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I&anv J3ateman*
29 May, 1882—21 January, 1946

In the sudden death (from coronary thrombosis) of Harry Bateman while en route
to New York, near Milford, Utah, mathematics in the United States lost its outstand-
ing representative of the British School of the generation just closing. Like his con-
temporaries and immediate predecessors among Cambridge mathematicians of the
first decade of this century, before the new regulations for the Mathematical Tripos
took effect, Bateman was thoroughly trained in both pure analysis and mathematical
physics, and retained an equal interest in both throughout his scientific career. In
bare outline the relevant details of his life are as follows:

Harry Bateman was born at Manchester, England, 29 May, 1882, a son of Samuel
and Marnie Elizabeth (Bond) Bateman, and received his secondary education at the
Manchester Grammar School. Bateman ascribed much of his subsequent success at
Trinity College, Cambridge, to the excellent instruction he received at the school.
In 1903 he was (bracketed) Senior Wrangler in the Tripos, and took his B.A. degree,
proceeding to the M.A. in 1906, having been a Smith’s Prizeman in 1905. From 1905
to 1911 he was a Fellow of Trinity College: the year 1905-06 was spent in study at
Gottingen and Paris. From 1906 to 1907 he was a lecturer at the University of Liver-
pool, and from 1907 to 1910 a reader at the University of Manchester. He came to
the United States in 1910 (he later became a naturalized U. S. citizen), as a lecturer
at Bryn Mawr College, where another English mathematician, the late Charlotte
Angas Scott, was the efficient and scholarly head of the mathematics department.
In 1912, he went to the Johns Hopkins University as a Johnston scholar for three
years, incidentally taking his Ph.D. (a curious proceeding for a mathematician of his
eminence) in 1913. From 1915 to 1917 he was a lecturer at Johns Hopkins, and in
1917 he accepted the position which he held till his death, a professorship of mathe-
matics, physics, and aeronautics at the then recently organized California Institute
of Technology. He was a member of the American Mathematical Society (vice-
President, 1935, Gibbs lecturer, 1943), the American Physical Society, the American
Acoustical Society, the American Philosophical Society, the British Association for
the Advancement of Science, the London Mathematical Society, the National (U. S.)
Academy of Sciences, and a Fellow of the Royal Society (London). He is survived
by his wife, Ethel (Horner Dodd) Bateman, and his daughter, Joan; a son died in
childhood.

* Professor Bateman was a member of the Board of Collaborators of the Quarterly of Applied M athe-
matics from its foundation to his lamented decease.
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Bateman was an almost unique combination of erudition and creativeness. It is
most unusual fora mathematician to have the extraordinary range of exact knowledge
that Bateman had, and not be crushed into sterility by the mere burden of an oppres-
sive scholarship. But, as his numerous publications testify, Bateman retained his
creative originality till his death. In pure mathematics, his dominating interest was
in the analysis that has developed from classical mathematical physics. His technical
skill in this broad field was unrivalled. His numerous contributions to mathematical
physics are marked by a vivid, at times almost romantic, imagination. Students of
the history of general relativity will find much of interest in some of his papers on
electromagnetism.

A singularly modest and gentle man, Bateman was always ready to place his skill
and his knowledge at the disposal of others, with no thought of personal credit. War
work absorbed most of his time during the last four years of his life; and it is to be
regretted that the incessant correspondence in connection with such work prevented
him from putting the finishing touches to what he regarded as his most useful con-
tributions to mathematical scholarship: an exhaustive work on definite integrals, and
a critical census of all the special functions that have been considered in mathematics.
If these works can be put into shape for publication, they will form a lasting memorial
to Harry Bateman.

E. T. Bell
April, 1946.
LIST OF PUBLICATIONS BY HARRY BATEMAN*
1. Question 14943. Educational Times (2) 1, 98-100 (1902).
2. Question 15119. Educational Times(2) 3, 110-111 (1903).
3. Question 15221. Educational Times(2) 4, 88 (1903).
4. The determination of curves satisfying given conditions. Proc. C. P. S. 12, 163-171 (1903).
5. Question 15440. Educational Times(2) 5, 68 (1904).
6. Question 15388. Educational Times(2) 5, 105-106 (1904).
7. The solution of partial differential equations by means of definite integrals. Proc. L. M. S. (2) 1,451-458
(1904).

8. Certain definite integrals and expansions connected with the Legendre and Bessel functions. Mess. (2)
33, 182-188 (1904).

9. A generalisation of the Legendre polynomial. Proc. L. M. S. (2) 3, 111-123 (1905).

10. The Weddle quartic surface. Proc. L. M. S. (2) 3, 225-238 (1905).

11. The correspondence of Brook Taylor. Bibliotheca Math. (3) 7, 367-371 (1906).

12. Note on the solution of linear differential equations by means of definite integrals. Mess. (2) 35, 140-
141 (1906).

13. The theory of integral equations. Proc. L. M. S. (2) 4, 90-115 (1906).

14. On the inversion of a definite integral. Proc. L. M. S. (2) 4, 461-498 (1906).

15. Sur Vtqualion de Fredholm. Darb. Bull. (2) 30, 264-270 (1906).

16. A class of integral equations. Trans. C. P. S. 20, 233-252 (1906).

17. A type of hyperelliptic curve and the transformations connected with it. Quart. J. Math. 37, 277-286
(1906).

18. On an expansion of an arbitraryfunction in a series of Bessel functions. Mess. (2) 36, 31-37 (1906).

19. On definitefunctions. Mess. (2) 37, 91-95 (1907).

*This bibliography was prepared by Joan Bateman. The following abbreviations are used: Bull.
A. M. S.= Bulletin of the American Mathematical Society; Mess. = Messenger of Mathematics; Proc.
C. P. S. = Proceedings of the Cambridge Philosophical Society;Proc. L. M. S. = Proceedings of the London
Mathematical Society; Proc. N. A. S. = Proceedings of the National Academy of Sciences; Trans. A. M. S.
= Transactions of the American Mathematical Society; Trans. C. P. S. = Transactions of the Cambridge
Philosophical Society.
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20. The inversion of a definite integral. Math. Ann. 63, 525-548 (1907).

21. The application of integral equations to the determination of expansions in series of oscillatingfunctions.
Trans. C. P. S. 20, 281-290 (1907).

22. The reality of the roots of certain transcendental equations occurring in the theory of integral equations.
Trans. C. P. S. 20, 371-382 (1907).

23. (H. B.and D. M. Y. Sommerville). Question 16009. Educational Times (2) 11, 57-61 (1907).

24. Some geometrical theorems occurring in hydrostatics. Mess. (2) 37, 119-123 (1907).

25. A formulafor the solving function of a certain integral equation of the second kind. Mess. (2) 37, 179—
187 (1908).

26. Notes on integral equations. I. The integral equation of the first kind. Mess. (2) 38, 8-13 (1908).

27. Notes on integral equations. I1. The method of least sqmres. Mess. (2) 38, 70-76 (1908).

28. On the application of integral equations to the determination of upper and lower limits to the value of a
double integral. Trans. C. P. S. 21, 123-128 (1908).

29. On essentially positive double integrals and the part which they play in the theory of integral equations.
British Ass. Rep. (Leicester) 77, 447-449 (1908).

30. Question 16090. Educational Times (2) 13, 72-74, 91 (1908).

31. The tangent plane which can be drawn to an algebraic surfacefrom a multiple line. Arch, der M ath, und
Phys. (3) 13, 48-51 (1908).

32. A method of calculating the number of degrees of freedom of a molecule among which the partition of
energy is governed by the principal temperature. Manchester Mem. and Proc. 53, 1-9 (1908).

33. The solution of linear differential equations by means of definite integrals. Trans. C. P. S. 21, 171-196
(1909).

34. Notes on integral equations. I11. The homogeneous integral equation of the first kind. Mess. (2) 39,
6-19 (1909).

35. The conformal transformations of a space offour dimensions and their applications to geometric optics.
Proc. L. M. S. (2) 7, 70-89 (1909); British Ass. Rep. (Dublin) 78, 627-629 (1909).

36. The reflexion of light at an ideal plane mirror moving with a uniform velocity of translation. Phil. Mag.
(6) 18, 890-895 (1909).

37. The solution of a system of differential equations occurring in the theory of radio-active transformations.
Proc. C. P. S. 15, 423-427 (1910)..

38. The linear difference equation of the third order and a generalisation of a continued fraction. Quart. J.
Math. 41, 302-308 (1910).

39. The solution of the integral equation connecting the velocity of propagation of an earthquake-wave in the
interior of the earth with the times which the disturbance lakes to travel to the different stations on the
earth’s surface. Phil. Mag. (6) 19, 576-587 (1910); Physik. Zs. 11, 96-99 (1910).

40. Notes on integral equations. IV. The expansion theorems and the integral equation of the first kind.
Mess. (2) 39, 129-135 (1910).

41. Notes on integral equations. V. Integral equations with variable limits. Mess. (2) 39, 173-178 (1910).

42. Notes on integral equations. V1. The homogeneous integral equation of thefirst kind. Mess. (2) 39, 182—
191 (1910).

43. Report on the history and present state of the theory of integral equations. British Ass. Rep. (Sheffield)
80, 345-424 (1910).

44. The determination of solutions of the equation of wave motion involving an arbitrary function of three
variables which satisfies a partial differential equation. Trans. C. P. S. 21, 257-280 (1910).

45. Question 16215. Educational Times (2) 18, 86-87 (1910).

46. A system of circles derivedfrom a cubic space curve and the properties of a certain configuration offifteen
lines. Mess. (2) 40, 81-87 (1910).

47. Rummer's quartic surface as a wave surface. Proc. L. M. S. (2) 8, 375-382 (1910).

48. The physical aspect of lime. Manchester Soc. Mem. 54, 13 p. (1910).

49. Correction lo Mr. II. Bateman’s paper on the Reflexion of light at an ideal plane mirror moving with a
uniform velocity of translation. Phil. Mag. (6) 19, 824 (1910).

50. Elementare elektronensysteme. (Elementary systems of electrons.) Physik. Zs. 11, 318-320 (1910).

51. The transformation of the electrodynamical equations. Proc. L. M. S. (2) 8, 223-264 (1910).

52. The transformation of coordinates which can be used to transform one physical problem into another.
Proc. L. M. S. (2) 8, 469-488 (1910).

53. The relation between electromagnetism and geometry. Phil. Mag. (6) 20, 623-628 (1910).

54. On the probability distribution of a-particles. PJjiM &gEsl6) 20, 704-707 (1910).
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Notes o1 integral equations. V11. The solution of partial differential equations by means of definite
integrals. Mess. (2) 41, 94-101 (1911).

Thefoci of a circle in space and some geometrical theorems connected herewith. British Ass. Rep. (Shef-
field) 80, 532-533 (1911).

Some problems in the theory of probability. Phil. Mag. (6)21, 745-752 (1911).

The transformation of a particular type of electromagnetic field and its physical interpretation. Proc.
L. M. S. (2) 10, 7-14 (1911).

On certain vectors associated with an electromagneticfield and the reflection of a disturbance at the surface
of a perfect conductor. Proc. L. M .S. (2) 10, 96-115 (1911).

The fundamental equations of the theory of electrons and the infinitesimal transformation of an electro-
magneticfield into itself. Bull. A. M. S. (2) 17, 525 (1911).

On a set of kernels whose determinantsform a Slurmian sequence. Bull. A. M. S. (2) 18, 179-182 (1912).
Notes on integral equations. V I11. Some simple definite integrals derived from the formulae of Fourier
and Abel. Mess. (2) 41, 180-184 (1912).

Some geometrical theorems connected with Laplace's equation and the equation of wave motion. Amer. J.
M ath. 34, 325-360 (1912).

A new type of solution of Laplace's equation. Ann. M ath. (2) 14, 51-56 (1912).

Some equations of mixed differences occurring in the theory of probability and the related expansions in
series of Bessel’s functions. Proc. 5 Intern. Math. Congr. 1, 291-294 (1913).

Sonin's polynomials and their relation to otherfunctions. Bull. A. M. S. (2) 19, 394 (1913).

The double tangents of a binodal quartic. Amer. J. Math. 35, 57-78 (1913).

The expression of the equation of the general quartic curve in theform A/xx’-\-B/yy’~rC/zz’= 0. Bull.
A. M. S. (2) 19, 393-394 (1913).

The degenerate cases of Hierholzer’s oclavic surface. Johns Hopkins Univ. Circ. 7, 42-46 (1913).
Corpuscular radiation. Phil. Mag. (6) 26, 579-585 (1913).

A new type of solution of Maxwell's equations. Ann. Math. (2) 15, 106-111 (1914).

A general result in the theory of partial differential equations. Mess. (2) 43, 164-171 (1914).

The quartic curve and its inscribed configurations. Amer. J. Math. 36, 357-386 (1914).

The classification of electromagneticfields. Phil. Mag. (6) 27, 136-147 (1914).

Some recent researches on the motion offluids. Monthly W eather Review 43, 163-170 (1915).

On a porism connected with the theory of Maxwell's equations and a method of obtaining the lines of electric
force due to a moving point charge. Amer. J. Math. 37, 192-194 (1915).

The mathematical analysis of electrical and optical wave-motion on the basis of Maxwell's equations.
Cambr. Univ. Press, vi+ 159 p. (1915).

On systems of partial differential equations and the transformation of spherical harmonics. Proc. Edinb.
Roy. Soc. 36, 300-312 (1915).

On certain solutions of Maxwell's equations. Mess. (2) 45, 1-11 (1915).

Time and electromagnetism. Mess. (2) 45, 97-115 (1915).

The structure of the aether. Bull. A. M. S. (2) 21, 299-309 (1915).

On multiple electromagneticfields. Bull. A. M. S. (2) 22, 377 (1916).

A certain system of linear partial differential equations. Bull. A. M. S. (2) 22, 329-335 (1916).

On the relation of the theory of integral equations to the subject of the calculus of operations and functions.
Science Prog. 11, 508-512 (1917).

Some fundamental concepts of electrical theory. Phil. Mag. (6) 34, 405-423 (1917).

On the motion of continuous distributions of electricity. Mess. (2) 46,136-145 (1917).

Doppler's principlefor a windy atmosphere. Monthly W eather Review 45, 441-442 (1917).

Some differential equations occurring in the electrical theory of radiation. Mess. (2) 47, 161-173 (1918).
On a solution of the wave-equation. T6hoku Math. J. 13, 205-209 (1918).

The electromagnetic vectors. Phys. Rev. (2) 12, 4597181 (1918).

Mathematical theory of sound ranging. Monthly Weather Review 46, 4-11 (1918).

The structure of an electromagneticfield. Proc. N. A. S. 4, 140-145 (1918).

The solution of the wave equation by means of definite integrals. Bull. A. M. S. (2) 24, 296-301 (1918).
Differential equations. London. Longmans, Green & Co., xi+306 p. (1918).

The nature of a moving electric charge and its lines of electricforce. Proc. L. M. S. (2) 18, 95-135 (1919).
On general relativity. Phil. Mag. (6) 37, 219-223 (1919).

Rotating cylinders and rectilinear vortices. Bull. A. M. S. (2) 25, 358-374 (1919).
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98. Radiationfrom a moving magneton. Proc. N. A. S. 5, 367-371 (1919); Mess. (2) 48, 56-76 (1919).

99. On a differential equation occurring in Page's theory of electromagnetism. Proc. N. A. S. 6, 528-529
(1920).

100. An integral equation occurring in a mathematical theory of retail trade. Mess. (2) 49, 134-137 (1920).

101. A differential equation occurring in the theory of the propagation of waves. Mess. (2) 50, 95-101 (1920).

102. Notes on electrical theory. Bull. A. M. S. (2) 27, 217-225 (1921).

103. Correspondences between three-dimensional and four-dimensional potential problems. Mess. (2) 51, 151—
160 (1921).

104. Electricity and gravitation. Phys. Rev. (2) 17, 64-69 (1921).

105. An electromagnetic theory of radiation. Phil. Mag. (6) 41, 107-113 (1921).

106. On lines of electric induction and the conformal transformations of a space of four dimensions. Proc.
L. M. S. (2) 21, 256-270 (1922).

107. Some problems in potential theory. Mess. (2) 52, 71-78 (1922).

108. The stress-energy tensor in electromagnetic theory and a new law offorce. Phys. Rev. (2) 20, 243-248
(1922).
109. On the numerical solution of linear integral equations. Proc. Roy. Soc. London 100A, 441—149(1922).
110. Equations for the description of electromagnetic phenomena. Bull. Nat. Research Council 4,96-161
(1922).

111. Electromagnetism and dynamics. Mess. (2) 52, 116-128 (1922).

112. On the conformal transformations of a space offour dimensions and lines of electricforce. Proc. L. M. S.
(2) 20, v-vi (1922).

113. Electron in uniform motion. Science 57, 238-240 (1923).

114. On the radiation of electric dipoles. Proc. L. M. S. Records. Nov. 1923.

115. An electromagnetic theory of light-darts. Bull. A. M. S. (2) 29, 385-393 (1923).

116. On the theory of lighl-quanta. Phil. Mag. (6) 46, 977-991 (1923).

117. (H. B. and P. Ehrenfcst). The derivation of electromagnetic fields from a basic wave-function. Proc.
N. A.S. 10, 369-374 (1924).

118. Derivation of three-dimensional potentials from four-dimensional potentials. Bull. A. M. S. (2) 30, 15
(1924).

119. Theform of an isolated electric particle. Mess. (2) 53, 145-152 (1924).

120. On some solutions of Laplace's equation. Mess. (2) 54, 28-32 (1924).

121. Thefield of an electron at rest and in uniform motion. Phil. Mag. (6) 49, 1-18 (1925).

122. An extension of Lagrange’s expansion. Bull. A. M. S. (2) 31, 386 (1925); Trans. A. M. S. 28,346-356
(1926).

123. Numerical solution of an integral equation. Bull. A. M. S. (2) 31, 111 (1925).

124. On the occasional need of very accurate logarithms. Amer. Math. Monthly 32, 249 (1925).

125. The stability of electrons and protons. Mess. (2) 54, 142-149 (1925).

126. Theory of the condenser in a new electrostatics. Phil. Mag. (6) 49, 1-22 (1925).

127. Local electromagneticfields. Proc. Edinb. M ath. Soc. 44, 85-89 (1926).

128. Algebraic and transcendental equations connected with the form of stream lines. Amer. J. Math. 48,
277-297 (1926).

129. A possible connection between the wave-theory of matter and electromagnetism. Nature 118, 839-840
(1926).

130. An expressionfor the energy in a new electrostatics. Mess. (2) 55, 161-168 (1926).

131. The radiation of energy and angular momentum. Phys. Rev. (2) 27, 606-617 (1926).

132. A cubic curve connected with two triangles. Bull. A. M. S. (2) 33, 45-50 (1927).

133. Lagrangianfunctions and Schroedinger's rule. Proc. N. A. S. 13, 326-330 (1927).

134. A modification of Gordon’s equations. Phys. Rev. (2) 30, 55-60 (1927).

135. The symmetry of the stress-tensor obtained by Schroedinger's rule. Proc. N. A. S. 13, 771-774 (1927).

136. Some remarks on the wave-theory of mutter. Mess. (2) 57, 7-12 (1927).

137. The equationfor the transverse vibrations of thin rods. Mess. (2) 57, 145-154 (1928).

138. Transverse seismic waves on the surface of a semi-infinite solid composed of heterogeneous materials.
Bull. A. M. S. (2) 34, 343-348 (1928).

139. Interpolationfor airfoils. Mess. (2) 57, 187-192 (1928).

140. Notes on a differential equation which occurs in the two-dimensional motion of a compressible fluid and
the associated variational problems. Proc. Roy. Soc. London (A) 125, 598-618 (1929).



110

141.
142.
143.
144,
145.
146.
147.
148.
149.
150.
151.

152.

153.

154.
155.
156.
157.
158.
159.

160.

161.
162.
163.

164;

165.

166.

167.
168.

169.
170.

171.
172.
173.
174.

175.
176.
177.
178.

179.
180.
181.
182.

183.
184.

HARRY BATEMAN [Vol. 1V, No. 2

Some properties of spherical harmonics. Bull. A. M. S. (2) 36, 306-314 (1930).

Variableflow in pipes. Phys. Rev. (2) 35, 177-183 (1930).

Physical problems with discontinuous initial conditions. Proc. N. A. S. 16, 205-211 (1930).

A solution of the wave-equation. Ann. Math. (2) 31, 158-162 (1930).

Irrotational motion of a compressible inviscid fluid. Proc. N. A. S. 16, 816-825 (1930).

Solutions of a certain partial differential equation. Proc. N. A. S. 17, 562-567 (1931).

On dissipative systems and related variational principles. Phys. Rev. (2) 38, 815-819 (1931).
Lagrange’s compound pendulum. Amer. Math. Monthly 38, 1-8 (1931).

Sound rays as extremals. J. Acoust. Soc. Anter. 2, 468-475 (1931).

Relations between confluent hypergeometric functions. Proc. N. A. S. 17, 689-690(1931).

The k-funclion, a particular case of the confluent hypergeometric function. Trans.A. M. S. 33, 817-831
(1931).

Partial differential equations of mathematical physics. Cambr. Univ. Press, xxii+522 p. (1932); Dover
Publications, xxi+522 p. (1944).

(H. L. Dryden, F. D. Murnaghan, and H. B.). Hydrodynamics. Report of the Committee on Hy-
drodynamics. Bull. Nat. Research Council 84, 1-634 (1932).

Some applications of Murphy's theorem. Bull. A. M. S. (2) 39, 118-123 (1933).

Logarithmic solutions of Bianchi's equation. Proc. N. A. S. 19, 852-854 (1933).

Variational principles in electromagnetism. Phys. Rev. (2) 43, 481-484 (1933).

Schroedinger's rule and hydrodynamics. Phys. Rev. (2) 43, 363 (1933).

Some properties of a certain set of polynomials. Té6hoku Math. J. 37, 23-38 (1933).

(A. A. Bennett. W. E. Milne, and H. B.). Numerical integrations of differential equations. Report of
Committee on Numerical Integration. Bull. Nat. Research Council 92, 1-108 (1933).

Functions orthogonal in the Hermilian sense. A new application of basic numbers. Proc. N. A. S. 20,
63-66 (1934).

Sidelights on electromagnetic theory. Phys. Rev. (2) 45, 721-723 (1934).

The polynomial Fn(x). Ann. Math. (2) 35, 767-775 (1934).

Selectivefunctions and operations. Amer. Math. Monthly 41, 556-562 (1934).

Operational equations. Nat. Math. Mag. 9, 197-201 (1935).

(H. B. and S. O. Rice). Some expansions associated with Besstl functions. Proc. N. A. S. 21, 173-179
(1935).

A partial differential equation connected with the functions of the parabolic cylinder. Bull. A. M. S. (2)
41, 884-893 (1935).

Functional differential equations and inequalities. Proc. N. A. S. 22, 170-172 (1936).

Two systems of polynomials for the solution of Laplace's integral equation. Duke Math. J. 2, 569-577
(1936).

Polynomials associated with those of Lerch. Monatsh. f. Math. u. Physik 43, 75-80 (1936).
Progressive waves offinite amplitude and some steady motions of an elasticfluid. Proc. N. A. S. 22, 607-
619 (1936).

The polynomial F,{x) and its relation to other functions. Ann. Math. (2) 38, 303-310 (1937).
Coulomb’sfunction. Proc. N. A. S. 24, 321-325 (1938).

Rayleigh waves. Proc. N. A. S. 24, 315-320 (1938).

The lift and drag functions for an elastic fluid in two dimensional irrotational flow. Proc. N. A. S. 24,
246-251 (1938).

Hailey’s methods for solving equations. Amcr. Math. Monthly 45, 11-17 (1938).

(H. B. and S. O. Rice). Inleg,rals involving Legendrefunctions. Amer. J. Math. 60, 297-308 (1938).
Spheroidal and bipolar coordinates. Duke Math. J. 4, 39-50 (1938).

A partial differential equation associated with Poisson's work on the theory of sound. Amer. J. Math.
60, 293-296 (1938).

Paraboloidal coordinates. Phil. Mag. (7) 26, 1063-1068 (1938).

The transformation of a Lagrangian series into a Newtonian series. Proc. N. A. S. 25, 262-265 (1939).
The aerodynamics of reacting substances. Proc. N. A. S. 25, 388-391 (1939).

On some symmetrical potentials and the partial differential equation V,,Ix+ F,,,v+ F, =0. Monatsh'. f.
M ath. u. Physik 48, 322-328 (1939).

The solution of harmonic equations by means of definite integrals. Bull. A. M. S. (2) 46, 538-542 (1940).
The polynomial of Miltag-Lefflcr. Proc. N. A. S. 26, 491-496 (1940).



1946] HARRY BATEMAN 111

185. Some definite integrals occurring in aerodynamics. Applied Mechanics. Theodore von Kantian An-
niversary Volume, California Institute of Technology 1-7 (1941).

186. The resistance of ships. Nat. Math. Mag. 16, 79-88 (1941).

187. Theform of a ship. Nat. Math. Mag. 16, 141-149 (1941).

188. A n orthogonal property of the hypergeometric polynomial. Proc. N. A. S. 28, 374-377 (1942).

189. Some asymptotic relations. Proc. N. A. S. 28, 371-374 (1942).

190. The influence of tidal theory upon the development of mathematics. Nat. Math. Mag. 18, 14-26(1943).

191. Some simple differential difference equations and the related functions. Bull. A. M. S. (2) 49, 494-512
(1943).

192. Note on thefunction F(a, 6; c—n\ z). Proc. N. A. S. 30, 28-30 (1944).

193. The transformation of partial differential equations. Quart. Appl. Math. 1, 281-296 (1944).

194. (H. B. and R. C. Archibald). A guide to tables of Bessel functions. Mathematical Tables and Other
Aids to Computation 1, 205-308 (1944).

195. Some integral relations. Bull. A. M. S. (2) 50, 745-749 (1944).

196. Hamilton's work in dynamics and its influence on modern thought. Scripta Mathematica 10, 51-63
(1944).

197. Articles on Dynamics, Elasticity. Encyclopedia Britannica (1945).

198. Two integral equations. Proc. N. A. S. 31, 196-200 (1945).

199. The control of an elasticfluid. Bull. A. M. S. (2) 51, 601-646 (1945).

200. The derivation of Euler’s equationsfrom avariational principle. RevistaCi., Lima 47, 111-117 (1945).

201. (H. B. and C. L. Pekeris). Transmission of lightfrom a point source in a medium bounded by diffusely
reflecting parallel plane surfaces. J. Opt. Soc. Amer. 35, 651-657 (1945).

202. Some integral equations of potential theory. J. Appl. Physics 17, 91-102 (1946).



112

CONTRIBUTIONS TO THE PROBLEM OF APPROXIMATION
OF EQUIDISTANT DATA BY ANALYTIC FUNCTIONS*

PART B—ON THE PROBLEM OF OSCULATORY INTERPOLATION.
A SECOND CLASS OF ANALYTIC APPROXIMATION FORMULAE

BY

I. J. SCHOENBERG
University of Pennsylvania and Ballistic Research Laboratories, Aberdeen Proving Ground

Introduction. The present second part of the paper has two objectives. Firstly,
we wish to carry further the important actuarial work on the subject of osculatory
interpolation (Chapters | and Il). Secondly, we construct even analytic functions
L(x), of extremely fast damping rate, such that the interpolation formula of cardinal

type
F(x) = 2 ymMm* - ) 1)

reproduces polynomials of a certain degree and reduces to a smoothing formula for
integral values of the variable x (Chapter Ill). This second problem is found to be
intimately connected with the subject of osculatory interpolation.

A preliminary remark concerning our notation is necessary. In Part A, Section
2.21 we described various characteristic properties (or “type characteristics”) of a
polynomial interpolation formula of the form (1), such as: (i) The degree m of the
composite polynomial function Z,(x); (ii) its class 0, i.e., order of contact is /X
(iii) the highest degree k of polynomials for which the formula (1) is exact; (iv) the
span 5 of the even polynomial function L{x). For convenience we propose to summa-
rize all these statements by saying that (1) is a formula of typel

* Received Oct. 18, 1945. Part A of this paper appeared in this Quarterly 4, 45-99 (1946).

1The connection of these types characteristics with the notation as used by Grcville in his paper
The general theory of osculatory interpolation, Trans. Actuar. Soc. Amer., 45, pp. 202-265 (1944), especially
pp. 210-211, is as follows: The first three symbols Dm, C*, FA, require no further comment since they are
identical respectively with the characteristics 4, 1, and 6 of Greville’s classification, pp. 210-211. There
remain three further characteristics to be discussed: (i) W hether the formula (1) is an “end-point” or
“mid-point” formula. This point is of importance if (1) is written in terms of certra! differences, since it,
then reduces to either the Everett or else the Steffensen form. The following statement is obvious: The
formula (t) is an “end point” or “mid-point" formula depending on whether the span s is even or odd.

(ii) Greville’s adjectives “ordinary” and “modified” agree respectively with our “ordinary” and
“smoothing.”

(iii) The highest order d of differences involved (explicitly or implicitly). We start with the following
question: Let x be given. How many ordinates yn enter into the computation of F(x) by (1)? Assuming that
L(x) is continuous, hence =0, at the end point X =s/2 of its span, we have L(x—n) A0, as long as n in

such that
I X —»l < s/2.

This inequality is found to be equivalent to
—Y +*<»<Y + % ®*

Let s=2itbe even (end-point formula) and let now * be anywhere within 0;x g 1. By (*) F(x) then re-
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Dm O, Ek s. 2

As an instance we may describe the ;-point central interpolation formula of Part A,
Section 2.121 as a formula of type2
(C° if k is event
Dk~\ 7 o , Ek-\" s =k
1C-1if k is odd

In Chapter Il we construct a class of ordinary interpolation formulae and two
classes of smoothing interpolation formulae. These classes by no means describe all
possible osculatory interpolation formulae. Furthermore, a number of interesting
problems concerning remainder terms and orders of approximations await solution.
No attempt has been made to see which of the numerous formulae tabulated by
Greville, loc. cit., are contained in the three classes of formulae developed in Chapter
Il. The essential progress made in this direction may perhaps be briefly described as
follows. The construction of an interpolation formula usually requires the solution of
a more or less complicated system of linear equations, unless, as in Lagrange’s for-
mula, the basic interpolating functions are obvious from the start. These systems of
equations are especially troublesome if one wishes to construct an osculatory inter-
polation formula of any general class. As Greville correctly points out, loc. cit., pp.
255-256, the mere agreement between the number of unknowns with the number of
equations which they should satisfy, will, by itself, never prove the existence of a
solution. Basically, our parametric representation of spline curves of order k (Part A,
Section 3.15, Theorem 5) circumvents this difficulty.

An example which illustrates the operation of this representation is as follows.
Let F{x) be defined as equal to 0 for x 0, as well as for x*4. We propose to complete
the definition of F(x) in the range 0~ x g4 by four cubic arcs joining at x=1, 2, 3, in
such a way that F(x) be of class C" for all real x. Of course, we are not interested in
the obvious but trivial solution F(x)=0. Let us now count the available parameters
and the number of conditions. The 4 cubic arcs furnish 4-4= 16 parameters. The sec-
ond order contact requirements at x=10, 1, 2, 3, 4 lead to a system of 3-5 = 15 homo-
geneous equations. The solution of a homogeneous system of 15 equations in 16
unknowns depends on anything from 1to 16 arbitrary parameters, depending on the
rank of the system. Our Theorem 5, for k —A, furnishes immediately the one-parame-

ter solution
F(x) = c-M”x - 2) 3)

the graph of which is given in Part A, Section 3.13. Again Theorem 5 will easily show
that this is the most general solution of the problem. We see how this complicated
system of 15 equations in 16 unknowns is explicitly solved by (3). As a variation of
the problem, let us now define F{x) to be equal to 0 for x*O, as well as for xSt3, and
let us propose now to bridge this gap by 3 cubic arcs giving a F(x) of class C". Now we
find that the problem amounts to a system of 12 homogeneous equations in 12 un-
knowns. This tells us precisely nothing. Again by Theorem 5 we can readily show that

quiresall ynsuch that —<r<n<c-\-1that isj = 20-consecutive ordinates. Let s= 2<r4-1 be odd (mid-point
formula) and let x be anywhere within —JSxg£. Again by (*) F(X) now requires all y,, such that
—<I—1<n<<r+I, hence again s=2tr4-1 consecutive ordinates. We have therefore proved the following:
The highest order d of differences involved is always related with the span s by the relations=d-H .

5The symbol C~lis to indicate the class of piecewise continuous functions.
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the trivial solution F(x) =0 is the only solution. These considerations generalize and
allow to characterize our basic functions
1 k k1
MKx) = 71 — Sx+
(k - 1
up to a multiplicative constant and a shift along the x-axis, as follows:3 Let F{x)
be =0 for £,0, as well asfor x2:n, where n is a positive integer. We wish to complete
the definition of F(x) by a succession of n arcs, of degree k —1, joining at x= 1,2, ¢«
n—1 such as tofurnish a F(x) of Ck~2 Then n —k is the smallest value of n for which
this can be done in a non-trivial way andfor this minimal value n =k the gap is bridged by

F(x) = c-Mifx - k/2)

and in no other way.

The reader who is mainly interested in the numerical applications may pass di-
rectly from here to the Appendix where the use of the tables is fully explained and one
example is worked out.

I. THE COSINE POLYNOMIALS <f>k(u) AND CERTAIN RELATED SETS OF POLYNOMIALS

In the present chapter we propose to study further properties of the cosine poly-
nomials

<f£*(«) = X) Mk(n) cos nu (1)
which were mentioned in Part A, sections 3.14 and 4.1 (for ;= 0). By Part A, section
4.1, formula (6) (for t=0) we may also write

00

<Pku) = X ik(u + 2irv)

and therefore

P00 = (2sinwi2) X (« + Efﬂko )
<« (« Irv

1.1. Expression of 4{u) in terms of rational polynomials. We introduce two new
sets of periodic functions defined by

Pa-00 = (2 sin u/2)k-

@)

-— >
».-» (« + 211\/)'(

ca(m) = (2 sin u/2)kl»"_«:(« + 2in)k ' (39

A comparison with (2) shows that
(pk{u) if ks even
(KTIOO if K is odd.
3Problems of this kind concerning polygonal lines of a certain degree and class are of importance for

the theory of formulae of mechanical quadratures. The author expects to discuss this connection else-
where.
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By differentiation of (3) and also (3') we readily find the recurrence relations

u 2 u
Pk+i(u) = €COS— p=*(«) - — SIN — I (m),
2 k 2 P
2

u u
<gk+i(u) = cos — <r* -sin — o* («)m
(u) > («) " > («

These may be used in a progressive computation of p* and ok if we start with
p2(m) = 1, <i(m) = 1
We prefer, however, to express pk(u) and o”u) as polynomials in the variable

a = cos (m/2)
by means of

Pk{u) = U*_2cos m/2), K(u) = Vk-i(cos m/2).

115

®)

(50

(6)

™)

®

Substituting into (5), and (50 respectively we find that the two sequences of polyno-

mials Un(x), F,(x), both of exact degree n, satisfy the recurrence relations

Uk+(x)

Uk -~ - i
xUk(x) + R-\~(11 xf)Ui{x),

VkH(x) = sF*(x) + el - X)Vifx),

with initial values which by (6) and (8) are
uqx) = 1, FO#) = L

A simple calculation now gives

Ufa) = x, VEx) = x,
Ui(x) = 4 (1 + 2+), Vi(x) = 4 d +
u,(x) = _| f*+**), F.(#) = 46 (5*+ *3
1 1
Ufx) = — (2 + IIx2+ 2x49, FAx) = a(s + 18x2+ s4
- 26z3+ 2 ! 6 f
U,,(X) = — (17* + z3+ 2sH), F = — (61x -f 58x3+ Xs).
(x) 45( 9 6(x) 120( X X 5)

9)

(90

(10

(11)

We record as a lemma the following properties which are readily established by in-

duction.

Lemma 1. Uk(x) and Vk(x) are polynomials of exact degree k which are even or odd
according as k is even or odd. The coefficients of their highest terms are positive. Also

Uk(1) = F*(I) = 1,  UKk(- 1) = F*(- 1) = (- 1)>.

(12)
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In view of (4) and (8) we find the following expression of </>*«) in terms of our new

polynomials:
Uk-i(x) if Kk is even,

e = Fi—i(x) if K is odd. 13)

This shows that the even polynomials U2, V2rare of special interest.

1.2. The zeros of the polynomials £/#*and F*. We propose to prove the following
proposition :

Lemma 2. The zeros of the even polynomials U2,(x) and V2(x) are all simple and
purely imaginary.

We carry through the proof for U2{x) only since the proof for Vir(x) is entirely
similar. In order to deal with real zeros, we define a new sequence of polynomials
ui(x) by

«*(*) = i~kUk{xi), (k=0,1 00°). (14)

These new polynomials are also real and satisfy arecurrence relation which in view
of (9) is readily found to be

m*+i(*) = xuk(x) — --}-——(1 + xJut (x). (15)
k+ 2
From (11) we find
ito(x) - 1, Ui(x) = x, w2x) = K2*2—1)> ih(x) = -J(X3—2»), ¢ - .

In view of (14) it obviously suffices to show that the zeros of uk(x) ar real and simple,
while those of u2(x) are also différent from zero. This is readily done by induction
as follows. Let k =2v be even and let us assume that the k zeros of uk(x) are

— L L-ti «+m1 ~ vivibLis it 0 < v < > < Ly (16)

and therefore simple. This, and the fact that Mjt(x)has a highest term of positive co-
efficient (Lemma 1and (14)), imply that

ui (L) > 0,

and that the sequence of values of u¢ (x), at the k roots (16), alternate in sign. By
(15) we therefore find

«t+i(D < 0

and that the values of i¢i+i(x),at the k roots (16), alternate in sign. Since z*+i(0) =0,
we conclude that Uk+i(x) has v positive and v negative zeros which must therefore be
simple.

Let now k =2v-\-\ be odd and let Uk have the simple zeros

- L,eees, - L.O, L, mme L (0O< L < eee< L) a7

Now we conclude as before that mi+l(L) <0 and that the values of uk+\{x), at the k
roots (17), alternate in sign. Again the conclusion is that uk+(x) has simple real roots
none of which vanishes. This proves the theorem by complete induction.

1.3. A few corollaries. In this last section of the present chapter we prove several
auxiliary propositions which will be used in the next chapter in the derivation of inter-
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polation formulae of various kinds. These propositions represent the solutions of the
algebraic problems arising by the Fourier integral transformation of the problems of
the construction of those interpolation formulae.

Lemma 3. Let k =2v he even. We can determine uniquely an even polynomial Pk{x),
of degree k, and an odd polynomial P k-i{x), of degree k —I, satisfying the identity

UK(X)Pk(x) + Uk+i(x)Pk-i(x) s 1. (18)

Likewise polynomials Qk(x) and Qk-i(x), even and odd respectively, exist uniquely such
as to satisfy

VK(X)Qk(X) + Vk+H(x)Qk-.i(x) m 1. (19)

We wish to show first that Ukand Uk+i have no common zeros. Indeed a common
zero x of Ukand Uk+i would, by (9), be a zero of

1 - x3UK{x).

Since by (12) xp® +1, x must be a zero of Uil (x). But this contradicts our Lemma 2

to the effect that £/*(x) has only simple zeros. The polynomials Z7i(x), Uk+i(x) having

no common divisors,the identity (18) is assured by the elementarytheoryofthe great-
estcommon divisor of two polynomials. We now show that P k{x) is evenand P k~i(x)

is odd as follows. Replacing x by —x in (18) we find

UK{x)Pk{- X) - Uk+i(x)Pk-i(—x) = 1
Since our polynomials Pk, P k~i are uniquely defined by (18) we find
Pk{x) = PK- x), Pki{x) = - Pkx{- x),

which prove our statement. An identical reasoning proves the existence of the poly-
nomials Qkand Qk+H satisfying (19).

The polynomials Pk and Pk+i are easily determined for low values of k by the
method of indeterminate coefficients. Thus for k —2 by (11),

Ux) = (1 + 2x2/3, £/x) = (2x + xH/3,
from which we find
P2(x) = 2x2+ 3, Pi(x) = - 4x,

satisfying the identity

EI2AX)P2Ax) + bry(x)P1Ux) = 1. (20)
Likewise for £=4 we have by (11)

F<(x) = (6 + 18x2+ x4/24, F6(x) = (61x + 58x3+ x6/120.
The corresponding polynomials Qit Q3are found to be
Qt(x) = (3648 + 4789x2+ 83x4/760, Q3x) = - (1469x + 83x3/152.

They satisfy the identity

V<{)Q<{x) + FE&Xx)Q3x) s 1. (21)
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The identities (18), (19) will later be used in the following form. Again for an
even k, but replacing k by k—2, we get by (18) and (8)

Pk{u)H(-n{x) + pkH(U)Pk—I(X) = 1, (keven, X = cos U/Z).
Likewise for an odd k, but replacing k by k—1, we obtain from (19) and (8) the

identity
akU)Q-igm) + <IkHUKAK) = 1, (Kodd, a = cos m/2).

The even polynomials Plki, X 3 and Qmi, X QKk-i, may now be expressed in
powers of
1 —x2= (sinm/2)2

We have therefore proved the following:

Lemma 4. We can find constants a,, at, b, bl such as to satisfy the following two
identities:

For an even k

Pk(u{a0- fla2 sin m/2)2+ o4(2 sin U/2)4- ... £ at_2(2 sin m/2)*-2}
+ pkH(U) {ad —al 2 sin m/2)2+ af 2 sin m/2)4a — me m
+ 2sin W2)KAH2 cos UW2) = 1, (22)
and for k odd
<TKUWO—; 22 sin W/2)- + 2sin U/2)4—. .. * bk\{2 sin m/2)a-13
T o-*+i(m) [0 — bi 2 sin U/2)2- b{ (2 sin U/2)4— « ..
+ bL,(2sin m/2)*-33}(2 cos m/2) = 1. (229

As examples we mention that the identities (20) and (21) become on passing to the
variable U

P4mM){5 — (2 sin m/2)2} + pém) {— 2} (2cos UW/2) = 1  (23)
and
«) (213 991 1y B 12
1) R — 2 sin m/2)2 gemeeeeeee 2 sin m/2)4>
110 7ep SN MRIZE e B i M
+ ! |( _19-{'__83(4 s iuB\ZP£20 oug (2 4 )

The last proposition which we wishto derive here concerns the expansion of l/(j>k(u)
in ascending powers of the variable

5= sin2m/2 = 1 —cos2U/2 = 1 — x2 (25)
Let us assume for the moment that k is even. Then by (13)
T = Uk-t{x), (keven). (26)

Now Uk-i{x) is an even polynomial which, by Lemma 2, has purely imaginary zeros.
Being an even polynomial, Uk~z{x) may be expressed as a polynomial U*(s) in the

variable
i = 1- x2 (25"
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of degree k={k —2)/2. This change of variable transforms the purely imaginary zeros
of Uk-i{x) into the zeros

«i, a2 a*  (k— (k — 2)/2)

of U*(s) which, by (25", must all be positive and greater than 1. Finally, since
Uk-2(1) = U*{0) = 1, we have the identity

M«) = uk2x) = (i - (L - i-) seo(Ll- i-). (27)

An entirely similar identity is derived for an odd k by repeating our arguments for
H{u) = Ft_i(x),
instead of (26).
This establishes the following

Lemma 5. The reciprocal of the cosine polynomial 4k{u) admits of an expansion

—— = Y Cin{2sin uf2)'n (28)
4>Kk\u) n-0
which converges for all real values of u and where the coefficients are positive rational
numbers

cln > 0, (n = 0,1 2, oom). (29)

Indeed, in view of (27), the expansion (28) may be obtained as

'<P|k$u): ri(i+a',+Aé;+"')/:rF,,gZW

which reduces to (28), in view of (25). In conclusion we notice the following conse-
quences of the identity (28). Since

o

<t>k{u)I=l' Y fk(u -\~Z2irv),
where
(2 sin u/2\ k

« > b i [
we have in the neighborhood of the origin « =0

(2 sinu/2\ k
AK(u) = (- )+ uk-(regular function of u). (30)

(2 sin«/2\* " K N k .
) «Y cn(2sinu/2) = 1T « wregular function)

\ u / n»o
and also

(2 sin u/2\ ® Pyl )
( 1 .Y (2 sinm/2) = 1+ m e(regular function). (31)
\ U /I 0g2n<k
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It is of special interest to point out that if
(2 sinm/2y +=1 (* 2

ghm(U) = 1 )+ 2_,cin(2sin mr2)
\ M / n»0

then
(1 + mez71-(regular function) if 2»i < k
«m-(m>- {i +  oegutar function) if 2m —2 < k A 2m, <«>

As an illustration wc find for ¢ = 6 by (13), and (11), and (25)

1 1 15 30 1
*«(«) 174(*) 2+ 11s2+ 2s4 30 - 30s + 4s2 2
l—sH s2
15
whence
1 13
-------- =1+ 5+ = QH--
0s(«) 15
or
—J— = "N (2sinmf2)2+ N -(2sinmi2)a+ s, (33)
0 6(m) 4 240
The relations (32) nowbecome (for k=6, m=1,2, 3)
(2 sinmi/2\6
(- 1= 1+ M-(regular function),
(2 sin m/2\8 f 1 )
[ J -jl + — (2 sin m/2)2> = 1 + mA-(regular function),
(2 sin mr2\ve ( 1 ] 13 ) ) ]
[P vo<l+ — (2sinmr2y2 + (2 sin m/2)4> = 1 + me-(regular function).

In the next chapter we shall need the numerical values of the coefficients

(0)
c¢in  for 2m < k. (34)

It is of interest then to point out that these coefficients (34) may also be otherwise
computed as coefficients of a simple generating function. Indeed, from (30) it is clear
that the coefficients (34) will not change if on the left-hand side of (28) wc replace
4>k{u) by the first term on the right-hand side of (30). That means, if

Q. W Sin m/2)2 (35)
2 sinm/2/ .o

then
cin = dxn} (2n< k). (36)

However, the coefficients of (35) are readily determined. Indeed, if we set
v=2sinm/2 or u — 2 arcsinv/2, (37)

then (35) becomes
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/2 arcsind/2\* * <>
| e = Lj"2,v . 38
VTV T )
Since
2 arcsin v/2 11n2 1-3 1 v 1-3-5 1 w
|- = =~ { £ i - (39)
v 23 4 24 516 246 7 64
we find the expansion (38) by raising (39) to the ¢-th power. Thus
é(t) NjW k jw 5k2+ 22k
o —1, h —=—i d4  — - Smee . (40)
24 5760

Since all coefficients of (39) are positive, it is clear that the coefficients of (38) are
likewise positive. This however does not imply the positivity of the coefficients of
(28) beyond the ¢th term. For ¢ = 6 the values (40) agree with the coefficients of (33).

I. POLYNOMIAL INTERPOLATION FORMULAE

In this chapter we wish to apply our general Theorem 2 of Part A, section 2.23
and our Lemmas 4 and 5 of the last section in deriving three distinct classes of poly-
nomial interpolation formulae for each value of the positive integer k. The formulae
of the first class (Theorem 1 below) are of the ordinary kind (see Part A, section 2.21 a
and b), and of the type

(2k — 2 if Kk is even
D\ C*2 Ek-\ s=\

{2k — 1if Kk is odd.

The existence of ordinary interpolation formulae of degree k and class k —2 was pre-
viously conjectured by Mr. Greville who verified their existence up to and including
k —6. (See Greville, loc. cit., pp. 212-213.) The formulae of the second class are
smoothing interpolation formulae (Theorem 2 below). For a given integral k and
each integral m, such that 0~ 2m —2 <k, a formula is derived which is of the type

D k~\ Ck~2 Emm(2m—+. i —3X S=k+ 2m ~ 2
These formulae are derived from an ordinary interpolation formula of type

D k~\ Ck-2 E k~\ 5= 00,
discussed in Part A.

The formulae of the third and last class are again smoothing interpolation formulae
(Theorem 3 below). While in the second class the degree Dk~l and the “order of con-
tact” Ck-2were fixed, while the degree of exactness E 2m-xand the span s=k-\-2?2n—2
increased apace, in the present class the span s=k is constant. More precisely, a
formula is derived for each m such that 0¢ 2m ~k —1 which is of type

D ic-it ¢ k=2m, A2"-1, 5= k.

These formulae are derived from the formula of ordinary ¢-point central interpolation
in a manner somewhat reminiscent of Mr. Jenkins’ original procedure.

2.1 Ordinary polynomial interpolation formulae of the Jenkins-Greville type.
We are returning to our basic functions
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and wish to show that the osculatory interpolation formulae of the type investigated
by Jenkins and Greville may be readily derived in terms of these functions. We shall

use the operational symbol o to mean

M) = I ) I~ )

Theorem 1. We define the basic polynomial function Lix) by the following two for-

mulae according to the parity of k :
L(x) = aOMk(x) + aE2MK(X) + e+ .+ ak'8 k-2M k(x)

+ afoMkHl(x) + ai @M k+1(x) + oo + O*_4A®i-Af*+i(*) (k even)
L(x) = bMk(x) + bBMk(x) + =<+ + bk Xk-xM k(x)

+ 50 <rMk+i(X) + bl aS2M k+x) + ee e + bk-318k-3M kH(x), (k odd),

where the numerical constants a,,, a , b,, bj are those defined in Lemma 4. Then
F(x) = £ ynL(x - n)

is an ordinary polynomial interpolation formula of type
jZk —2 jf ks even,
12 - 1 i Kk is odd

Dk Ck-i Ek-i

Indeed, we notice that
8eiux = (eiu2 - e~iuldeiux = 2i sin u/2eiux,
<Jdux — (eiul2 + e iuideiux = 2 cos u/2eiux.

Let k now be even, hence L(x) defined by (2), and let

[

L(x) = 1) g(u)e'wdu.
We evidently obtain this integral representation by performing the operation
a0 T aB2-)-eee + aki8k-2
on the relation (1) and add to it the result of performing the operation
00« d- aicb2-f- o« -(- ak—iatk~"
on (1), with k replaced by ¢+ 1. In view of (6) we have
&eiuz = (2i sin u/2),eiux

— (2i sin m/2)'(2 cos u/2)eiux,
and therefore

9w - (2 sinurzik. jlo0 ot(2sin «/2)2+ eee + 0122 sin w/2)*-2}

2 sin m/2\ 1+1,
+ E J7 {00 - a{(2sin m/2)2+ oo

+ 0*_4(2 sin m/2)*-4} (2 cos m/2).

@)

@)

4)

©)

(6)

™
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We now turn to Theorem 2 of Part A, section 2.23, which states that (4) is an ordinary
interpolation formula if and only if the following identity holds:

®
+ =
Xpw+an=1 6
It should be noticed now that both expressions in (7) contained within braces are
periodic functions of period 2-k Since k is even we find that X g(k + 2at>) is identical
with the left-hand side of our relation | (22). This proves (8) for even k. A precisely
similar reasoning for odd k will show that 929 (u+ 2irv) is identical with the left-hand
side of | (22").
There remains the problem of showing that (4) is of the type as stated in the Theo-
rem. Since L(x) is by (2), (3), a linear combination of functions of the form

Mk{x + «> Mk+i(x + | + «),

it is clear that L(x\ is a polynomial line of degree k, of class Ck~3 with discontinuities
at x =n, or x =n-\-1/2, according to whether k is even or odd. Finally (4) is exact for
the degree k—\, again by Theorem 2 of Part A, section 2.23. There remains the
discussion of the span s of L{x). Now the span of Mt(x) is =k (see Part A, section
3.13) and therefore the span of 8Mt(x) is equal to k+ v, while the span of ob',Mk{x)
is equal to k-\-v-\-I. Now it is immediately verified that the two terms of (2) involving
8k~2and o8k~i are both of span 2k —2, while the similar two terms of (3) are both of
span 2k—1. This completes a proof of the Theorem.

As illustrations we mention that the identities 1(23) and 1(24) corresponding to
the cases k =4 and k =5 give rise to the basic functions

L(x) = 5M<(x)+ -152M4(*) - 20Mi{x) 9)
and
L{x) = -2-%-3---Mi(x) + SZga-l---bZI\/li(x) H--E-}?---SWi(i)
19 760 12160

i Mq(x) 2 <M 6(x) (10)
oMq(x) - —-—- X).
8 q 1216

These two basic functions give rise to ordinary interpolation formulae (4) which are
of the types
D\ C\ E\ s=6and T% C3 E\ s =09, (11)
respectively.
Incidentally, the characteristic function of (9) is, by 1(23),

(2 sinii/2\4/ w\ (2 sin m/2\6

€9 ( n YP"231V -4 U )CSR

or
(2 sinu/2\4/ sin«\
g(u) — )(4 + cos«-4— .

This agrees with our formula (11") of Part A, section 2.122, as in fact the basic func-
tion (9) is identical with Jenkins’ function there described by formula (11).
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In concluding we wish to mention the numerical results for k —6. In this case we

d the identit
need the fdentity Ui(x)Pi(x) + UEX)PIx) a 1 12

By (11) we have
Ui(x) ! 2+ 1*2+ 2x<) UM ! (A7* + 26 2x6)
ix) = — @2+ + 2x<), = — + 26xs+ 2x6).
15 45

By indeterminate coefficients we find
15 115 27 285 27
PM = —+ — *2+ — *4 PM = - — *- y *3
from which, on passing to the variable 1(25), the identity (12) becomes
1155 111

9 1
Y —— (2 sin u/2)2H (2sinu/2)\
| 14 28 448 J

im ——2 1.2 sin w2y @ 12) = 1
+ pi(m) ———1—-——(2 sin w/2)2>(2 cos u = 1
P (- 28 56 )

The basic function corresponding to k=6 is therefore

353 133 9
L{x) = MM + sM M H 6*M,(x)
14 28 448
339 27 3
— 982M 7(X), 1
- o (x) (13)

giving rise to an ordinary interpolation formula of type
D\ C\ £5 and 5= 10.

2.2. A first class of smoothing interpolation formulae derived from an ordinary
interpolation formula of type Dk~I, C*~2 We start by recalling an ordinary polyno-
mial interpolation formula derived in Part A, section 4.2. Indeed, the formula (9) of
that section furnishes, for 1= 0, the following polynomialbasicfunction

1 Cx 'PM
LM =i ) eivxdum (14)
The corresponding formula
p(x) = ynLk{x - 1) (15)
n—

is, as we know, an ordinary polynomial interpolation formula of type
(o if k™ 3

<

U if k=12

Dk-\  Ck\  Ek-\ s= (16)

We turn now to the expansion 1(28) of Lemma 5, substituting 1(28) into the integral
(14) and integrating term-wise we obtain the expansion

(k} 2 4
LM =MM - @GSMM + ¢4 5MM - eoo. (k ~ 3). (17)
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On comparing the present interpolation formula (15) with the formula (4) of the
Jenkins-Greville type, we notice, by (5) and (16), that they are both of class Ck-2
and that they are both exact for the degree k —\. The degree of (15) is lower by 1 than
the degree of (4). This reduction of the degree to the lowest possible value k—I, for
a formula of class Ck-2 was achieved at the price of having an infinite span. The
infinite span of (15) clearly disqualifies this interpolation formula as far as numerical
purposes are concerned.

We now turn to the partial sums of the series (17). They will yield smoothing in-
terpolation formulae of considerable practical importance. Indeed, let

Lk,m(x) = Mk(x) — Ci 5MKk(x) + eee+ (— 1) Gzmrib Mk(x), (2m — 2 < k).(18)

The characteristic function of this basic function is identical with the left-hand side
of the identity 1(32). In view of our Theorem 2 of Part A, this identity 1(32) proves
that (18) is the basic function of a smoothing interpolation formula which is exact
for the degree equal to min(2m —1, ; —1). It is, moreover, visibly of degree k —I, of
class Ck~2 and of span s=k + 2m —2. One further important point is in need of proof,
namely that the formulae based on (18) actually do smooth any given sequence (see
Definition b of Part A, section 2.2). This will readily follow from Lemma 5. Indeed
the characteristic function <imk(u) of the formula

F{n) = 23 y*Lk,m{n — V) (29)
is, by Theorem 2, Part A, given by
®
4kmu) = 23 gk.m(u + 2tTV).

By 1(32) and 1(28) we now have

» e gl
4qum(tt) = 23 gk,m(u + 2tv) = <pk(u) 23 ten (2 sin m/2) "

— 00 =0

00

< H{u) 23 ten {2 sin «/2)21=1, 0 < m < 27). (20)

n« 0

Since obviously 4m,k(u)>0, for all u, we see that (19) is indeed a smoothing formula
according to our definition. Recalling the relations 1(36), 1(38), we may therefore
state the following Theorem:

Theorem 2. Let k be a positive integer and m an integer such that 0 <2m <¢ + 2. Let
the positive ration-al numbers be defined by the expansion

/2 arcsin v/2\k "<« %,
= 23*»® - (21)
\ \ / n-0
Then
Lk.m(x) = Mk(x) - dtVi£.i(x) + d\kbM k{x) + (- Dmld 2?2 Z /I m*Mk{x) (22)

gives rise to a smoothing interpolation formula
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o
F(x) = z ynUAX - n) (23)
n—o
of type
Dk-\ Ck~2, £mIn(2m-1.t-1)) S= k + 2fit ~ 2. (24)

Moreover, the formula (23) preserves the degree k —1. (See Part A, section 2.21, Defini-
tion d.)

If k isfixed and m increases then the smoothing power of our formula (23) decreases
according to our definition of Part A, section 1.12, Definition 2.

The last statement concerning the decreasing smoothing power of (23) follows
from (20), since <>kml) increases strictly as m increases while u is constant
(0 <u<2ir).

Notice, by (24), how on increasing »z by one unit both the degree of exactness, as
well as the span, increase by two units.

As illustration we find from 1(40) that

LUX) = MK = — SMKY), (K~ 4), (25)

yields a smoothing formula of type
Dk~\ Ck~\ E3 s=k+ 2 (26)
The characteristic function of (25) is

(2 sin m/2\ k( k ul\
gk, 2(«) _
-

-6 r - ) ( 1+ 7 s,nT) <2.,)

or
(2sinu/2\k(  k k )

For k=4 this function gi,z(u) ,agrees with the integrand of our formula (12") of
Part A, section 2.123. Also Mr. Jenkins’ basic function, as given by formula (12) of
Part A, section 2.123, may be derived by working out the various polynomial expres-

sions of
Li,z(x) = M,{x) - W M t(x) (28)

from the explicit expressions of Mi{x) (see Part A, section 3.13, (14)).
Likewise, by 1(40)

Lk3x) = Mk{x) - -k 5*Mk(x) + k(5k—+ ) 5*Mk(x), (k ~ 6), (29)
24 5/60
yields a smoothing formula of type
D k~\ Ck~\ E\ s=k+ 4. (30)

2.3.A second class of smoothing interpolation formulae derived from the ordi-
nary ¢-point central interpolation formula. Among the smoothinginterpolation for-
mulae (23)describedby Theorem 2 the one of most interest is obtained by letting m



1946] APPROXIMATION OF EQUIDISTANT DATA 127
assume its largest value. If k is even, m is maximal if 2m—2=k—2 or m =k/2. If k
is odd, m is maximal if 2m —2=£ —1 or m —{k-\-\)/2. In either case

rk+ii

maxm=n=i—-— I, (31)

where [x] represents the largest integer not exceeding x. The corresponding basic
function (22) is

1 ral2 sinul/2\k, rk) 2
Lkfit(x) = — 1 ( Y{l + d27(2 sin m/2) + eee
2ird \ u |/ | DAo]
+ @, sin mr2) ietuxda. (32)

We recall that the smoothing interpolation formula based on this function is by (24)
of the tvpe
D k~\ Ck~\ E k~\ s= k+ 2m- 2 (33)

Indeed, the formula is exact for the degree ¢ —1 because of

A2 sin w/2Ak, .2 00 221
1+ di "(2sinmf2) + eme+ (2222sinml2) ]

= 1+ m*-(regular function). (34)
An interesting counterpart to (32) is obtained as follows. An identity of the type

(34) may also be obtained if in the expression within braces we replace 2 sin m/2 by u.
Indeed, rational constants f* may be determined such that

) 2 . (>4 <. 22

/2 sinM [2\* e <.
I M +74 M + oo+ fiii-ill {

a_
------------- 1{1+72

= 1+ m* (regular function). (35)
Lemma 6. The basic function

(i) 2 2%-2

1cC i2 Sin m/2\ . i . Ui
[ Y {1+727'm + oo+ fili-iU }e du (36)

W.AX) = 2—

is identical, for all real values of x, with the basic function Cifx) of the k-point central
interpolation method (see Part A, section 2.121).

Notice first that by differentiation of
1 r w(2 sin m/2\ k

we obtain

l((zf), v 1 ¢~ (2 Sin m/2\ k 2v tuz )
MK ) = (—1) — T (22 Yo e du,  {2v < K). 37)
2t] \ m /

Therefore the integral (36) may also be written as4
4 Assuming (41) already established, we see by (38) and the relations
Mk\x) = &k-v(x), (0gri k- 1), *

(see Part A, section 3.15, formula (23)) that we may express Ct(x) as follows
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TUX) = Mk(XX) - y" " ™ME'(X) + y<KMk\x ) + (- (38)

Now Mk(x) and all its derivatives are functions of span s=k. Therefore also
IT~x) has the span s=k. Furthermore by (35), and Theorem 2 of Part A, we con-

clude that
®

F(x) = z IAx - n) (39)
M-
is an interpolation formula of the following type characteristics:
E k~\ s = k (40)
These last two properties (40) allow us to show readily that

Fit,.,(x) = Ck{x) for all real x. (41)

Indeed, let k be even, ¢ = 2k. Let PQO(x) be the polynomial ofdegree ¢ —1 defined by
the following k conditions

Po(- «+ 1) = PO(- *+ 2) = sss=P,(-1) =0  POO) = 1

Po(l) = Po(2) = ¢'ee= PO = 0. (42)
Since (39) is exact for the degree i -l w ¢ have the identity
o
Po(x) = Z Po(«)r*/i(x —«), for all real x. (43)
n=—o

We now restrict x to the range
oOirll. (44)

Then we may write (43) as

Po(xX) = Z Po(»)IY,(s- n)

since r*I(.(*-n)=0 if |[x —n\ Six. In view of (42) this identity reduces to the single
term, for m= O:
Po(x) = TuJdjx), (05j5 1),

and therefore (41) holds for the range (44). Likewise, applying the formula (39) to
the polynomial Pi(x), of degree k, defined by
PX(- X+ 2) = eee = P:(- 1) =0, Px(0) = 1, Px(l) = eee¢ = Px(x+ 1) = 0,

we find that (41) holds in the range I"x<2, and so forth. Similar arguments obvi-
ously apply, with obvious modifications, to the case of an odd k.
The coefficients 72° are the expansion coefficients of

( ¢ \ V. m(»U2 4a
&2 sin m/2]/ - ;_(5 ' (42)

Ck(x) = Mk(x) - 7TFiV ts(X)+ yY/V.R* )» + ...+ (- ()

This formula reveals at a glance the following fact: 1f k is even, then Ca(i,)(X) (»=0, 1,2, * ¢ ) arecontinu-
ous. If k is odd then Ct@4»(i-) (»=0, 1, 2, « me)arc continuous. The author learned this property from
Kingsland Camp, Notes on Interpolation, Trans. Actuar. Soc. Amer., 38, p. 22 (1937).
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In N. E. Norlund’s Differenzenreclmung, page 143, we find the expansion

G Y = Z2o-D) "Gy C

The coefficient Dff is a polynomial in k of degree v. Norlund’s Table 6 on page 460,
loc. cit., lists these polynomials for r=0, 1, - =+, 6. We therefore have

/ u \h * u Di,
\2 sin m/i2/ ~ S A28 1p7 (46)
whence
® . p Der
47>
The first few values are
St v Vo G Kok “8)

The expansion coefficients of ;/sin tare positive (see Norlund, loc. cit., Chapter II,
sections 2, 3). Therefore the coefficients y y are all positive. We shall use this fact later.

In view of the results of our last section it seems natural to consider the partial
sums

r*m(x) = Mk{x) - ylkMi*{x) + ... + (_ I)m-W"-iMkn~i\x),

@ m> ©

of the sum (38). The properties of the interpolation formulae based on these functions
are described by the following theorem:

Theorem 3. Theformula
(50)

is a smoothing interpolation formula of the type

D k-1, Ck-2mi E 1mXt s =k (51)
The smoothing power of (50) decreases, as m increasesfrom m = 1to m —u—1, until for
m=iu (50) reduces to the (ordinary) k-point central interpolationformula.

Indeed, the characteristic function of (49) is

M m=2

2 Sin M /2\*. f 2, , it
J {1+ 72 « + eme+ 72Mm-% 1. (52)

g{u) =

From (45) we conclude that

g(u) = 1+ u-m-(regular function)
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and therefore (50) is exact for the degree 2m —1, by Theorem 2 of Part A. The re-
maining three characteristics

Dk~I, Ck~2m, s = Kk,

are evident on inspection of (49). There remains the investigation of the characteristic
function of the corresponding smoothing formula

F(n) = X) y»r*m(» —v). (53)
\"
By Theorem 2, Part A, this characteristic function is
@
Xm(tt) = 1] i(« + 2irv).
V«—m

From (52) and 1(3), we obtain

Xm(w) =43u)+ 72 (2 sinii/2) 4>i(u) + e + 72n-2(2sinu/2) 4>k-2m+t(u).  (54)

This expressionisobviously positive for all values of u. Fortn=ju, however, we ob-
tain the identity

M -1 (55)
since, by Lemma 6, we have before us an ordinary interpolation formula. Since (54)
is a partial sum of the left-hand side of (55) we have therefore provedtheinequalities

0 < x>»(«) <1 1Ti » < /1,0 < « < 271). (56)

Then (53) is indeed a smoothing formula. The final statement of theTheorem s evi-
dent from (54), since Xm(u) increases with m.

As illustrations we mention the following four special cases, two from each end
of the range of values of m.

(i) m—2. The formula based on

r*((*) = Mk{x) - J MI"'(x) (k ~ 4 (57)

has the type

D k~\ Ck~\ E\ s = k (57"
(ii) vi=3. The formula based on
k ' k(5k + 2) (4
TUX) = Mk{x) 24MI {x) + .5_76/30- aM 1 (x), (fend6), (58)
has the type
Dk~\ C*-6 E\ s = . (58"

The values (48) were used.
(iii) m —jx—1. The formula based on5

6The formula (59) is especially instructive because we can observe very clearly how the addition
to Ct(x) of the extra term removes the crudest discontinuities of Ct(x). Indeed, by the formula (*) of
our preceding footnote we may write (59) as
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r*Mi(a;) = Ct(x) + (- Ify~"M ~C x) k £ 4) (59)

has the type

(C2 if kis even
Dk ) ] E k-3 s = k (59"
Cl if kis odd

(iv) m=n~2. The formula based on
Ta:,p-2(x) = Ck{x) + (— 1) vi™-iMk @)+ (—1) 721-*Mk @) (k26 (60

has the type
(C* if kis even

Dk~\ Ek-i s —k (60"
(C3 if kis odd
These formulae show clearly how an increase in “order of contact” is compensated
by a corresponding loss in “reproductive power” and vice versa.

in: A SECOND CLASS OF ANALYTIC INTERPOLATION FORMULAE

In Part A, section 4.2, we described a class of ordinary analytic interpolation for-
mulae of basic function
r M 'Pk{u, t)

1
Lk{x,t)=— \ — ——-e”du (k= 1,2 +me+;/> 0). 1)
2x J _w 4>k(u, t)

These interpolation formulae are exact for the degree k —I. The basic function (1) as
well as those of the smoothing interpolation formulae derived from it in Part A, sec-
tion 4.3, dampen out like a descending exponential function. In the present last chap-
ter we wish to construct smoothing analytic interpolation formulae of basic functions
dampening out like

exp (— c*x2),

hence much more rapidly. In view of the development of section 2.2 it would seem
fairly obvious how such formulae may be derived. We clearly need an analogue of
Lemma 5 which we state asaconjecture: The reciprocal of €k(u, t) admits of an expan-
sion

IV -, (*) = C*(*) + (-1 (599
Let k be odd, hence 2n—2 = k—I and therefore

= <**) + (- IA & rtid*). (59»)

As seen from the graph of Mi{x), the corrective term is a step-function with discontinuities at *= «+ 1/2
whose values are proportional with the binomial coefficients of order k —I: Their addition to Ct{x)
offsets the discontinuities of Ct(x) and turn it into a function (59») of class CI. If k is even, hence 2~—2
=¢ —2, we have

Pt,,_,(*) = C*(*) + (- ify & th u tx). (59»")

As seen from the graph of the corrective term is now an ordinary polygonal line with vertices at
x —n, whose ordinates (at these vertices) are proportional to the binomial coefficients of order k —2:
(*72)- Again, the superposition of this polygonal line on Ct(x') offsets the corners of Ck(x) and turns it
into a function (59»") of class C1 The formulae (59»'), (59») are especially convenient for constructing
tables of these functions from existing tables of C*(x), i.e., tables of Lagrange interpolation coefficients.
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1 2 ® ] 2
— = E (0(2 SiN ms2) )
t) 0
which converges for all real values of u and where the coefficients are all positive
(k)
cj(t) > o, (» = 0,1, 2, e00)e (3)

A proof of this conjecture would require a closer function-theoretic study of the
entire periodic function #*(«, t) which has not been carried through as yet.
Since

<BkM, t) =y . ypk{u + 2xv, 1)
P (V)
(see Part A, section 4.1, formula (6)) we have
<pk(u, t) = \pk(m o + me(regular function).

Therefore the expansion (2) agrees in its terms of order less than k with the similar
terms of the expansion

k ol 9,
- = e'(u2)2 f— = E dinX0(2 sin m/2)2%, (- x a mg x). (4)
t(«, 0 \2 sin m/2/ w_O
Hence
¢ (0 = <F(# (0a 2« < ™). (5)

The expansion (4) is readily determined and its coefficients are found to be positive
as follows. We turn back to section 1.3 where in terms of the variable

V= 2sinm/2 (6)
we have by 1(35)
(— ~-rV = E <&V (- x g «s Xx). (7)
\2 SIN m/72/ wnO
Also by 1(39)
v 1 1v3 1«3 1 U5

m/2 *=arcsin v/2 = _2_1238 ------ 12 45 3 f-ooe (—2"vg 2). (8)

On substituting (8) into the exponential series we find the expansion

00

e<U2)2= £ e2,()t>2" (- 2 2) 9)
O
with positivecoefficients, the first three of which are found to be
eaft) = 1, ei) = —, et(t) = — + — (10)

On multiplying theseries (7) and (9) we obtain the expansion (4). From the values
1(40) and (10) we readily find
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m ®) k

(\k% 5fe2 + 22k  tk t 12
(o (0 = 1 + di\\t) =

t
—, ) = - —+ —+ — (V)
24 4 5760 96 48 32
Our arguments of section 2.2 may now be repeated leading to the following theo-
rem :

Theorem 4. Let k be a positive integer and m an integer such that 0 <2m <k-\-2. Then

Lk.m(x, ) = MKk(x, ) —di ()8 MK(x, /) + sse+ (—1) dam2®d ~Mk{x) (12)

gives rise to a “smoothing™ analytic interpolation formula

®
F(x) = X ynLkm(x - n, I (13)
P ()] \Y

which is exactfor the degree min(2m —1, &—1). Moreover (13) always preserves the degree
k-1.

The adjective “smoothing” was purposely written in quotation marks in order to
indicate that there is no general proof as yet that (13) always reduces, for integral
values of the variable x, to a smoothing formula in the sense of our Definition 1 of
Part A, section 1.1. For indeed, (2) and (3), which imply such a proof, were only con-
jectured. In the Appendix we give 8-place tables of the three basic functions

h(x) = Lt.iix, 1/8),
L,(x) = L4.i(*, 1/2), (14)
Li{x) = La"s"x, 1/2), |

as well as 7-place tables of their first and second derivatives. For these three sets of

values of the parameters k, t, and m, the interpolation formula (13) is indeed a smooth-
ing formula. This point is verified by an inspection of the corresponding characteristic

functions
<t>i(U) = Lt(0) + 2Li(l) cosu + 2Li(2) coOS2«+eme, (7=1,2, 3,). (15)

From the values of Li(n), as given by our tables, we computed the following table
for these characteristic functions:

u W) <+
0° 1.00000 1.00000 1.00000
30° 99734 .99519 .99952
60° .96332 .93655 .97760
* 90° .85492 .76500 .84693
120° 67727 51297 56702
150° 50474 .29296 .27879
180° 43283 .20728 16123

Since 0<<£;(«) <1 for 0<2<”180°, all three formulae (13) arc smoothing formulae
according to Part A, section 1.1. Also €2(u) <(pi(u) implies that Z2gives a stronger
smoothing formula as compared to L\.
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Our set of tables is intended mainly for the purpose of illustrating the method.
A more complete set of tables would be needed in order to furnish smoothing of a de-
sired strength, as required by the needs of the numerical data at hand.

APPENDIX

Description of the tables and their use for the analytic approximation of equidis-

tant data. In the Tables I, 11, and Ill, we have tabulated the following three functions
19
U{x) = M¢X, 1/8) 966‘M"x, 1/8) )
7
L2(x) = Ma(x, 1/2) 1/2) )
| 24
3 199
L3x) = MEXx, 1/2)-—- g'5W 6(x, 1/2) + 1920-ow &x, 1/2) 3)

and their first two derivatives. The function Mk(x, t) occurring in these definitions
may be defined by the integral

IC(]) .12 sin ii/2\ k

1
Mk(G t) = — e-<(U/2> - |-mmmmmmmme ) cos uxdu.
2irJ _M \ u /

J

A given sequence of equidistant ordinates

{?2«} (4)

is approximated by either one of the three analytic functions

Fi(x) = X y>Li(x —*). *= 1 2 3)- (5)
The choice among these approximations depends on the amount of smoothing de-
sired. The formula (5),for 7= 1and 7= 2, is exact for (i.e.,reproduces)cubic polyno-
mials. For 7= 3 the formula (5) is exact for quintic polynomials.For the same data (4),
the sequence {F*(»)} is always smoother than the sequence {F\(n)}. Generally, the
sequence {F3(n,)} should be smoother than the sequence {Fk{n)}.
The first and second derivatives of the approximation (5) may be computed by the

similar formulae
FI(x)- Hyxax- v), (6)

#(*) = £ yJL'Ftx-v). @

The arrangement of our tables is such as to facilitate the computation of Fi{x)
by (5), as explained in the Appendix to Part A.

An example of smoothing with subtabulation to tenths. We propose to compute a
table of the approximation F3(x), in the range 31gx~34, for the same ordinates
{y..} as were used in our example of Part A (Appendix). The ordinates which we now
require are given by the following table:
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n yn A A2 A3 A* As
26 32840

27 34790 1950

28 37260 2470 520

29 40440 3180 710 190

30 44750 4310 1130 420 230

31 51120 6370 2060 930 510 280
32 59390 8270 1900 - 160 -1090 -1600
33 67550 8160 - 110 -2010 -1850 - 760
34 73820 6270 -1890 -1780 230 2080
35 77830 4010 -2260 - 370 1410 1180
36 80240 2410 -1600 660 1030 - 380
37 81660 1420 - 990 610 - 50 -1080
38 82330 670 - 758 240 - 370 - 320
39 82680 350 - 320 430 190 560

From these values and the Table Il of Li(x) and Li' (x) we obtain the following tables
of the approximation Fz(x) and its second derivative Fi' (x) shown with their differ-
ences.

x fi(*) A A2 A3 Al Fio(*) A A2 A3 A4
31.0 51232.76 1901.77

31.1 51989.86 75710 1767.20 -13457

31.2 52764.62 77476 1766 1611.60 -15560 -2103

31.3 53555.48 79086 1610 -156 1436.84 -17476 -1916 187

31.4 54360.69 80521 1435 175  -19 124542 -19142  -1666 250 63
31.5 55178.34 81765 1244  -191  -16 1040.29 -20513  -1371 295 45
31.6 56006.39 82805 1040 -204  -13 824.64 -21565 -1052 319 24
31.7 56842.68 83629 824  -216  -12 601.66 -22298 - 733 319 0
31.8 57684.98 84230 601 -223 - 7 374.38 -22728 - 430 303 -16
31.9 58531.03 84605 375 -226 - 3 14559 -22879 - 151 279 -24
32.0 59378.53 84750 145 -230 - 4 - 8229 -22788 91 242 -37
32.1 60225.21 84668 - 82 -227 3 - 307.15 -22486 302 211 -31
32.2 61068.82 84361 - 307 -225 2 - 527.12 -21997 489 187 -24
32.3  61907.17 83835 - 526 -219 6 - 74051 -21339 658 169 -18
32.4 62738.12 83095 - 740 -214 5 - 945.74 -20523 816 158 -11
32.5 63559.62 82150 - 945 -205 9 -1141.23  -19549 974 158 0
32.6  64369.71 81009 -1141 -196 9 -1325.45 -18422 1127 153 - 5
32.7 65166.57 79686 -1323  -182 14 -1496.90 -17145 1277 150 - 3
32.8 65948.46 78189  -1497  -174 8 -1654.18 ~-15728 1417 140 -10
32.9 66713.83 76537 -1652 -155 19  -1796.14 -14196 1532 115  -25
33.0 67461.25 74742  .1795  -143 12 -1921.91 -12577 1619 87  -28
33.1 68189.46 72821  -1921  -126 17 -2030.98 -10907 1670 51 -36
33.2  68897.38 70792 -2029 -108 18 -2123.19 - 9221 1686 16 -35
33.3  69584.08 68670 -2122 - 03 15 -2198.74 - 7555 1666 - 20 -36
33.4 70248.81 66473 -2197 - 75 18 -2258.04 - 5930 1625 - 41 -21
33.5 70890.96 64215 -2258 - 61 14  -2301.69 - 4365 1565 - 60 -19
33.6 71510.12 61916 -2299 - 41 20  -2330.31 - 2862 1503 - 62 - 2
33.7 72105.98 59586 -2330 - 31 10 -2344.57 - 1426 1436 - 67 - 5
33.8  72678.41 57243 -2343 - 13 18 -2345.07 - 50 1376 - 60 7
33.9 73227.40 54899 -2344 - 1 12 -2332.47 1260 1310 - 66 - 6
34.0 73753.07 52567 -2332 12 13 -2307.47 2500 1240 - 70 - 4
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A comparison of the approximation F2(x) with the strictly interpolating function
F(x), obtained in the Appendix of Part A, is of interest. The function F(x) was ob-

tained by the formula
®

F(x) = £ 3iL*(* - v, /), (* = 4,t= 1/2),
\fm-zC

where, in view of I11(l) and 111(2), we may define L k(x, t) by the expansion

Lk{x, ) = MK(x, i) — QRO)dMk(x, t) + c\K\t)b Mk{x /) — eos . )

Our present approximation F2{x) was computed by the formula (5), for i =2, where
L2(x), by (2), 111(5) and 111(11), happens to be identical with the sum

L2x) = MK{x t) - r2 (1)8MK(x, 1)

of the first two terms of the series (8). A comparison of the tables of F(x) and F2(x)
shows that their difference in the range 317#734 nowhere exceeds 0.23% of the
value of F(x).

Tabte | L,(X)= 2%, 1/8), L[ (%), L{ x)

U (x)

X x+ .0 X+ .1 X+.2 X+ ,3 X+.4

3 -.00041123 -.00018550 -.00007621 -.00002830 -.00000943

2 -.03462580 -.02756299 -.02099452 -.01533104 -.01073240

1 .14220425- .08277004 .03516336 -.00066601 -.02556532

0 .78566556 17475976 74281594 69204028 62577328
-1 14220425 21251290 29166041 37661030 46353840
-2 -.03462580 -.04145730 -.04699226 -.04985257 -.04841746
-3 -.00041123 -.00083691 -.00157669 -.00277249 -.00458632
-4 -.00000003 -.00000017 -.00000074

X x+.5 X+.6 xX+.7 X+.8 X+.9

3 -.00000280 -.00000074 -.00000017 -.00000003

2 -.00718751 -.00458632 -.00277249 -.00157669 -.00083691

1 -.04092087 -.04841746 -.04985257 -.04699226 -.04145730

0 54811118 46353840 37661030 29166041 21251290
-1 54811118 62577328 69204028 74281594 77475976
-2 -.04092087 -.02556532 -.00066601 .03516336 .08277004
-3 -.00718751 -.01073240 -.01533104 -.02099452 -.02756299
-4 -.00000280 -.00000943 -.00002830 -.00007621 -.00018550
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O = N W

-1
-2

-4

O = N W

-1
-2
-3
-4

O R, NwWwhM

-1
-2
-3
-4

O N W

-1
-2

-4
-5

x+.0

.0030922
.0709642
-.6512052
.0000000
.6512052
-.0709642
-.0030922

x+.5

.0000357
.0304945
-.1113051
-.8188067
.8188067
1113051
-.0304945
-.0000357

x+ O

-.0000004
-.0197354
.0202421
1.0966561
-2.1943249
1.0966561
.0202421
-.0197354
-.0000004

X+.5

-.0004201
-.0947351

.7867260
-.6915708
-.6915708

.71867260
-.0947351
-.0004201

X+.1

.0015611

.0690870
-.5359047
-.2168063

.7515608
-.0638857
-.0056121
-.0000001

X+.6

.0000103
.0217952
-.0416488
-.8650057
7269119
.1986416
-.0405956
—.0001089

x+.1

-.0000001
-.0114013
-.0521077
1.1912649
-2.1159568
.8923803
1269947
-.0311722
-.0000019

X+ .6

-.0001346
-.0788289
.6058876
-.2337191
-1.1427100
.9568292
-.1061742
-.0011500

L[ ()
X+.2

.0007155
.0616092
-.4163489
-.4183406
.8262912
-.0445045
-.0094213
-.0000006

Li (x)
X+ ,7

.0000026
.0147669
.0099839
-.8662852
.5915396
.3016954
-.0514079
-.0002953

LF(x)

X+.2

-.0059477
-.0926044
1.1844282
-1.8927238
.5868711
.2654156
-.0454298
-.0000092

xX+.7

-.0000377
-.0617347
4283134
.2020705
-1.5554043
1.0974670
-.1078983
-.0027759

APPROXIMATION OF EQUIDISTANT DATA

x+.3

.0002953
.0514079
-.3016954
-.5915396
.8662852
-.0099839
-.0147669
-.0000026

x+.8

.0000006
.0094213
.0445045
-.8262912
4183406
4163489
-.0616092
-.0007155

-.0027759
-.1078983
1.0974670
-1.5554043
.2020705
4283134
-.0617347
-.0000377

X+.8

-.0000092
-.0454298
.2654156
.5868711
-1.8927238
1.1844282
-.0926044
-.0059477

X+.4

.0001089
.0405956
-.1986416
-.7269119
.8650057
.0416488
-.0217952
-.0000103

X+ .9

.0000001
.0056121
.0638857
-.7515608
.2168063
.5359047
-.0690870
-.0015611

x+.4

-.0011500
-.1061742
.9568292
-1.1427100
-.2337191
.6058876
-.0788289
-.0001346

X+.9

-.0000019
-.0311722
1269947
.8923803
-2.1159568
1.1912649
-.0521077
-.0114013
-.0000001
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O N WSO

-1
-2
-3
-4

O kRh N WA

-1
-2
-3
-4
-5

x

O = N WA~ O

-1
-2
-3
-4
—5

A+.0

-.00000001
-.00003297
-.00453670
-.04033977

20271717

.68438455

20271717
-.04033977
-.00453670
-.00003297
-.00000001

*te5

-.00000094
-.00054590
-.01965692
-.00024449

.52044824

52044824
-.00024449
-.01965692
-.00054590
-.00000094

x -f~.0

.0000001
.0002093
.0162494
.0162409
-.5820676
.0000000
.5820676
-.0162409
-.0162494
-.0002093
-.0000001

1. J. SCHOENBERG

Tabre I L, (x)=Lii2(x, 1/2), Li (x), Li* (x)

at .|

-.00001721
-.00313034
-.03775949

14753253

67711287

26343912
-.04070831
-.00640787
-.00006127
-.00000003

»H+.6

-.00000042
-.00032972
-.01545906
-.01869149

145907812

57534514

.02523450
-.02429574
-.00087930
-.00000203

.0001145
.0120195
.0339777
-.5195203
- . 1448007
6294198
.0104651
-.0213049
-.0003705
-.0000002

Lt(x)

X+ .2

-.00000871
-.00210474
-.03379714

.09914645

65567464

32793367
-.03791256
-.00882100
-.00011052
-.00000007

X+.7

-.00000018
-.00019364
-.01183236
-.03092183

.39399436

62117134

.05829935
-.02913417
-.00137859
-.00000428

Li (x)

.0000607
.0086291
.0441321
-.4469715
-.2821139
6567760
0471784
-.0270545
-.0006358
-.0000006

a-P*3

- .00000428
-.00137859
-.02913417

.05829935

62117134

.39399436
-.03092183
-.01183236
-.00019364
-.00000018

A*p8

-.00000007
-.00011052
-.00882100
-.03791256

.327-93367

.65567464

.09914645
-.03379714
-.00210474
-.00000871

.0000311
.0060153
.0482532
3695748
- .4050264
6601752
.0943909
-.0332049
-.0010581
-.0000015
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-.00000203
-.00087930
-.02429574

.02523450

57534514

145907812
-.01869149
-.01545906
-.00032972
-.00000042

A+ 9

-.00000003
-.00006127
-.00640787
-.04070831

26343912

67711287

14753253
-.03775949
-.00313034
-.00001721

.0000154
.0040721
.0478931
-.2920635
-.5077160
.6369100
.1518602
-.0392596
-.0017083
-.0000034
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-1
-2

-4
-5

Ok, NWAOG

-1
-2
-3
-4
-5

O N W b

-1
-2

-4
-5
-6

a+.5

.0000074
.0026769
.0444848
-.1876748
-.5858619
.5858619
.1876748
-.0444848
-.0026769

-.0000074

a+.0

—.0000010
—.0012284
-.0465343
.2201282
5579563
1.4606815
.5579763
.2201282
-.0465343
-.0012284
-.0000010

a+.5

-.0000557
-.0116249
-.0450247

.7053804
-.6486751
-.6486751

.7053804
-.0450247
-.0116249
-.0000557

APPROXIMATION OF EQUIDISTANT DATA

A+ .6

.0000034
.0017083
.0392596
-.1518602
-.6369100
5077160
.2920635
-.0478931
-.0040721
-.0000154

xX+A

-.0000004
-.0007087
-.0380479
1369510
6842412
1.4227560
.3809905
.3157558
-.0543645
-.0020585
-.0000025

A+ .6

—.0000270
—.0079270
-.0578316

.6230076
-.3711575
-.9099683

.7615818
-.0210828
-.0164844
-.0001108

Li (x)

X+ .

.0000015
.0010581
.0332049
-.0943909
-.6601752
4050264
.3695748
-.0482532
-.0060153
-.0000311

Li*(x)

X+ .2

-.0000001
-.0003952
-.0298698
.0687454
. 7580506
-1.3118991
.1594624
4193623
-.0601451
-.0033357
-.0000057

X+ .

-.0000126
-.0052283
-.0620423
.5245097
-.0960473
-1.1365778
7819152
.0162834
-.0225871
-.0002129

-1

*+.8

.0000006
.0006358
.0270545
.0471784
6567760
.2821139
4469715
.0441321
.0086291
.0000607

a+.3

.0002129
.0225871

.0162834

7819152
1365778
.0960473

.5245097
.0620423
.0052283
.0000126

a+.8

—.0000057

-1

.0033357
.0601451
14193623
1594624
3118991
.7580806
.0687454
.0298698
.0003952
.0000001

A+ 9

.0000002
.0003705
.0213049
-.0104651
-.6294198
. 14458007
.5195203
-.0339777
- .0120195
-.0001145

-.0001108
-.0164844
-.0210828
.7615818
.9099683
3711575
.6230076
-.0578316
-.0079270
-.0000270

X+.9

-.0000025
-.0020585
-.0543645
.3157558
.3809905
-1.4227560
.6842412
1369510
-.0380479
-.0007087
-.0000004

139
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oORhNMNWEGO O

-1
-2
-3
-4
-5
-6

x

O N WAO

-1
-2
-3
-4
-5
-6
-7

ORL NWAOGO O

-1
-2
-3
-4
-5
-6

*+ 0

.00000024
.00008286
.00268003
.00146844
-.06657958
.20814167
.70841267
.20814167
-.06657958
.00146844
.00268003
.00008286
.00000024

x+.5

.00000616
.00062367
.00593823
-.02754330
-.02182865
.54280388
54280388
-.02182865
-.02754330
.00593823
.00062367
.00000616

x+.0

-.0000017
-.0003813
-.0062356
.0288514
.0379708
-.6356363
.0000000
.6356363
-.0379708
-.0288514
.0062356
.0003813
.0000017

1. J. SCHOENBERG

Tabte . L*(x)=L63(x, 1/2), Li

X+.1

.00000012
.00005169
.00209760
.00384345
-.06134625
14737265
70114512
.27390708
-.06856746
-.00197317
.00333890
.00012978
.00000049

X+.6

.00000340
.00043550
.00542627
-.01948472
-.04376882
47975381
.59869152
.00818720
-.03631488
.00618622
.00087361
.00001088
.00000001

x+.1

-.0000009
-.0002500
-.0053949
.0189098
.0648953
-.5771501
- .1447858
.6763588
.0001221
-.0401754
.0069002
.0005675
.0000033

Li(x)
X+ .2

.00000005
.00003150
.00160285
.00530620
-.05394260
.09315196
.67967926
.34268907
-.06617125
-.00659556
.00404886
.00019870
.00000096

xX+.7

.00000183
.00029745
.00476644
-.01244745
-.05825575
41215975
.64500315
.04655844
-.04532872
.00602933
.00119677
.00001874
.00000002

Li [x)
X+ .2

-.0000004
-.0001598
- .0044992
.0106360
.0815717
-.5054638
-.2828738
.6953825
.0497076
-.0523583
.0072273
.0008239
.0000063

@8 L[ ()

*+.3

.00000002
.00001874
.00119677
.00602933
-.04532872
.04655844
.64500315
41215975
-.05825575
-.01244745
.00476644
.00029745
.00000183

X+.S

.00000096
.00019870
.00404886
-.00659556
-.06617125
.34268907
.67967926
.09315196
-.05394260
.00530620
.00160285
.00003150
.00000005

X+ .3

-.0000002
-.0000996
-.0036324
.0041176
.0893524
-.4254184
-.4080067
.6897327
.1103706
-.0646105
.0070158
.0011670
.0000116
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*+ 4

.00000001
.00001088
.00087361
.00618622
-.03631488
.00818720
.59869152
47975381
-.04376882
-.01948472
.00542627
.00043550
.00000340

*+.9

.00000049
.00012978
.00333890
-.00197317
-.06856746
.27390708
70114512
14737265
-.06134625
.00384345
.00209760
.00005169
.00000012

xX+.4

-.0000001
-.0000605
-.0028472
-.0007095
.0898535
-.3417929
-.5147714
.6576776
.1808527
-.0758656
.0060307
.0016121
.0000206

1946]

>

O, NMDwHOU

-1
-2
-3
-4
-5
-6
-7

oOpRp MW

-1
-2
-3
-4
-5
-6
-7

O R, NMDWwH> 0o

-1
-2
-3

-5
-6
-7

x+.5

-.0000358
-.0021709
-.0040148
.0847953
-.2590022
-.5989336
.5989336
.2590022
-.0847953
.0040148
.0021709
.0000358

x+.0

.0000117
.0015631
.0077612
- .1069900
.3239975
5032414
-1.4591699
.5032414
.3239975
-.1069900
.0077612
.0015631
.0000117

X+.5

.0000003
.0001926
.0061776
-.0261859
-.0726654
.8104398
-.7179590
-.7179590
.8104398
- .0726654
-.0261859
.0061776
.0001926
.0000003

APPROXIMATION

X+.6

-.0000206
-.0016121
-.0060307
.0758656
-.1808527
-.6576776
5147714
3417929
-.0898535
.0007095
.0028472
.0000605
.0000001

X+ .1

.0000061
.0010868
.0088518
-.0913730
.2160536
.6588169
-1.4253081
.3045939
4384255
-.1186224
.0052612
.0021860
.0000217

X+.6

.0000001
.0001165
.0050049
-.0145672
-.1033391
71474910
-.4548011
-.9605716
.8390021
-.0256675
-.0403140
.0073357
.0003094
.0000007

OF EQUIDISTANT DATA

Li (x)
X+-7

-.0000116
-.0011670
-.0070158
.0646105
-.1103706
-.6897327
.4080067
4254184
- .0893524
-.0041176
.0036324
.0000996
.0000002

Li (x)
X+.2

.0000031
.0007350
.0089242
-.0739648
1197566
.7667843
-1.3259553
.0708748
.5526106
-.1237228
.0009447
.0029705
.0000392

X+.7

.0000001
.0000685
.0039174
-.0055676
-.1195410
.6585611
-.1867923
-1.1676245
.8261081
.0385786
-.0565175
.0083240
.0004835
.0000015

X+.8

-.0000063
- .0008239
-.0072273
.0523583
-.0497076
-.6953825
.2828738
.5054638
-.0815717
-.0106360
.0044992
.0001598
.0000004

X+ .3

.0000015
.0004835
.0083240
-.0565175
.0385786
.8261081
-1.1676245
- .1867923
.6585611
-.1195410
- .0055676
.0039174
.0000685
.0000001

x+.8

.0000392
.0029705
.0009447
-.1237228
.5526106
-.0708748
-1.3259553
71667843
1197566

- .0739648
.0089242
.0007350
.0000031

141

x+.9

-.0000033
-.0005675
-.0069002
.0401754
-.0001221
-.6763588
. 1447858
5771501
-.0648953
-.0189098
.0053949
.0002500
.0000009

X +.4

.0000007
.0003094
.0073357
—.Q403140
- .0256675
.8390021
-.9605716
-.4548011
7474910
- .1033391
-.0145672
.0050049
.0001165
.0000001

x+.9

.0000217
.0021860
.0052612
-.1186224
4384255
.3045939

-1.4253081

.6588169
.2160536
-.0913730
.0088518
.0010868
.0000061
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AN ITERATION METHOD FOR CALCULATION
WITH LAURENT SERIES*

BY

H. A. RADEMAGHER ana I. J. SCHOENBERG
University of Pennsylvania and Ballistic Research Laboratories, Aberdeen Proving Ground

Introduction. The power series is a basic concept of Analysis which is of funda-
mental importance from the theoretical as well as from the computational point of
view. The theoretical importance of power series springs from the fact that it repre-
sents any analytic function in the neighborhood of a regular point. The reason for its
practical importance is the ease with which implicitly defined functions, by finite
relations or differential equations, may be expanded in power series by the so-called
method of undetermined coefficients, known and used since the dawn of mathematical
analysis.

Laurent series play a definitely minor role as compared to power series. One reason
is the more complicated nature of the connection between the sum of the series and
its coefficients. Another reason, dependent on the first, is the difficulty of calculations
with Laurent series.

The purpose of this paper is to describe a method whereby rational or algebraic
operations with Laurent scries may be performed with high accuracy at the expense
of a reasonable amount of labor. A general approximation method to empirical data,
developed by one of us,1required the very accurate reciprocation of certain Laurent
series. This problem of reciprocation of Laurent series was the starting point of our
investigation. Our method for solving this particular problem turned out to be identi-
cal with a method of reciprocation of finite matrices already investigated by
Il. Hotelling.2 We finally point out that our method of computation with Laurent
series extends to computations with trigonometric series provided thése series con-
verge absolutely.

1. Newton’s algorithm and statement of the problem. Let

f{x) = alkxm+ aixm-l-f ese + am= 0, (@0~ 0), @

be an algebraic equation with numerical real or complex coefficients. If * is a simple

root of this equation, then very close approximations to x may be readily computed

by Newton’s iterative algorithm represented by the recurrence relation

f Xn 1 <«
(Xn) 5

1(*»)

The reason for the fast convergence of xntowards x is as follows: Expanding the right-

£n+l — Xn

* Received Nov. 6, 1945.

11. J. Schoenberg, Contributions to the problem of approximation of equidistant data by analytic func-
tions, Part A, Quart. Appl. Math.

1H. Hotelling, Some new methods in matrix calculation, Ann. Math. Statist. 14, 1-34 (1943), espe-
cially p. 14, and Further points in matrix calculation and simultaneous equations, Ann. Math. Statist. 14,
440-441 (1943).
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hand side in a power series inrt,,—X, in the neighborhood of the simple root x, we find
that (2) may be written as

Aer+l X — £2(~11 T e3(~71 T) "h ***t 3

with coefficients ¢, depending only on the root x. Because there is no linear term
in Xxn—x on the right-hand side we find that from a certain point on the error x,,+i—x
is of the order of magnitude of the square of the previous error xn—x. From this stage
on, each step will approximately double the number of correct decimal places of the
previous approximation x,,. This type of rapid convergence is sometimes referred to
as “quadratic convergence.”

Let us notice that the iterative process (2) requires a division, by/'(#,), at each
step of the process. This is a serious handicap in computing with machines which do
not perform the operation of division, as for example the standard punch-card ma-
chines. This division is likewise a handicap if we wish to extend the process to the
realm of matrices where division is a difficult numerical operation.

We propose to modify Newton’s algorithm (2) so as to require only the operations
of addition, subtraction and multiplication in its performance. It will then be shown
how the modified Newton algorithm allows us to carry out numerically rational as
well as algebraic operations on Laurent series. The most general numerical problem
whose solution is facilitated by our method may be formulated as follows.

Problem . Let
f(w, z2) = a0(z)wm+ al(s)wml+ mee+ a,2 =0 4

be an equation with thefollowing properties:
1. The coefficients a,(z) are all regular and uniform functions of z in the ring

R: ri<lzl<r2 (5)
2. We have
ao(s) 50 in R. (6)

3. The discriminant D(z) of (4) satisfies
D{z) in R (7)

so that the equation (4) has no critical pointin R. Let now w =w{z) be a branch of a solu-
tion of (4) which is necessarily regular in R but need not be uniform in R. Given the nu-
merical values of the Laurent expansions of the coefficients a,{z), the problem is tofind the
values of the coefficients of the Laurent expansions of w(z).

Remarks. 1. The difficulty of this problem is due to its being concerned with
Laurent series rather than ordinary power series. Indeed, if everything else is un-
changed, wereplace, in its formulation, the ring (5) by the circle |z| <r2 then all
Laurent seriesmentioned become power series, in which case the power series expan-
sion of the branch w=w{z) may be obtained by the method of undetermined coeffi-
cients (see the first paragraph of our Introduction).

2. We did not require the branch w=w(z) to be uniform in R. However, we do
not restrict our problem by assuming w(z) to be uniform in R. Indeed, if w[z) returns
to its values after k turns in R, k>1, we change variable by setting

2= f*
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Our equation (4) thereby becomes
f(w, £5) = 0

and the branch w(z) becomes uniform in the corresponding ring in the f-plane. If we
can determine its uniform Laurent series

®
W2 = X) “nf"”
-
we also have its algebraic expansion ®
w(z) = y u,iznik.

3. Even the case m= 1is far from trivial. Thus
ao(z)w —1=0

amounts to the important problem of the reciprocation of a given Laurent series.
2. The modification of Newton’s algorithm. We return in this section to the case
of the ordinary algebraic equation (1). We now impose the restriction that

f(x) has only simple zeros. (8)

This condition implies that the polynomials f(x), f'(x) have no common divisors and
that we can therefore determine uniquely, by rational operations alone, two poly-
nomials <f)(X) and satisfying the identity

f)<t>(x) + f'(x)i(x) = 1, 9)

and such that the degrees of 9and do not exceed m —2 and m —1, respectively.
The coefficients of 4>{x), \p(x) are rational functions of the coefficients a,, For later
reference it is important to remark that the coefficients of \J/(x) may be written as a
quotient of polynomials in avdivided by the discriminant D of the polynomial/?).
Indeed, the coefficients of §=and t/ are determined, in view of (9), by a system of linear
equations whose determinant is precisely the discriminant D of f(x). This procedure
leads to explicit expressions of ipand D in determinant form. Thus form = 3 we obtain

s2 X | 0 0 = 0 0 o O
! 3iio O 0 oo O 2a\  3a0 0_ di  do
\p{x) b 20 300 O ai do , D = a2 2ai B a2 d\ (10)
a2 2a\ 3® a2 Al 0 a2 2ai a3 d2
0 & 2ai a5 a2 0 0 a2 o dz

This expression, which generalizes to any value of m, indeed shows that the coeffi-
cients of \p(x) have the common denominator D if regarded as rational functions of
the a,’s.

Now we modify Newton’s algorithm (2) to its new form3

1We learn from a note by J. S. Frame, Remarks on a variation of Newton's method, Amcr. Math.
Monthly, 52, 212-214 (1945), that precisely the same modification of Newton’s algorithm has already
been used since 1942 by H. Schwerdtfeger, of the University of Adelaide, South Australia, for the numeri-
cal solution of ordinary algebraic and transcendental equations.
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X+l Xno L Xipinxe). (11)
Setting
F(x) = x- f{{x)p{x) (12)
we may write (11) as
xnH=F (xn). (119

On comparing (2) and its modification (11) we see that the division required by (2),

at each step ofthe process, is not present in (11). Now we want to show that the
algorithm(11') also enjoys the property of (2) of producing' fast convergencetowards
the zeros of f(x). Indeed, let x be a root of (1),

I(*)m H 0, (13)

and let us expand F(xn) about the point xn—x. Writing for convenience/dXx) =fM,
\f/IM (x) =ipM, we have by Taylor’s formula

f(xn) =/ + I'(*» —X) + 8/"(*, - X)2{ese,

'P(xn) = P+ i'(xn—x) + W'{xn—x)2+ me .,
hence

f(x,,)ip(xn) = fp + (ft/ + f'Mxn -x) + Ufr + 2r + f'Mxn - xy+-- -.
By (9) and (13) we have/=0,/V =1 and therefore
FOX) - x= - \w + f"*){xn- xy + eeo .
This shows that we may write our relatio?i (11) in theform
XnH — x = b2AxX)(xn — x)2+ bIXx)(xn- Xx)3+ eee+ b2ni(x)(xn- xYml, (14)

where the b,(x) are polynomials in x with coefficients which are polynomials in a, divided
by the co?ntno?i denominator D.

Again the missing linear term in xn—X, on the right-hand side of (14), shows that
if x0is sufficiently close to X, then the algorithm (11) will insure that xn—Xwith quad-
ratic convergence.

An important special case of (1) is the equation

axm—1=0, (a 0). (15)
The identity
X
(— I)(axm — 1) -]=—————(thaxm~1) = 1
m
shows that in this case
1
Hx) = — x
m

The relation (11) now becomes

1
*»+i = xn A X,,(I - axn). (16)
m

In particular if m =1, (15) reduces to

ax —1=0 17)
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when (16) becomes ]
Xt = xnT* x, (I axti). (18)

3.The reciprocation of matrices. The advantage of the modified, or division-free,
Newton algorithm (11) appears in connection with matrix calculations. In recent
years H. Hotelling has recommended the following procedure of finding the reciprocal
X =A~1of a given numerical non-singular matrix

A= ”ar'jj' (Ivj = 11 He o, m) (19)

Obtain in some way, e.g. by the so-called Gauss, or Doolittle, process a good approxi-
mation Xo to A~x. Then improve this approximation by the recurrence relation

XnH = Xn+ Xn(l - AXn). (20)

In the case of m —\ this relation is identical with (18).
In studying the convergence of X ntowards X =A~1 Hotelling metrizes the space
of real mXm matrices by means of the absolute value or norm

N =a E G @

which enjoys the following properties
N(A + B) g.N(A) + N(B), N(AB) g N{A)N(B). (22)

By means of these inequalities Hotelling derived an estimate of N (Xn—X) which
was improved by A. T. Lonseth as follows:4

Inequality of Hotelling and Lonsetii. Let X Obe an approximation to X =H -1

such that
N(l - AXO) = k< 1 (23)

Starting with Xo we obtain the sequence X n by (20). Then
N(Xn- X) g N(XO-£2n-(I - ft)"L (24)

This interesting result shows in particular that the inequality (23) is sufficient to
insure the convergence of the process.

Our generalizations (16) and (11) of the recurrence relation (18) suggest similar
iterative procedures for the solution of non-linear algebraic matrix equations. We
prefer, however, to pass on to a discussion of calculations with Laurent series.

4. Calculations with Laurent series. Let

9=c ari (i<lzl<Q) 0s)

be a Laurent series converging in the ring (5). There is no inherent restriction of the
generality of the Problem formulated in our Introduction if we assume that the ring R
contains the unit-circle |s| =1, i.e.

*See Hotelling's second note already mentioned.
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r<1<r2 (26)

An advantage of this normalization is that it implies that a,—0 exponentially as
7i—+ 0 or 7i—7—co, insuring that the sequence {«,} is “finite” to a fixed number of
decimal places.

The relation (25) sets up a one-one correspondence

a() ~ {<}
between functions a{z) uniform and regular in R and sequences {«,} for which the
series (25) converges in R. To the function a(z) = 1 corresponds the unit-sequence
I: ao=1 an=0 if n O
This correspondence may be interpreted as an isomorphism concerning the operations
of addition, subtraction, multiplication and multiplication by a scalar. Indeed, if

€0

b(z) = E PnZn, (ri<z<r?, (27)

00

is a second series then we find, on multiplying (25) and (27) that to the product

c(z2) = a{z)b{z) (28)
corresponds the series
c2) = EooynZ" (29)
)
where
Yn "w( a,, Vit (30)

Thus to the operation (28) of multiplication of the functions a, b, corresponds the
operation of co7ivolutio7i (30) of the two sequences {«*], {/3,}, an operation which
we write as

7 = a3 (31)

We mention incidentally a third interpretation of Laurent series isomorphic to the
two already discussed. Indeed, consider the (4-way) infinite matrix

Ik-."11 (32)

in which dj-i is the element in the ith row and jth column, both i and j assuming
all integral values. Such matrices may be designated “striped” for the reason that all
elements lying on a line, sloping down at a 45° angle, are identical. To every sequence
{a,,} corresponds one such matrix, and conversely. The isomorphism between such
matrices and sequences becomes evident if we remark that the multiplication of two
striped matrices ||la/-.-||, ||[#|U||, is another striped matrix ||y,-.||, where the sequence
{Tn} is given by(30).This remarkthrows some light on the connection between
Laurent series and thecaseof finite matrices of §3.
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We finally define the norm of the function a(z), or of the sequence {a"}, as the
non-negative number

[ee]

N(a) = N(oi) = E 1« |e (33)
_@

This norm also enjoys the two properties (22) or
N(a + b) S N(o) + N(b), N(ab) g N(a)N(b). (34)

Their verification is immediate in this case.

We are now able to attack the general Problem of section 1. However, it is essen-
tial to discuss first the important case m —1 of reciprocation.

4.1. The reciprocation of Laurent series. With the norm of a Laurent series as
defined by (33),the result of Hotelling and Lonseth (section 3) applies to Laurent
series without any change. Assuming that the sum a(z) of the givenLaurent series
(25) does not vanish in R, we are to find the expansion

1 «
w(z) = —— = w»2''- 35
@ = 25 ; (35)
Let
wo(z) = E wn=3' (36)
—@

be an approximation to (35) such that

N(1- awQ = N(I - aw«») = k < 1. 37)

The very important problem of how such approximations may be obtained will be
discussed later (section 4.3). This starting sequence is now to be improved by the

relation
w(n+l) = w(,) + _ aw<n))_ (38)

The rapid convergence is assured by the Hotelling-Lonseth inequality
N(co<> - co) » A(co<®))-fez'-(I - k)-1 (39)

Pending a discussion of procedures for obtaining the first approximation, we may
therefore regard the numerical problem of reciprocation as solved. This implies that
we may perform all four rational operations on Laurent series and that we may thus
find the Laurent expansion of any rational function of Laurent series.

4.2. The general algebraic case. We turn now to the general case of the equation
(4) with the two additional, and as we have seen, unessential restrictions that our
ring R contains the unit-circle |z] =1 and that the solution w —w(z), of (4), be uni-
form in R. The problem is to find the numerical values of the coefficients of the

W =E @

W e.return to our discussion (section 2) of the division-free Newton algorithm (11),
especially in its expanded form (14). This discussion remains valid if applied to (4)
rather than (1). The algorithm is in this case
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WhH = Wn —f(IVn, Z)i(wn), (41)
the expanded form of which is
wn+l - w = bs(w)(wn— wY + eee+ btm-i(w)(wn— w)tm~K (42)

We have to remember, however, that '/'(w,) is a polynomial in wn with coefficients
which are polynomials in a, divided by D=D{z). Since 1? is a polynomial in the a,,,
we may first derive its Laurent expansion by additions and multiplications from the
given Laurent series of the coefficients a,(z) of (4). Secondly, since

D(z) 0 in R,

we may also find by the method of section 4.1 the Laurent expansion of \/D{z). In
this way we arrive at the Laurent expansions of the coefficients of \p(wn)m These pre-
liminary Laurent series operations allow to put therelation (41)in the form

wn+l = wn+ (cQz) + Cl(2w,, + <+ Qm-l(z)w»H J), (43)

where
c«(z) = E v ' (44)
\"

are numerically known Laurent expansions.
Now let

wo(z) = "2 w-'>s (45)

— 30

be an approximation to (40), (See section 4.3.) Starting from this approximation we
obtain the successive series

wn(z) = « “V (46)

— 30

by means of (43). This operation of deriving wrtlfrom wnis of course to be performed
on the corresponding sequences of coefficients. By (43), (44), (46), the operation takes
the form

Qn+D = Wn) + (7O + 7iWn) + e« + 72m-l(w<n) 2m-1)- (47)

Will the expansion (46) converge towards the expansion (40) of the solution? To
answer this question we return to the form (42) of our relation. Taking the norms of
both sides of (42) and using the properties (34) of the norm, we obtain

N(wrHl - «OS N(jbt(w)) [N(w,, - W)]>+ eee + [N(wn - a»)]*—1 (48)
This relation shows that if

N(wo — w) = | | (49)

—
is sufficiently small then (48) will indeed imply

lim N(w,, —w) =0 (50)
=«

with quadratic convergence.
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4.3. Derivation of an approximate Laurent expansion. The method for computa-
tion with Laurent series described in the previous sections will now become effective
provided we can solve the following problem.

Initial approximation problem. Let
®
Fiz) ~ X Gz (51)
_ﬂ)

be regular in the ring R containing the circle |z| =1. Thisfunction F{z), whose Laurent
coefficients ¢, are unknown, is defined by an algebraic equation which allows us to com-
pute the value of F{z) for any given z of R, in particular for any root of unity. We are to
describe a practical method whereby, given e>0, we may compute the coefficients c¢,* of

a Laurent series

®
Fr@z) = X gV (52)
_Q)
regular in R, such that
®
N(F- F*) = X IG- G | < e (53)
)

We shall now solve this problem by the method of trigonometric interpolation.5
Let m be a positive integer and let

z,= e”"'m (M= 0, 1, e, m - 1), (54)

be the mth roots of unity. These roots of unity satisfythe following orthogonality

relations
1tTd v, (1 if v=s (modm)

ZA = 9 55
m K/I_o 10if v ¢s s (mod m). (55)
If mis odd, m —2n+ |, we consider the Laurent polynomial
n
Fm@z) = X cm»Z (56)
\AR-h

having m arbitrary coefficients.
If m is even, m =2n, we define our polynomial so as to contain again only m arbi-

trary coefficients as
=

Fm@) = X + 2G,,,(zn+ Z-). (57)
(n-1)

W hether m is even or odd we may always write

Fm(z) (*‘ ‘ [t]) (58)

5 Concerning the subject of trigonometric interpolation we refer to the classical memoir by Ch. J. de
la Vallée Poussin, Sur la convergence des formules d’interpolation entre ordonées equidistantes, Bulletin de
I’Academie royale de Belgique, 319-410 (1908), and to Dunham Jackson, The theory of approximation,
American Mathematical Society Colloquium Publications, vol. 11, New York, 1930, chap. IV.
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where the summation symbol XE > to indicate that if m is even, then
Cm.—n ' Cm.m (59)

and that the terms of (58) for v—=xn are to be taken with half their value. The rela-
tion n = [m/2] is to indicate that n is the greatest integer not exceeding m/2.

We shall now require the Laurent polynomial (58) to interpolate the function (51)
in the points (54). This gives the m equations

X ' emym\ = F{zf), (m= 0,1, ese, m—1). (60)
VA

On multiplying (60) by zj,/m (s fixed, —n"*s”n) we find in all cases, in view of (55)
after summation by ju, that

N -1

Cm., = — X ~Afe)n, (“ « 1 » " »m (61)
m ~.t

The construction of our approximate Laurent expansion (58), i.e. (52), has now been
completed. The following theorem will now show that the condition (53) may also be
realized by the present method of construction.

Theorem. We assume the Laurent series
Fi) = X gz (62)
VM—ec
to converge absolutely on theunit circle |z|] =1, i.e.
X |Gl< “ .6 (63)
)

Then our interpolating Laurent polynomial (58) satisfies the condition

lim N(F - Fm) = 0. (64)
M-»

Remark. Notice that the regularity of F(x) in a ring containing ]z| =1 implies
our condition (63) but not conversely. This remark is of importance concerning cal-
culations with absolutely convergent Fourier scries. (See section 5.)

Proof. Let TVbe a positive integer. We shall restrict ourselves to values of m~2N,
hence n*N. We may then write

N(F- Fm) a x 1G- G|+ X toen.1+ X 16]. (65)
o NSME- MSV

We shall now estimate the three sums on the right-hand side.

8See Dunham Jackson, loc. cit.,, for other conditions insuring the convergence of trigonometric
interpolation.
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Let e>0 be given. In view of our assumption (63) we may choose N such that

X |G|<e (66)

An upper bound for the second sum of (65) may now be obtained as follows. By (61)
and (62) we have

1 wi—1 _S [ee] V COV_V 1 1»1;\1,\’ V_S
Ccm 8 | Vzfl | ycyzp — 1 J Cy /AN
VI B~9 -0 —60 V1 ¢itO
and finally by (55)
Cm,a = NV cy. (67)
y~ 8(mod m)

For all m~2N, whether m is even or odd, we now have

X' Um,. Ig X' X lg! g X lg| < e (68)
/ h1”2n p=*(mod m)

by (66). Wenow return to (61). Since (62) converges uniformly on|z| =1, F(z) is
continuous on |s|=1and (62) is its Fourier series. We therefore havetheFourier-
Cauchy relations

C, = - f F(z)z~r~1dz. (69)
2rmJd Iri—

From the definition of this integral as a limit of Cauchy sums we may now write
(with zm=1)

J mi
c, = lim — X <FzNz,r"~Uz,+i - z,),
>0  ZTZNBO @M 1 )
1 rn-1

cy = lim — : X F(zJzW(e2rilm - 1),
m->00 2 irl jjmO

and finally, by (61),

PR
g = lim —X F(@zf)zf" = lim cm,, (70)
m—oo VI o m—«
We now have indeed
16 —cmy]| < e, provided m >w0(e). (71)

y— N+1
By (65), (66), (68), and (71) we now have
AF —F,n < 3«provided m > mQt), (72)

and our theorem is established.
4.31. The 24-ordinate scheme of numerical harmonic analysis. The interpolation
of our given function F(z) in the 24th roots of unity will provide satisfactory approxi-
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mation for most ordinary purposes. Let us assume for definiteness that F(z) is real for
real z. On the unit-circle z=-ei0 we then have

F(ein = R(6) + il{e), (73)

where the real part R(6) is an even function, while the imaginary part 1{8) is odd.
Denote by

F, = R»+ il,, (N=0,1, e00,23), (74)

the computed values of our function at 15°—intervals in 6, i.e. for the points (54)
with m=24. We nowinterpolate the 13 ordinates RM(jx=0, 1, mm, 12) by acosine
polynomial

A0+ Aicos6+ eee+ An cos 110 + Ai2 cos 120, (75)

and the 13 ordinates JO=O, L, mmm, In, 12=0 by a sine polynomial
B\sin0+ ee¢e¢+ Bn sin 110. (76)

These polynomials are readily obtained by the 24-ordinate scheme as described in
E. T. Whittaker and G. Robinson, The calculus of observations, ed. 3, 1940, section 137,
pp. 273-278. The complex function (73) is now interpolated in the 24 points by the
trigonometric polynomial

Fu(eie) = A0+ A\cosO+ e+m+ An cos 110 + A I2cos 120

+ iB\'sin0+ eee¢+ iBu sin 110.
Setting
z = eig, cos VO = -z + z~"), i sinvd = %zy—z-"), 77)

we obtain the Laurent sum with real coefficients

Fu(z) = A0+ \i/XA '+ B,)z’ + hAuzl2
1

+ X i(A, - B$r’+ U 2z-12 (78)

This initial approximate Laurent expansion will be used in section 6 in our example
of reciprocation of a Laurent series.

5. Calculation with Fourier series. The method of calculation with Laurent series
described in sections 4, 4.1, 4.2, 4.3 and 4.31, applies unchanged to the realm of abso-
lutely convergent Fourier series written in the complex form

(o)

F{z) = X Gz, where z = eie,

— 00
with the definition of the norm as

N(F) = X | c,\.
—0

The general problem of section 1 may now be reformulated, replacing the ring R by
the unit circle |z] =1. The coefficients a,(z) of the equation (4) are now defined by
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given absolutely convergent Fourier series. The conditions (6) and (7) remain un-
changed. The important fact that a uniform, continuous solution w—w(z) of (4)
along the unit-circle admits of an absolutely convergent Fourier expansion is now as-
sured by a general theorem of N. Wiener and P. Levy.7The effectiveness of the inter-
polation method of section 4.3 for obtaining a satisfactory initial approximate Fourier
series is secured by our theorem of section 4.3.

We finally mention briefly the special problem of the reciprocation of a non-
vanishing absolutely convergent Fourier series

€0

A(6) = %0 + "2 (ancos 118 + bnsin nd) (79)

n—l1

with real coefficients a,, b,, In applying our method, we have to pass to the complex
variable z, by means of the relations (77), obtaining the series

00

A®) = fl(z) = a,,zn, (80)
;)

which is now to be reciprocated. The coefficients anbeing complex, it would appear
that computations with complex numbers are unavoidable. This, however, is not the
case since we may proceed as follows. Working with the real series

/(z) = & R(<Xnyzn, g(z) = jt I(ot,,)zn, (81)
we have by (80)
! 1 / ' g éco,,zn. (82)
«(*) f+ig P + 92 P + g2

Starting with (81) and operating with real series only, we now form the expansions
of/2,g~and then/2+g2 The real “Laurent” series o f/2+g2is now reciprocated by the
method of section 4.1 and finally the series for

1H(z2+ g2, g/(P + g2

obtained by multiplications. This furnishes the complex values of the co, of (82).
Returning to the variable 6, by (77) we finally obtain the ordinary real Fourier ex-

pansion of
1/A®

6. An example of reciprocation of a Laurent series. Our numerical example will
benefit by the following general remark concerning the modified Newton algorithm
(11). For simplicity we limit ourselves to the case of the equation (15) or

axm—1=0 (83)

which is solved by the recurrent relation

7 See Antoni Zygmund, Trigonometrical series, Warszawa-Lw6w, 1935, pp. 140-142.
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Xyt = XH-| xn(l — ax™), (84)
m

Let us assume that our first approximation xo is of such accuracy that x2will have all
the accuracy we want, while Xi does not quite do. More precisely we assume the

“residual”
r—1—axn (85)

so small thatwe mayneglect r3verywherein our calculations. We may use this fact
in eliminating xi between the two equations

1
ai = Xo-\ X0l — x0n),
m
1 (86)
X2= Xia xi(l — Xim.
m

Indeed, by (85), (86), we have
Xi = x0" A rj

and neglecting r3we find

/ m—1 \
qm = X’7 1 + r« — ra .
\ 2m |/

If we then compute X2in this way, i.e., neglecting r3wherever it appears, we easily find
the following approximation to x2:
/ m+ 1 \

1
x{ = xo0d Xo(r H r2). (87)
m 2m /

We may interpret both equations (85), (87) as a recurrence relation furnishing xi in
terms of the first approximation x0. This process converges “cubically.” Indeed, a
simple calculation will show that we may write (87) as
(mT DH2w + 1)
xI —x —

(x0 — x)3+ (terms of order > 3).
6x2

We note especially the following special case: To solve

ax —1=20 (88)
we set
r—i: —axo (89)
and compute .
Xi = xo+ x0(r + r2. (90)

We turn now to our example which consists in expanding the reciprocal of the
Bessel function

0@ = 1y e de Y D)
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into a Laurent series between the first two positive roots of this function, which are
approximately £i= 2.4, £=15.5. In order to avoid even exponents we consider

MV Z) = 1 2. 1"'('5:'43'2 (92)

whose reciprocal is to be expanded in Laurent series between its zeros
£i = 576 and £= 30.25.

Let us notice that 13 is near the geometric mean of these numbers. In order to realize
the condition (26) we replace in (92) s by 13s, also changing the sign of the function
for formal reasons. Thus let

a@) = —1\/13) = X @’ (93)

be the entire function whose reciprocal

1
w(s) = = x on" (94)
/ o(V 135s)

we are to expand in a Laurent series convergent on and near the unit circle |s| =1.
Below are the 10-place values of the coefficients anof (93) as computed by

«, = (- D»+>(13)»/(2»-«1)2

n On M R., h Aft B,
0 -1.00000 (00000 0 2.549 122 .000 000 601 975
1 3.25000 00000 1 2.262 721 -.257 032 1.063 727 -.361 583
2 -2.64062 50000 2 1.655 481 -.395 409 489 993 -.144 072
3 95355 90278 3 1.081 379 -.427 381 219 762 -.062 309
4 -.19369 16775 4 .661 333 -.405 462 .097 293 -.028 189
5 .02517 99181 5 379 302 -.361 625 .042 831 -.012 990
6 -.00227 31870 6 .193 500 -.309 968 .018 815 -.006 018
7 .00015 07726 7 .070 603 -.256 308 .008 261 -.002 786
8 - .00000 76564 8 - .011 124 -.202 973 .003 630 -.001 285
9 .00000 03072 9 -.065 027 -.150 752 .001 604 -.000 588
10 - .00000 00100 10 -.099 093 -.099 722 .000 727 -.000 260
11 .00000 00003 1 -.117 947 -.049 615 .000 368 -.000 099
E = .39229 24951 12 -.123 985 .000 000 .000 136

From these values, rounded to 6 places, we computed to 6 places the values of o(z,,)
at the 24th roots of unity

z, = cos (15ju)0 + i sin (15/x)°, (x=0,1,---,12),
and from these the values of the reciprocal

w(z,,) = Ha(zM = + il,,, fu= 0, 1, e, 12),
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which are tabulated above. The coefficients A ,,and B »of the interpolating cosine and
sine polynomials (75), (76) where then found by the 24-ordinate scheme. They are
tabulated above.

From these values we computed the coefficients co® of the approximation

veQ) =2 wiv

according to (78) by the formulae

o™ — A,
&y = T Bn),
= %(An —5n),
w® — W @A, foo b9 L

These values rounded to 5 places are in the first column of the following table which
contains the complete computation according to the relations (89) and (90). The last
column headed w= aj(®+ co(l),(r+ r2) gives the 9-place values of the coefficients o>, of
(94).

Remarks. 1. The basic numerical process in this computation is obviously the con-
volution of sequences. Thus the second column aw (0 is obtained by the convolution
of the column a with the column w(0). According to the formula (30) this is done very
simply rewriting the column a, say, in reverse order, then matching it with the column
<) such that the zero term of one column corresponds to the nth term of the other.
The accumulated products of matching elements gives the nth term of the product
column aw(0). This operation is very familiar from the process of smoothing by means
of a linear compound formula.

2. The operation of convolution of sequences implies an important check by means
of their sums, for it is clear that the sum of the product column should equal the
product of the sums of the factor sequence, except for the accumulated rounding
error. At the very bottom of each column we wrote the actual sum of the sequence
in that column. Directly below it we wrote (in parentheses) the value of this sum in
terms of the sums of the columns which enter into its composition.

3. The column of final residuals | —aco was also computed (values not recorded
here) and its terms were found to be so small that a further repetition of the process,
with our 10-place values of the an, would not alter our 9-place values of the As
final checks we found by (93)

a(l)"1= 254911 8356, a(-1)~1= - .12398 5065,
a(i)-1= .19349 9936 - .30996 7383 i.

The corresponding values of w(z), computed by (94), were found to be

w(l) = 254911 8355,  w(-1) = - .12398 5067,
w(i) = .19349 9940 - .30996 7383 i.
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THE PROPAGATION OF WAVES IN ORTHOTROPIC MEDIA*

BY

G. F. CARRIER
Harvard University

1. Introduction. The present article is an extension of a previous paper dealing
with the elasticity problems of orthotropic media.1Here, the displacement potentials
which define the dynamic phenomena in such media are discussed.

2. The dynamic problem. Hooke’s law for an orthotropic medium may be written
in the form

ax — b\W\ex + buey + (135, e o,

7xy = (667 xv,

wherein we use the conventional notation for the stresses and the strains. If we limit
ourselves to a consideration of those materials which are isotropic in the y, z plane2
and for which
2
(66 = (65 = ({1722 — ¢:|3/(¢II 4* ;22 "b 2412), (la)

the number of independent elastic constants is reduced to four and the dynamic

elasticity problem may be easily treated.3We utilize the familiar equilibrium equa-
tions

dax drxy drx 341
— - — 1~ rPx ~ P— -= 0, * . 2
dx dy z di2 - )
and define the displacements in terms of potentials as
du dX
dx dx2
du dv 32
* = — 4+ — = — — ;| + ; e o oo
7 ay dx oxdy (<('1 <<2), )
When Eqgs. (1), (2), and (3) are combined, we obtain
3 (r d (d2 d2\ d2 1 302 d24>f\)
- — S R by — , . .
3a L dx2 Kdy, @3 dp ¥+ ATfi+if)} + Y- &« <o>
3 C & ( « 32 32 32\ 303
—i/3 hla R U2+ 5 >+ F =0, (4b)
dy 1 dx2 vodxz dy2 dz2 df-) dz2)
3 ( do d 22 [ 32 32 32 32\ 1
—<B —+ 5 —+ la 7 b b --mmememmmeeee 4> + Z = 0, (4c)
dz 1 dx- dy2 \dx2 dy2 dz2 dt2/ )

* Received August 18, 1945.

1 G. F. Carrier, The thermal stress and body force problems of the infinite orthotropic solid, Quart. Appl.
Math. 2, 31-36 (1944).

“The isotropy implies that ;21= 633, 612= 613, 6(<= ((22—629/2.
3 These conditions are imposed in order that the roots of Eq. (8) will appear in a useful form. They
include isotropic media as a special case.
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where a, b, a, y, /32, and 5, are given respectively by bn/p, b22/p, bMp, (b2—b33)/2p,
(a—a)(b—a), and b—y.

If we now consider the homogeneous equations (i.e., vanishing body forces) and
require the <§ to vanish at infinity,4we may begin the integration by removing the
leftmost derivative of each equation, multiplying each term in the remaining forms
by exp[—f(xE+;yj/+zf)], and integrating the equations so obtained over the infinite
region. We find5

a2 + F I+ — i+ PRI2+ dfYa = 0 5
A ©®

and two similar equations. Here

Pi=f ff g)x y<z>l) exP + >7+ A)]dxdydz- (6)

We now have three ordinary linear differential equations (in /) the solutions to which

are of the form
'Pi = Aj(i,v, £) cos cob (7)

In order thatthese solutions be non-trivial,the determinant of coefficients of Eqs.(5)
wherein 52d/2has been replaced by —or must vanish, that is

af2 + a(7j2 + £2) — co2, d “72> d£2
d£2) a?2+ b2+ yf2—a2 5£2 =0. (8
dge2 by’t aE2+ TSR+ (£2— "2

The three roots of this equation are easily shown to be

Qj =. ai; + bpg + £), (9)
co2 = af + y(v + £, (10)
co3 = a($ + T + £ ). (11)

Corresponding to these roots, the Akj must respectively obey the relations6

An'Al2d B= a —aid'di (9a)
A21:A22:A% = 0:dE2: - d*R2 (10a)
ALiA»:A,, = (b- a)(v2+ £2:- dE2:- df2 (Ha)

Because of Eq. (6) it is evident that

H= fff MTFf. VE*exP

= X)) — i

f f Ajk((, v, £) cos cod exp [i'a-£ + ytj + z£)]d?tMf. (12)
*-12,3 Sir3d J J

*This condition may be justified by noting that functions describing a time dependent phenomenon
which originated at h in a defined region of the medium must vanish at infinity for all time 1.

5The procedure thus far has been identically that of the reference in footnote 1

*Here, An is the dy of Eq. (7) corresponding to ao*.
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The solutions of interest are those for which the Akj are explicit functions of wx only.
We consider first the solution associated with on and find it convenient to write An as

Ancox) = (@a—a) I I I -—-—-———-exp [frj-coi]dxdydz.
JJJ ri
Here, on is defined as on= ial/2£+j&I/23+ k&V2E, and ri =ia~inx-\-]b~ll~y-\-kb~Il-z-, Bn
is an arbitrary function of \=|ri].
If 7]is the angle between ri and on, and v is the polar angle about on, the value of
Aa becomes

An (a — a)allﬂ)f I r Bii(r{) exp [frjoji cos /u]rj sin /xd/xdvdri

| >©
An(ri) sin riontfri
0
4tt(a - a V" r 'CuCon). (13)

Using the same notation7and procedure, we find that <th becomes8

Fii = (8irdbal/2)~1J'j'J" Axi(0?) cos ant exp [tVn«i cos ¢r] sin nd-iidvdui

/OCn(O)i) {sin corrl —1t) + sin on(ri + t) }don

(o]
= (2xVD-'[B1(n - t) + Bu(n + /)] (14)

Thus we find that one of the possible propagation phenomena is described by a mo-
tion wherein the wave fronts are the ellipsoids n= const., and whose amplitude at-
tenuates like 1/rj. Equation (9a) indicates that the other displacement potentials
associated with on differ from 4n by a constant factor. In fact we could now write the
displacements for this motion as the gradient of a single potential in a distorted co-
ordinate system. This fact will be useful later.

The determination of the motion associated with a2requires only a slight variation
on the foregoing procedure. As required by Eq. (9b), we define A2= —f2C(w2)/w2,
A2=ri2C(iC2)/ui, where C(w2) is derived as before from an arbitrary function B (r2
and « and r2are defined in the same manner as were an and ri. The expression for
42 becomes .

i rrr* - fX(an)

= —- e cos exp [;(*£ + yt] + z9)
Sir3J J J _M o2

1 d2rrrx Cc{<®

071T“‘ gzz JJJ oo @ cos
1 3afB(r2—t) B(rz2+ 0

(15)
2tc- ds2 r2 r2

7The angle v should now be measured about rj.
8The final step is due to the inverse relationship implied by Eq. (13).

£2exp + yy + zf)ldedjat;

Similarly,
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i a2 B(r2~ t)+ B(r, + O
w32 - (16)
2tr2 dy?2 r2 r2

The displacement v2associated with this solution can now be written in the form

: "B(rz2- )7
v2= ——curl >id’ a7
2tt2 I dydz r2

The fact that the equations governing our problem are linear implies that the
d2dydz of the foregoing expression is superfluous,9that is, we may write

. B(r2- /
v2= curl -gi ( 4 (1S)
2u2 w w 7T"
The displacements corresponding to WBarise in an entirely analogous manner and are
given by

i(b —a), il3. ki3
d d d
v3= dx dy dz ’ (19)
P(r3- t rz- t
0 ) Q( )
rz rz

where it is required that d(P/rz)/dy-\-d{Q/r3)/dz =G The first of the three foregoing
solutions corresponds mathematically to the potential solutions found for the iso-
tropic solid and the latter two to the rotational motions; together they suggest a
way of factoring the equations for the displacements. We write the body forces in
the following manner, choosing the coefficients of the various derivatives in the opera-
tors to correspond to those found in the foregoing results; namely

(X, Y,Z) = grad* $(x, y, z, t) + curl* M(*, y, z i), (20)
where
grad* = i(a —a)d/dx + jpd/dy + k(Sd/dz
and
i(i —a), i3, kA
d d d
curl* M = (21)
dx dy dz
M A M > M,

We must require that dMv/dy-\-dMt/dz=Q We now assume the displacement in the

form , S
v = grad* 4>+ curl* G, (22)

substitute into equations (1), (2), and (3), and obtain a set of equations which are
separable into the following:

1Actually, all derivatives of B/r2constitute solutions.
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d2e> /d 24? <ty d¢

a +bl R = - 8, (232)
dx2 \dy2 <32/ dt2
d2Gx (d2Gx d2Gx d2Gx
a—- + 7 - B e e =~M X (23b)
dx2 \ dy2 .42 ) di2

" ~ g i B (Gy.GY (Mv, M2 23
at o Oy T ' = - V, Z). Cc
_\dx2  dy2 dzzg dt2_ Y (23c)

The relation dGy/dy-\-dGz/dz —0 will be automatically satisfied.

Although the above equations may be transformed into the familiar Poisson form
by trivial transformations, it is interesting to extend the foregoing procedures to ob-
tain a formal method for the solution of, say, Eq. (23a). The steps leading to Eq. (5)
transform Eq. (23a) into

[~7 + oe + b(y2+ f2 P =r(f,y, f, o, (24)
where p is defined as before and
HP, s, t) exp [- i(pE + qy + sp)]dpdqgds. (24a)

Conventional operational procedures then give a particular integral of Eq.(24) as

1r
P= — |r TE, V., < sin wi(f —a)da (25)

otJ o
and p becomes (according to Eq. (12)),

mexp [i{ (x —p)E + (y —q)y + (z —s)j'j 1d"dydpda*dpdgds  (26)

= /[ ff [/ qs dpdqds,

whereld

i rx r~*>rT

I(a) = baITJlo "IO Jlo cos Ql(I — a) exp [io>i-Ri] sin nd/Jidvdui

4ir cos 0)i(/ — a)
r msin O)IR 1dol

ba" 230 J0)

2ir sin Oii(Ri + | —a) + sin 0)i(f2i —t \- &)

. . do)\. (27)

bal2RiJ o 0)i

The foregoing integral is a step function which (since 0 and Ri>0) has a single

10 Again we use the type of coordinate transformation which led to Eq, (12).
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step of magnitude x at a=t—R\. R\ is defined by RI=(x—p)2a-\-(y—q)2b
+ (z—s)2/b. The evaluation of the Stieltjes integral of Eq. (26) now yields

1 rr rx 4>@u2> bllg, bl/s, t - Ri)
ipdqgis m

and we have the familiar retarded potential. The expressions for the components of G
can be obtained in analogous fashion.

3. More general media. It is quite evident that one might start with the general
linear law relating the stresses and strains in an aerolotropic material and by the
same procedures arrive at three equations analogous to Eqgs. (4), using either the dis-
placements themselves or the potentials defined in the foregoing. One would then ar-
rive at a determinantal equation of the same form as Eq. (8). The roots could be
found and Eq. (12) would be valid. However, the w* of this general problem would
not appear in the concise polynomial form found in the foregoing considerations. In
fact, the integrand of Eq. (12) becomes sufficiently complex in this general case that
it does not seem worth while to present in more detail the procedure outlined here.
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REFLECTION IN A CORNER FORMED BY
THREE PLANE MIRRORS*

BY

J. L. SYNGE
The Ohio State Universityf

1. Introduction. If a plane mirror is attached to the base of a projectile and a
parallel beam of light projected on it, the direction of the reflected beam at any in-
stant will give us information about the angular position of the projectile at that in-
stant. It will not, however, indicate the angular position completely, because a
rotation of the projectile about the normal to the mirror leaves the direction of
the reflected ray unaltered.

This difficulty may be overcome by using more than one mirror, and the possibil-
ity of using a reflecting corner formed by three plane mirrors suggests itself. If the
three mirrors are mutually perpendicular, the direction of the reflected beam gives no
indication of the angular position of the projectile, because such a corner reverses
the direction of any parallel beam falling on it. But if the angles of the corner are not
right angles, this is no longer the case; in general, there will be six reflected beams, and
their directions will determine the angular position of the projectile completely. W ith
three parameters at our disposal (the three angles of the corner), we can secure a
variety of different effects. The purpose of the present paper is to make a systematic
study of the optical behavior of all corners formed by three plane mirrors.

The method used is based on the fact that the transformation of ray-directions
due to reflection in a plane mirror is equivalent to a rigid-body rotation about the
mirror-normal through two right angles (i.e. a half-turn), combined with a reversal of
sense. Consequently, three successive reflections in three plane mirrors produce a
transformation equivalent to three half-turns, combined with a reversal of sense. But,
by Euler’s theorem, three successive half-turns are equivalent to a single rotation
(not, in general, itself a half-turn). Thus the transformation due to reflection in a
corner formed by three plane mirrors may be described by giving the axis of the single
equivalent rotation (called the optic axis in the present connection), and the angle of
the rotation.

It is found that, when different orders of reflection in the three mirrors are taken
into consideration, there are in general three optic axes and a unique angle of rotation.
The rotation occurs in both positive and negative senses, so that in general there are
six reflected rays resulting from a given incident direction. This is, of course, to be
expected, since we can form six permutations of three mirrors.

It is useful to represent directions by points on the surface of a unit sphere. There
are then two fundamental spherical triangles. One has for vertices the normals to the
three mirrors, and the other has for vertices three directed optic axes. Actually there
are two spherical triangles formed by (undirected) optic axes, but one is the reflection
of the other in the center of the sphere, and so we pick out one for definiteness. The

* Received Feb. 1, 1946.
t Part of this work was done by the author at the Ballistic Research Laboratory, Aberdeen Proving
Ground.
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vertices of the triangle formed by the mirror-normals lie at the middle points of the
sides of the triangle formed by the directed optic axes, and the angle of the single
equivalent rotation is the defect from four right angles of the sum of the angles of the
triangle formed by the directed optic axes.

Explicit formulae are given for the construction of the optic axes (3.10) and the
angle of the single equivalent rotation (4.15).

The fact that a ray, to be reflected, must strike the front of a mirror, and not the
back, introduces awkward conditions. These conditions are removed in the mathe-
matical theory by supposing that the mirrors are planes which reflect from either side.
Further, in investigating the effect of a second reflection, we may find that after re-
flection in the first mirror the course of the ray does not bring it into incidence with
the second mirror. In such cases we shall disregard the position of the ray, and apply
to its direction the transformation corresponding to reflection in the second mirror.
These artificialities (from the practical standpoint) are introduced to avoid encumber-
ing the mathematical theory with conditions which have no bearing on the funda-
mental transformation problem. Once the general theory has been set up, the condi-
tions mentioned above may be looked into in any particular case. To facilitate this,
we shall continue to call one side of each mirror the front.

2. Equivalence of reflections and rigid body rotations. Let N be a unit vector
normal to a plane mirror, drawn out from the front (Fig. 1). Let | be a unit vector
along an incident ray, and I' a unit vector along the reflected ray. From a point 0

let us drawn the unit vectors N, I, I', —I, —I" (Fig. 2).
Fig. 1 Fig. 2
It is clear from the law of reflection that I' is obtained from —I by a half-turn
about N ;equivalently, —I" is obtained from | by a half-turn about N.

The transformations may also be shown on the surface of the unit sphere with
center 0; the unit vectors are now represented by points on the surface of the unit

sphere (Fig. 3). The law of reflection may be stated as follows. Join —I to N by a great
circle, and produce it on to make the arc (N, I') equal to the arc (—1, N). Equiva-
lently, join |1 to N by a great circle, and produce it on to make the arc (N, —I') equal

to the arc (I, N).

In order that the incident ray may strike the front of the mirror, the arc (—1, N)
must be less than but in view of the remarks made in Section 1, this restriction
will not be imposed.

Consider now a corner formed by three plane mirrors with unit normals Ni, N2,
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N3 drawn out from the fronts. These are represented on the unit sphere in Fig. 4.
Consider successive reflections of an incident ray | in the order Nx, N2 N3 We start
by marking —I on the unit sphere. We construct the first reflected ray I' by drawing

Fig. 3

a great circular arc from —I through Ni, making Ni the point of bisection. If the sec-

ond reflected ray is denoted by I", we construct —I" by drawing a great circular arc
from[Il' through N2 making N2the point of
bisection. We carry on from —I" similarly
through N3to form the final ray 1.

We might also have started with I, in-
stead of —I. The same rules of construction
would have led us to —V".

If the reflections occur in a different or-
der, we change the order of the points
Ni, N2, N3in the construction. In this way
we get, in general, six different final direc-
tions V" corresponding to a single incident
direction |I.

The transformations described above are
equivalent to half-turns about diameters
of a sphere, namely the diameters defined
by Nj, N2, N3 We know by Euler’s theo-

Fig. 4 rem that any succession of rotations about

diameters of a sphere is equivalent either to

no displacement at all or to a rotation through an angle less than 2tt about a uniquely

determined diameter. The former alternative means that |"' coincides with —I, no

matter how | is chosen. On the other hand, if there is a unique axis of equivalent

rotation, then rays incident along the axis of that rotation (and such rays alone) will

undergo reversal as a result of the triple reflection. Every other ray will undergo a
change of direction determined by application of the equivalent rotation.

We shall call the axis of the equivalent rotation the undirected optic axis of the
reflecting corner for the order of reflections assigned. This definition of optic axis
would be adequate if we were content to have the term denote a diameter, without
sense of direction. It is, however, desirable to understand by optic axis one of the two
unit vectors lying on the axis of the equivalent rotation. Accordingly, we shall pro-
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ceed in the next section to define the directed optic axis. For the present, let us sum
up our results as follows:

Theorem |. For three successive reflections in a given order in three plane mirrors,
either everyincident ray is reversed in direction,
or there exists a unique tmdirected optic axis
such that

(a) arayincident along the undirected op-
tic axis is reversed in direction;

(b) the directions of reflected rays are ob-
tained from the directions of incidents rays re-
versed by a rigid body rotation through an
angle less than 2ir about the undirected optic
axis.

3. Determination of the directed optic

axes. Consider the following problem in

spherical geometry: Given three points Ni,

N2 n 3o0n a unit sphere, to construct a spheri-

cal triangle Aj, A2, A3 such that Ni, N2 N3

are the middle points of its sides (Fig. 5). Fig. 5
In vector notation, we have

N1A2= N1A3 N2 A3= N2Aj, N3-A, = n3a?2 (3.1)
and also
TiNi = A2+ A3 LN2= A3+ Ai, LN3= Ai+ A2 (3.2)

where the L’s are unknown scalars. Our problem is to find the A’s to satisfy (3.1)
and (3.2).

Solving (3.2) for the A’s, we get

2Ai = — Z-iNi f- i IN2 + ¢ N3,
2A1 = LjNi — T:iN: AJNs, (3.3)
2A3 = AiNj T Ti:N2 —LsNs.

Let us define Mi, Mi, M3 by
Mi = N2N3 Mi = N3Ni,Jf3=NTN,, (3.4)

these being of course the cosinesof the angles between the Nvectors. Taking the
scalar products of the first two of (3.3) and N3 we get

2A] N3 = —L\M2+ LiM1+ L3,
(3.5)
2A2 N3 — L\M . L:M/F L.
Hence, by the last of (3.1),
LIM2- L2M1= 0. (3.6)

Similarly
LIM3 - L3M!L = 0, L3aM1- LiMt = 0. (3.7)
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If all the M’s vanish (i.e. if the N vectors are mutually perpendicular), we may
choose the L’s arbitrarily, save for the condition that the sum of their squares shall
equal 4. For it is easy to verify that the A’s as given by (3.3) will then be unit vectors,
and the conditions (3.1) and (3.2) will be satisfied. This means that we can take any
point Aion the unit sphere and construct the triangle by passing successively through
the N points, making each a point of bisection. The triangle necessarily closes.

Now suppose that there is at least one M different from zero. From (3.6) and
(3.7) it follows that a number k exists such that

¢i = 2kMu U = 2kMi, L3 = 2kM3 (3.8)

We proceed to determine k. Since the N’sand the A’sare unit vectors, if follows from
(3.3) and (3.8) that

K\M\ + M\ + MI - 2MiMiMz) = 1. (3.9)

The quantity in the parentheses is positive definite, since no M can exceed unity in
absolute value. We have then a choice between two real values of k, one negative and
the other positive. If either of them be chosen, and the L’s obtained from (3.8), and
then the A’s from (3.3), the conditions (3.1) and (3.2) are satisfied, and so the prob-
lem is solved. The problem then admits of two (and only two) solutions; the two
triangles are the diametrical opposites of one another.

To avoid confusion, let us pick out one of these two solutions for application to
the optical problem. Let us decide to take the positive value for k. To sum up, the
triangle required is given by

Ai = k(- MyN,+ MA2+ MN3J,
A2= k( MyNx- MN2+ MN3J, (3.10)
A3= k( MiNj+ MN2- M3,

where the M’ are given by (3.4) and

2 2.2 o 2
k= (My+ Mi+ Mi- 2MyMiMi) , (3.11)

the positive value being understood.
We have also

Nr At = Nr A3= kMy,
N2A3= N2Ai = kMi, (3.12)
N3Aj = N3A2= kMz,

and
2kM{Ny = A2+ A3 2kMiNi = A3+ Alt 2kMJX3 = Aa+ A, (3.13)

We have now to show the connection of this problem in spherical geometry with
our optical problem. We shall begin by proving that the diameter through A2is the
undirected optic axis for reflections in the order Ni, N2, N3

We take an incident ray with 1= + A2 The first reflected ray is then given by
I'= + A3 The second reflected ray is given by I" = + Ai. The third or final reflected
ray is given by 1"'= + A2 Thus !""= —I, which proves that the diameter through A2
is the undirected optic axis for reflections in the order Na NJ, N3 In just the same
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way we may show that the diameter through A2is the undirected optic axis for re-
flections in the order N3, N2, Ni, also.

Further, if we start from A3or Al(we can prove in the same way that the diameter
through A3is the undirected optic axis for reflections in either of the orders N2 N3, Ni
or Nj, N3 N2, while the diameter through Aiis the undirected optic axis for reflections
in either of the orders N3, Ni, N2, or N2, Ni, N3.

We are now in a position to define the directed optic axes by selecting senses on
the undirected optic axes. We shall do this by imposing the condition that the directed
optic axes are given by (3.10) with k positive.

Let us sum up as follows:

Theorem Il. For any reflecting corner composed of three mirrors which are not all
mutually perpendicular, the directed optic axes are the three unit vectors Ai, A2, A3 given
by (3.10) with positive k. The mirror-normals Ni, N2, N3 meet the unit sphere at the mid-
dle points of the sides of the spherical triangle formed by Ai, A2, A3 Ni being on the side
AZ2A3 and so on. The directed optic optic axes correspond to the following orders of re-
flection :

Directed optic axis Order of reflection
Ai N3NiN2or N2N,N3
A2 NiN2N3or N3N2Nx
A3 N2N3N! or NXN3N2

We see from (3.10) that the directed optic axes are easily constructed in space by
adding and subtracting the vectors ¢ibfiNi, k'M-iN2, &AT3N 3. This construction is shown

Fig. 6
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in Fig. 6. It is interesting to note that six of the eight vertices of the parallelepiped
are occupied by the vectors +Ai, +tA2 + A3

4, The angle of the equivalent rigid-body rotation. Fig. 7 shows the representa-

tions on the unit sphere of the three mirror-normals Ni, N2, N3and the three directed
optic axes Ai, A2, A3 We know that three successive half-turns about Ni, N2, N3in
order are equivalent to a rotation about A2 We proceed to find the magnitude of this
rotation.

Fig. 7

We first construct the point B by joining N2to Ni, and producing the great circle
so as to make the arc (N]t B) equal to the arc (N2 Ni). We then investigate the dis-
placement of B resulting from the three successive half-turns. It is clear that the final
position Cis obtained by joining N2to N3 and producing the great circle so as to make
the arc (N3 C) equal to the arc (N2 N3. The effect of the three successive half-turns
is to rotate the arc (A2 B) into the arc (A2 C). Since certain spherical triangles are
obviously congruent, it is at once seen that the angle of rotation (taken less than ir)
is equal to the defect from four right angles of the sum of the angles of the spherical
triangle AiA2A3. If the half-turns were carried out in the reverse order, then C would
go to B; the angle of rotation would be the same in magnitude, but would have the
opposite sense.

If the other senses of application of the three half-turns are considered, we get
the same magnitude for the angle of the single equivalent rotation in all cases.

We shall now obtain a formula for the angle of the single equivalent rotation in
terms of the angles between the normals of the three mirrors.

If an incident ray | is reflected in a mirror with normal N, the reflected ray I'is
given by

I" =1 —2N(NI). (4.1)
Let us start with an incident ray I such that —I = B, where B is as in Fig. 7, and let us
follow this ray through successive reflections in the mirrors with normals Ni, N2 N3
The first reflected ray is 1'=N 2, and so by (4.1)

1= 1'- 2NI(NI I') = N2 - 2MsNi. (4.2)
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The second reflected ray is 1" = —N2 The third and final reflected ray is
"™ =1" - 2N3(N31I") = - N2+ 2N,(N,-Na =- N2 + 2T/N3> (4.3)

the M’s being as in (3.4).
We note that (3.10) give
- 1-A2= I'"-A2= (4.4)
As already seen, the angle of rotation Om is the angle between the arcs (A2 B)
and (A2 C), as shown in Fig. 7. This is the same as the angle between the vectors
(A2XB) and (A2XC). If the rotation is considered positive when it is a right-handed
rotation about A2 through an angle less than ir, then the angle satisfies the equation

A2X B) X (A, X C
( )ﬂ( °)

sin $123-A2 —~t i \&*
IA2X B1IA2X c |
where B= —I and C=I'""\ (The angle 6m shown in Fig. 7 is negative in the defined
sense.)
To evaluate the right-hand side of (4.5), we note that by (4.4) we have
|As XB||A2XC| = 1- few* (4.6)

Also, identically,

(A, XB) X (A.XC) = A2[A2 (B XC)]. 4.7)

By (4.2) and (4.3),
B XC

- IX V"= (- No+ 2MNi) X (- N2+ 2MX3
- 2Mi(N2X N3 - 2M3(Ni X N2 - 4MIM3N3 X N)),(4.8)

and so, by (3.10),

A2 (B X C) = k(MJIXi- MN2+ M&,)m<& X C)
= kP{- 2M\ + 4AMXMiM3- 2M3), (4.9)
where P is defined by
P = Ni (Ns XHj). (4.10)

W hen the value (3.11) for k is used, (4.9) may be written
A2 (B X C) = - 2Pk~\l - Kk'MI). (4.11)

On substitution of this expression in (4.7), and then substitution from (4.6) and (4.7)
in (4.5), we get
sin 0i23= — 2Pk L (4.12)
We note that P is the determinant formed from the direction cosines of the three
normals to the mirrors, and
! M3 Mi
P2 = Ms | Mi =1 - k~\ (4.13)

M2 Mi !
Hence
P=eu- 1Y) (4.14)
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where eis -fl or —1 according as the orientation of the triad Nj, N2, N3is positive
or negative.
We may sum up as follows:

Theorem IIl. The magnitude (taken less than ir) of the angle of the single equivalent
rotation is the defect from four right angles of the angle-sum of the spherical triangle on
the unit sphere whose vertices represent the directed optic axes. If a positive angle corre-
sponds to a positive (right-handed) rotation about the directed optic axis involved, the
angle is given both in magnitude and sign by

sin 6 = — 2efc-1(1 - Jr*)1* (4.15)

where k is given in terms of the cosines of the angles between the mirror-normals by (3.11),
and eis +1 or —1 according as the triad of mirror-normals, in the order of the reflections,
is positive or negative (i.e. right-handed or left-handed).

Let us now see how the six reflected rays are to be constructed when the incident
ray | isgiven and the three directed optic axes are known. We mark on the unit sphere
(Fig. 8) the directed optic axes Ai, A2 A3 and the incident ray reversed, —I. Let us

Fig. 8 Fig. 9

suppose that the mirror-normals are so numbered that N3 N2 N3form a positive
triad. To obtain the reflected ray resulting from reflections in the order Ni, N2, N3
we use the optic axis A2 We draw the arc (A2, —I), and rotate it about A2in the nega-
tive sense through an angle equal to the defect from four right angles of the angle-sum
of the spherical triangle AiA2A3 or equivalently through an angle sin-12&1(1 —;-2)1/2,
as given in (4.15). This gives the reflected ray I(", the subscripts indicating the order
of the reflections. To obtain we rotate the arc (A2, —I) about A2in the opposite
sense through the same angle.

Using the other optic axes, we obtain similarly the whole set of six reflected rays.
These are shown in Fig. 9, the great circular arcs being shown as straight lines for
simplicity. All the marked angles are equal.
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5. Cases of perpendicular mirrors. Let us consider the case where two of the
mirrors arc perpendicular to one another. Let us take Nx perpendicular to N2, and

write . .
Mi 9 0, Mi 7* 0, M3 = 0. (5.1)

Then (3.10) give for the directed optic axes
A: = k(- M"i + JUND,
A2= k( MIXi- MA 2,
A3= k( AfiNx+ MN2,

and from (3.11) we have

10

k=(MIl + My \ (5-3)

The equations (3.12) and (3.13) become

Ni-Aj = Nx-As = KMu N2 A3 = N2Ax = kM2 N3 Ax = N3 Az =0, (5.4)
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and

A2+ A3 = 2Mf,NXx, As+ Ax = 2BfN2 Ax+ A2= 0. (5.5)
We note that Ax and A2are opposed to one another, and Ax, A2, A3 Nx, N2are co-
planar. The arrangement on the unit sphere is shown in Fig. 10. The construction in
space for the directed optic axes is shown in Fig. 11.

Let us now consider the case where one of the mirrors is perpendicular to the two
others. Let Nx be perpendicular to N2and N3 We write

M\ 7° 0, M2=0  Mz=0. (5.6)

From (3.10) we get for the directed optic axes

Ax= - KMxN,  A2= MfxNx, A3= KkM]Ni, (5.7)
where k=\ from (3.12) and (3.13)
Nx-A2 = Ni-A3= kMi, N2A3=N2Ax = N3Ax= N3A2= 0, (5.8)
and
A2 + A3 = 2kMIiTXi, A3+ Ax = 0, Ax + Az = 0. (5.9)
Fig. 12

Now A2and A3coincide, and Ax is opposed to them. The arrangement on the unit
sphere is shown in Fig. 12 for the cases Mx>0 and Aii<0.
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ON GRAEFFE’S METHOD FOR SOLVING
ALGEBRAIC EQUATIONS*

BY

E. BODEWIG
The Hague

In the usual descriptions of the methods of solving numerical algebraic equations,
Graeffe’s method takes a minor place as compared with the methods of Newton,
Horner, and others. It is not useful, of course, for correcting a single approximate
value, as the other methods are, but has the advantage that no first approximation
need be known. A second advantage is that approximations to all roots are obtained
simultaneously, in contradistinction to the other methods which furnish approxima-
tions to one, root at a time. In spite of this, the computations required by Graeffe’s
method are not much more laborious than those necessary to obtain an approxima-
tion to a single root by one of the other methods if allowance is made for the time
necessary to find the first approximation. Yet this slight increase in labor may be the
reason that Graeffe’s method is somewhat neglected. Its third and perhaps its main
advantage is that it also affords a means of finding the complex roots. It is true that
by certain other methods, such as that of Newton, an approximation to a complex
root can beimproved, butobtaining the first approximation israther difficult inthe
case of complex roots. Alast advantage of Graeffe’s method is thatit automatically
separates roots which are close together, such as V5/2 and 3/2. It is known that
Lagrange claimed this same advantage for this method of developing a root into a
continued fraction, in contradistinction to Newton’s method; Lagrange’s method
fails, however, in the case of complex roots.

These advantages are well known, though not sufficiently appreciated in practice.
But so far as can be seen, it isnot known that Graeffe’s method also gives the multiple
{real or complex) roots, in a manner essentially simpler than is generally pointed out in
more elaborate descriptions of the procedure. Further, of all the methods it is the only
one for solving an equation having several pairs of complex roots of the same modulus.

To derive these and other properties, for example the convergence of the process,
we discuss the whole method in a somewhat simpler form than is generally used.

Preliminary remarks. The method consists in deriving from an equation

xn+ ai%ml+ eee+ an= 0 1)
with the roots xi, **,ee+ *» another equation
X-TrijX -1+ see+An=20 2

having the roots Xt=x", where p is a large number (and for practical reasons a power
of 2), so that the distinct roots of (2) are widely separated and can thus be easily
calculated in the following manner.

Splitting of equation (2).

First case. All the roots of (2) are positive and simple.

* Received Sept. 28, 1945.
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Then, from
Al X2)> « mm5> X,

we have
- Ax= E Xi* Xi

N2 =E XiX, « xx2
- il = B OX.XjX* « XIX2X3etc.,
since the first members of the sums predominate. Thus
Xj ~ Aill, X2~ Aolli1, Xs ~ —AilA2, eee
that is, equation (2) is split into the 2 approximate linear equations
X fAl=0, AA\X + A2=0, A3X +A3=0,*m+, 4, iX-A, =0

Second case. Several of the roots of (2) have the same absolute value.
(ia) There is one pair of complex roots, say

X 3= XeiA X4 = Re~IK
so that

Az = E X.X,- « XiX*

- A3= XxXjXs + XIX2X4H XiXi(X, +X 4 = XrXi-IR cos A

At —XiXz2X3Xa= XiXj-X2

Thus X3, X 4are approximately the roots of the quadratic equation
AiX*+ AX +A4=0, (3)

so that equation (2) is split into the n—2 linear equations

X+ AL =0, AiX + 42 =0, AiX + As = 0, *¢¢,.4niX - An= 0

and the quadratic (3).
(ib)There are two pairs of complex roots, having thesame absolute value R,

X 34 = Re*A Xse6 = Re*n
Then

At « XiX2
13~ XiXZAX3T X4T X5T Xe) = XiX2-2X(cos AT cos B)
At « XiXt(XsXt + eem+ XsXe) = XiX2-2i?2(l + 2 cos Acos B)
—Ab~ XiXAXXKXKG+ -. .+ XXKEG = XiX2-2i?3cos A+ cos B)
« XXX2X3X4X5X6 = XxXi-R\
Therefore X 3, « ¢ ¢, X 6satisfy the equation
avxs Fascs Fax Fax +ax =0 @

To solve it, let us first compute R from

Ri=alda* (5)
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W ith this R let

X = R-Y, where Y = e (6)
Then all the roots of Eq. (4) in Y have the modulus 1, and if F is a root, then 1/F
is also a root, that is, Eq. (4) is “reciprocal”:

Y4+ BY3+ CY2+ BY+ 1= 0.
By
F+ F-1 = 2cos =Z )
it becomes a quadratic equation in Z.
(ic) There are fitdistinct pairs of complex roots having the same modulus R.
Then in a manner similar to (ib) above an equation M of degree 2ju is split off.
The modulus R is obtained from the equation

i?21= quotient of the last coefficient to the firstcoefficient At of the equation M. (8)

To compute the arguments A, B, ¢« « of then pairs of roots, we again setX =RY
as in (6), and divide by the leading coefficient A2?2". The new equation in F is again
reciprocal:

(F2*+ 1) + B(Y2~ + F) + C(FZ-2+ F2 + mes+ NYL= 0. (9)

By substituting (7) into (9) it can be seen that (9) is an equation in Z of degree /x
having ju real roots of Z <2 which can be found by Graeffe’s method. Complications
cannot arise since all the roots are distinct. The transformed equation therefore will
break up into a system of /xlinear equations.

(ila) There are three roots with the same modulus R, one positive and the others
complex, say

X3=R, X46 = Xex<A
Then
At ~ X xXt

-A L~ XiX2AX3+ X4+ X, + X,) = XxXfR(l + 2cos A)
At « XiXtiXzXt+ X3X6+ X4X5H = XiX2-A21 + 2cos A)
As « XrXtXiXiXf, = XiXfR3
so that X3 X 4, X6are approximately the roots of the cubic equation
A2X3+ A3X2+ A4X -j-As = 0. (10)
The value of R is obtained from
R3— —AIilAt,

or more simply from /
R = —A4A3 (11)

Thus equation (2) is split into n —3 linear equations and the cubic equation (10).
The last equation can be broken up into the linear equation (11), thatisAiX+ A4=0,
and a quadratic equation.

(iib) There are jx pairs of complex roots and one positive root, all of the modu-
lus R.
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An equation M of degree 2ju+l results and from that a linear equation L is again
split off. It consists of the two middle terms of M, that is

L: A,X + AM3 0 (12)
with the solution R.

To find the arguments of the complex roots, we again set X =RY and obtain a
reciprocal equation in Y of degree 2/x-f-1. It has the solution Y= 1, so that by dividing
it by Y—1there results a reciprocal equation of degree n in Z that may be solved by
Graefifc’s method, yielding n pairs of complex roots.

(iii) There are multiple roots.

Let X2 have the multiplicity v. Then equation M, mentioned above in (ic) and
(iib), will be divisible by (X —X 2 = (X —R)r,if X 2is real, and by [(A —Xt){X—X2]"
= (X2—2R cos AA’+i?21 if X2is complex. The reciprocal equation in Y is then di-
visible by (Y —I)" or (F2—2 cos AF+1)', respectively.

Note. It isnot always possible to eliminate the multiple roots of (2) by eliminating
at once the multiple roots of (1), for distinct roots of (1) may, by the successive squar-
ings, give the same roots of (2).

In summary we can say, if the absolute values of the roots of (2) arc partly equal,
partly different, then Eq. (2) is split up into several approximate equations Mi of
lower degrees. The degree of an M is equal to the number of roots having the same
modulus R. Thus there are as many equations M as there are distinct moduli. To
every simple root there corresponds a linear equation.

Determination of the equations Mi. It is well known that by squaring the roots of
(1) a scries of equations Gi, G2, G3, mmm having the roots Xit xf, xf, mmm results.

The problem now is to decide which equation G first breaks up into equations Mi,
and what these Mi are.

We have seen that if the equation M has m roots with equal moduli R, then the
absolute member of the normalized M (that is an M whose leading coefficient is 1)
is equal to +2?” In the following transformed equation it will be equal to +i?2”,
that is, from a certain equation Gk the absolute member of a (normalized) M is (to
the required degree of accuracy) squared when passing to the following transformed
equation. This or a similar relation does not hold for the other coefficients of M, for
they involve cos A. Since cos A changes to cos 2A in the following equations, the co-
efficients not only irregularly change their quantity, but often their signs too.

To find the various Mi into which an equation Gk is eventually split up, we must
therefore seek only those coefficients that are squared when passing to the next equa-
tion G. That is, we begin with the leading coefficient 1 of all Gk and choose the first
member Ai that by the last root-squaring is itself squared. The coefficients from 1
to Ai form the first equation Mi. The next equation Mt has the leading coefficient Ai.
Since A iis itself squared when going a step further, it is unnecessary to normalize the
supposed equation ilf2 but we may choose immediately the first coefficient A safter A m
that is squared by the root-squaring. Equation M2 now has the coefficients lying
between A mand A If Akis the next coefficient after A sthat is squared by root-squar-
ing, M3 extends from A mto Ak, and so on.

It is not necessary that the same equation Gk yield all the various Mi. The higher
the degree of an If is, the later the mentioned quality of the extreme coefficients will
generally appear. However, from the stage where an M is split off, it is no longer neces-
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sary to keep it during the further calculation. It is sufficient to treat only the rest of
the Gk that remain after cancelling the Mi.

Resolution of an equation M. Every M of degree m must be solved separately,
in the following manner.

(i) Normalize M to M".

(i) Find the modulus R of all roots of M from (8), that is, in the normalized M"',
from

Rm= —absolute member of M' if m is even,

and from the linear equation L (12), if m is odd

(iii) With this R set X =RY, where F=e**, into M' and normalize again to M ".
This new equation in Y is reciprocal.

(iv) If this is possible, divide M" by Y —1 (thatis, is F=1 a root?), and repeat
this division as often as possible. If this is possible 5 times, then M has the root R
of multiplicity 5. If m is odd, s is at least 1.

(v) Form the quotient Q=M"/(Y —1)'; this is also a reciprocal polynomial.

(vi) In =0set Z= F+ F-1. Then <=0 is transformed into an equation <2 =0
in Z of degree (m—s)/2. The equation <2 = 0 has all its roots real.

(vii) cos (p=2/2 yields (m—s)/2 values of p and therefore m —s values of X:
X=Rezx{" and this together with the root X =R of multiplicity 5yields the complete
system of roots of M.

Solution of equation (1). To every root Xi of M there corresponds one root Xi
of (1). Since Xi =X every Xi yields p tentative values of Xi from which the right
root must be chosen. We do not, of course, calculate with the complex values of x.-,
but take only the real component of Eq. (1) that is:

Rncos nj>+ i?"-1«: cos (n — 1)<€+ Rn2aicos (n — 24>+ e+e+ 0, =0, (13)
where ¢is given by
$£= (2qir + <tSi)/p, q=0,1,2, ¢, />—1 (14)

After having found the first €>satisfying (13), we stop the calculation with this

If equation (1) is not too complicated, that is, if the M ’s have a low degree, the
process can be abbreviated in the usual manner.

In all other cases the process of finding the complex roots can always be abbrevi-
ated in the following manner. In the chain of the transformed equations Gk we go back
to the first equation Gm(m<s.k), where M starts to split off, that is, where the double
products have no more influence on the first (or second) decimal place of the corner-
coefficients of M. This equation M is solved to one or two decimal places only. The
root of Eq. (1) is now—to one or two decimal places—to be selected from a group of 2m
members, instead of from the 2<imembers of (14). This decreases the work involved.

In addition, the process is abbreviated by the fact that not all 2* equations of (13)
have to be computed, since the members of the majority of them differ from those
of the others only in the sign. An example will make this clearer.

Nevertheless this part of the labor is the most tedious of the whole process if
the first transformed equation Gm, from which M is first split, has a large m, that is,
if two or more roots of (1) are close together. It is good, however, to have a method
that yields these roots at all.
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In cases where there are only one pair or two pairs of complex roots this whole
process is superfluous as will be seen in the example.

Convergence of the process. If the coefficients of the transformed equation Gk are
determined exactly and the roots of Gk are calculated by splitting Gk into several M,
then the roots of the M's are only approximately the roots of Gk- If, thereby, a root
of Gk is found with the relative error e*, then the error of the same root in the follow-
ing equation is

iktl ~ tk,

as is easily seen. Let us suppose that we are dealing with the largest root Xi and there
are m complex pairs of roots of the same modulus R, then we see that R is calculated
from the absolute member a of the equation Mp. Let now Xi —R- 10—be the follow-
ing root andlet the ni pairs of complex roots be

X" = ReMN, X" = 7%tB, ¢¢¢ X > = Ret*r.
Then a,being the sum of the combinations of all roots of Gk by 2m, is equal to
a—R2n+ 21?72m-1(cos A+ cos B + mme + COST) eX2+ o o
« i?72m(l + 25-10-"),
where 5 is the sum of the cosines. Thus
R« v~r(l - (I/m)10-5),

that is, since S<m, the relative error ek of R is less than 10_i.
From the following equation Gk+, equation M k+i is set up, and if b is the absolute
member of Mk+i, then

b« R + R ®S'Xi, where S' < m.
Thus

R'm R2» v'i (1 - 10-2i).

That is, the relative error of R' is
2i

- 2
e*+i <10 « e*

Now the roots xi, x2, x3, mmm of (1) are the 2*th roots of the roots Xi of G*-
Thus if eis the relative error of Xi of Gk, then

*I= VXi(l + € « vAT (1+ 6/2%).
That is, the relative error of xi is e/2*. But from Gk+i we obtain, as we have seen
*l=nAX Al + 6) » x/xr(l + e22*+1),

that is, the relative error of M is e22*+lor the square of that of the equation Gk- Thus,
we have:

The relative error of the roots Xi of (1) as they are computed from the transformed
equations Gk decreases quadratically with every following equation Gk, that is, if the roots
Xi of (1) following from Gk are exact to r decimals, then equation Gk+Lwill yield them to 2r
decimals exactly. Roughly, everyfollowing equation yields tiwce as many exact decimals of
the roots Xi of (1).
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It must be taken into account that this property holds only if the roots are already
sufficiently separated, for instance, if the difference of any two neighboring roots
of Gk is at least equal to 100, or else the approximations above are invalid.

From this property it follows that Graeffc’s method has its greatest efficiency if it
is carried out to many decimal places. If a calculating machine is used this does not
require more computational work than required for fewer decimal places. Now, it is
true that in this case one must calculate more transformed equations at least if the
number of decimals are to be fully used. But for this purpose it will be sufficient to
have one or two equations more. If, for instance, the equation Gayields 5 exact decimals
of the Xi of (1) then the next smaller root of G, has a modulus r«10~57?, where R is
the modulus of the greatest root. In G6 the relation of the two greatest roots will then
be 10~10 that is, only the 10th decimal place of the coefficients of G&will be influenced.

From this it follows that—apart from exceptional cases—the same number of trans-
formed equations will in general be necessary if a certain exactness is required. For,
suppose we have an equation with two roots having the ratio 1.1. Then by 3 or 4
transformations the ratio will become 3. Thus to have a certain exactness, it will
be necessary to calculate 3 or 4 equations more than for an original equation with two
roots having the ratio 3. The example is very unfavorable, for there will be few equa-
tions having roots of the ratio 1.1. At a ratio 1.5, there are only one or two more
transformations required.

Since by raising to powers all roots with distinct moduli will be separated auto-
matically by a quadratically convergent process, Graeffe’s method is more powerful
than other ones.

Influence of rounding off. These considerations of convergence are strictly valid
only if the coefficients of the transformed equations are exact, but in reality the cal-
culation is carried out to a fixed number v of decimals. The errors of rounding off are,
of course, increased by every squaring and multiplication. Now, these errors can be
estimated by adding the proper inequality to every coefficient of the scheme. But in
general this tedious supplement will be superfluous, for on the whole the error will
be annulled by the process of extracting the 2i'th roots of the roots of Gk- That is,
if the calculation is carried out to v decimals, the roots of (1) will on the whole be exact to
v decimals too.

Moduli or roots lying close together. When the equations of the chain do not soon
show signs of an approaching splitting up, this will signify that some moduli of even
roots are close to each other.

Various procedures have been proposed for accelerating the convergence. But
they are all unpractical. For they require much more work than does the Graeffe’s
method when carried on two or three steps further. Add to this that by these de-
vices the calculation of the chain is interrupted which is very undesirable when at
the end of the calculation the roots of (1) are to be computed from those of the

These procedures make no allowance for the quadratic convergence (or diver-
gence) of Graeffe’s method. For before it becomes obvious that several moduli or roots
are close to each other several transformations are already effected. By then the roots
will be separated so far that the greatest difficulties have been overcome, and the
further calculation will proceed rapidly. It is not advisable, therefore, to disregard
the entire calculation performed up to this pointand instead, to apply Graeffe’s method
to a transform of the original equation.
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For instance Encke (Gesammelte mathematische und astronomische Abhand-
lungen, vol. 1, Berlin, 1888, p. 185), when dealing with a certain equation states
that “after 6 or 7 operations we have got the conviction that two trinomial factors
lying close together are existing here.” Then he abandons Graeffe’s method and starts
on a new calculation. Yet, if Graeffe’s method is carried 2 or 3 steps further, all roots
separate automatically.

Thus the usual procedure of Graeffe will be always the most suitable one. Indeed, one
of the chief advantages of the method is, that no special devices are required.

On the other hand, if some knowledge of the position of the roots o0i f(x)=0 is
not furnished by the first steps of Graeffe’s method, but by other sources, then this
knowledge may be used from the beginning to accelerate the separation of the roots
by transforming the equation first.

If, for instance, several moduli are close to each other and their absolute value p
is known approximately and if also several roots are close to each other and their
values, too, are known approximately, we may proceed as follows.

We have a group G of roots lying near a circle C with radius p around the origin
of the Gaussian plane. And in this group G there exist several places u, v, w, mme
where the roots “accumulate” so that G is divided into the subgroups U, V, W, mmm.

Now the slow convergence of G when applying Graeffe’s method arises from the
fact that the quotient of two moduli of G is lying close to 1. This difficulty will be
partly overcome by chosing the origin of the coordinates in the neighbourhood of one
of the points u, v, w, * * ¢ say u. The circle Cwill still be a circle, but it does no longer
have the new origin as its center. Thus the quotients of the moduli of the group G
have essentially changed. For the relations of the distances of the subgroup U from
the origin to each other as well as to those of the subgroups V, W, mmm differ now
widely from 1. The same holds for the relations of the distances of the group V to
the distances of W, ¢+« However the relations of the distances of V to each other
remain nearly the same as they were before, and the same will hold for W to each
other.

By this transformation the separation of the group G will, therefore, be acceler-
ated, that is, the equation of the group G will break up into the equations for the sub-
groups U, V, W, « mefaster than would have been the case without this transformation,
and the subgroup U will even be split into its individual elements. The method is
to be repeated eventually, as far as the subgroups V, W, « e« are concerned.

The value of this method is largely theoretical because equations with several
points of accumulation, u, v, w, » me  near the same circle Cdo not occur frequently.

The details of the transformation mentioned above will depend on the nature of
the roots:

i. Several roots near the circle C are real. We may suppose that all these real roots
are positive. Otherwise we form the first transformed equation and get a new equation
with the assumed property. The convergence will be most rapid if the origin of the
coordinates is chosen in the neighborhood of the least of these positive roots, say a,
i.e., if the following transformation is made:

X =y+ a, where 0" « 0« p.

ii. The roots near C are all complex, but “simple,” i.e., no two of them are close to-
gether. In this case, too,, the transformation
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X =Y+ p, where p' ~ p,

will be sufficient as is evident geometrically.

i All roots are complex, but several of them are lying near u=a+ib (and u'=a—ib,
of course). Then it will not be convenient in general to bring u into the origin immedi-
ately, for this would require a complex transformation. It will be more suitable to do
this by two real transformations. First we make the transformation

x =y-\-a' where a' « a

so that u will come near the y-axis. The equation in y will have several roots near *ib.
We transform it by Graeffe’s procedure and obtain an equation in Y having several
roots near the point (0; —52. Then by the second transformation

Y =U- b

we obtain an equation in U having several roots near the origin. The ratios of the
moduli will now differ widely from 1.

This method will be particularly useful when all the roots of the equation are lying
near the circle C, for instance, for the equations Mi. In this special case the method
may be brought into a more convenient form by applying a procedure of Ostrowski.
[Recherches sur la méthode de Graeffe et les zéros des polyndmes et des séries de
Laurent, Acta mathematica, 72, 245 (1940)].

In case iii above, i.e., if all roots of /(x) =0 are lying around u=a+ib and
u'=a—ib, the sum ma of all roots will be equal to the coefficient —ah so that the real
part of all roots will be approximately 0« —a\/m. After the transformation x=y+a,
the coefficient of x”" 1will then vanish. The same holds for the equation in F. That is:

If we know that/(x)=0 has all its roots near two conjugate complex numbers,
we may apply the transformations of iii without knowing these points, by bringing
/(x) into the reduced form /(x), transforming / once by Graeffe’s procedure into F(x)
and bringing the latter into its reduced form F(x). The roots of F(x) = 0 differ widely,
and Graeffe’s method will converge then rapidly.

Example. By the following example we show the efficiency of the method in the
case of roots lying close together or having the same moduli.

ex6+ 4x4+ 18x3— 15x2— 18* — 81 = 0 or normalized: (A)
x6+ 0.54+ 2.25x3- 1.875x2- 2.25x - 10.125 = 0.

In the coefficients of the transformed equations there is always a power of 10
omitted ; its exponent is given in italics on the left of the coefficient, so that, for in-
stance, the last coefficient of G2is in reality —104'1.0509 o o« .

To avoid slips it is advisable to put under each transformed equation Gk the signs
of the equations having the same roots, but of opposite signs. These signs are alter-
nately equal or opposite to the signs of Gk-

As may be seen, it is not until G6that the pace of the coefficients begins to become
more regular. This late start indicates that the moduli of the roots of (A) lie close
together. Also from this point of view it is advisable to carry out the calculation to
many decimals. Equation C5 is the first equation where the approaching split is
perceptible, for in the double products forming the coefficient of x3two zeros appear.
From Gi onwards the process goes rapidly, so that in Gs the coefficients of x6, x3, x°
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are fixed to 16 places since they are no longer influenced by the double products.
Thus Gs is split into the two equations M :

Mi -X2- 2.358036915546003 «1061X + 1.390084523771616 <1012 = 0
Mi s 10122-1.390084523771616X3- 10167-1.287533728649992X?2
+ 10221.545884788849941X - 10266-2.405072447095789 = 0.

These two equations must now be solved. Since in Gs the coefficient of X 4is ap-
proximately twice as large as the coefficient of X 3in G7, this signifies that M\ has a
real double-root, so that M\ may be put into the form

Ml= (X - w)2= X2. 2mX + w2

as is approximately confirmed. Thus from the coefficient of X we have
Xi = Xi = 1.17901845777300-106,

whereas from the coefficient of X° we have
Xi = Xi = 1.17901845777393 m106L

The difference of the two values arises from the rounding off errors we mentioned
above. To annul them slightly we could take the mid-value of the two values:

Xi = Xi = 1.17901845777346-106L

Equation Mi no longer splits into factors as can be seen from the course of
its coefficients. Otherwise some of the double products should begin to converge to
zero. Now, this is only the case with the product 2A4A0,and there only because of the
coefficient A 4 This follows from the fact that equation Mi is already split off and has
no influence on Mi. Thus Mi has all its roots with the same modulus R. Since its de-
gree is odd, we have according to p. 179, ii and according to (12):

R

10212-1.545884785849941/10167-1.287533728649892
1045-1.200500425311787.

We now set X =R Y in Mi and get the reciprocal equation in Y

M" = BY3- 1.855595246409359F2+ 1.8555952464072567 - B = 0

or, to make the equation wholly reciprocal, instead of the two middle coefficients we
put their arithmetic mean, and divide the resulting equation by 7 —1:

Q= M"/(Y - 1) = 72+ 0.22846596631664397 + 1 = 0.

Since this equation is no longer divisible by 7 —1, we put Z—7 + 7 -1 and obtain

instead of Q:
Z = 2cos $= - 0.2284659663166439,

$= 2927.71149255575355.

(The notation “g” refers to the division of the quadrant into 100 parts, instead of
into 90.) Thus the roots of Mi are

Xi - R, x 46 = Re*{*
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The roots of the original equation arise from the by extracting the 256th root. Now

256,------- — 256 /'
VXT= yl/l, r=y/R = 15,

0/256 = 1".143405439670912305,
so that the roots Xi are to be found among the values

\/3-(cos 2kr/256 + i sin 2kx/256)
and

1.5(cos &+ i sin 0*), where 0« = (2for + 0)/256, k=1, 2 ¢ 256,

There are two roots of the first kind, thus either two conjugate-complex ones or two
real opposite ones or a real double root, and three roots of the second kind, thus there
isalways one real root.

Because of the simple character of the moduli of our roots, the procedure of find-
ing their arguments could be very much abbreviated. However, to show the general
method, we do not make use of this special property. We begin with the more difficult
part, namely equation Mi. Thus we look back in the chain of transformed equations
Gi until we come to the first equation where our Mi starts to split off. That is Gs,
where the coefficient of X 3is determined to two places. For the transition to Ge makes
two zeros in each of the double products. That is, from G5an equation M is split off

1.87X3- 105-4.75X2+ 10n-2.08X - 1017-1.49 = 0
or, putting X =15Y:

Y3- 0.596F2+ 0.596F - 1= (F - 1)(F2+ 0.404F + 1).
This gives

cos B = - 0.202 or B = 287".B/32 = 8".97.

Thus the argument of the roots equals
Am= 8".97 + 2»i7r/32, where m = 1, 2, eee  32:

by this the number of values to be tried has sunk from 256 to 32. We can correct
these values €mby comparing them with theformer values d> that are nearly exact. For
that we must determine the values of k from the equation 0*= (2£7r+0)/256«i8°.97,
that is k~5, thus k=5 and 05= 8".9559 « ¢ ¢« ~8".956.

W ith this value we try to verify the original equation, which on putting x = 15w,

becomes

y—1 + 4y3+ Ty2+ —y + 40 =0

or according to (13):

16
3 cos 400+ 4 cos 30,, + 7 cos 2<qm-| 3 cos €+ 4 = 0.

Now the values §mare
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i = 85956, 02 =0i + 12.55 — 21.456s, e+ +, 08 = 965.456
09 = 100s+ <=,* e+ ,016= 100s+ 08,
017 = 200s + 01, « « ,024= 200s+ 08,
026 = 300s+ 01,me e 032 = 300s+ 08.

These 32 values must be tried. The calculation is carried out to 4r-5 decimals. We
find the solution 013, that is

0 = 0i3 = 1465.4559054397.

(It is not necessary to compute all 32-4 = 128 values of cosines, since 0i7, ¢ ¢, 032
yield values equal or opposite to those yielded by 0i, ¢+, 016 Also, in the group be-
longing to Oi through 0i6 not all values are different.) Thus all the roots of the modulus
1.5 are found.

For finding the roots of modulus V3, we do not need the somewhat tedious pro-
cedure above, but can abbreviate it in several ways. A method that is always applica-
ble consists in dividing the original equation by the product of the three linear factors

already found, thus by
(& — 1.5)(a;2—3a; cos 0 + 2.25).

In the quotient we put x=y\/3 and gety2+ | =0, thus y —i;so we have as roots of the
equation

x1 = i\/3, Xi = —i\/3, * x3= 15 £45= 1.5-«**

After this general and somewhat tedious way of finding the arguments of the roots
Xi, a;6having the modulus 1.5, we give in the following the simple method appropriate
to all cases where only two or four complex roots exist.

From M\, M3we determine the moduli of their respective roots, as we did above,
that is X1—X2and R. Thus the moduli of the roots of the original equation are, as
above,

and the roots themselves are
*12 = \/3ee:ti a3= 1.5, agb = 1.5 et

Now we use the property of the coefficients of the original equation, namely that
the sum of all the roots or their combinations at four are:

£l+ X2+ x3+ £ = —05=2\/3 cos0+ 15+ 3cosO.
XiX2X3Xi + XiXzxzXf, + ... = —18/8 = p/xi + p/x2+ p/x3+ p/x4+ pl/x5,

where p ="12346= 81/8. By inserting the above values we get the two equations

2\/3cos 0 + 3 cos0 = —2,
2\/3cos 0+ 4 cos0 = —8/3,
thus
cos 0 = —2/3, or0 = 146s5.4559054397.
Then
cos0 =0 or 0 = 100s.
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Conclusions. Graeffe’s method has the following properties.

i. It yields not only one root at a time but all roots simultaneously, even the com-
plex ones; this is accomplished by no other method.

ii. It is the only method that automatically discovers roots lying close together
which easily escape attention. There is no method other than Graeffe’s which solves,
without special attention, an equation having, for instance, the roots x/5/2 = 1,581 e e ¢
and 3/2 = 1.5, not to mention theoretical cases such as 1.67324 « e« and 1.67331'e o m
Lagrange’s method is the only other one with the same advantage of separating those
roots, but the process requires great attention and much computational work and
fails entirely in the case of complex roots.

iii. An especially valuable property is that even complex roots of the same modulus
are automatically obtained.

iv. These advantages are not due to special artifices. Any other method requires
a first approximation which must then be corrected. But the finding of this first
approximation is difficult, particularly in the case of complex roots. Only Bernoulli’s
method does not require a first approximation, but for that it yields only two real
roots at a time, and the process of approximation may be very slow. Graeffe’s method
on the other hand does not require a first approximate value. Besides, it is not neces-
sary to use criteria of convergence in order to determine if the approximate value is
sufficiently close the actual root.

Therefore it seems to us that Graeffe’s method is byfar the bestfor solving algebraic
equations. Only if one does not need all roots of the equation, but only a single one,
will it be inferior to other methods.
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ON COMPRESSIBLE FLOW ABOUT BODIES OF REVOLUTION™*
By W. R. SEARS** (Northrop Aircraft, Inc.)

The linear-perturbation theory of compressible fluid flow originated by Glauert
and Prandtl has recently been presented in a revised and clarified form by Goldstein
and Young.1These authors show three alternative procedures by which the compres-
sible flow in an X, y, z-space can be deduced from a corresponding incompressible flow.

The linearized differential equation satisfied by the velocity potential 4>is

d2> dz» dx-
B2qb" ays T hA = @ w
where R2denotes 1—U2a2 U and a being the stream velocity and the velocity of
sound, respectively, in the undisturbed parallel flow. If the solution of (1) for the

case B =1 (incompressible) is <= Ux-\-f(x, y, z), corresponding solutions for 8 < 1 are
given by the following alternative forms:

1
1) $£= Ux A f(x, By, Rz)
R
1) 0 = Ux + f(x, By, B2)
HI) <p=Ux + f(x/B, vy, 2).

Each of these variants represents a somewhat different compressible flow, but all
three are related to the given incompressible flow. The results determined by the the-
ory are consistent, of course, as far as the linear theory is applicable, and the proced-
ure used in any given problem is the one that provides the greatest ease of calculation.
For example, in | the geometry of a slender body remains unaltered as 8 varies; in
Il the body is distorted but the pressures on its surface are unchanged; and so forth.

Method Ilis the one used by Tsien and Lees in a recent paper,2whileboth | and
Il are presented by Liepmann and Puckett in a new textbook.3Sauer4writes,in effect,

1V) $= Ux + \f(x, By, R2)

and selects the value of Xmost convenient for any given problem; this includes both |
and Il. Finally, B. Gothert,5rejecting Il because of a fancied discrepancy (actually

* Received Jan. 14, 1946.

** Now at Cornell University.

1S. Goldstein and A. D. Young, The linear perturbation theory of compressible flow with applications
to wind-tunnel interference, British Aero. Res. Com. Reportsand Memoranda No. 1909 (1943).

2H. S. Tsien and L. Lees, The Glauert-Prandtl approximation for subsonic flow of a compressible fluid,
J. Aero. Sei. 12, 173-187, 202 (1945).

5H. W. Liepmann and A. Puckett, Introduction to the aerodynamics of compressible fluids, John Wiley
and Sons, New York, 1946.

4 R. Sauer, Theoretische Einfuhrung in die Gasdynamik, Springer, Berlin, 1943. Reprinted by Edwards
Bros., Inc., Ann Arbor, 1945,

6 B. Gothert, Ebene und raumliche Stromung bei hohen Unterschallgeschwindigkeiten, Lilienthal Gesell-
schaft f. Luftfahrtforschung, Bericht 127, 97-101 (1940).



192 NOTES [Vol. 1V, No. 2

caused by an error in his application of the method), introduces still another variant
by writing

V) &= P2Ux + f(x, Oy, pz).

We are particularly concerned here with the application of these procedures to
the flow about bodies of revolution. There is some confusion on this subject: Gold-
stein and Young,lusing I, find that the superstream velocities at a streamline body
in the absence of trailing vortices are 1/jS times those at the same location in incom-
pressible flow, while both Sauer4and Gothert5conclude that these velocities are un-
affected by compressibility, at least for slender bodies.6

This confusion is partly due to the fact that, while the procedures are equivalent
and must yield consistent results in the linear approximation, they may produce dif-
ferent results when they are applied outside this range. For example, let the maximum
velocity at the surface of a slender body in incompressible flow be denoted by
U- [I + F(w)j where n is the ratio of maximum diameter to length, so that F{n) is a
given function for any family of bodies. The several variants of the theory then yield
the following results for the maximum surface velocity (divided by the stream veloc-
ity) in the compressible flow:

i) I* («)

) F{n/P)

1) — F(n)
P

V) XF(»/XjS)

V) j2iCR
Obviously these results are all the same if F(n) is proportional to n or can be

approximated successfully in that form. But for a typical family of bodies, the ellip-
soids of revolution, F{n) actually has the form7

; n2logp —2n\/l —n2 1+ \/I —nl
F@ii) = .. where p = — 2
2\/l —n- —n2log p 1—y/l —n2

or, neglecting terms of order n2,
F(n) = —n2log n. (2a)

The absence of a linear term in this expression is what leads Gothert to the con-
clusion that there is no correction for compressibility. Sauer’s similar conclusion
apparently results somewhat analogously from the fact that he considers only the

6 Gothert admits a correction “for greater thickness ratio” and proceeds to calculate it by means of
Method V above.

1 This is obtained from H. Lamb, Hydrodynamics, Cambridge, 1932, §105. Note that the ratio
diameter/length, n, is equal to V |—ST!in Lamb’s notation.
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limiting case »MO. Actually, in
(2a) we have retained the leading
term while neglecting 0 (m2), which
is consistent with the linear-per-
turbation theory.
F{n) according to (2) and (2a)
is plotted in Figure 1. It is clear
that Gdthert’sand Sauer’s conclus-
ion cannotbe correctin the ran ge of
practical interest (1/10<n< 1/3
and 0.6"/3<1, say), since all of
the various procedures listed above
result in appreciable corrections to
the velocity ratio. It seems more
reasonable to conclude merely that
the linear-pcrturbation theory can-
not distinguish between the vari-
ous results. In this situation the
formula of Method I might well be Fig. 1. The superstream velocity ratio for ellipsoids
adopted by reason of its simplicity. of revolution in incompressible flow.

ON THE NUMERICAL TREATMENT OF FORCED OSCILLATIONS*

By ALVIN C. SUGAR** (Northrop Aircraft)

1. Introduction. The differential equation, with typical initial conditions, of an
harmonic oscillator subject to the action of a general disturbing force ma(t)is given by
x + aXx = a(l), *0) = 0 = *(0). ()

This equation occurs in problems involving from one to infinitely many degrees of
freedom. Its solution can be expressed as follows:

x—2  where D= I a@) sin tot —rydr @)
@ Jo

is the so-called Duhamel integral. If in (1) we replace only x by D/to we obtain an
expression for the acceleration of the body.

x = aft) —oD. 3)

In this notea simple expression which is an approximation of Dis found. This
expression provides a convenient process for evaluating x and related quantities. Us-
ing the resulting simplified form of the acceleration a quick and easy vector method
of obtaining the maximum acceleration is explained. Rapid methods of finding the

* Received Oct. I, 1945.
** Now at Brown University.
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maximum displacement are also considered. By maximum acceleration is meant maxi-
mum magnitude or absolute value of acceleration and similarly for displacement.

2. Evaluation of the Duhamel integral. The curve y =a(t) is approximated by a
broken line Y =A(t), see Fig. 1. As’indicated we are taking *4(i0)=0O. Since the ap-
proximation of a curve by a broken line can be improved by increasing the number of
segments, it is evident that this method can produce a solution which is as accurate

Y

Fig. 1

as desired. Frequently in engineering problems the forcing function is known only
approximately and the additional error introduced by a broken line consisting of rela-

tively few segments is negligible. . ,
Let K(ﬁ%&),/ , ¢ _ L where YI— (t is the equation of a straight. Jine of
slope Hi. Since the linesYl qa{(t)and y 1+ —7 >intersect at the point ?U,Aztlj}i it
follows that

At+iM = 4
With the notations of Fig. 1 the Duhamel integral can be approximated in the follow-
ing mariner:

D = | a(r) sin oi(t —r)dr
J O
-1t t
- x| -Ai(Ty 8'n ~ oot + | Aty Sin coy — rydr.
>1J t<! Jt

Integration by parts enables us to write this in the form

1- J-1 j
wD = A(l)-——- X} Mi Sin cd¢ - /f_i) - X) mi Sinu(t - ti)
t t-0 J

where we have defined mo= 0 in order to obtain the following compact result:
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From (3) and (5) it is evident that
1
X~ A —ub = —i( (al+i — M) sin oi(t — /). (6)
u I

3. Maximum acceleration and displacement. It is, at times, of importance to know
the maximum displacement or acceleration. In this paragraph we show a vector
method of obtaining the maximum acceleration. Since the expression for x for the jth
time interval is, apart from a constant factor, a sum of sinusoids of the same fre-
quency, oo, it is equal to a sinusoid of frequency . The amplitude of this sinusoid can
be obtained by vector methods. It is evident that this amplitude is equal to the maxi-
mum of ithe absolute value of the resultant sinusoid over a time interval equal to or
in excess of one half period. From this it is apparent that the following vector pro-
cedure can be used in determining max| .i;] over all of the time intervals.

If

m . _
— N min — /), i=0 1 ¢¢¢ 1tn, @)
a
then max [i;] =max Cﬂ (Fig. 2), where t%hmagnitude of the ith vector is
| Qi,—m>-i)/w| and its argument with respect to is equal to the phase angle —cofi_i.
W ithout condition (7) max is an upper bound of |i‘| and probably a pretty

good approximation of max |cr|.

Fairly rapid methods of computing the maximum displacementl can be devi
e.g. when the frequency is large, then, for the ith interval, max|x| "'a}ﬂ.ﬁn[mam 631
-{-max| g| ]. For any frequency the problem
of finding max|x| may be reduced to that of
finding the maximum value of the curve ob-
tained by the superposition of a sinusoid and
a straight line. This can be handled by obvi-
ous methods involving use of elementary
differential calculus.

A still better method of approximating
the maximum displacement is available if 5
is known or can be quickly evaluated, where 5
is defined by the differential equation,

s=a(t), ¢0) = 0= 50). ®

This method permits direct use of the above vector procedure. This is easily shown by
evaluating the Duhamel Integral by repeated integration by parts.2 1hus,

x=—f 5sinw(/ —r)dr = s —o f 5sino;(i — r)dr
0 Jo *Ao

1 A
« — X ("+1- *)sin w(r— >
w Jto
1A mechanical analyzer was invented by M. A. Biot to obtain this maximum [Bulletin Seismological
Soc. Amer. 31, 151-171 (1941)].
1As was done by G. W. Housner in obtaining his formulas (2) and (3), Bulletin Seismological Soc.
Amer. 31, 143-149 (1941).
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where Vkand 2*are defined by a broken line approximation of 5. If the initial condi-
tions of (8) defining 5 are changed to ;(0) =s0and 5(0) =s0, then i"9) takes the follow-
ing form :
.0 s i r . .
x — ¢ sinwl —s0cos git+ 5—am | s sin 0(2 —r)<2r, (20)
® J o
which again can be expressed as a sum of sinusoids of the same frequency.

On the basis of limited experience, the following suggestions for computation seem
good. If the curve is sufficiently smooth, then the term containing /xi will make a
sizeable contribution; consequently the first time interval should be as small as con-
venient. It seems best to take .4(0) = a(0). The vector polygon will obviously be sim-
plest if ti is selected so that as many values as possible of cof, are multiples of it.

If we had assumed .4(0)~0, then it would follow that

1 j-i
ubD = 4 —4(0) cos cot X} (m'+ —/a) sin colt — /).
® -0

If we let Sk=S(tk) then it is clear that vt+i—h+i- Substituting in (9) we have3

1>
x « — X) (fm —h) sin u(t — h). (11)
@ k**0
In calculating the maximum displacement, (11) would be more convenient than (9)
since i could be obtained by a single integration of a(t).

A REMARK ON THE RECTIFICATION OF THE
JOUKOWSKI PROFILE*

By CHARLES SALTZER (Brown University)

The Joukowski profile is usually defined as the image under the Joukowski trans-
formation,
f=s+ Az (1)

of a circle passing through the point (—c, 0) whose center lies in the first quadrant,
and whose radius is c(l +e) where ¢, and e>0. Although this representation gives the
complex potential of the incompressible flow about a Joukowski profile very readily,
the representation of this profile as the inverse of a parabolalhas the advantage, as
will be shown below,ofintroducing a parameter withdirectgeometrical meaning
which permits the immediaterectification of theJoukowskiprofile in closed form.

In the Zi-plane consider the parabola

yi = I*i (2)

31t is interesting to note that the sum in (11) is the so-called left Cauchy-Stieltjes sum corresponding
toD.

* Received Aug. 17, 1945.

11n this way the profile later called “Joukowski profile” was introduced by Chaplygin. See Chapyl-
gin’s Collected Papers, Leningrad 1933, vol. 2, pp. 144-178, in particular 86.
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and the point —(a-\-bi) as a center of inversion. The coefficient of x\ may be taken as
1/2 since it enters only as a scale factor. Only the case a>0, b> —1/2 will be treated
here.2The transformation

fi = (zi+ a+ ib)~I 3)

maps the exterior of the parabola in the zi-plane on the exterior of a Joukowski profile
in the fi-plane. For the proper choice of parameters the profiles in the f and fi-planes
can be mapped on each other by a linear transformation and a reflection.

Letting ds=\d£\\ and dsi=|tfzi] we have for the element of arc length on the
Joukowski profile by (2) and (3),

) . 4(1 X?)12
ds = jZi+ a+ b |21dp\ | = 4ais fy2+ + 20y @)

This expression can be simplified by separation into partial fractions. The roots of
the denominator can be obtained by equating the latter to zero, transposing one term,
extracting the square roots of both sides, and solving the two resulting quadratic
equations. For the non-symmetrical case (0>0) this enables us to write

j(*i) = Ajz - B, - R d, X\ - 1 (-M+ B, B/, aqj (5)
where
fox* + I+ a212
I, p, g *i) = | W e, ©®)
Jo x + fix+ o
and
a=— [1+ 1+ 4ay)l2]12 p=—, g=(1+ 2b)~-112 @
a
A = - 8334+ 4R+ aW + 4)]"L d = j[/32+ (a+ 2)2,/ = i[/32+ (a - 2)2.

The integrand of (6) can be rationalized by the substitution
X = (1 —m/2m (8)
which gives

1 @+ 2mu- wWA(l + m)2

Km, #,},*m)- “« m

where r=\/1 +*i. The factors of the denominator of this integrand can be found in
the same way as the factors of the denominator of (4) were found, and the integration
can be carried out directly after expanding (9) in partial fractions with linear and
quadratic denominators. It may be remarked that the | ’s taken individually may not
converge over the entire range of u.

The case a =0 gives a symmetrical Joukowski profile for which the rectification
can be carried out in a simpler way. Here equation (4) becomes

5This configuration represents the most frequently used Joukowski profiles to within a scale factor

and a reflection. The case a<0, by reason of symmetry, can be regarded as a reflection of the case a>0,
and the case & —1/2 can be treated in a way similar to the treatment of the case 6> —1/2.
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ds = 4(1 + Si)V2[4fi + (xI + 25)2] Idxu (10)
and equation (5) is replaced by

s(*i =(£0 1+ *ajq{*2+ @ - 1/g)23-1- {x2+ @ + I/g)*}~'1Ax. @)

Setting
X =11 - 2-12 (12)

we get, after simplifying and expanding in fractions with quadratic denominators,

*(*i) = fof [(<l —t) 1—(trl —t) I)dt, (13)
where
vi=1+ g1+ 29 , a =1+ g1 —2) . (14)
Therefore
swi) = g<nitanh ¢ Xicri *(1 -+ xi) v’y — <@2ltanh xrcio2*1 + xi) /2]. (15)

If we denote the slope of the parabola'at the point (x!, x2/2)by tan y and note that
xi = tan y, we can write (15) as

s(y) = ¢[<li tanh*(<rilsin y) — c2tanh 1(cr21sin7)], (16)

where j is measured from the point furthest from the trailing edge.
In order to introduce the usual parameters «and c for the symmetrical case of the
Joukowski profile3consider the circle in the z-plane,

z@>) = cl« + (1 + e)c'*] a7)

which is the image of a symmetrical Joukowski profile in the ("-plane. The distance
between the leading and trailing edges of the Joukowski profile in the f-plane is (re-

calling Eq. (1)) .
0] - cto] =4 " = 09

From (3) the corresponding length in the (Vplane is seen to be 1/b (i.e. the length
in the (Vplane of the image of the upper half of the imaginary axis in the Zi-plane).
If the profile in the fi-plane is identified with the profile in the ("-plane then

b = 1(1 + 20(1 + 0“2 _1. (19)

If the vertex of the parabola in the Zi-plane which corresponds to the given Joukowski
profile in the ("-plane is at the origin, and if the xi-axis coincides with the tangent to
the parabola at this point, then it is readily seen by comparing the positions of the
profiles in the ("-plane and the (Vplane that

= - *T+ 2). (20)

Since a= 0, Eq. (3) can be written
1
zi= — —ib. (21)
fi
3See, for instance, H. Glauert, The elements of aerofoil and air screw theory, The University Press,
Cambridge, 1930, pp. 71-75.
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The successive substitution into Eq. (21) of Egs. (20), (1), (17), and (19) gives after
simplification

Zi = + iyi = ——tan 4> + i ———tan2 %> 22
Y 2c(l + 1) 4¢(l + o2 > (22)

This is the parabola

yi = ce 21 + e)aalL (23)
Since a change in the value of c, effects only a change of scale in the f-plane, ¢ may
be taken without loss of generality as

c=i*l + ¢-2 (24)
and this parabola becomes the one considered in Eq. (2). Setting this value of c in
(19) yields

b= 4(1+ 2i)e~2 (25)
Hence, by Egs. (7) and (14),
a\= (1+ 2e)2 (1 + fi)1+ 36), a\— 1/(1 - 1), g = 6/(1+ *. (26)

Formulae (15) and (16) are valid for aj>0, d2> o, i.e., for e< 1 and thus include those
profiles whose thicknesses is less than about 4/5 of their lengths.

It may also be noted that in terms of the variable 7, the slope, 9(y), anci tlie
curvature, dd(y)/ds, for the symmetrical profile may be written as

I 4 tan7(tan27 + (1 + 2e)/ed |

o(7r) = 7 ~ arctan < f , 27)
(4 tan27 — [tan27 + (1 + 26)/62]2
dd(7) sec 7
d [A + 3e)(l —e)e~2cos47 + 6 cos27 —3e2 (1 + e)2. (28)
s

CORRECTION AND SUPPLEMENT TO OUR PAPER
THE CYLINDRICAL ANTENNA: CURRENT AND IMPEDANCE*
Quarterly of Applied Mathematics 3, 302-335 (1946)

By RONOLD KING and DAVID MIDDLETON (Harvard University)

Equation (58) should be written as follows:
(1TXi(0) I = 17(O) I/s!n Phr< &h N ir/2
11 *Ki(.h - X/4) I = Iti(h - X/4)1; Piée r/2.

Two lines before this equation [iZi(O) |/sin fill should be written instead of j</r(0)|.

These changes involve no alternations in the figures. However, the function
liZ©O | plotted in Fig. 11 to the left of fih=ir/2 is not the parameter of expansion \p
defined by (58) as modified above and as indicated in the caption. The parameter of
expansion  as defined in (58) is plotted in Fig. 11a where the part to the right of
fih—ir/2 is the same as in Fig. 11, the part to the left of fih=r/2 is obtained from the
curves in Fig. 11 by dividing by sin fih.

* Received Jan. 25, 1946.
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For small values of /3h a convenient approximate formula is
*xi(0) = a - 2 - jfih; pit < 0.5
so that

I*K.(0) 1= V(N - 2)2+ san2 = ft- 2+ IBAMO- 2).

Gh

Fig. 1la. The expansion parameter as defined in the corrected equation (58).

The following minor errors and misprints have been called to our attention:

page 312, Eq. (43) change T to

page 319,Eqgs. (59) and 62), change Tai(z) to i/q line following Eq. (61), delete
the following: y(z) = 0 and

page 320, Egs. (69) and (70), change b to ft; Eq. (76), insert 1/(w — 1)! after the
first equality sign,

page 323, Eq. (77b), change 4to I/g

page 324, Eq. (79), insert after Rc,

page 329, Eq. (19), third line, change(i?2A+«2 to (7?2a—«2),

page 330,Eqs. (23) and (27), page 335 EQs.(45) and (46), and in the integral
preceding Eq. (45), change 722ato M, Rn to M, throughout,

page 330, Eq. (24) replace by: m2= (/i+ z); u\=(h—2),

page 332, Eq. (43), add superscript bar over first three symbols Ci.
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By I. S. Sokolnikoff, University of Wisconsin. 373 pages. $4.50

Writing from the point of view of a mathematician, the author provides a thorough
foundation in the mathematical theory of elasticity, followed by the application of the
theory to problems on extension, torsion, and flexure of isotropic cylindrical bodies.
There is a detailed treatment of variational methods in the theory of elasticity.
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