd. It also proves the following proposition which
may evidently be established under conditions less stringent than theones we used.

Theorem 1. A smoothing formula (22) is exact for a degree 2vf-\if and only if
00) —1 has at w= 0 a zero of order 2j>+2, i.e.,

0"(0) = 0(4)0) = +me = 0(">(0) = 0. (24)

As an illustration we mention the formula
! 9 6 9 3 3 n~ 1S 2
Fn= — (- yn3 + . I+ 16yn+ n+ - =yn- —5 — n 5
32( y Yo y y ynmd) =y & *y 3263/ (25)

of characteristic function
0«<) = (8 + 9 cosu — cos 3«)/16. (26)

We find that 0"(O)=0, hence (25) is exact for cubics. Thesymmetry property
0(m)+0(7t—u) = 1 shows that

o(ir) = 0,(ir) = 0//0) = 07/,0) = 0.
This results in rather strong smoothing power. The formula (25) is partof a sequence
of formulae, the next one of this kind being

F, = — {Zynb - 25y, 3+ 150y, i + 256y, + 150y,+i — 25y,+3 + 3yn+H) (27)

or

b*yn + “ _ 5105

= + — «e>» + i
Fn yn o «>» 512 ”

256
Its characteristic function

4>u) — (128 + 150 cos u — 25 cos 3u + 3 cos 5i«)/256
again enjoys the symmetry property <t>{u)dr<<x{ir—u) =\. Also 0(w)—1 has a zero of
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order 6 at u=0, hence (25) is exact for quintics, while 4>{u) has a zero of order 6 at
u —tv resulting in strong smoothing power.

1.2. Smoothing a finite table. In 1.1 we have discussed the smoothing of an infinite
table {yn} which is such that the series of the absolute values of its entries converges.
By (8), (11) and the inequalities (16) we have found that the sum of the squares of
the differences of order m is diminished by smoothing. This istrue form =10, 1, 2, ¢«
Now we shall discuss briefly the practically most important case of a given finite table

(« = 0,1, soe ,>). (28)

To fix the ideas we assume the following simplest concrete situation: the third
differences A3,, are slowly varying and of slowly varying signs, while the Aiy,, are of
random signs. In this situation we naturally wish to minimize the 4th differences of
the table. Now we form an average value of the A3, at each of the two ends of the
table and we extend the column of A3y, with the corresponding constant average value
at each end.4Thus the A3/nare defined for all n having one constant value forn> N —3
and another constant value for n <0. Now we extend the definition of ynfor all n from
the values of the third differences. Also, we compute the A4y, for the extended infinite
table. Clearly A4y, =0 for « < —1 or n>N —3. Let

Tt{u) = £ Ad>-»cin®

be the characteristic function of the sequence of 4th differences, the series containing
really a finite sum of terms only.
Let us now apply to the extended table yna smoothing formula

Fn= Z y>ln> (29)

of characteristic function which is exactfor cuhics. The result is the new sequence
{ig,} (—a <7 < o0). Evidently ynare the values of cubics for large |«| and therefore
Fn=y,, for large |«|, hence also A3Fn=A3n and A4F, =0 for large |«|. Notice also
that we may think of the sequence {A4r,} as arising from {A4,} by the smoothing
operation (29). Therefore

J, (Ayn2= — f | T4m Wu
o 2irj 0
and
t (AFy- - f rITfu) N
n— 2tt] q
Generally
(As ™y 2= — r (2 sin m/2)2™| Ti{u) \2lu, (m 0) (30)
- 2xJ o
f: (a4+nFn)2= — f (2 sin «/2)2mI Ti(u) \&f>udu, (%« 2: 0). (31)
2tt) o

*Compare G.J. Lidstone, Note on the computation of terminal values in graduation by Jenkins’ modified
osculatory formula, Transactions of the Faculty of Actuaries (Scotland), 12, 277 (1930).
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A comparison of (30) and (31) shows that the sums of the squares of the fourths and
subsequent differences have been decreased by the smoothing operation. No such
statement can or should be inferred concerning the finite sums of relevant differences
of orders 0, 1, 2, and 3.

XIl. INTERPOLATION FORMULAE

2.1. Interpolation formulae of the cardinal type. Let

Fn= E 1)

be a smoothing formula. If we apply itj-o Wﬂe&;ﬁry” table @

then Fn=LnTheeven sequence [Ln]may therefore beregarded asthesmoothed
version by(1) oftheelementary table. Now suppose thatwe aregiven not only the
even sequence of ordinates L,, but an even function L(x)defined for allreal # and such
that L(n) =Ln. Thenwe may replace the integral variable n in (1) by thecontinuous
variable x and we obtain the formula

F(x) = E yMx - v). ?3)
®

We call L{x) the basic function of the formula (3). The chief aim of this paper is
to point out that the subject of interpolation is truly dominated by the formulae of
the type (3), the kind of approximation desired depending only on the choice of the
basic function L(x). The particular basic function

sin X
L{Q) = e )
XX
gives rise to the series i v
sin IN(X —
= Evsg =i 9

which is well known to mathematicians and referred to as the cardinal series. For this
reason we wish to call (3) a series, or formula of cardinal type.

We notice here for further reference that the basic function (4) may also be writ-
ten as a Fourier integral as follows.

=t &

2.11. The two kinds of interpolation formulae, ordinary or smoothing. For integral
values of x=n our formula (3) becomes

F{n) = E yMn - y)- (M

Equation (3) is an interpolation formula in the usual sense if F(n) =yn, for all n, and
this is the case if and only if L(x) satisfies the conditions
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£(0) = 1 £(») =0 (»s°0). ®)

Otherwise, (7) is a smoothing formula. We shall follow the accepted actuarial practice
of referring to (3) as an ordinary interpolationformula if (3) reproduces exactly the given
ordinates {yr}. Otherwise we call (3) a smoothing interpolation formula.

2.12. Examples of interpolation formulae of the cardinal type. Later in this paper
we shall discuss various classes of such interpolation formulas all arising from a com-
mon general theory. For purposes of orientation and illustration we mention here a
few concrete examples.

2.121. The k-point central interpolation formula. Let k be a fixed integer
(=1,2,3, *+°). By fe-point central interpolation we mean the interpolation method
whereby the polynomial of degree at most k—I, defined by k consecutive ordinates y,,,

is utilized within an interval of unit length centrally located with respect to the set of
defining ordinates yn. This set of k defining ordinates yn is shifted up by one unit in
the subscript for interpolation in the next unit interval. It seems obvious that this
kind of interpolation is performed for any real value of x by a formula of the cardinal

type
F(x) = ¥,,Ck(x - n) 9

with a suitable function Ck{x). To obtain this function, it is sufficient to interpolate
the elementary table (2) by means of this method of £-point central interpolation.
The graphs indicate the resulting Ck(x) for k=1, 2, 3, and 4.51t is found that Cu{x)

Cx (x)

. 1o

6These graphs indicate geometrically the construction of the successive arcs of these curves. Thus
C3(x) is defined in the interval 1/2<*<3/2 by the parabola passing through the points (0, 1), (1, 0),
(2, 0). Similarly Cdx) is defined in —1<*<0 by the cubic which takes the values 0, 0, 1, Oat*= —2, —1,
0, 1respectively. We mention incidentally the following general analytic expression of the basic function
Cic(x) of ;-point central interpolation. In terms of the “central” factorial

P 12(s2- 22 ees (*2- (x- 1)) if k=2,

we define the corresponding truncated function
tti-i (ad*-1 if *> 0
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is a polygonal line composed of arcs of degree k—1. Also Ck{x) itself is continuous with
a discontinuous first derivative ifk is even. For an odd k, Ck(x) itself is discontinuous,
the value assigned at a point of discontinuity being the arithmetic mean of the two
local limits. Evidently for k—2 our formula (9) is identical with the method of linear
interpolation and the graph of F(x), as given by (9), is identical with the polygonal
line of vertices (n, yn).

For further reference we mention the following formulae,which are valid for all
real values of a

1 r” sinm/2
Ci@) = — I ———-- einxdu,
2x J m/2
1 /"*/sin«/2\2 dii
Ci(#)=— I — Je“ dii,
W= A L)
1 r “/sin m/2\3/ 1

Cw =A b or) (1+] .

) 1 Cw/sinM/2x1
Ci(x) = — e 1+ — M2 xdu. (10)
2t J- x\ m/2 6

The ¢-point central interpolation method is the most important method for the
interpolation and the construction of tables of analytic and regular functions. How-
ever, for the construction of tables of empirical functions, the low order of continuity
of Ck(x) is at times a serious limitation of this method. It seems indeed evident that

the continuity properties of the linear compound

F(X) = y”L(X - n)
are directly dependent on the continuity properties of the basic function L(x). We

turn now to an interesting example of an “osculatory” interpolation formula having a
basic L(x) enjoying stronger continuity properties.

2.122. An oscillatory interpolation formula of W. A. Jenkins. We define a basic
function L(x) for by
0 if X <6 —3
~ {x+ 3)HF*+ 2 if
L(x) - 1 (11)

SR (R X+ 3)(B*+ T) if -2 A% E -

+ 1)(6 —6x —982— &3 if - 17 0

The definition of this function is to be completed for *=0 by continuity, if k is given, and by the arith-
metic mean of the two limits, if K is odd. Then

1 i
Clx) = 5 x—(— (—» <x< «),
(e-1)1
where Skis the symbol of the ¢th central difference of step unity (compare Theorem 3 of section 3.11).
We will return to this subject in Part B where the extremely simple law of formation of the integrals (10)
will also be given.
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and extend its definition by the requirement L (—x)=L(x) to all real values of x
Since the conditions (8) are visibly verified we see that

F(x) = X) VnL(x n) (11)

is an ordinary interpolation formula. A closer inspection of the composite polynomial
function (11) will show that L{x), L'{x), and L"{x) are all continuous for all real val-
ues of x. Using a customary mathematical terminology we may say that L(x) is of
class C". Moreover, in various ways it may be shown that the formula (11" is exact
if the y,, are the ordinates of a polynomial of degree 3 or less, i.e., F{x) becomes iden-
tical with that cubic polynomial.

It is of interest to compare Jenkins’ formula (11') with the 4-point central inter-
polation formula (9) (for fc=4). Both are exact for cubics. Ct(x) is of class C, while
the present L{x) of class C". This was achieved by increasing the complexity of the
basic function in two ways: 1) The interval where L{x) is non-vanishing was increased
from |a| ?S2 to |x| *3. 2) The degree of the polynomial arcs has increased from 3
to 4. Later Jenkins’ formula (11") will appear as a member of a sequence of interpola-
tion formulae of similar characteiistics. Here we mention that the basic function (11)
may be expressed in the form

1 r*/sm uli sinu\
£(*) t $ 4|cosu 4 I eiuxdu (n'o

for all real values of x.

2.123. A smoothing interpolationformula of W. A. Jenkins. We define a basic func-
tion L{x) by

0 if x"~ —3,

--(* + 33 if - 3gsg- 2
3 gsg

L{x) = . (12)
(69 + 117a + 63a2+ lia;3 if - 2~ *g - 1
1 .
— (15 27a2- 14a3 if -Uigo,
18
L (- x) = L(x).

This particular L(x), composed of cubic arcs, is of class C The formula6

«W. A.Jenkins writes his interpolation formula (11') in the following Everett form

Fiji + %) = e + 03,7627 £3E '12 D
I gt 2D X%r_l) 04 %4 L*+ {* 1.
Likewise his formula (12') takes the form
Fin+ X) = y.£+ <Py,- E(EZ 1) d"“y,,g’
xW - ]

+ M+* + 52W
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F(x) = £ yM* ~ V) (129

corresponding to (12) is exact for polynomials of degree 3 or less. However, while
(110 was an ordinary interpolation foimula, the formula (120 's a smoothing inter-
polation formula. Since

¢(0) = 15/18, L{1) = 2/18, L{2)= - 1/36,

while L{n) =0 for n7z3, we see that for x —n (120 reduces to a smoothing formula of
characteristic function

1
—— (15 + 4 cos u —cos 2u).
18

We readily verify that <p"(0)=0 and 4x{ir)=5/9 g 1. Hence (120 reduces for
integral x=n to a smoothing formula, according to our Definition 1. On comparing
Jenkins’ two formulae (110 and (120 we notice that they are both exact for cubics,
giving rise to curves of class C". Since (120 is only a smoothing interpolation formula
while (110 is an ordinary interpolation formula, it has been possible to lower the de-
gree of L(x) from 4 to 3. We finally mention that the function (12) may be expressed as

1 r Misinm/2V | 4 1 \
m *i;J_.(wr) (t_j os 12>
2.2. A general theory of interpolation formulae of the cardinal type. In this

tion we shall discuss various characteristic properties of interpolation formulae of the
cardinal type in terms of the Fourier transform of the basic function L{x). This dis-
cussion will provide a sufficiently broad foundation for the subsequent development
of specificformulae inthe latter part of this paper.

Sec-

2.21. Characteristic properties of interpolation formulae. Some of the following defi-

nitions have already occurred in the previous sections. For convenient reference we
include them in our present enumeration of properties of an interpolation formula

F(x) = 'Z, yMx ~ v). (13)

a. We say that (13) is an ordinary interpolation formula if F(x) interpolates ex-
actly the given ordinates yn, i.e., if

L{O) =1L Lv) =0 {y* 0. (14)

b. We say that (13) is a smoothing interpolation formula if for x =n (13) turns into
a smoothing formula

F(n) = H y>L(n —v). (15)
p
The term “smoothing formula” is meant, of course, in the sense of our Definition 1,

section 1.1.
c. We say that (13) is exactfor the degree » —1 if the relation

p(x) = « P(ML(Xx - n)
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is an identity for any polynomial P(x) of degree at most k—\. The last condition is
in turn equivalent with the k identities

a
x'= 23 n'L{x —ii) V=0, 1 eee, k—1) (16)
out of which it can always be recovered by means of suitable linear combinations.
d. We say that (13) preserves the degree k —I,7if for any polynomial P(x) of degree
vAk —1 we have an identity

®
23 P(n)L(x —n) = P(x) + (a polynomial of degree < v). @an
n—a

Notice that the leading term of P(x) is not altered by (13). Again in terms of the mo-
nomials x“we may say: (13) preserves the degree k—\ whenever the k functions

@
Q*(x) - 23 n*L(x — n), V=0, 1,:cu, k - 1), (18)
«'—@

are polynomials of the form
Qy(x) = X'+ a>iXw-1+ 'eee + ar,, {v=10,1 ¢,k —1). (19)

e. We say that (13) is of degree m and of class C", if the basic function L(x) is a
polygonal line of polynomial arcs of degree at most m joining in such a way as to
result in a function L(x) having @ continuous derivatives. In the sequel, the junction
points will always be either for integral values x=n or else for x =n-\-1/2. Conse-
quently no “condensation” of discontinuities will result by the formation of the linear
compound (13). Hence the interpolation curve F(x) will again be of degree m and of
class CA As examples we recall the formulae (11') and (12') of W. A. Jenkins, which
are both of class C" and of degree 4 and 3, respectively.

f. A formula (13) whose basic function L(x) is composed of polynomial arcs will
also be referred to as a polynomial interpolation formula. We shall say that it has the
span s if the even function L(x) vanishes identically for x>s/2, but not for x>s" with
0<s'<i/2. Thus the ¢-point central interpolation formula (9) is of span k, while both
formulae (11'), (12" of Jenkins’ have the span 6. For obvious practical reasons it is
desirable to work with polynomial formulae having as small a span as possible.

g. We say that (13) is an analytic interpolation formula if the basic function L(x)
is analytic and regular for all real x. The original cardinal series (5) is an example of
this type. Obviously no analytic formula can possibly have a finite span. The role of
the span is taken over by the rate of damping of L(x) as .r increases. For obvious prac-
tical reasons it is desirable to work with analytic L(x) damping out as fast as possible.

2.22. The characteristicfunction of the basicfunction L{x). It was shown in chapter

7This property of interpolation formulae seems to have been neglected so far. It represents an im-
portant weaker form of the condition of exactness for the degree k—1. Compare T. N. E. Greville, loc. cit.
pp. 210-211, for our slightdeparture from the standard terminology. Jenkins speaks of a modified inter-
polation formula in case the forriiula is not ordinary. The term “modified” seems natural in view of
Jenkins’ construction of such formulae by modifying certain terms of Everett’s formula (the author is
indebted for this last remark to Mr. Chalmers L. Weaver). It seems, however, less desirable if their con-
struction is, as here, otherwise performed.



62. 1. J. SCHOENBERG [Vol. 1V, No. 1

I that various properties of a smoothing formula

Fn "* ybLn—

are readily expressible in terms of its characteristic function

4>u) = 23 Lneinu.
n

Likewise, the properties of the interpolation formula

F(x) = 23 y>L{x —V) (20)
will largely depend on the behaviour of the function
(9] (o
/ L(x)eiuzdx = 1 L(x) cos uxdx. (21)
-w d

This even function g(u) is the Fourier transform of L{x). Following a terminology
used in probability theory we shall refer to g(u) as the characteristic function of L(x).

Under certain general assumptions which will always be verified in our applica-
tion, the relation (21) may be inverted8to

ra
L(x) = I g(u)e,uxdu. (22)

2ird
However, itshouldbe remarked that at times our integrals are not absolutely con-

vergent and thatthey then converge only as a principal value in the sense of Cauchy:
limA~*fzfc Allexample of this kind is our first formula (10)

1r
1 I > sinm/2

,W" tL m/2  eiuxdu.

Changing u and x to 2iru and x/2ir respectively we see

S x\ r " siniru
Ci {—/) = | eiuzdu.
2ttf iru
Inverting this relation we obtain
sintx 1 I'M /[ m\ 1 f 7
= — eiuxt (23)
Tx or J \27r/ 2ird _ 1
which is identical with (6) and shows that
if |[M| <
if M| =T
if  1M1. o

is the characteristic function of the original cardinal series (5). It is precisely the dis-
continuity of its characteristic function which causes the extremely slow damping of
the basic function (23). (See 2.21, g.)

8See e.g. S. Bochner, Vorlesungen iiber Fouriersche Integrate, Leipzig, 1932, Satz lib on p. 42.
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Similar reasons of slow damping will rule out the following rather obvious method
of turning a given smoothing formula

Pn(x) = X yvL*-,
v

into a smoothing interpolation formula

F(x) = X yU* - ).

v

From
o(m = X L,einu
n
we derive
1 rl1 i
n=— ueinudu.
2trJ _T<]>()e|

Now we simply define a basic function L(x) by
L) = — " pieinud
X) = — Ueizudu.
2t J _t<]

The corresponding characteristic function g(u) is found to be

<o) if |ul<T

«(«) = A

Again the discontinuities of g(u), or of one of its higher derivatives, will imply that
the damping of L(x) is too slow for numerical purposes. Indeed, by partial integra-
tions, L(x) is found to tend to zero as a certain negative power of .r only, as x tends
to infinity. (Concerning the order of magnitude of Fourier integrals for large values
of x, see the theorem on page 11 of Bochner’s book quoted in our footnote 8.)

2.23. Fundamental criteria in terms of characteristic functions. We shall now re-
strict ourselves to basic functions L(x) which are everywhere continuous with the
exception of possible “discontinuities of the first kind” (such as were exhibited by the
basic functions L(x) of section 2.121). Moreover, we shall assume that L(x) dampens
out exponentially. This means that we assume the existence of two positive constants
A and B such that the inequality

\L{x)\ < Ae~B" (24)

holds for all real values of #. This clearly rules out the basic function (23) of the cardi-
nal series. The assumption (24) implies that the characteristic function

) = § L(x)eiuxdx (25)

is analytic and regular not only on the real M-axis but also in the infinite strip
|lu] < B (26)

of the complex «-plane. It also implies that the expression
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r
lim X + 2irn)e2xinx 27)

converges uniformly in a circular neighborhood of « = 0 and for every real value of x.
The following theorem will demonstrate the usefulness of the characteristic func-
tion of an interpolation formula.

Theorem 2. Letthe basicfunction L(x) satisfy the condition (24). Let the correspond-
ing interpolation formula be

F(x) = Xny -n. (28)

For integral x =n (28) reduces to the smoothing formula
F(n) = X y*L(n - v). (29)

A. The characteristic function <p(u), of the smoothing formula (29) is given by the

€= X e+ Ty ®

In particular (28) fs an ordinary interpolation formula (see 2.21, a) if and only if

X Het 20 =1 @

B. The formula (28) A exactfor the degree k—\ (see 2.21, c) if the following two
conditions hold simultaneously:

g(u) — 1 has a zero of order k at u = 0, (32)

g(u) has zeros of order kfor all non-vanishing integral multiples of 2x\ u=2xn (ns*0). (33)

C. Theformula (28) preserves the degree k —i (see 2.21, d) if the condition (33) holds,
together with the additional condition

m o =i (34)

Remark. For some applications it is important to notice that an ordinary inter-
polation formula which preserves the degree —1 is automatically exact for the degree
k—i. This seems evident a priori. It is also evident in terms of our criteria, for (31)
implies
o) - 1= - Xg(«+ 2t

y 9*0

and the right-hand side has a zero of order k at u=0 by (33).
Proof of A. Our formula (25) implies

J no 1f* 12p+H\~

L(x) = | u)eixudu = lim —
(x) o~ g(u)

| g(u)eixudu
p— 2xJ _(2pt)x
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= lim—f i X s(u+ 2(\/)92@(\ aud.

2xJ —~x U—p
= -inx {ﬁx_m_siu + 2xv)e2rix\) eiuxdu.
In particular, if x =n is an integer, we find
Lin) = —J | X g@u + 2irn)] einudu. (35)
Since the characteristic function <f>U) of (29) is by definition the function of

Fourier coefficients L{n) (see 1.1, (9)), the relation (30) is established.
Proof of B. We wish to apply Poisson’s summation formula3

cc co /i oo
X fix —«) = X ednx | f(v)e=2dv'dv (36)
to the function
fix) = e~bwLix). (37)
By (37) and (25) we find
00 I+ o0
/ fiv)e~2xivndv = | L{v)e~iu+ixnvdv = g(« + 27r;)
*7—))

hence by (36)

e-ixu £ eiunLix —n) = X QM 2xn)e2xinx

and finally
X el@- N =axX g«+ Zmedi,r. (€3

Tlsa—o00 71=3—X
This identity actually holds for all real x and all real or complex values of u within
the strip (26). It contains implicitly all the statements of Theorem 1. Thus forx=0
it reduces to (30). To prove our statement B we assume x fixed and regard both mem-
bers of (38) as functions of u, which we expand in series of powersof u,then equating
the respective coefficients on both sides. On the left-hand side wehavethe expansion
Aoyl o

X — X »uff- »p

On the right-hand side, our assumption (33) implies that the terms g(tt+ 27r«)e2rinl
iny*0) do not contribute any terms in u of order less than k. Thus our identity (38)
becomes

ﬁla iwv )(? o )
nt{x —n) — eixugiu) + uh (regular function of u). (39)
*0 vl n==0

On the other hand our assumption (32) amounts to

9See S. Bochner, loc. cit., theorem 10 on page 35.
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g(u) = 1+ uk (regular function).
This and (39) imply

i"ur " i'u
2, — »M* —n) = (] x"+ uk (regular function). 40
W L, M )=y (reg ) (40)
A comparison of the coefficients of the first k terms oneachside of (40)furnishes the
identities (16). This concludes a proof of B.

Proof of C. Since g(u) is regular at u —0, andeven, ithas in viewof (34) anex-
pansion of the form

il 00 P
g(in = 1 2|| -\ 4II 6! «8 + eee

We now define a sequence of polynomials by means of the generating function

” (in)“
eixug(n) = X Q(x) — — (41)
or
exug{u/i) = Qr(x) — (42)
where " h
o & A
g(u/l)—lHZ! u2H4! iP+ eeo 43)

A comparison of terms on both sides of (42), using (43), shows that
Q,(x) = X"+ ~A2Max'-2+ M4Max"~i+ ' m (44)

On substituting the expansion (41) into the right-hand side of (39) and by compari-
son of the first k terms on both sides we find that the identities (18) and (19) are
established. This completes the proof of our theorem.

As a brief illustration of our criteria let us consider again Jenkins’ smoothing in-
terpolation formula (12") of 2.123. Its basic function is

1 CW®/2 sintt/l2V /] 4 1 \

L M = r {0 - 2 - ) v T - 7 [ M ( 4 5 )

A simple method of evaluating explicitly such integrals in order to find the polynomial
expressions (12) will be discussed later. An inspection of the characteristic function

2sin «/2\4
g(«) = —-J (4- cosu)/3

immediately reveals that our condition (33) is verified for k=4. Direct expansion
shows that g(u) —1—(7/240)m4+ e« and (32) is also verified for &= 4. The inter-
polation formula (12") is therefore exact for cubics. Also the fact that L (x) is of class
C" is revealed by an inspection of the integral (45). Indeed we notice that g{u) van-
ishes for u = =0 like u~*. This implies that we may differentiate (45) twice under the in-
tegral sign and that the integral
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*

Lp) = — 17 gz wdu

is also continuous since it converges absolutely.

I1l. THE THEORY OF SPLINE CURVES

The previous chapter provides a formal theory of interpolation formulae in terms
of a basic function L(x) which, as yet, is largely arbitrary. The present chapter will
furnish the foundation for the derivation of special basic functions which are readily
computed with great accuracy and lead to interpolation formulae enjoying the proper-
ties described in the previous chapter.

3.1. Polynomial spline curves of order k. A spline is a simple mechanical device
for drawing smooth curves. It is a slender flexible bar made of wood or some other
elastic material. The spline is place on the sheet of graph paper and held in place at
various points by means of certain heavy objects (called “dogs” or “rats”) such as
to take the shape of the curve we wish to draw. Let us assume that the spline is so
placed and supported as to take the shape of a curve which is nearly parallel to the
x-axis. If we denote by y =y(x) the equation of this curve then we may neglect its
small slope y', whereby its curvature becomes

ilie = y7(1 + y232« y".

The elementary theory of the beam will then show that the curve y =y(x) is a polyg-
onal line composed of cubic arcs which join continuously, with a continuous first
and second derivative.10 These junction points are precisely the points where the
heavy supporting objects are placed.

3.11. Description of spline curves of order k. Our last remark suggests the following
definition.

Definition 4. A realfunction Fix) defined for all real x is called a spline curve of
order k and denoted by rL(;c) if it enjoys thefollowing properties:

1) It is compressed of polynomial arcs of degree at most k —1.

2) It is of class Ck~2 i.e., F(x) has k—2 continuous derivatives.

3) The only possible function points of the various polynomial arcs are the integer
points x =nif k is even, or else the points x =n+ 1/2 if k is odd.

Thus a Ili(x) is a step function with possible discontinuities at thepoints
x=n+1/2. A n2(x) has an ordinary polygonal graph with verticesonly at the in-
teger points x =n. A n 4(x) corresponds to the elementary mathematical description
of an ordinary (infinite) spline with the “dogs” placed at all or only some of the points
with x =n.

It should be noticed that if a 114(a) is of class Ck~I, then 11(*_1)(x) must necessarily
be constant for all x. Thus such a n*(;c) reduces to a polynomial of degree k—1. It
is just this relaxation of the requirement of the continuity of the (®—1)-order deriva-
tive of n*(a:) which turns the spline curve into a flexible and versatile instrument of
approximation. Likewise, only the “dogs” (or “rats”) enable the ordinary spline to
trace curves differing from the graph of a cubic polynomial.

The special importance of spline curves will be due to the fact that by the addi-

10The author is indebted for this suggestion to Professor L. H. Thomas of Ohio State University.
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tion of several spline curves of successive orders we may get any desired polygonal line
of given degree m and class C*

3.12. The evaluation of certain Fourier integrals. Our further work is based on
consideration of the,functions

1 r /2 sinul/,2\ k
zu (k=12 %%¢; —co < *< co). (1)

r js - T - ) €

They have been evaluated explicitly for low values of k by various authors.11 The fol-
lowing general explicit representation is essentially due to Laplace (see J. V. Uspen-
sky, Introduction to mathematical probability, 1937, Example 3, pp. 277-278).

Theorem 3. Let k be a positive integer. Define the function x~rl by
k~i Ixk=1 if *~ 0
Y2V 0 it x<o @)

For k =\ and x =0 this definition is modified to O+rl= 1/2.
The following identity holds for all real values of x

1 c®/2 sinurs2vk . 1 ko k-i
— eixdu=-——5 x+
2ttt J_,,\ u / (*-1)1

: @)

where 5k stands for the usual symbol of the kth order central difference of step equal to
unity.

The identity (3) is correct for k=\. Indeed it is well known that

1 r” sinu
du =\
2%J o U
On replacing u by ux we get that
. if x>0
- sin xu ]
&KT mu=/ 0 if x=0
M u .
- | if x <0,
or
1 r D sin xu 0
— du = x+- b
2x J u
Therefore
1 r* 2sin «/2 1 f ®sin (x + 8)« 1 r" sin (x —b)u
— | cosuxdu = — | —-memommemm - du I el du
2T 0] 2TJ & U 21 u
1 ~C" sin xu 0 0
ot du = 5(x+ —5) = b5s+,

1 See S. Bochner, Fourier analysis, Princeton University lectures, 1936-1937, where our Mt{x) are
worked out for k=1, 2, 3, and where the increasing smoothness qualities of these functions are clearly
noted. Bochner also considers the integrals
1 r " /2 sin I</2\* sin ux

| ( .......-.-----) du.

»
Mk(x) =
2jr V] «

Using Theorem S below, we readily obtain the identity Mf(x) — fxf

the
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and (3) is established for &= 1.
Let us consider for the moment the sequence of functions

Nk(x) = (I_<“15i5 X+ . 4)

We have already shown that
Mk(x) = Nk{x) (5)
holds for k =1. Assume now that (5) holds. We wish to show that the similar identity

for k+ 1, rather than k, arises from (5) by performing the operation

1+1/2

[ %
on both sides of (5). This will be accomplished if we prove that
*+12
MkH{x) = 1 M k(x)dx 6
J *1/2 (6)
d
an -
N k+fX) = N k(X)dX (7)
1-1/2
In view of
r1+2 2sinm/2
eluXdX = e ejux
' *12 u

we obtain (6) by an integration under the integral sign as follows

r 1+1/2 1 C®m/2 sin w/2\* /| f 1+12
Mk{x)dx = — 1 (- Y (1

3 1-1/2 2ty _m\ u ) N1 XA

\
e"xdx)du = MkHx).
!

To prove (7) we notice that

[ *A p X Jo * xW
Nk(x)dx =51 Nk(Xx)dx =51 8K - dx
x—1/2 A oo “ung 1) -
k—1
-85k f— dx = s+ — = AT+i0).
(k - 1) kl

This concludes the proof of Theorem 3.
3.13. Explicit polynomial expressionsfor M k(x). The formula

1 * t-i
Mu(x) = K - 1)T5 X+ 8)

will readily show that y = M k(x) represents a spline curve of order k. Indeed, if k is
even,then
(x+ n)TI

isa 11*and therefore also their linear combination (8). Ifk is odd the same conclusion
holds because
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(*+n- 91

isall&
It also follows from (8) that the explicit polynomial expressions for

(k - D".Mk(x),

in successive unit intervals, are identical with the successive partial sums of the ex-
pansion
/ ky-1 [/k\/ k y-1 /

ky-1
SV oAy stk (ha(*-T)

an expression which incidentally vanishes identically, being the £th order difference
of a polynomial of degree k—1. We thus get

0 if * a3 -
y
fo Kaore K
(* 4 f ' 2 y +Hl
L —“— h15 xS
y - r - o 'y i - r I X y+2
(k- 1)IMK(x) = ©)
(m + T r-(v')Y(-4-"r+
. k k
T J— 1E£*E —
F<ei> (i) (> =T 4 ir ;R TRS
k
@S> = Q0 if
T.-.

For future reference we work out explicitly the cases k=1, 2, 3, and 4. The expansions
5v=1—1
5% = (icd- 1) —2x (- (@ — 1)

(*+ 1)2- 3(*+1r + 3(*- hy - (*- 1)2

0*x3= (*+ 2)3- 4(* + )3+ 6x3- 4(* - 13+ (x - 2)3

(10)

now furnish the following expressions
/0 if X< —£
M{x) = <1 if —8<x«<1l (H)
Ao f 5<%
to which must be added ilii(£1/2) = 1/2 as required by (1) for k=1.

0 if x i —1
*+ 1 if -1g xgb0

Mt{x) = , (12)
T+ 1 if OjJE #¢é1

0 if 1é *
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0 X s 3
(/2)(x + 3/2)2
Mz(x) = (I/2)(x + 3/2)2- (3/2)(x + 1/2)2 -igxgeé (13)
(1/2) (—x + 3/2)2 56 Xg f
0 fax
0 XxXg - 2
(1/6) @ + 2)3 - 2 gx g -
Mtp) = (1/6)(x + 2)3- (4/6)(x + 1)3 -1 gx g (14)0
(1/6)(—x + 2)3- (4/6)(—x+ 1)3 0 gxg 1
(1/6) (—x + 2)3 1 gxg 2
0 2 <x

In deriving these expressions the expansions (10) were used up to the point from where
the evenness of the functions Aft(x) allowed us to complete their definition for all x
by symmetry.

M)

-1 -

-3/2 -1 <12, o« 1/ 1 >2

3.14. Interpolationformula with Mk(x) as basicfunction. The interpolation formula
F(x) = E y,Mk(x -v) (15)

will play an important role in our subsequent work. We mention it at this place be-
cause it contributes to our investigation of ¢-order spline curves.
To the basic function

L(x) = MK{Xx)
corresponds the characteristic function
(2 sinu/2\ k
(16)
as seen by comparing 111 (1) with 11 (22). The characteristic function of the formula

(15) forintegral x=nis
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(u) = MK{0) + 2Mk{\) cos 1 + 2MKk{2) cos 2u + mee . @an

The {&k(.u)} represent an interesting sequence of cosine polynomials which we will
investigate more closely later in this paper. Here we mention without proof that

1= <pfu) = $A«) > > fk(u) > eee> 0 (0 < « < 2tt) (18)

while, of course, <€*(0) =1. Hence (15) is a smoothing interpolation formula of progres-
sively increasing strength as k increases. We assemble the various properties of (15)
in the form of a theorem.

Theorem 4.

®.
F(x) = £ y>Mk(x - V) (19)
»mrd
is a polynomial smoothing interpolation formula of degree k —I, class Ck~2 and span
2s=k (see sections 2.21 and 3.13). It is exact for the degree 1 and preserves the degree
k —i. The smoothing power of (19) increases progressively for increasing values of k.

The exactness of (19) for the degree 1 and the preservation of the degree k—i
follow by Theorem 2 (B and C). Indeed, by (16), g(u)~ 1 has a double zero for m=0
while g(u) has zeros of order k for u = 2irn (« ~ 0). Since the preservation of the degree
k —1 implies the identities 11(18) and (19), the following corollary results.

Corollary.Any given polynomial P k-i(x) of degree at most k —1 may be represented

in theform
®

Pk-1(*) = £ y*Mk(x - n) (20)
where {ynj are the ordinates of some other suitably chosen polynomial of the same degree
as P k-i- This representation is unique.

3.15. The analytic representation of spline curves of order k. We know that if {ynj
is an arbitrary sequence of ordinates, then our interpolation formula
F{xX) = £ ynMk{x - n) (21)

represents a spline curve of order k. This is true because all M k(x —n) are such curves.
The following question arises: Let F(x) be a given I1k; can we always represent it in the
form (21) for an appropriate sequence {yn}?

This question is answered affirmatively by the following theorem.

Theorem 5. Any spline curve 11*(rc) may be represented in one and only one way in

theform
o

n*(s) = £ ynMi{x - n) (22)
for appropriate values of the coefficients y,,. There are no convergence difficulties since
Mk(x) vanishesfor |x\ >k/2. Thus (22) represents aTikfor arbitrary {y,} and represents
the most general one.

In order to prove this theorem we return to the interpolation formula (21) and
differentiate it repeatedly. By (8) we have
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« « -S'E<SNCKrr W« o, -

and repeating we get
Mk\x) = SMk,(x) (23)
From (21) and (23) we obtain by partial summation
P'{x) = En y,.0Afjfc_i(a; —w) = En 5yB+/2 Mu-\{x —n —\)

or
F'(x + -) = £ S5yn+/iMic-i(x —»). (24)
n

If k>2, this formal rule of differentiation of a spline curve may now again be applied
to (24) with the result

F{x + 1) = £ symIMk Ax - n)

or
F*'{x) - ¢ 8nMk~i(x - n).

Generally for 0 —1
£ 8ynMk-v(x —n) if vis even,

Fr(*) = < . L
I £ 8ynH,Mk-v(x —n —5) if r is odd.
n

(25)
This result may be stated as follows: The vth derivative of the spline curve (21) may be
obtained directly by applying the same interpolation formula (21) with k —v, rather than
k, to the sequence of the vth central differences 8w properly centered according to the parity
of v. In particularly: F(k~2Xx) is obtained by interpolating linearly among the 8k~2.
p(k-i) (E)  a step function whose successive values agree with those of the correspond-
ing 64- ly.

Now let F(a:) be a given EU. We are to show the existence of a sequence {ynj such
that (21) holds identically. Suppose for the moment that such yn have been found
which do make (21) hold. Then by (25) for v—k —\ we have

_ {8k=lyn forn —b < x <n+ §if &isodd.

.= . . . (26)
(5i-ly,+i/2 forn<x<n +1 if k iseven.

In either case the successive constant values of the step function F*k~1){x) determine
uniquely the values of the differences of order k —1 of the sequence of the as yet un-
known coefficients yn. These differences in turn determine the coefficients ynuniquely
up to an additive sequence of vanishing differences of order k—1. Let yn be one se-
quence such that

5 lyn+if2 = F(* D)(m+ 1) if kiseven
or else
8k-ly, = Fé~D{n) if k is odd.
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Consider the ¢-order spline curve
F(x)

E JnMk{x —n)
n

and let

R(x) F(x) - F(x).

From the way F(x) was defined it is clear that F&~1)(x) and F(A-1)(x) agree in their
successive unit intervals of constancy. Hence R(x) is all* whose various polynomial
arcs are of degree k—2 or lower. Therefore R(x) is identical with a polynomial of de-
gree k—2. As such it allows of a representation of the form (21) in view of our Corol-
lary of section 3.14. Therefore also

F{x) = F(x) + R(x)

may be represented by our formula (21).
The unicity of the representation (21) is readily established. Indeed two different
such representations would imply a representation of zero

0= E ynMk{x —n)
n

without all ynvanishing. However the 5t-1y all vanish, and our conclusion would con-
tradict the uniqueness of the representation (20) of polynomials.

A simple example might illustrate our proof of Theorem 5. Let us find the repre-
sentation of the spline curve of order 4

Fix) = — x+
3!

By (26) we have

5 ¥ . @ if n~O
n+12=F"(n «(-|) = (n +
Y (D ( 0 if n<0O.
A sequence having these third differences is

0 if n<o0

= 2—1
yn mm=D i s

cr)-
Hence

x+=E mnm DALi(* —«)> 27)

with the possibility still open that both member might differ by a third degree poly-
nomial. However this possibility is excluded by the remark that both sides vanish
identically for *g0. Incidentally, (27) implies

: 0
- (- x)+= E nn2~ Mi(x - n)
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and by addition and subtraction of the two relations we get the identities

x3= ]X n(n2— —n), | x|3= XM | «(»2—1) | M\{x — n).

In later applications we shall frequently operate with polygonal lines F(x) of de-
gree k—1 not having continuity properties as strong as a 11* Thus Jenkins’ L(x)
defined by 11(11) is of degree 4 and class C". Let F(x) be a polygonal line of degree
k—1, having vertices at integral point x=n, and being for all real x a function of
class O (-17iii~-2). We certainly obtain a curve of degree k—1 and class £> by
addition of spline curves.

F(X) = nM2+ n,,+t3+ mem+ n* (28)
where Il,, stands for n,,(x) or n,(x + 1/2), according to whether v is even or odd.

Theorem 6.Any given polygonal line F(x) of degree k —I and class £> may be repre-
sented as a sum (28) of k —fi —1 appropriate spline curves of orders yu-j-2, /r+ 3, mmm, k.

This theoremis a corollary toTheorem s.Indeed, ,F(m1)(x) mayhave certain dis-
continuities. We  determinean”+2 having the same discontinuities inits(/u+l)st
derivative. Then

F(x) - 1L+

is of degree k—I and class 0 +1. Proceeding in this way the theorem is readily estab-
lished.

Substituting for the IL in (28) their expressions in terms of the M, we obtain an
explicit (parametric) representation of such polygonal lines. Thus Jenkins’ function
11(11) may be represented as

L(x) =4Mt(x) + \Mt(x + 1) + JIf«(# - 1) - 2M,{x + J) - 2Mt(x - J).

At a glance we recognize a curve of degree 4, class C", span 5= 6.

3.16. A summation property of spline curves. The degree of a polynomial is de-
creased or increased by one unit if we difference or else sum the polynomial. Not so
with our spline curves 11* Indeed let

ljt(x) = X) JnMkix - n) (29)
be a given spline curve. Then
n*(x + 1) = X) y*Mk(x + | —n) = X) yn+tiMk(x - «)
and subtracting (29) we have
All*(xX) = rr*(x + 1) - n*(X) = X) AynMk(x - n). (30)

Hence AlTjfc(x) will in general be also a 11* Now let the spline curve n**(x) be given
and we wish to find n*(x) such that

All*(x) = nt(x). (31)
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By using Theorem 5 the solution is immediately found. Indeed let

U*(*) = 2 y*nMk(x —n). =

Now (29) will be a solution of (31) provided Ayn=y*, for all n. This relation defines
the ynup to an additive constant which appears as an arbitrary additive constant in
the solution . It is thus seen that the operation of differencing or summing
spline curves (29) reduces to performing the same operations on the sequence of the
coefficients {y«).

3.17. An interpretation of Mt(x) in probability theory. In concluding our discussion
of polynomial spline curves we mention briefly the following interpretation of Mk{x).
As seen from its values as given by 111(11) it is clear that Afi(x) may be interpreted
as the probability density function of the error committed on a random real variable
X, if that variable is rounded off to its nearest integral value. Now I11(1) shows that
the characteristic function of ilf*(x) is the £th power of the characteristic function of
Mi(x). From a known proposition in probability theory we may conclude that Mtfx)
is the density distribution function of the error committed on the sum

Xi+ Xt+ e«eoem+ Xk

of k statistically independent real random variables xi, « * ¢, xt, if each variable is re-
placed by its nearest integral value.

This interpretation, otherwise entirely irrelevant for our purpose, does make a
few of the properties of ilf*(x) intuitively obvious, such as

(>0 for IxIl> k/2

Mt(@){=0 for IxlI< k/2,
|
L Mk(x)dx = 1

In concluding we note the identity

[ x+12 P *H12 n ajfci+l/2 r*o
dxi  ldx2 mem | H{xCfdXk = 1 Mk(u —x)f(u)du.
r—1/2 Nzl 2 J 112 V_M
3.2. Analytic spline curves of order k. The polynomial spline curves n@() de-

scribed in section 3.1 will be shown to be sufficient for the derivation of polynomial
approximations to equidistant data enjoying various desirable properties. These poly-
nomial approximations will have any a priori assigned number of continuous deriva-
tives. However, in order to obtain analytic approximations we shall now proceed to
derive from our spline curves N an analoguous family of analytic functions.

To achieve this end we shall smooth out our 11*(x) by means of one-dimensional
heat flow. Consider an infinite homogeneous bar (the x-axis) in which the tempera-
ture at the point x at the time t is denoted by F(x, /). We assume the flow of heat to
be governed by the equation

dF 1 d-F
----------- (32)
dt 4 dx2

If F(x) —F(x, 0) isgiven, i.e., the temperature distribution at the time t=0is known,



1946] APPROXIMATION OF EQUIDISTANT DATA 7

then F(x, t) is determined by the following integrall2

F(x,t) = — : f e-"~-~r'F{u, 0)du. (33)

VvV litd _c,

This result is easy to verify: by partial differentiations we find that F(x, t) as defined
by (33) indeed satisfies the differential equation (32) while familiar arguments origi-
nated by Weierstrass will show that (33) implies
lim F(x, t) = F(x, 0),
provided F(x, 0) is continuous and, e.g., bounded.
The solution of the problem of finding F(x, t), if F{x, 0) is given, is especially
simple in the case when F(x, 0) is defined by a Fourier integral

1l ra
F(x, 0) = — | \p(u)e'uzdu. (34)
2xJ P
Indeed, in this case we find
Fix, ) —— T e~*<,2*ip(u)e<udu. (35)
2x J -a,

Notice thatthe temperature t enters only in the additional exponentialfactor.This
can be proved in two ways, either by substituting (34) into(33) or else byverifying
directly that (35) satisfies the differential equation (32). Obviously (35) reduces to
(34) for f= 0, as it should.

We may (and wish to) think of F(x, t), for a fixed f>0, as a smoothed version of
F(x) = F(xi0). In fact F(x, t) is analytic and regular for all real or complex values of x
if is, e.g., bounded.

If we now apply this heat-flow transformation to our basic fc-order spline curve

1 f*/2 sinu/2 k
Mk(x) = Z—JI \( ------------- / ) e"zdu (36)

we obtain by (35) its smoothed version

1 rx .12 sin u/2\ k.
Mk(x, ) = — e-«u/2>-§ eiuzdu. (37)
2irJ -a, u |/
Obviously
Mk(x, 0) = MIK{x). (38)

12See H. S. Carslaw, Mathematical theory of the conduction of heat, Dover Publications, New York,
1945, Chapter |11, Section 16. Certain smoothing properties of heat flow were already noticed by Ch.
Sturm in 1886. See in this connection G. Pdlya, Qualitatives Uber Warmeausgleich, Z. angew. Math. u.
Mech. 13, 125-128 (1933). It should be mentioned here that Weierstrass derived his famous approxima-
tion theorem by means of the integral (33). Finally see E. Czuber, Wahrscheinlichkeitsrechnung, vol. I,
Leipzig-Berlin, 1924, pp. 417-418, for a brief sketch of a method of using (33) to derive analytic approxi-
mations to given data.
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The graph ofy = Mk(x, t) (¢>0) is a bell-shaped curve which dampens out very fast.
Later we shall learn how to compute its values very accurately. Here we mention that

0< MK, ) < © *(*m+>5- ' if xS ki2. (39)

\ixt

Also, the recurrence relation 111(6) generalizes so that M k+(x, t) is obtained by the
averaging operation

[ w+1/2
M k(x, t)dx. (40)
1- 1/2
If now
@
ey = X ynMk(x —n) (41)
nH—o
is a spline curve of order k, then its heat-flow transform is
®
x>ty = X VnMk(x - n,t). (42)

The graph of this function may be called an analytic spline curve of order k. We notice
that the series (42) fails to converge only if  increases very fast with |n\.
Summarizing we see that the curve (42) arises from the step function

X ynM x{x —n)
n

by &—1 successive applications of the averaging operation

e1+ 1/2

( )dx
|x71/z
followed by the heat-flow transformation during a time interval t. The order of ap-
plication of these k operations is of course irrelevant.
The remaining parts of the paper are devoted to the problem of utilizing the two
families of curves (41) and (42) for the purpose of approximating given equidistant
data.

XV. A FIRST CLASS OF ANALYTIC INTERPOLATION FORMULAE

We shall now use the analytic spline curves 111(42) to obtain

1. A smoothing interpolation formula which is exact for the degree 1 only.

2. An ordinary interpolation formula exact for the degree k —I.

3. A smoothing interpolation formula depending on a positive parameter e, of
strictly increasing smoothing power as e increases. For €= 0 this formula reduces to 2,
while for e= o it is identical with 1.

4.1. A smoothing interpolation formula exact for the degree 1. A comparison of
the formulae 111(15) and 111(42) immediately suggests the following analytic inter-
polation formula

()
F(x) = X y<iMk(x - n, t) 1)
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whete Mk(x, t) isdefined by 111(37). For the sequel we shall use the following notation

12 sin w/2\ k
M«.t) = e-«“/22( -mmmmmmmmmmmeen , )
2sinu/2\ 1
ik(u) = ipk{u, 0) = (- J A3)
u
in terms of which 111(37) becomes
[ .
Mk(x, t) = — I pk(u, t)ciuxdu. 4
(x, 1) o) P (u 1) (4

The characteristic function of the smoothing formula (1) for integral x is

®
<tku /) = X MKk(n, t) cos nu. (5)
n—eo
The general relation 11(30) furnishes the following equivalent expression

[e0)

4>k(u, ) = X CPkiu + 2xi>, /). (6)

The properties 111(18) for the case /=0 generalize for (>0 as follows
1> "*(m.0 > [)>eoe> <fX« [)>eee> 0, 0< «<2x,1>0). (7)

Moreover, for each fixed u, 0<«<2x, *(«, /) is strictly decreasing as / increases.
These last two properties we state without proving them here.

The arguments which lead to Theorem 4 now allow us to state the following theo-
rem.

Theorem 7. Fort>0, &= 1, 2, ¢ » o,

®
F{x) = X) }nMk(x —n, t) (8)
(=)

is an analytic smoothing interpolation formula which is exact for the degree 1 and pre-
serves the degree k —1. The smoothing power of (8) increases whenever either k or tis in-
creased.

4.2, An ordinary interpolation formula exact for the degree k—1. We shall now
use the important property (7) to the effect that the periodic function <>y, t) is posi-
tive for real u. This allows us to define the basic function

L fMPK,

Lk(x, t) = — e
2xJ _M <pKu, t)

iuxdu 9)
whose characteristic function is
'f'kiu, t)
«(«) = :t>k(TJ,£r) ] (10)
Our Theorem 2 of Chapter Il will readily yield the following result.

Theorem 8. FoOr /SO, k—l, 2, 3, e o
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F(x) = g y«Lk(x - n, t) (12)
Ne—a

is an ordinary interpolation formula which is exactfor the degree k —1.

Firstly we realize by (10) and (2) that the conditions 11(33), (34) of Theorem 2
are verified. Therefore (11) preserves the degree k—1. Secondly we have by (6), (10),
and 11(30)

pk(u + 24 t) 1 N
o ((+ - — _ + * = "
4=((9 )9 q 2ttv) )9 I+ iy, t_'—) t)_yE M « 2 V<O -
Thus 11(31) holds and (11) is therefore an ordinary interpolation formula. This con-
cludes the proof of our theorem. Indeed, by the remark following Theorem 2 our
formula (11) must also be exact for the degree k—1.
We also mention withoutfurther details the following two limitingrelations
k(u, t f k(u, t 1 if ml|<t
lim p() = Ilm() ----- = (< ) I| l ] (12;
i-» <k(u, t) *» >y, t) O if Jul|>ir
They show,in view of the integral representation (9), that our present basic function
Lk(x, t) converges towards the basic function 11(6) of the original cardinal series when-
ever either k or else t tends to infinity.

4.3. A family of smoothing interpolation formulae depending on a smoothing
parameter e. In section 4.1 we have derived the smoothing interpolation formula (8)
in the derivationof which no attempt was made to compromisebetween smoothness
of results andgoodness of fit. Such a compromise is affordedby thefollowing basic
function
r“ €+ dku t)

1 -
Lk(x, t,e) = — 1 ~ik{u, t)exuxdu O0reg (13)
2irJ-x e+ ty

which depends also on the smoothing parameter e. The corresponding interpolation
formula
@®
F(X) = E yrdhk(x - 1, ¢t t) (14)

includes our previous formula (8) and (11) as special cases. Indeed by (13) ,(4) and
(9) we find

Lk(x, t, 0) = Lk(x, f), (15)
LK{X, t, o0y = Mk{x, t). (16)
Let us now investigate the characteristic function of thesmoothing formula(2

for integral x.By (13) and 11(30) this characteristic function is (Jg>k(u,t) isperiodic!):

Mu t e = —— — —E <Mm+ 21*vio-
«+ &H{u, ty

This and (6) give
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4k(u, t, e) = («<f*«, 1) + <tk(u, 02/(e + <tKu, 1)2. @an
On the other hand we have by (7) the inequalities
0 < &Ku, t) <1, (0 < m< 2, t> 0). (18)
Now (17), (18) imply
0 < g%{u, t, e) <1, O<u<?22tt>0e>0), (19)
and therefore (14) is a smoothing interpolation formula in the sense ofsection2.21 b.
Moreover, we see from (17) that for fixed t and u (Q<u<2ir) (Fk(u,t, e)decreases

monotonically from
(U, /,0) = 1 to <k{u, t, < = GKu 1)

as evaries from e= 0 to e= a> Finally (14) is exact for the degree 1 and preserves the
degree k—\ for the same reason as mentioned in the case of (8).
We summarize these properties in the following theorem.1

Theorem 9. For t"0, k=1, 2, e,

F(x) = ynLk{x - n, t, e), (20)

n»—co

of basicfunction (13), is a.smoothing interpolation formula which is exactfor the degree 1
and preserves the degree k —1. For e= 0 (20) is identical with the ordinary interpolation
formula (11). For increasing values of e it increases in smoothing power until for e= &
(20) is identical with our smoothing formula (8).

4.31. A property of the derivatives of the approximation F(x). Let the given data
{yn} satisfy the additional condition

&—CO lyn\ < 00 (21)
U

Assume also (>0, e>0. We know that the sequence {F(w)} obtained by (20) is
smoother than {yn}in the sense of our discussion in | Section 1.1. However, it appears

BThe method used in deriving Theorems 8 and 9 obviously generalizes as follows. Let
L) = & 7 guedi
2r

be a basic function. Let the periodic function

0 =Y, &+ 2™
satisfy the inequality 0O<<tfg 1l
Then "
| " £ giau
I,w =j

is the basic function of an ordinary interpolation formula. Moreover

1 r* ¢

gives rise to a family of smoothing formulae of increasing strength, as eincreases.
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to be of some interest to discuss here the smoothness of the function F(x), rather
than that of the sequence {F(?0}t as a function of the smoothing parameter e In
this connection we prove the following

T heorem 10. Denote by F(x, e) the approximation (20) so as to indicate its depend-
ence on e. The condition (21) insures the convergence of the integrals of the squares of
the derivatives

£(F"(X, e)AX, (M=0,12 o2). (22)

Also each of these integrals is a monotonically decreasing function of e in the range
O<e< «
Indeed, let

o

T{u) = X y»ein“ (23)

n— co

be the characteristic function of the sequence {y,}. For convenience we define

6 -|- 6k(uft)
QKU **E) - ¢y Leiu'p* e (24)
Then (13) becomes
1 r”
Lk(x, t, e = Z—Jrl Ot(M t, e)pk(u, t)e~iuxdu. (25)
X

By substitution of (25) into (20) we obtain
1r .
F{x, ¢) = a JI &*(«, t, e)pk(u, t)T(u)e~iuxdu. (26)
i d

We may evidently differentiate under the integral sign obtaining

F<am)(a, e) = L Ir i2*(«, t, t)pk(u, t)T(u)(— iu)me~tuxdu.

2ir

This formula exhibits the Fourier transform of F (ma;, e). We now use the analogue
of the Parseval relation for Fourier integrals finally obtaining

f (F<->(*, V* = — f O*#, 1, )™ («, 0)2].[(W) |V-dw. 27)
o/ 2irJ

This relation establishes our theorem. Indeed, by (24) the behaviour of the function
12it(w, t, €) of period of 27, is as follows: fli(0, t, f) = 1, while for each fixed u, 0 <u < 2ir,
it decreases from

nk(u, t, 0) = 1/ 4&k(u, t) to Qk(ti, t, co) = 1,
as eincreases from e= 0to e= a>.

The discussion of | section 1.2 concerning the smoothing of a finite table also has
an analogue concerning the derivatives of the approximations F(x, e). We state the
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result without further details. We assume the concrete situation of | section 1.2 where
a finite table was extended to an infinite table by constant third differences at each
end. To this extended table we apply our formula (20) with such a value of k which
will insure that the formula (20) preserves cubics, i.e., &”"4. Then we can prove that
the integrals (22) converge for m=4, 5, 6, » » « and represent decreasing functions
of e

4.32. Formula (20) as applied, to subtabulation. Our formula (20) is excellently
suited for the systematic interpolation, or subtabulation of given ordinates y,,. It is
less suited for interpolation. The reason is obvious: For subtabulation to tenths we
need only a table of the basic function Lk(x, t, e) for the step h=0A only, while inter-
polation would call for a much more elaborate table of this function.

The following transformation of the formula (20), in terms of the function
Mkipc, t), is of importance for numerical applications. First of all we expand the even
periodic function (24) in a Fourier (cosine series)

derd-E 0y G, w_®© _
et o) = = RO S L ) & cos wu (28)

Substituting this expansion into (25) we get

Lk(x, t e = Y \ ~ 1 tkiu, Dei(* 1)
( ) o {)Zt”%I Jei(* 1)rivy

which in view of (4) becomes
Lk(x, t,e) = Y u’ \I<t)Mk(x —V, /). (29)
ya-o

This formula expresses the basic function Lk(x, t, €) in terms of the Mu(x). If we sub-
stitute this expansioninto our formula (20) we obtain

FO) = Y ynlkfx - n, t,Q = Yty \t, e)Mk(x - n - v, 1)
n nr

and replacing vhy v—n
F(x) = Y ymji-n(t, t)yMk(x —v, t).

n,v

A first summation by n introduces the sums
f, — v ynd-nit, €) (30)

in terms of which our last expression becomes

@

F(x) = Y f'Mu(x - vy t). (31)

The pair of relations (30) and (31) is equivalent to (20) and represents its practical
form. The reason for this is that the basic function Mk(x, t) dampens out like
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exp(—x*) (see Il (39)) while Lk(x, t, ), e< «mdampens out like exp(—x) only. We
notice incidentally that (31) is identical with our formula (8), to be applied to the new
computed ordinates {/,} given by (30).
Frequently we require also tables of the derivatives F'{x) and F"(x), of the ap-
proximation F(x). These are then computed by the formulae
F'(x) = V1), (319

v

F'(x) ~Z, f,Mk'(x - v, 1), (31"
from corresponding tables of M1 and Mi' m
4.33.The least squares origin offormula (20). We want to sketch briefly the genesis
of our formula (20). Let the sequence {y,} be given and consider the spline curve
F(x) given by (31), where the coefficients {/»} are as yet unknown.If we try to deter-
mine theseunknowns by the requirement that F{x) should interpolate strictly the
given ordinates yn, i.e.,

F{n) = yn (nN=0,%£1 % 2 ¢om), (32)

we obtain an infinite system of linear equations in the unknown /,, the solution of
which was found to be given by

v= 2 yru(-n(t, 0).
n=>—0
This leads to our ordinary interpolation formula (11).
In view of W hittaker’swell known smoothing method it seemed natural to proceed
now as follows: Let thea given positive number. To determine the unknown coefficientsf,
of (31) as solutions of the following minimal problem, we set

Z (F(n) - yn2+ e-Z (—>)2= minimum. (33)

For t=0 the solution is of course identical with the solution of the ordinary inter-
polation problem (32). For e= « the solution isobviously=y,, in which case (31)
reduces to (8). For ° a system of “normal equations” arises whose solution is
found to be given by(30). The explicit solution of these normalequations (matrix
inversion) is performed by the numerical determination ofthe cosinecoefficients w,
of the expansion (28) for each given set of values of k, t and e.

V. THE COMPUTATION OF THE TABLES I, II, III

In this last chapter we shall discuss the methods used in the computation of our
tables which allow us to use our formulae (30), (31) or

In = Z y*n-/{t, e), (@)
F(x) = Z00 fnMk(x - n, t), 2)

for subtabulation to tenths.
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5.1. The computation of the function Mk(x, t) and its derivatives. This function
is defined (see 111(37)) by the integral
MK(x, ) | fI “ ,{2 sin u/2\1k_ id t> 0)
X, ) —— e | eiuidu, .
2xJ _m \ u / (8)

m-or the special case of/=0and k=1, 2, 3, » » « we found previously the explicit poly-
nomial expressions 111(3). It now so happens that for our present case of t> 0 (3) al-
lows us to define our function also for k=0 as

1r
Mo(x, t) = — | e~ (“/2)V “xEnt.
2irJ - x

This last integral is known to be identical to

MQx, t) = — e-x2/ht. @)
v Tit
The recurrence relation 111(40) shows that (3) is obtained from (4) by repeating k
times the averaging operation
| Wiz X
or Sj .
x-112 i
The result, however, is not changed if we perform all k integrations first to be fol-
lowed by the operation Sk of &th central differencing. This proves the following result:
I f we define a sequence offunctions gu(x, t) by

ga{x,f)=—— e-xli* (5)
V ™
and the recurrence relation
gk(x, ) = f gk-i(x, t)dx (k= 1,2 3 com), (6)
J -co
then
Mt(x, t) = 6kgk(x, t). 7

This relation reduces the problem to the problem of computing therepeated in-
tegral gk{x, t)ofthe error function (5). This we do as follows. It is easy to prove by
induction or otherwise that (5) and (6) imply

W ith x —u —v this becomes

GO IR T e T ®

By differentiating this with respect to x we get
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gi(s, t) = —— f 2xl- 1+ 2vtr')dv

2% 2k
¢ gk(x, t) + 3 gk+i(x, t)

and therefore the recurrence relation
gk+i(x, /) = — g5 (*. 0 + — gk(x, /), (k=12 mem) (10)

which allows us to compute the successive values gk{x, /) by the operation of differen-
tiation rather than integration. Indeed from (5) and (6) for &= 1 we get

gi(s, t) = —— | e~-xAdx. (11)
Vvt -«
Now (11) and (10) for k=1 will give
. 1 . 1 rx
gix,/) = — — ex>+ x—_ | e-xltdx
-y irt v oirtd -»

from which g3(x, /) is readily determined.
This progressive computation is greatly simplified if we realize that gk{x, t) will
appear as an expression of the form

gk(x, ) = Pk(x, t)gax, /) + Qk(x, 2)gi(s, /), (12)

where Pk, Qkarepolynomials in x and /, while gQ(x, t) is the errorfunction (5) and
gi(x, 2 isthe errorintegral (11). Substituting (12) into (10) we find

gk+i(x, 1) = — (Pi + Qi)go{x, /) -f » — Qk + — Qk” gi (x, t).

On comparing with (12) for fe+ 1, rather than k, we obtain the recurrence relations

Pk+i = A7 {Pi + QK
2«
k+ti = 2Q i +~Qk k = 1,2 eee). 13
Q 2|(Q I(Q { ) (13)
Since Pi=0, 0i =1 we readily obtain the following explicit expressions
P2= 12, Qi =x,
Pz = /s/4, Q « /14 + *72,
Pi = /(/+ s23/12, Qi =s(3/ + 2s2/12, (14)
P6= tx{5t+ 252/96, 0s = (3/2+ 12/s2+ 4*4/96,
Ps = /(4/2+ 9/s2+ 254/480, 06=s(15/2+ 20/s2+ 4s4/480.

Excellent tables of the probability function (5) and its integral (11) are now available.
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By means of these tables the formulae (12) and (14) allow us to compute readily the
function gk(x, t).u It seems worth while to point out that the relation (7) goes over
into 111(8) if /—+0. Indeed by an obvious change of variable we see that (11) becomes
. 1 rxk'i‘* a
gi(x, t) = — 1 e~udu
WVALE J -

and therefore
lim gi(x, t) = x+
<-+0
Now by induction we prove by (6), on letting /—»+ 0, that

lim gk(x, t) = Kl
t-+o

1 X
(k — 1)1
which proves our last statement by continuity.

The computation of the derivatives of Mk{x, t) is immediately settled by the rela-
tion

MK\x, ) = Skgk-,(x, 1), (15)

which is implied by (6).

5.2. The computation of the cosine coefficients oY) {t, ¢). By IV(5) and 1V(28)
we can seethat the problem consists in computing the values of the coefficients of
the cosine expansion of the function

. . n
th(«, { e§ = —t(—(—;—%s{ﬁ t(;—: 2, w» (h \'/\lcos nu> (16)

where the even periodic function <>*« t) is defined by its cosine expansion

00

<t>k@u, t) = X) M k{n, t) COS mm. )

141 owe to D. H. Lehmer the reference to the functions Hh,,(x) defined by
Hko(x) = J e~l,12dx, Ihn{x) = 3 M,,-i(x)dx.

Tables of these functions were published by J. R. Aircy as Tables XV, Group IV, of the Mathematical
Tables of the British Association for the Advancement of Science. The relation between our gt(x, t) and
these new functions is

o, 0= 4 = xs/211).

This relation, for fc= 4, t=\, would readily allow us to compute our Table | by means of Airey’s tables
of Hhh Hit2and llh,. However, for other sets of values of k and t, such as k=8,t=  which are needed
for other purposes, the range of X in Airey’stable becomes insufficient. In this case tables of Mk[x, t) and
its derivatives are computed by our formula (12) and the excellent Tables of Probability Functions, vol. |
(1941), vol. Il (1942), prepared by the Mathematical Tables Project under the direction of A. N. Lowan.
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The coefficients Mk(n, t) of this extremely fast convergent series are readily computed
to 10 decimal places. The obvious procedure would be to compute from (17) a table
of t), then compute a similar table of B*(m, t, ) which is then to be used in
computing o3, by some method of numerical harmonic analysis. It would be hard to
achieve accuracy by this method and for this reasonwe proceeded differently. It should
be born in mind that the cosine expansion of the denominator of (16) is readily ob-
tained by the simple operation of multiplication of Fourier series. The only trouble-
some part is the computation of the expansion

1 ®
= X) cos llu< (18)

i.e., the reciprocation of a given cosine series. This was done as follows. The above-
mentioned method of a 24-ordinate harmonic analysis scheme was used for obtaining
values of the c,’s accurate to 4-5 decimal places. These values were then improved
to values accurate to 8 or 9 places by an iteration method developed by H. A. Rade-
macher and the author. This method is closely related to the method recommended
by H. Hotelling for the reciprocation of ordinary matrices and will be described else-
where.

In concluding this paper we want to point out two special cases of our ordinary
interpolation formula (11), or (20) for e= 0, which are of mathematical interest. We
mention first the case of ; =0, (>0. This corresponds to interpolating our ordinates
y,, by means of a function F(x) as described by the formula (8) of the Introduction.
Although, as remarked there, the resulting interpolation formula is useless for practi-
cal purposes, it has the remarkable feature that the expansion coefficients coi0)(t, 0)
of (16) may be obtained explicitly. Indeed the function po(u, t) reduces to a Theta
function which is a regular and uniform function of

with singularities only at z=0 and z= oo. The simple zeros of this function are real,
negative and form a geometric progression. As a result we are able to find explicitly
the decomposition in partial fractions of the reciprocal

1*o(«, 0-

The expansion of these partial fractions into geometric power series furnishes ex-
plicitly the Laurent expansion in powers of z and therefore also the cosine expansion
(16).

The second special case of interest is k>0, t=0. In this case our formula (11) re-
duces to an ordinary polynomial interpolation formula of degree k —1 and class k —2.
This does not contradict Mr. Grevillc’s statement (loc. cit. page 212) to the effect
that such formulae do not exist. Indeed Mr. Greville considers only basic polynomial
functions L{x) of finite span 5 only, while our basic A*(x, 0) are of infinite span. This
case, which is of considerable interest, requires a more detailed investigation of the
cosine polynomials <>*w, 0). We postpone this discussion to the second part B of
this paper.
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APPENDIX

Description of the tables and their use for the analytic approximation
of equidistant data.

Tables I and Il. In Table | we find the 8-place values of the even function
1 Cc” - [2 sinm/2\4
M(x) = — I e-u /8\1---§E} ------- cos uxdu 1)
u

and its derivatives M'(x), M"(x) for the step of Ax=0.1. The graph of M(x) is a bell-
shaped curve and M(x) vanishes to 8 places for x* —4.3 and x 2:4.3. We now define
a function of period 2w by the cosine series

0) + 2M{\) cosu + 2M{2) cos 2u + e« (2)
and expand in cosine series the following functions
e+ <0 .
= &0 + 2a>i(e) cos u + 252(e) Cos 2«+mem> ©)
e+ <p{u)2

where €is a non-negative parameter. Our Table Il gives the 8-plane values of these
coefficients for e=0, 0.1, 0.2, me ¢, 1.0.

These tables may be used as follows to obtain an analytic approximation F(x)
to our ordinates yv. We discuss first the case when F(x) is to interpolate the ordinates,
in the usual sense, i.e.,

I(«) = . @)
For this end we compute first from the sequence {yn} a new sequence of coefficients
{fn} by means of the formula

fr — eoe+ y28320) + >>nWHI0) + ynWo(0) + v, +IWI(0) + SH2N20) + *' (5)
or

fn- Z) yan {0), (59

where wm=w_m The analytic approximation of the ordinates ynis then given by
Fo) = - o) ®)

The values of F(x), x to even tenths, are now readily computed. Thus
F(2.3) = f-iM (3.3) + famM(2.3) + fxM{1.3) + / 2M(0.3)
+faM (- 1+ )+ faM (- 2+ )+ faM (- 3+ 3) + /6 (- 4 + .3).
The tabular values of M{x) are so arranged that all 8 values needed in this computa-
tion are found in the fourth column headed x+.3. Generally, if the values of/n are
written in a vertical column, we compute the values of F(m+v-10_1) (v=0, 1, mmm, 9)

by matching the column of values of/,, with the j>th column of the table of M(x) in
such a way that/mcorresponds to the row for x= 0. The products

foM {m —n + vml0_ 1)
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are then accumulated in the products counter of a desk computing machine. Also the
values/,, are best computed by (5') in a similar way if the column of values of co,,(0)
is extended upwards by symmetry for negative values of n.
From the tables of M'(x) and M"{x) we may likewise compute tables of the de-
rivatives of F(x) by
Fe(*) = £ [«Afe(* - »). @)
n

A check of the computation of the coefficients/» is afforded by (4). Indeed the values
F(n) computed by (6) should agree with the y,, to about eight significant figures.

The formula (6) is exact for cubics, i.e., if the y,, are the ordinates of a polynomial
of degree at most 3, then F(x) is identical with that polynomial.

If the conditions (4) of strict interpolation are not required, then we have the
possibility of obtaining an approximation F(x) which is such that the sequence
{F(n)} is smoother than the given {y»}. The approximation F{x) is then given
by the pair of formulae

fn — )(lyy"n~>(€)> ()]

F(x) = ZfnM (x-n), ©)
n

which are applied as above. The choice of the value of the smoothing parameter e
depends on the amount of smoothing desired. The strongest smoothing afforded by

our table is obtained for £= -)-<». Then (3) shows that wo(co) = I, wl(oo)=aj2(co)
= mme =0. Thus (8) becomes/» =ynand (9) reduces to
F(xX) = £ ynM(x —»). (120)
n

This formula is especially simple to apply. It should be remarked however that, if
€>0, our formula (9) is exact only for linear functions and the same is true of (10).

Table Il1l. We may eliminate the coefficients /,, between (8) and (9). In terms of
the new even function

®
L{x, & = £ oan(e)M(x —n), (12)
ma—@
our formulae (8), (9), then reduce to
F(x) = ynL(x - n, e). (12)
n

Table Illgives the values of L(x, e) and L"{x, €) for e=0,0.1, <+« 1.0for the step
AxX'=0.5. These may be used for subtabulation to halvesinpreference to (5), (6) or
(8), (9). For subtabulation to fifths or tens, the use of formulae (8), (9) is preferable
because of the slower damping of the function L{x, c). Even so, formula (12) and
Table 111 allow us to estimate quickly how well F(x) approximates the y,. By (12) we
have

F'(x) = £ ynL"{x - 1, ¢e). (13)

The table of L''(x, €) then allows us to compute quickly a table of F"(x) for the step
Aac= 0.5 or else only isolated values if such are needed.
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Example of subtabulation to tenths. We consider the following fairly smooth se-
quence of 64 ordinates y,,:

n yn n y» 1 yn it y« ii 3n n y»
1 24614 12 25370 23 29290 34 73820 45 82450 56 79962
2 24644 13 25504 24 30160 35 77830 46 82290 57 79698
3 24680 14 25660 25 31320 36 80240 47 82110 58 79431
4 24723 15 25850 26 32840 37 81660 48 81911 59 79161
5 24772 16 26080 27 34790 38 82330 49 81699 60 78889
6 24828 17 26350 28 37260 39 82680 50 81472 61 78614
7 24892 18 26660 29 40440 40 82840 51 81234 62 78338
8 24966 19 27040 30 44750 41 82830 52 80987 63 78060
9 25048 20 27490 31 51120 42 82780 53 80736 64 77780
10 25143 21 28010 32 59390 43 82700 54 80481
11 25250 22 28600 33 67550 44 82590 55 80223

The differences of the section of this table with which we will be concerned are as
follows:

n yn A A2 A3 A4 A3
27 34790

28 37260 2470

29 40440 3180 710

30 44750 4310 1130 420

31 51120 6370 2060 930 510

32 59390 8270 1900 - 160 -1090 -1600
33 67550 8160 - 110 -2010 -1850 - 760
34 73820 6270 -1890 -1780 230 2080
35 77830 4010 -2260 - 370 1410 1180
36 80240 2410 -1600 660 1030 - 380
37 81660 1420 - 990 610 - 50 -1080
38 82330 670 - 750 240 - 370 - 320

We illustrate the case of strict interpolation, i.e., we use our Tables Il for e= 0. From
our formula (5) and the values of  as given in the column of Table I, with the head-
ing e= 0, we obtain the following coefficients.

n fn

27 34662.222
28 37031.355
29 40215.195
30 44060.182
31 50349.304
32 59490.524
33 68212.510
34 74566.216
35 78283.074
36 80460.234
37 81953.811

38 82356.888
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From these values and our Table I of M(x) and M"(x), we obtain by the formulae
(6) and (7) the following tables of F(x) and F"(x) with their differences.

Table of the function F(x) anti of its second derivative F"(x).

* F(x) A Al A3 Al F"(x) A A3 A3 A4
31.0 51120.00 2117.97

31.1  51884.17 76417 1966.48 -15149

31.2  52667.97 78380 1963 1787.44 -17904  -2755

31.3  53469.63 80166 1786  -177 1583.71  -20373  -2469 286

31.4  54287.11 81748 1582  -204  —27 1359.15  -22456 -2083 386 100
31.5 55118.17 83106 1358  -224  -20 1118.30 -24085 -1629 454 68
31.6  55960.40 84223 1117 -241  -17 866.08 -25222  -1137 492 38
31.7 56811.29 85089 866 -251  -10 607.04 -25868 - 646 491 - 1
31.8 57668.25 85696 607 -259 - 8 346.89  -26051 - 183 463 -238
31.9 58528.68 86043 347  -260 - 1 88.63 -25826 225 408 -55
32.0 59390.00 86132 89 -258 2 - 163.98 -25261 565 340 -68
32.1  60249.69 85969 - 163 -252 6 - 408.22 -24424 837 272 -68
32.2  61105.30 85561 - 408 -245 7 - 642.14  -23392 1032 195 -77
32.3  61954.51 84921 - 640 -232 13 - 864.26 -22212 1180 148 -47
32.4  62795.08 84057 - 864 -224 8 -1073.51  -20925 1287 107 -41
32.5  63624.93 82985 -1072 -208 16 -1269.11  -19560 1365 78 -29
32.6  64442.10 81717 -1268 -196 12 -1450.39 -18128 1432 67 -11
32.7  65244.77 80267 -1450 -182 14  -1616.76 -16637 1491 59 - 8
32.8 66031.30 78653 -1614 -164 18  -1767.70 -15094 1543 52 - 7
32.9 66800.16 76886 -1767 -153 11 -1902.77  -13507 1587 44 - 8
33.0  67550.00 74984 -1902 -135 18  -2021.68 -11891 1616 29 -15
33.1  68279.64 72964 -2020 -118 17 -2124.30 -10262 1629 13 -16
33.2  68988.05 70841 -2123 -103 15 -2210.71 - 8641 1621 - 8 -21
33.3  69674.37 68632 -2209 - 86 17 -2281.13 - 7042 1599  -22  -14
33.4  70337.91 65354 -2278 - 69 17 -2335.91 - 5478 1564 -35  -13
33.5 70978.07 64016 -2338 - 60 9 -2375.46 - 3955 1523 -41 - 6
33.6  71594.50 61643 -2373 - 35 25 -2400.17 - 2471 1484 -39 2
33.7  72186.94 59244 -2399 - 26 9  -2410.41 - 1024 1447 -37 2
33.8  72755.29 56835 -2409 - 10 16  -2406.55 386 1410 -37 0
33.9  73299.58 54429 -2406 3 13 -2389.01 1754 1368 -42 - 5
34.0 73820.00 52042 -2387 19 16  -2358.32 3069 1315 -53  -11

An inspection of these tables shows that they are very smooth and that they define
F(x) and F"(x) to 7 significant figures by 4-point central interpolation. We have
chosen on purpose an example for which it would be hard to obtain similar results by
standard methods, if we are to maintain the forced accuracy requirement, and the
same high degree of consistency between the function F(x) and its second derivative
F"(x). For purposes of comparison we show also the interpolated values Fc(x) for the
range x =31.6—32.5 obtained by the 10-point central interpolation method.

On comparing with our table of F(x) we notice that

Fc(x) < F(x)

throughout this range, with the exception of the point x = 32.0 where, of course, both
values agree. The curve Fc(x) has a corner at x = 32. This is the typical discontinuity
in the first derivative due to central interpolation methods (see the first paragraph
of our Introduction).
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Ac(.r) A D A3 A
31.6 55959.90
31.7 56810.60 = 83070
31.8 57667.55 85693 625
31.9 58528.22 86067 372 -253
32.0 59390.00 86178 111 =261 -8
32.1 60248.72 85872 - 306 417 -156
32.2 61103.61 85489 - 383 -7 340
32.3 61952.37 84876 - 613 -230 -153
32.4 62792.77 84040 - 836 -223 7
32.8 63622.68 82991 -1049 -213 10

Notice that we needed 12 coefficients /,, for the subtabuiation of three panels.
Each additional coefficient/,, (w= 39, 40, « « «) allows the subtabulation of an addi-
tional panel.

It should be remarked that 53 ordinates yn enter into the computation of each
coefficient/,,. This is due to the slow rate of damping of the w,(e) for 6= 0. Thus for
e= .1 (very moderate smoothing) only 35 ordinates yn are needed, for e= 1.0 only 23,
for e — co only 1. Concerning the important matter of dealing with the ends of a table
see section 1.2 and the last paragraph of section 4.31.

Table I: MK{X, vy, MI (x, /), M 1" (X, 1) for ;=4, /=0.5, A*=0.1.

Mt(x, 1/2)

X * 40 X+ .1 X+.2 X+.3 X+ A

4 .00000004 .00000002 00000001

3 00011325 .00005910 .00002991 00001467 .00000697

2 01616917 .01105340 .00737858 .00480621 .00305258

1 22597004 18940616 15590118 12596479 09986387

0 51549499 51132566 49901141 47911917 45254731
-1 22597004 26483185 30499058 34523755 38420963
-2 01616917 02311310 .03230776 04418973 .05917998
-3 00011325 .00021062 .00038032 .00066726 00113822
-4 .00000004 .00000010 .00000026 .00000062 .00000143

X *+.5 x-p.6 x+.7 *+.8 x+.9

3 00000321 00000143 .00000062 .00000026 .00000010

2 00188907 00113822 .00066726 .00038032 00021062

1 07764689 .05917998 04418973 .03230776 02311310

0 142046084 38420963 34523755 30499058 26483185
-1 142046084 45254731 47911917 49901141 51132566
-2 07764689 09986387 12596479 15590118 18940616
-3 .00188907 .00305258 00480621 .00737858 .01105340
-4 .00000321 .00000697 .00001467 00002991 .00005910

—5 .0000000]1= .00000002
' > ,ti.ru'i
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O = N WA

-1
-2
-3
-4

O = N W

-1
-2

-4
-5

O R N WH

-1
-2

-4
-5

O b N WA

-1
-2
-3
-4
-5

*+0

- .00000039
-.00071955
-.05961795
-.37860391
.00000000
.37860391
.05961795
.00071955
.00000039

k+.5

-.00002542
-.00931577
-.20306520
-.34404758
.34404758
.20306520
.00931577
.00002542

A+ .0

.00000357
.00423106
18251117
.23181861
-.83712882
.23181861
18251117
.00423106
.00000357

*+.5

.00000003
.00019097
.04089359
37617315
-.41725773
-.41725773
37617315
.04089359
.00019097
.00000003

I.J. SCHOENBERG

X+A

.00000015
.00039340
.04334506
35140346
.08306134
.39695855
.07996844
.00127546
.00000096

a+t.6

.00001179
.00592117
16673619
.37855467
29541674
.24150489
.01424920
.00005298
.00000001

X+A

.00000145
.00243772
14368197
.30800376
.81763132
13144694
22494722
.00710375
.00000851

a+t.6

.00000001
.00009259
.02768079
.34845442
27209706
.55301267
38991971
.05858190
.00038024
.00000008

Mi (x, 1/2)
X+.2

-.00000006
-.00020833
-.03071644
-.31784825
-.16227165
40419276
.10465732
.00219236
.00000229

*+.7

-.00000529
-.00365652
-.13368990
- .39846265
.23406492
.28043885
.02120376
.00010680
.00000002

MI'(x, 1/2)

X+.2

.00000056
.00135797
10978191
.35890239
-.76058819
.01013023
.26885281
.01154277
.00001955

X+A

.00004332
.01816077
.31126005
-.12678241
-.67020231
.38537940
.08140988
.00073109
.00000021

*+.3

- .00000002
-.00010680
-.02120376
-.28043885
-.23406492
.39846265
.13368990
.00365652
.00000529

s+.8

-.00000229
-.00219236
-.10465732
-.40419276
16227165
.31784825
.03071644
.00020833
.00000006

X+.Z

.00000021
.00073109
.08140988
.38537940
-.67020231
-.12678241
.31126005
.01816077
.00004332

A<p.8

.00001955
.01154277
.26885281
.01013023
-.76058819
.35890239
10978191
.00135797
.00000056
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X+A

.00000001
.00005298
.01424920
24150489
29541674

.37855467

.16673619

.00592117

.00001179

-C+9

.00000096
.00217546
.07996844
.39695855
.08306134
.35140346
.04334506
.00039340
.00000015

A+ 4

.00000008
.00038024
.05858190
.38991971

.55301267

.27209706
34845442
.02768079
.00009259
.00000001

A+ 9

.00000851
.00710375
22494722
13144694
.81763132
.30800376
14368197
.00243772
.00000145
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11
12

e=.0

3.50637741
-1.84900618
.87238793

- 40443570
18693997
-.08636451
.03989615
-.01842978
.00851350
-.00393275
.00181670
-.00083921
.00038767
-.00017908
.00008272
-.00003821
.00001765

- .00000815
.00000377
-.00000174
.00000080
-.00000037
.00000017

- .00000008
.00000004
-.00000002
.00000001

1.20834767
-.05268720 -
-.06387537 -

.01107108
.00219079
- .00091344 -
-.00000351 -
.00005180
-.00000656 -
-.00000206 -
.00000064
.00000003
-.00000004 -

APPROXIMATION OF EQUIDISTANT DATA

Table 11: JA(I, t) for k=i, 1=0.5, e=0 (0.1) 1.0

e=.1 e= .2
1.61378653 1.39953009
-.26890929 -.14132793 -
-.08981772 - .09332063 -
.07027891 .04023694
-.02078617 -.00397484
.00133949 - .00223908 -
.00169234 .00099749
-.00088114 -.00010447
.00019734 - .00005372
.00001073 .00002469
- .00002625 -.00000273
.00001022 -.00000129
-.00000156 .00000061
- .00000044 - .00000007
.00000036 - .00000003
-.00000011 .00000002
.00000001
.00000001
£= .6 £= 7 £= .8
1.18095463 1.16016154 1.14379093
.04264921 -.03556878 -.03034057
.05710538 -.05156939 -.04698035
.00773445 .00547641 .00389078
.00218246 .00204868 .00187682
.00062674 -.00043120 -.00029659
.00004704 -.00006163 -.00006358
.00003700 .00002545 .00001716
.00000140 .00000085 .00000171
.00000175 -.00000127 -.00000087
.00000025 .00000006 -.00000002
.00000006 .00000006 .00000004
.00000002 -.00000001

£= .3

1.30308904
.09293505
.08242675
.02480160
.00050538

.00188468
.00037463
.00005298

.00003828
.00000455
.00000174

.00000070
.00000003
.00000004

.00000001

£= .9

1.13054096
- .02634263
-.04312407

.00274451
.00170183
-.00020265
-.00006018
.00001138
.00000193
-.00000057
-.00000005
.00000002

95

£= 4

1.24631521
.06784110
.07223261
.01624479
.00184671
.00132999
.00010684
.00006541
.00001761
.00000116
.00000130
.00000014
.00000006
.00000002

£=1.0

1.1195815S
-.02319971
-.03984269
.00189634
.00153738
- .00013620
-.00005476
.00000739
.00000187
- .00000036
- .00000006
.00000001
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Tabte Il

1.00000000
62191163
.00000000

-.17291085
.00000000
.07415615
.00000000

-.03382251
.00000000
.01558996
.00000000

-.00719897
.00000000
.00332530
.00000000

-.00153608
.00000000
.00070958
.00000000

- .00032779
.00000000
.00015142
.00000000

-.00006995
.00000000
.00003231
.00000000

- .00001492
.00000000
.00000690
.00000000

—-N000HL®
.00000000
.00000147
.00000000

-.00000068
.00000000
.00000031
.00000000

-.00000014
.00000000
.00000007
.00000000

- .00000003
.00000000
.0000000k
.00000000

-.00000001

I. J. SCHOENBERG
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Luf{x, t, «), Li"' (X, /, e) for& =4, /=0.5, e=0 (0.1) 1.0, Ax=0.5.

€—.1

.70747935
53757743
.20252568
-.02061576
-.06545791
.02765903
.00709183
.01344008
.00401304
.00276042
.00251219
-.00027479
.00065102
.00042139
.00000773
.00015286
- .00006787
.00002025
.00003031
.00000793
- .00000573
.00000566
.00000083
.00000159
.00000099
.00000007
-.00000034
-.00000014
.00000004
.00000007
.00000002
— 00000001
-.00000001

Lt(x,

1/2, e)

C—.L

.65457028
.51070485
.22066478
.01285810
04840114
.03096280
.00340667
.00756627
.00502862
.00041203
.00118870
.00076318
.00007596
.00019012
.00012316
.00000861
.00002989
.00001865
.00000162
.00000477
.00000301
.00000017
.00000075
.00000045
.00000003
.00000012
.00000007
.00000000
.00000002
.00000001

.62707488
49509729
.22681461
.02919893
.03681939
.02894823
00711221
.00392340
.00410188
.00121901
.00038015
.00054505
.00021043
.00003152
.00007297
.00003207
.00000086
.00000923
.00000502
.00000028
.00000115
.00000072
.00000011
.00000014
.00000011
.00000002
.00000001
.00000001

.60947694
48452022
.2294.9350
.03901344
.02872086
.02631330
.00850828
.00177090
.00314843
.00135036
.00001138
.00033539
.00019927
.00002867
.00003257
.00002580
.00000704
.00000251
.00000321
.00000120
.00000010
.00000036
.00000018
.00000001
.00000004
.00000002
.00000001

1946]
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£= 5

.59702260
47675954
.23077657
.04557847
.02276409
.02384227
.00896161
.00044979
.00238588
.00127570
.00019600
.00019071
.00015995
.00004696
.00000987
.00001687
.00000771
.00000044
.00000156
.00000101
.00000023
.00000011
.00000012
.00000004
.00000000
.00000001
.00000001

.58765637
47077398
.23140004
.05027848
.01820178
.02167108
.00898986
.00038991
.00180229
.00114308
.00027865
.00009654
.00012137
.00004885
.00000179
.00001000
.00000641
.00000148
.00000057
.00000067
.00000027
.00000001
.00000006
.00000004
.00000001

L<(x, 1/2, €
£=.7

.58031608
46599416
.23168090
.05380648
.01459584
01979233
.00881784
.00093726
.00135734
.00100305
.00030985
.00003598
.00008970
.00004474
.00000738
.00000536
.00000486
.00000168
.00000004
.00000039
.00000022
.00000005
.00000002
.00000002
.00000001

57438799
46207717
23177314
.05654957
01167397
.01816756
.00855221
00129962
.00101562
.00087278
.00031471
.00000283
.00006510
.00003886
.00000973
.00000238
.00000350
.00000156
.00000021
.00000020
.00000017
.00000006
.00000000
.00000001
.00000001

APPROXIMATION OF EQUIDISTANT DATA

.56948898
.45880202
.23175789
.05874137
.00925829
01675611
.00824659
.00154092
.00075048
.00075725
.00030617
.00002756
.00004639
.00003288
.00001039
.00000050
.00000244
.00000134
.00000031
.00000009
.00000011
.00000005
.00000001
.00000001

97

£=1.0

.56536580
.45601892
.23168050
.06053136
00722771
.01552233
.00792883
.00170083
.00054256
.00065681
.00029109
.00004311
.00003223
.00002744
.00001018
.00000064
.00000165
.00000110
.00000034
.00000002
.00000008
.00000004
.00000001
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0.0
0.5
1.0

N
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10.5
11.0
11.5
12.0
12.5
13.0
13.5
14.0
145
15.0
15.5
16.0
16.5
17.0
17.5
18.0
18.5
19.0
19.5
20.0
20.5
21.0
21.5
22.0
22.5
23.0
23.5
24.0
245
25.0
25.5
26.0

-3.47753764
-1.03983382
2.15613767
1.50655095
- .58680458
-.68097024
24590776
31311773
-.11165611
-.14452585
.05142591
.06675341

- .02374375
-.03083551
.01096729
.01424417
-.00506618
-.00657998
.00234028
.00303957

- .00108107
-.00140411
.00049939
.00064862
-.00023069
- .00029962
.00010657
.00013841

- .00004923
- .00006394
.00002274
.00002954

- .00001050
-.00001364
.00000485
.00000630

- .00000224
-.00000291
.00000104
.00000134

- .00000048
- .00000062
.00000022
.00000029

- .00000010
- .00000013
.00000005
.00000006
-.00000002
- .00000003
.00000001
.00000001
-.00000001

I. J. SCHOENBERG

£=.1

-1.50781449
- .69689346
54167607
77131824
.31875073
- .03482567
-.12647279
- .06455381
.01678358
.03142765
.00673809
- .00655085
-.00477107
- .00059653
.00133431
.00097571
-.00005726
-.00035828
-.00012112
.00004878
.00005884
.00001802
-.00001229
-.00001316
-.00000110
.00000374
.00000182
-.00000018
- .00000067
-.00000033
.00000009
.00000016
.00000003
- .00000003
- .00000002
.00000000
.00000001

£<"(*. 1/2, 9

£€—2

1.27083552
61542693
140225158
.63355043
.30878327
.02460402

-.07651577
- .05654901
-.00530735
.01425664
.00811324
.00060896
-.00194355
-.00138896
-.00011460
.00035809
.00019854
.00001209
-.00004884
-.00003391
-.00000242
.00000898
.00000485
.00000023
-.00000123
-.00000083
-.00000005
.00000022
.00000012
.00000000
- .00000003
-.00000002

«= 3

-1.16381926
-.57326418
34798919
56889199
.29072626
.04246822
-.05154399
-.04581150
-.01047426
.00665986
.00596871
.00183704
-.00054832
-.00087620
-.00030729
.00005960
.00010609
.00004959
-.00000116
-.00001505
-.00000732
- .00000026
.00000168
.00000113
.00000016
-.00000023
- .00000015
-.00000003
.00000002
.00000002
.00000001
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€—4

—1.10100908
- 54670549
.31925128
53067521
.27601758
.04943501
-.03726679
-.03775297
-.01153447
.00297134
.00423710
.00187944
.00001970
- .00050023
-.00026914
-.00003417
.00004375
.00003703
.00000954
-.00000404
-.00000433
-.00000164
.00000013
.00000053
.00000025
.00000001
-.00000005
-.00000004
- .00000001
.00000001

1946]

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5
10.0
10.5
11.0
11.5
12.0
12.5
13.0
13.5
14.0

«= 5

-1.05919265
-.52821280
.30155959
.50527188
26453429
.05240385
-.02823788
-.03182937
-.01135624
.00101034
.00303129
.00166647
.00024844
-.00027461
- .00020347
-.00005788
.00001265
.00002301
.00000979
.00000025

- .00000199
- .00000133
- .00000029
.00000016
.00000015
.00000005
.00000000

- .00000002
-.00000001

APPROXIMATION OF EQUIDISTANT DATA

£= .6

-1.02916420
-.51450880
.28962736
48711044
.25546310
.05363758
-.02210889
-.02737565
- .01078633
- .00009918
.00219629
.00142136
.00033324
-.00014145
- .00014764
-.00005841
-.00000184
.00001329
.00000777
.00000163
-.00000071
-.00000085
- .00000033
.00000000
.00000007
.00000004
.00000001

U (x, 1/2, ¢
e=.7

—1.00647330
50390754
.28106624
47346009
.24815810
.05404202

-.01772635
-.02393662
-.01011492
-.00075259
.00160744
.00120000
.00035457
-.00006202
- .00010563
-.00005187
-.00000816
.00000717
.00000567
.00000187
-.00000008
-.00000049
- .00000026
-.00000005
.00000002
.00000003
.00000001

e=.8

-.98868331
- .49544281
27464186
46281678
24216442
.05402794
-.01446547
-.02121579
-.00944820
-.00114593
.00118299
.00101295
.00034759
-.00001410
- .00007505
-.00004389
-.00001051
.00000344
.00000399
.00000172
.00000021
-.00000026
-.00000019
-.00000006
.00000000
.00000001
.00000001

£—.9

97433986

— .48851722

.26965348
45428116
23716440
.05379802
-.01196172
-.01901742
-.00882438
-.00138383
.00087064
.00085821
.00032845
.00001495
- .00005291
- .00003637
-.00001095
.00000121
.00000274
.00000145
.00000032
- .00000012
- .00000013
- .00000005
- .00000001
.00000001

99

£e= 1.0

-.96251767
- 48273978
.26567454
44728133
.23293281
.05345832
- .00998973
-.01720888
-.00825481
-.00152531
.00063651
.00073079
.00030479
.00003245
-.00003686
-.00002987
-.00001051
- .00000014
.00000184
.00000117
.00000034
- .00000004
- .00000008
- .00000004
- .00000001
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—NOTES—

SOME APPLICATIONS OF THE REPEATED INTEGRALS
OF THE ERROR FUNCTION*

By J. C. JAEGER (University of Tasmania)

1. Introductory. The repeated integrals of the error function

[o0]

/ in 1 erfc n=1=>2-¢c¢ce (@)

where

. 2 C
cerfcx = erfcx =~z | e£f£d 2
yIrd i
have been studied by Hartree,1who tabulates them for n—1 and n =2, and shows
that they satisfy the recurrence relation

In i" erfc x = in~2erfc x — 2x\n~1 erfc x. ?3)

He also shows that
L {(4N)"/2" erfc Qairld} = Vv “'7, 4

where « =0, 1,2, «=«+ a0, and L {t/} iswritten for the Laplace transform of a func-
tion v(t) of t, that is
L{v] = f e~“v(t)dt (5)
Jo

The functions (1) arisenaturally in the theory of conduction ofheat inthe semi-
infinite solid (or the sphere or slab) with prescribed surface temperature or flow of
heat, since the Laplace transforms of the solutions of many such problems involve
the functions on the right hand side of (4).

The objects of this note are, firstly, to indicate an extension of (4) which applies
in the same way to problems with heat transfer at the surface, and, secondly, to give
solutions in terms of the functions (1) of a number of problems of practical interest
which involve heat generation in the solid.

2. Problems involving heat transfer at a surface at a rate proportional to its
temperature difference from its surroundings. The required extension of (4) is
that, if 7Lis a positive integer, and a, h, and x are positive,

Lja(- erffc (H+ X) - £ (- 2Hy\rerfc X | = an+i@ | (6)
where
X = x/2\/cet, H = ky/at, q= ylsl/a. )
* Received Sept. 19, 1945.

1D. R. Hartree, Some properties and applications of the repeated integrals of the errorfunction, Proc.
Manchester Lit. and Phil. Soc. 80, 85 (1935).
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To derive this result we notice that
e-i* (— )"e~gx erqz y,l [ h\T

8
gelg+ ) hng@+ By hg2e o) (8)

In the terms of the series we use (4); the result for the first term of the right-hand
side of (8) is given in most tables of Laplace transforms; and (6) follows immediately.
Typical examples in which (6) arises are the following:
() The semi-infinite solid x> 0. Zero initial temperature. The solid heated at x =0
for t>0 by heat transferfrom a medium at atnli,n=10, 1, .
The temperature v in the solid has to satisfy

da 1 dv

- =0, *>0
oxl a at

, t>0, 9

with the boundary condition

dv
— = — h(atnl2 —v), x=20 t>0.
dx
Also v has to be bounded as x—>co. The Laplace transform of the solution is found
to be 2ar(l
o ar(l + n/ 2)e~
L d ( Je~ax -

1" sknl\q + h)

using the notation (7). Therefore, from (6)

()n+iar(L + n/2) r
V= L uix+iixerfc (H+ X) - J2(- 2H)y erfcz |
h"anli | r-0 3

If heat transfer takes place from a medium whose temperature is

n
Ee (10)
the solution follows at once. For the problem of the semi-infinite solid whose surface
temperature is given by (10) the result is obtained in the same way by using (4).
An empirical relation of the type (10) is often useful for representing observed surface
temperatures, the term in tl/2being particularly valuable since it corresponds to con-
stant flux of heat; for example the fall in temperature of the Earth’s surface after
sunset on a cloudless evening is approximately proportional to71/2and may be repre-
sented very well by two or three terms of (10).

(i) The semi-infinite solid x>0, of conductivity K and dijfusivity a. At x =0 the
solid is in contact with mass M per unit area of well stirred fluid of specific heat c’,
whose temperature is equal to the surface temperature of the solid, i.e. to limx_+ov. The ini-
tial temperatures of the solid and fluid are zero. Heat is supplied to thefluid at constant
rate Q per unit mass per unit timefor t> 0.

Here (9) has to be solved with boundary condition at x=0

dv
Y I — Kd_:Q|v|, x=20 t>0
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The Laplace transform of the solution is

Qe~¢
az'q3yq + h)

where now h=K/Mc'a. Thus from (6) we have

L{v) =

Q -

cemx+xi erfc (77 + x, - erfc x + 277L erfc x 3.
hacr

(iif) The semi-infinite solid x>0. Zero initial temperature. Heat is produced for t> 0
in the solid at the rate QInl2 « = —1,0, 1, m~ m, per unit time per unit volume. There is
heat transfer at x =0 into a medium at zero temperature.

Here we have to solve the differential equation

da 1 dii 0

= t"2 x>0 1>0,
dx2 a dt K

with boundary condition

dv
hv = 0, x=0 />0
dx
Here
. Q«I’(|+ »/2) (1 he-«* )
K Is2"/2 az2"'V+4g+ h)j’
and
ap+"12 i 2
Qap Qrii + 012 wwiTerfc  + 2) _ £ (L 27)rirerfe X
X1 + n/2) Ka"I\- hym2 1)
3. Cases of generation of heat in a solid. The solutions of a number of problems

of practical importance in which heat is generated for i>0 in a solid at the rate
z 1Ont"'2 (12)

per unit time per unit volume can be expressed in terms of the functions (1). An ex-
pression of type (11) may be useful for representing an experimentally observed rate
of generation of heat; the term in t~112is of value when the initial rate of heat produc-
tion is high, as in the hydrating of cement.2

A problem involving (11) and radiation at the surface has already been given in
82(iii), here we give the solutions of some cases in which the surface temperature is
zero.

(iv) The region x>0. x =0 kept at zerofor t> 0. Heat production at the rate tn/2in
0 <.x<a, and zero inx>a. Zero initial temperature.

51n this case two or three terms of (11) give quite a good representation of the observed heat of hy-
dration over the first few days. An expression in terms of negative exponentials is more usual, but does
not lead to solutions in terms of tabulated functions for the problems given here, except (vi), and in that
case it does not give a solution which is useful for small values of the time.
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This is the fundamental practical problem of temperatures in hydrating concrete:
a slab of concrete is poured on the surface of the semi-infinite solid, we assume here
that the thermal constants of the concrete and the solid are the same. The solution is

Q.1+T.12
i«2 erfc -2aa-m ---jn+2 erfc a+ x
o1m T oid 1- 12+ ,/2)2-+° M1? Zal)rz
-f 2i"+2erfc
2(a01/2.
if 0<x<a, and forx>a it is
cr(l + mizy@aniee (. X-a ) X+ a
vV = <i"+2erfc--—-y=0-—----- L int2 erfc
2K I Z(at)rz Z(a [y 2

— 2im2 erfc Za;; u2

(v) The problem3of (iv) except that heat is produced onlyin the regiona<x<b.
The temperature gradient at the surface is

1

12 r a . b
TA + of 2)(4/)<1+")/2L|>+n erfe————————- il+"-erfc-----------

(vi) The slab 0 <x<I. The surfaces x =0 and x =1 kept at zero temperature. Heat
generation at the rate T 12 Zero initial temperature.

atl+v2 il 2 232 2“ ) r pert ml + x
vV = <l- r(2 + » "+ -)" | 1"+2erfc
K(1+ mi) 3 A | aty2

) (m+ 1)/ —x'
+ i"+2erfc
Zat) 172
(vii) The infinite region r5:0. Zero initial temperature. Heat production at the rate
tnl2in the sphere O”r <a, zero elsewhere.4
all+nl2 + i+ a—r a+ r 1
etor(l + w 2)a0i+v2 ., o AT P L
K{1+ n/2) 2Kr 2l 12 2(al)1/23
agx(l + nl2)(4))m32 o3 erfc a—r i«+3erfc LAk L oM r< a
2Kr 2{&1) 12 Zm
aar(l + M/2)(4))1+n/2r a+r . r r- al
= i"+2erfc-----m-mmomm b int2erfc------------
2Kr L 2(at)12 2(ai)y2)
4 a3zZr(l + M/2)[4H(»+3>2r arf a+r | KT erf r- al
[ [ e M3 erfe--—c-mmoemee , r> a
2Kr Lo 2(aMmir 2(at)12J

3Van Ostrand, On theflow of heatfrom a took stratum in which heat is being geneiated, J. Wash. Acad.
Sci. 22, 529 (1932), considers the case of a thin layer.
4This problem is of interest in connection with development of heat in wheat stacks.
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greater part, these functions are tabulated to six significant figures for values of the argument which in-
crease from 0 or 1to 10 by steps of 0.1. The functions P 7 (0) and dP"(0)/dx are also tabulated for integral
values of m (ranging from 0 or 1to 4) and n (ranging from 1to 10), the values of the argument increasing
from 0° to 90° by steps of 1°. Auxiliary tables facilitate interpolation.

W.p rager

BIBLIOGRAPHICAL LIST

The R.T.P. translations listed below are now available from the Durand Reprint-
ing Committee, in care of California Institute of Technology, Pasadena 4, California.

R.T.P. Translation No. 2503, The Lorin nozzle for aircraft propulsion. By L. J. Goodlet. 40 pages.

R.T.P. Translation No. 2506, Planning on a water surface. By Prof. L. |. Sedow. 28 pages.

R.T.P. Translation No. 2507, Piezo-electric microphone of small dimensions. By L. J. Goodlet. 1 page.

R.T.P. Translation No. 2508, Development of the Weibel welding process for aircraft construction. By

F. Heilbing. 8 pages.

. Translation No. 2511, Laval nozzles for uniform super-sonic flow. By A. Busemann. 9 pages.

. Translation No. 2516, German de-icing technique. 8 pages.

R.T.P. Translation No. 2517, The role of inhibitors in the electrolytic precipitation of metals. By
H. Fischer. 16 pages.

R.T.P. Translation No. 2518, Testing of aluminum castings. By Dr. A. von Zeerleder. 6 pages.

R.T.P. Translation No. 2519, On the increase of stress in a plate with circular holes and under tension.
By Th. Poschl. 5 pages.

R.T.P. Translation No. 2523, New equipment of the Junkers research station. By H. Roos. 7 pages.

o D
44
T T

POLITECHN1K1



ATTENTION SCIENTISTS!

PROBABILITIES

Wahrscheinlichkeitsrechnung
und ihre Anwendung in der Sta-
tistik und theoretischen Physik.

By Richard von Mises

Only edition 1931. Photo-reprint 1945. 574
pages. 90 figures. $7.50

This book combines extraordinary erudi-
tion with great clarity and rigor of pre-
sentation. The fundamentals of probability
are carefully explained, its applications to
statistics and theoretical physics make the
book equally valuable to students and
scientists.

CALCULUS

Lehrbuch der Mathematik fir
Studierende der Naturwissen-
schaften und der Technik.

By Georg Scheffers

8lh edition 1940. Photo-reprint 1945. 743
pages. 438 figures. $6.50

This book provides an unusually complete
course in calculus. It is written with great
care and clarity and contains many appli-
cations to physics and engineering.

ELECTRONICS

Einfuhrung in die Elektronik.

By 0O tto Klemperer

The experimental physics of free electrons
in the light of classical theory and of
wave-mechanics.

Only edition 1933. 303 pages. 207 figures.
Photo-reprint 1944. $6.50
A complete summary of the theory and

results of experiments on the properties
of free electrons.

EXPERIMENTAL PHYSICS

Praktische Physik. By Friedrich

A —Kohlrausch

To be used for teaching, research and en-
gineering.

17th completely revised edition, edited by
F. Henning in collaboration with E. Brod-
hun, AV. Jaeger, and others. 1935. 958 pages.
512 figures. Photo-reprint 1944. $8.75
Contains data about the use and measure-1
ment of any physical quantity and 55 pages
of tables giving the experimental results.

EQUATIONS

Die Differential- und Integral-
gleichungen der Mechanik und
Physik. By Philipp Frank and
Richard von Mises

Constituting the 8th edition of RIEMANN-
VEBER’S “Partial Differential Equations
of Mathematical Physics.”
2nd (latest) edition, 1930/35. 2 volumes.
2020 pages. Photo-reprint 1943, Vol. 1;
Mathematics $12,50. Vol. 2: Phvsies S15.00.
The set S27.50
An outstanding work which is absolutely
indispensable for the mathematician, the
mathematical physicist, and the theoretical
chemist

REFERENCE

Philosophisches Waorterbuch. By
Heinrich Schmidt

8th reused and enlarged edition 1931. 476
pages with a chronological survey and 32
photos. Photo-reprint 1945. $3.50
A first class reference work which com-
prises all philosophical terms, explaining
them in an extremely accurate and
thorough way. It includes the great phil-
osophers of all time outlining their systems,
and listing their works. It is a complete
summary of the philosophical phases from
the earliest times until the present. This
is a reprint of. the LAST PRE-HITLER
EDITION.

No charge far pottage in the U.S. when payment accompanies order.

MARY S. ROSENBERG
Bookseller, Publisher and Importer
235 West 108tii Street, New York 25, N.Y,



CONTENTS.

G. F. Carrier and F. D. Carlson: On the propagation of small dis-
turbances in a moving compressible flu id ..o 1

Shao Wen Yuan: Thin cylindrical shells subjected to concentrated

W. H. Petr; Thermal deflections ofanisotropic thin plates. . ., 27

I. J. Schoenberg: Contributions, to the problem of approximation of
equidistant data by analytic functions. Part A—On the problem of
smoothing or graduation. A first class of analytic approximation
FOIM UTAE ot 45

Notes:

J. C. Jaeger: Some applications of the repeated integrals of the error

\ function . 100
BOOK REVIEWS et 104
Bibliographical Li s T .. see s sre et nre e snre s 104

McGraiv-Hill Books of Unusual Interest

MATHEMATICAL THEORY OF ELASTICITY
By I|. S. Sokolnikoff, University of Wisconsin. 373 pages, $4.50

Provides a thorough foundation in the mathematical theory of elasticity, with application to problems
on extension, torsion, and flexure of isotropic cylindrical bodies.

ANALYTIC GEOMETRY. New third edition

By Frederick S. Ngwlan, University of British Columbia. 355 pages, $2.75

A careful revision of a well known text that is mathematically sound, and at the same time easily
understood and stimulating to the imagination of the student.

ALGEBRA. A Second Course
By R. Orin Cornett, Oklahoma Baptist University. 313 pages, $2.00

An entirely new approach. The text is based on the idea that mastery of detail and routine operations
should be preceded by an understanding of purpose, significance, and relation to the whole,

THE DEVELOPMENT OF MATHEMATICS. New second edition
By E. T. Bell, California Institute of Technology. 618 pages, $5.00

Tells the absorbing story of the role of mathematics in the evolution of civilization, from about
4000 B.C. to the present day. The revision contains new material covering recent trends in modem'
mathematics.

Send for copies on approval

McGRAW-HILL BOOK COMPANY, Inc.
330 West 42nd Street New York IS, N.Y.



