QUARTERLY

APPLIED MATHEMATICS

H, L, DRYDEN
J. M. LESSELLS

EDITED BY
T. C. FRY
W. PRAGER

TH. v. KARMAN
I. S. SOKOLNIKOFF
J. L. SYNGE

WITH TBE COLLABORATION OF
M. A. BIOT
H. W. EMMONS
J. A. GOFF
P. LE CORBEILLER

S, A. SCHELKUNOFF
SIR GEOFFREY TAYLOR
L. N. BRILLOUIN
W. FEller
I. N. GOODIER
F. D. MURNAGHAN
W. R. SEARS
S. P. TIMOSHENKO
J. P. DEN HARTOG
K. O. FRIEDRICHS
G. E. HAY
E. REISSNER
R. V. SOUTHWELI.
H. S. TSIEN

QUAR TERLY

OF

APPLIED MATHEMATICS

This periodical is published quarterly under the sponsorship of Brown University, Providence, R,I. For its support, an operational fund is being set up to which industrial organizations may contribute. To date, contributions of the following industrial companies are gratefully acknowledged:

Bell Telephone Laboratories, Inc.; New York, N. Y., The Bristol Company; Waterbury, Conn., Curtiss Wriget Corporation; Airplane Division; Buffalo, N. Y., Eastman Kodaf Company; Rochester, N. Y.,
General Electric Company; Schenectady, N. Y., Gulf Research and Development Company; Pittsburgh, Pa., leeds \& Northrup Company; Philadelphia, Pa,
Pratt \& Whitney, Division Niles-Bement-Pond Company; West HartFORD, CONn.,
Republic Ayiation Corporation; Farmingdale, Long Island, N. Y., United Aircraft Corporation; East Hartford, Conn., Westinghouse Electric and Manufacturing Company; Pittsburge, Pa.

The QUARTERLY prints original papers in applied mathematics which have an intimate connection with application in industry or practical science. It is expected that each paper will be of a high scientific standard; that the presentation will be of such character that the paper can be easily read by those to whom it would be of interest; and that the mathematical argument, judged by the standard of the field of application, will be of an advanced character.

Manuscripts submitted for publication in the Quarierly of Applem Mathematics should be sent to the Managing Editor, Professor W. Prager, Quarterly of Applied Mathematics, Brown University, Providence 12, R. I., either directly or through any one of the Editors or Collaborators. In accordance with their general policy, the Editors welcome particularly contributions which will be of interest both to mathematicians and to engineers, Authors will receive galley proofs only. Seventy-five reprints without covers will be furnished free; additional reprints and covers will be supplied at cost.

The subscription price for the QUARTERLY is $\$ 6.00$ per volume (April-January), single copies \$2.00. Subscriptions and orders for single copies may be addressed to: Quarterly of Applied Mathematics, Brown University, Providence 12, R.I., or to 450 Ahnaip St., Menasha, Wisconsin.

[^0]
QUARTERLY OF APPLIED MATHEMATICS

䎸arry 䄧ateman*

29 May, 1882-21 January, 1946
In the sudden death (from coronary thrombosis) of Harry Bateman while en route to New York, near Milford, Utah, mathematics in the United States lost its outstanding representative of the British School of the generation just closing. Like his contemporaries and immediate predecessors among Cambridge mathematicians of the first decade of this century, before the new regulations for the Mathematical Tripos took effect, Bateman was thoroughly trained in both pure analysis and mathematical physics, and retained an equal interest in both throughout his scientific career. In bare outline the relevant details of his life are as follows:

Harry Bateman was born at Manchester, England, 29 May, 1882, a son of Samuel and Marnic Elizabeth (Bond) Bateman, and received his secondary education at the Manchester Grammar School. Bateman ascribed much of his subsequent success at Trinity College, Cambridge, to the excellent instruction he received at the school. In 1903 he was (bracketed) Senior Wrangler in the Tripos, and took his B.A. degree, proceeding to the M.A. in 1906, having been a Smith's Prizeman in 1905. From 1905 to 1911 he was a Fellow of Trinity College: the year 1905-06 was spent in study at Göttingen and Paris. From 1906 to 1907 he was a lecturer at the University of Liverpool, and from 1907 to 1910 a reader at the University of Manchester. He came to the United States in 1910 (he later became a naturalized U. S. citizen), as a lecturer at Bryn Mawr College, where another English mathematician, the late Charlotte Angas Scott, was the efficient and scholarly head of the mathematics department. In 1912, he went to the Johns Hopkins University as a Johnston scholar for three years, incidentally taking his Ph.D. (a curious proceeding for a mathematician of his eminence) in 1913. From 1915 to 1917 he was a lecturer at Johns Hopkins, and in 1917 he accepted the position which he held till his death, a professorship of mathematics, physics, and aeronautics at the then recently organized California Institute of Technology. He was a member of the American Mathematical Society (vicePresident, 1935, Gibbs lecturer, 1943), the American Physical Society, the American Acoustical Society, the American Philosophical Society, the British Association for the Advancement of Science, the London Mathematical Society, the National (U. S.) Academy of Sciences, and a Fellow of the Royal Society (London). He is survived by his wife, Ethel (Horner Dodd) Bateman, and his daughter, Joan; a son died in childhood.

[^1]Bateman was an almost unique combination of erudition and creativeness. It is most unusual for a mathematician to have the extraordinary range of exact knowledge that Bateman had, and not be crushed into sterility by the mere burden of an oppressive scholarship. But, as his numerous publications testify, Bateman retained his creative originality till his death. In pure mathematics, his dominating interest was in the analysis that has developed from classical mathematical physics. His technical skill in this broad field was unrivalled. His numerous contributions to mathematical physics are marked by a vivid, at times almost romantic, imagination. Students of the history of general relativity will find much of interest in some of his papers on electromagnetism.

A singularly modest and gentle man, Bateman was always ready to place his skill and his knowledge at the disposal of others, with no thought of personal credit. War work absorbed most of his time during the last four years of his life; and it is to be regretted that the incessant correspondence in connection with such work prevented him from putting the finishing touches to what he regarded as his most useful contributions to mathematical scholarship: an exhaustive work on definite integrals, and a critical census of all the special functions that have been considered in mathematics. If these works can be put into shape for publication, they will form a lasting memorial to Harry Bateman.

E. T. Bell

April, 1946.

LIST OF PUBLICATIONS BY HARRY BATEMAN*

1. Question 14943. Educational Times (2) 1,98-100 (1902).
2. Question 15119. Educational Times (2) 3, 110-111 (1903).
3. Question 15221. Educational Times (2) 4, 88 (1903).
4. The determination of curves salisfying given conditions. Proc. C. P. S. 12, 163-171 (1903).
5. Question 15440. Educational Times (2) 5, 68 (1904).
6. Question 15388. Educational Times (2) 5, 105-106 (1904).
7. The solution of partial differential equations by means of definite integrals. Yroc. L. M. S. (2) 1, 451-458 (1904).
8. Cerlain definile integrals and expansions connected with the Legendre and Bessel functions. Mess. (2) 33, 182-188 (1904).
9. A generalisation of the Legendre polynomial. Proc. L. M. S. (2) 3, 111-123 (1905).
10. The Weddle quartic surface. Proc. L. M. S. (2) 3, 225-238 (1905).
11. The correspondence of Brook Taylor. Bibliotheca Math. (3) 7, 367-371 (1906).
12. Note on the solution of linear differential equations by means of definite integrals. Mess. (2) 35, 140141 (1906).
13. The theory of integral equations. Proc. L. M. S. (2) 4, 90-115 (1906).
14. On the inversion of a definite integral. Proc. L. M. S. (2) 4, 461-498 (1906).
15. Sur l'equation de Fredholm. Darb. Bull. (2) 30, 264-270 (1906).
16. A cluss of integral equations. Trans. C. P. S. 20, 233-252 (1906).
17. A lype of hyperelliptic curve and the transformations connected with it. Quart. J. Math. 37, 277-286 (1906).
18. On an expension of an arbitrary function in a series of Bessel functions. Mess. (2) 36, 31-37 (1906).
19. On definite ftuctions. Mess. (2) 37, 91-95 (1907).

[^2]20. The inversion of a definite integral. Math. Ann. 63, 525-548 (1907).
21. The application of integral equations to the determination of expansions in series of ascillating functions. Trans. C. P. S. 20, 281-290 (1907).
22. The reality of the roots of certain transcondental equations occurring in the theory of integral equations. Trans. C. P. S. 20, 371-382 (1907).
23. (H. B. and D. M. Y. Sommerville). Question 16009. Educational Times (2) 11, 57-61 (1907).
24. Some geometrical theorems occurring in hydrostatics. Mess. (2) 37, 119-123 (1907).
25. A formula for the solving function of a certain integral equation of the second kind. Mess. (2) 37, 179187 (1908).
26. Notes on integral equations. I. The integral equation of the first kind. Mess. (2) 38, 8-13 (1908).
27. Notes on integral equations. II. The method of least squares. Mess. (2) $38,70-76$ (1908).
28. On the application of integral equations to the determination of upper and lower limits to the value of a double integral. Trans. C. P. S. 21, 123-128 (1908).
29. On essentially positive double integrals and the part which they play in the theory of integral equations. British Ass. Rep (Leicester) 77, 447-449 (1908).
30. Question 16090. Educational Times (2) 13, 72-74, 91 (1908).
31. The tangent plane which can be drawn to an algebraic surface from a multiple line. Arch. der Math. und Phys. (3) 13, 48-51 (1908).
32. A method of calculating the number of degrees of freedom of a molecule among which the partition of energy is governed by the principal temperature. Manchester Mem. and Proc. 53, 1-9 (1908).
33. The solution of linear differential equations by means of definite integrals. Trans. C. P. S. 21, 171-196 (1909).
34. Notes on integral equations. III. The homogeneous integral equation of the first kind. Mess. (2) 39, 6-19 (1909).
35. The conformal transformations of a space of four dimensions and their applications to geometric optics. Proc. L. M. S. (2) 7, 70-89 (1909); British Ass. Rep. (Dublin) 78, 627-629 (1909).
36. The reflexion of light at an ideal plane mirror moving with a uniform velocity of translation. Phil. Mag. (6) $18,890-895$ (1909).
37. The solution of a system of differential equations occurring in the theory of radio-active transformations. Proc. C. P. S. 15, 423-427 (1910).
38. The linear difference equation of the third order and a generalisation of a continued fraction. Quart. J. Math. 41, 302-308 (1910).
39. The solution of the integral equation connecting the velocity of propagation of an earthquake-wave in the interior of the earth with the timses which the disturbance takes to travel to the different stations on the earth's surface. Phil. Mag. (6) 19, 576-587 (1910); Physik. Zs. 11, 96-99 (1910).
40. Notes on integral equations. IV. The expansion theorems and the inlegral equation of the first kind. Mess. (2) 39, 129-135 (1910).
41. Notes on integral equations. V. Integral equations with variable limits. Mess. (2) 39, 173-178 (1910).
42. Notes on integral equations. VI. The homogeneous integral equation of the first kind. Mess. (2) 39,182191 (1910).
43. Report on the history and present state of the theory of integral equations. British Ass. Rep. (Sheffield) 80, 345-424 (1910).
44. The determination of solutions of the equation of wave molion involving an arbitrary function of three variables which satisfies a partial differential equation. Trans. C. P. S. 21, 257-280 (1910).
45. Question 16215. Educational Times (2) 18, 86-87 (1910).
46. A system of circles derived from a cubic space curve and the properties of a cerlain configuration of fifteen lines. Mess. (2) 40, 81-87 (1910).
47. Kummer's quarlic surface as a wave surface. Proc. I. M. S. (2) 8, 375-382 (1910).
48. The physical aspect of time. Manchester Soc. Mem. 54, 13 p. (1910).
49. Correction to Mr. FI. Bateman's paper on the Reflexion of light at an ideal plane mirror moving with a uniform velocity of translation. Phil. Mag. (6) 19, 824 (1910).
50. Elementare elektronensysteme. (Elementary systems of electrons.) Physik. Zs. 11, 318-320 (1910).
51. The transformation of the electrodynamical equations. Proc. L. M. S. (2) 8, 223-264 (1910).
52. The transformation of coordinates which can be used to transform one physical problem into another. Proc. L. M. S. (2) 8, 469-488 (1910).
53. The relation between electromagnetism and geometry. Phil. Mag. (6) 20, 623-628 (1910).
54. On the probability distribution of α-parlicles. Pbirysp (6) 20, 704-707 (1910).
55. Notes on integral equations. VII. The solution of partial differential equations by means of definite integrals. Mess. (2) 41, 94-101 (1911).
56. The foci of a circle in space and some geometrical theorems connected herewith. British Ass. Rep. (Sheffield) 80, 532-533 (1911).
57. Some problems in the theory of probability. Phil. Mag. (6) 21, 745-752 (1911).
58. The transformation of a particular type of electromagnetic field and its physical interprelation. Proc. L. M. S. (2) $10,7-14$ (1911).
59. On certain vectors associated with an electromagnetic field and the reflection of a disturbance at the surface of a perfect conductor. Proc. L. M. S. (2) 10, 96-115 (1911).
60. The fundamental equations of the theory of electrons and the infinitesimal transformation of an electromagnelic field into itself. Bull. A. M. S. (2) 17, 525 (1911).
61. On a set of kernels whose determinants form a Sturmian sequence. Bull. A. M. S. (2) 18, 179-182 (1912).
62. Notes on integral equations. VIII. Some simple definite integrals derived from the formulae of Fourier and Abel. Mess. (2) 41, 180-184 (1912).
63. Some geometrical theorems connected with Laplace's equation and the equation of wave motion. Amer. J. Math. 34, 325-360 (1912).
64. A new type of solution of Laplace's equation. Ann. Math. (2) 14, 51-56 (1912).
65. Some equations of mixed differences occurring in the theory of probability and the related expansions in series of Bessel's functions. Proc. 5 Intern. Math. Congr. 1, 291-294 (1913).
66. Sonin's polynomials and their relation to other functions. Bull. A. M. S. (2) 19, 394 (1913).
67. The double tangents of a binodal quartic. Amer. J. Math. 35, 57-78 (1913).
68. The expression of the equation of the genera! quarlic curve in the form $A / x x^{\prime}+B / y y^{\prime}+C / z z^{\prime}=0$. Bull. A. M. S. (2) 19, 393-394 (1913).
69. The degenerate cases of Hierholzer's octavic surface. Johns Hopkins Univ. Circ. 7, 42-46 (1913).
70. Corpuscular radiation. Phil. Mag. (6) 26, 579-585 (1913).
71. A new type of solution of Mexweli's equations. Ann. Math. (2) 15, 106-111 (1914).
72. A general result in the theory of partial differential equations. Mess. (2) 43, 164-171 (1914).
73. The quartic curve and its inscribed configurations. Amer. J. Math. 36, 357-386 (1914).
74. The classification of electromagnetic fields. Phil. Mag. (6) 27, 136-147 (1914).
75. Some recent researches on the motion of fluids. Monthly Weather Review 43, 163-170 (1915).
76. On a porism connected with the theory of Maxwell's equations and a method of obtaining the lines of electric force due to a moving point charge. Amer. J. Math. 37, 192-194 (1915).
77. The mathematical analysis of electrical and optical wave-motion on the basis of Maxwell's equations. Cambr. Univ. Press. vi+159 p. (1915).
78. On systems of parlial differential equations and the transformation of spherical harmonics. Proc. Edinb. Roy. Soc. 36, 300-312 (1915).
79. On certain solutions of Maxwell's equations. Mess. (2) 45, 1-11 (1915).
80. Time and electromagnetism. Mess. (2) 45, 97-115 (1915).
81. The structure of the æther. Bull. A. M. S. (2) 21, 299-309 (1915).
82. On mulliple electromagnetic fields. Bull. A. M. S. (2) 22, 377 (1916).
83. A certain system of linear partial differential equations. Bull. A. M. S. (2) 22, 329-335 (1916).
84. On the relation of the theory of integral equations to the subject of the calculus of operations and functions. Science Prog. 11, 508-512 (1917).
85. Some fundamental concepts of electrical theory. Phil. Mag. (6) 34, 405-423 (1917).
86. On the motion of continuous distributions of electricity. Mess. (2) 46, 136-145 (1917).
87. Doppler's principle for a windy atmosphere. Monthly Weather Review 45, 441-442 (1917).
88. Some diferential equations occurring in the electrical theory of radiation. Mess. (2) 47, 161-173 (1918).
89. On a solution of the ware-equation. Tohoku Math. J. 13, 205-209 (1918).
90. The electromagnetic vectors. Phys. Rev. (2) 12, 459-481 (1918).
91. Mathematical theory of sound ranging. Monthly Weather Review 46, 4-11 (1918).
92. The structure of an electromagnetic field. Proc. N. A. S. 4, 140-145 (1918).
93. The solution of the wave equation by means of definite integrals. Bull. A. M. S. (2) 24, 296-301 (1918).
94. Differential eguations. London. Longmans, Green \& Co., xi +306 p. (1918).
95. The nature of a moving electric charge and its lines of electric force. Proc. L. M. S. (2) 18, 95-135 (1919).
96. On general relativity. Phil. Mag. (6) 37, 219-223 (1919).
97. Rotating cylinders and rectilinear vortices. Bull. A. M. S. (2) 25, 358-374 (1919).
98. Radialion from a moving magneton. Proc. N. A. S. 5, 367-371 (1919); Mess. (2) 48, 56-76 (1919),
99. On a differential equation occurring in Page's theory of electromagnetism. Proc. N. A. S. 6, 528-529 (1920).
100. An integral equation occurring in a mathematical cheory of retail lrade. Mess. (2) 49, 134-137 (1920).
101. A differential equation occurring in the theory of the propagation of waves. Mess. (2) 50, 95-101 (1920).
102. Notes on electrical theory. Bull. A. M. S. (2) 27, 217-225 (1921).
103. Correspondences between three-dimensional and four-dimensional potential problems. Mess. (2) 51, 151160 (1921).
104. Electricity and gravitation. Phys. Rev. (2) 17, 64-69 (1921).
105. An electromagnetic theory of radiation. Phil. Mag. (6) 41, 107-113 (1921).
106. On lines of electric induction and the conformal transformalions of a space of four dimensions. Proc. L. M. S. (2) 21, 256-270 (1922).
107. Some problems in polential theory. Mess. (2) 52, 71-78 (1922).
108. The stress-energy tensor in electromagnetic theory and a new law of force. Phys. Rev. (2) 20, 243-248 (1922).
109. On the numerical solution of linear integral eguations. Proc. Roy. Soc. London 100 A, 441-449 (1922).
110. Equations for the description of electromagnelic phenomena. Bull. Nat. Research Council 4, 96-161 (1922).
111. Electromagnetism and dynamics. Mess. (2) 52, 116-128 (1922).
112. On the conformal transformations of a space of four dimensions and lines of electric force. Proc. L. M. S. (2) 20, v-vi (1922).
113. Electron in uniform motion. Science 57, 238-240 (1923).
114. On the tadiation of electric dipoles. Proc. L. M. S. Records. Nov. 1923.
115. An electromagnetic theory of light-darts. Bull. A. M. S. (2) 29, 385-393 (1923).
116. On the theory of light-quantu. Phil. Mag. (6) 46, 977-991 (1923).
117. (H. B. and P. Ehrenfest). The derivation of electromagnetic fields from a basic wave-function. Proc. N. A. S. 10, 369-374 (1924).
118. Derivation of three-dimensional potentials from four-dimensional potentials. Bull. A. M. S. (2) 30, 15 (1924).
119. The form of an isolated electric particle. Mess. (2) 53, 145-152 (1924).
120. On some solutions of Laplace's cquation. Mess. (2) 54, 28-32 (1924).
121. The field of an electron at rest and in uniform motion. Phil. Mag. (6) 49, 1-18 (1925).
122. An extension of Lagrange's expansion. Bull. A. M. S. (2) 31,386 (1925); Trans. A. M. S. 28, 346-356 (1926).
123. Numterical solution of an integral equation. Bull. A. M. S. (2) 31, 111 (1925).
124. On the occasional need of very accurale logarilhms. Amer. Math. Monthly 32, 249 (1925).
125. The stability of eleclrons and protons. Mess. (2) 54, 142-149 (1925).
126. Theory of the condenser in a new electrostatics. Phil. Mag. (6) 49, 1-22 (1925).
127. Local electromagnelic fields. Proc. Edinb. Math. Soc. 44, 85-89 (1926).
128. Algebraic and transcendental equations connected with the form of stream lines. Amer. J. Math. 48, 277-297 (1926).
129. A possible connection between the wave-theory of matter and electromagnetism. Nature 118, 839-840 (1926).
130. An expression for the energy in a new electrostatics. Mess. (2) 55, 161-168 (1926).
131. The radiation of energy and angular momentum. Phys. Rev. (2) 27, 606-617 (1926).
132. A cubic curve connected with two triangles. Bull. A. M. S. (2) 33, 45-50 (1927).
133. Lagrangian functions and Schroedinger's rule. Proc. N. A. S. 13, 326-330 (1927).
134. A modification of Gordon's equations. Phys. Rev. (2) 30, 55-60 (1927).
135. The symmetry of the stress-tensor oblained by Schroedinger's rule. Proc. N. A. S. 13, 771-774 (1927).
136. Some remarks on the wave-theory of maller. Mess. (2) 57, 7-12 (1927).
137. The equation for the transverse vibrations of thin rods. Mess. (2) 57, 145-154 (1928).
138. Transverse seismic waves on the surfuce of a semi-infinite solid composed of heterogeneous materials. Bull. A. M. S. (2) 34, 343-348 (1928).
139. Interpolation for airfoils. Mess. (2) 57, 187-192 (1928).
140. Notes on a differential equation which occurs in the two-dimensional motion of a compressible fluid and the associated variational problems. Proc. Roy. Soc. London (A) 125, 598-618 (1929).
141. Some properties of spherical harm:onics. Bull. A. M. S. (2) 36, 306-314 (1930).
142. Variable flow in pipes. Phys. Rev. (2) 35, 177-183 (1930).
143. Physical problems with discontinuous initial conditions. Proc. N. A. S. 16, 205-211 (1930).
144. A solution of the wave-equation. Ann. Math. (2) 31, 158-162 (1930).
145. Irrotational motion of a compressible inviscid fluid. Proc. N. A. S. 16, 816-825 (1930).
146. Solutions of a ceriain partial differenticl equation. Proc. N. A. S. 17, 562-567 (1931).
147. On dissipative systems and related variational principles. Phys. Rev. (2) 38, 815-819 (1931).
148. Lagrange's compound pendulum. Amer. Math. Monthly 38, 1-8 (1931).
149. Sound rays as extremals. J. Acoust. Soc. Amer. 2, 468-475 (1931).
150. Relations between confluent hypergeometric functions. Prac. N. A. S. 17, 689-690 (1931).
151. The k-function, a particular case of the confluent hypergeometric function. Trans. A. M. S. 33, 817-831 (1931).
152. Partial differential equations of mathematical physics. Cambr. Univ. Press, xxii +522 p. (1932); Dover Publications, xxi+522 p. (1944).
153. (H. L. Dryden, F. D. Murnaghan, and H. B.). Hydrodynamics. Report of the Committee on $\mathrm{Hy}-$ drodynamics. Bull. Nat. Research Council 84, 1-634 (1932).
154. Some applications of Murphy's theorem. Bull. A. M. S. (2) 39, 118-123 (1933).
155. Logarithmic solutions of Bianchi's equation. Proc. N. A. S. 19, 852-854 (1933).
156. Variational principles in electromagnetism. Phys. Rev. (2) 43, 481-484 (1933).
157. Schroedinger's rule and hydrodynamics. Phys. Rev. (2) 43, 363 (1933).
158. Some properties of a cettain sel of polynomials. Tôhoku Math. J. 37, 23-38 (1933).
159. (A. A. Bennett. W. F. Milne, and H. B.). Numerical integrations of differential equations. Report of Committee on Numerical Integration. Bull. Nat. Research Council 92, 1-108 (1933).
160. Functions orthogonal in the Hernitian sense. A new application of basic numbers. Proc. N. A. S. 20, 63-66 (1934).
161. Sidelights on electromagnetic theory. Phys. Rev. (2) 45, 721-723 (1934).
162. The polynomial $F_{n}(x)$. Ann. Math. (2) 35, 767-775 (1934).
163. Selective functions and operations. Amer. Math. Monthly 41, 556-562 (1934).
164. Operational equations. Nat. Math. Mag. 9, 197-201 (1935).
165. (H. B. and S. O. Rice). Some expansions associated with Bessel funclions. Proc. N. A. S. 21, 173-179 (1935).
166. A partial differential equation connected with the functions of the parabolic cylinder. Bull. A. M. S. (2) 41, 884-893 (1935).
167. Functionul differential equations and inequalities. Proc. N. A. S. 22, 170-172 (1936).
168. Two systems of polynomials for the solution of Laplace's integral equation. Duke Math. J. 2, 569-577 (1936).
169. Polynomials associated with those of Lerch. Monatsh. f. Math. u. Physik 43, 75-80 (1936).
170. Progressive waves of finite amplitude and some steady motions of an elastic fluid. Proc. N. A. S. 22, 607619 (1936).
171. The polynomial $F_{n}(x)$ and its relation to other functions. Ann. Math. (2) 38, 303-310 (1937).
172. Coulomb's function. Proc. N. A. S. 24, 321-325 (1938).
173. Rayleigh waves. Proc. N. A. S. 24, 315-320 (1938).
174. The lift and drag fatnctions for an elastic fttid in two dimensional irrotational flow. Proc. N. A. S. 24, 246-251 (1938).
175. Halley's melhods for solving equations. Amer. Math. Monthly 45, 11-17 (1938).
176. (H. B. and S. O. Rice). Integrals insolving Legendre functions. Amer. J. Math. 60, 297-308 (1938).
177. Spheroidal and bipolar cuördinates. Duke Math. J. 4, 39-50 (1938).
178. A partial differential equation associated with Poisson's work on the theory of sound. Amer. J. Math. 60, 293-296 (1938).
179. Paraboloidal coordinates. Phil. Mag. (7) 26, 1063-1068 (1938).
180. The transformation of a Lagrangian series into a Newtonian series. Proc. N. A. S. 25, 262-265 (1939).
181. The aerodynamics of reacting substances. Proc. N. A. S. 25, 388-391 (1939).
182. On some symmetrical potentials and the partial differential equation $V_{a z x}+V_{a y y}+V_{u l}=0$. Monatsh. f. Math. u. Physik 48, 322-328 (1939).
183. The solution of harmonic equations by means of definite integrals. Bull. A. M. S. (2) 46, 538-542 (1940).
184. The polynomial of Mittag-Leffler. Proc. N. A. S. 26, 491-496 (1940).
185. Some definite integrals occurring in aerodynamics. Applied Mechanics. Theodore von Karman Anniversary Volume, California Institute of Technology 1-7 (1941).
186. The tesistance of ships. Nat. Math. Mag. 16, 79-88 (1941).
187. The form of a ship. Nat. Math. Mag. 16, 141-149 (1941).
188. An orthogonal property of the hypergeometric polynomial. Proc. N. A. S. 28, 374-377 (1942).
189. Some asymptotic relations. Proc. N. A. S. 28, 371-374 (1942).
190. The influence of tidal theory upon the development of mathematics. Nat. Math. Mag. 18, 14-26 (1943).
191. Some simple differentia! difference eguations and the related functions. Bull. A. M. S. (2) 49, 494-512 (1943).
192. Note on the function $F(a, b ; c-n ; z)$. Proc. N. A. S. 30, 28-30 (1944).
193. The transformation of parlial differential equalions. Quart. Appl. Math. 1, 281-296 (1944).
194. (H. B. and R. C. Archibald). A guide to tables of Bessel functions. Mathematical Tables and Other Aids to Computation 1, 205-308 (1944).
195. Some integral relations. Bull. A. M. S. (2) 50, 745-749 (1944).
196. Hanilton's work in dynamics and its influence on modern thought. Scripta Mathematica 10, 51-63 (1944).
197. Articles on Dynamics, Elasticily. Encyclopedia Britannica (1945).
198. Two integral equations. Proc. N. A. S. 31, 196-200 (1945).
199. The control of an elastic fluid. Bull. A. M. S. (2) 51, 601-646 (1945).
200. The derivation of Euler's equations from a variational principle. Revista Ci., Lima 47, 111-117 (1945).
201. (H. B. and C. L. Pekeris). Transmission of light from a point source in a medium bounded by diffusely reflecting parallel plane surfaces. J. Opt. Soc. Amer. 35, 651-657 (19-15).
202. Some integral equations of potential theory. J. Appl. Physics 17, 91-102 (1946).

CONTRIBUTIONS TO THE PROBLEM OF APPROXIMATION OF EQUIDISTANT DATA BY ANALYTIC FUNCTIONS*

PART B-ON THE PROBLEM OF OSCULATORY INTERPOLATION. A SECOND CLASS OF ANALYTIC APPROXIMATION FORMULAE

By
I. J. SCHOENBERG
Universily of Pennsylvania and Ballistic Research Laboratories, Aberdeen Proving Ground

Introduction. The present second part of the paper has two objectives. Firstly, we wish to carry further the important actuarial work on the subject of osculatory interpolation (Chapters I and II). Secondly, we construct even analytic functions $L(x)$, of extremely fast damping rate, such that the interpolation formula of cardinal type

$$
\begin{equation*}
F(x)=\sum_{\nu=-\infty}^{\infty} y_{\nu} L(x-\nu) \tag{1}
\end{equation*}
$$

reproduces polynomials of a certain degree and reduces to a smoothing formula for integral values of the variable x (Chapter III). This second problem is found to be intimately connected with the subject of osculatory interpolation.

A preliminary remark concerning our notation is necessary. In Part A, Section 2.21 we described various characteristic properties (or "type characteristics") of a polynomial interpolation formula of the form (1), such as: (i) The degree m of the composite polynomial function $L(x)$; (ii) its class C^{μ}, i.e., order of contact is μ; (iii) the highest degree k of polynomials for which the formula (1) is exact; (iv) the span s of the even polynomial function $L(x)$. For convenience we propose to summarize all these statements by saying that (1) is a formula of type ${ }^{1}$

[^3]This inequality is found to be equivalent to

$$
\begin{equation*}
-\frac{s}{2}+x<n<\frac{s}{2}+x \tag{}
\end{equation*}
$$

Let $s=2 \sigma$ be even (end-point formula) and let now x be anywhere within $0 \leqq x \leqq 1$. By (*) $F(x)$ then re-

$$
\begin{equation*}
D^{m}, \quad C^{\mu}, \quad E^{k}, \quad s . \tag{2}
\end{equation*}
$$

As an instance we may describe the k-point central interpolation formula of Part A, Section 2.121 as a formula of type ${ }^{2}$

$$
D^{k-1},\left\{\begin{array}{l}
C^{0} \text { if } k \text { is even } \\
C^{-1} \text { if } k \text { is odd }
\end{array}\right\}, \quad E^{k-1}, \quad s=k
$$

In Chapter II we construct a class of ordinary interpolation formulae and two classes of smoothing interpolation formulae. These classes by no means describe all possible osculatory interpolation formulae. Furthermore, a number of interesting problems concerning remainder terms and orders of approximations await solution. No attempt has been made to see which of the numerous formulae tabulated by Greville, loc. cit., are contained in the three classes of formulae developed in Chapter II. The essential progress made in this direction may perhaps be briefly described as follows. The construction of an interpolation formula usually requires the solution of a more or less complicated system of linear equations, unless, as in Lagrange's formula, the basic interpolating functions are obvious from the start. These systems of equations are especially troublesome if one wishes to construct an osculatory interpolation formula of any general class. As Greville correctly points out, loc. cit., pp. 255-256, the mere agreement between the number of unknowns with the number of equations which they should satisfy, will, by itself, never prove the existence of a solution. Basically, our parametric representation of spline curves of order k (Part A, Section 3.15, Theorem 5) circumvents this difficulty.

An example which illustrates the operation of this representation is as follows. Let $F(x)$ be defined as equal to 0 for $x \leqq 0$, as well as for $x \geqq 4$. We propose to complete the definition of $F(x)$ in the range $0 \leqq x \leqq 4$ by four cubic arcs joining at $x=1,2,3$, in such a way that $F(x)$ be of class $C^{\prime \prime}$ for all real x. Of course, we are not interested in the obvious but trivial solution $F(x) \equiv 0$. Let us now count the available parameters and the number of conditions. The 4 cubic arcs furnish $4 \cdot 4=16$ parameters. The second order contact requirements at $x=0,1,2,3,4$ lead to a system of $3 \cdot 5=15$ homogeneous equations. The solution of a homogeneous system of 15 equations in 16 unknowns depends on anything from 1 to 16 arbitrary parameters, depending on the rank of the system. Our Theorem 5 , for $k=4$, furnishes immediately the one-parameter solution

$$
\begin{equation*}
F(x)=c \cdot M_{1}(x-2) \tag{3}
\end{equation*}
$$

the graph of which is given in Part A, Section 3.13. Again Theorem 5 will easily show that this is the most general solution of the problem. We see how this complicated system of 15 equations in 16 unknowns is explicitly solved by (3). As a variation of the problem, let us now define $F(x)$ to be equal to 0 for $x \leqq 0$, as well as for $x \geqq 3$, and let us propose now to bridge this gap by 3 cubic arcs giving a $F(x)$ of class $C^{\prime \prime}$. Now we find that the problem amounts to a system of 12 homogencous equations in 12 unknowns. This tells us precisely nothing. Again by Theoren 5 we can readily show that

[^4]the trivial solution $F(x) \equiv 0$ is the only solution. These considerations generalize and allow to characterize our basic functions
$$
M_{k}(x)=\frac{1}{(k-1)!} \delta^{k} x_{+}^{k-1}
$$
up to a multiplicative constant and a shift along the x-axis, as follows: Let $F(x)$ be $=0$ for $x \leqq 0$, as well as for $x \geqq n$, where n is a positive integer. We wish to complete the definition of $F(x)$ by a succession of n arcs, of degree $k-1$, joining at $x=1,2, \cdots$, $n-1$ such as to furnish a $F(x)$ of C^{k-2}. Then $n=k$ is the smallest value of n for which this can be done in a non-trivial way and for this minimal value $n=k$ the gap is bridged by
$$
F(x)=c \cdot M_{k}(x-k / 2)
$$
and in no other way.
The reader who is mainly interested in the numerical applications may pass directly from here to the Appendix where the use of the tables is fully explained and one example is worked out.
I. THE COSINE POLYNOMIALS $\phi_{k}(u)$ AND CERTAIN RELATED SETS OF POLYNOMIALS

In the present chapter we propose to study further properties of the cosine polynomials

$$
\begin{equation*}
\phi_{k}(u)=\sum_{n=-\infty}^{\infty} M_{k}(n) \cos n u \tag{1}
\end{equation*}
$$

which were mentioned in Part A, sections 3.14 and 4.1 (for $t=0$). By Part A, section 4.1, formula (6) (for $t=0$) we may also write

$$
\phi_{k}(u)=\sum_{\nu=-\infty}^{\infty} \psi_{k}(u+2 \pi \nu)
$$

and therefore

$$
\begin{equation*}
\phi_{k}(u)=(2 \sin u / 2)^{k} \cdot \sum_{v=-\infty}^{\infty} \frac{(-1)^{v k}}{(u+2 \pi \nu)^{k}} \tag{2}
\end{equation*}
$$

1.1. Expression of $\phi_{k}(u)$ in terms of rational polynomials. We introduce two new sets of periodic functions defined by

$$
\begin{align*}
& \rho_{k}(u)=(2 \sin u / 2)^{k} \cdot \sum_{v=-\infty}^{\infty} \frac{1}{(u+2 \pi \nu)^{k}}, \tag{3}\\
& \sigma_{k}(u)=(2 \sin u / 2)^{k} \cdot \sum_{v=-\infty}^{\infty} \frac{(-1)^{v}}{(u+2 \pi \nu)^{k}} .
\end{align*}
$$

A comparison with (2) shows that

$$
\phi_{k}(u)=\left\{\begin{array}{lll}
\rho_{k}(u) & \text { if } & k \text { is even } \tag{4}\\
\sigma_{k}(u) & \text { if } & k \text { is odd }
\end{array}\right.
$$

[^5]By differentiation of (3) and also (3^{\prime}) we readily find the recurrence relations

$$
\begin{align*}
\rho_{k+1}(u) & =\cos \frac{u}{2} \rho_{k}(u)-\frac{2}{k} \sin \frac{u}{2} \rho_{k}^{\prime}(u), \tag{5}\\
\sigma_{k+1}(u) & =\cos \frac{u}{2} \sigma_{k}(u)-\frac{2}{k} \sin \frac{u}{2} \sigma_{k}^{\prime}(u) .
\end{align*}
$$

These may be used in a progressive computation of ρ_{k} and σ_{k} if we start with

$$
\begin{equation*}
\rho_{2}(u)=1, \quad \sigma_{1}(u)=1 \tag{6}
\end{equation*}
$$

We prefer, however, to express $\rho_{k}(u)$ and $\sigma_{k}(u)$ as polynomials in the variable

$$
\begin{equation*}
x=\cos (u / 2) \tag{7}
\end{equation*}
$$

by means of

$$
\begin{equation*}
\rho_{k}(u)=U_{k-2}(\cos u / 2), \quad \sigma_{k}(u)=V_{k-1}(\cos u / 2) \tag{8}
\end{equation*}
$$

Substituting into (5), and (5) respectively we find that the two sequences of polynomials $U_{n}(x), V_{n}(x)$, both of exact degree n, satisfy the recurrence relations

$$
\begin{align*}
U_{k+1}(x) & =x U_{k}(x)+\frac{1}{k+2}\left(1-x^{2}\right) U_{k}^{\prime}(x) \tag{9}\\
V_{k+1}(x) & =x V_{k}(x)+\frac{1}{k+1}\left(1-x^{2}\right) V_{k}^{\prime}(x)
\end{align*}
$$

with initial values which by (6) and (8) are

$$
\begin{equation*}
U_{0}(x)=1, \quad V_{0}(x)=1 \tag{10}
\end{equation*}
$$

A simple calculation now gives

$$
\begin{array}{ll}
U_{1}(x)=x, & V_{1}(x)=x \\
U_{2}(x)=\frac{1}{3}\left(1+2 x^{2}\right), & V_{2}(x)=\frac{1}{2}\left(1+x^{2}\right), \\
U_{3}(x)=\frac{1}{3}\left(2 x+x^{3}\right), & V_{3}(x)=\frac{1}{6}\left(5 x+x^{3}\right) \\
U_{4}(x)=\frac{1}{15}\left(2+11 x^{2}+2 x^{4}\right), & V_{4}(x)=\frac{1}{24}\left(5+18 x^{2}+x^{4}\right) \tag{11}\\
U_{8}(x)=\frac{1}{45}\left(17 x+26 x^{3}+2 x^{5}\right), & V_{5}(x)=\frac{1}{120}\left(61 x+58 x^{3}+x^{5}\right)
\end{array}
$$

We record as a lemma the following properties which are readily established by induction.

LEMMA 1. $U_{k}(x)$ and $V_{k}(x)$ are polynomials of exact degree k which are even or odd according as k is even or odd. The coefficients of their highest terms are positive. Also

$$
\begin{equation*}
U_{k}(1)=V_{k}(1)=1, \quad U_{k}(-1)=V_{k}(-1)=(-1)^{k} \tag{12}
\end{equation*}
$$

In view of (4) and (8) we find the following expression of $\phi_{k}(u)$ in terms of our new polynomials:

$$
\phi_{k}(u)=\left\{\begin{array}{lll}
U_{k-2}(x) & \text { if } & k \text { is even }, \tag{13}\\
V_{k-1}(x) & \text { if } & k \text { is odd. }
\end{array}\right.
$$

This shows that the even polynomials $U_{2 v}, V_{2 \nu}$ are of special interest.
1.2. The zeros of the polynomials U_{k} and V_{k}. We propose to prove the following proposition:

Lemma 2. The zeros of the even polynomials $U_{2 v}(x)$ and $V_{2 \mu}(x)$ are all simple and purely imaginary.

We carry through the proof for $U_{2 v}(x)$ only since the proof for $V_{2 v}(x)$ is entirely similar. In order to deal with real zeros, we define a new sequence of polynomials $u_{k}(x)$ by

$$
\begin{equation*}
u_{k}(x)=i^{-k} U_{k}(x i), \quad(k=0,1, \cdots) \tag{14}
\end{equation*}
$$

These new polynomials are also real and satisfy a recurrence relation which in view of (9) is readily found to be

$$
\begin{equation*}
u_{k+1}(x)=x u u_{k}(x)-\frac{1}{k+2}\left(1+x^{2}\right) u_{k}^{\prime}(x) . \tag{15}
\end{equation*}
$$

From (11) we find

$$
u_{0}(x)=1, \quad u_{1}(x)=x, \quad u_{2}(x)=\frac{1}{3}\left(2 x^{2}-1\right), \quad u_{3}(x)=\frac{1}{3}\left(x^{3}-2 x\right), \cdots .
$$

In view of (14) it obviously suffices to show that the zeros of $u_{k}(x)$ ar real and simple, while those of $u_{2}(x)$ are also different from zero. This is readily done by induction as follows. Let $k=2 \nu$ be even and let us assume that the k zeros of $u_{k}(x)$ are

$$
\begin{equation*}
-\xi_{\nu},-\xi_{\nu-1}, \cdots,-\xi_{1}, \xi_{1}, \xi_{2}, \cdots, \xi_{\nu} \quad\left(0<\xi_{1}<\cdots<\xi_{\nu}\right), \tag{16}
\end{equation*}
$$

and therefore simple. This, and the fact that $u_{k}(x)$ has a highest term of positive coefficient (Lemma 1 and (14)), imply that

$$
u_{k}^{\prime}\left(\xi_{\nu}\right)>0,
$$

and that the sequence of values of $u_{k}^{\prime}(x)$, at the k roots (16), alternate in sign. By (15) we therefore find

$$
u_{k+1}\left(\xi_{\nu}\right)<0
$$

and that the values of $u_{k+1}(x)$, at the k roots (16), alternate in sign. Since $u_{k+1}(0)=0$, we conclude that $u_{k+1}(x)$ has ν positive and ν negative zeros which must therefore be simple.

Let now $k=2 \nu+1$ be odd and let u_{k} have the simple zeros

$$
\begin{equation*}
-\xi_{r i} \cdots,-\xi_{1}, 0, \xi_{1}, \cdots, \xi_{v} \quad\left(0<\xi_{1}<\cdots<\xi_{\nu}\right) . \tag{17}
\end{equation*}
$$

Now we conclude as before that $u_{k+1}\left(\xi_{\eta}\right)<0$ and that the values of $u_{k+1}(x)$, at the k roots (17), alternate in sign. Again the conclusion is that $u_{k+1}(x)$ has simple real roots none of which vanishes. This proves the theorem by complete induction.
1.3. A few corollaries. In this last section of the present chapter we prove several auxiliary propositions which will be used in the next chapter in the derivation of inter-
polation formulae of various kinds. These propositions represent the solutions of the algebraic problems arising by the Fourier integral transformation of the problems of the construction of those interpolation formulae.

Lemma 3. Let $k=2 \nu$ he even. We can determine uniquely an even polynomial $P_{k}(x)$, of degree k, and an odd polynomial $P_{k-1}(x)$, of degree $k-1$, satisfying the identity

$$
\begin{equation*}
U_{k}(x) P_{k}(x)+U_{k+\frac{1}{2}}(x) P_{k-1}(x) \equiv 1 . \tag{18}
\end{equation*}
$$

Likewise polynomials $Q_{k}(x)$ and $Q_{k-1}(x)$, even and odd respectively, exist uniquely such as to satisfy

$$
\begin{equation*}
V_{k}(x) Q_{k}(x)+V_{k+1}(x) Q_{k-1}(x) \equiv 1 . \tag{19}
\end{equation*}
$$

We wish to show first that U_{k} and U_{k+1} have no common zeros. Indeed a common zero x of U_{k} and U_{k+1} would, by (9), be a zero of

$$
\left(1-x^{2}\right) U_{k}^{\prime}(x) .
$$

Since by (12) $x \neq \pm 1, x$ must be a zero of $U_{k}^{\prime}(x)$. But this contradicts our Lemma 2 to the effect that $U_{k}(x)$ has only simple zeros. The polynomials $U_{k}(x), U_{k+1}(x)$ having no common divisors, the identity (18) is assured by the elementary theory of the greatest common divisor of two polynomials. We now show that $P_{k}(x)$ is even and $P_{k-1}(x)$ is odd as follows. Replacing x by $-x$ in (18) we find

$$
U_{k}(x) P_{k}(-x)-U_{k+1}(x) P_{k-1}(-x) \equiv 1 .
$$

Since our polynomials P_{k}, P_{k-1} are uniquely defined by (18) we find

$$
P_{k}(x)=P_{k}(-x), \quad P_{k-1}(x)=-P_{k-1}(-x),
$$

which prove our statement. An identical reasoning proves the existence of the polynomials Q_{k} and Q_{k+1} satisfying (19).

The polynomials P_{k} and P_{k+1} are easily determined for low values of k by the method of indeterminate coefficients. Thus for $k=2$ by (11),

$$
U_{2}(x)=\left(1+2 x^{2}\right) / 3, \quad U_{3}(x)=\left(2 x+x^{3}\right) / 3
$$

from which we find

$$
P_{2}(x)=2 x^{2}+3, \quad P_{1}(x)=-4 x
$$

satisfying the identity

$$
\begin{equation*}
U_{2}(x) P_{2}(x)+U_{3}(x) P_{1}(x) \equiv 1 . \tag{20}
\end{equation*}
$$

Likewise for $k=4$ we have by (11)

$$
V_{4}(x)=\left(5+18 x^{2}+x^{4}\right) / 24, \quad V_{5}(x)=\left(61 x+58 x^{3}+x^{6}\right) / 120 .
$$

The corresponding polynomials Q_{4}, Q_{3} are found to be

$$
Q_{4}(x)=\left(3648+4789 x^{2}+83 x^{4}\right) / 760, \quad Q_{3}(x)=-\left(1469 x+83 x^{3}\right) / 152
$$

They satisfy the identity

$$
\begin{equation*}
V_{4}(x) Q_{6}(x)+V_{6}(x) Q_{3}(x) \equiv 1 . \tag{21}
\end{equation*}
$$

The identities (18), (19) will later be used in the following form. Again for an even k, but replacing k by $k-2$, we get by (18) and (8)

$$
\rho_{k}(u) P_{k-2}(x)+\rho_{k+1}(u) P_{k-3}(x)=1, \quad(k \text { even, } x=\cos u / 2) .
$$

Likewise for an odd k, but replacing k by $k-1$, we obtain from (19) and (8) the identity

$$
\sigma_{k}(u) Q_{k-1}(u)+\sigma_{k+1}(u) Q_{k-2}(k)=1, \quad(k \text { odd, } x=\cos u / 2) .
$$

The even polynomials $P_{k-2}, x^{-1} P_{k-3}$, and $Q_{k-1}, x^{-1} Q_{k-2}$, may now bc expressed in powers of

$$
1-x^{2}=(\sin u / 2)^{2}
$$

We have therefore proved the following:
Lemma 4. We can find constants $a_{\nu}, a_{\nu}^{\prime}, b_{\nu}, b_{\nu}^{\prime}$ such as to satisfy the following two identities:

For an even k

$$
\begin{align*}
& \rho_{k}(u)\left\{a_{0}-a_{2}(2 \sin u / 2)^{2}+a_{4}(2 \sin u / 2)^{4}-\cdots \pm a_{k-2}(2 \sin u / 2)^{k-2}\right\} \\
&+\rho_{k+1}(u)\left\{a_{0}^{\prime}-a_{2}^{\prime}(2 \sin u / 2)^{2}\right.
\end{aligned} \begin{aligned}
& +a_{4}^{\prime}(2 \sin u / 2)^{4}-\cdots \\
& \text { 干 } \left.a_{k-4}^{\prime}(2 \sin u / 2)^{k-4}\right\}(2 \cos u / 2) \equiv 1, \tag{22}
\end{align*}
$$

and for k odd

$$
\left.\begin{array}{rl}
\sigma_{k}(u)\left\{b_{0}-\right. & b_{2}(2 \sin u / 2)^{2} \\
& +b_{4}(2 \sin u / 2)^{4}
\end{array}-\cdots \pm b_{k-1}(2 \sin u / 2)^{k-1}\right\}, \sigma_{k+1}(u)\left\{b_{0}^{\prime}-b_{2}^{\prime}(2 \sin u / 2)^{2}+b_{4}^{\prime}(2 \sin u / 2)^{4}-\cdots .0(2 \cos u / 2) \equiv 1 .\right.
$$

As examples we mention that the identities (20) and (21) become on passing to the variable u

$$
\begin{equation*}
\rho_{4}(u)\left\{5-\frac{1}{2}(2 \sin u / 2)^{2}\right\}+\rho_{5}(u)\{-2\}(2 \cos u / 2) \equiv 1 \tag{23}
\end{equation*}
$$

and

$$
\begin{align*}
& \sigma_{5}(u)\left\{\frac{213}{19}-\frac{991}{760}(2 \sin u / 2)^{2}+\frac{83}{12160}(2 \sin u / 2)^{4}\right\}, \\
& +\sigma_{6}(u)\left\{-\frac{194}{38}+\frac{83}{1216}\left(2 \sin \frac{u}{2}\right)^{2}\right\}\left(2 \cos \frac{u}{2}\right) \equiv 1 . \tag{24}
\end{align*}
$$

The last proposition which we wish to derive here concerns the expansion of $1 / \phi_{k}(u)$ in ascending powers of the variable

$$
\begin{equation*}
s=\sin ^{2} u / 2=1-\cos ^{2} u / 2=1-x^{2} . \tag{25}
\end{equation*}
$$

Let us assume for the moment that k is even. Then by (13)

$$
\begin{equation*}
\phi_{k}(u)=U_{k-2}(x), \quad(k \text { even }) . \tag{26}
\end{equation*}
$$

Now $U_{k-2}(x)$ is an even polynomial which, by Lemma 2, has purely imaginary zeros. Being an even polynomial, $U_{k-2}(x)$ may be expressed as a polynomial $U^{*}(s)$ in the variable

$$
s=1-x^{2}
$$

of degree $\kappa=(k-2) / 2$. This change of variable transforms the purely imaginary zeros of $U_{k-2}(x)$ into the zeros

$$
\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k} \quad(\kappa=(k-2) / 2)
$$

of $U^{*}(s)$ which, by $\left(25^{\prime}\right)$, must all be positive and greater than 1 . Finally, since $U_{k-2}(1)=U^{*}(0)=1$, we have the identity

$$
\begin{equation*}
\phi_{k}(u)=U_{k-2}(x)=\left(1-\frac{s}{\alpha_{1}}\right)\left(1-\frac{s}{\alpha_{2}}\right) \cdots\left(1-\frac{s}{\alpha_{k}}\right) \tag{27}
\end{equation*}
$$

An entirely similar identity is derived for an odd k by repeating our arguments for
instead of (26).

$$
\phi_{k}(u)=V_{k-1}(x),
$$

This establishes the following
Lemma 5. The reciprocal of the cosine polynomial $\phi_{k}(u)$ admits of an expansion

$$
\begin{equation*}
\frac{1}{\phi_{k}(u)}=\sum_{n=0}^{\infty} c_{2 n}^{(k)}(2 \sin u / 2)^{2 n} \tag{28}
\end{equation*}
$$

which converges for all real values of u and where the coefficients are positive rational numbers

$$
\begin{equation*}
c_{2 n}^{(k)}>0, \quad(n=0,1,2, \cdots) \tag{29}
\end{equation*}
$$

Indeed, in view of (27), the expansion (28) may be obtained as

$$
\frac{1}{\phi_{k}(u)}=\prod_{v=1}^{\kappa}\left(1+\frac{s}{\alpha_{\nu}}+\frac{s^{2}}{\alpha_{\nu}^{2}}+\cdots\right)=\sum_{n=0}^{\infty} c_{2 n}^{(k)}(4 s)^{n}
$$

which reduces to (28), in view of (25). In conclusion we notice the following consequences of the identity (28). Since

$$
\phi_{k}(u) u=\sum_{v=-\infty}^{\infty} \psi_{k}(u+2 \pi v),
$$

where

$$
\psi_{k}(u)=\left(\frac{2 \sin u / 2}{u}\right)^{k}
$$

we have in the neighborhood of the origin $u=0$

$$
\begin{equation*}
\phi_{k}(u)=\left(\frac{2 \sin u / 2}{u}\right)^{k}+u^{k} \cdot(\text { regular function of } u) \text {. } \tag{30}
\end{equation*}
$$

On multiplying (28) by $\phi_{k}(u)$ we therefore have

$$
\left(\frac{2 \sin u / 2}{u}\right)^{k} \cdot \sum_{n=0}^{\infty} c_{2 n}^{(k)}(2 \sin u / 2)^{2 n}=1+u^{k} \cdot \text { (regular function) }
$$

and also

$$
\begin{equation*}
\left(\frac{2 \sin u / 2}{u}\right)^{k} \cdot \sum_{0 \leq 2 n<k} c_{2 n}^{(k)}(2 \sin u / 2)^{2 n}=1+u^{k} \cdot(\text { regular function }) . \tag{31}
\end{equation*}
$$

It is of special interest to point out that if

$$
g_{k, m}(u) \equiv\left(\frac{2 \sin u / 2}{u}\right)^{k} \cdot \sum_{n=0}^{m-1} c_{2 n}^{(k)}(2 \sin u / 2)^{2 n}
$$

then

$$
g_{k, m}(u)= \begin{cases}1+u^{2 m} \cdot(\text { regular function) } & \text { if } \quad 2 m<k \tag{32}\\ 1+u^{k} \cdot(\text { regular function) } & \text { if } \quad 2 m-2<k \leqq 2 m\end{cases}
$$

As an illustration we find for $k=6$ by (13), and (11), and (25)

$$
\frac{1}{\phi_{6}(u)}=\frac{1}{U_{1}(x)}=\frac{15}{2+11 x^{2}+2 x^{4}}=\frac{30}{30-30 s+4 s^{2}}=\frac{1}{1-s+\frac{2}{15} s^{2}}
$$

whence

$$
\frac{1}{\phi_{6}(u)}=1+s+\frac{13}{15} s^{2}+\cdots
$$

or

$$
\begin{equation*}
\frac{1}{\phi_{b}(u)}=1+\frac{1}{4}(2 \sin u / 2)^{2}+\frac{13}{240}(2 \sin u / 2)^{4}+\cdots \tag{33}
\end{equation*}
$$

The relations (32) now become (for $k=6, m=1,2,3$)

$$
\begin{aligned}
\left(\frac{2 \sin u / 2}{u}\right)^{6} & =1+u^{2} \cdot \text { (regular function), } \\
\left(\frac{2 \sin u / 2}{u}\right)^{6}\left\{1+\frac{1}{4}(2 \sin u / 2)^{2}\right\} & =1+u^{4} \cdot(\text { regular function), } \\
\left(\frac{2 \sin u / 2}{u}\right)^{6}\left\{1+\frac{1}{4}(2 \sin u / 2)^{2}+\frac{13}{240}(2 \sin u / 2)^{4}\right\} & =1+u^{6} \cdot \text { (regular function). }
\end{aligned}
$$

In the next chapter we shall need the numerical values of the coefficients

$$
\begin{equation*}
c_{2 n}^{(k)} \text { for } 2 n<k \tag{34}
\end{equation*}
$$

It is of interest then to point out that these coefficients (34) may also be otherwise computed as coefficients of a simple generating function. Indeed, from (30) it is clear that the coefficients (34) will not change if on the left-hand side of (28) we replace $\phi_{k}(u)$ by the first term on the right-hand side of (30). That means, if

$$
\begin{equation*}
\left(\frac{u}{2 \sin u / 2}\right)^{k}=\sum_{n=0}^{\infty} d_{2 n}^{(k)}(2 \sin u / 2)^{2 n} \tag{35}
\end{equation*}
$$

then

$$
\begin{equation*}
c_{2 n}^{(k)}=d_{2 n}^{(k)} \quad(2 n<k) \tag{36}
\end{equation*}
$$

However, the coefficients of (35) are readily determined. Indeed, if we set

$$
\begin{equation*}
v=2 \sin u / 2 \text { or } u=2 \arcsin v / 2 \tag{37}
\end{equation*}
$$

then (35) becomes

$$
\begin{equation*}
\left(\frac{2 \arcsin v / 2}{v}\right)^{k}=\sum_{n=0}^{\infty} d_{2 n}^{(k)} v^{2 n} . \tag{38}
\end{equation*}
$$

Since

$$
\begin{equation*}
\frac{2 \arcsin v / 2}{v}=1+\frac{1}{2} \cdot \frac{1}{3} \cdot \frac{v^{2}}{4}+\frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{1}{5} \cdot \frac{v^{4}}{16}+\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \frac{1}{7} \cdot \frac{v^{6}}{64}+\cdots, \tag{39}
\end{equation*}
$$

we find the expansion (38) by raising (39) to the k-th power. Thus

$$
\begin{equation*}
d_{0}^{(k)}=1, \quad d_{2}^{(k)}=\frac{k}{24}, \quad d_{4}^{(k)}=\frac{5 k^{2}+22 k}{5760}, \ldots \tag{40}
\end{equation*}
$$

Since all coefficients of (39) are positive, it is clear that the coefficients of (38) are likewise positive. This however does not imply the positivity of the coefficients of (28) beyond the k th term. For $k=6$ the values (40) agree with the coefficients of (33).

II. POLYNOMIAL INTERPOLATION FORMULAE

In this chapter we wish to apply our general Theorem 2 of Part A, section 2.23 and our Lemmas 4 and 5 of the last section in deriving three distinct classes of polynomial interpolation formulae for each value of the positive integer k. The formulae of the first class (Theorem 1 below) are of the ordinary kind (see Part A, section 2.21 a and b), and of the type

$$
D^{k}, \quad C^{k-2}, \quad E^{k-1}, \quad s= \begin{cases}2 k-2 & \text { if } k \text { is even } \\ 2 k-1 & \text { if } k \text { is odd }\end{cases}
$$

The existence of ordinary interpolation formulae of degree k and class $k-2$ was previously conjectured by Mr. Greville who verified their existence up to and including $k=6$. (See Greville, loc. cit., pp. 212-213.) The formulae of the second class are smoothing interpolation formulae (Theorem 2 below). For a given integral k and each integral m, such that $0 \leqq 2 m-2<k$, a formula is derived which is of the type

$$
D^{k-1}, \quad C^{k-2}, \quad E^{\min (2 m-1, k-1)}, \quad s=k+2 m-2
$$

These formulae are derived from an ordinary interpolation formula of type

$$
D^{k-1}, \quad C^{k-2}, \quad E^{k-1}, \quad s=\infty,
$$

discussed in Part A.
The formulae of the third and last class are again smoothing interpolation formulae (Theorem 3 below). While in the second class the degree D^{k-1} and the "order of contact" C^{k-2} were fixed, while the degree of exactness $E^{2 m-1}$ and the span $s=k+2 m-2$ increased apace, in the present class the span $s=k$ is constant. More precisely, a formula is derived for each m such that $0 \leqq 2 m \leqq k-1$ which is of type

$$
D^{k-1}, \quad C^{k-2 m}, \quad E^{2 m-1}, \quad s=k
$$

These formulae are derived from the formula of ordinary k-point central interpolation in a manner somewhat reminiscent of Mr. Jenkins' original procedure.
2.1. Ordinary polynomial interpolation formulae of the Jenkins-Greville type. We are returning to our basic functions

$$
\begin{equation*}
M_{k}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left(\frac{2 \sin u / 2}{u}\right)^{k} e^{i u x} d u \tag{1}
\end{equation*}
$$

and wish to show that the osculatory interpolation formulae of the type investigated by Jenkins and Greville may be readily derived in terms of these functions. We shall use the operational symbol σ to mean

$$
\sigma f(x)=f\left(x+\frac{1}{2}\right)+f\left(x-\frac{1}{2}\right)
$$

Theorem 1. We define the basic polynomial function $L(x)$ by the following two formulae according to the parity of k :

$$
\begin{align*}
L(x)= & a_{0} M_{k}(x)+a_{2} \delta^{2} M_{k}(x)+\cdots+a_{k-2} \delta^{k-2} M_{k}(x) \\
& +a_{0}^{\prime} \sigma M_{k+1}(x)+a_{2}^{\prime} \sigma \delta^{2} M_{k+1}(x)+\cdots+a_{k-4}^{\prime} \sigma \delta^{k-4} M_{k+1}(x) \quad(k \text { even }) \tag{2}\\
L(x)= & b_{0} M_{k}(x)+b_{2} \delta^{2} M_{k}(x)+\cdots+b_{k-1} \delta^{k-1} M_{k}(x) \\
& +b_{0}^{\prime} \sigma M_{k+1}(x)+b_{2}^{\prime} \sigma \delta^{2} M_{k+1}(x)+\cdots+b_{k-3}^{\prime} \sigma \delta^{k-3} M_{k+1}(x), \quad(k \text { odd }), \tag{3}
\end{align*}
$$

where the numerical constants $a_{v}, a_{\nu}^{\prime}, b_{\nu}, b_{\nu}^{\prime}$ are those defined in Lemma 4. Then

$$
\begin{equation*}
F(x)=\sum_{n=-\infty}^{\infty} y_{n} L(x-n) \tag{4}
\end{equation*}
$$

is an ordinary polynomial interpolation formula of type

$$
D^{k}, \quad C^{k-2}, \quad E^{k-1}, \quad s= \begin{cases}2 k-2 & \text { if } k \text { is even }, \tag{5}\\ 2 k-1 & \text { if } k \text { is odd }\end{cases}
$$

Indeed, we notice that

$$
\begin{align*}
& \delta e^{i u x}=\left(e^{i u / 2}-e^{-i u / 2}\right) e^{i u x}=2 i \sin u / 2 e^{i u x} \\
& \sigma e^{i u x}=\left(e^{i u / 2}+e^{-i u / 2}\right) e^{i u x}=2 \cos u / 2 e^{i u x} \tag{6}
\end{align*}
$$

Let k now be even, hence $L(x)$ defined by (2), and let

$$
L(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} g(u) e^{i u x} d u
$$

We evidently obtain this integral representation by performing the operation

$$
a_{0}+a_{2} \delta^{2}+\cdots+a_{k-2} \delta^{k-2}
$$

on the relation (1) and add to it the result of performing the operation

$$
a_{0}^{\prime} \sigma+a_{2}^{\prime} \sigma \delta^{2}+\cdots+a_{k-4}^{\prime} \sigma \delta^{k-4}
$$

on (1), with k replaced by $k+1$. In view of (6) we have

$$
\begin{aligned}
\delta^{v} e^{i u x} & =(2 i \sin u / 2)^{v} e^{i u x} \\
\sigma \delta^{v} e^{i u x} & =(2 i \sin u / 2)^{v}(2 \cos u / 2) e^{i u x}
\end{aligned}
$$

and therefore

$$
\begin{align*}
g(u)= & \left(\frac{2 \sin u / 2}{u}\right)^{k}\left\{a_{0}-a_{2}(2 \sin u / 2)^{2}+\cdots \pm a_{k-2}(2 \sin u / 2)^{k-2}\right\} \\
& +\left(\frac{2 \sin u / 2}{u}\right)^{k+1}\left\{a_{0}^{\prime}-a_{2}^{\prime}(2 \sin u / 2)^{2}\right.
\end{align*} \begin{array}{r}
\\
\end{array} \begin{array}{r}
 \tag{7}\\
\end{array}
$$

We now turn to Theorem 2 of Part A, section 2.23, which states that (4) is an ordinary interpolation formula if and only if the following identity holds:

$$
\begin{equation*}
\sum_{v=-\infty}^{\infty} g(u+2 \pi \nu)=1 \tag{8}
\end{equation*}
$$

It should be noticed now that both expressions in (7) contained within braces are periodic functions of period 2π. Since k is even we find that $\sum g(\psi+2 \pi \nu)$ is identical with the left-hand side of our relation I (22). This proves (8) for even k. A precisely similar reasoning for odd k will show that $\sum g(u+2 \pi \nu)$ is identical with the left-hand side of I (22^{\prime}).

There remains the problem of showing that (4) is of the type as stated in the Theorem. Since $L(x)$ is by (2), (3), a linear combination of functions of the form

$$
M_{k}(x+n), \quad M_{k+1}\left(x+\frac{1}{2}+n\right),
$$

it is clear that $L(x)$ is a polynomial line of degree k, of class C^{k-2}, with discontinuities at $x=n$, or $x=n+1 / 2$, according to whether k is even or odd. Finally (4) is exact for the degree $k-1$, again by Theorem 2 of Part A, section 2.23. There remains the discussion of the span s of $L(x)$. Now the span of $M_{k}(x)$ is $=k$ (see Part A, section 3.13) and therefore the span of $\delta^{\nu} M_{k}(x)$ is equal to $k+\nu$, while the span of $\sigma \delta^{\nu} M_{k}(x)$ is equal to $k+\nu+1$. Now it is immediately verified that the two terms of (2) involving δ^{k-2} and $\sigma \delta^{k-4}$ are both of span $2 k-2$, while the similar two terms of (3) are both of span $2 k-1$. This completes a proof of the Theorem.

As illustrations we mention that the identities $I(23)$ and $I(24)$ corresponding to the cases $k=4$ and $k=5$ give rise to the basic functions

$$
\begin{equation*}
L(x)=5 M_{1}(x)+\frac{1}{2} \delta^{2} M_{4}(x)-2 \sigma M_{5}(x) \tag{9}
\end{equation*}
$$

and

$$
\begin{align*}
L(x)=\frac{213}{19} M_{5}(x) & +\frac{991}{760} \delta^{2} M_{5}(x)+\frac{83}{12160} \delta^{4} M_{5}(x) \\
& -\frac{194}{38} \sigma M_{6}(x)-\frac{83}{1216} \sigma \delta^{2} M_{6}(x) \tag{10}
\end{align*}
$$

These two basic functions give rise to ordinary interpolation formulae (4) which are of the types

$$
\begin{equation*}
D^{4}, C^{2}, E^{3}, s=6 \text { and } D^{5}, C^{3}, E^{4}, s=9 \tag{11}
\end{equation*}
$$

respectively.
Incidentally, the characteristic function of (9) is, by $\mathrm{I}(23)$,

$$
g(u)=\left(\frac{2 \sin u / 2}{u}\right)^{4}\left(5-2 \sin ^{2} \frac{u}{2}\right)-4\left(\frac{2 \sin u / 2}{u}\right)^{5} \cos u / 2
$$

or

$$
g(u)=\left(\frac{2 \sin u / 2}{u}\right)^{4}\left(4+\cos u-4 \frac{\sin u}{u}\right)
$$

This agrees with our formula ($11^{\prime \prime}$) of Part A, section 2.122, as in fact the basic function (9) is identical with Jenkins' function there described by formula (11).

In concluding we wish to mention the numerical results for $k=6$. In this case we need the identity

$$
\begin{equation*}
U_{4}(x) P_{4}(x)+U_{5}(x) P_{3}(x) \equiv 1 \tag{12}
\end{equation*}
$$

By (11) we have

$$
U_{4}(x)=\frac{1}{15}\left(2+11 x^{2}+2 x^{4}\right), \quad U_{5}(x)=\frac{1}{45}\left(17 x+26 x^{3}+2 x^{5}\right)
$$

By indeterminate coefficients we find

$$
P_{4}(x)=\frac{15}{2}+\frac{115}{7} x^{2}+\frac{27}{21} x^{4}, \quad P_{3}(x)=-\frac{285}{14} x-\frac{27}{7} x^{3}
$$

from which, on passing to the variable $I(25)$, the identity (12) becomes

$$
\begin{aligned}
\rho_{6}(u)\left\{\frac{353}{14}-\frac{133}{28}(2 \sin u / 2)^{2}+\right. & \left.\frac{9}{448}(2 \sin u / 2)^{4}\right\} \\
& +\rho_{7}(u)\left\{-\frac{339}{28}+\frac{27}{56}(2 \sin u / 2)^{2}\right\}(2 \cos u / 2) \equiv 1 .
\end{aligned}
$$

The basic function corresponding to $k=6$ is therefore

$$
\begin{align*}
L(x)=\frac{353}{14} M_{6}(x) & +\frac{133}{28} \delta^{2} M_{6}(x)+\frac{9}{448} \delta^{4} M_{6}(x) \\
& -\frac{339}{28} \sigma M_{7}(x)-\frac{27}{56} \sigma \delta^{2} M_{7}(x) \tag{13}
\end{align*}
$$

giving rise to an ordinary interpolation formula of type

$$
D^{6}, C^{4}, E^{5} \text { and } s=10
$$

2.2. A first class of smoothing interpolation formulae derived from an ordinary interpolation formula of type D^{k-1}, C^{k-2}. We start by recalling an ordinary polynomial interpolation formula derived in Part A, section 4.2. Indeed, the formula (9) of that section furnishes, for $t=0$, the following polynomial basic function

$$
\begin{equation*}
L_{k}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{\psi_{k}(u)}{\phi_{k}(u)} e^{i u x} d u . \tag{14}
\end{equation*}
$$

The corresponding formula

$$
\begin{equation*}
F(x)=\sum_{n=-\infty}^{\infty} y_{n} L_{k}(x-n) \tag{15}
\end{equation*}
$$

is, as we know, an ordinary polynomial interpolation formula of type

$$
D^{k-1}, \quad C^{k-2}, \quad E^{k-1}, \quad s=\left\{\begin{array}{lll}
\infty & \text { if } & k \geqq 3 \tag{16}\\
k & \text { if } & k=1,2
\end{array}\right.
$$

We turn now to the expansion $I(28)$ of Lemma 5 , substituting $I(28)$ into the integral (14) and integrating term-wise we obtain the expansion

$$
\begin{equation*}
L_{k}(x)=M_{k}(x)-{c_{2}}^{(k)} \delta^{2} M_{k}(x)+\epsilon_{4}^{(k)} \delta^{4} M_{k}(x)-\cdots, \quad(k \geqq 3) \tag{17}
\end{equation*}
$$

On comparing the present interpolation formula (15) with the formula (4) of the Jenkins-Greville type, we notice, by (5) and (16), that they are both of class C^{k-2} and that they are both exact for the degree $k-1$. The degree of (15) is lower by 1 than the degree of (4). This reduction of the degree to the lowest possible value $k-1$, for a formula of class C^{k-2}, was achieved at the price of having an infinite span. The infinite span of (15) clearly disqualifies this interpolation formula as far as numerical purposes are concerned.

We now turn to the partial sums of the series (17). They will yield smoothing interpolation formulae of considerable practical importance. Indeed, let

$$
\begin{equation*}
L_{k, m}(x)=M_{k}(x)-c_{2}^{(k)} \delta^{2} M_{k}(x)+\cdots+(-1)^{m-1} C_{2 m-2}^{(k)} \delta^{2 m-2} M_{k}(x),(2 m-2<k) . \tag{18}
\end{equation*}
$$

The characteristic function of this basic function is identical with the left-hand side of the identity $I(32)$. In view of our Theorem 2 of Part A, this identity $I(32)$ proves that (18) is the basic function of a smoothing interpolation formula which is exact for the degree equal to $\min (2 m-1, k-1)$. It is, moreover, visibly of degree $k-1$, of class C^{k-2}, and of $\operatorname{span} s=k+2 m-2$. One further important point is in need of proof, namely that the formulae based on (18) actually do smooth any given sequence (see Definition b of Part A, section 2.2). This will readily follow from Lemma 5. Indeed the characteristic function $\phi_{m, k}(u)$ of the formula

$$
\begin{equation*}
F(n)=\sum_{v} y_{\nu} L_{k, m}(n-\nu) \tag{19}
\end{equation*}
$$

is, by Theorem 2, Part A, given by

$$
\phi_{k, m}(u)=\sum_{v=-\infty}^{\infty} g_{k, m}(u+2 \pi v) .
$$

By $\mathrm{I}(32)$ and $\mathrm{I}(28)$ we now have

$$
\begin{align*}
\phi_{k, m}(u) & =\sum_{n=-\infty}^{\infty} g_{k, m}(u+2 \pi \nu)=\phi_{k}(u) \sum_{n=0}^{m-1} G_{2 n}^{(k)}(2 \sin u / 2)^{2 n} \\
& <\phi_{k}(u) \sum_{n=0}^{\infty} c_{2 n}^{(k)}(2 \sin u / 2)^{2 n}=1, \quad(0<u<2 \pi) \tag{20}
\end{align*}
$$

Since obviously $\phi_{m, k}(u)>0$, for all u, we see that (19) is indeed a smoothing formula according to our definition. Recalling the relations $\mathrm{I}(36), \mathrm{I}(38)$, we may therefore state the following Theorem:

Theorem 2. Let k be a positive integer and m an integer such that $0<2 m<k+2$. Let the positive rational numbers $d_{2 n}^{(k)}$ be defined by the expansion

$$
\begin{equation*}
\left(\frac{2 \arcsin v / 2}{v}\right)^{k}=\sum_{n=0}^{\infty} d_{2 n}^{(k)} v^{2 n} . \tag{21}
\end{equation*}
$$

Then
$L_{k, m}(x)=M_{k}(x)-d_{2}^{(k)} \delta^{2} M_{k}(x)+d_{1}^{(k)} \delta^{4} M_{k}(x)-\cdots+(-1)^{m-1} d_{2 m-2}^{(k)} \delta^{2 m-2} M_{k}(x)$

$$
\begin{equation*}
F(x)=\sum_{n=-\infty}^{\infty} y_{n} L_{k ; m}(x-n) \tag{23}
\end{equation*}
$$

of type

$$
\begin{equation*}
D^{k-1}, \quad C^{k-2}, \quad E^{\min (2 m-1, k-1)}, \quad s=k+2 m-2 \tag{24}
\end{equation*}
$$

Moreover, the formula (23) preserves the degree $k-1$. (See Part A, section 2.21, Definition d.)

If k is fixed and m increases then the smoothing power of our formula (23) decreases according to our definition of Part A, section 1.12, Definition 2.

The last statement concerning the decreasing smoothing power of (23) follows from (20), since $\phi_{k, m}(u)$ increases strictly as m increases while u is constant ($0<\mu<2 \pi$).

Notice, by (24), how on increasing m by one unit both the degree of exactness, as well as the span, increase by two units.

As illustration we find from $I(40)$ that

$$
\begin{equation*}
L_{k, 2}(x)=M_{k}(x)-\frac{k}{24} \delta^{2} M_{k}(x), \quad(k \geqq 4) \tag{25}
\end{equation*}
$$

yields a smoothing formula of type

$$
\begin{equation*}
D^{k-1}, \quad C^{k-2}, \quad E^{3}, \quad s=k+2 \tag{26}
\end{equation*}
$$

The characteristic function of (25) is

$$
\begin{equation*}
g_{k, 2}(u)=\left(\frac{2 \sin u / 2}{u}\right)^{k}\left(1+\frac{k}{6} \sin ^{2} \frac{u}{2}\right) \tag{27}
\end{equation*}
$$

or

$$
g_{k, 2}(u)=\left(\frac{2 \sin u / 2}{u}\right)^{k}\left\{1+\frac{k}{12}-\frac{k}{12} \cos u\right\}
$$

For $k=4$ this function $g_{4,2}(u)$ agrees with the integrand of our formula (12 ${ }^{\prime \prime}$) of Part A, section 2.123. Also Mr. Jenkins' basic function, as given by formula (12) of Part A, section 2.123 , may be derived by working out the various polynomial expressions of

$$
\begin{equation*}
L_{4,2}(x)=M_{4}(x)-\frac{1}{6} \delta^{2} M_{4}(x) \tag{28}
\end{equation*}
$$

from the explicit expressions of $M_{4}(x)$ (see Part A, section $3.13,(14)$).
Likewise, by I(40)

$$
\begin{equation*}
L_{k, 3}(x)=M_{k}(x)-\frac{\dot{k}}{24} \delta^{2} M_{k}(x)+\frac{k(5 k+22)}{5760} \delta^{4} M_{k}(x), \quad(k \geqq 6) \tag{29}
\end{equation*}
$$

yields a smoothing formula of type

$$
\begin{equation*}
D^{k-1}, \quad C^{k-2}, \quad E^{5}, \quad s=k+4 \tag{30}
\end{equation*}
$$

2.3. A second class of smoothing interpolation formulae derived from the ordinary k-point central interpolation formula. Among the smoothing interpolation formulae (23) described by Theorem 2 the one of most interest is obtained by letting m
assume its largest value. If k is even, m is maximal if $2 m-2=k-2$ or $m=k / 2$. If k is odd, m is maximal if $2 m-2=k-1$ or $m=(k+1) / 2$. In either case

$$
\begin{equation*}
\max m=\mu=\left[\frac{k+1}{2}\right] \tag{31}
\end{equation*}
$$

where $[x]$ represents the largest integer not excceding x. The corresponding basic function (22) is
$L_{k, \mu}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left(\frac{2 \sin u / 2}{u}\right)^{k}\left\{1+d_{2}^{(k)}(2 \sin u / 2)^{2}+\cdots\right.$

$$
\begin{equation*}
\left.+d_{2 \mu-2}^{(k)}(2 \sin u / 2)^{2 \mu-2}\right\} e^{i u x} d u \tag{32}
\end{equation*}
$$

We recall that the smoothing interpolation formula based on this function is by (24) of the type

$$
\begin{equation*}
D^{k-1}, \quad C^{k-2}, \quad E^{k-1}, \quad s=k+2 \mu-2 \tag{33}
\end{equation*}
$$

Indeed, the formula is exact for the degree $k-1$ because of
$\left(\frac{2 \sin u / 2}{u}\right)^{k}\left\{1+d_{2}^{(k)}(2 \sin u / 2)^{2}+\cdots+d_{2 \mu-2}^{(k)}(2 \sin u / 2)^{2, \mu-2}\right\}$

$$
\begin{equation*}
=1+u^{k} \cdot(\text { regular function }) \tag{34}
\end{equation*}
$$

An interesting counterpart to (32) is obtained as follows. An identity of the type (34) may also be obtained if in the expression within braces we replace $2 \sin u / 2$ by u. Indeed, rational constants $\gamma_{2 \nu}^{(k)}$ may be determined such that

$$
\begin{align*}
&\left(\frac{2 \sin u / 2}{u}\right)^{k}\left\{1+\gamma_{2}^{(k)} u^{2}+\gamma_{4}^{(k)} u^{4}+\cdots+\gamma_{2 \mu-2}^{(k)} u^{2 \mu-2}\right\} \\
&=1+u^{k} \text { (regular function) } \tag{35}
\end{align*}
$$

Lemma 6. The basic function

$$
\begin{equation*}
\Gamma_{k, \mu}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left(\frac{2 \sin u / 2}{u}\right)^{k}\left\{1+\gamma_{2}^{(k)} u^{2}+\cdots+\gamma_{2 \mu-2}^{(k)} u^{2 \mu-2}\right\} e^{i u x} d u \tag{36}
\end{equation*}
$$

is identical, for all real values of x, with the basic function $C_{k}(x)$ of the k-point central interpolation method (see Part A, section 2.121).

Notice first that by differentiation of

$$
M_{k}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left(\frac{2 \sin u / 2}{u}\right)^{k} e^{i u z} d u
$$

we obtain

$$
\begin{equation*}
M_{k}^{(2 v)}(x)=(-1)^{v} \frac{1}{2 \pi} \int_{-\infty}^{\infty}\left(\frac{2 \sin u / 2}{u}\right)^{k} u^{2 v} e^{i u x} d u, \quad(2 v<k) \tag{37}
\end{equation*}
$$

Therefore the integral (36) may also be written as ${ }^{4}$

$$
\begin{align*}
& \text { 4ssuming (41) already established, we see by (38) and the relations } \\
& \qquad M_{k}^{(\nu)}(x)=\delta^{\nu} M_{k-\nu}(x), \quad(0 \leqq \nu \leqq k-1), \tag{*}
\end{align*}
$$

(see Part A, section 3.15, formula (23)) that we may express $C_{k}(x)$ as follows
$\Gamma_{k, \mu}(x)=M_{k}(x)-\gamma_{2}^{(k)} M_{k}^{\prime \prime}(x)+\gamma_{4}^{(k)} M_{k}^{(4)}(x)-\cdots+(-1)^{\mu-1} \gamma_{2 \mu-2}^{(k)} M_{k}^{(2 \mu-2)}(x)$.
Now $M_{k}(x)$ and all its derivatives are functions of $\operatorname{span} s=k$. Therefore also $\Gamma_{k, \mu}(x)$ has the span $s=k$. Furthermore by (35), and Theorem 2 of Part A, we conclude that

$$
\begin{equation*}
F(x)=\sum_{n=-\infty}^{\infty} y_{n} \Gamma_{x, \mu}(x-n) \tag{39}
\end{equation*}
$$

is an interpolation formula of the following type characteristics:

$$
\begin{equation*}
E^{k-1}, \quad s=k \tag{40}
\end{equation*}
$$

These last two properties (40) allow us to show readily that

$$
\begin{equation*}
\Gamma_{k, \mu}(x)=C_{k}(x) \text { for all real } x \tag{41}
\end{equation*}
$$

Indeed, let k be even, $k=2 \kappa$. Let $P_{0}(x)$ be the polynomial of degree $k-1$ defined by the following k conditions

$$
\begin{align*}
P_{0}(-\kappa+1)= & P_{0}(-\kappa+2)=\cdots=P_{0}(-1)=0, \quad P_{0}(0)=1, \\
& P_{0}(1)=P_{0}(2)=\cdots=P_{0}(\kappa)=0 \tag{42}
\end{align*}
$$

Since (39) is exact for the degree $k-1$ we have the identity

$$
\begin{equation*}
P_{0}(x)=\sum_{n=-\infty}^{\infty} P_{0}(n) \Gamma_{k, \mu}(x-n), \text { for all real } x \tag{43}
\end{equation*}
$$

We now restrict x to the range

$$
\begin{equation*}
0 \leqq x \leqq 1 \tag{44}
\end{equation*}
$$

Then we may write (43) as

$$
P_{0}(x)=\sum_{n=-x+1}^{n=x} P_{0}(n) \Gamma_{k, \mu}(x-n)
$$

since $\Gamma_{k, \mu}(x-n)=0$ if $|x-n| \geqq \kappa$. In view of (42) this identity reduces to the single term, for $n=0$:

$$
P_{0}(x)=\Gamma_{k, \mu}(x), \quad(0 \leqq x \leqq 1)
$$

and therefore (41) holds for the range (44). Likewise, applying the formula (39) to the polynomial $P_{1}(x)$, of degree k, defined by
$P_{1}(-\kappa+2)=\cdots=P_{1}(-1)=0, \quad P_{1}(0)=1, \quad P_{1}(1)=\cdots=P_{1}(\kappa+1)=0$,
we find that (41) holds in the range $1 \leqq x \leqq 2$, and so forth. Similar arguments obviously apply, with obvious modifications, to the case of an odd k.

The coefficients $\gamma_{2 \mu}^{(k)}$ are the expansion coefficients of

$$
\begin{equation*}
\left(\frac{u}{2 \sin u / 2}\right)^{k}=\sum_{v=0}^{\infty} \gamma_{2 \nu}^{(k)} u^{2 \nu} \tag{45}
\end{equation*}
$$

$$
\begin{equation*}
C_{k}(x)=M_{k}(x)-\gamma_{2}^{(k)} \delta^{2} M_{k-2}(x)+\gamma_{4}^{(k)} \delta^{4} M_{k-1}(x)+\cdots+(-1)^{\mu-1} \gamma_{2 \mu-2} \delta^{(k)} \delta^{2 \mu-2} M_{k-2 \mu+2}(x) . \tag{**}
\end{equation*}
$$

This formula reveals at a glance the following fact: If k is even, then $C_{k}{ }^{(2 \nu)}(x)(\nu=0,1,2, \cdots)$ are continuous. If k is odd then $\mathcal{C}_{k}{ }^{\left(2^{\nu}+1\right)}(x)(\nu=0,1,2, \cdots)$ are continuous. The author learned this property from Kingsland Camp, Notes on Interpolation, Trans. Actuar. Soc. Ainer., 38, p. 22 (1937).

In N. E. Nörlund's Differenzenrechnung, page 143, we find the expansion

$$
\left(\frac{t}{\sin t}\right)^{k}=\sum_{v=0}^{\infty}(-1)^{v} \frac{t^{2 v}}{(2 v)!} D_{2 v}^{(k)}
$$

The coefficient $D_{2 v}^{(k)}$ is a polynomial in k of degree ν. Nörlund's Table 6 on page 460, loc. cit., lists these polynomials for $\nu=0,1, \cdots, 6$. We therefore have

$$
\begin{equation*}
\left(\frac{u}{2 \sin u / 2}\right)^{k}=\sum_{v=0}^{\infty}(-1)^{v} \frac{u^{2 v}}{(2 v)!} \cdot \frac{D_{2 v}^{(k)}}{2^{2 v}} \tag{46}
\end{equation*}
$$

whence

$$
\begin{equation*}
\gamma_{2 \nu}^{(k)}=(-1)^{\nu} \frac{\bar{D}_{2 \nu}^{(k)}}{(2 \nu)!2^{2 \nu}} \tag{47}
\end{equation*}
$$

The first few values are

$$
\begin{equation*}
\gamma_{0}^{(k)}=1, \quad \gamma_{2}^{(k)}=\frac{k}{24}, \quad \gamma_{1}^{(k)}=\frac{k(5 k+2)}{5760} \tag{48}
\end{equation*}
$$

The expansion coefficients of $t / \sin t$ are positive (see Nörlund, loc. cit., Chapter II, sections 2, 3). Therefore the coefficients $\gamma_{2 v}^{(k)}$ are all positive. We shall use this fact later.

In view of the results of our last section it seems natural to consider the partial sums

$$
\begin{align*}
\Gamma_{k, m}(x)=M_{k}(x)-\gamma_{2}^{(k)} M_{k}^{\prime \prime}(x)+\cdots+ & (-1)^{m-1} \gamma_{2 m-2}^{(k)} M_{k}^{(2 m-2)}(x) \\
& \left(1 \leqq m<\mu=\left[\frac{k+1}{2}\right]\right) \tag{49}
\end{align*}
$$

of the sum (38). The properties of the interpolation formulae based on these functions are described by the following theorem:

Theorem 3. The formula

$$
\begin{equation*}
F(x)=\sum y_{\nu} \Gamma_{k, m}(x-\nu), \quad\left(1 \leqq m<\mu=\left[\frac{k+1}{2}\right]\right) \tag{50}
\end{equation*}
$$

is a smoothing interpolation formula of the type

$$
\begin{equation*}
D^{k-1}, \quad C^{k-2 m}, \quad E^{2 m-1}, \quad s=k \tag{51}
\end{equation*}
$$

The smoothing power of (50) decreases, as m increases from $m=1$ to $m=\mu-1$, until for $m=\mu$ (50) reduces to the (ordinary) k-point central interpolation formula.

Indeed, the characteristic function of (49) is

$$
\begin{equation*}
g(u)=\left(\frac{2 \sin u / 2}{u}\right)^{k}\left\{1+\gamma_{2}^{(k)} u^{2}+\cdots+\gamma_{2 m-2}^{(k)} u^{2 m-2}\right\} \tag{52}
\end{equation*}
$$

From (45) we conclude that

$$
g(u)=1+u^{2 m} \cdot(\text { regular function })
$$

and therefore (50) is exact for the degree $2 m-1$, by Theorem 2 of Part A. The remaining three characteristics

$$
D^{k-1}, \quad C^{k-2 m}, \quad s=k,
$$

are evident on inspection of (49). There remains the investigation of the characteristic function of the corresponding smoothing formula

$$
\begin{equation*}
F(n)=\sum_{\nu} y_{v} \Gamma_{k, m}(n-\nu) . \tag{53}
\end{equation*}
$$

By Theorem 2, Part A, this characteristic function is

$$
x_{m}(u)=\sum_{\nu=-\infty}^{\infty} g(u+2 \pi \nu)
$$

From (52) and $\mathrm{I}(3)$, we obtain
$\chi_{m}(u)=\phi_{k}(u)+\gamma_{2}^{(k)}(2 \sin u / 2)^{2} \phi_{k-2}(u)+\cdots+\gamma_{2 m-2}^{(k)}(2 \sin u / 2)^{2 m-2} \phi_{k-2 m+2}(u)$.
This expression is obviously positive for all values of u. For $m=\mu$, however, we obtain the identity

$$
\begin{equation*}
\chi_{\mu}(u) \equiv 1 \tag{55}
\end{equation*}
$$

since, by Lemma 6, we have before us an ordinary interpolation formula. Since (54) is a partial sum of the left-hand side of (55) we have therefore proved the inequalities

$$
\begin{equation*}
0<\chi_{m}(u)<1 \quad(1 \leqq m<\mu, 0<u<2 \pi) . \tag{56}
\end{equation*}
$$

Then (53) is indeed a smoothing formula. The final statement of the Theorem is evident from (54), since $\chi_{m}(u)$ increases with m.

As illustrations we mention the following four special cases, two from each end of the range of values of m.
(i) $m=2$. The formula based on

$$
\begin{equation*}
\Gamma_{k, 2}(x)=M_{k}(x)-\frac{k}{24} M_{k}^{\prime \prime}(x) \quad(k \geqq 4) \tag{57}
\end{equation*}
$$

has the type

$$
D^{k-1}, \quad C^{k-4}, \quad E^{3}, \quad s=k
$$

(ii) $m=3$. The formula based on

$$
\begin{equation*}
\Gamma_{k, 3}(x)=M_{k}(x)-\frac{k}{24} M_{k}^{\prime \prime}(x)+\frac{k(5 k+2)}{5760} M_{k}^{(4)}(x), \quad(k \geqq 6), \tag{58}
\end{equation*}
$$

has the type

$$
D^{k-1}, \quad C^{k-6}, \quad E^{5}, \quad s=k
$$

The values (48) were used.
(iii) $m=\mu-1$. The formula based on ${ }^{5}$

[^6]\[

$$
\begin{equation*}
\Gamma_{k, \mu-1}(x)=C_{k}(x)+(-1)^{\mu} \gamma_{2 \mu-2}^{(k)} M_{k}^{(2 \mu-2)}(x) \quad(k \geqq 4) \tag{59}
\end{equation*}
$$

\]

has the type

$$
D^{k-1},\left\{\begin{array}{lll}
C^{2} & \text { if } & k \text { is even } \\
C^{1} & \text { if } & k \text { is odd }
\end{array}\right\}, \quad E^{k-3}, \quad s=k
$$

(iv) $m=\mu-2$. The formula based on

$$
\Gamma_{k, \mu-2}(x)=C_{k}(x)+(-1)^{\mu} \gamma_{2 \mu-2}^{(k)} M_{k}^{(2 \mu-2}(x)+(-1)^{\mu-1} \gamma_{2 \mu-4}^{(k)} M_{k}^{(2 \mu-4)}(x) \quad(k \geqq 6)
$$

has the type

$$
D^{k-1}, \quad\left\{\begin{array}{ll}
C^{4} & \text { if } k \text { is even } \\
C^{3} & \text { if } k \text { is odd }
\end{array}\right\}, \quad E^{k-5}, \quad s=k
$$

These formulae show clearly how an increase in "order of contact" is compensated by a corresponding loss in "reproductive power" and vice versa.

III. A SECOND CLASS OF ANALYTIC INTERPOLATION FORMULAE

In Part A, section 4.2, we described a class of ordinary analytic interpolation formulae of basic function

$$
\begin{equation*}
L_{k}(x, t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{\psi_{k}(u, t)}{\phi_{k}(u, t)} e^{i u x} d u \quad(k=1,2, \cdots ; t>0) \tag{1}
\end{equation*}
$$

These interpolation formulac are exact for the degree $k-1$. The basic function (1) as well as those of the smoothing interpolation formulae derived from it in Part A, section 4.3, dampen out like a descending exponential function. In the present last chapter we wish to construct smoothing analytic interpolation formulac of basic functions dampening out like

$$
\exp \left(-c^{2} x^{2}\right)
$$

hence much more rapidly. In view of the development of section 2.2 it would seem fairly obvious how such formulae may be derived. We clearly need an analogue of Lemma 5 which we state as a conjecture: The reciprocal of $\phi_{k}(u, t)$ admits of an expansion

$$
\Gamma_{k, \mu-1}^{\prime}(x)=C_{k}(x)+(-1)^{\mu} \gamma_{2 \mu-2}^{(k)} \delta^{2 \mu-2} M_{k-2 \mu+2}(x) .
$$

Let k be odd, hence $2 \mu-2=k-1$ and therefore

$$
\Gamma_{k, \mu-1}(x)=C_{k}(x)+(-1)^{\mu} \gamma_{k=-1}^{(k)} \delta^{k-1} M_{1}(x) .
$$

As seen from the graph of $M_{1}(x)$, the corrective term is a step-function with discontinuitics at $x=n+1 / 2$ whose values are proportional with the binomial coefficients of order $k-1:\left({ }^{k-1}\right)$. Their addition to $C_{k}(x)$ offsets the discontinuities of $C_{k}(x)$ and turn it into a function ($59^{\prime \prime}$) of class C^{1}. If k is even, hence $2 \mu-2$ $=k-2$, we have

$$
\left.\Gamma_{k, \mu-1}(x)=C_{k}(x)+(-1)^{\mu} \gamma_{k-2}^{(k)}\right)^{k-2} M_{2}(x) .
$$

As seen from the graph of $M_{2}(x)$, the corrective term is now an ordinary polygonal line with vertices at $x=n$, whose ordinates (at these vertices) are proportional to the binomial coefficients of order $k-2$: $\left({ }^{\mathbf{1}-\mathbf{2}^{2}}\right)$. Again, the superposition of this polygonal line on $C_{k}(x)$ offsets the corners of $C_{k}(x)$ and turns it into a function ($59^{\prime \prime \prime}$) of class C^{2}. The formulae ($59^{\prime \prime \prime}$), ($59^{\prime \prime}$) are especially convenient for constructing tables of these functions from existing tables of $C_{k}(x)$, i.e., tables of Lagrange interpolation coefficients.

$$
\begin{equation*}
\frac{1}{\phi_{k}(u, i)}=\sum_{n=0}^{\infty} c_{2 n}^{(k)}(t)(2 \sin u / 2)^{2 n}, \tag{2}
\end{equation*}
$$

which converges for all real values of u and where the coefficients are all positive

$$
\begin{equation*}
c_{2 n}^{(k)}(t)>0, \quad(n=0,1,2, \cdots) \tag{3}
\end{equation*}
$$

A proof of this conjecture would require a closer function-theoretic study of the entire periodic function $\phi_{k}(u, t)$ which has not been carried through as yet.

Since

$$
\phi_{k}(u, t)=\sum_{s=-\infty}^{\infty} \psi_{k}(u+2 \pi \nu, t)
$$

(sce Part A, section 4.1, formula (6)) we have

$$
\phi_{k}(u, t)=\psi_{k}(u, t)+u^{k} \cdot \text { (regular function). }
$$

Therefore the expansion (2) agrees in its terms of order less than k with the similar terms of the expansion

$$
\begin{equation*}
\frac{1}{\psi_{k}(u, t)}=e^{\ell(u / 2)^{2}}\left(\frac{u}{2 \sin u / 2}\right)^{k}=\sum_{n=0}^{\infty} d_{2 n}^{(k)}(t)(2 \sin u / 2)^{2 n}, \quad(-\pi \leqq u \leqq \pi) \tag{4}
\end{equation*}
$$

Hence

$$
\begin{equation*}
c_{2 n}^{(k)}(t)=d_{2 n}^{(k)}(t), \quad(0 \leqq 2 n<k) \tag{5}
\end{equation*}
$$

The expansion (4) is readily determined and its coefficients are found to be positive as follows. We turn back to section 1.3 where in terms of the variable

$$
\begin{equation*}
v=2 \sin u / 2 \tag{6}
\end{equation*}
$$

we have by I(35)

$$
\begin{equation*}
\left(\frac{u}{2 \sin u / 2}\right)^{k}=\sum_{n=0}^{\infty} d_{2 n}^{(k)} v^{2 n} \quad(-\pi \leqq u \leqq \pi) \tag{7}
\end{equation*}
$$

Also by I(39)

$$
\begin{equation*}
u / 2=\arcsin v / 2=\frac{v}{2}+\frac{1}{2} \cdot \frac{1}{3} \cdot \frac{v^{3}}{8}+\frac{1 \cdot 3}{2 \cdot 4} \cdot \frac{1}{5} \cdot \frac{v^{5}}{32}+\cdots \quad(-2 \leqq v \leqq 2) . \tag{8}
\end{equation*}
$$

On substituting (8) into the exponential series we find the expansion

$$
\begin{equation*}
e^{t(u / 2)^{2}}=\sum_{n=0}^{\infty} e_{2 n}(t) v^{2 n} \quad(-2 \leqq v \leqq 2) \tag{9}
\end{equation*}
$$

with positive coefficients, the first three of which are found to be

$$
\begin{equation*}
e_{0}(t)=1, \quad e_{2}(t)=\frac{t}{4}, \quad e_{1}(t)=\frac{t^{2}}{32}+\frac{t}{48} \tag{10}
\end{equation*}
$$

On multiplying the series (7) and (9) we obtain the expansion (4). From the values $I(40)$ and (10) we readily find

$$
\begin{equation*}
d_{0}^{(k)}(t)=1, \quad d_{2}^{(k)}(t)=\frac{k}{24}+\frac{t}{4}, \quad d_{4}^{(k)}(t)=\frac{5 k^{2}+22 k}{5760}+\frac{t k}{96}+\frac{t}{48}+\frac{t^{2}}{32} \tag{11}
\end{equation*}
$$

Our arguments of section 2.2 may now be repeated leading to the following theorem:

Theorem 4. Let k be a positive integer and m an integer such that $0<2 m<k+2$. Then

$$
\begin{equation*}
L_{k, m}(x, t)=M_{k}(x, t)-d_{2}^{(k)}(t) \delta^{2} M_{k}(x, t)+\cdots+(-1)^{m-1} d_{2 m-2}^{(k)}(t) \delta^{2 m-2} M_{k}(x) \tag{12}
\end{equation*}
$$

gives rise to a "smoothing" analytic interpolation formula

$$
\begin{equation*}
F(x)=\sum_{n=-\infty}^{\infty} y_{n} L_{k, m}(x-n, t) \tag{13}
\end{equation*}
$$

which is exact for the degree $\min (2 m-1, k-1)$. Moreover (13) always preserves the degree $k-1$.

The adjective "smoothing" was purposely written in quotation marks in order to indicate that there is no general proof as yet that (13) always reduces, for integral values of the variable x, to a smoothing formula in the sense of our Definition 1 of Part A, section 1.1. For indeed, (2) and (3), which imply such a proof, were only conjectured. In the Appendix we give 8 -place tables of the three basic functions

$$
\begin{align*}
& L_{1}(x)=L_{4,2}(x, 1 / 8) \tag{14}\\
& L_{2}(x)=L_{4,2}(x, 1 / 2) \\
& L_{3}(x)=L_{6,3}(x, 1 / 2)
\end{align*}
$$

as well as 7 -place tables of their first and second derivatives. For these three sets of values of the parameters k, l, and m, the interpolation formula (13) is indeed a smoothing formula. This point is verified by an inspection of the corresponding characteristic functions

$$
\begin{equation*}
\phi_{i}(u)=L_{i}(0)+2 L_{i}(1) \cos u+2 L_{i}(2) \cos 2 u+\cdots, \quad(i=1,2,3,) \tag{15}
\end{equation*}
$$

From the values of $L_{i}(n)$, as given by our tables, we computed the following table for these characteristic functions:

u	$\phi_{1}(u)$	$\phi_{2}(u)$	$\phi_{3}(u)$
0°	1.00000	1.00000	1.00000
30°	.99734	.99519	.99952
60°	.96332	.93655	.97760
90°	.85492	.76500	.84693
120°	.67727	.51297	.56702
150°	.50474	.29296	.27879
180°	.43283	.20728	.16123

Since $0<\phi_{i}(u)<1$ for $0<u \leqq 180^{\circ}$, all three formulae (13) are smoothing formulae according to Part A, section 1.1. Also $\phi_{2}(u)<\phi_{1}(u)$ implies that L_{2} gives a stronger smoothing formula as compared to L_{1}.

Our set of tables is intended mainly for the purpose of illustrating the method. A more complete set of tables would be needed in order to furnish smoothing of a desired strength, as required by the needs of the numerical data at hand.

APPENDIX

Description of the tables and their use for the analytic approximation of equidistant data. In the Tables I, II, and III, we have tabulated the following three functions

$$
\begin{align*}
& L_{1}(x)=M_{4}(x, 1 / 8)-\frac{19}{96} \delta^{2} M_{4}(x, 1 / 8) \tag{1}\\
& L_{2}(x)=M_{4}(x, 1 / 2)-\frac{7}{24} \delta^{2} M_{4}(x, 1 / 2) \tag{2}\\
& L_{3}(x)=M_{6}(x, 1 / 2)-\frac{3}{8} \delta^{2} M_{6}(x, 1 / 2)+\frac{199}{1920} \delta^{4} M_{6}(x, 1 / 2) \tag{3}
\end{align*}
$$

and their first two derivatives. The function $M_{k}(x, t)$ occurring in these definitions may be defined by the integral

$$
M_{k}(x, t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-t(u / 2)^{2}}\left(\frac{2 \sin u / 2}{u}\right)^{k} \cos u x d u
$$

A given sequence of equidistant ordinates

$$
\begin{equation*}
\left\{y_{n}\right\} \tag{4}
\end{equation*}
$$

is approximated by either one of the three analytic functions

$$
\begin{equation*}
F_{i}(x)=\sum_{\nu=-\infty}^{\infty} y_{v} L_{i}(x-\nu), \quad(i=1,2,3) \tag{5}
\end{equation*}
$$

The choice among these approximations depends on the amount of smoothing desired. The formula (5), for $i=1$ and $i=2$, is exact for (i.e., reproduces) cubic polynomials. For $i=3$ the formula (5) is exact for quintic polynomials. For the same data (4), the sequence $\left\{F_{2}(n)\right\}$ is always smoother than the sequence $\left\{F_{1}(n)\right\}$. Generally, the sequence $\left\{F_{3}\left(n_{2}\right)\right\}$ should be smoother than the sequence $\left\{F_{1}(n)\right\}$.

The first and second derivatives of the approximation (5) may be computed by the similar formulae

$$
\begin{align*}
& F_{i}^{\prime}(x)=\sum y_{\nu} L_{i}^{\prime}(x-\nu) \tag{6}\\
& F_{i}^{\prime}(x)=\sum y_{\nu} L_{i}^{\prime \prime}(x-\nu) \tag{7}
\end{align*}
$$

The arrangement of our tables is such as to facilitate the computation of $F_{i}(x)$ by (5), as explained in the Appendix to Part A.

An example of smoothing with subtabulation to tenths. We propose to compute a table of the approximation $F_{2}(x)$, in the range $31 \leqq x \leqq 34$, for the same ordinates $\left\{y_{n}\right\}$ as were used in our example of Part A (Appendix). The ordinates which we now require are given by the following table:

From these values and the Table II of $L_{2}(x)$ and $L_{2}^{\prime \prime}(x)$ we obtain the following tables of the approximation $F_{2}(x)$ and its second derivative $F_{2}^{\prime \prime}(x)$ shown with their differences.

x	$F_{2}(x)$	Δ	Δ^{2}	Δ^{3}	Δ^{4}	$F_{2}^{\prime}(x)$	Δ	Δ^{2}	Δ^{3}	Δ^{4}
31.0	51232.76					1901.77				
31.1	51989.86	75710				1767.20	-13457			
31.2	52764.62	77476	1766			1611.60	-15560	-2103		
31.3	53555.48	79086	1610	-156		1436.84	-17476	-1916	187	
31.4	54360.69	80521	1435	-175	-19	1245.42	-19142	-1666	250	63
31.5	55178.34	81765	1244	-191	-16	1040.29	-20513	-1371	295	45
31.6	56006.39	82805	1040	-204	-13	824.64	-21565	-1052	319	24
31.7	56842.68	83629	824	-216	-12	601.66	-22298	-733	319	0
31.8	57684.98	84230	601	-223	-7	374.38	-22728	- 430	303	-16
31.9	58531.03	84605	375	-226	- 3	145.59	-22879	- 151	279	-24
32.0	59378.53	84750	145	-230	4	- 82.29	-22788	91	242	-37
32.1	60225.21	84668	- 82	-227	3	- 307.15	-22486	302	211	-31
32.2	61068.82	84361	-307	-225	2	- 527.12	-21997	489	187	-24
32.3	61907.17	83835	- 526	-219	6	- 740.51	-21339	658	169	-18
32.4	62738.12	83095	-740	-214	5	- 945.74	-20523	816	158	-11
32.5	63559.62	82150	-945	-205	9	-1141.23	-19549	974	158	0
32.6	64369.71	81009	-1141	-196	9	-1325.45	-18422	1127	153	-5
32.7	65166.57	79686	-1323	-182	14	-1496.90	-17145	1277	150	
32.8	65948.46	78189	-1497	-174	8	-1654.18	-15728	1417	140	-10
32.9	66713.83	76537	-1652	-155	19	-1796.14	-14196	1532	115	-25
33.0	67461.25	74742	-1795	-143	12	-1921.91	-12577	1619	87	-28
33.1	68189.46	72821	-1921	-126	17	-2030.98	-10907	1670	51	-36
33.2	68897.38	70792	-2029	-108	18	-2123.19	- 9221	1686	16	-35
33.3	69584.08	68670	-2122	-93	15	-2198.74	- 7555	1666	- 20	-36
33.4	70248.81	66473	-2197	-75	18	-2258.04	- 5930	1625	- 41	-21
33.5	70890.96	64215	-2258	-61	14	-2301.69	- 4365	1565	- 60	-19
33.6	71510.12	61916	-2299	-41	20	-2330.31	- 2862	1503		
33.7	72105.98	59586	-2330	-31	10	-2344.57	- 1426	1436	-67	
33.8	72678.41	57243	-2343	-13	18	-2345.07	- 50	1376	- 60	
33.9	73227.40	54899	-2344	- 1	12	-2332.47	1260	1310	- 66	
34.0	73753.07	52567	-2332	12	13	-2307.47	2500	1240	-70	-4

A comparison of the approximation $F_{2}(x)$ with the strictly interpolating function $F(x)$, obtained in the Appendix of Part A, is of interest. The function $F(x)$ was obtained by the formula

$$
F(x)=\sum_{v=-\infty}^{\infty} y_{v} L_{k}(x-\nu, t), \quad(k=4, t=1 / 2)
$$

where, in view of $\operatorname{III}(1)$ and $\operatorname{III}(2)$, we may define $L_{k}(x, t)$ by the expansion

$$
\begin{equation*}
L_{k}(x, t)=M_{k}(x, t)-c_{2}^{(k)}(t) \delta^{2} M_{k}(x, t)+c_{4}^{(k)}(t) \delta^{4} M_{k}(x, t)-\cdots \tag{8}
\end{equation*}
$$

Our present approximation $F_{2}(x)$ was computed by the formula (5), for $i=2$, where $L_{2}(x)$, by (2), III(5) and III(11), happens to be identical with the sum

$$
L_{2}(x)=M_{k}(x, t)-c_{2}^{(k)}(t) \delta^{2} M_{k}(x, t)
$$

of the first two terms of the series (8). A comparison of the tables of $F(x)$ and $F_{2}(x)$ shows that their difference in the range $31 \leqq x \leqq 34$ nowhere exceeds 0.23% of the value of $F(x)$.

Table I. $L_{1}(x)=L_{4,2}(x, 1 / 8), L_{1}^{\prime}(x), L_{1}^{\prime}(x)$
$L_{1}(x)$

x	$x+.0$	$x+.1$	$x+.2$	$x+.3$	$x+.4$
3	-.00041123	-.00018550	-.00007621	-.00002830	-.00000943
2	-.03462580	-.02756299	-.02099452	-.01533104	-.01073240
1	.14220425	.08277004	.03516336	-.00066601	-.02556532
0	. .78566556	.77475976	.74281594	.69204028	.62577328
-1	.14220425	.21251290	.29166041	.37661030	.46353840
-2	-.03462580	-.04145730	-.04699226	-.04985257	-.04841746
-3	-.00041123	-.00083691	-.00157669	-.00277249	-.00458632
-4			-.00000003	-.00000017	-.00000074
x	$x+.5$	$x+.6$	$x+.7$	$x+.8$	$x+.9$
3	-.00000280	-.00000074	-.00000017	-.00000003	
2	-.00718751	-.00458632	-.00277249	-.00157669	-.00083691
1	-.04092087	-.04841746	-.04985257	-.04699226	-.04145730
0	.54811118	.46353840	.37661030	.29166041	.21251290
-1	.54811118	.62577328	.69204028	.74281594	.77475976
-2	-.04092087	-.02556532	-.00066601	.03516336	.08277004
-3	-.00718751	-.01073240	-.01533104	-.02099452	-.02756299
-4	-.00000280	-.00000943	-.00002830	-.00007621	-.00018550

x	$x+.0$	$x+.1$	$x+.2$	$x+3$	$x+.4$
3	. 0030922	. 0015611	. 0007155	. 0002953	. 0001089
2	. 0709642	. 0690870	. 0616092	. 0514079	. 0405956
1	-. 6512052	$-.5359047$	-. 4163489	-. 3016954	-. 1986416
0	. 0000000	-. 2168063	-. 4183406	$-.5915396$	-. 7269119
-1	. 6512052	. 7515608	. 8262912	. 8662852	. 8650057
-2	-. 0709642	-. 0638857	-. 0445045	-. 0099839	. 0416488
-3	$-.0030922$	-. 0056121	-. 0094213	-. 0147669	-. 0217952
-4		-. 0000001	-. 0000006	-. 0000026	-. 0000103

$L_{1}^{\prime}(x)$

x	$x+.5$	$x+.6$	$x+.7$	$x+8$	$x+.9$
3	. 0000357	. 0000103	. 0000026	. 0000006	. 0000001
2	. 0304945	. 0217952	. 0147669	. 0094213	. 0056121
1	-. 1113051	-. 0416488	. 0099839	. 0445045	. 0638857
0	-. 8188067	-. 8650057	-. 8662852	-. 8262912	-. 7515608
-1	. 8188067	. 7269119	. 5915396	. 4183406	$.2168063$
-2	. 1113051	. 1986416	. 3016954	. 4163489	. 5359047
-3	$-.0304945$	-. 0405956	$-.0514079$	$-.0616092$	-. 0690870
-4	-. 0000357	-. 0001089	$-.0002953$	-. 0007155	-. 0015611

$L_{1}^{\prime \prime}(x)$

x	$x+.0$	$x+.1$	$x+2$	$x+3$	$x+.4$
4	-. 0000004	-. 0000001			
3	-. 0197354	-. 0114013	-. 0059477	-. 0027759	-. 0011500
2	. 0202421	-. 0521077	-. 0926044	-. 1078983	-. 1061742
1	1.0966561	1.1912649	1.1844282	1.0974670	. 9568292
0	-2.1943249	-2.1159568	-1.8927238	-1.5554043	-1.1427100
-1	1.0966561	. 8923803	. 5868711	. 2020705	-. 2337191
-2	. 0202421	. 1269947	. 2654156	. 4283134	. 6058876
-3	-. 0197354	-. 0311722	-. 0454298	-. 0617347	-. 0788289
-4	-. 0000004	-. 0000019	-. 0000092	-. 0000377	-. 0001346
x	$x+.5$	$x+6$	$x+.7$	$x+.8$	$x+.9$
	-. 0004201	-. 0001346	-. 0000377	-. 0000092	
2	$-.0947351$	-. 0788289	-. 0617347	-. 0454298	-. 0311722
1	. 7867260	. 6058876	. 4283134	. 2654156	. 1269947
0	-. 6915708	-. 2337191	. 2020705	. 5868711	. 8923803
-1	-. 6915708	-1.1427100	-1.5554043	-1.8927238	-2.1159568
-2	. 7867260	. 9568292	1.0974670	1.1844282	1.1912649
-3	-. 0947351	-. 1061742	$-.1078983$	-. 0926044	$-.0521077$
	-. 0004201	-. 0011500	-. 0027759	$-.0059477$	$-.0114013$
-5					$-.0000001$

Table II. $L_{2}(x)=L_{4,2}(x, 1 / 2), L_{2}^{\prime}(x), L_{2}^{\prime \prime}(x)$
$L_{2}(x)$

x	$x+.0$	$x+1$	$x+.2$	$x+.3$	$x+.4$
5	-. 00000001				
4	-. 00003297	-. 00001721	$-.00000871$	-. 00000428	-. 00000203
3	-. 00453670	-. 00313034	-. 00210474	-. 00137859	-. 00087930
2	-. 04033977	-. 03775949	-. 03379714	-. 02913417	-. 02429574
1	. 20271717	. 14753253	. 09914645	. 05829935	. 02523450
0	. 68438455	. 67711287	. 65567464	. 62117134	. 57534514
-1	. 20271717	. 26343912	. 32793367	. 39399436	. 45907812
-2	-. 04033977	-. 04070831	-. 03791256	-. 03092183	-. 01869149
-3	-. 00453670	-. 00640787	-. 00882100	-. 01183236	-. 01545906
-4	-. 00003297	-. 00006127	-. 00011052	-. 00019364	-. 00032972
-5	-. 00000001	-. 00000003	-. 00000007	-. 00000018	$-.00000042$
x	$x+.5$	$x+.6$	$x+.7$	$x+8$	$x+.9$
4	-. 00000094	-. 00000042	$-.00000018$	-. 00000007	$-.00000003$
3	-. 00054590	-. 00032972	-. 00019364	-. 00011052	-. 00006127
2	-. 01965692	-. 01545906	-. 01183236	-. 00882100	-. 00640787
1	-. 00024449	-. 01869149	-. 03092183	-. 03791256	-. 04070831
0	. 52044824	. 45907812	. 39399436	. 32793367	. 26343912
-1	. 52044824	. 57534514	. 62117134	. 65567464	. 67711287
-2	-. 00024449	. 02523450	$\therefore .05829935$. 09914645	. 14753253
-3	-. 01965692	-. 02429574	-. 02913417	-. 03379714	$-.03775949$
-4	-. 00054590	$-.00087930$	$-.00137859$	$-.00210474$	$-.00313034$
-5	-. 00000094	$-.00000203$	$-.00000428$	$-.00000871$	-. 00001721

$L_{2}^{\prime}(x)$

x	$x+.0$	$x+.1$	$x+.2$	$x+.3$	$x+.4$
5	.0000001		x		
4	.0002093	.0001145	.0000607	.0000311	.0000154
3	.0162494	.0120195	.0086291	.0060153	.0040721
2	.0162409	.0339777	.0441321	.0482532	.0478931
1	-.5820676	-.5195203	-.4469715	-.3695748	-.2920635
0	.0000000	-.1448007	-.2821139	-.4050264	-.5077160
-1	.5820676	.6294198	.6567760	.6601752	.6369100
-2	-.0162409	.0104651	.0471784	.0943909	.1518602
-3	-.0162494	-.0213049	-.0270545	-.0332049	-.0392596
-4	-.0002093	-.0003705	-.0006358	-.0010581	-.0017083
-5	-.0000001	-.0000002	-.0000006	-.0000015	-.000034

$L_{2}^{\prime}(x)$					
x	$x+.5$	$x+.6$			
4	.0000074	.0000034	.0000015	.0000006	.0000002
3	.0026769	.0017083	.0010581	.0006358	.0003705
2	.0444848	.0392596	.0332049	.0270545	.0213049
1	-.1876748	-.1518602	-.0943909	-.0471784	-.0104651
0	-.5858619	-.6369100	-.6601752	-.6567760	-.6294198
-1	.5858619	.5077160	.4050264	.2821139	.1448007
-2	.1876748	.2920635	.3695748	.4469715	.5195203
-3	-.0444848	-.0478931	-.0482532	-.0441321	-.0339777
-4	-.0026769	-.0040721	-.0060153	-.0086291	-.0120195
-5	-.0000074	-.0000154	-.0000311	-.0000607	-.0001145

	$L_{2}^{\prime \prime}(x)$					
x	$x+.0$	$x+.1$	$x+.2$	$x+.3$	$x+.4$	
5	-.0000010	-.0000004	-.0000001			
4	-.0012284	-.0007087	-.0003952	-.0002129	-.0001108	
3	-.0465343	-.0380479	-.0298698	-.0225871	-.0164844	
2	.2201282	.1369510	.0687454	.0162834	-.0210828	
1	.5579563	.6842412	.7580806	.7819152	.7615818	
0	-1.4606815	-1.4227560	-1.3118991	-1.1365778	-.9099683	
-1	.5579763	.3809905	.1594624	-.0960473	.3711575	
-2	.2201282	.3157558	.4193623	.5245097	.6230076	
-3	-.0465343	-.0543645	-.0601451	-.0620423	-.0578316	
-4	-.0012284	-.0020585	-.0033357	-.0052283	-.0079270	
-5	-.0000010	-.0000025	-.0000057	-.0000126	-.0000270	
x	$x+.5$	$x+.6$	$x+.7$	$x+.8$	$x+.9$	
-			x			
4	-.0000557	-.0000270	-.0000126	-.0000057	-.0000025	
3	-.0116249	-.0079270	-.0052283	-.0033357	-.0020585	
2	-.0450247	-.0578316	-.0620423	-.0601451	-.0543645	
1	.7053804	.6230076	.5245097	.4193623	.3157558	
0	-.6486751	-.3711575	-.0960473	.1594624	.3809905	
-1	-.6486751	-.9099683	-1.1365778	-1.3118991	-1.4227560	
-2	.7053804	.7615818	.7819152	.7580806	.6842412	
-3	-.0450247	-.0210828	.0162834	.0687454	.1369510	
-4	-.0116249	-.0164844	-.0225871	-.0298698	-.0380479	
-5	-.0000557	-.0001108	-.0002129	-.0003952	-.0007087	
-6				-.0000001	-.0000004	

Table III. $L_{3}(x)=L_{6,3}(x, 1 / 2), L_{3}^{\prime}(x), L_{3}^{\prime \prime}(x)$
$L_{3}(x)$

x	$x+0$	$x+.1$	$x+.2$	$x+3$	$x+.4$
6	. 00000024	. 00000012	. 00000005	. 00000002	. 00000001
5	. 00008286	. 00005169	. 00003150	. 00001874	. 00001088
4	. 00268003	. 00209760	. 00160285	. 00119677	. 00087361
3	. 00146844	. 00384345	. 00530620	. 00602933	. 00618622
2	-. 06657958	-. 06134625	-. 05394260	-. 04532872	-. 03631488
1	. 20814167	. 14737265	. 09315196	. 04655844	. 00818720
0	. 70841267	. 70114512	. 67967926	. 64500315	. 59869152
	. 20814167	. 27390708	. 34268907	. 41215975	47975381
-2	-. 06657958	-. 06856746	-. 06617125	-. 05825575	-. 04376882
-3	. 00146844	-. 00197317	-. 00659556	-. 01244745	-. 01948472
-4	$.00268003$	$.00383890$	$.00404886$	$.00476644$	$.00542627$
-5	$.00008286$	$.00012978$	$.00019870$	00029745	$.00043550$
-6	. 00000024	. 00000049	. 00000096	00000183	. 00000340
x	$x+.5$	$x+6$	$x+.7$	$x+8$	$x+9$
5	. 00000616	. 00000340	. 00000183	. 00000096	. 00000049
4	. 00062367	. 00043550	. 00029745	. 00019870	. 00012978
3	. 00593823	. 00542627	. 00476644	. 00404886	$.00333890$
2	-. 02754330	-. 01948472	-. 01244745	-. 00659556	-. 00197317
1	-. 02182865	-. 04376882	-. 05825575	-. 06617125	-. 06856746
0	. 54280388	. 47975381	$.41215975$. 34268907	. 27390708
-1	. 54280388	. 59869152	. 64500315	. 67967926	. 70114512
-2	-. 02182865	. 00818720	. 04655844	. 09315196	. 14737265
-3	-. 02754330	-. 03631488	-. 04532872	-. 05394260	$-.06134625$
-4	. 00593823	. 00618622	. 00602933	. 00530620	. 00384345
-5	$.00062367$	$.00087361$	$.00119677$	$.00160285$	$00209760 .$
-6	. 00000616	$.00001088$	$.00001874$	$.00003150$	$.00005169$
-7		. 00000001	. 00000002	. 00000005	. 00000012

$L_{3}^{\prime}(x)$

x	$x+.0$	$x+.1$	$x+.2$	$x+.3$	$x+.4$
6	-.0000017	-.0000009	-.0000004	-.0000002	-.0000001
5	-.0003813	-.0002500	-.0001598	-.0000996	-.0000605
4	-.0062356	-.0053949	-.0044992	-.0036324	-.0028472
3	.0288514	.0189098	.0106360	.0041176	-.0007095
2	.0379708	.0648953	.0815717	.0893524	.0898535
1	-.6356363	-.5771501	-.5054638	-.4254184	-.3417929
0	.0000000	-.1447858	-.2828738	-.4080067	-.5147714
-1	.6356363	.6763588	.6953825	.6897327	.6576776
-2	-.0379708	.0001221	.0497076	.1103706	.1808527
-3	-.0288514	-.0401754	-.0523583	-.0646105	-.0758656
-4	.0062356	.0069002	.0072273	.0070158	.0060307
-5	.0003813	.0005675	.0008239	.0011670	.0016121
-6	.0000017	.0000033	.0000063	.0000116	.0000206

$L_{3}^{\prime}(x)$

x	$x+.5$	$x+6$	$x+.7$	$x+.8$	$x+.9$
5	-. 0000358	-. 0000206	$\therefore .0000116$	$-.0000063$	$-.0000033$
4	-. 0021709	$-.0016121$	-. 0011670	-. 0008239	-. 0005675
3	-. 0040148	-. 0060307	-. 0070158	-. 0072273	-. 0069002
2	. 0847953	. 0758656	. 0646105	. 0523583	. 0401754
1	-. 2590022	-. 1808527	-. 1103706	-. 0497076	-. 0001221
0	-. 5989336	-. 6576776	-. 6897327	-. 6953825	-. 6763588
-1	. 5989336	. 5147714	. 4080067	. 2828738	. 1447858
-2	. 2590022	. 3417929	. 4254184	. 5054638	. 5771501
-3	-. 0847953	-. 0898535	-. 0893524	-. 0815717	-. 0648953
-4	. 0040148	. 0007095	-. 0041176	-. 0106360	-. 0189098
-5	. 0021709	. 0028472	. 0036324	. 0044992	. 0053949
-6	. 0000358	$.0000605$	$.0000996$	$.0001598$	$.0002500$
-7		. 0000001	. 0000002	. 0000004	$.0000009$

$L_{3}^{\prime}(x)$

x	$x+.0$	$x+.1$	$x+.2$	$x+3$	$x+.4$
6	. 0000117	. 0000061	. 0000031	. 0000015	. 0000007
5	. 0015631	. 0010868	. 0007350	. 0004835	. 0003094
4	. 0077612	. 0088518	. 0089242	. 0083240	. 0073357
3	-. 1069900	$-.0913730$	-. 0739648	-. 0565175	-. 0403140
2	. 3239975	. 2160536	. 1197566	. 0385786	-. 0256675
1	. 5032414	. 6588169	. 7667843	. 8261081	. 8390021
0	-1.4591699	-1.4253081	-1.3259553	-1.1676245	-. 9605716
-1	. 5032414	. 3045939	. 0708748	$-.1867923$	-. 4548011
-2	. 3239975	. 4384255	. 5526106	. 6585611	. 7474910
-3	-. 1069900	-. 1186224	-. 1237228	-. 1195410	-. 1033391
-4	. 0077612	. 0052612	. 0009447	-. 0055676	-. 0145672
-5	. 0015631	. 0021860	. 0029705	. 0039174	. 0050049
-6	. 0000117	. 0000217	. 0000392	. 00000685	$.0001165$ $.0000001$
-7				. 0000001	
x	$x+.5$	$x+.6$	$x+.7$	$x+8$	$x+.9$
6	. 0000003				
5	. 0001926	$.0001165$	$.0000685$. 0000392	. 0000217
4	. 0061776	. 0050049	. 0039174	. 0029705	. 0021860
3	-. 0261859	-. 0145672	-. 0055676	$.0009447$. 0052612
2	-. 0726654	-. 1033391	-. 1195410	$-.1237228$	-. 1186224
1	. 8104398	. 7474910	. 6585611	. 5526106	. 4384255
0	$-.7179590$	-. 4548011	-. 1867923	$-.0708748$	3045939
-1	-. 7179590	-. 9605716	-1.1676245	-1.3259553	-1.4253081
-2	. 8104398	. 8390021	. 8261081	. 7667843	6588169
-3	-. 0726654	-. 0256675	. 0385786	-. 1197566	2160536
-4	-. 0261859	-. 0403140	-. 0565175	-. 0739648	$-.0913730$
-5	. 0061776	. 0073357	. 0083240	$.0089242$	$.0088518$
-6	. 0001926	. 0003094	. 0004835	. 0007350	$.0010868$
-7	. 0000003	. 0000007	. 0000015	. 0000031	. 0000061

AN ITERATION METHOD FOR CALCULATION WITH LAURENT SERIES*

BY
H. A. RADEMACHER AND I. J. SCHOENBERG
University of Pennsylvania and Ballistic Research Laboralories, Aberdeen Proving Ground

Introduction. The power series is a basic concept of Analysis which is of fundamental importance from the theoretical as well as from the computational point of view. The theoretical importance of power series springs from the fact that it represents any analytic function in the neighborhood of a regular point. The reason for its practical importance is the case with which implicitly defined functions, by finite relations or differential equations, may be expanded in power series by the so-called method of undetermined coefficients, known and used since the dawn of mathematical analysis.

Laurent series play a definitely minor role as compared to power series. One reason is the more complicated nature of the connection between the sum of the series and its coefficients. Another reason, dependent on the first, is the difficulty of calculations with Laurent series.

The purpose of this paper is to describe a method whereby rational or algebraic operations with Laurent series may be performed with high accuracy at the expense of a reasonable amount of labor. A general approximation method to empirical data, developed by one of us, ${ }^{1}$ required the very accurate reciprocation of certain Laurent series. This problem of reciprocation of Laurent series was the starting point of our investigation. Our method for solving this particular problem turned out to be identical with a method of reciprocation of finite matrices already investigated by H. Hotelling. ${ }^{2}$ We finally point out that our method of computation with Laurent series extends to computations with trigonometric series provided these series converge absolutely.

1. Newton's algorithm and statement of the problem. Let

$$
\begin{equation*}
f(x) \equiv a_{0} x^{m}+a_{1} x^{m-1}+\cdots+a_{m}=0, \quad\left(a_{0} \neq 0\right) \tag{1}
\end{equation*}
$$

be an algebraic equation with numerical real or complex coefficients. If x is a simple root of this equation, then very close approximations to x may be readily computed by Newton's iterative algorithm represented by the recurrence relation

$$
\begin{equation*}
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \tag{2}
\end{equation*}
$$

The reason for the fast convergence of x_{n} towards x is as follows: Expanding the right-

[^7]hand side in a power series in $x_{n}-x$, in the neighborhood of the simple root x, we find that (2) may be written as
\[

$$
\begin{equation*}
x_{n+1}-x=c_{2}\left(x_{n}-x\right)^{2}+c_{3}\left(x_{n}-x\right)^{3}+\cdots, \tag{3}
\end{equation*}
$$

\]

with coefficients c_{ν} depending only on the root x. Because there is no linear term in $x_{n}-x$ on the right-hand side we find that from a certain point on the error $x_{n+1}-x$ is of the order of magnitude of the square of the previous error $x_{n}-x$. From this stage on, each step will approximately double the number of correct decimal places of the previous approximation x_{n}. This type of rapid convergence is sometimes referred to as "quadratic convergence."

Let us notice that the iterative process (2) requires a division, by $f^{\prime}\left(x_{n}\right)$, at each step of the process. This is a serious handicap in computing with machines which do not perform the operation of division, as for example the standard punch-card machines. This division is likewise a handicap if we wish to extend the process to the realm of matrices where division is a difficult numerical operation.

We propose to modify Newton's algorithm (2) so as to require only the operations of addition, subtraction and multiplication in its performance. It will then be shown how the modified Newton algorithm allows us to carry out numerically rational as well as algebraic operations on Laurent series. The most general numerical problem whose solution is facilitated by our method may be formulated as follows.

Problem. Let

$$
\begin{equation*}
f(w, z) \equiv a_{0}(z) w^{m}+a_{1}(z) w^{m-1}+\cdots+a_{m}(z)=0 \tag{4}
\end{equation*}
$$

be an equation with the following properties:

1. The coefficients $a_{v}(z)$ are all regular and uniform functions of z in the ring

$$
\begin{equation*}
R: \quad r_{1}<|z|<r_{2} . \tag{5}
\end{equation*}
$$

2. We have

$$
\begin{equation*}
a_{0}(z) \neq 0 \quad \text { in } \quad R . \tag{6}
\end{equation*}
$$

3. The discriminant $D(z)$ of (4) satisfies

$$
\begin{equation*}
D(z) \neq 0 \quad \text { in } \quad R \tag{7}
\end{equation*}
$$

so that the equation (4) has no critical point in R. Let now $w=w(z)$ be a branch of a solution of (4) which is necessarily regular in R but need not be uniform in R. Given the $n u$ merical values of the Laurent expansions of the coefficients $a_{\nu}(z)$, the problem is to find the values of the coefficients of the Laurent expansions of $w(z)$.

Remarks. 1. The difficulty of this problem is due to its being concerned with Laurent series rather than ordinary power series. Indeed, if everything else is unchanged, we replace, in its formulation, the ring (5) by the circle $|z|_{0}<r_{2}$, then all Laurent series mentioned become power series, in which case the power series expansion of the branch $w=w(z)$ may be obtained by the method of undetermined coefficients (see the first paragraph of our Introduction).
2. We did not require the branch $w=w(z)$ to be uniform in R. However, we do not restrict our problem by assuming $w(z)$ to be uniform in R. Indeed, if $w(z)$ returns to its values after k turns in $R, k>1$, we change variable by setting

$$
z=\zeta^{k}
$$

Our equation (4) thereby becomes

$$
j\left(w, \zeta^{k}\right)=0
$$

and the branch $w(z)$ becomes uniform in the corresponding ring in the ζ-plane. If we can determine its uniform Laurent series

$$
w(z)=\sum_{-\infty}^{\infty} \omega_{n} \zeta^{n}
$$

we also have its algebraic expansion

$$
w(z)=\sum_{-\infty}^{\infty} \omega_{n} z^{n / k} .
$$

3. Even the case $m=1$ is far from trivial. Thus

$$
a_{0}(z) w-1=0
$$

amounts to the important problem of the reciprocation of a given Laurent series.
2. The modification of Newton's algorithm. We return in this section to the case of the ordinary algebraic equation (1). We now impose the restriction that

$$
\begin{equation*}
f(x) \text { has only simple zeros. } \tag{8}
\end{equation*}
$$

This condition implies that the polynomials $f(x), f^{\prime}(x)$ have no common divisors and that we can therefore determine uniquely, by rational operations alone, two polynomials $\phi(x)$ and $\psi(x)$ satisfying the identity

$$
\begin{equation*}
f(x) \phi(x)+f^{\prime}(x) \psi(x) \equiv 1, \tag{9}
\end{equation*}
$$

and such that the degrees of ϕ and ψ do not exceed $m-2$ and $m-1$, respectively. The coefficients of $\phi(x), \psi(x)$ are rational functions of the coefficients a_{ν}. For later reference it is important to remark that the coefficients of $\psi(x)$ may be written as a quotient of polynomials in a_{ν} divided by the discriminant D of the polynomial $f(x)$. Indeed, the coefficients of ϕ and ψ are determined, in view of (9), by a system of linear equations whose determinant is precisely the discriminant D of $f(x)$. This procedure leads to explicit expressions of ψ and D in determinant form. Thus for $m=3$ we obtain

$$
\psi(x)=\frac{1}{D}\left|\begin{array}{ccccc}
x^{2} & x & 1 & 0 & 0 \tag{10}\\
3 a_{0} & 0 & 0 & a_{0} & 0 \\
2 a_{1} & 3 a_{0} & 0 & a_{1} & a_{0} \\
a_{2} & 2 a_{1} & 3 a_{0} & a_{2} & a_{1} \\
0 & a_{2} & 2 a_{1} & a_{3} & a_{2}
\end{array}\right|, \quad D=\left|\begin{array}{ccccc}
3 a_{0} & 0 & 0 & a_{0} & 0 \\
2 a_{1} & 3 a_{0} & 0 & a_{1} & a_{0} \\
a_{2} & 2 a_{1} & 3 a_{0} & a_{2} & a_{1} \\
0 & a_{2} & 2 a_{1} & a_{3} & a_{2} \\
0 & 0 & a_{2} & 0 & a_{3}
\end{array}\right| .
$$

This expression, which generalizes to any value of m, indeed shows that the coefficients of $\psi(x)$ have the common denominator D if regarded as rational functions of the a_{ν} 's.

Now we modify Newton's algorithm (2) to its new form ${ }^{3}$

[^8]\[

$$
\begin{equation*}
x_{n+1}=x_{n}-f\left(x_{n}\right) \psi\left(x_{n}\right) \tag{11}
\end{equation*}
$$

\]

Setting

$$
\begin{equation*}
F(x) \equiv x-f(x) \psi(x) \tag{12}
\end{equation*}
$$

we may write (11) as

$$
x_{n+1}=F\left(x_{n}\right)
$$

On comparing (2) and its modification (11) we see that the division required by (2), at each step of the process, is not present in (11). Now we want to show that the algorithm (11) also enjoys the property of (2) of producing fast convergence towards the zeros of $f(x)$. Indeed, let x be a root of (1),

$$
\begin{equation*}
f(x)=0 \tag{13}
\end{equation*}
$$

and let us expand $F\left(x_{n}\right)$ about the point $x_{n}=x$. Writing for convenience $f^{(\nu)}(x)=f^{(\nu)}$, $\psi^{(p)}(x)=\psi^{(p)}$, we have by Taylor's formula

$$
\begin{aligned}
& f\left(x_{n}\right)=f+f^{\prime}\left(x_{n}-x\right)+\frac{1}{2} f^{\prime \prime}\left(x_{n}-x\right)^{2}+\cdots \\
& \psi\left(x_{n}\right)=\psi+\psi^{\prime}\left(x_{n}-x\right)+\frac{1}{2} \psi^{\prime \prime}\left(x_{n}-x\right)^{2}+\cdots
\end{aligned}
$$

hence
$f\left(x_{n}\right) \psi\left(x_{n}\right)=f \psi+\left(f \psi^{\prime}+f^{\prime} \psi\right)\left(x_{n}-x\right)+\frac{1}{2}\left(f \psi^{\prime \prime}+2 f^{\prime} \psi^{\prime}+f^{\prime \prime} \psi\right)\left(x_{n}-x\right)^{2}+\cdots$.
By (9) and (13) we have $f=0, f^{\prime} \psi=1$ and therefore

$$
F\left(x_{n}\right)-x=-\frac{1}{2}\left(2 f^{\prime} \psi^{\prime}+f^{\prime \prime} \psi\right)\left(x_{n}-x\right)^{2}+\cdots
$$

This shows that we may write our relation (11) in the form

$$
\begin{equation*}
x_{n+1}-x=b_{2}(x)\left(x_{n}-x\right)^{2}+b_{3}(x)\left(x_{n}-x\right)^{3}+\cdots+b_{2 m-1}(x)\left(x_{n}-x\right)^{2 m-1} \tag{14}
\end{equation*}
$$

where the $b_{r}(x)$ are polynomials in x with coefficients which are polynomials in a_{ν} divided by the common denominator D.

Again the missing linear term in $x_{n}-x$, on the right-hand side of (14), shows that if x_{0} is sufficiently close to x, then the algorithm (11) will insure that $x_{n} \rightarrow x$ with quadratic convergence.

An important special case of (1) is the equation

$$
\begin{equation*}
a x^{m}-1=0, \quad(a \neq 0) \tag{15}
\end{equation*}
$$

The identity

$$
(-1)\left(a x^{m}-1\right)+\frac{x}{m}\left(m a x^{m-1}\right)=1
$$

shows that in this case

$$
\psi(x)=\frac{1}{m} x
$$

The relation (11) now becomes

$$
\begin{equation*}
x_{n+1}=x_{n}+\frac{1}{m} x_{n}\left(1-a x_{n}^{m}\right) \tag{16}
\end{equation*}
$$

In particular if $m=1$, (15) reduces to

$$
\begin{equation*}
a x-1=0 \tag{17}
\end{equation*}
$$

when (16) becomes

$$
\begin{equation*}
x_{n+1}=x_{n}+x_{n}\left(1-a x_{n}\right) . \tag{18}
\end{equation*}
$$

3. The reciprocation of matrices. The advantage of the modified, or division-free, Newton algorithm (11) appears in connection with matrix calculations. In recent years H. Hotelling has recommended the following procedure of finding the reciprocal $X=A^{-1}$ of a given numerical non-singular matrix

$$
\begin{equation*}
A=\left\|\alpha_{i j}\right\| \quad(i, j=1, \cdots, m) \tag{19}
\end{equation*}
$$

Obtain in some way, c.g. by the so-called Gauss, or Doolittle, process a good approximation X_{0} to A^{-1}. Then improve this approximation by the recurrence relation

$$
\begin{equation*}
X_{n+1}=X_{n}+X_{n}\left(I-A X_{n}\right) \tag{20}
\end{equation*}
$$

In the case of $m=1$ this relation is identical with (18).
In studying the convergence of X_{n} towards $X=A^{-1}$ Hotelling metrizes the space of real $m \times m$ matrices by means of the absolute value or norm

$$
\begin{equation*}
N(A)=\sqrt{\sum_{i, j} \alpha_{i j}^{2}} \tag{21}
\end{equation*}
$$

which enjoys the following properties

$$
\begin{equation*}
N(A+B) \leqq N(A)+N(B), \quad N(A B) \leqq N(A) N(B) \tag{22}
\end{equation*}
$$

By means of these inequalities Hotelling derived an estimate of $N\left(X_{n}-X\right)$ which was improved by A. T. Lonseth as follows: ${ }^{4}$

Inequality of Hotelling and Lonseth. Let X_{0} be an approximation to $X=A^{-1}$ such that

$$
\begin{equation*}
N\left(I-A X_{0}\right)=k<1 \tag{23}
\end{equation*}
$$

Starting with X_{0} we obtain the sequence X_{n} by (20). Then

$$
\begin{equation*}
N\left(X_{n}-X\right) \leqq N\left(X_{0}\right) \cdot k^{2 n} \cdot(1-k)^{-1} . \tag{24}
\end{equation*}
$$

This interesting result shows in particular that the inequality (23) is sufficient to insure the convergence of the process.

Our generalizations (16) and (11) of the recurrence relation (18) suggest similar iterative procedures for the solution of non-linear algebraic matrix equations. We prefer, however, to pass on to a discussion of calculations with Laurent series.
4. Calculations with Laurent series. Let

$$
\begin{equation*}
a(z)=\sum_{-\infty}^{\infty} \alpha_{n} z^{n}, \quad\left(r_{1}<|z|<r_{2}\right) \tag{25}
\end{equation*}
$$

be a Laurent series converging in the ring (5). There is no inherent restriction of the generality of the Problem formulated in our Introduction if we assume that the ring R contains the unit-circle $|z|=1$, i.e.

[^9]\[

$$
\begin{equation*}
r_{1}<1<r_{2} \tag{26}
\end{equation*}
$$

\]

An advantage of this normalization is that it implies that $\alpha_{n} \rightarrow 0$ exponentially as $n \rightarrow+\infty$ or $n \rightarrow-\infty$, insuring that the sequence $\left\{\alpha_{n}\right\}$ is "finite" to a fixed number of decimal places.

The relation (25) scts up a one-one correspondence

$$
a(z) \sim\left\{\alpha_{n}\right\}
$$

between functions $a(z)$ uniform and regular in R and sequences $\left\{\alpha_{n}\right\}$ for which the series (25) converges in R. To the function $a(z) \equiv 1$ corresponds the unit-sequence

$$
I: \quad \alpha_{0}=1, \quad \alpha_{n}=0 \quad \text { if } n \neq 0 .
$$

This correspondence may be interpreted as an isomorphism concerning the operations of addition, subtraction, multiplication and multiplication by a scalar. Indeed, if

$$
\begin{equation*}
b(z)=\sum_{-\infty}^{\infty} \beta_{n} z^{n}, \quad\left(r_{1}<z<r_{2}\right) \tag{27}
\end{equation*}
$$

is a second series then we find, on multiplying (25) and (27) that to the product

$$
\begin{equation*}
c(z)=a(z) b(z) \tag{28}
\end{equation*}
$$

corresponds the series

$$
\begin{equation*}
c(z)=\sum_{-\infty}^{\infty} \gamma_{n z^{n}} \tag{29}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma_{n}=\sum_{n=-\infty}^{\infty} \alpha_{n-\alpha} \beta_{n} \tag{30}
\end{equation*}
$$

Thus to the operation (28) of multiplication of the functions a, b, corresponds the operation of convolution (30) of the two sequences $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$, an operation which we write as

$$
\begin{equation*}
\gamma=\alpha \beta . \tag{31}
\end{equation*}
$$

We mention incidentally a third interpretation of Laurent series isomorphic to the two already discussed. Indeed, consider the (4-way) infinite matrix

$$
\begin{equation*}
\left\|\alpha_{j-i}\right\| \tag{32}
\end{equation*}
$$

in which α_{j-i} is the element in the i th row and j th column, both i and j assuming all integral values. Such matrices may be designated "striped" for the reason that all elements lying on a line, sloping down at a 45° angle, are identical. To every sequence $\left\{\alpha_{n}\right\}$ corresponds one such matrix, and conversely. The isomorphism between such matrices and sequences becomes evident if we remark that the multiplication of two striped matrices $\left\|\alpha_{i-i}\right\|,\left\|\beta_{j-i}\right\|$, is another striped matrix $\left\|\gamma_{j-i}\right\|$, where the sequence $\left\{\gamma_{n}\right\}$ is given by (30). This remark throws some light on the connection between Laurent series and the case of finite matrices of $\S 3$.

We finally define the norm of the function $a(z)$, or of the sequence $\left\{\alpha_{n}\right\}$, as the non-negative number

$$
\begin{equation*}
N(a)=N(\alpha)=\sum_{-\infty}^{\infty}\left|\alpha_{n}\right| \tag{33}
\end{equation*}
$$

This norm also enjoys the two properties (22) or

$$
\begin{equation*}
N(a+b) \leqq N(a)+N(b), \quad N(a b) \leqq N(a) N(b) . \tag{34}
\end{equation*}
$$

Their verification is immediate in this case.
We are now able to attack the general Problem of section 1. However, it is essential to discuss first the important case $m=1$ of reciprocation.
4.1. The reciprocation of Laurent series. With the norm of a Laurent series as defined by (33), the result of Hotelling and Lonseth (section 3) applies to Laurent series without any change. Assuming that the sum $a(z)$ of the given Laurent series (25) does not vanish in R, we are to find the expansion

$$
\begin{equation*}
w(z)=\frac{1}{a(z)}=\sum_{-\infty}^{\infty} \omega_{n} z^{n} \tag{35}
\end{equation*}
$$

Let

$$
\begin{equation*}
w_{0}(z)=\sum_{-\infty}^{\infty} \omega_{n}^{(0)} z^{n} \tag{36}
\end{equation*}
$$

be an approximation to (35) such that

$$
\begin{equation*}
N\left(1-a w_{0}\right)=N\left(I-\alpha \omega^{(0)}\right)=k<1 . \tag{37}
\end{equation*}
$$

The very important problem of how such approximations may be obtained will be discussed later (section 4.3). This starting sequence is now to be improved by the relation

$$
\begin{equation*}
\omega^{(n+1)}=\omega^{(n)}+\omega^{(n)}\left(I-\alpha \omega^{(n)}\right) . \tag{38}
\end{equation*}
$$

The rapid convergence is assured by the Hotelling-Lonseth inequality

$$
\begin{equation*}
N\left(\omega^{(n)}-\omega\right) \leqq N\left(\omega^{(0)}\right) \cdot k^{2 n} \cdot(1-k)^{-1} . \tag{39}
\end{equation*}
$$

Pending a discussion of procedures for obtaining the first approximation, we may therefore regard the numerical problem of reciprocation as solved. This implies that we may perform all four rational operations on Laurent series and that we may thus find the Laurent expansion of any rational function of Laurent series.
4.2. The general algebraic case. We turn now to the general case of the equation (4) with the two additional, and as we have seen, unessential restrictions that our ring R contains the unit-circle $|z|=1$ and that the solution $w=w(z)$, of (4), be uniform in R. The problem is to find the numerical values of the coefficients of the expansion

$$
\begin{equation*}
w(z)=\sum_{-\infty}^{\infty} \omega_{n} z^{n} . \tag{40}
\end{equation*}
$$

We return to our discussion (section 2) of the division-free Newton algorithm (11), especially in its expanded form (14). This discussion remains valid if applied to (4) rather than (1). The algorithm is in this case

$$
\begin{equation*}
w_{n+1}=w_{n}-f\left(w_{n}, z\right) \psi\left(w_{n}\right), \tag{41}
\end{equation*}
$$

the expanded form of which is

$$
\begin{equation*}
w_{n+1}-w=b_{2}(w)\left(w_{n}-w\right)^{2}+\cdots+b_{2 m-1}(w)\left(w_{n}-w\right)^{2 m-1} . \tag{42}
\end{equation*}
$$

We have to remember, however, that $\psi\left(w_{n}\right)$ is a polynomial in w_{n} with coefficients which are polynomials in a_{ν} divided by $D=D(z)$. Since D is a polynomial in the a_{ν}, we may first derive its Laurent expansion by additions and multiplications from the given Laurent series of the coefficients $a_{\nu}(z)$ of (4). Secondly, since

$$
D(z) \neq 0 \quad \text { in } \quad R,
$$

we may also find by the method of section 4.1 the Laurent expansion of $1 / D(z)$. In this way we arrive at the Laurent expansions of the coefficients of $\psi\left(w_{n}\right)$. These preliminary Laurent series operations allow to put the relation (41) in the form

$$
\begin{equation*}
w_{n+1}=w_{n}+\left(c_{0}(z)+c_{1}(z) w_{n}+\cdots+c_{2 m-1}(z) w_{n}^{2 m-1}\right) \tag{43}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{\mu}(z)=\sum_{\nu} \gamma_{\mu} z^{\nu} \tag{44}
\end{equation*}
$$

are numerically known Laurent expansions.
Now let

$$
\begin{equation*}
w_{0}(z)=\sum_{-\infty}^{\infty} \omega_{v}^{(7)} z \tag{45}
\end{equation*}
$$

be an approximation to (40), (See section 4.3.) Starting from this approximation we obtain the successive series

$$
\begin{equation*}
w_{n}(z)=\sum_{-\infty}^{\infty} \omega_{n}^{(n)} z^{\prime} \tag{46}
\end{equation*}
$$

by means of (43). This operation of deriving w_{n+1} from w_{n} is of course to be performed on the corresponding sequences of coefficients. By (43), (44), (46), the operation takes the form

$$
\begin{equation*}
\omega^{(n+1)}=\omega^{(n)}+\left(\gamma_{0}+\gamma_{1} \omega^{(n)}+\cdots+\gamma_{2 m-1}\left(\omega^{(n)}\right)^{2 m-1}\right) \tag{47}
\end{equation*}
$$

Will the expansion (46) converge towards the expansion (40) of the solution? To answer this question we return to the form (42) of our relation. Taking the norms of both sides of (42) and using the properties (34) of the norm, we obtain

$$
\begin{equation*}
N\left(w_{n+1}-w\right) \leqq N\left(b_{2}(w)\right)\left[N\left(w_{n}-w\right)\right]^{2}+\cdots+N\left(b_{2 m-1}(w)\right)\left[N\left(w_{n}-w\right)\right]^{2 m-1} . \tag{48}
\end{equation*}
$$

This relation shows that if

$$
\begin{equation*}
N\left(w_{0}-w\right)=\sum_{-\infty}^{\infty}\left|\omega_{p}^{(0)}-\omega_{\nu}\right| \tag{49}
\end{equation*}
$$

is sufficiently small then (48) will indeed imply

$$
\begin{equation*}
\lim _{n \rightarrow \infty} N\left(w_{n}-w\right)=0 \tag{50}
\end{equation*}
$$

with quadratic convergence.
4.3. Derivation of an approximate Laurent expansion. The method for computation with Laurent series described in the previous sections will now become effective provided we can solve the following problem.

Initial approximation problem. Let

$$
\begin{equation*}
F(z)=\sum_{-\infty}^{\infty} c_{y} z^{\nu} \tag{51}
\end{equation*}
$$

be regular in the ring R containing the circle $|z|=1$. This function $F(z)$, whose Laurent coefficients c_{ν} are unknown, is defined by an algebraic equation which allows us to compute the value of $F(z)$ for any given z of R, in particular for any root of unity. We are to describe a practical method whereby, given $\epsilon>0$, we may compute the coefficients c_{ν}^{*} of a Laurent series

$$
\begin{equation*}
F^{*}(z)=\sum_{-\infty}^{\infty} c_{\nu}^{*} z^{\nu} \tag{52}
\end{equation*}
$$

regular in R, such that

$$
\begin{equation*}
N\left(F-F^{*}\right)=\sum_{-\infty}^{\infty}\left|c_{\nu}-c_{\nu}^{*}\right|<\epsilon \tag{53}
\end{equation*}
$$

We shall now solve this problem by the method of trigonometric interpolation. ${ }^{5}$ Let m be a positive integer and let

$$
\begin{equation*}
z_{\mu}=e^{2 x_{i \mu} / m}, \quad(\mu=0,1, \cdots, m-1) \tag{54}
\end{equation*}
$$

be the m th roots of unity. These roots of unity satisfy the following orthogonality relations

$$
\frac{1}{m} \sum_{\mu=0}^{m-1} z_{\mu} \tilde{z}_{\mu}^{B}=\left\{\begin{array}{lll}
1 & \text { if } & \nu \equiv s(\bmod m) \tag{55}\\
0 & \text { if } & \nu \neq s(\bmod m)
\end{array}\right.
$$

If m is odd, $m=2 n+1$, we consider the Laurent polynomial

$$
\begin{equation*}
F_{m}(z)=\sum_{\nu=-n}^{n} c_{m, v} z^{v} \tag{56}
\end{equation*}
$$

having m arbitrary coefficients.
If m is even, $m=2 n$, we define our polynomial so as to contain again only m arbitrary coefficients as

$$
\begin{equation*}
F_{n}(z)=\sum_{n=-(n-1)}^{n-1} c_{m, n} z^{\nu}+\frac{1}{2} c_{m, n}\left(z^{n}+z^{-n}\right) \tag{57}
\end{equation*}
$$

Whether m is even or odd we may always write

$$
\begin{equation*}
F_{m}(z)=\sum_{v=-n}^{n} c_{m, z} z^{\eta}, \quad\left(u=\left[\frac{m}{2}\right]\right) \tag{58}
\end{equation*}
$$

[^10]where the summation symbol \sum^{\prime} is to indicate that if m is even, then
\[

$$
\begin{equation*}
c_{m,-n}=c_{m, n}, \tag{59}
\end{equation*}
$$

\]

and that the terms of (58) for $\nu= \pm n$ are to be taken with half their value. The relation $n=[m / 2]$ is to indicate that n is the greatest integer not exceeding $m / 2$.

We shall now require the Laurent polynomial (58) to interpolate the function (51) in the points (54). This gives the m equations

$$
\begin{equation*}
\sum_{v=-n}^{n} c_{m, v} z_{\mu}^{\prime}=F\left(z_{\mu}\right), \quad(\mu=0,1, \cdots, m-1) \tag{60}
\end{equation*}
$$

On multiplying (60) by \vec{z}_{μ}^{s} / m (s fixed, $-n \leqq s \leqq n$) we find in all cases, in view of (55) after summation by μ, that

$$
\begin{equation*}
c_{m, s}=\frac{1}{m} \sum_{\mu=0}^{m-1} F\left(z_{\mu}\right) \bar{z}_{\mu}^{\prime}, \quad(-n \leqq s \leqq n) \tag{61}
\end{equation*}
$$

The construction of our approximate Laurent expansion (58), i.e. (52), has now been completed. The following theorem will now show that the condition (53) may also be realized by the present method of construction.

Theorem. We assume the Laurent series

$$
\begin{equation*}
F(z)=\sum_{v=-\infty}^{\infty} c_{v} z^{\nu} \tag{62}
\end{equation*}
$$

to converge absolutely on the unit circle $|z|=1$, i.e.

$$
\begin{equation*}
\sum_{-\infty}^{\infty}\left|c_{p}\right|<\infty .{ }^{6} \tag{63}
\end{equation*}
$$

Then our interpolating Laurent polynomial (58) satisfies the condition

$$
\begin{equation*}
\lim _{m \rightarrow \infty} N^{\top}\left(F-F_{m}\right)=0 \tag{64}
\end{equation*}
$$

Remark. Notice that the regularity of $F(x)$ in a ring containing $|z|=1$ implies our condition (63) but not conversely. This remark is of importance concerning calculations with absolutely convergent Fourier series. (See section 5.)

Proof. Let N be a positive integer. We shall restrict ourselves to values of $m \geqq 2 N$, hence $n \geqq N$. We may then write

$$
\begin{equation*}
N\left(F-F_{m}\right) \leqq \sum_{\nu=N+1}^{N-1}\left|c_{\nu}-c_{m, \nu}\right|+\sum_{N \leqq|\alpha| \leqq n}^{\prime}\left|c_{m, s}\right|+\sum_{|\nu| \geqq N}\left|c_{\nu}\right| . \tag{65}
\end{equation*}
$$

We shall now estimate the three sums on the right-hand side.

[^11]Let $\epsilon>0$ be given. In view of our assumption (63) we may choose N such that

$$
\begin{equation*}
\sum_{|\nu| \geqq N}\left|c_{\nu}\right|<\epsilon . \tag{66}
\end{equation*}
$$

An upper bound for the second sum of (65) may now be obtained as follows. By (61) and (62) we have

$$
c_{m, s}=\frac{1}{m} \sum_{\mu=0}^{m-1} \bar{z}_{\mu}^{8} \sum_{\nu=-\infty}^{\infty} c_{v} z_{\mu}^{j}=\sum_{\nu=-\infty}^{\infty} c_{p} \frac{1}{m} \sum_{\mu=0}^{m-1} z_{\mu}^{\prime \prime} z_{\mu}^{z},
$$

and finally by (55)

$$
\begin{equation*}
c_{m, s}=\sum_{v=s(\bmod m)} c_{v} . \tag{67}
\end{equation*}
$$

For all $m \geqq 2 N$, whether m is even or odd, we now have

$$
\begin{equation*}
\sum_{N \leqq|\&| \leqq n}^{\prime}\left|c_{m, s}\right| \leqq \sum_{N \leqq|s| \leq n}^{\prime} \sum_{\nu \equiv s(\bmod m)}\left|c_{\nu}\right| \leqq \sum_{|\nu| \geqq N}\left|c_{\nu}\right|<\epsilon \tag{68}
\end{equation*}
$$

by (66). We now return to (61). Since (62) converges uniformly on $|z|=1, F(z)$ is continuous on $|z|=1$ and (62) is its Fourier series. We therefore have the FourierCauchy relations

$$
\begin{equation*}
c_{r}=\frac{1}{2 \pi i} \int_{|z|-1} F(z) z^{-\nu-1} d z \tag{69}
\end{equation*}
$$

From the definition of this integral as a limit of Cauchy sums we may now write (with $z_{m}=1$)

$$
\begin{aligned}
& c_{\nu}=\lim _{m \rightarrow \infty} \frac{1}{2 \pi i} \sum_{\mu=0}^{m-1} F\left(z_{\mu}\right) z_{\mu}^{-\nu-1}\left(z_{\mu+1}-z_{\mu}\right), \\
& c_{\nu}=\lim _{m \rightarrow \infty} \frac{1}{2 \pi i} \sum_{\mu=0}^{m-1} F\left(z_{\mu}\right) z_{\mu}^{-\nu}\left(e^{2 \pi i / m}-1\right),
\end{aligned}
$$

and finally, by (61),

$$
\begin{equation*}
c_{0}=\lim _{n \rightarrow \infty} \frac{1}{m} \sum_{\mu=0}^{m-1} F\left(z_{\mu}\right) z_{\mu}^{-\nu}=\lim _{m \rightarrow \infty} c_{m} \tag{70}
\end{equation*}
$$

We now have indeed

$$
\begin{equation*}
\sum_{v=N+1}^{N-1}\left|c_{r}-c_{m, \nu}\right|<\epsilon, \quad \text { provided } \quad m>m_{0}(\epsilon) . \tag{71}
\end{equation*}
$$

By (65), (66), (68), and (71) we now have

$$
\begin{equation*}
N\left(F-F_{m}\right)<3 \epsilon, \text { provided } m>m_{0}(\epsilon), \tag{72}
\end{equation*}
$$

and our theorem is established.
4.31. The 24 -ordinate scheme of numerical harmonic analysis. The interpolation of our given function $F(z)$ in the 24th roots of unity will provide satisfactory approxi-
mation for most ordinary purposes. Let us assume for definiteness that $F(z)$ is real for real z. On the unit-circle $z=e^{i \theta}$ we then have

$$
\begin{equation*}
F\left(e^{i \theta}\right)=R(\theta)+i I(\theta) \tag{73}
\end{equation*}
$$

where the real part $R(\theta)$ is an even function, while the imaginary part $I(\theta)$ is odd. Denote by

$$
\begin{equation*}
F_{\mu}=R_{\mu}+i I_{\mu}, \quad(\mu=0,1, \cdots, 23) \tag{74}
\end{equation*}
$$

the computed values of our function at 15°-intervals in θ, i.e. for the points (54) with $m=24$. We now interpolate the 13 ordinates $R_{\mu}(\mu=0,1, \cdots, 12)$ by a cosine polynomial

$$
\begin{equation*}
A_{0}+A_{1} \cos \theta+\cdots+A_{11} \cos 11 \theta+A_{12} \cos 12 \theta \tag{75}
\end{equation*}
$$

and the 13 ordinates $I_{0}=0, I_{1}, \cdots, I_{11}, I_{12}=0$ by a sine polynomial

$$
\begin{equation*}
B_{1} \sin \theta+\cdots+B_{11} \sin 11 \theta \tag{76}
\end{equation*}
$$

These polynomials are readily obtained by the 24 -ordinate scheme as described in E. T. Whittaker and G. Robinson, The calculus of observations, ed. 3, 1940, section 137, pp. 273-278. The complex function (73) is now interpolated in the 24 points by the trigonometric polynomial

$$
\begin{aligned}
F_{24}\left(e^{i \theta}\right)= & A_{0}+A_{1} \cos \theta+\cdots+A_{11} \cos 11 \theta+A_{12} \cos 12 \theta \\
& +i B_{1} \sin \theta+\cdots+i B_{11} \sin 11 \theta .
\end{aligned}
$$

Setting

$$
\begin{equation*}
z=e^{i \theta}, \quad \cos \nu \theta=\frac{1}{2}\left(z^{\nu}+z^{-\nu}\right), \quad i \sin \nu \theta=\frac{1}{2}\left(z^{\mu}-z^{-\nu}\right), \tag{77}
\end{equation*}
$$

we obtain the Laurent sum with real coefficients

$$
\begin{align*}
F_{24}(z)=A_{0} & +\sum_{v=1}^{11} \frac{1}{2}\left(A_{v}+B_{v}\right) z^{\nu}+\frac{1}{2} A_{12} z^{12} \\
& +\sum_{v=1}^{11} \frac{1}{2}\left(A_{v}-B_{v}\right) z^{-\nu}+\frac{1}{2} A_{12} z^{-12} \tag{78}
\end{align*}
$$

This initial approximate Laurent expansion will be used in section 6 in our example of reciprocation of a Laurent series.
5. Calculation with Fourier series. The method of calculation with Laurent series described in sections $4,4.1,4.2,4.3$ and 4.31 , applies unchanged to the realm of absolutely convergent Fourier series written in the complex form

$$
F(z)=\sum_{-\infty}^{\infty} c_{v} z^{y}, \text { where } z=e^{i \theta}
$$

with the definition of the norm as

$$
N(F)=\sum_{-\infty}^{\infty}\left|c_{\nu}\right|
$$

The general problem of section 1 may now be reformulated, replacing the ring R by the unit circle $|z|=1$. The coefficients $a_{\nu}(z)$ of the equation (4) are now defined by
given absolutely convergent Fourier series. The conditions (6) and (7) remain unchanged. The important fact that a uniform, continuous solution $w=w(z)$ of (4) along the unit-circle admits of an absolutely convergent Fourier expansion is now assured by a general theorem of N. Wiener and P. Lévy. ${ }^{7}$ The effectiveness of the interpolation method of section 4.3 for obtaining a satisfactory initial approximate Fourier series is secured by our theorem of section 4.3.

We finally mention briefly the special problem of the reciprocation of a nonvanishing absolutely convergent Fourier series

$$
\begin{equation*}
A(\theta)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right) \tag{79}
\end{equation*}
$$

with real coefficients a_{v}, b_{v}. In applying our method, we have to pass to the complex variable z, by means of the relations (77), obtaining the series

$$
\begin{equation*}
A(\theta)=a(z)=\sum_{-\infty}^{\infty} \alpha_{n} z^{n}, \tag{80}
\end{equation*}
$$

which is now to be reciprocated. The coefficients α_{n} being complex, it would appear that computations with complex numbers are unavoidable. This, however, is not the case since we may proceed as follows. Working with the real series

$$
\begin{equation*}
f(z)=\sum_{-\infty}^{\infty} R\left(\alpha_{n}\right) z^{n}, \quad g(z)=\sum_{-\infty}^{\infty} I\left(\alpha_{n}\right) z^{n}, \tag{81}
\end{equation*}
$$

we have by (80)

$$
\begin{equation*}
\frac{1}{a(z)}=\frac{1}{f+i g}=\frac{f}{f^{2}+g^{2}}-i \frac{g}{f^{2}+g^{2}}=\sum_{-\infty}^{\infty} \omega_{n} z^{n} . \tag{82}
\end{equation*}
$$

Starting with (81) and operating with real serics only, we now form the expansions of f^{2}, g^{2} and then $f^{2}+g^{2}$. The real "Laurent" series of $f^{2}+g^{2}$ is now reciprocated by the method of section 4.1 and finally the series for

$$
f /\left(f^{2}+g^{2}\right), \quad g /\left(f^{2}+g^{2}\right)
$$

obtained by multiplications. This furnishes the complex values of the ω_{n} of (82). Returning to the variable θ, by (77) we finally obtain the ordinary real Fourier expansion of

$$
1 / A(\theta)
$$

6. An example of reciprocation of a Laurent series. Our numerical cxample will benefit by the following general remark concerning the modified Newton algorithm (11). For simplicity we limit ourselves to the case of the equation (15) or

$$
\begin{equation*}
a x^{m}-1=0 \tag{83}
\end{equation*}
$$

which is solved by the recurrent relation

[^12]\[

$$
\begin{equation*}
x_{n+1}=x_{n}+\frac{1}{m} x_{n}\left(1-a x_{n}^{m}\right) \tag{84}
\end{equation*}
$$

\]

Let us assume that our first approximation x_{0} is of such accuracy that x_{2} will have all the accuracy we want, while x_{1} does not quite do. More precisely we assume the "residual"

$$
\begin{equation*}
r=1-a x_{0^{m}}^{m} \tag{85}
\end{equation*}
$$

so small that we may neglect r^{3} everywhere in our calculations. We may use this fact in eliminating x_{1} between the two equations

$$
\begin{align*}
& x_{1}=x_{0}+\frac{1}{m} x_{0}\left(1-x_{0}^{m}\right) \\
& x_{2}=x_{1}+\frac{1}{m} x_{1}\left(1-x_{1}^{m}\right) \tag{86}
\end{align*}
$$

Indeed, by (85), (86), we have

$$
x_{1}=x_{0}\left(1+\frac{1}{m} r\right)
$$

and neglecting r^{3} we find

$$
x_{1}^{m}=x_{0}^{m}\left(1+r+\frac{m-1}{2 m} r^{2}\right) .
$$

If we then compute x_{2} in this way, i.e., neglecting r^{3} wherever it appears, we easily find the following approximation to x_{2} :

$$
\begin{equation*}
x_{2}^{\prime}=x_{0}+\frac{1}{m} x_{0}\left(r+\frac{m+1}{2 m} r^{2}\right) \tag{87}
\end{equation*}
$$

We may interpret both equations (85), (87) as a recurrence relation furnishing x_{2}^{\prime} in terms of the first approximation x_{0}. This process converges "cubically." Indeed, a simple calculation will show that we may write (87) as

$$
x_{2}^{\prime}-x=\frac{(m+1)(2 m+1)}{6 x^{2}}\left(x_{0}-x\right)^{3}+(\text { terms of order }>3)
$$

We note especially the following special case: To solve

$$
\begin{equation*}
a x-1=0 \tag{88}
\end{equation*}
$$

we set

$$
\begin{equation*}
r=1-a x_{0} \tag{89}
\end{equation*}
$$

and compute

$$
\begin{equation*}
x_{2}^{\prime}=x_{0}+x_{0}\left(r+r^{2}\right) \tag{90}
\end{equation*}
$$

We turn now to our example which consists in expanding the reciprocal of the Bessel function

$$
\begin{equation*}
J_{0}(z)=1-\frac{z^{2}}{2^{2}}+\frac{z^{4}}{(2 \cdot 4)^{2}}-\frac{z^{6}}{(2 \cdot 4 \cdot 6)^{2}}+\cdots \tag{91}
\end{equation*}
$$

into a Laurent series between the first two positive roots of this function, which are approximately $\xi_{1}=2.4, \xi_{2}=5.5$. In order to avoid even exponents we consider

$$
\begin{equation*}
J_{0}(\sqrt{z})=1-\frac{z}{2^{2}}+\frac{z^{2}}{(2 \cdot 4)^{2}}-\cdots \tag{92}
\end{equation*}
$$

whose reciprocal is to be expanded in Laurent series between its zeros

$$
\xi_{1}^{2}=5.76 \text { and } \xi_{2}^{2}=30.25
$$

Let us notice that 13 is near the geometric mean of these numbers. In order to realize the condition (26) we replace in (92) z by $13 z$, also changing the sign of the function for formal reasons. Thus let

$$
\begin{equation*}
a(z)=-J_{0}(\sqrt{13 z})=\sum_{n=0}^{\infty} \alpha_{n} z^{n} \tag{93}
\end{equation*}
$$

be the entire function whose reciprocal

$$
\begin{equation*}
w(z)=-\frac{1}{J_{0}(\sqrt{13 z})}=\sum_{-\infty}^{\infty} \omega_{n} z^{n} \tag{94}
\end{equation*}
$$

we are to expand in a Laurent series convergent on and near the unit circle $|z|=1$. Below are the 10 -place values of the coefficients α_{n} of (93) as computed by

$$
\alpha_{n}=(-1)^{n+1}(13)^{n} /\left(2^{n} \cdot n!\right)^{2} .
$$

n	α_{n}	
0	-1.00000	00000
1	3.25000	00000
2	-2.64062	50000
3	.95355	90278
4	-.19369	16775
5	.02517	99181
6	-.00227	31870
7	.00015	07726
8	-.00000	76564
9	.00000	03072
10	-.00000	00100
11	.00000	00003
\sum	$=.39229$	24951

μ	R_{μ}		I_{μ}		A_{μ}		B_{μ}	
0	2.549	122	.000	000	.601	975		
1	2.262	721	-.257	032	1.063	727	-.361	
	1.655	481	-.395	409	.489	993	-.144	
072								
3	1.081	379	-.427	381	.219	762	-.062	
309								
4	.661	333	-.405	462	.097	293	-.028	
189								
5	.379	302	-.361	625	.042	831	-.012	
990								
6	.193	500	-.309	968	.018	815	-.006	
7	.070	603	-.256	308	.008	261	-.002	
786								
8	-.011	124	-.202	973	.003	630	-.001	
285								
9	-.065	027	-.150	752	.001	604	-.000	
10	-.099	093	-.099	722	.000	727	-.000	
260								
11	-.117	947	-.049	615	.000	368	-.000	
099								
12	-.123	985	.000	000	.000	136		

From these values, rounded to 6 places, we computed to 6 places the values of $a\left(z_{\mu}\right)$ at the 24th roots of unity

$$
z_{\mu}=\cos (15 \mu)^{0}+i \sin (15 \mu)^{0}, \quad(\mu=0,1, \cdots, 12)
$$

and from these the values of the reciprocal

$$
w\left(z_{\mu}\right)=1 / a\left(z_{\mu}\right)=R_{\mu}+i I_{\mu}, \quad(\mu=0,1, \cdots, 12),
$$

which are tabulated above. The coefficients A_{μ} and B_{μ} of the interpolating cosine and sine polynomials (75), (76) where then found by the 24 -ordinate scheme. They are tabulated above.

From these values we computed the coefficients $\omega_{n}^{(0)}$ of the approximation

$$
w_{0}(z)=\sum_{-12}^{12} \omega_{n}^{(0)} z^{n}
$$

according to (78) by the formulae

$$
\begin{aligned}
& \omega_{0}^{(0)}=A_{0} \\
& \omega_{n}^{(0)}=\frac{1}{2}\left(A_{n}+B_{n}\right) \\
& \omega_{-n}^{(0)}=\frac{1}{2}\left(A_{n}-B_{n}\right) \\
& \omega_{12}^{(0)}=\omega_{-12}^{(0)}=\frac{1}{2} A_{12}, \quad(n=1,2, \cdots, 11) .
\end{aligned}
$$

These values rounded to 5 places are in the first column of the following table which contains the complete computation according to the relations (89) and (90). The last column headed $\omega=\omega^{(0)}+\omega^{(0)}\left(r+r^{2}\right)$ gives the 9-place values of the coefficients ω_{n} of (94).

Remarks. 1. The basic numerical process in this computation is obviously the convolution of sequences. Thus the second column $\alpha \omega^{(0)}$ is obtained by the convolution of the column α with the column $\omega^{(0)}$. According to the formula (30) this is done very simply rewriting the column α, say, in reverse order, then matching it with the column $\omega^{(0)}$ such that the zero term of one column corresponds to the nth term of the other. The accumulated products of matching elements gives the nth term of the product column $\alpha \omega^{(0)}$. This operation is very familiar from the process of smoothing by means of a linear compound formula.
2. The operation of convolution of sequences implies an important check by means of their sums, for it is clear that the sum of the product column should equal the product of the sums of the factor sequence, except for the accumulated rounding error. At the very bottom of each column we wrote the actual sum of the sequence in that column. Directly below it we wrote (in parentheses) the value of this sum in terms of the sums of the columns which enter into its composition.
3. The column of final residuals $I-\alpha \omega$ was also computed (values not recorded here) and its terms were found to be so small that a further repetition of the process, with our 10 -place values of the α_{n}, would not alter our 9-place values of the ω_{n}. As final checks we found by (93)

$$
\begin{aligned}
& a(1)^{-1}=2.549118356, \quad a(-1)^{-1}=-.123985065 \\
& a(\mathrm{i})^{-1}=.193499936-.309967383 \mathrm{i} .
\end{aligned}
$$

The corresponding values of $w(z)$, computed by (94), were found to be

$$
\begin{aligned}
& w(1)=2.549118355, \quad w(-1)=-.123985067 \\
& w(\mathrm{i})=.193499940-.309967383 \mathrm{i} .
\end{aligned}
$$

n	$\omega^{(0)}$	$\alpha \omega^{(0)}$	$r=I-\alpha \omega^{(0)}$	r^{2}
$\begin{aligned} & -29 \\ & -28 \end{aligned}$				
-27				
-25				
-24				49
-22				-102
-21 -20				64
-19				18 -64
-18 -17				85 $-\quad 65$
-16				9
-15				$\begin{array}{r}49 \\ -80 \\ \hline\end{array}$
-13				62
-12 -11	. 00007	$-.0000700000$.0000700000 .0000025000	- 7
-11 -10	. 00049	-. .0000726562	-. 0000726562	- 68 -97
-9	. 00110	-. 0000480946	. 0000480946	- 42
-8	. 00246	. 0000268539	-. 0000268539	- 35
-7 -6	. 005522	-.0000052301 -.0000162992	.0000052301 .0000162992	$\begin{array}{r}61 \\ -\quad 27 \\ \hline\end{array}$
- 5	. 02791	. 0000232702	-. 0000232702	- 17
-4	. 06274	-. 0000152800	. 0000152800	- 24
-3	. 14104	-. 0000013045	. 0000013045	- 14
- 2	. 31703	. 0000189326	-. 0000189326	- 7
-1	. 71266	-. 0000253421	. 0000253421	-13
1 1	. 60198	1.0000207580 .0000039064	-. 0000207580 -.0000039064	-.0000000056 -70
2	. 17296	-. 00000157627	-. O -00001 57627	$\begin{array}{r}-70 \\ \hline 237\end{array}$
3	. 07873	. 0000043626	-. 0000043626	-89
4	. 03455	. 0000122969	-. 0000122969	-116
5	. 01492	-. 0000161378	. 0000161378	174
6	. 00640	. 0000057617	-. 0000057617	-145
8	. 00117	. .00000078363	-. 0000004600078363	$\begin{array}{r}67 \\ \hline 30 \\ \hline\end{array}$
-	. 00051	-. 0000153488	-. 0000153488	-91
10	. 00023	. 0000188876	-. 0000188876	91
11	. 00013	-. 0000123781	. 0000123781	- 37
12 13	. 00007	.0000613042 .0000288471	- $\mathrm{-}$. 00000613042	$\begin{array}{r}\text { a } \\ -\quad 29 \\ \hline 81\end{array}$
14		-. 0000948797	. 0000948797	-75
15		. 0000463585	-. 0000463585	3
16		-. 0000107391	. 0000107391	53
17		. 0000014982	-. 0000014982	- 39
18		-. 00000001411	.0000001411 -0000000096	- 13
20		- $\begin{array}{r}.00000000096 \\ -.0000000055\end{array}$	- . 0000000000005050	37 $-\quad 11$
21				- 11
23				32
24				- 21
26				80 -124
27				5
28				103 $-\quad 92$
30 31				-43
31 32				13 $-\quad 3$
Σ	2.54913	1.0000045679	$-.0000045679$. 0000000002
		(1.00000 45680)		(. 0000000000)

n	$r+r^{2}$	$\omega^{0}\left(r+r^{2}\right)$	$\omega=\omega^{(0)}+\omega^{(0)}\left(r+r^{2}\right)$
$\begin{aligned} & -29 \\ & -28 \end{aligned}$		$\frac{1}{2}$	
-28		5^{+}	. 000000001
-26		12	. 000000001
-25		26	. 000000003
-24 -23	49 4	58 130	. 00000000013
-22	-102	292	. 000000029
-21	${ }^{64}$	657 1476	. 0000000066
-20 -19	$\begin{array}{r}18 \\ -\quad 64 \\ \hline\end{array}$	1476 3318	. 000000148
-18	-85	7459	. 00000000746
-17	- 65	16767	. 000001677
-16	9 49	${ }^{37691}{ }^{\text {84, }}$.000003769 .000008472
-14	-80	190454	. 000019045
-13	6 62	428120	. 000042812
-12 -11	$\begin{array}{r}699993 \\ \hline 24932\end{array}$	262369 -136696	.000096237 .000216330
a -10 -9	-726465	- 37118	. 000486288
-9 -8	480904 -268574	$\begin{array}{r}\text { - } 68748 \\ -\quad 2764 \\ \hline\end{array}$. 001093125
-7	52362	- 36008	. 005523601
- 6 -5	162965 -232719	$\begin{array}{r}\text { a } \\ -\quad 35203 \\ \hline 9539\end{array}$. 012416480
-4	-152824	9186	. 062740919
-3 -2	-13031	- 49463	.141035054 .317032118 .71258
- 1	$1-1889319$ 25408	21184 $-\quad 48016$. 712655198
0	-. 0000207636	-. 00000533032	. 601974697
1 2	$\begin{array}{r}\text { - } 39134 \\ \hline 157864 \\ \hline\end{array}$	23489 7594	. 3510723496
3	- 43715	- $34341{ }^{-}$. 078726566
4	-123085 161552	22715 4594	. 034552271
6	161552 $-\quad 57762$	- 20946	. 006397905
7 8	$\begin{array}{r}\text { (} \\ \hline-\quad 48393 \\ \hline\end{array}$	- 47102 $-\quad 20304$. 002735290
9	- 153397	-115311	. 000498469
10	-188785	-173068	. 000212693
11 12	123744 -613071	-392531 -312836	. 00000987476
13	-288390	165178	. 000016518
14 15	948722 -463582	70470 $30065-$. 00000073047
16	107444	12827	. 000001283
17 18	$\begin{array}{r}15021 \\ -\quad 1398 \\ \hline\end{array}$	2372-	.000000547 .000000233
19	- 59	996	. 000000100
20	- 6	${ }_{182}^{42}$. 000000043
22	- 11	182 78 33	. 000000008
23 24	$\begin{array}{r}32 \\ -\quad 21 \\ \hline\end{array}$	33 14	.000000003 .000000001
25 26	80 -124		. 000000001
26 28 28	-124 5 103	2 1 1	
28 29 30	103 -92 -43	1	
30 31 32	43 -13		
	$-.0000045677$		2.549118355
Σ	-.00000 45677	$(-.0000116443$	2.549118355

THE PROPAGATION OF WAVES IN ORTHOTROPIC MEDIA*

BY
G. F. CARRIER
Harvard University

1. Introduction. The present article is an extension of a previous paper dealing with the elasticity problems of orthotropic media. ${ }^{1}$ Here, the displacement potentials which define the dynamic phenomena in such media are discussed.
2. The dynamic problem. Hooke's law for an orthotropic medium may be written in the form

$$
\begin{align*}
\sigma_{x} & =b_{11} e_{x}+b_{12} e_{y}+b_{13} e_{z}, \cdots, \tag{1}\\
\tau_{x y} & =b_{86} \gamma_{x y}, \cdots
\end{align*}
$$

wherein we use the conventional notation for the stresses and the strains. If we limit ourselves to a consideration of those materials which are isotropic in the y, z plane 2 and for which

$$
\begin{equation*}
b_{68}=b_{55}=\left(b_{11} b_{22}-b_{12}^{2}\right) /\left(b_{11}+b_{22}+{ }_{2} b_{12}\right) \tag{1a}
\end{equation*}
$$

the number of independent elastic constants is reduced to four and the dynamic elasticity problem may be casily treated. ${ }^{3}$ We utilize the familiar equilibrium equations

$$
\begin{equation*}
\frac{\partial \sigma_{x}}{\partial x}+\frac{\partial \tau_{x y}}{\partial y}+\frac{\partial \tau_{x z}}{\partial z}+\rho X-\rho \frac{\partial^{2} u}{\partial t^{2}}=0, \cdots \tag{2}
\end{equation*}
$$

and define the displacements in terms of potentials as

$$
\begin{align*}
e_{x} & =\frac{\partial u}{\partial x}=\frac{\partial^{2} \phi_{1}}{\partial x^{2}}, \cdots \\
\gamma_{x y} & =\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}=\frac{\partial^{2}}{\partial x \partial y}\left(\phi_{1}+\phi_{2}\right), \cdots \tag{3}
\end{align*}
$$

When Eqs. (1), (2), and (3) are combined, we obtain

$$
\begin{align*}
& \frac{\partial}{\partial x}\left\{\left[a \frac{\partial^{2}}{\partial x^{2}}+\alpha\left(\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)-\frac{\partial^{2}}{\partial t^{2}}\right] \phi_{1}+\beta\left(\frac{\partial^{2} \phi_{2}}{\partial y^{2}}+\frac{\partial^{2} \phi_{3}}{\partial z^{2}}\right)\right\}+X=0 \tag{4a}\\
& \frac{\partial}{\partial y}\left\{\beta \frac{\partial^{2} \phi_{1}}{\partial x^{2}}+\left(\alpha \frac{\partial^{2}}{\partial x^{2}}+b \frac{\partial^{2}}{\partial y^{2}}+\gamma \frac{\partial^{2}}{\partial z^{2}}-\frac{\partial^{2}}{\partial t^{2}}\right) \phi_{2}+\delta \frac{\partial^{2} \phi_{3}}{\partial z^{2}}\right\}+Y=0 \tag{4b}\\
& \frac{\partial}{\partial z}\left\{\beta \frac{\partial^{2} \phi_{1}}{\partial x^{2}}+\delta \frac{\partial^{2} \phi_{2}}{\partial y^{2}}+\left(\alpha \frac{\partial^{2}}{\partial x^{2}}+\gamma \frac{\partial^{2}}{\partial y^{2}}+b \frac{\partial^{2}}{\partial z^{2}}-\frac{\partial^{2}}{\partial t^{2}}\right) \phi_{3}\right\}+Z=0 \tag{4c}
\end{align*}
$$

[^13]where $a, b, \alpha, \gamma, \beta^{2}$, and δ, are given respectively by $b_{11} / \rho, b_{22} / \rho, b_{68} / \rho,\left(b_{22}-b_{33}\right) / 2 \rho$, $(a-\alpha)(b-\alpha)$, and $b-\gamma$.

If we now consider the homogeneous equations (i.e., vanishing body forces) and require the ϕ_{i} to vanish at infinity, ${ }^{4}$ we may begin the integration by removing the leftmost derivative of each equation, multiplying each term in the remaining forms by $\exp [-i(x \xi+y \eta+z \zeta)]$, and integrating the equations so obtained over the infinite region. We find ${ }^{5}$

$$
\begin{equation*}
\left[a \xi^{2}+\alpha\left(\eta^{2}+\zeta^{2}\right)+\frac{\partial^{2}}{\partial t^{2}}\right] \psi_{1}+\beta \eta^{2} \psi_{2}+\beta \zeta^{2} \psi_{3}=0 \tag{5}
\end{equation*}
$$

and two similar equations. Here

$$
\begin{equation*}
\left.\psi_{j}=\iiint_{-\infty}^{\infty} \phi_{j}(x, y, z, t) \exp \left[-i\left(x \xi+y^{\prime} \eta+z\right\}\right)\right] d x d y d z \tag{6}
\end{equation*}
$$

We now have three ordinary linear differential equations (in t) the solutions to which are of the form

$$
\begin{equation*}
\psi_{j}=A_{j}(\xi, \eta, \zeta) \cos \omega t . \tag{7}
\end{equation*}
$$

In order that these solutions be non-trivial, the determinant of coefficients of Eqs. (5) wherein $\partial^{2} / \partial t^{2}$ has been replaced by $-\omega^{2}$ must vanish, that is

$$
\left.\begin{array}{ccc}
a \xi^{2}+\alpha\left(\eta^{2}+\zeta^{2}\right)-\omega^{2}, & \beta \eta^{2}, & \beta \zeta^{2} \tag{8}\\
\beta \xi^{2}, & \alpha \xi^{2}+b \eta^{2}+\gamma \zeta^{2}-\omega^{2}, & \delta \zeta^{2} \\
\beta \xi^{2}, & \delta \eta^{2}, & \alpha \xi^{2}+\gamma \eta^{2}+b \zeta^{2}-\omega^{2}
\end{array} \right\rvert\,=0
$$

The three roots of this equation are easily shown to be

$$
\begin{align*}
& \omega_{1}^{2}=a \xi^{2}+b\left(\eta^{2}+\zeta^{2}\right) \tag{9}\\
& \omega_{2}^{2}=\alpha \xi^{2}+\gamma\left(\eta^{2}+\zeta^{2}\right) \tag{10}\\
& \omega_{3}^{2}=\alpha\left(\xi^{2}+\eta^{2}+\zeta^{2}\right) . \tag{11}
\end{align*}
$$

Corresponding to these roots, the $A_{k_{j}}$ must respectively obey the relations ${ }^{6}$

$$
\begin{align*}
& A_{11}: A_{12}: A_{13}=a-\alpha: \beta: \beta \tag{9a}\\
& A_{21}: A_{22}: A_{23}=0: \beta \zeta^{2}:-\beta \eta^{2} \tag{10a}\\
& A_{31}: A_{32}: A_{33}=(b-\alpha)\left(\eta^{2}+\zeta^{2}\right):-\beta \xi^{2}:-\beta \xi^{2} \tag{11a}
\end{align*}
$$

Because of Eq. (6) it is evident that

$$
\begin{align*}
\phi_{j} & =\frac{1}{8 \pi^{3}} \iiint_{-\infty}^{\infty} \psi_{j}(\xi, \eta, \zeta, t) \exp [i(x \xi+y \eta+z \zeta)] d \xi d \eta d \zeta \\
& =\sum_{k=1,2,3} \frac{1}{8 \pi^{3}} \iiint_{-\infty}^{\infty} A_{j k}(\xi, \eta, \zeta) \cos \omega_{k} t \exp [i(x \xi+y \eta+z \zeta)] d \xi d \eta d \zeta \tag{12}
\end{align*}
$$

[^14]The solutions of interest are those for which the $A_{k_{j}}$ are explicit functions of ω_{k} only. We consider first the solution associated with ω_{1} and find it convenient to write A_{11} as

$$
A_{11}\left(\omega_{1}\right)=(a-\alpha) \iiint_{-\infty}^{\infty} \frac{B_{11}\left(r_{1}\right)}{r_{1}} \exp \left[i r_{1} \cdot \omega_{1}\right] d x d y d z
$$

Here, ω_{1} is defined as $\omega_{1}=\mathbf{i} a^{1 / 2} \xi+\mathrm{j} b^{1 / 2} \eta+\mathrm{k} b^{1 / 2} \zeta$, and $\mathrm{r}_{1}=\mathrm{i} a^{-1 / 2} x+\mathrm{j} b^{-1 / 2} y+\mathrm{k} b^{-1 / 2} ; B_{11}$ is an arbitrary function of $r_{1}=\left|\mathrm{r}_{1}\right|$.

If η is the angle between r_{1} and ω_{1}, and ν is the polar angle about ω_{1}, the value of A_{11} becomes

$$
\begin{align*}
A_{11} & =(a-\alpha) a^{1 / 2} b \iiint_{-\infty}^{\infty} B_{11}\left(r_{1}\right) \exp \left[i r_{1} \omega_{1} \cos \mu\right] r_{1} \sin \mu d \mu d \nu d r_{1} \\
& =4 \pi(a-\alpha) a^{1 / 2} b \omega_{1}^{-1} \int_{0}^{\infty} B_{11}\left(r_{1}\right) \sin r_{1} \omega_{1} d r_{1} \\
& =4 \pi(a-\alpha) a^{1 / 2} b \omega_{1}^{-1} C_{11}\left(\omega_{1}\right) \tag{13}
\end{align*}
$$

Using the same notation ${ }^{7}$ and procedure, we find that ϕ_{11} becomes ${ }^{8}$

$$
\begin{align*}
\phi_{11} & =\left(8 \pi^{3} b a^{1 / 2}\right)^{-1} \iiint_{-\infty}^{\infty} A_{11}\left(\omega_{1}\right) \cos \omega_{1} t \exp \left[i r_{11} \omega_{1} \cos \mu\right] \sin \mu d \mu d \nu d \omega_{1} \\
& =\left[(a-\alpha) / \pi r_{1}\right] \int_{0}^{\infty} C_{11}\left(\omega_{1}\right)\left\{\sin \omega_{1}\left(r_{1}-t\right)+\sin \omega_{1}\left(r_{1}+t\right)\right\} d \omega_{1} \\
& =\left(2 \pi^{2} r_{1}\right)^{-1}\left[B_{11}\left(r_{1}-t\right)+B_{11}\left(r_{1}+t\right)\right] . \tag{14}
\end{align*}
$$

Thus we find that one of the possible propagation phenomena is described by a motion wherein the wave fronts are the ellipsoids $r_{1}=$ const., and whose amplitude attenuates like $1 / r_{1}$. Equation (9a) indicates that the other displacement potentials associated with ω_{1} differ from ϕ_{11} by a constant factor. In fact we could now write the displacements for this motion as the gradient of a single potential in a distorted coordinate system. This fact will be useful later.

The determination of the motion associated with ω_{2} requires only a slight variation on the foregcing procedurc. As required by Eq. (9b), we define $A_{22}=-\zeta^{2} C\left(\omega_{2}\right) / \omega_{2}$, $A_{23}=\eta^{2} C\left(\omega_{2}\right) / \omega_{i}$, where $C\left(\omega_{2}\right)$ is derived as before from an arbitrary function $B\left(r_{2}\right)$ and ω_{2} and r_{2} are defined in the same manner as were ω_{1} and r_{1}. The expression for ϕ_{22} becomes

$$
\begin{align*}
\phi_{22} & =\frac{1}{8 \pi^{3}} \iiint_{-\infty}^{\infty} \frac{-\zeta^{2} C\left(\omega_{2}\right)}{\omega_{2}} \cos \omega_{2} t \exp [i(x \xi+y \eta+z \zeta)] d \xi d \eta d \zeta \\
& =\frac{1}{8 \pi^{2}} \frac{\partial^{2}}{\partial z^{2}} \iiint_{-\infty}^{\infty} \frac{C\left(\omega_{2}\right)}{\omega_{2}} \cos \omega_{2} t \exp [i(x \xi+y \eta+z \zeta)] d \xi d \eta d \zeta \\
& =\frac{1}{2 \pi^{2}} \frac{\partial^{2}}{\partial z^{2}}\left[\frac{B\left(r_{2}-t\right)}{r_{2}}+\frac{B\left(r_{2}+t\right)}{r_{2}}\right] . \tag{15}
\end{align*}
$$

Similarly,

[^15]\[

$$
\begin{equation*}
\phi_{32}=-\frac{1}{2 \pi^{2}} \frac{\partial^{2}}{\partial y^{2}}\left[\frac{B\left(r_{2}-t\right)}{r_{2}}+\frac{B\left(r_{2}+t\right)}{r_{2}}\right] \tag{16}
\end{equation*}
$$

\]

The displacement v_{2} associated with this solution can now be written in the form

$$
\begin{equation*}
\mathbf{v}_{2}=\frac{1}{2 \pi^{2}} \operatorname{curl}\left\{i \frac{\partial^{2}}{\partial y \partial z}\left[\frac{B\left(r_{2}-t\right)}{r_{2}}\right]\right\} . \tag{17}
\end{equation*}
$$

The fact that the equations governing our problem are linear implies that the $\partial^{2} / \partial y \partial z$ of the foregoing expression is superfluous, ${ }^{\circ}$ that is, we may write

$$
\begin{equation*}
\mathrm{v}_{2}=\frac{1}{2 \pi^{2}} \operatorname{curl}\left\{\mathrm{i} \frac{F\left(r_{2}-\theta\right)}{r_{2}}\right\} \tag{18}
\end{equation*}
$$

The displacements corresponding to ω_{3} arise in an entirely analogous manner and are given by

$$
\mathbf{v}_{3}=\left|\begin{array}{ccc}
\mathrm{i}(b-\alpha), & \mathrm{j} \beta, & \mathbf{k} \beta \tag{19}\\
\frac{\partial}{\partial x}, & \frac{\partial}{\partial y}, & \frac{\partial}{\partial z}, \\
0, & \frac{P\left(r_{3}-t\right)}{r_{3}}, & \frac{Q\left(r_{3}-t\right)}{r_{3}}
\end{array}\right|
$$

where it is required that $\partial\left(P / r_{3}\right) / \partial y+\partial\left(Q / r_{3}\right) / \partial z \equiv 0$. The first of the three foregoing solutions corresponds mathematically to the potential solutions found for the isotropic solid and the latter two to the rotational motions; together they suggest a way of factoring the equations for the displacements. We write the body forces in the following manner, choosing the coefficients of the various derivatives in the operators to correspond to those found in the foregoing results; namely

$$
\begin{equation*}
(X, Y, Z)=\operatorname{grad}^{*} \Phi(x, y, z, t)+\operatorname{curl}^{*} \mathbf{M}(x, y, z, t) \tag{20}
\end{equation*}
$$

where

$$
\operatorname{grad}^{*}=\mathrm{i}(a-\alpha) \partial / \partial x+\mathrm{j} \beta \partial / \partial y+\mathrm{k} \beta \partial / \partial z
$$

and

$$
\operatorname{curl}^{*} \mathbf{M}=\left|\begin{array}{ccc}
\mathrm{i}(b-\alpha), & \mathrm{j} \beta, & \mathrm{k} \beta \tag{21}\\
\frac{\partial}{\partial x}, & \frac{\partial}{\partial y}, & \frac{\partial}{\partial z} \\
M_{x}, & M_{y}, & M_{z}
\end{array}\right|
$$

We must require that $\partial M_{y} / \partial y+\partial M_{z} / \partial z=0$. We now assume the displacement in the form

$$
\begin{equation*}
\mathrm{v}=\operatorname{grad}^{*} \phi+\operatorname{curl}^{*} \mathrm{G} \tag{22}
\end{equation*}
$$

substitute into equations (1), (2), and (3), and obtain a set of equations which are separable into the following:

[^16]\[

$$
\begin{align*}
a \frac{\partial^{2} \phi}{\partial x^{2}}+b\left(\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}\right)-\frac{\partial^{2} \phi}{\partial t^{2}} & =-\Phi \tag{23a}\\
\alpha \frac{\partial^{2} G_{x}}{\partial x^{2}}+\gamma\left(\frac{\partial^{2} G_{x}}{\partial y^{2}}+\frac{\partial^{2} G_{x}}{\partial z^{2}}\right)-\frac{\partial^{2} G_{x}}{\partial t^{2}} & =-M_{x} \tag{23b}\\
{\left[\alpha\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)-\frac{\partial^{2}}{\partial t^{2}}\right]\left(G_{y}, G_{z}\right) } & =-\left(M_{y}, M_{z}\right) . \tag{23c}
\end{align*}
$$
\]

The relation $\partial G_{y} / \partial y+\partial G_{z} / \partial z=0$ will be automatically satisfied.
Although the above equations may be transformed into the familiar Poisson form by trivial transformations, it is interesting to extend the foregoing procedures to obtain a formal method for the solution of, say, Eq. (23a). The steps leading to Eq. (5) transform Eq. (23a) into

$$
\begin{equation*}
\left[\frac{\partial^{2}}{\partial t^{2}}+a \xi^{2}+b\left(\eta^{2}+\zeta^{2}\right)\right] \psi=T(\xi, \eta, \zeta, t) \tag{24}
\end{equation*}
$$

where ψ is defined as before and

$$
\begin{equation*}
T=\iiint_{-\infty}^{\infty} \Phi(p, q, s, t) \exp [-i(p \xi+q \eta+s \zeta)] d p d q d s \tag{24a}
\end{equation*}
$$

Conventional operational procedures then give a particular integral of Eq. (24) as

$$
\begin{equation*}
\psi=\frac{1}{\omega_{1}} \int_{0}^{t} T(\xi, \eta, \zeta, \alpha) \sin \omega_{1}(l-\alpha) d \alpha \tag{25}
\end{equation*}
$$

and ϕ becomes (according to Eq. (12)),

$$
\begin{align*}
& \phi= \frac{1}{8 \pi^{3}} \iiint_{-\infty}^{\infty}\left[\int_{0}^{t} \Phi(p, q, s, \alpha) \iiint_{-\infty}^{\infty} \frac{\sin \omega_{1}(t-\alpha)}{\omega_{1}}\right. \\
& \cdot\cdot \exp [i\{(x-p) \xi+(y-q) \eta+(z-s) \zeta\}] d \xi d \eta d \zeta d \alpha] d p d q d s \tag{26}\\
&=\frac{1}{8 \pi^{3}} \iiint_{-\infty}^{\infty}\left[\int_{0}^{t} \Phi(p, q, s, \alpha) d I(\alpha)\right] d p d q d s
\end{align*}
$$

where ${ }^{10}$

$$
\begin{align*}
I(\alpha) & =\frac{1}{b a^{1 / 2}} \int_{0}^{\infty} \int_{0}^{2 \pi} \int_{0}^{\pi} \cos \omega_{1}(t-\alpha) \exp \left[i \omega_{1} \cdot R_{1}\right] \sin \mu d \mu d v d \omega_{1} \\
& =\frac{4 \pi}{b a^{1 / 2}} \int_{0}^{\infty} \frac{\cos \omega_{1}(t-\alpha)}{R_{1} \omega_{1}} \sin \omega_{1} R_{1} d \omega_{1} \\
& =\frac{2 \pi}{b a^{1 / 2} R_{1}} \int_{0}^{\infty} \frac{\sin \omega_{1}\left(R_{1}+t-\alpha\right)+\sin \omega_{1}\left(R_{1}-t+\alpha\right)}{\omega_{1}} d \omega_{1} \tag{27}
\end{align*}
$$

The foregoing integral is a step function which (since $0 \leqq \alpha \leqq t$, and $R_{1}>0$) has a single

[^17]step of magnitude π at $\alpha=t-R_{1} . R_{1}$ is defined by $R_{1}^{2}=(x-p)^{2} / a+(y-q)^{2} / b$ $+(z-s)^{2} / b$. The evaluation of the Stieltjes integral of Eq. (26) now yields
\[

$$
\begin{equation*}
\phi=\frac{1}{4 \pi} \iiint_{-\infty}^{\infty} \frac{\Phi\left(a^{1 / 2} p, b^{1 / 2} q, b^{1 / 2} s, t-R_{1}\right)}{R_{1}} d p d q d s \tag{28}
\end{equation*}
$$

\]

and we have the familiar retarded potential. The expressions for the components of G can be obtained in analogous fashion.
3. More general media. It is quite evident that one might start with the general linear law relating the stresses and strains in an aerolotropic material and by the same procedures arrive at three equations analogous to Eqs. (4), using either the displacements themselves or the potentials defined in the foregoing. One would then arrive at a determinantal equation of the same form as Eq. (8). The roots could be found and Eq. (12) would be valid. However, the ω_{k}^{2} of this general problem would not appear in the concise polynomial form found in the foregoing considerations. In fact, the integrand of Eq. (12) becomes sufficiently complex in this general case that it does not seem worth while to present in more detail the procedure outlined here.

REFLECTION IN A CORNER FORMED BY THREE PLANE MIRRORS*

BY
J. L. SYNGE
The Ohio Slate University \dagger

1. Introduction. If a plane mirror is attached to the base of a projectile and a parallel beam of light projected on it, the direction of the reflected beam at any instant will give us information about the angular position of the projectile at that instant. It will not, however, indicate the angular position completely, because a rotation of the projectile about the normal to the mirror leaves the direction of the reflected ray unaltered.

This difficulty may be overcome by using more than one mirror, and the possibility of using a reflecting corner formed by three plane mirrors suggests itself. If the three mirrors are mutually perpendicular, the direction of the reflected beam gives no indication of the angular position of the projectile, because such a corner reverses the direction of any parallel beam falling on it. But if the angles of the corner are not right angles, this is no longer the case; in general, there will be six reflected beams, and their directions will determine the angular position of the projectile completely. With three parameters at our disposal (the three angles of the corner), we can secure a variety of different effects. The purpose of the present paper is to make a systematic study of the optical behavior of all corners formed by three plane mirrors.

The method used is based on the fact that the transformation of ray-directions due to reflection in a plane mirror is equivalent to a rigid-body rotation about the mirror-normal through two right angles (i.e. a half-turn), combined with a reversal of sense. Consequently, three successive reflections in three plane mirrors produce a transformation equivalent to three half-turns, combined with a reversal of sense. But, by Euler's theorem, three successive half-turns are equivalent to a single rotation (not, in general, itself a half-turn). Thus the transformation due to reflection in a corner formed by three plane mirrors may be described by giving the axis of the single equivalent rotation (called the opic axis in the present connection), and the angle of the rotation.

It is found that, when different orders of reflection in the three mirrors are taken into consideration, there are in general three optic axes and a unique angle of rotation. The rotation occurs in both positive and negative senses, so that in general there are six reflected rays resulting from a given incident direction. This is, of course, to be expected, since we can form six permutations of three mirrors.

It is useful to represent directions by points on the surface of a unit sphere. There are then two fundamental spherical triangles. One has for vertices the normals to the three mirrors, and the other has for vertices three directed optic axes. Actually there are two spherical triangles formed by (undirected) optic axes, but one is the reflection of the other in the center of the sphere, and so we pick out one for definiteness. The

[^18]vertices of the triangle formed by the mirror-normals lie at the middle points of the sides of the triangle formed by the directed optic axes, and the angle of the single equivalent rotation is the defect from four right angles of the sum of the angles of the triangle formed by the directed optic axes.

Explicit formulae are given for the construction of the optic axes (3.10) and the angle of the single equivalent rotation (4.15).

The fact that a ray, to be reflected, must strike the front of a mirror, and not the back, introduces awkward conditions. These conditions are removed in the mathematical theory by supposing that the mirrors are planes which reflect from either side. Further, in investigating the effect of a second reflection, we may find that after reflection in the first mirror the course of the ray does not bring it into incidence with the second mirror. In such cases we shall disregard the position of the ray, and apply to its direction the transformation corresponding to reflection in the second mirror. These artificialities (from the practical standpoint) are introduced to avoid encumbering the mathematical theory with conditions which have no bearing on the fundamental transformation problem. Once the general theory has been set up, the conditions mentioned above may be looked into in any particular case. To facilitate this, we shall continue to call one side of each mirror the front.
2. Equivalence of reflections and rigid body rotations. Let \mathbf{N} be a unit vector normal to a plane mirror, drawn out from the front (Fig. 1). Let I be a unit vector along an incident ray, and I^{\prime} a unit vector along the reflected ray. From a point O let us drawn the unit vectors $\mathrm{N}, \mathrm{I}, \mathrm{I}^{\prime},-\mathrm{I},-\mathrm{I}^{\prime}$ (Fig. 2).

Fig. 1

Fig. 2

It is clear from the law of reflection that I^{\prime} is obtained from - I by a half-turn about N; equivalently, $-I^{\prime}$ is obtained from I by a half-turn about N.

The transformations may also be shown on the surface of the unit sphere with center O; the unit vectors are now represented by points on the surface of the unit sphere (Fig. 3). The law of reflection may be stated as follows. Join - I to N by a great circle, and produce it on to make the $\operatorname{arc}\left(N, I^{\prime}\right)$ cqual to the $\operatorname{arc}(-I, N)$. Equivalently, join I to N by a great circle, and produce it on to make the arc ($N,-I^{\prime}$) equal to the $\operatorname{arc}(\mathrm{I}, \mathrm{N})$.

In order that the incident ray may strike the front of the mirror, the arc ($-I, N$) must be less than $\frac{1}{2} \pi$; but in view of the remarks made in Section 1 , this restriction will not be imposed.

Consider now a corner formed by three plane mirrors with unit normals $\mathbf{N}_{1}, \mathbf{N}_{2}$,
N_{3}, drawn out from the fronts. These are represented on the unit sphere in Fig. 4. Consider successive reflections of an incident ray I in the order $\mathrm{N}_{1}, \mathbf{N}_{2}, \mathrm{~N}_{3}$. We start by marking -I on the unit sphere. We construct the first reflected ray I' by drawing

Fig. 3
a great circular are from - I through N_{1}, making N_{1} the point of bisection. If the second reflected ray is denoted by $I^{\prime \prime}$, we construct $-I^{\prime \prime}$ by drawing a great circular arc from ${ }^{\top} I^{\prime}$ through N_{2}, making N_{2} the point of
 bisection. We carry on from - $\mathrm{I}^{\prime \prime}$ similarly through N_{3} to form the final ray $\mathrm{I}^{\prime \prime \prime}$.

We might also have started with I, instead of -I . The same rules of construction would have led us to $-\mathrm{I}^{\prime \prime \prime}$.

If the reflections occur in a different order, we change the order of the points $\mathbf{N}_{1}, \mathbf{N}_{2}, \mathbf{N}_{3}$ in the construction. In this way we get, in general, six different final directions $I^{\prime \prime \prime}$ corresponding to a single incident direction I.

The transformations described above are equivalent to half-turns about diameters of a sphere, namely the diameters defined by $\mathbf{N}_{1}, \mathbf{N}_{2}, \mathbf{N}_{3}$, We know by Euler's theorem that any succession of rotations about diameters of a sphere is equivalent either to no displacement at all or to a rotation through an angle less than 2π about a uniquely determined diameter. The former alternative means that $\mathrm{I}^{\prime \prime \prime}$ coincides with -I , no matter how I is chosen. On the other hand, if there is a unique axis of equivalent rotation, then rays incident along the axis of that rotation (and such rays alone) will undergo reversal as a result of the triple reflection. Every other ray will undergo a change of direction determined by application of the equivalent rotation.

We shall call the axis of the equivalent rotation the undirected optic axis of the reflecting corner for the order of reflections assigned. This definition of optic axis would be adequate if we were content to have the term denote a diameter, without sense of direction. It is, however, desirable to understand by optic axis one of the two unit vectors lying on the axis of the equivalent rotation. Accordingly, we shall pro-
ceed in the next section to define the directed oplic axis. For the present, let us sum up our results as follows:

Theorem I. For three successive reflections in a given order in three plane mirrors, either every incident ray is reversed in direction, or there exists a unique undirected optic axis such that
(a) a ray incident along the undirected optic axis is reversed in direction;
(b) the directions of reflected rays are obtained from the directions of incidents rays reversed by a rigid body rotation through an angle less than 2π about the undirected oplic axis.
3. Determination of the directed optic axes. Consider the following problem in spherical geometry: Given three points \mathbf{N}_{1}, $\mathrm{N}_{2}, \mathrm{~N}_{3}$ on a unit sphere, to construct a spherical triangle $\mathbf{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$, such that $\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathbf{N}_{3}$ are the middle points of its sides (Fig. 5).

Fig. 5

In vector notation, we have

$$
\begin{equation*}
\mathbf{N}_{1} \cdot A_{2}=N_{1} \cdot A_{3}, \quad N_{2} \cdot A_{3}=N_{2} \cdot A_{1}, \quad \mathbf{N}_{3} \cdot A_{1}=N_{3} \cdot A_{2} \tag{3.1}
\end{equation*}
$$

and also

$$
\begin{equation*}
L_{1} \mathbf{N}_{1}=\mathbf{A}_{2}+\mathbf{A}_{3}, \quad L_{2} \mathbf{N}_{2}=\mathbf{A}_{3}+\mathbf{A}_{1}, \quad L_{3} \mathbf{N}_{3}=\mathbf{A}_{1}+\mathbf{A}_{2} \tag{3.2}
\end{equation*}
$$

where the L 's are unknown scalars. Our problem is to find the A's to satisfy (3.1) and (3.2).

Solving (3.2) for the A's, we get

$$
\begin{align*}
& 2 \mathrm{~A}_{1}=-L_{1} \mathrm{~N}_{1}+L_{2} \mathrm{~N}_{2}+L_{3} \mathrm{~N}_{3} \\
& 2 \mathrm{~A}_{2}=\quad L_{1} \mathrm{~N}_{1}-L_{2} \mathrm{~N}_{2}+L_{3} \mathrm{~N}_{3} \tag{3.3}\\
& 2 \mathrm{~A}_{3}=\quad L_{1} \mathrm{~N}_{1}+L_{2} \mathrm{~N}_{2}-L_{3} \mathrm{~N}_{3}
\end{align*}
$$

Let us define M_{1}, M_{2}, M_{3} by

$$
\begin{equation*}
M_{1}=\mathbf{N}_{2} \cdot \mathbf{N}_{3}, \quad M_{2}=\mathbf{N}_{3} \cdot \mathbf{N}_{1}, \quad M_{3}=\mathbf{N}_{1} \cdot \mathbf{N}_{2} \tag{3.4}
\end{equation*}
$$

these being of course the cosines of the angles between the N vectors. Taking the scalar products of the first two of (3.3) and N_{3}, we get

$$
\begin{align*}
& 2 \mathrm{~A}_{1} \cdot \mathrm{~N}_{3}=-L_{1} M_{2}+L_{2} M_{1}+L_{3}, \tag{3.5}\\
& 2 \mathrm{~A}_{2} \cdot \mathrm{~N}_{3}=\quad L_{1} M_{2}-L_{2} M_{1}+L_{3} .
\end{align*}
$$

Hence, by the last of (3.1),

$$
\begin{equation*}
L_{1} M_{2}-L_{2} M_{1}=0 \tag{3.6}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
L_{2} M_{3}-L_{3} M_{2}=0, \quad L_{3} M_{1}-L_{1} M_{3}=0 \tag{3.7}
\end{equation*}
$$

If all the M 's vanish (i.e. if the N vectors are mutually perpendicular), we may choose the L 's arbitrarily, save for the condition that the sum of their squares shall equal 4 . For it is easy to verify that the A's as given by (3.3) will then be unit vectors, and the conditions (3.1) and (3.2) will be satisfied. This means that we can take any point A_{1} on the unit sphere and construct the triangle by passing successively through the N points, making each a point of bisection. The triangle necessarily closes.

Now suppose that there is at least one M different from zero. From (3.6) and (3.7) it follows that a number k exists such that

$$
\begin{equation*}
L_{1}=2 k M_{1}, \quad L_{2}=2 k M_{2}, \quad L_{3}=2 k M_{3} \tag{3.8}
\end{equation*}
$$

We proceed to determine k. Since the \mathbf{N} 's and the \mathbf{A} 's are unit vectors, if follows from (3.3) and (3.8) that

$$
\begin{equation*}
k^{2}\left(M_{1}^{2}+M_{2}^{2}+M_{3}^{2}-2 M_{1} M_{2} M_{3}\right)=1 . \tag{3.9}
\end{equation*}
$$

The quantity in the parentheses is positive definite, since no M can exceed unity in absolute value. We have then a choice between two real values of k, one negative and the other positive. If either of them be chosen, and the L 's obtained from (3.8), and then the A's from (3.3), the conditions (3.1) and (3.2) are satisfied, and so the problem is solved. The problem then admits of two (and only two) solutions; the two triangles are the diametrical opposites of one another.

To avoid confusion, let us pick out one of these two solutions for application to the optical problem. Let us decide to take the positive value for k. To sum up, the triangle required is given by

$$
\begin{align*}
& \mathbf{A}_{1}=k\left(-M_{1} \mathbf{N}_{1}+M_{2} \mathbf{N}_{2}+M_{3} \mathbf{N}_{3}\right), \\
& \mathbf{A}_{2}=k\left(\quad M_{1} \mathbf{N}_{1}-M_{2} \mathbf{N}_{2}+M_{3} \mathbf{N}_{3}\right), \tag{3.10}\\
& \mathbf{A}_{3}=k\left(\quad M_{1} \mathbf{N}_{1}+M_{2} \mathbf{N}_{2}-M_{3} \mathbf{N}_{3}\right),
\end{align*}
$$

where the M 's are given by (3.4) and

$$
\begin{equation*}
k=\left(M_{1}^{2}+M_{2}^{2}+M_{3}^{2}-2 M_{1} M_{2} M_{3}\right)^{-1 / 2}, \tag{3.11}
\end{equation*}
$$

the positive value being understood.
We have also

$$
\begin{align*}
& \mathbf{N}_{1} \cdot \mathbf{A}_{2}=\mathbf{N}_{1} \cdot \mathbf{A}_{3}=k M_{1}, \\
& \mathbf{N}_{2} \cdot \mathbf{A}_{3}=\mathbf{N}_{2} \cdot \mathbf{A}_{1}=k M_{2}, \tag{3.12}\\
& \mathbf{N}_{3} \cdot \mathbf{A}_{1}=\mathbf{N}_{3} \cdot \mathbf{A}_{2}=k M_{3},
\end{align*}
$$

and

$$
\begin{equation*}
2 k M_{1} \mathbf{N}_{1}=\mathbf{A}_{2}+\mathbf{A}_{3}, \quad 2 k M_{2} \mathbf{N}_{2}=\mathbf{A}_{3}+\mathbf{A}_{1}, \quad 2 k M_{3} \mathbf{N}_{3}=\mathbf{A}_{1}+\mathbf{A}_{2} . \tag{3.13}
\end{equation*}
$$

We have now to show the connection of this problem in spherical geometry with our optical problem. We shall begin by proving that the diameter through A_{2} is the undirected optic axis for reflections in the order $\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{3}$.

We take an incident ray with $I= \pm A_{2}$. The first reflected ray is then given by $I^{\prime}=\mp A_{3}$. The second reflected ray is given by $I^{\prime \prime}= \pm A_{1}$. The third or final reflected ray is given by $I^{\prime \prime \prime}=\mp A_{2}$. Thus $I^{\prime \prime \prime}=-I$, which proves that the diameter through A_{2} is the undirected optic axis for reflections in the order $\mathbf{N}_{1}, \mathbf{N}_{2}, \mathrm{~N}_{3}$. In just the same
way we may show that the diameter through A_{2} is the undirected optic axis for reflections in the order $\mathrm{N}_{3}, \mathrm{~N}_{2}, \mathbf{N}_{1}$, also.

Further, if we start from A_{3} or A_{1}, we can prove in the same way that the diameter through A_{3} is the undirected optic axis for reflections in either of the orders $\mathrm{N}_{2}, \mathrm{~N}_{3}, \mathrm{~N}_{1}$ or $\mathbf{N}_{1}, \mathbf{N}_{3}, N_{2}$, while the diameter through A_{1} is the undirected optic axis for reflections in either of the orders $\mathbf{N}_{3}, \mathbf{N}_{1}, \mathrm{~N}_{2}$, or $\mathbf{N}_{2}, \mathbf{N}_{1}, \mathrm{~N}_{3}$.

We are now in a position to define the directed optic axes by selecting senses on the undirected optic axes. We shall do this by imposing the condition that the directed optic axes are given by (3.10) with k positive.

Let us sum up as follows:
Theorem II. For any reflecting corner composed of three mirrors which are not all mutually perpendicular, the directed optic axes are the three unit vectors $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$, given by (3.10) with positive k. The mirror-normals $\mathrm{N}_{1}, \mathbf{N}_{2}, \mathrm{~N}_{3}$ meet the unit sphere at the middle points of the sides of the spherical triangle formed by $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~N}_{1}$ being on the side $\mathrm{A}_{2} \mathrm{~A}_{3}$, and so on. The directed optic optic axes correspond to the following orders of reflection:

Directed optic axis	Order of reflection
A_{1}	$N_{3} N_{1} N_{2}$ or $N_{2} N_{1} N_{3}$
A_{2}	$N_{1} N_{2} N_{3}$ or $N_{3} N_{2} N_{1}$
A_{3}	$N_{2} N_{3} N_{1}$ or $N_{1} N_{3} N_{2}$

We see from (3.10) that the directed optic axes are easily constructed in space by adding and subtracting the vectors $k M_{1} \mathrm{~N}_{1}, k M_{2} \mathrm{~N}_{2}, k M_{3} \mathrm{~N}_{3}$. This construction is shown

Fig. 6
in Fig. 6. It is interesting to note that six of the eight vertices of the parallelepiped are occupied by the vectors $\pm A_{1}, \pm A_{2}, \pm A_{3}$.
4. The angle of the equivalent rigid-body rotation. Fig. 7 shows the representations on the unit sphere of the three mirror-normals $\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{3}$ and the three directed optic axes A_{1}, A_{2}, A_{3}. We know that three successive half-turns about N_{1}, N_{2}, N_{3} in order are equivalent to a rotation about A_{2}. We proceed to find the magnitude of this rotation.

Fig. 7
We first construct the point B by joining N_{2} to N_{1}, and producing the great circle so as to make the $\operatorname{arc}\left(\mathbf{N}_{1}, \mathbf{B}\right)$ equal to the $\operatorname{arc}\left(\mathbf{N}_{2}, \mathbf{N}_{1}\right)$. We then investigate the displacement of B resulting from the three successive half-turns. It is clear that the final position C is obtained by joining N_{2} to N_{3}, and producing the great circle so as to make the arc $\left(N_{3}, C\right)$ equal to the $\operatorname{arc}\left(N_{2}, N_{3}\right)$. The effect of the three successive half-turns is to rotate the $\operatorname{arc}\left(A_{2}, B\right)$ into the $\operatorname{arc}\left(A_{2}, C\right)$. Since certain spherical triangles are obviously congruent, it is at once seen that the angle of rotation (taken less than π) is equal to the defect from four right angles of the sum of the angles of the spherical triangle $\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3}$. If the half-turns were carried out in the reverse order, then C would go to B; the angle of rotation would be the same in magnitude, but would have the opposite sense.

If the other senses of application of the three half-turns are considered, we get the same magnitude for the angle of the single equivalent rotation in all cases.

We shall now obtain a formula for the angle of the single equivalent rotation in terms of the angles between the normals of the three mirrors.

If an incident ray I is reflected in a mirror with normal N , the reflected ray I^{\prime} is given by

$$
\begin{equation*}
I^{\prime}=I-2 N(N \cdot I) \tag{4.1}
\end{equation*}
$$

Let us start with an incident ray I such that $-\mathrm{I}=\mathrm{B}$, where B is as in Fig. 7, and let us follow this ray through successive reflections in the mirrors with normals $\mathbf{N}_{1}, \mathbf{N}_{2}, \mathbf{N}_{3}$. The first reflected ray is $\mathrm{I}^{\prime}=\mathrm{N}_{2}$, and so by (4.1)

$$
\begin{equation*}
\mathrm{I}=\mathrm{I}^{\prime}-2 \mathrm{~N}_{1}\left(\mathrm{~N}_{1} \cdot \mathrm{I}^{\prime}\right)=\mathrm{N}_{2}-2 M_{3} \mathrm{~N}_{1} . \tag{4.2}
\end{equation*}
$$

The second reflected ray is $\mathrm{I}^{\prime \prime}=-\mathrm{N}_{2}$. The third and final reflected ray is

$$
\begin{equation*}
I^{\prime \prime \prime}=I^{\prime \prime}-2 \mathbf{N}_{3}\left(\mathbf{N}_{3} \cdot \mathbf{I}^{\prime \prime}\right)=-\mathbf{N}_{2}+2 \mathbf{N}_{3}\left(\mathbf{N}_{3} \cdot \mathbf{N}_{2}\right)=-\mathbf{N}_{2}+2 M_{1} \mathbf{N}_{3} \tag{4.3}
\end{equation*}
$$

the M 's being as in (3.4).
We note that (3.10) give

$$
\begin{equation*}
-\mathrm{I} \cdot \mathbf{A}_{2}=\mathrm{I}^{\prime \prime \prime} \cdot \mathbf{A}_{2}=k M_{2} \tag{4.4}
\end{equation*}
$$

As already seen, the angle of rotation θ_{123} is the angle between the arcs ($\left.A_{2}, B\right)$ and (A_{2}, C), as shown in Fig. 7. This is the same as the angle between the vectors $\left(A_{2} \times B\right)$ and $\left(A_{2} \times C\right)$. If the rotation is considered positive when it is a right-handed rotation about A_{2}, through an angle less than π, then the angle satisfies the equation

$$
\begin{equation*}
\sin \theta_{123} \cdot A_{2}=\frac{\left(A_{2} \times B\right) \times\left(A_{2} \times C\right)}{\left|A_{2} \times B\right|\left|A_{2} \times C\right|}, \tag{4.5}
\end{equation*}
$$

where $B=-I$ and $C=I^{\prime \prime \prime}$. (The angle θ_{123} shown in Fig. 7 is negative in the defined sense.)

To evaluate the right-hand side of (4.5), we note that by (4.4) we have

$$
\begin{equation*}
\left|\mathrm{A}_{2} \times \mathrm{B}\right|\left|\mathrm{A}_{2} \times \mathrm{C}\right|=1-k^{2} M_{2}^{2} \tag{4.6}
\end{equation*}
$$

Also, identically,

$$
\begin{equation*}
\left(A_{2} \times B\right) \times\left(A_{2} \times C\right)=A_{2}\left[A_{2} \cdot(B \times C)\right] \tag{4.7}
\end{equation*}
$$

By (4.2) and (4.3),

$$
\begin{align*}
\mathbf{B} \times \mathrm{C} & =-\mathrm{I} \times \mathbf{I}^{\prime \prime \prime}=\left(-\mathbf{N}_{2}+2 M_{3} \mathbf{N}_{1}\right) \times\left(-\mathrm{N}_{2}+2 M_{1} \mathbf{N}_{3}\right) \\
& =-2 M_{1}\left(\mathbf{N}_{2} \times \mathbf{N}_{3}\right)-2 M_{3}\left(\mathbf{N}_{1} \times \mathbf{N}_{2}\right)-4 M_{1} M_{3}\left(\mathbf{N}_{3} \times \mathbf{N}_{1}\right) \tag{4.8}
\end{align*}
$$

and so, by (3.10),

$$
\begin{align*}
\mathbf{A}_{2} \cdot(\mathbf{B} \times \mathbf{C}) & =k\left(M_{1} \mathbf{N}_{1}-M_{2} \mathbf{N}_{2}+M_{3} \mathbf{N}_{3}\right) \cdot(\mathbf{B} \times \mathbf{C}) \\
& =k P\left(-2 M_{1}^{2}+4 M_{1} M_{2} M_{3}-2 M_{3}^{2}\right), \tag{4.9}
\end{align*}
$$

where P is defined by

$$
\begin{equation*}
P=\mathbf{N}_{1} \cdot\left(\mathbf{N}_{2} \times \mathbf{N}_{3}\right) . \tag{4.10}
\end{equation*}
$$

When the value (3.11) for k is used, (4.9) may be written

$$
\begin{equation*}
\mathbf{A}_{2} \cdot(\mathbf{B} \times \mathbf{C})=-2 P k^{-1}\left(1-k^{2} M_{2}^{2}\right) \tag{4.11}
\end{equation*}
$$

On substitution of this expression in (4.7), and then substitution from (4.6) and (4.7) in (4.5), we get

$$
\begin{equation*}
\sin \theta_{123}=-2 P k^{-1} \tag{4.12}
\end{equation*}
$$

We note that P is the determinant formed from the direction cosines of the three normals to the mirrors, and

Hence

$$
P^{2}=\left|\begin{array}{lll}
1 & M_{3} & M_{2} \tag{4.13}\\
M_{3} & 1 & M_{1} \\
M_{2} & M_{1} & 1
\end{array}\right|=1-k^{-2}
$$

where ϵ is +1 or -1 according as the orientation of the triad $\mathbf{N}_{1}, \mathbf{N}_{2}, \mathrm{~N}_{3}$ is positive or negative.

We may sum up as follows:
Theorem III. The magnitude (taken less than π) of the angle of the single equivalent rotation is the defect from four right angles of the angle-sum of the spherical triangle on the unit sphere whose vertices represent the directed optic axes. If a positive angle corresponds to a positive (right-handed) rotation about the directed optic axis involved, the angle is given both in magnitude and sign by

$$
\begin{equation*}
\sin \theta=-2 \epsilon k^{-1}\left(1-k^{-2}\right)^{1 / 2}, \tag{4.15}
\end{equation*}
$$

where k is given in terms of the cosines of the angles between the mirror-normals by (3.11), and ϵ is +1 or -1 according as the triad of mirror-normals, in the order of the reflections, is positive or negative (i.e. right-handed or left-handed).

Let us now see how the six reflected rays are to be constructed when the incident ray I is given and the three directed optic axes are known. We mark on the unit sphere (Fig. 8) the directed optic axes A_{1}, A_{2}, A_{3}, and the incident ray reversed, $-I$. Let us

Fig. 8

Fig. 9
suppose that the mirror-normals are so numbered that $\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{3}$ form a positive triad. To obtain the reflected ray resulting from reflections in the order $\mathbf{N}_{1}, \mathbf{N}_{2}, \mathbf{N}_{3}$ we use the optic axis A_{2}. We draw the arc ($\left.A_{2},-I\right)$, and rotate it about A_{2} in the negative sense through an angle equal to the defect from four right angles of the angle-sum of the spherical triangle $\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3}$, or equivalently through an angle $\sin ^{-1} 2 k^{-1}\left(1-k^{-2}\right)^{1 / 2}$, as given in (4.15). This gives the reflected ray $\mathrm{I}_{123}^{\prime \prime \prime}$, the subscripts indicating the order of the reflections. To obtain $\mathrm{I}_{32}^{\prime \prime \prime}$, we rotate the arc $\left(\mathrm{A}_{2},-\mathrm{I}\right)$ about A_{2} in the opposite sense through the same angle.

Using the other optic axes, we obtain similarly the whole set of six reflected rays. These are shown in Fig. 9, the great circular arcs being shown as straight lines for simplicity. All the marked angles are equal.
5. Cases of perpendicular mirrors. Let us consider the case where two of the mirrors are perpendicular to one another. Let us take N_{1} perpendicular to N_{2}, and write

$$
\begin{equation*}
M_{1} \neq 0, \quad M_{2} \neq 0, \quad M_{3}=0 \tag{5.1}
\end{equation*}
$$

Then (3.10) give for the directed optic axes

$$
\begin{align*}
& \mathbf{A}_{1}=k\left(-M_{1} \mathbf{N}_{1}+M_{2} \mathbf{N}_{2}\right), \\
& \mathbf{A}_{2}=k\left(\quad M_{1} \mathbf{N}_{1}-M_{2} \mathbf{N}_{2}\right), \tag{5.2}\\
& \mathbf{A}_{3}=k\left(\quad M_{1} \mathbf{N}_{1}+M_{2} \mathbf{N}_{2}\right),
\end{align*}
$$

and from (3.11) we have

Fig. 10

Fig. 11

$$
\begin{equation*}
k=\left(M_{1}^{2}+M_{2}^{2}\right)^{-1 / 2} \tag{5.3}
\end{equation*}
$$

The equations (3.12) and (3.13) become

$$
\begin{equation*}
\mathbf{N}_{1} \cdot \mathbf{A}_{2}=\mathbf{N}_{1} \cdot \mathbf{A}_{3}=k M_{1}, \quad \mathbf{N}_{2} \cdot \mathbf{A}_{3}=\mathbf{N}_{2} \cdot \mathbf{A}_{1}=k M_{2}, \quad \mathbf{N}_{3} \cdot \mathbf{A}_{1}=\mathbf{N}_{3} \cdot \mathbf{A}_{2}=0 \tag{5.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{A}_{2}+\mathbf{A}_{3}=2 k M_{1} \mathbf{N}_{1}, \quad \mathbf{A}_{3}+\mathbf{A}_{\mathbf{1}}=2 k M_{2} \mathbf{N}_{2}, \quad \mathbf{A}_{1}+\mathbf{A}_{2}=0 \tag{5.5}
\end{equation*}
$$

We note that A_{1} and A_{2} are opposed to one another, and $A_{1}, A_{2}, A_{3}, N_{1}, N_{2}$ are coplanar. The arrangement on the unit sphere is shown in Fig. 10. The construction in space for the directed optic axes is shown in Fig. 11.

Let us now consider the case where one of the mirrors is perpendicular to the two others. Let \mathbf{N}_{1} be perpendicular to \mathbf{N}_{2} and N_{3}. We write

$$
\begin{equation*}
M_{1} \neq 0, \quad M_{2}=0, \quad M_{3}=0 \tag{5.6}
\end{equation*}
$$

From (3.10) we get for the directed optic axes

$$
\begin{equation*}
\mathbf{A}_{1}=-k M_{1} \mathbf{N}_{1}, \quad \mathbf{A}_{2}=k M_{1} \mathbf{N}_{1}, \quad \mathbf{A}_{3}=k M_{1} \mathbf{N}_{1} \tag{5.7}
\end{equation*}
$$

where $k=\left|M_{1}\right|^{-1}$; from (3.12) and (3.13)

$$
\begin{equation*}
\mathbf{N}_{1} \cdot \mathbf{A}_{2}=\mathrm{N}_{1} \cdot \mathrm{~A}_{3}=k M_{1}, \quad \mathbf{N}_{2} \cdot \mathbf{A}_{3}=\mathbf{N}_{2} \cdot \mathbf{A}_{1}=\mathbf{N}_{3} \cdot \mathbf{A}_{1}=\mathrm{N}_{3} \cdot \mathrm{~A}_{2}=0 \tag{5.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{A}_{2}+\mathbf{A}_{3}=2 k M_{1} \mathbf{N}_{1}, \quad \mathbf{A}_{3}+\mathbf{A}_{1}=0, \quad \mathbf{A}_{1}+\mathbf{A}_{2}=0 \tag{5.9}
\end{equation*}
$$

Fig. 12
Now A_{2} and A_{3} coincide, and A_{1} is opposed to them. The arrangement on the unit sphere is shown in Fig. 12 for the cases $M_{1}>0$ and $M_{1}<0$.

ON GRAEFFE'S METHOD FOR SOLVING ALGEBRAIC EQUATIONS*

BY
E. BODEWIG
The Hague

In the usual descriptions of the methods of solving numerical algebraic equations, Graeffe's method takes a minor place as compared with the methods of Newton, Horner, and others. It is not useful, of course, for correcting a single approximate value, as the other methods are, but has the advantage that no first approximation need be known. A second advantage is that approximations to all roots are obtained simultaneously, in contradistinction to the other methods which furnish approximations to one root at a time. In spite of this, the computations required by Graeffe's method are not much more laborious than those necessary to obtain an approximation to a single root by one of the other methods if allowance is made for the time necessary to find the first approximation. Yet this slight increase in labor may be the reason that Graeffe's method is somewhat neglected. Its third and perhaps its main advantage is that it also affords a means of finding the complex roots. It is true that by certain other methods, such as that of Newton, an approximation to a complex root can be improved, but obtaining the first approximation is rather difficult in the case of complex roots. A last advantage of Graeffe's method is that it automatically separates roots which are close together, such as $\sqrt{5 / 2}$ and $3 / 2$. It is known that Lagrange claimed this same advantage for this method of developing a root into a continued fraction, in contradistinction to Newton's method; Lagrange's method fails, however, in the case of complex roots.

These advantages are well known, though not sufficiently appreciated in practice. But so far as can be seen, it is not known that Graeffe's method also gives the multiple (real or complex) roots, in a manner essentially simpler than is generally pointed out in more elaborate descriptions of the procedure. Further, of all the methods it is the only one for solving an equation having several pairs of complex roots of the same modulus.

To derive these and other properties, for example the convergence of the process, we discuss the whole method in a somewhat simpler form than is generally used.

Preliminary remarks. The method consists in deriving from an equation

$$
\begin{equation*}
x^{n}+a_{1} x^{n-1}+\cdots+a_{n}=0 \tag{1}
\end{equation*}
$$

with the roots $x_{1}, x_{2}, \cdots, x_{n}$ another equation

$$
\begin{equation*}
X^{n}+A_{1} X^{n-1}+\cdots+A_{n}=0 \tag{2}
\end{equation*}
$$

having the roots $X_{1}=x_{1}^{p}$, where p is a large number (and for practical reasons a power of 2), so that the distinct roots of (2) are widely separated and can thus be casily calculated in the following manner.

Splitting of equation (2).
First case. All the roots of (2) are positive and simple.

[^19]Then, from

$$
X_{1} \gg X_{2} \gg \cdots \gg X_{n},
$$

we have

$$
\begin{aligned}
-A_{1} & =\sum X_{i} \approx X_{1} \\
A_{2} & =\sum X_{i} X_{j} \approx X_{1} X_{2} \\
-A_{3} & =\sum X_{i} X_{j} X_{k} \approx X_{1} X_{2} X_{3} \text { etc. }
\end{aligned}
$$

since the first members of the sums predominate. Thus

$$
X_{1} \approx-A_{1} / 1, X_{2} \approx-A_{2} / A_{1}, X_{3} \approx-A_{3} / A_{2}, \cdots
$$

that is, equation (2) is split into the n approximate linear equations

$$
X+A_{1}=0, A_{1} X+A_{2}=0, A_{2} X+A_{3}=0, \cdots, A_{n-1} X+A_{n}=0
$$

Second case. Several of the roots of (2) have the same absolute value.
(ia) There is one pair of complex roots, say

$$
X_{3}=R e^{i A}, \quad X_{4}=R e^{-i A}
$$

so that

$$
\begin{aligned}
A_{2} & =\sum X_{i} X_{j} \approx X_{1} X_{2} \\
-A_{3} & =X_{1} X_{2} X_{3}+X_{1} X_{2} X_{4}+\cdots \approx X_{1} X_{2}\left(X_{3}+X_{4}\right)=X_{1} X_{2} \cdot 2 R \cos \mathrm{~A} \\
A_{4} & \approx X_{1} X_{2} X_{3} X_{4}=X_{1} X_{2} \cdot R^{2}
\end{aligned}
$$

Thus X_{3}, X_{4} are approximately the roots of the quadratic equation

$$
\begin{equation*}
A_{2} X^{2}+A_{3} X+A_{4}=0 \tag{3}
\end{equation*}
$$

so that equation (2) is split into the $n-2$ linear equations

$$
X+A_{1}=0, A_{1} X+A_{2}=0, A_{4} X+A_{5}=0, \cdots, A_{n-1} X+A_{n}=0
$$

and the quadratic (3).
(ib) There are two pairs of complex roots, having the same absolute value R,

$$
X_{3,4}=R e^{ \pm \mathrm{A}}, \quad X_{\mathrm{E}, \mathrm{~B}}=R e^{ \pm t \mathrm{~B}}
$$

Then

$$
\begin{aligned}
A_{2} & \approx X_{1} X_{2} \\
-A_{3} & \approx X_{1} X_{2}\left(X_{3}+X_{4}+X_{5}+X_{6}\right)=X_{1} X_{2} \cdot 2 R(\cos \mathrm{~A}+\cos \mathrm{B}) \\
A_{4} & \approx X_{1} X_{2}\left(X_{3} X_{4}+\cdots+X_{5} X_{6}\right)=X_{1} X_{2} \cdot 2 R^{2}(1+2 \cos \mathrm{~A} \cos \mathrm{~B}) \\
-A_{5} & \approx X_{1} X_{2}\left(X_{3} X_{4} X_{5}+\cdots+X_{4} X_{5} X_{6}\right)=X_{1} X_{2} \cdot 2 R^{3}(\cos \mathrm{~A}+\cos \mathrm{B}) \\
A_{6} & \approx X_{1} X_{2} X_{3} X_{4} X_{5} X_{6}=X_{1} X_{2} \cdot R^{4} .
\end{aligned}
$$

Therefore X_{3}, \cdots, X_{6} satisfy the equation

$$
\begin{equation*}
A_{2} X^{4}+A_{3} X^{3}+A_{4} X^{2}+A_{5} X+A_{6}=0 \tag{4}
\end{equation*}
$$

To solve it, let us first compute R from

$$
\begin{equation*}
R^{4}=A_{6} / A_{2} \tag{5}
\end{equation*}
$$

With this R let

$$
\begin{equation*}
X=R \cdot Y, \quad \text { where } \quad Y=e^{i \phi} . \tag{6}
\end{equation*}
$$

Then all the roots of Eq. (4) in Y have the modulus 1, and if Y is a root, then $1 / Y$ is also a root, that is, Eq. (4) is "reciprocal":

$$
Y^{4}+B Y^{3}+C Y^{2}+B Y+1=0 .
$$

By

$$
\begin{equation*}
Y+Y^{-1}=2 \cos \phi=Z \tag{7}
\end{equation*}
$$

it becomes a quadratic equation in Z.
(ic) There are μ distinct pairs of complex roots having the same modulus R.
Then in a manner similar to (ib) above an equation M of degree 2μ is split off. The modulus R is obtained from the equation
$R^{2 \mu}=$ quotient of the last coefficient to the first coefficient A_{2} of the equation M.
To compute the arguments $\mathrm{A}, \mathrm{B}, \cdots$ of the μ pairs of roots, we again set $X=R Y$ as in (6), and divide by the leading coefficient $A_{2} R^{2 \mu}$. The new equation in Y is again reciprocal:

$$
\begin{equation*}
\left(Y^{2 \mu}+1\right)+B\left(Y^{2 \mu-1}+Y\right)+C\left(Y^{2 \mu-2}+Y^{2}\right)+\cdots+N Y^{\mu}=0 . \tag{9}
\end{equation*}
$$

By substituting (7) into (9) it can be seen that (9) is an equation in Z of degree μ having μ real roots of $Z<2$ which can be found by Graeffe's method. Complications cannot arise since all the roots are distinct. The transformed equation therefore will break up into a system of μ linear equations.
(iia) There are three roots with the same modulus R, one positive and the others complex, say

$$
X_{3}=R, \quad X_{4,5}=R e \pm A A .
$$

Then

$$
\begin{aligned}
A_{2} & \approx X_{1} X_{2} \\
-A_{3} & \approx X_{1} X_{2}\left(X_{3}+X_{4}+X_{5}+X_{6}\right)=X_{1} X_{2} \cdot R(1+2 \cos \mathrm{~A}) \\
A_{4} & \approx X_{1} X_{2}\left(X_{3} X_{4}+X_{3} X_{5}+X_{4} X_{5}\right)=X_{1} X_{2} \cdot R^{2}(1+2 \cos \mathrm{~A}) \\
-A_{5} & \approx X_{1} X_{2} X_{3} X_{4} X_{5}=X_{1} X_{2} \cdot R^{3}
\end{aligned}
$$

so that X_{3}, X_{4}, X_{5} are approximately the roots of the cubic equation

$$
\begin{equation*}
A_{2} X^{3}+A_{3} X^{2}+A_{4} X+A_{5}=0 . \tag{10}
\end{equation*}
$$

The valuc of R is obtained from

$$
R^{3}=-A_{5} / A_{2},
$$

or more simply from

$$
\begin{equation*}
R=-A_{4} / A_{3} . \tag{11}
\end{equation*}
$$

Thus equation (2) is split into $n-3$ linear equations and the cubic equation (10). The last equation can be broken up into the linear equation (11), that is $A_{3} X+A_{4}=0$, and a quadratic equation.
(iib) There are μ pairs of complex roots and one positive root, all of the modulus R.

An equation M of degree $2 \mu+1$ results and from that a linear equation L is again split off. It consists of the two middle terms of M, that is

$$
\begin{equation*}
L: \quad A_{\mu+2} X+A_{\mu+3}=0 \tag{12}
\end{equation*}
$$

with the solution R.
To find the arguments of the complex roots, we again set $X=R Y$ and obtain a reciprocal equation in Y of degree $2 \mu+1$. It has the solution $Y=1$, so that by dividing it by $Y-1$ there results a reciprocal equation of degree μ in Z that may be solved by Graeffe's method, yielding μ pairs of complex roots.
(iii) There are multiple roots.

Let X_{2} have the multiplicity ν. Then equation M, mentioned above in (ic) and (iib), will be divisible by $\left(X-X_{2}\right)^{n}=(X-R)^{v}$, if X_{2} is real, and by $\left[\left(X-X_{2}\right)\left(X-\bar{X}_{2}\right)\right]^{p}$ $=\left(X^{2}-2 R \cos \mathrm{~A} X+R^{2}\right)^{r}$, if X_{2} is complex. The reciprocal equation in Y is then divisible by $(Y-1)^{\prime}$ or ($\left.Y^{2}-2 \cos \mathrm{~A} Y+1\right)^{\prime}$, respectively.

Note. It is not always possible to eliminate the multiple roots of (2) by eliminating at once the multiple roots of (1), for distinct roots of (1) may, by the successive squarings, give the same roots of (2).

In summary we can say, if the absolute values of the roots of (2) are partly equal, partly different, then Eq. (2) is split up into several approximate equations $M_{\text {i }}$ of lower degrees. The degree of an M is equal to the number of roots having the same modulus R. Thus there are as many equations M as there are distinct moduli. To every simple root there corresponds a linear equation.

Determination of the equations M_{i}. It is well known that by squaring the roots of (1) a series of equations $G_{1}, G_{2}, G_{3}, \cdots$ having the roots $x_{i}^{2}, x_{i}^{4}, x_{i}^{8}, \ldots$ results.

The problem now is to decide which equation G first breaks up into equations M_{i}, and what these M_{i} are.

We have seen that if the equation M has m roots with equal moduli R, then the absolute member of the normalized M (that is an M whose leading coefficient is 1) is equal to $\pm R^{m}$. In the following transformed equation it will be equal to $\pm R^{2 m}$, that is, from a certain equation G_{k} the absolute member of a (normalized) M is (to the required degree of accuracy) squared when passing to the following transformed equation. This or a similar relation does not hold for the other coefficients of M, for they involve $\cos \Lambda$. Since $\cos \Lambda$ changes to $\cos 2 A$ in the following equations, the coefficients not only irregularly change their quantity, but often their signs too.

To find the various M_{i} into which an equation G_{k} is eventually split up, we must therefore seek only those coefficients that are squared when passing to the next equation G. That is, we begin with the leading coefficient 1 of all G_{k} and choose the first member A_{i} that by the last root-squaring is itself squared. The coefficients from 1 to A_{i} form the first equation M_{1}. The next equation M_{2} has the leading coefficient A_{i}. Since A_{i} is itself squared when going a step further, it is unnecessary to normalize the supposed equation M_{2}, but we may choose immediately the first coefficient $A_{;}$after A_{i} that is squared by the root-squaring. Equation M_{2} now has the coefficients lying between A_{i} and A_{j}. If A_{k} is the next coefficient after A_{j} that is squared by root-squaring, M_{3} extends from A_{i} to A_{k}, and so on.

It is not necessary that the same equation G_{k} yield all the various M_{i}. The higher the degree of an M is, the later the mentioned quality of the extreme coefficients will generally appear. However, from the stage where an M is split off, it is no longer neces-
sary to keep it during the further calculation. It is sufficient to treat only the rest of the G_{k} that remain after cancelling the M_{i}.

Resolution of an equation M. Every M of degree m must be solved separately, in the following manner.
(i) Normalize M to M^{\prime}.
(ii) Find the modulus R of all roots of M from (8), that is, in the normalized M^{\prime}, from

$$
R^{m}=- \text { absolute member of } M^{\prime} \text { if } m \text { is even }
$$

and from the linear equation L (12), if m is odd
(iii) With this R set $X=R Y$, where $Y=e^{i \phi}$, into M^{\prime} and normalize again to $M^{\prime \prime}$. This new equation in Y is reciprocal.
(iv) If this is possible, divide $M^{\prime \prime}$ by $Y-1$ (that is, is $Y=1$ a root?), and repeat this division as often as possible. If this is possible s times, then M has the root R of multiplicity s. If m is odd, s is at least 1.
(v) Form the quotient $Q=M^{\prime \prime} /(Y-1)^{\prime}$; this is also a reciprocal polynomial.
(vi) In $Q=0$ set $Z=Y+Y^{-1}$. Then $Q=0$ is transformed into an equation $Q^{\prime}=0$ in Z of degree $(m-s) / 2$. The equation $Q^{\prime}=0$ has all its roots real.
(vii) $\cos \phi=Z / 2$ yields $(m-s) / 2$ values of ϕ and therefore $m-s$ values of X : $X=R e^{ \pm i \phi}$, and this together with the root $X=R$ of multiplicity s yields the complete system of roots of M.

Solution of equation (1). To every root X_{i} of M there corresponds one root x_{i} of (1). Since $X_{i}=x_{i}^{p}$, every X_{i} yields p tentative values of x_{i} from which the right root must be chosen. We do not, of course, calculate with the complex values of x_{i}, but take only the real component of Eq. (1) that is:

$$
\begin{equation*}
R^{n} \cos n \phi+R^{n-1} a_{1} \cos (n-1) \phi+R^{n-2} a_{2} \cos (n-2) \phi+\cdots+a_{n}=0 \tag{13}
\end{equation*}
$$

where ϕ is given by

$$
\begin{equation*}
\phi=\left(2 q \pi+\phi_{1}\right) / p, \quad q=0,1,2, \cdots, p-1 \tag{14}
\end{equation*}
$$

After having found the first ϕ satisfying (13), we stop the calculation with this ϕ_{i}.
If equation (1) is not too complicated, that is, if the M 's have a low degree, the process can be abbreviated in the usual manner.

In all other cases the process of finding the complex roots can always be abbreviated in the following manner. In the chain of the transformed equations G_{k} we go back to the first equation $G_{m}(m \ll k)$, where M starts to split off, that is, where the double products have no more influence on the first (or second) decimal place of the cornercoefficients of M. This equation M is solved to one or two decimal places only. The root of Eq. (1) is now-to one or two decimal places-to be selected from a group of 2^{m} members, instead of from the 2^{k}. members of (14). This decreases the work involved.

In addition, the process is abbreviated by the fact that not all 2^{k} equations of (13) have to be computed, since the members of the majority of them differ from those of the others only in the sign. An example will make this clearer.

Nevertheless this part of the labor is the most tedious of the whole process if the first transformed equation G_{m}, from which M is first split, has a large m, that is, if two or more roots of (1) are close together. It is good, however, to have a method that yields these roots at all.

In cases where there are only one pair or two pairs of complex roots this whole process is superfluous as will be seen in the example.

Convergence of the process. If the coefficients of the transformed equation G_{k} are determined exactly and the roots of G_{k} are calculated by splitting G_{k} into several M, then the roots of the M 's are only approximately the roots of G_{k}. If, thereby, a root of G_{k} is found with the relative error ϵ_{k}, then the crror of the same root in the following equation is

$$
\epsilon_{k+1} \approx \epsilon_{k,}^{2}
$$

as is easily seen. Let us suppose that we are dealing with the largest root X_{1} and there are m complex pairs of roots of the same modulus R, then we see that R is calculated from the absolute member a of the equation M_{k}. Let now $X_{2}=R \cdot 10^{-i}$ be the following root and let the m pairs of complex roots be

$$
X^{\prime}=R e^{ \pm \mathrm{A}}, X^{\prime \prime}=R e^{ \pm \boxed{ } \mathrm{B}}, \cdots, X^{(m)}=R e^{ \pm ז \Gamma} .
$$

Then a, being the sum of the combinations of all roots of G_{k} by $2 m$, is equal to

$$
\begin{aligned}
a & =R^{2 m}+2 R^{2 m-1}(\cos \mathrm{~A}+\cos \mathrm{B}+\cdots+\cos \mathrm{I}) \cdot X_{2}+\cdots \\
& \approx R^{2 m}\left(1+2 S \cdot 10^{-i}\right),
\end{aligned}
$$

where S is the sum of the cosines. Thus

$$
R \approx \sqrt[2 m]{a}\left(1-(1 / m) 10^{-i} S\right)
$$

that is, since $S<m$, the relative error ϵ_{k} of R is less than 10^{-i}.
From the following equation G_{k+1}, equation M_{k+1} is set up, and if b is the absolute member of M_{k+1}, then

$$
b \approx R^{4 m}+R^{4 m-2} \cdot 2 S^{\prime} X_{2}^{2}, \text { where } S^{\prime}<m .
$$

Thus

$$
R^{\prime} \equiv R^{2} \approx \sqrt[2 m]{b}\left(1-10^{-2 i}\right)
$$

That is, the relative error of R^{\prime} is

$$
\epsilon_{k+1}<10^{-2 i} \approx \epsilon_{k}^{2} .
$$

Now the roots $x_{1}, x_{2}, x_{3}, \ldots$ of (1) are the 2^{k} th roots of the roots X_{i} of G_{k}. Thus if ϵ is the relative error of X_{1} of G_{k}, then

$$
x_{1}=\sqrt[2 k]{X_{1}(1+\epsilon)} \approx \sqrt[2 k]{X_{1}}\left(1+\epsilon / 2^{k}\right) .
$$

That is, the relative error of x_{1} is $\epsilon / 2^{k}$. But from G_{k+1} we obtain, as we have seen

$$
x_{1}=\sqrt[2^{k+1}]{X_{1}^{2}\left(1+\epsilon^{2}\right)} \approx \sqrt[2^{k}]{X_{1}} \cdot\left(1+\epsilon^{2} / 2^{k+1}\right)
$$

that is, the relative error of x_{1} is $\epsilon^{2} / 2^{k+1}$ or the square of that of the equation G_{k}. Thus, we have:

The relative error of the roots x_{i} of (1) as they are compuled from the transformed equations G_{k} decreases quadratically with every following equation G_{k}, that is, if the roots x_{i} of (1) following from G_{k} are exact to r decimals, then equation G_{k+1} will yield them to $2 r$ decimals exactly. Roughly, every following equation yields tiwce as many exact decimals of the roots x_{i} of (1).

It must be taken into account that this property holds only if the roots are already sufficiently separated, for instance, if the difference of any two neighboring roots of G_{k} is at least equal to 100 , or else the approximations above are invalid.

From this property it follows that Graeffe's method has its greatest efficiency if it is carried out to many decimal places. If a calculating machine is used this does not require more computational work than required for fewer decimal places. Now, it is true that in this case one must calculate more transformed equations at least if the number of decimals are to be fully used. But for this purpose it will be sufficient to have one or two equations more. If, for instance, the equation G_{5} yields 5 exact decimals of the x_{i} of (1) then the next smaller root of G_{5} has a modulus $r \approx 10^{-5} R$, where R is the modulus of the greatest root. In G_{6} the relation of the two greatest roots will then be 10^{-10}, that is, only the 10 th decimal place of the coefficients of G_{6} will be influenced.

From this it follows that-apart from exceptional cases-the same number of transformed equations will in general be necessary if a ceriain exactness is required. For, suppose we have an equation with two roots having the ratio 1.1. Then by 3 or 4 transformations the ratio will become 3 . Thus to have a certain exactness, it will be necessary to calculate 3 or 4 equations more than for an original equation with two roots having the ratio 3 . The example is very unfavorable, for there will be few equations having roots of the ratio 1.1 . At a ratio 1.5 , there are only one or two more transformations required.

Since by raising to powers all roots with distinct moduli will be separated automatically by a quadratically convergent process, Graeffe's method is more powerful than other ones.

Influence of rounding off. These considerations of convergence are strictly valid only if the coefficients of the transformed equations are exact, but in reality the calculation is carricd out to a fixed number ν of decimals. The errors of rounding off are, of course, increased by every squaring and multiplication. Now, these errors can be estimated by adding the proper inequality to every coefficient of the scheme. But in general this tedious supplement will be superfluous, for on the whole the error will be annulled by the process of extracting the 2^{k} th roots of the roots of G_{k}. That is, if the calculation is carried out to ν decimals, the roots of (1) will on the whole be exact to ν decimals too.

Moduli or roots lying close together. When the equations of the chain do not soon show signs of an approaching splitting up, this will signify that some moduli of even roots are close to each other.

Various procedures have been proposed for accelerating the convergence. But they are all unpractical. For they require much more work than does the Graeffe's method when carried on two or three steps further. Add to this that by these devices the calculation of the chain is interrupted which is very undesirable when at the end of the calculation the roots of (1) are to be computed from those of the M_{i}.

These procedures make no allowance for the quadratic convergence (or divergence) of Graeffe's method. For before it becomes obvious that several moduli or roots are close to each other several transformations are already effected. By then the roots will be separated so far that the greatest difficulties have been overcome, and the further calculation will proceed rapidly. It is not advisable, therefore, to disregard the entire calculation performed up to this point and instead, to apply Graeffe's method to a transform of the original equation.

For instance Encke (Gesammelte mathematische und astronomische Abhandlungen, vol. 1, Berlin, 1888, p. 185), when dealing with a certain equation states that "after 6 or 7 operations we have got the conviction that two trinomial factors lying close together are existing here." Then he abandons Graeffe's method and starts on a new calculation. Yet, if Graeffe's method is carried 2 or 3 steps further, all roots separate automatically.

Thus the usual procedure of Graeffe will be always the most suitable one. Indeed, one of the chief advantages of the method is, that no special devices are required.

On the other hand, if some knowledge of the position of the roots of $f(x)=0$ is not furnished by the first steps of Graeffe's method, but by other sources, then this knowledge may be used from the beginning to accelerate the separation of the roots by transforming the equation first.

If, for instance, several moduli are close to each other and their absolute value ρ is known approximately and if also several roots are close to each other and their values, too, are known approximately, we may proceed as follows.

We have a group G of roots lying near a circle C with radius ρ around the origin of the Gaussian plane. And in this group G there exist several places u, v, w, \ldots where the roots "accumulate" so that G is divided into the subgroups U, V, W, \cdots.

Now the slow convergence of G when applying Graeffe's method arises from the fact that the quotient of two moduli of G is lying close to 1 . This difficulty will be partly overcome by chosing the origin of the coordinates in the neighbourhood of one of the points u, v, w, \cdots, say u. The circle C will still be a circle, but it does no longer have the new origin as its center. Thus the quotients of the moduli of the group G have essentially changed. For the relations of the distances of the subgroup U from the origin to each other as well as to those of the subgroups V, W, \cdots differ now widely from 1 . The same holds for the relations of the distances of the group V to the distances of W, \cdots. However the relations of the distances of V to each other remain nearly the same as they were before, and the same will hold for W to each other.

By this transformation the separation of the group G will, therefore, be accelerated, that is, the equation of the group G will break up into the equations for the subgroups U, V, W, \cdots faster than would have been the case without this transformation, and the subgroup U will even be split into its individual elements. The method is to be repeated eventually, as far as the subgroups V, W, \cdots are concerned.

The value of this method is largely theoretical because equations with several points of accumulation, u, v, w, \cdots, near the same circle C do not occur frequently.

The details of the transformation mentioned above will depend on the nature of the roots:
i. Several roots near the circle C are real. We may suppose that all these real roots are positive. Otherwise we form the first transformed equation and get a new equation with the assumed property. The convergence will be most rapid if the origin of the coordinates is chosen in the neighborhood of the least of these positive roots, say a, i.e., if the following transformation is made:

$$
x=y+a^{\prime}, \text { where } a^{\prime} \approx a \approx \rho
$$

ii. The roots near C are all complex, but "simple," i.e., no two of them are close together. In this case, too, the transformation

$$
x=y+\rho^{\prime}, \text { where } \rho^{\prime} \approx \rho,
$$

will be sufficient as is evident geometrically.
iii. All roots are complex, but several of them are lying near $u=a+i b$ (and $u^{\prime}=a-i b$, of course). Then it will not be convenient in general to bring u into the origin immediately, for this would require a complex transformation. It will be more suitable to do this by two real transformations. First we make the transformation

$$
x=y+a^{\prime}, \quad \text { where } a^{\prime} \approx a
$$

so that u will come near the y-axis. The equation in y will have several roots near $\pm i b$. We transform it by Graeffe's procedure and obtain an equation in Y having several roots near the point $\left(0 ;-b^{2}\right)$. Then by the second transformation

$$
Y=U-b^{2}
$$

we obtain an equation in U having several roots near the origin. The ratios of the moduli will now differ widely from 1.

This method will be particularly useful when all the roots of the equation are lying near the circle C, for instance, for the equations M_{i}. In this special case the method may be brought into a more convenient form by applying a procedure of Ostrowski. [Recherches sur la méthode de Graeffe et les zéros des polynomes et des séries de Laurent, Acta mathematica, 72, 245 (1940)].

In case iii above, i.e., if all roots of $f(x)=0$ are lying around $u=a+i b$ and $u^{\prime}=a-i b$, the sum $m a$ of all roots will be equal to the coefficient $-a_{1}$, so that the real part of all roots will be approximately $\bar{a} \approx-a_{1} / m$. After the transformation $x=y+a$, the coefficient of x^{m-1} will then vanish. The same holds for the equation in Y. That is:

If we know that $f(x)=0$ has all its roots near two conjugate complex numbers, we may apply the transformations of i iii without knowing these points, by bringing $f(x)$ into the reduced form $\bar{f}(x)$, transforming \bar{f} once by Gracffe's procedure into $F(x)$ and bringing the latter into its reduced form $\bar{F}(x)$. The roots of $\bar{F}(x)=0$ differ widely, and Graeffe's method will converge then rapidly.

Example. By the following example we show the efficiency of the method in the case of roots lying close together or having the same moduli.

$$
\begin{gather*}
8 x^{5}+4 x^{4}+18 x^{3}-15 x^{2}-18 x-81=0 \text { or normalized: } \tag{A}\\
x^{5}+0.5^{4}+2.25 x^{3}-1.875 x^{2}-2.25 x-10.125=0
\end{gather*}
$$

In the coefficients of the transformed equations there is always a power of 10 omitted; its exponent is given in italics on the left of the coefficient, so that, for instance, the last coefficient of G_{2} is in reality $-10^{4} \cdot 1.0509 \cdots$.

To avoid slips it is advisable to put under each transformed equation G_{k} the signs of the equations having the same roots, but of opposite signs. These signs are alternately equal or opposite to the signs of G_{k}.

As may be seen, it is not until G_{5} that the pace of the coefficients begins to become more regular. This late start indicates that the moduli of the roots of (A) lie close together. Also from this point of view it is advisable to carry out the calculation to many decimals. Equation G_{5} is the first equation where the approaching split is perceptible, for in the double products forming the coefficient of x^{3} two zeros appear. From G_{B} onwards the process goes rapidly, so that in G_{8} the coefficients of x^{5}, x^{3}, x^{0}

1	0	$+0,500000000000000$	0	$+2,250000000000000$ +	0	-1,8750 00000000000	0	$-2,250000000000000$	1	$\underline{+1,012500000000000}$
1	0	$\begin{gathered} -0,25 \\ 4,5 \end{gathered}$	0	$\begin{aligned} & 5,0625 \\ & 1,875 \\ &-4,5 \end{aligned}$	0	$\begin{gathered} -3,5156 \\ -10,1250 \\ 10,1250 \end{gathered}$		$\begin{aligned} & +5,0625 \\ & -37,96875 \end{aligned}$		$k=1$
1	0	4,25	0	$+^{2,4375}$	0	$+^{-3,515625}$	1	-3,2906 25000	2	$-1,025156250$
1	1	-1,8062 0,4875	1	$\begin{aligned} & +0,594140625 \\ & 2,988281250 \\ & -6,58125 \end{aligned}$	2	$\begin{array}{rlll} -0,1235 & 96191 & 406250 \\ -1,6041 & 79687 \\ 5,7138 & 28125 \end{array}$	3	$\begin{array}{rrr} 1,0828 & 21289 & 06250 \\ -0,7208 & 12988 & 28125 \end{array}$		$k=2$
1	1	+1,31875	1	-2,998828125	2	$\pm 6,986052246093750$	2	$\begin{array}{r} 3,620083007812500 \\ + \end{array}$	4	+1,0509453369140625
1	2	$-1,7391015625$ $-0,599765625$	2	$\begin{array}{cccc} +8,9929 & 70123 & 29101 & 6 \\ 184,2571 & 27990 & 72265 & 6 \\ 7,2401 & 66015 & 625 & \end{array}$	5	$\begin{array}{llll} -4,8804 & 92598 & 51515 & 3 \\ -0,2171 & 20134 & 77325 & 4 \\ -2,7718 & 68326 & 11084 & 0 \end{array}$	5	1,301500098345280 $-146,839180629404783$		$k=3$
1	2	$-2,3388671875$ +	4	$\begin{array}{r} 2,004902641296387 \\ + \\ \hline \end{array}$	5	$\underline{+7,869481059399247}$	7	$\begin{array}{r} 1.481496807277501 \\ + \end{array}$	8	$\begin{aligned} & -1,104480101 \quad 181412 \end{aligned}$
1	4	$\begin{array}{r}-5,470299720764160 \\ 4,0098 \\ \hline\end{array}$	8	$\begin{array}{r} 4,0196346010772290 \\ -3,681134206 \\ 4963275 \\ 0,2962 \\ 99361 \\ 45550 \end{array}$	11	$\begin{array}{rrrr} -6,1928 & 73214 & 42434 & 95 \\ 5,9405 & 13723 & 96565 & 23 \\ -0,5166 & 49260 & 22060 & 19 \end{array}$	14	$\begin{array}{r}2,1948 \\ -1,7383 \\ \hline 16490 \\ \hline\end{array}$		$k=4$
1	4	-1,460494438 171386	7	6,347997560364017 $+\quad$	10	$-7,690087506792991$	13	$\begin{array}{r} 4,564862992500606 \\ +\quad \end{array}$	16	$+_{+}^{-1,219889547702916 ~}$
1	8	$-2,1330$ 1,2695 99512	15	$\begin{array}{r} 4,02970730263875 \\ -2,246266006 \\ 54448 \\ 0,0912 \\ 9725985001 \end{array}$	21	$-5,913744586$ 5,795547827 95796 $-0,3563$ 837969207033	27	$\begin{array}{r}2,0837 \\ -1,8762 \\ \hline 11414 \\ \hline\end{array}$		$k=5$
1	7	$+8,634444918567490$	15	$\begin{array}{r} 1,874738555944278 \\ + \\ \hline \end{array}$	20	+4,745251381761007	26	$\begin{array}{r} 2,075859399386493 \\ +\quad \\ \hline \end{array}$	32	-1,488130508 594825
1	15	$\begin{array}{r}-7,4553 \\ 3,7494 \\ 77111 \\ \hline\end{array}$	30	$\begin{array}{r} 3,514644653144037 \\ -0,081945223361143 \\ 0,000415171879877 \end{array}$	41	$-2,251741067610475$ 7,783387305498380 $-0,256983618162037$	52	$\begin{array}{r} 4,309192246021251 \\ -14,123106704300607 \end{array}$		$k=6$
1	15	+3,705886793289039	30	$+^{3,433114601662771}$	41	5,274662619725868	52	-9,8139 14458279356	64	$-2,214532410610693$
1	30	$\begin{array}{r}-13,7335 \\ \hline 6,8662929467411 \\ \hline\end{array}$	61	$\begin{array}{r} 1,1786 \\ 0,0003 \\ 90946 \\ 0,05083 \\ -0,0000 \\ 0001962782 \end{array}$	83	$\begin{array}{lllll} -2,7822 & 06575 & 19333 & 6 \\ -6,7384 & 58605 & 23764 & 8 \\ -0,0016 & 41361 & 28275 & 9 \\ \hline \end{array}$	105	$\begin{array}{rllll} 9,6312 & 91699 & 44245 & 8 \\ 23,3618 & 22652 & 83927 & 4 \end{array}$		$k=7$
1	30	$\begin{aligned} & -6,867367721348574 \\ & + \\ & \hline \end{aligned}$	61	$\begin{array}{r} 1,179018513238014 \\ + \\ \hline \end{array}$	83	$\begin{aligned} & -9,522306541713743 \\ & + \\ & \hline \end{aligned}$	106	$\begin{array}{r} 3,299311435228173 \\ +\quad \\ \hline \end{array}$	128	+4,9041 53787645205
1	61	$\begin{array}{r} -4,7160 \\ -43942 \\ 2,3580 \\ 37026 \\ 47602 \end{array}$	122	$\begin{array}{r} 1,390084654557977 \\ -0,000000130786361 \end{array}$	167	$\begin{array}{r} -9,06743218743643 \\ 7,77989852614379 \\ -0,00000006735725 \\ \hline \end{array}$	212	$\begin{array}{r}10,8854 \\ -9,3397 \\ \hline\end{array}$		$k=8$
1	61	-2,3580 36915546003	122	1,3900 84523771616	167	-1,2875 33728649892	212	1,545884788884994 1	257	$-2,4050 \quad 72447095789$

are fixed to 16 places since they are no longer influenced by the double products.
Thus G_{8} is split into the two equations M :

$$
\begin{aligned}
M_{1} \equiv & X^{2}-2.358036915546003 \cdot 10^{61} X+1.390084523771616 \cdot 10^{122}=0 \\
M_{2} \equiv & 10^{122} \cdot 1.390084523771616 X^{3}-10^{167} \cdot 1.287533728649992 X^{2} \\
& +10^{212} \cdot 1.545884788849941 X-10^{256} \cdot 2.405072447095789=0
\end{aligned}
$$

These two equations must now be solved. Since in G_{8} the cocfficient of X^{4} is approximately twice as large as the coefficient of X^{3} in G_{7}, this signifies that M_{1} has a real double-root, so that M_{1} may be put into the form

$$
M_{1} \equiv(X-m)^{2}=X^{2}-2 m X+m^{2}
$$

as is approximately confirmed. Thus from the coefficient of X we have

$$
X_{1}=X_{2}=1.17901845777300 \cdot 10^{81}
$$

whereas from the coefficient of X^{0} we have

$$
X_{1}=X_{2}=1.17901845777393 \cdot 10^{61}
$$

The difference of the two values arises from the rounding off errors we mentioned above. To annul them slightly we could take the mid-value of the two values:

$$
X_{1}=X_{2}=1.17901845777346 \cdot 10^{61}
$$

Equation M_{2} no longer splits into factors as can be seen from the course of its coefficients. Otherwise some of the double products should begin to converge to zero. Now, this is only the case with the product $2 A_{4} A_{0}$, and there only because of the coefficient A_{4}. This follows from the fact that equation M_{1} is already split off and has no influence on M_{2}. Thus M_{2} has all its roots with the same modulus R. Since its degree is odd, we have according to p. 179, ii and according to (12):

$$
\begin{aligned}
R & =10^{212} \cdot 1.545884788849941 / 10^{167} \cdot 1.287533728649892 \\
& =10^{45} \cdot 1.200500425311787
\end{aligned}
$$

We now set $X=R Y$ in M_{2} and get the reciprocal equation in Y

$$
M^{\prime \prime} \equiv B Y^{3}-1.855595246409359 Y^{2}+1.855595246407256 Y-B=0
$$

or, to make the equation wholly reciprocal, instead of the two middle coefficients we put their arithmetic mean, and divide the resulting equation by $Y-1$:

$$
Q=M^{\prime \prime} /(Y-1)=Y^{2}+0.2284659663166439 Y+1=0
$$

Since this equation is no longer divisible by $Y-1$, we put $Z=Y+Y^{-1}$ and obtain instead of Q :

$$
\begin{aligned}
& Z=2 \cos \phi=-0.2284659663166439 \\
& \phi=292^{\circ} .71149255575355
\end{aligned}
$$

(The notation " g " refers to the division of the quadrant into 100 parts, instead of into 90.) Thus the roots of M_{2} are

$$
X_{3}=R, \quad X_{4,5}=R e^{ \pm i \phi} .
$$

The roots of the original equation arise from the X_{i} by extracting the 256 th root. Now

$$
\begin{gathered}
\sqrt[256]{X_{1}}=\sqrt{3}, \quad r=\sqrt[256]{R}=1.5 \\
\phi / 256=1^{0} .143405439670912305
\end{gathered}
$$

so that the roots x_{i} are to be found among the values

$$
\sqrt{3} \cdot(\cos 2 k \pi / 256+i \sin 2 k \pi / 256)
$$

and

$$
1.5\left(\cos \phi_{k}+i \sin \phi_{k}\right), \quad \text { where } \quad \phi_{k}=(2 k \pi+\phi) / 256, \quad k=1,2, \cdots, 256 .
$$

There are two roots of the first kind, thus either two conjugate-complex ones or two real opposite ones or a real double root, and three roots of the second kind, thus there is always one real root.

Because of the simple character of the moduli of our roots, the procedure of finding their arguments could be very much abbreviated. However, to show the general method, we do not make use of this special property. We begin with the more difficult part, namely equation M_{2}. Thus we look back in the chain of transformed equations G_{1} until we come to the first equation where our M_{2} starts to split off. That is G_{5}, where the coefficient of X^{3} is determined to two places. For the transition to G_{6} makes two zeros in each of the double products. That is, from G_{5} an equation M is split off

$$
1.87 X^{3}-10^{5} \cdot 4.75 X^{2}+10^{11} \cdot 2.08 X-10^{17} \cdot 1.49=0
$$

or, putting $X=1.5 Y$:

$$
Y^{3}-0.596 Y^{2}+0.596 Y-1=(Y-1)\left(Y^{2}+0.404 Y+1\right)
$$

This gives

$$
\cos \mathrm{B}=-0.202 \text { or } \mathrm{B}=287^{\circ} . \mathrm{B} / 32=8^{0} .97
$$

Thus the argument of the roots equals

$$
\phi_{m}=80.97+2 m \pi / 32, \quad \text { where } \quad m=1,2, \cdots, 32
$$

by this the number of values to be tried has sunk from 256 to 32 . We can correct these values ϕ_{m} by comparing them with the former values ϕ_{k}, that are nearly exact. For that we must determine the values of k from the equation $\phi_{k} \equiv(2 k \pi+\phi) / 256 \approx 8^{0} .97$, that is $k \approx 5$, thus $k=5$ and $\phi_{5}=8^{0} .9559 \cdots \approx 8^{0} .956$.

With this value we try to verify the original equation, which on putting $x=1.5 \cdot y$, becomes

$$
(y-1)\left(3 y^{4}+4 y^{3}+7 y^{2}+\frac{16}{3} y+4\right)=0
$$

or according to (13):

$$
3 \cos 4 \phi_{m}+4 \cos 3 \phi_{m}+7 \cos 2 \phi_{m}+\frac{16}{3} \cos \phi_{m}+4=0
$$

Now the values ϕ_{m} are

$$
\begin{aligned}
\phi_{1} & =8^{0} .956, \phi_{2}=\phi_{1}+12.5^{0}=21.456^{\circ}, \cdots, \phi_{8}=96^{0} .456 \\
\phi_{9} & =100^{\circ}+\phi_{1}, \cdots, \phi_{16}=100^{\circ}+\phi_{8} \\
\phi_{17} & =200^{\circ}+\phi_{1}, \cdots, \phi_{24}=200^{\circ}+\phi_{8} \\
\phi_{25} & =300^{\circ}+\phi_{1}, \cdots, \phi_{32}=300^{\circ}+\phi_{8} .
\end{aligned}
$$

These 32 values must be tried. The calculation is carried out to 45 decimals. We find the solution ϕ_{13}, that is

$$
\phi \equiv \phi_{13}=146^{0} .4559054397
$$

(It is not necessary to compute all $32 \cdot 4=128$ values of cosines, since $\phi_{17}, \cdots, \phi_{32}$ yield values equal or opposite to those yielded by $\phi_{1}, \cdots, \phi_{16}$. Also, in the group belonging to ϕ_{1} through ϕ_{16} not all values are different.) Thus all the roots of the modulus 1.5 are found.

For finding the roots of modulus $\sqrt{3}$, we do not need the somewhat tedious procedure above, but can abbreviate it in several ways. A method that is always applicable consists in dividing the original equation by the product of the three linear factors already found, thus by

$$
(x-1.5)\left(x^{2}-3 x \cos \phi+2.25\right)
$$

In the quotient we put $x=y \sqrt{3}$ and get $y^{2}+1=0$, thus $y=i$; so we have as roots of the equation

$$
x_{1}=i \sqrt{3}, \quad x_{2}=-i \sqrt{3}, \quad x_{3}=1.5, \quad x_{4,5}=1.5 \cdot e^{ \pm i \phi} .
$$

After this general and somewhat tedious way of finding the arguments of the roots x_{4}, x_{5} having the modulus 1.5 , we give in the following the simple method appropriate to all cases where only two or four complex roots exist.

From M_{1}, M_{2} we determine the moduli of their respective roots, as we did above, that is $X_{1}=X_{2}$ and R. Thus the moduli of the roots of the original equation are, as above,

$$
\sqrt[256]{X_{1}}=\sqrt{3}, \quad \sqrt[256]{R}=1.5
$$

and the roots themselves are

$$
x_{1,2}=\sqrt{3} \cdot e^{ \pm i \psi}, \quad x_{3}=1.5, \quad x_{4,5}=1.5 \cdot e^{ \pm i \phi} .
$$

Now we use the property of the coefficients of the original equation, namely that the sum of all the roots or their combinations at four are:

$$
\begin{aligned}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5} & =-0.5=2 \sqrt{3} \cos \psi+1.5+3 \cos \phi \\
x_{1} x_{2} x_{3} x_{4}+x_{1} x_{2} x_{3} x_{5}+\cdots & =-18 / 8=p / x_{1}+p / x_{2}+p / x_{3}+p / x_{4}+p / x_{5}
\end{aligned}
$$

where $p=x_{1} x_{2} x_{3} x_{4} x_{6}=81 / 8$. By inserting the above values we get the two equations

$$
\begin{aligned}
& 2 \sqrt{3} \cos \psi+3 \cos \phi=-2 \\
& 2 \sqrt{3} \cos \psi+4 \cos \phi=-8 / 3
\end{aligned}
$$

thus

$$
\cos \phi=-2 / 3, \text { or } \phi=146^{\circ} .4559054397
$$

Then

$$
\cos \psi=0 \quad \text { or } \quad \psi=100^{\circ}
$$

Conclusions. Graeffe's method has the following properties.
i. It yields not only one root at a time but all roots simultaneously, even the complex ones; this is accomplished by no other method.
ii. It is the only method that automatically discovers roots lying close together which casily escape attention. There is no method other than Graeffe's which solves, without special attention, an equation having, for instance, the roots $\sqrt{5 / 2}=1.581 \ldots$ and $3 / 2=1.5$, not to mention theoretical cases such as $1.67324 \cdots$ and $1.67331^{\circ} \ldots$ Lagrange's method is the only other one with the same advantage of separating those roots, but the process requires great attention and much computational work and fails entirely in the case of complex roots.
iii. An especially valuable property is that even complex roots of the same modulus are automatically obtained.
iv. These advantages are not due to special artifices. Any other method requires a first approximation which must then be corrected. But the finding of this first approximation is difficult, particularly in the case of complex roots. Only Bernoulli's method does not require a first approximation, but for that it yields only two real roots at a time, and the process of approximation may be very slow. Graeffe's method on the other hand does not require a first approximate value. Besides, it is not necessary to use criteria of convergence in order to determine if the approximate value is sufficiently close the actual root.

Therefore it seems to us that Graeffe's method is by far the best for solving algebraic equations. Only if one does not need all roots of the equation, but only a single one, will it be inferior to other methods.

-NOTES-

ON COMPRESSIBLE FLOW ABOUT BODIES OF REVOLUTION*

By W. R. SEARS** (Northrop Aircraft, Inc.)

The linear-perturbation theory of compressible fluid flow originated by Glauert and Prandtl has recently been presented in a revised and clarified form by Goldstein and Young. ${ }^{1}$ These authors show three alternative procedures by which the compressible flow in an x, y, z-space can be deduced from a corresponding incompressible flow.

The linearized differential equation satisfied by the velocity potential ϕ is

$$
\begin{equation*}
\beta^{2} \frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}=0 \tag{1}
\end{equation*}
$$

where β^{2} denotes $1-U^{2} / a^{2}, U$ and a being the stream velocity and the velocity of sound, respectively, in the undisturbed parallel flow. If the solution of (1) for the case $\beta=1$ (incompressible) is $\phi=U x+f(x, y, z)$, corresponding solutions for $\beta<1$ are given by the following alternative forms:
I)

$$
\phi=U x+\frac{1}{\beta} f(x, \beta y, \beta z)
$$

II)

$$
\phi=U x+f(x, \beta y, \beta z)
$$

$$
\phi=U x+f(x / \beta, y, z) .
$$

Each of these variants represents a somewhat different compressible flow, but all three are related to the given incompressible flow. The results determined by the theory are consistent, of course, as far as the linear theory is applicable, and the procedure used in any given problem is the one that provides the greatest ease of calculation. For example, in I the geometry of a slender body remains unaltered as β varies; in II the body is distorted but the pressures on its surface are unchanged; and so forth.

Method II is the one used by Tsien and Lees in a recent paper, ${ }^{2}$ while both I and II are presented by Liepmann and Puckett in a new textbook. ${ }^{3}$ Sauer ${ }^{4}$ writes, in effect,

$$
\phi=U x+\lambda f(x, \beta y, \beta z)
$$

and selects the value of λ most convenient for any given problem; this includes both I and II. Finally, B. Göthert, ${ }^{5}$ rejecting II because of a fancied discrepancy (actually

[^20]caused by an error in his application of the method), introduces still another variant by writing
v)
$$
\phi=\beta^{2} U x+f(x, \beta y, \beta z) .
$$

We are particularly concerned here with the application of these procedures to the flow about bodies of revolution. There is some confusion on this subject: Goldstein and Young, ${ }^{1}$ using I, find that the superstream velocities at a streamline body in the absence of trailing vortices are $1 / \beta$ times those at the same location in incompressible flow, while both Sauer ${ }^{4}$ and Göthert ${ }^{5}$ conclude that these velocities are unaffected by compressibility, at least for slender bodies. ${ }^{6}$

This confusion is partly due to the fact that, while the procedures are equivalent and must yield consistent results in the linear approximation, they may produce different results when they are applied outside this range. For example, let the maximum velocity at the surface of a slender body in incompressible flow be denoted by $U \cdot[1+F(n)]$ where n is the ratio of maximum diameter to length, so that $F(n)$ is a given function for any family of bodies. The several variants of the theory then yield the following results for the maximum surface velocity (divided by the stream velocity) in the compressible flow:
I)

$$
\frac{1}{\beta} F(n)
$$

II)
III)

$$
F(n / \beta)
$$

$$
\frac{1}{\beta} F(n)
$$

IV)

$$
\lambda F(n / \lambda \beta)
$$

V)

$$
\frac{1}{\beta^{2}} F(\beta n) .
$$

Obviously these results are all the same if $F(n)$ is proportional to n or can be approximated successfully in that form. But for a typical family of bodies, the ellipsoids of revolution, $F(n)$ actually has the form ${ }^{7}$

$$
\begin{equation*}
F(n)=\frac{n^{2} \log p-2 n^{2} \sqrt{1-n^{2}}}{2 \sqrt{1-n^{2}}-n^{2} \log p} \text { where } p=\frac{1+\sqrt{1-n^{2}}}{1-\sqrt{1-n^{2}}} \tag{2}
\end{equation*}
$$

or, neglecting terms of order n^{2},

$$
\begin{equation*}
F(n)=-n^{2} \log n \tag{2a}
\end{equation*}
$$

The absence of a linear term in this expression is what leads Göthert to the conclusion that there is no correction for compressibility. Sauer's similar conclusion apparently results somewhat analogously from the fact that he considers only the

[^21]limiting case $n \mathrm{M} 0$. Actually, in (2a) we have retained the leading term while neglecting $O\left(n^{2}\right)$, which is consistent with the linear-perturbation theory.
$F(n)$ according to (2) and (2a) is plotted in Figure 1. It is clear that Göthert's and Sauer's conclusion cannot be correct in the range of practical interest $(1 / 10<n<1 / 3$ and $0.6 \leqq \beta<1$, say), since all of the various procedures listed above result in appreciable corrections to the velocity ratio. It scems more reasonable to conclude merely that the linear-perturbation theory cannot distinguish between the various results. In this situation the formula of Method I might well be adopted by reason of its simplicity.

Fig. 1. The superstream velocity ratio for ellipsoids of revolution in incompressible flow.

ON THE NUMERICAL TREATMENT OF FORCED OSCILLATIONS*

By ALVIN C. SUGAR** (Northrop Aircraft)

1. Introduction. The differential equation, with typical initial conditions, of an harmonic oscillator subject to the action of a general disturbing force $m a(t)$ is given by

$$
\begin{equation*}
\ddot{x}+\omega^{2} x=a(l), \quad x(0)=0=\dot{x}(0) \tag{1}
\end{equation*}
$$

This equation occurs in problems involving from one to infinitely many degrees of freedom. Its solution can be expressed as follows:

$$
\begin{equation*}
x=\frac{D}{\omega}, \text { where } D=\int_{0}^{1} a(\tau) \sin \omega(l-\tau) d \tau \tag{2}
\end{equation*}
$$

is the so-called Duhamel integral. If in (1) we replace only x by D / ω we obtain an expression for the acceleration of the body.

$$
\begin{equation*}
\bar{x}=a(t)-\omega D . \tag{3}
\end{equation*}
$$

In this note a simple expression which is an approximation of D is found. This expression provides a convenient process for evaluating x and related quantities. Using the resulting simplified form of the acceleration a quick and easy vector method of obtaining the maximum acceleration is explained. Rapid methods of finding the

[^22]maximum displacement are also considered. By maximum acceleration is meant maximum magnitude or absolute value of acceleration and similarly for displacement.
2. Evaluation of the Duhamel integral. The curve $y=a(t)$ is approximated by a broken line $Y=A(t)$, see Fig. 1. As indicated we are taking $A\left(t_{0}\right)=0$. Since the approximation of a curve by a broken line can be improved by increasing the number of segments, it is evident that this method can produce a solution which is as accurate

Fig. 1
as desired. Frequently in engineering problems the forcing function is known only approximately and the additional error introduced by a broken line consisting of relatively few segments is negligible.

Let $A(t)=A_{i}(t), t_{i-1} \leqq t \leqq t_{i}$, where $y_{i}=A_{i}(t)$ is the equation of a straight line of slope μ_{i}. Since the lines $y_{i}=A_{i}(t)$ and $y_{i+1}=A_{i+1}(t)$ intersect at the point $\left(t_{i}, A_{i}\left(t_{i}\right)\right)$, it follows that

$$
\begin{equation*}
A_{i+1}\left(t_{i}\right)=A_{i}\left(t_{i}\right) \tag{4}
\end{equation*}
$$

With the notations of Fig. 1 the Duhamel integral can be approximated in the following mariner:

$$
\begin{aligned}
D & =\int_{0}^{t} a(\tau) \sin \omega(t-\tau) d \tau \\
& \approx \sum_{i=1}^{i-1} \int_{t_{j-1}}^{t_{i}} \Lambda_{i}(\tau) \sin \omega(t-\tau) d \tau+\int_{t_{j-1}}^{t} \Lambda_{j}(\tau) \sin \omega(t-\tau) d \tau
\end{aligned}
$$

Integration by parts enables us to write this in the form

$$
\omega D=A(t)-\frac{1}{\omega}\left[\sum_{i=1}^{j} \mu_{i} \sin \omega\left(t-t_{i-1}\right)-\sum_{i=0}^{i-1} \mu_{i} \sin \omega\left(t-t_{i}\right)\right]
$$

where we have defined $\mu_{0}=0$ in order to obtain the following compact result:

$$
\begin{equation*}
\omega D=A-\frac{1}{\omega}\left[\sum_{i=0}^{i-1}\left(\mu_{i+1}-\mu_{i}\right) \sin \omega\left(t-t_{i}\right)\right] . \tag{5}
\end{equation*}
$$

From (3) and (5) it is evident that

$$
\begin{equation*}
\ddot{x} \approx A-\omega D=\frac{1}{\omega} \sum_{i=0}^{i-1}\left(\mu_{i+1}-\mu_{i}\right) \sin \omega\left(t-t_{i}\right) \tag{6}
\end{equation*}
$$

3. Maximum acceleration and displacement. It is, at times, of importance to know the maximum displacement or acceleration. In this paragraph we show a vector method of obtaining the maximum acceleration. Since the expression for \ddot{x} for the j th time interval is, apart from a constant factor, a sum of sinusoids of the same frequency, ω, it is equal to a sinusoid of frequency ω. The amplitude of this sinusoid can be obtained by vector methods. It is evident that this amplitude is equal to the maximum of the absolute value of the resultant sinusoid over a time interval equal to or in excess of one half period. From this it is apparent that the following vector procedure can be used in determining $\max |\ddot{x}|$ over all of the time intervals.

If

$$
\begin{equation*}
\frac{\pi}{\omega} \leqq \min \left(t_{i+1}-t_{i}\right), \quad i=0,1, \cdots, m \tag{7}
\end{equation*}
$$

then $\max |x|=\max O P_{i}$ (Fig. 2), where the magnitude of the i th vector is $\left|\left(\mu_{i}-\mu_{i-1}\right) / \omega\right|$ and its argument with respect to $O P_{1}$ is equal to the phase angle $-\omega t_{i-1}$.

Without condition (7) max $O P_{i}$ is an upper bound of $|\ddot{x}|$ and probably a pretty good approximation of max $|\ddot{x}|$.

Fairly rapid methods of computing the maximum displacement ${ }^{1}$ can be devised e.g. when the frequency is large, then, for the i th interval, $\max |x| \approx\left(1 / \omega^{2}\right)\left[\max \left|A_{i}(t)\right|\right.$ $+\max |\ddot{x}|]$. For any frequency the problem of finding max $|x|$ may be reduced to that of finding the maximum value of the curve obtained by the superposition of a sinusoid and a straight line. This can be handled by obvious methods involving use of elementary differential calculus.

A still better method of approximating the maximum displacement is available if s is known or can be quickly evaluated, where s

Fig. 2 is defined by the differential equation,

$$
\begin{equation*}
\ddot{s}=a(t), \quad \ddot{s}(0)=0=s(0) \tag{8}
\end{equation*}
$$

This method permits direct use of the above vector procedure. This is easily shown by evaluating the Duhamel Integral by repeated integration by parts. ${ }^{2}$ Thus,

$$
\begin{align*}
x & =\frac{1}{\omega} \int_{0}^{t} \ddot{s} \sin \omega(t-\tau) d \tau=s-\omega \int_{0}^{t} s \sin \omega(t-\tau) d \tau \\
& \approx \frac{1}{\omega} \sum_{k=0}^{j-1}\left(\nu_{k+1}-\nu_{k}\right) \sin \omega\left(t-\iota_{k}\right) \tag{9}
\end{align*}
$$

[^23]where ν_{k} and t_{k} are defined by a broken line approximation of s. If the initial conditions of (8) defining s are changed to $s(0)=s_{0}$ and $s(0)=s_{0}$, then (9) takes the following form:
\[

$$
\begin{equation*}
x=-\frac{s_{0}}{\omega} \sin \omega t-s_{0} \cos \omega t+s-\omega \int_{0}^{t} s \sin \omega(t-\tau) d \tau \tag{10}
\end{equation*}
$$

\]

which again can be expressed as a sum of sinusoids of the same frequency.
On the basis of limited experience, the following suggestions for computation seem good. If the curve is sufficiently smooth, then the term containing μ_{1} will make a sizeable contribution: consequently the first time interval should be as small as convenient. It seems best to take $A(0)=a(0)$. The vector polygon will obviously be simplest if t_{i} is selected so that as many values as possible of ωt_{i} are multiples of π.

If we had assumed $A(0) \neq 0$, then it would follow that

$$
\omega D=A-A(0) \cos \omega t-\frac{1}{\omega} \sum_{i=0}^{i-1}\left(\mu_{i+1}-\mu_{i}\right) \sin \omega\left(t-t_{i}\right)
$$

If we let $\dot{s}_{k}=\dot{s}\left(t_{k}\right)$ then it is clear that $\nu_{k+1} \approx \dot{s}_{k+1}$. Substituting in (9) we have ${ }^{3}$

$$
\begin{equation*}
x \approx \frac{1}{\omega} \sum_{k=0}^{i-1}\left(s_{k+1}-\dot{s}_{k}\right) \sin \omega\left(t-t_{k}\right) \tag{11}
\end{equation*}
$$

In calculating the maximum displacement, (11) would be more convenient than (9) since s could be obtained by a single integration of $a(t)$.

A REMARK ON THE RECTIFICATION OF THE JOUKOWSKI PROFILE*

By CHARLES SALTZER (Brown University)
The Joukowski profile is usually defined as the image under the Joukowski transformation,

$$
\begin{equation*}
\zeta=z+c^{2} / z \tag{1}
\end{equation*}
$$

of a circle passing through the point $(-c, 0)$ whose center lies in the first quadrant, and whose radius is $c(1+\epsilon)$ where c, and $\epsilon>0$. Although this representation gives the complex potential of the incompressible flow about a Joukowski profile very readily, the representation of this profile as the inverse of a parabola ${ }^{1}$ has the advantage, as will be shown below, of introducing a parameter with direct geometrical meaning which permits the immediate rectification of the Joukowski profile in closed form.

In the z_{1}-plane consider the parabola

$$
\begin{equation*}
y_{1}=\frac{1}{2} x_{1}^{2} \tag{2}
\end{equation*}
$$

[^24]and the point $-(a+b i)$ as a center of inversion. The coefficient of x_{1}^{2} may be taken as $1 / 2$ since it enters only as a scale factor. Only the case $a>0, b>-1 / 2$ will be treated here. ${ }^{2}$ The transformation
\[

$$
\begin{equation*}
\zeta_{1}=\left(z_{1}+a+i b\right)^{-1} \tag{3}
\end{equation*}
$$

\]

maps the exterior of the parabola in the z_{1}-plane on the exterior of a Joukowski profile in the ζ_{1}-plane. For the proper choice of parameters the profiles in the ζ and ζ_{1}-planes can be mapped on each other by a linear transformation and a reflection.

Letting $d s=\left|d \zeta_{1}\right|$ and $d s_{1}=\left|d z_{1}\right|$ we have for the element of arc length on the Joukowski profile by (2) and (3),

$$
\begin{equation*}
d s=\left|z_{1}+a+i b\right|^{-2}\left|d z_{1}\right|=\frac{4\left(1+x_{1}^{2}\right)^{1 / 2}}{4\left(x_{1}+a\right)^{2}+\left(x_{1}^{2}+2 b\right)^{2}} d x \tag{4}
\end{equation*}
$$

This expression can be simplified by separation into partial fractions. The roots of the denominator can be obtained by equating the latter to zero, transposing one term, extracting the square roots of both sides, and solving the two resulting quadratic equations. For the non-symmetrical case $(a>0)$ this enables us to write

$$
\begin{equation*}
s\left(x_{1}\right)=A\left[I\left(\frac{\alpha}{\beta}-\beta,-\beta, d, x_{1}\right)-I\left(\frac{\alpha}{\beta}+\beta, \beta, f, x_{1}\right)\right] \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
I\left(m, p, q, x_{1}\right)=\int_{0}^{x_{1}} \frac{(x+m)\left(1+x^{2}\right)^{1 / 2}}{x^{2}+p x+q} d x \tag{6}
\end{equation*}
$$

and
$\alpha=\frac{\sqrt{2}}{g}\left[1+\left(1+4 a^{2} g^{4}\right)^{1 / 2}\right]^{1 / 2}, \quad \beta=\frac{4 a}{\alpha}, \quad g=(1+2 b)^{-1 / 2}$,
$A=-8 \beta\left[\beta^{4}+4 \beta^{2}+\alpha^{2}\left(\beta^{2}+4\right)\right]^{-1}, d=\frac{1}{4}\left[\beta^{2}+(\alpha+2)^{2}\right], f=\frac{1}{4}\left[\beta^{2}+(\alpha-2)^{2}\right]$.
The integrand of (6) can be rationalized by the substitution

$$
\begin{equation*}
x=\left(1-u^{2}\right) / 2 u \tag{8}
\end{equation*}
$$

which gives

$$
\begin{equation*}
I\left(m, p, q, x_{1}\right)=-\frac{1}{2} \int_{1}^{r-x_{1}} \frac{\left(1+2 m u-u^{2}\right)\left(1+u^{2}\right)^{2}}{u^{2}\left[\left(u^{2}-p u-1\right)^{2}+\left(4 q-p^{2}\right) u^{2}\right]} d u \tag{9}
\end{equation*}
$$

where $r=\sqrt{1+x_{1}}$. The factors of the denominator of this integrand can be found in the same way as the factors of the denominator of (4) were found, and the integration can be carried out directly after expanding (9) in partial fractions with linear and quadratic denominators. It may be remarked that the I's taken individually may not converge over the entire range of u.

The case $a=0$ gives a symmetrical Joukowski profile for which the rectification can be carried out in a simpler way. Here equation (4) becomes

[^25]\[

$$
\begin{equation*}
d s=4\left(1+x_{1}^{2}\right)^{1 / 2}\left[4 x_{1}^{2}+\left(x_{1}^{2}+2 b\right)^{2}\right]^{-1} d x_{1} \tag{10}
\end{equation*}
$$

\]

and equation (5) is replaced by

$$
\begin{equation*}
s\left(x_{1}\right)=\int_{0}^{x_{1}} g\left(1+x^{2}\right)^{1 / 2}\left[\left\{x^{2}+(1-1 / g)^{2}\right\}^{-1}-\left\{x^{2}+(1+1 / g)^{2}\right\}^{-1}\right] d x . \tag{11}
\end{equation*}
$$

Setting

$$
\begin{equation*}
x=t\left(1-t^{2}\right)^{-1 / 2} \tag{12}
\end{equation*}
$$

we get, after simplifying and expanding in fractions with quadratic denominators,

$$
\begin{equation*}
s\left(x_{1}\right)=g \int_{0}^{x_{1}}\left[\left(\sigma_{1}^{2}-t^{2}\right)^{-1}-\left(\sigma_{2}^{2}-t^{2}\right)^{-1}\right] d t, \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma_{1}^{2}=1+g^{2}(1+2 g)^{-1}, \quad \sigma_{2}^{2}=1+g^{2}(1-2 g)^{-1} \tag{14}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
s\left(x_{1}\right)=g\left[\sigma_{1}^{-1} \tanh ^{-1}\left\{x_{1} \sigma_{1}^{-1}\left(1+x_{1}^{2}\right)^{-1 / 2}\right\}-\sigma_{2}^{-1} \tanh ^{-1}\left\{x_{1} \sigma_{2}^{-1}\left(1+x_{1}^{2}\right)^{-1 / 2}\right\}\right] . \tag{15}
\end{equation*}
$$

If we denote the slope of the parabola at the point $\left(x_{1}, x_{1}^{2} / 2\right)$ by $\tan \gamma$ and note that $x_{1}=\tan \gamma$, we can write (15) as

$$
\begin{equation*}
s(\gamma)=g\left[\sigma_{1}^{-1} \tanh ^{-1}\left(\sigma_{1}^{-1} \sin \gamma\right)-\sigma_{2} \tanh ^{-1}\left(\sigma_{2}^{-1} \sin \gamma\right)\right] \tag{16}
\end{equation*}
$$

where s is measured from the point furthest from the trailing edge.
In order to introduce the usual parameters ϵ and c for the symmetrical case of the Joukowski profile ${ }^{3}$ consider the circle in the z-plane,

$$
\begin{equation*}
z(\phi)=c\left[\epsilon+(1+\epsilon) e^{1 \phi}\right] \tag{17}
\end{equation*}
$$

which is the image of a symmetrical Joukowski profile in the ζ-plane. The distance between the leading and trailing edges of the Joukowski profile in the ζ-plane is (recalling Eq. (1))

$$
\begin{equation*}
\zeta[z(0)]-\zeta[z(\pi)]=\frac{4 c(1+\epsilon)^{2}}{1+2 \epsilon} \tag{18}
\end{equation*}
$$

From (3) the corresponding length in the ζ_{1}-plane is seen to be $1 / b$ (i.e. the length in the ζ_{1}-plane of the image of the upper half of the imaginary axis in the z_{1}-plane). If the profile in the ζ_{1}-plane is identified with the profile in the ζ-plane then

$$
\begin{equation*}
b=\frac{1}{1}(1+2 \epsilon)(1+\epsilon)^{-2} c^{-1} . \tag{19}
\end{equation*}
$$

If the vertex of the parabola in the x_{1}-plane which corresponds to the given Joukowski profile in the ζ-plane is at the origin, and if the x_{1}-axis coincides with the tangent to the parabola at this point, then it is readily seen by comparing the positions of the profiles in the ζ-plane and the ζ_{1}-plane that

$$
\begin{equation*}
\zeta_{1}=-i(\zeta+2 c) . \tag{20}
\end{equation*}
$$

Since $a=0$, Eq. (3) can be written

$$
\begin{equation*}
z_{1}=\frac{1}{\zeta_{1}}-i b \tag{21}
\end{equation*}
$$

[^26]The successive substitution into Eq. (21) of Eqs. (20), (1), (17), and (19) gives after simplification

$$
\begin{equation*}
z_{1}=x_{1}+i y_{1}=\frac{\epsilon}{2 c(1+\epsilon)^{2}} \tan \frac{1}{2} \phi+i \frac{1}{4 c(1+\epsilon)^{2}} \tan ^{2} \frac{1}{2} \phi . \tag{22}
\end{equation*}
$$

This is the parabola

$$
\begin{equation*}
y_{1}=c \epsilon^{-2}(1+\epsilon)^{2} x_{1}^{2} . \tag{23}
\end{equation*}
$$

Since a change in the value of c, effects only a change of scale in the ζ-plane, c may be taken without loss of generality as

$$
\begin{equation*}
c=\frac{1}{2} \epsilon^{2}(1+\epsilon)^{-2}, \tag{24}
\end{equation*}
$$

and this parabola becomes the one considered in Eq. (2). Setting this value of c in (19) yields

$$
\begin{equation*}
b=\frac{1}{2}(1+2 \epsilon) \epsilon^{-2} . \tag{25}
\end{equation*}
$$

Hence, by Eqs. (7) and (14),

$$
\begin{equation*}
\sigma_{1}^{2}=(1+2 \epsilon)^{2} /(1+\epsilon)(1+3 \epsilon), \quad \sigma_{2}^{2}=1 /\left(1-\epsilon^{2}\right), \quad g=\epsilon /(1+\epsilon) \tag{26}
\end{equation*}
$$

Formulae (15) and (16) are valid for $\sigma_{1}>0, \sigma_{2}>0$, i.e., for $\epsilon<1$ and thus include those profiles whose thicknesses is less than about $4 / 5$ of their lengths.

It may also be noted that in terms of the variable γ, the slope, $\theta(\gamma)$, and the curvature, $d \theta(\gamma) / d s$, for the symmetrical profile may be written as

$$
\begin{align*}
\theta(\gamma) & =\gamma-\arctan \left\{\frac{4 \tan \gamma\left(\tan ^{2} \gamma+(1+2 \epsilon) / \epsilon^{2}\right)}{4 \tan ^{2} \gamma-\left[\tan ^{2} \gamma+(1+2 \epsilon) / \epsilon^{2}\right]^{2}}\right\}, \tag{27}\\
\frac{d \theta(\gamma)}{d s} & =\frac{\sec \gamma}{8 c}\left[(1+3 \epsilon)(1-\epsilon) \epsilon^{-2} \cos ^{4} \gamma+6 \cos ^{2} \gamma-3 \epsilon^{2} /(1+\epsilon)^{2}\right] . \tag{28}
\end{align*}
$$

CORRECTION AND SUPPLEMENT TO OUR PAPER

THE CYLINDRICAL ANTENNA: CURRENT AND IMPEDANCE*

Quarterly of Applied Mathematics 3, 302-335 (1946)

By RONOLD KING and DAVID MIDDLETON (Harvard Universily)

Equation (58) should be written as follows:

$$
\psi \equiv \bar{\Psi}= \begin{cases}\left|\Psi_{K_{1}}(0)\right|=\left|\psi_{1}(0)\right| / \sin \beta h ; & \beta h \leqq \pi / 2 \tag{58}\\ \left|\Psi_{K_{1}}(h-\lambda / 4)\right|=\left|\psi_{1}(h-\lambda / 4)\right| ; & \beta h \leqq \pi / 2 .\end{cases}
$$

Two lines before this equation $\left|\psi_{1}(0)\right| / \sin \beta h$ should be written instead of $\left|\psi_{1}(0)\right|$.
These changes involve no alternations in the figures. However, the function $|\psi(0)|$ plotted in Fig. 11 to the left of $\beta h=\pi / 2$ is not the parameter of expansion ψ defined by (58) as modified above and as indicated in the caption. The parameter of expansion ψ as defined in (58) is plotted in Fig. 11a where the part to the right of $\beta h=\pi / 2$ is the same as in Fig. 11, the part to the left of $\beta h=\pi / 2$ is obtained from the curves in Fig. 11 by dividing by $\sin \beta h$.

[^27]For small values of βh a convenient approximate formula is

$$
\Psi_{K_{1}}(0)=\Omega-2-j \beta h ; \quad \beta h<0.5
$$

so that

Fig. 11a. The expansion parameter ψ as defined in the corrected equation (58).
The following minor errors and misprints have been called to our attention:
page 312 , Eq. (43) change Ψ to ψ,
page 319 , Eqs. (59) and 62), change $\Psi_{k_{1}}(z)$ to ψ; line following Eq. (61), delete the following: $\gamma(z)=0$ and
page 320, Eqs. (69) and (70), change b to Ω; Eq. (76), insert $1 /(n-1)$! after the first equality sign,
page 323, Eq. (77b), change 4 to ψ, page 324, Eq. (79), insert ψ after R_{c}, page 329 , Eq. (19), third line, change ($R_{2 \hbar}+u_{2}$) to $\left(R_{2 h}-u_{2}\right)$,
page 330, Eqs. (23) and (27), page 335 Eqs. (45) and (46), and in the integral preceding Eq. (45), change $R_{2 \hbar}$ to $u_{2}, R_{1 \hbar}$ to u_{1}, throughout,
page 330, Eq. (24) replace by: $u_{2}=(h+z) ; u_{1}=(h-z)$,
page 332, Eq. (43), add superscript bar over first three symbols Ci.

BOOKS-WAR VICTIMS

During the war, the libraries of half the world were destroyed in the fires of battle and in the fires of hate and fanaticism. Where they were spared physical damage, they were impoverished by isolation. There is an urgent need-now-for the printed materials which are basic to the reconstruction of devastated areas and which can help to remove the intellectual blackout of Europe and the Orient.

There is need for a pooling of resources, for coordinated action in order that the devastated libranjes of the world may be restocked as far as possible with needed American publications. The American Book Center for War Devastated Libraries, Inc. has come into being to meet this need.

The American Book Center is collecting and is shipping abroad scholarly books and periodicals which will be useful in research and necessary in the physical, economic, social and industrial rehabilitation and reconstruction of Europe and the Far East.

The Center camnot purchase books and periodicals; it must depend upon gifts from individuals, institutions, and organizations.

All shipments should be sent PREPAID via the cheapest means of transportation to THE AMERICAN CENTER, c/o THE LTBRARY OF CONGRESS, WASHINGTON 25, D.C. Although the Center hopes that donors will assume the costs of transportation of their materials to Washington, when this is not possible reimbursement wilf be made upon notification by card or letter of the amount due. THE CENTER CANNOT ACCEPT MATERIAL WHICH IS SENT COLLECT. Reimbursement cannot be made for packing or other charges beyond actual transportation.

ATTENTION SCIENTISTS

PROBABILITIES

Wahrscheinlickkeitsrechnung und ihre Anwendang in der Statistik and theoretischen Physilk. By Richard yon Meses.
Only edition 1931. 574 pages. 90 figures. Photoreprint 1945.
$\$ 7.50$

CALCULUS

Lehrhuch der Mathematik für Stndierende der Naturwissenschaften und der Technik. By Genbe Scheffers.
Bth edition 1940. 743 pages. 438 figures, Photoreprint 1945.
86.50

ELECTRONICS

Einführung in die Elekiroxilk, By OTro Klemperer.
The experimental physics of free electrons in the light of classical theory and of wavemechanics.
Only edition 1933. 303 pages. 207 figures. Photoreprint 1944.

EXPERIMENTAL PHYSICS

Praktische Physik. By Fbiedrich Kohlrausce To be used for teaching, rescarch and engineering.
17th completely revised edition, edited by F. Henning in collaboration with E. Bredhun, W. Jaeger, and others. 1935. 958 pages 512 figures. Photo-reprint 1944.
88.75

EQUATIONS

Die Differential- und Integralgleichungen der Mechanik und Physik. Bx Pazupp Frank and Riceard von Mises. Constituting the 8th edition of RIEMANNWEBER'S "Partial Differential Equations of Mathematical Physics."
2nd (latest) edition, 1930/35. 2 volumes, 2020 pages. Photo-reprint 1943. Vol. I: Mathematics $\$ 12.50$. Vol. 2: Physics $\$ 15.00$.
The set
$\$ 27.50$

REFERENCE

Philosophisches Wörterbuch. By HETNRYCH Scemidit.
8th revised and enlarged edition 1931. 476 pages with a chronological survey and 32 photos. Photo-reprint 1945.
83.50

No charge for postage in the U.S. when payment accompanies order.

CONTENTS

E. T. Bell: Harry Bateman 105
I. J. Schoenberg: Contributions to the problem of approximation of equidistant data by analytic functions. Part B-On the problem of osculatory interpolation. A second class of analytic approxima- tion formulae 112
H. A. Rademacher and I. J. Schoenberg: An iteration method for calculation with Laurent series 142
G. F. Carrier: The propagation of waves in orthotropic media 160
J. I. Synge: Reflection in a corner formed by three plane mirrors 166
E. BodewIG: On Graeffe's method for solving algebraic equations. 177
Notes:
W. R. Sears: On compressible flow about bodies of revolution 191
A. C. Sugar: On the numerical treatment of forced oscillations 193
C. Saltzer: A remark on the rectification of the Joukowski profile 196
R. King and D. Middleton: Correction and supplement to our paper "The cylindrical antenna: current and impedance" 199
New Books . . . Mc Graw-みill

RUDIMENTARY MATHEMATICS FOR ECONOMISTS AND STATISTICIANS

By W. L. Crum and Joseph A. Schumpeter, Harvard University. 203 pages, $\$ 2.50$ Presents rudimentary ideas and operations essential to any effective mathematical reasoning by economists and statisticians. Covers graphic analysis, simplest case; curves and equation; limits; rates and derivatives; maxima and minima, differential equations; and determinants.

MATHEMATICAL THEORY OF ELASTICITY

By I. S. Sokolnikoff, University of Wisconsin. 373 pages, $\$ 4.50$
Writing from the point of view of a mathematician, the author provides a thorough foundation in the mathematical theory of elasticity, followed by the application of the theory to problems on extension, torsion, and flexure of isotropic cylindrical bodies. There is a detailed treatment of variational methods in the theory of elasticity.

Send for copies on approval

McGRAW-HILL BOOK COMPANY, Inc.

330 West 42nd Street

New York 18, N.Y.

[^0]: Entered as second class matter March 14, 1944, at the post office at Providence, Rhode Island, under the act of March 3, 1879. Additional entry at Menasha, Wisconsin.

[^1]: * Professor Bateman was a member of the Board of Collaborators of the Quarterly of Applied Mathematics from its foundation to his lamented decease.

[^2]: * This bibliography was prepared by Joan Bateman. The following abbreviations are used: Bull. A. M. S. = Bulletin of the American Mathematical Society; Mess. = Messenger of Mathematics; Proc. C. P. S. $=$ Proceedings of the Cambridge Philosophical Society; Proc. L. M. S. $=$ Proceedings of the London Mathematical Society; Proc. N. A. S. = Proceedings of the National Academy of Sciences; Trans. A. M. S. $=$ Transactions of the American Mathematical Society; Trans. C. P. S. $=$ Transactions of the Cambridge Philosophical Society.

[^3]: * Received Oct. 18, 1945. Part A of this paper appeared in this Quarterly 4, 45-99 (1946).
 ${ }^{1}$ The connection of these types characteristics with the notation as used by Greville in his paper The general theory of osculatory inter polation, Trans. Actuar. Soc. Amer., 45, pp. 202-265 (1944), especially pp. 210-211, is as follows: The first three symbols D^{m}, C^{μ}, E^{k}, require no further comment since they are identical respectively with the characteristics 4,1 , and 6 of Greville's classification, pp. 210-211. There remain three further characteristics to be discussed: (i) Whether the formula (1) is an "end-point" or "mid-point" formula. This point is of importance if (1) is written in terms of certra! differences, since it, then reduces to either the Everett or else the Steffensen form. The following statement is obvious: The formula (1) is an "end point" or "mid-point" formula depending on whether the span sis even or odd.
 (ii) Greville's adjectives "ordinary" and "modified" agree respectively with our "ordinary" and "smoothing."
 (iii) The highest order d of differences involved (explicitly or implicitly). We start with the following question: Let x be given. Hozw many ordinates y_{n} enter info the compputation of $F(x)$ by (1)? Assuming that $L(x)$ is continuous, hence $=0$, at the end point $x=s / 2$ of its span, we have $L(x-n) \neq 0$, as long as n in such that

 $$
 |x-n|<s / 2 .
 $$

[^4]: quires all y_{n} such that $-\sigma<n<\sigma+1$ that is $s=2 \sigma$ consecutive ordinates. Let $s=2 \sigma+1$ be odd (mid-point formula) and let x be anywhere within $-\frac{1}{2} \leqq x \leqq \frac{1}{2}$. Again by (${ }^{*}$) $F(x)$ now requires all y_{n} such that $-\sigma-1<n<\sigma+1$, hence again $s=2 \sigma+1$ consecutive ordinates. We have therefore proved the following: The highest order d of diferences involved is always related with the span s by the relation $s=d+1$.
 ${ }^{2}$ The symbol C^{-1} is to indicate the class of piecewise continuous functions.

[^5]: ${ }^{3}$ Problems of this kind concerning polygonal lines of a certain degree and class are of importance for the theory of formulae of mechanical quadratures. The author expects to discuss this connection elsewhere.

[^6]: ${ }^{5}$ The formula (59) is especially instructive because we can observe very clearly how the addition to $C_{k}(x)$ of the extra term removes the crudest discontinuities of $C_{k}(x)$. Indeed, by the formula (*) of our preceding footnote we may write (59) as

[^7]: * Received Nov. 6, 1945.
 ${ }^{1}$ I. J. Schoenberg, Contributions to the problem of approximation of equidistant data by analytic. funcfions, Part A, Quart. Appl. Math.
 ${ }^{2}$ H. Hotelling, Some new methods in matrix calculation, Ann. Math. Statist. 14, 1-34 (1943), especially p. 14, and Further points in matrix calculation and simultaneous eguations, Ann. Math. Statist. 14, 440-441 (1943).

[^8]: ${ }^{3}$ We learn from a note by J. S. Frame, Remarks on a variation of Newton's method, Amer. Math. Monthly, 52, 212-214 (1945), that preciscly the same modification of Newton's algorithm has already been used since 1942 by H. Schwerdtfeger, of the University of Adelaide, South Australia, for the numerical solution of ordinary algebraic and transcendental equations.

[^9]: - See Hotelling's second note already mentioned.

[^10]: ${ }^{6}$ Concerning the subject of trigonometric interpolation we refer to the classical memoir by Ch. J. de la Vallee Poussin, Sur la convergence des formules d'interpolation entre ordonées equidistantes, Bulletin de 1'Academie royale de Belgique, 319-410 (1908), and to Dunham Jackson, The theory of approximation, American Mathematical Society Colloquium Publications, vol. 11, New York, 1930, chap. IV.

[^11]: - See Dunham Jackson, loc. cit., for other conditions insuring the convergence of trigonometric interpolation.

[^12]: ${ }^{7}$ See Antoni Zygmund, Trigonomelrical series, Warszawa-Lwow, 1935, pp. 140-142.

[^13]: * Received August 18, 1945.
 ${ }^{1}$ G. F. Carrier, The thermal stress and body force problems of the infinite orthotropic solid, Quart. Appl. Math. 2, 31-36 (1944).
 ${ }^{2}$ The isotropy implies that $b_{22}=b_{33}, b_{12}=b_{13}, b_{14}=\left(b_{22}-b_{23}\right) / 2$.
 ${ }^{3}$ These conditions are imposed in order that the roots of Eq. (8) will appear in a useful form. They include isotropic media as a special case.

[^14]: - This condition may be justified by noting that functions describing a time dependent phenomenon which originated at t_{0} in a defined region of the medium must vanish at infinity for all time t.
 ${ }^{5}$ The procedure thus far has been identically that of the reference in footnote 1.
 ${ }^{6}$ Here, $A_{k_{i}}$ is the A_{i} of Eq. (7) corresponding to ω_{k}.

[^15]: T The angle ν should now be measured about r_{1}.
 ${ }^{8}$ The final step is due to the inverse relationship implied by' Eq. (13).

[^16]: ${ }^{0}$ Actually, all derivatives of B / r_{2} constitute solutions.

[^17]: ${ }^{10}$ Again we use the type of coordinate transformation which led to Eq. (12).

[^18]: * Received Feb. 1, 1946.
 \dagger Part of this work was done by the author at the Ballistic Research Laboratory, Aberdeen Proving Ground.

[^19]: * Received Sept. 28, 1945.

[^20]: * Received Jan. 14, 1946.
 ** Now at Cornell University.
 ${ }^{1}$ S. Goldstcin and A. D. Young, The linear perturbation theary of compressible flow with applicalions $t o$ wind-funnel interference, British Aero. Res. Com. Reports and Memoranda No. 1909 (1943).
 ${ }^{2}$ H. S. Tsien and L. Lees, The Glauert-Prandll approximation for subsonic flow of a compressible fluid, J. Aero. Sci. 12, 173-187, 202 (1945).
 ${ }^{3}$ H. W. Liepmann and Λ. Puckett, Introduction to the aerodynamics of compressible fuids, John Wiley and Sons, New York, 1946.
 ${ }^{4}$ R. Sauer, Theoretische Einfilhrung in die Gasdynamik, Springer, Berlin, 1943. Reprinted by Edwards Bros., Inc., Ann Arbor, 1945.
 ${ }^{5}$ B. Göthert, Ebene und räumliche Strömung bei hohen Unterschallgeschwindigkeiten, Lilienthal Gesellschaft f. Luftfahrtforschung, Bericht 127, 97-101 (1940).

[^21]: "Göthert admits a correction "for greater thickness ratio" and proceeds to calculate it by means of Method V above.

 7 This is obtained from H. Lamb, Hydrodynamics, Cambridge, 1932, §105. Note that the ratio diameter/length, n, is equal to $\sqrt{1-50^{-2}}$ in Lamb's notation.

[^22]: * Received Oct. 1, 1945.
 ** Now at Brown University.

[^23]: ${ }^{1}$ A mechanical analyzer was invented by M. A. Biot to obtain this maximum [Bulletin Seismological Soc. Amer. 31, 151-171 (1941)].
 ${ }_{2}$ As was done by G. W. Housner in obtaining his formulas (2) and (3), Bulletin Seismological Soc. Amer. 31, 143-149 (1941).

[^24]: ${ }^{3}$ It is interesting to note that the sum in (11) is the so-called left Cauchy-Stieltjes sum corresponding to D.

 * Received Aug. 17, 1945.
 ${ }^{1}$ In this way the profile later called "Joukowski profile" was introduced by Chaplygin. See Chapylgin's Collected Papers, Leningrad 1933, vol. 2, pp. 144-178, in particular $\$ 6$.

[^25]: ${ }^{2}$ This configuration represents the most frequently used Joukowski profiles to within a scale factor and a reflection. The case $a<0$, by reason of symmetry, can be regarded as a reflection of the case $a>0$, and the case $b \leqq-1 / 2$ can be treated in a way similar to the treatment of the case $b>-1 / 2$.

[^26]: ${ }^{3}$ See, for instance, H. Glauert, The elements of aerofoil and air screw theory, The University Press, Cambridge, 1930, pp. 71-75.

[^27]: * Received Jan. 25, 1946.

