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THE REFLECTION OF AN ELECTROMAGNETIC PLANE WAVE 
BY AN INFINITE SET OF PLATES, I*

BY

J. F. CARLSON1 a n d  A. E. HEINS2 
Radiation Laboratory,J M assachusetts Institu te  o f Technology

1. Introduction. It has been shown by J. Schwinger that a special class of bound
ary value problems in electrodynamics can be formulated mathematically as Wiener- 
Hopf4 integral equations. These problems may be described as follows. A plane wave 
is incident upon a number of semi-infinite parallel metallic structures of zero thickness 
and perfect conductivity. By parallel structures we mean parallel planes or cylinders 
with parallel axes. It is then possible to express the electric or magnetic field at all 
points in space in terms of the surface current density on the metal with the aid of an 
appropriate Green’s function. The vanishing of the components of the electric field 
which are tangential to the semi-infinite cylindrical metallic surfaces, leads to a sys
tem of inhomogeneous integral equations for the various surface current densities. 
This system of integral equations assumes the general form

n r  °

?<(*) =  Z  I
y - i  J  o

K ij(x  — y)fj(y)dy, x >  0, i =  1, • • • , «,

where the f j (y )  are unknown functions, while the K ij(x ) and gi(x) are known. The 
particular problem which we shall discuss below possesses certain periodicities, and 
for this case we find it possible to reduce the system to a single integral equation of 
the form

g(x) =  f  K (x  — y )f(y )dy , x >  0, (1.1)
J  0

that is, an inhomogeneous Wiencr-Hopf integral equation. Here f ( y )  is unknown, 
while K ( x ) and g(x) are known functions.

The advantage of formulating this particular class of boundary value problems as 
Wiener-Hopf integral equations is that such equations are susceptible to a rigorous

* Received April 3, 1946.
1 Now a t Iowa State College, Ames, Iowa.
2 Now a t the Carnegie Institute of Technology, Pittsburgh, Pa.
5 This paper is based on work done for the Office of Scientific Research and Development under con

tract OEMsr-262 with the Massachusetts Institute of Technology'.
4 R. E. A. C. Paley and N. Wiener, The Fourier transform  in  the complex domain, Am. Math. Soc. 

Colloquium Publication, 1934, Ch. IV.
E. C. Titchmarsh, Theory o f the Fourier integral, Oxford University Press, Ch. XI, 1937.
J. S. Schwinger, The theory o f guided waves, Radiation Laboratory Publication. To be published.
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solution. We may thus find the functional form of the various surface current densi
ties as well as the electric field. However, in such problems as we have described above, 
the physically interesting quantities may be calculated from the far field and these 
quantities in turn are closely related to the Fourier transform of the surface current 
densities. Since Eq. (1.1) is solved by transform techniques, these quantities can be 
obtained immediately.

The problem which we treat here is the following. A plane monochromatic electro
magnetic wave whose direction of propagation lies in the plane of the paper, is inci
dent upon an infinite set of staggered, equally spaced, semi-infinite metallic plates 
of zero thickness and perfect conductivity. These plates extend indefinitely in a direc
tion perpendicular to the plane of the paper. (See Fig. 1 for a side view.) The angle of 
stagger with respect to a fixed direction (that of the cross section of the plates in 
Fig. 1) is a, while the direction of propagation with respect to this fixed line is 0, 
where a  — w < 6  < a  and 0 < a g 7 r /2 . This structure has some properties which are analo

gous to those of metal mirrors and gratings. Thus when it is excited by a plane wave 
with arbitrary direction of propagation, there will be reflected plane waves in certain 
directions depending on the relative dimensions, the wave length and the direction 
of incidence.

2. Formulation of the problem. We assume that the electric field of the incident 
wave has only one component, namely, the component which is perpendicular to the 
plane of the paper. Since the incident electric field is independent of y  and the bound
ary conditions on the plates must be fulfilled independently of y, no other components 
of the electric field will be excited. Thus all components of the magnetic field can 
be derived from this single component of the electric field E y(x, z) = 0 (x , z). For this 
case both of the components of the magnetic field lie in the plane of the paper and 
we shall refer to this problem as an “I I  plane” problem.

If we now write the Maxwell equations5 in the form

V X E = i m
and

V X H =  -  ik E,

where k =  27t/X, and X is the free space wave-length, we see immediately that the only 
components of the magnetic field are

6 The time dependence of all field quantities is taken to be e~ikci and may therefore be suppressed. 
c is the velocity of light. In the engineering literature, the time dependence is written as exp(ikct). In 
order to convert our final results to standard engineering form, one merely replaces i by —j.
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ikH  x =  -
d<j>

dz
and

d<j>
ikIJz =  — 

dx

Upon eliminating TIX and H z from the above equations we obtain the two dimensional 
wave equation,

d24> d~<f>
—  +  b k*<t> =  0
dx2 dz2

which is to be solved subject to the boundary condition, <j> — 0 on the metal plates 
since cj) is the tangential component of the electric field. There are also conditions at 
infinity on the function cj>(x, z) which we shall discuss later when we have need of 
them.

We now formulate the equation which expresses the electric field in terms of the 
surface current density oh the metal plates. To this end, we start by modifying the 
structure in Fig. 1, so that there are now only a finite number of parallel plates, each 
of which is taken to be finite in length. The length of each plate is such that the ampli
tudes of the attenuated modes are negligibly small relative to the amplitude of the 
propagated mode in the parallel plate region before the end of the structure is

/

/

n  -  -
i
lI
Ii

i
i

F i g . 2.

reached. (See Fig. 2 for a side view.) If we employ the free space Green’s function, we 
may express <£(.v, z) in terms of d<j>/dn, the normal derivative on the metallic plates. 
We have from Green’s theorem

d<t> dG
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where the contour C is the one indicated by the dotted line in Fig. 2, ds' is the element 
of arc length along it and G(x, z, x', z') is the free space Green’s function. The outer 
boundary of the contour C is taken to be a circle of large radius. This is merely for 
convenience and the outer boundary might have been any other closed curve. 
G(x, z, x', z') satisfies the homogeneous wave equation

dK) d2G
 + ---- +  k2G =  0
dx2 dz2

save for the point x =  x \  z =  z ' . At this point

dG

and
4
4

dx

dG

dz

x—ir'+O
dz' =  -  1

i-2'+0
dx' =  -  1.

Zm*Z' —  0

This may be expressed symbolically by saying that G(x, z, x', z') satisfies the inhomo- 
geneous wave equation

d2G d2G
 1---------[- k2G =  — S(x — x')S(z — z'),
dx2 dz2

where d(x—x')  is the Dirac delta function and is zero everywhere save at x ==x', where 
it becomes infinite in such a fashion as to make the integral

4 5(x — x')dx' =  1.

On the plates <f>(x, z )= 0 , while d(f>/dn' is the tangential component of the magnetic 
field on the plates. Since the tangential component of the magnetic field suffers a dis
continuity which is proportional to the surface current density when we go from one 
side of a given plate to the other side of it, the only contribution we get from the in
tegration along the metallic plates is

23  f  G(x, z, ma, z ' )Im(z')dz',

and the limits of integration are those which cover the full length of each plate. The 
sum is carried out over the finite number of plates as shown in Fig. 2. I m{z) is propor
tional to the surface current density on the mth. metal plate. There is complete can
cellation of the integrals taken along the paths which lead from one plate to the next 
or which lead from the end plates to the large circle enclosing all of the plates.

We now calculate the contribution from the large circle. In the first plape, the free 
space Green’s function which represents an outgoing wave for V x 2+ z 2»  V x'2+ z ' 2 
is G(x, z, x', z ') =  { i /£ )H § ) [k \ / {x—*/)2+ ( z —z')2] where is the Hankel function 
of the first kind. The contribution from the large circle is



where

G(r, / ,  p, fi') =  —  H ™ [ W r *  +  -  2rr' cos (p -  0')]
4

and x  =  r sin ft, z  =  r cos /3. If we now expand G(r, r', j3, /3') in terms of cylindrical waves 
we have oo

G(r. r \  P, P') =  —  E  H "\kr')Jm (kr)e imW \  r <  r'.4 mm«=—oo

Furthermore, for any point outside of the region of the plates
oo

4>(x, z) — c«(ico.»+I .inf) _j_ a nH w (kr)einfi, (2.2)
71m——oo

where the first term represents the incident plane wave whose direction of propaga
tion is 6, while the second term represents the scattered wave. We shall not be inter
ested in the explicit form of the a„’s and indeed, we shall show that they do not enter 
explicitly into the formulation of the integral equation. The expression for the plane 
wave, e*A [z cos 9+1 sin 91 may be expanded in terms of cylindrical waves by noting that

00
cos 6+x sin 6) ' — "gfjferjcos (5-/3) = ’ g+iwr/ 2 kf ' )

m=—oo

If we now evaluate the integrals in (2.1) we get immediately
c o b  6+x sin 6) =  0 ino(^ > z )

i.e., the incident field.
For our final equation we then have

<j>(x, z) =  <hnD(x, z) +  E f  Im(z')G(x, z, ma, z')dz'.
TU—p J

If we now let q become positively infinite, p  negatively infinite, and let each plate 
extend indefinitely to the right, we can then express z ), the y  component of the 
electric field, in terms of the incident field and the surface current density on the 
plates, that is,

<t>(x, z) =  <£ino(*, z) +  — ¿ 3  f  I m( z ' ) H ^ [ k V ( z  -  z'Y  +  (* -  m ay]dz',  (2.3) 
4 m™—M d  mb JJ

where a =  b tan a. We now impose the electromagnetic boundary condition, namely 
that 4>{x, 2) vanishes on the metallic plates, and we get a system of simultaneous in
tegral equations of the Wiener-Hopf type for I m(z). That is, for x =  na

0 =  4>Una, z) +  —  E f Im(z,) H ^ [ W ( z  -  z 'Y  +  (n -  m )W ]d z ' (2 .4)
4 J  mb 0

for all n with z > n b ,  n =  0, + 1 ,  + 2 ,  • • • ,6 Due to the periodic nature of the structure, 
the infinite set of simultaneous integral equations can be cast into the form (1.1).

6 It is possible to obtain the integral equation (2.3) directly from the infinite structure indicated in 
Fig. 1. We have intentionally avoided this because it requires a more detailed knowledge of the field at 
infinity.

1947] REFLECTION OF AN ELECTROMAGNETIC PLANE WAVE 317
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We close our discussion of the formulation of the integral equation (2.3) with some

for z large and positive, z) is asymptotic to sin (irx/a)e'‘z where K =  \ / k 2— (ir/a)2. 
If now k < i r / a ,  i.e., A>2<z, k will be pure imaginary and hence for z sufficiently 
large and positive, <f>(x, z) will vanish exponentially. In this case, the parallel plate 
regions cannot sustain a propagating mode. If k > i r /a ,  i.e., 2a < \ ,  then k is real and the 
parallel plate region can sustain at least one mode consistent with the polarization 
which we have employed. In order that a second mode not propagate in this parallel 
plate region, we must further assume that a < A. We also assume that there is a single 
reflected wave. Such a restriction puts further limitations on a / A as well as on 6. 
These restrictions will appear when we have obtained the solution of the problem.

3. Fourier transform solution of the integral equation. Before we turn to the 
Fourier transform solution of the integral equation (2.4) we shall first convert it into 
one of the Wiener-Hopf type. We note that the surface current density of the with 
plate has the same magnitude as that of the zeroth plate provided we measure the 
distance along the mth plate from its edge. Hence, the surface current density on the 
mth plate differs from that of the zeroth plate only by a phase factor. This phase fac
tor arises because the amplitude of the incident wave differs from plate edge to plate 
edge by the factor

and this equation is of the Wiener-Hopf type.
In order to put this equation into a form which amenable to solution by Fourier 

transform methods, we extend it for negative z to be

remarks about the range of values of a /A which is allowed. In the parallel plate regions

where Io(z) is the surface current density on the zeroth plate. Equation (2.4) may 
then be rewritten as

CO oo

4 J n 0 L ’ '“  m«=— co O

where p =  b cos 9 + a  sin 9. If we replace z by z +nb, Eq. (3.1) will read
g\k [(*+«&) cos 0+na sin Q]

00

Io(z')eik‘”nH (o1) {k \f \ '{n  — m)b +  (z — z')} 2 +  (» — w )2a2]dz', z >  0.

Finally, when we divide the last equation by e ik*n and put m — n =  q, we get

* i(* )“ —  E  f + (?* +  2 -  z ' y \ d z \  z <  0, (3.3)
4 . . . J o  04 Q tea— CO J  0

where <£i(z) is an unknown function which is, save for a phase factor, the tangential
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component of the scattered electric field at x =  na. In view of the periodic nature of
the structure, the dependence of the integral equation on n is not explicit. We may
now replace Eqs. (3.2) and (3.3) by the equation

i  » r  " ____________________
fa(z) =  *„(*) +  — E  / ¿ ( z V V ' f l ^ t V ? 2«2 +  (?i +  2 -  z ' Y W ,  (3.4) 

4 J  0

where now

0 for z >  0,

0 for 2 <  0,

JO for 2 <  0,

\ e ik* cos 6 for z >  0.

For analytical convenience, it is now assumed that k has a small positive imaginary 
part. This is tantamount to assuming that the medium is slightly absorbing.

Before we can apply the Fourier transform in the complex plane to the solution 
of Eq. (3.4) it is necessary to study the growth order of the functions fa (2), 70(z) 
and 0 o(z). It is clear from a direct study of the integral Eqs. (3.2) and (3.3) that these 
functions are integrable for all finite z. The half planes of regularity of the Fourier 
transforms of 0 o ( z ) ,  <f>i ( z )  and I o ( z )  are, of course, determined from their growth orders 
at infinity and we now proceed to determine these orders. Since we know 0 o ( z )  ex
plicitly, it is clear that its Fourier transform is

r " 1
e -™ fa V )d z '  =      -r

J  0 i [w  — k cos d\

and is regular in a lower half of the w  plane defined by the inequality 3mw <  3m(& cos 6)- 
Save for a translation on the z variable and a phase factor which is independent of z, 
I o(z) is, in certain units, the surface current density on any metallic plate. For z suffi
ciently large and positive, J0(z) is asymptotic to the surface current density in any of 
the parallel plate regions, that is, it is asymptotic to e i,z. Since io(s) is integrable at the 
origin, the Fourier transform of I o(z), that is

is regular in some half plane defined by

‘¡Rtkfynk
3  m w <  3m  00 ~  j— i—  >  3m  k,

\ K\

since 9ie(&)/| x| >  1.
We now investigate the asymptotic form of <pi(z) for z large and negative. Before 

doing this, however, it is convenient to give another representation of the kernel of the 
integral equation (3.4). The kernel

<t> i ( z )  = 3

/o(z) *  

0o(z) =

00

—  E  eiip7H<1) [ V ? 2fl2 +  (qb +  z)2] 
4 • 0
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has the Fourier integral representation

i f *  50 gtfcpi-Hlala^fc2—w2— iwqb
—  I «*" Z  --------7 = ------ ;------dw, (3.5)
4 X  J C  5= .-®  V . «  ~~ W

where C is a contour which lies in the strip of regularity of the sum in (3.5). It is 
closed in the upper or lower half planes by a large semi-circle which passes between the 
poles of this sum depending upon whether s > 0 or z < 0. The strip of regularity is, 
of course, determined by the region in which the infinite series in (3.5) converges. A 
direct study of this series will reveal that the ordinates of convergence are given by 
the inequality, 3nt& cos (2a —9) cos 6. This now clarifies the reason why
we imposed a small but positive imaginary part on k. Had we not done this, the series 
would only converge on the real axis of the w plane and as we shall see in the actual 
solution of the Wiener-Hopf equation, this situation would have presented us with 
some analytical difficulties.

We may now write the sum in the integral (3.5) in closed form as

47r J  c

e'wz sin a y /k 2 — w2 dw

c y / k 2 — w 2 [cos a y /k 2 — w 2 — cos ( kp — wb) ]

For s < 0 ,  we close the path C in the lower half of the w  plane. The poles in the lower 
half plane are w =  k cos (2a —9) and two infinite sequences of poles both of which have 
negative imaginary parts. We shall have more to say about this double set of poles 
presently. Suffice it to be noted at this point, that the kernel has a second representa
tion which for z <  0 may now be written as

gifcr cos (2a— 8)
+  terms which attenuate exponentially for z large and negative.

2a k sin (a — 6)

It is clear then, that for z large and negative, <£i(z) ‘s asymptotic to
gik(z-z')  cos (2a— 0)

L 2ak sin (a — 6) 

and thus, the Fourier transform of <£i(z), i.e.,

U(z')dz',

0
e~iwz4>i(z)dz,

is regular in the upper half of the w  plane cos (2a — 9).
The Fourier transforms involved in this problem then have a common strip of 

regularity, 3m((ife cos (9 —2a)) <3tnw <3im (£ cos 9) and it is thus permissible to apply 
the Fourier transform to the integral equation (3.4) within this strip.

Let $i(w ) be the Fourier transform of <j>i(z) and J(w )  the Fourier transform of 
Io(z). The Fourier transform of the integral equation (3.4) is then

1 J(w )  sin a y /k 2 — w 2 .
4?i(s{0 = -----------------------1-------- ■—----------_ _ _ _ _ ------------------------ - . (3 .6)

i (w  — k cos 6) 2 y /k 2 — w2 [cos a y /k 2 — w 2 — cos (kp — wb) J

The Wiener-Hopf theory now tells us that we can split this transform equation into



two parts. One part will be regular in an upper half plane, 3fmw>3mfe cos (6 —2a),  the 
other in a lower half plane 3mw<Sni& cos 0 and both of these half planes have a 
common region of regularity. It is well to note here that we use the term regularity 
in a slightly extended sense. We imply by regularity that the function has neither 
zeros, branch points nor poles in the region of regularity. That is, the function as 
well as its reciprocal is “regular” in the conventional sense of the term. Suppose we 
assume that we can write
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K -(w )  sin a y / k 2 — w2

K +(w) y / k 2 — w 2 [cos a y / k 2 — w2 — cos (kp — toJ)]

where K - ( w )  is regular in the proper lower half plane and K+(w)  is regular in the 
proper upper half plane and that there is a common strip of regularity for both K~(w)  
and K +(w). Then

. , K+(w) J (w )K - (w )
$ 1 (w )K +(w) =  —   — d    (3.7)

i (w  — k cos 6) 2

The left side of Eq. (3.7) is regular in an upper half plane while the second term on 
the right side is regular in a lower half plane. The term

K +(w)

i (w  — k cos 6)

is only regular in the strip of regularity. This function may be decomposed into two 
functions in such a manner that one function is regular in the appropriate upper and 
the other in the appropriate lower half plane, since

K +(ui) K +(w) — K+(k  cos 6) K +(k  cos 6)

i(w  — k cos 6) i(w  — k cos 6) i(w  — k cos 6)

The first term on the right no longer has a singularity at w  =  k cos 6, but is regular 
in the upper half plane and the second term is regular in the lower half plane. Thus 
Eq. (3.7) can be rewritten in the form

w  \ v  t \ K +(w) -  K+(k  cos d) J (w )K - (w )  K + (k c o s d )
^ ( w ) K + ( w )       ----- = ----------------+  ----------------- — • (3.8)

t (w  — k cos d) 2 i(w  — k cos 6)

The right side of the equation is regular in the lower half plane cos 9
while the left side is regular in the upper half plane 3fmu>>3iiîtife cos (9 —2a). Both 
sides have a common strip of regularity and hence the left side of (3.8) is the analyti
cal continuation of thé right side. Such an equality can only hold if both sides of 
Eq. (3.8) are equal to an integral function, that is, a function regular everywhere in 
the complex w  plane. We have then

J (w )K - (w )  K+(k  cos 6)
------------------b —   =  integral function (3.9)

2 i(w  — k cos 9)

K+(w) — K+(k  cos 9)
4>i( w ) K + ( w )    =  integral function. (3.10)

i (w  — k cos 9)

and also



We shall now show that it is possible to decompose the function
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sin a \ /  k2 — w2

y / k 2 — W2 [cOS a y / k 2 — W- — COS (kp  — iff»)]

into two functions, one of which is regular in the lower half plane cos 6,
while the other is regular in the upper half plane cos (6 — 2a). The de
nominator of the fraction may be written as

cos a y /k 2 — w 2 — cos (kp — wb)

\a y /k 2 — w2 +  kp — wb\ _ [kp — wb — a y /k 2 — w2] 
=  2 s in ------------------------------------ s in --------------------------------------

=  %[ay/k2 — w2 +  kp — 7P¿>][¿p — wb — a y /k 2 — w2] 

( a \ / k 2 — w2 +  kp — wb)2
X n[i-

n - 1  L 4»27T2

=  t [ ( k P -  why- -  «2(¿2 -  w2) j n  f i  -
n*“l L

a \ / k 2 — w2 +  fep -r

(fcp — wb — a\/& 2 — w2)2-
4 » 2tt2

a\/& 2 — 7P2 +  kp —
2 » 7 T

( o " ^  A 2— t r 2 +  k p — w  & ) / 2  n r

x n 

x  ñ f
n - i  L

1 -

2 h i t

1

X
ñ . [ i -

n « = — ao L -

kp — wb — a y /  k2 — w2' 

2tlir

kp — wb — a y /  k2 — w2_ 

2«7T

■J

Í

y  fc2- u > 2+  k p - x c  b )  /  2  n  T

, (  k p — w b — k 2— w 2 )  / 2 n i r

g (  k p — u; b — a y  k 2— i v ~ )  / 2  n  r

The exponential factors in each of these products has been inserted to render the 
products absolutely convergent. The above expression may now be rewritten to read

kp — wb) 2 a2(k2 — w2)'r e  kp — w j ) 2
K a 2 +  &2)(w -  cri)(w -  <r2) I I  ) 1  r— — 7  ~

n = — co — \  Z l l T T  J 4 » 2ir2
e ( k p - w b ) l n *  ( 3 . 1 1 )

where the prime on the products denotes the absence of the term n — 0 in the product. 
The infinite product in the last expression may now be expressed in a manner such 
that it puts into evidence the portion which is regular in the correct upper half and 
lower half planes. Indeed we may express (3.11) as

00

-¿(a2 +  b2)(w  -  <n) (w  -  <r2) I T  [A" -  fT„]e[(fc'>~?bf“ai)/2rnI+i(,r/2- “)
n « * — oo

00

X  I X ;  [ A ’‘ +  i t y n ) k p — w  b — u ' a i )  / 2 n x ] — i ( r / 2 — a ) ^

n — — oo

<?i =  k cos 6, a* =  k cos (2a — 6),

kp

where now 

and

^  =  / j / s i n 2 a ^
kp A2 /  ak  y  

2Tii J  \  2ttk /

/  kp \
'F,, =  cos a  I 1 -----------I +

\  27rn )

wa esc a

2k h



where again, the exponential factors following the infinite products have been chosen 
to insure the absolute convergence of the product. One should note at this point that 
the choice of these exponential factors is not unique and indeed need only be asymp
totic to the factors which we have chosen. However, we shall see that a second in
tegral function x ( w )< introduced into the decomposition of K (w ) ,  is determined in 
terms of the factors which we have chosen. We have finally that the factor

- i  »
( W  —  <J l )  I X  [ A „  —  tV|rn ] Ct ( * P - w H « e i ) / 2 r a ] + i < T / 2 - a )  J J  [ A n +  n ] e l ( k i > - w b - w a i )  I 2 r n ] - i ( r / 2 - a )

n=—o3 n**l

has no zeros in the lower half plane 3fmw<3fmA cos 0, while the factor
to _ !

(¿U, — IX [^(i_jiJfn]e[('*i>-l»6-woi)/2Tn]+i(r/2-a) [An +  i'^n]eU*<>-“’fr-"’<**)/2Tn]--i(ir/2-a)
n—1 «»—co

has no zeros in the upper half plane cos (6 —2a)]. The factorization of
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sin a y /k 2 — w 2

y/k2 -  w2
is more direct, for

sin a y / k 2 — w2

y/k2 — W2
" r a \ k 2 -  w*1= «n h —

„=1 L 71 X“ J

a3 “ f  /  / a k \ }  ia w l
=  — (w  — K)e~iawl*(w +  K)eiuw'r H  4 /  1 — ( — M  g-««»/»»

x  B_2L V xmij un J

The factor

i a w f v n

a JL f  /  / a k \ 2 ia w l
— (w  -  /c)e_ia“’/rI I  \ a/  1 -  ( — ) H eriM,r‘
x »«¡L r \x n / xii J

has no zeros in the lower half plane Qmw < 3 » « .  while the factor

a “ f  /  / n k \ 2 i a w l
—  O  +  K)eittwlTl l  \ a /  1 -  I —  )  eiawlm
X ,,_2 L V v r n /  x w  J

has no zeros in the upper half plane Sm w >3im ( — k). We thus find that

f i r . l / 1 -  ( —) +  e"1'““'1™— (w -, . n—2 L K \ T C t l  /  TTt l J  7T=     --------------------------------
( i t !  —  <Ti) H  [a,, —  n  [a* +  i ( * 7 2 - a)

71— 00 71—1

is free of zeros and poles in the lower half plane cos 0. The factor ex(u)
will be determined so as to make K - ( w )  have algebraic growth as | zt; j —> co for 
3hTiie<0. With x(w) so chosen, the integral function sought can only be of algebraic 
growth for |« j |—><». K - ( w )  is regular in the lower half plane cos 0.
Finally, * -1

(o2 +  b*)(w  -  o-2)exc“)l I  (a„ -  W2-a) jvfrnJg[(*p-u-6+ncai)/2*'nl“»(r/2~Q!)
K+(w)   —  .............................  — ------------------------------
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has no zeros or poles in the upper half plane cos (6 —2a).
We shall now discuss the asymptotic form of K - ( w )  as |w |—»<», 3imw/<0. This 

procedure will enable us to determine the unknown integral function xfaO- ft  has 
been shown by Schwinger7 that functions of the form of K - ( w )  are independent of ka 
for | w| —>°o, 3 m w < 0 , and t  < a k < 2 ir .  Thus

JV r  iaw "1 a
gX(u>) I I 1 -j g—i a w l x n  i a w / r

_  . . r«-2 L TTU J  7r
“ ~ r r ~  ;------------------- ~ -------------------------~i r  / wa esc t t \  nJJ I sin a  — i^cos a  H  -) J e[(«x»'-«*)/s»-»]+i(»’/s-‘>)

1
X  ; (3.12)

-A- r  /  wa csc a \  “1XI sin a +  cos a H — J J e-|(«w*-+*»|/»»»]-iC»/*-«)
The products in (3.12) are now in the form of gamma functions and

(wa c s c a \2 / — wa csc ote~ia\  / wa csc ae’“\
 ) eiwaif/r r (  ) r  ( — — -— )

2 7T /  V 2 ir /  \  2 i  /K -{w )
iaw  /  ia w \  / i a w \
 ( 1 H ) eiav,i ,rr  ( ----- )

7T \  7T /  \  7T /

where y  is the Euler-Mascheroni constant. Using the Stirling expansion theorem 
for | w | —> co, <  0 we get

aw CSC a  . \ —l (lco cac or) /2 ;r]« tot—l / 2 / a w  e s c  a

K-(w) ■

/  aiu CSC a /aw csca \
ex M a csci a  I   ------e_*“J  y —   e‘aJ  ä[C»<*«c<>>/2tiA“- i/2

W \ ~ )
QgXM+iav/tK“-*!*) cot a+ln (c»o a)/2)

at>/2
where C is a constant. Thus if we choose

x ( w )
— iaw  r  /  t  \

= --------  { a ------- I cot a  — In 2 sin a
7T L \ 2 /

K - ( w )  will have algebraic growth for |w | large, (Jmzt'CO.
Now J(w ),  which is proportional to the Fourier transform of the surface current 

density on the various plates, approaches zero for |w | large, 3fm w<0. This assumes, 
of course, that I 0(z) can at most be of exponential growth for z  large and positive and 
is integrable for z finite. Thus K - ( w ) J ( w ) approaches zero for | w| large and 3*niw<0. 
If we now return to Eq. (3.12) we see that as | w\ becomes large, 3fmw < 0 , the integral 
function in (3.9) is asymptotic to zero. We may now apply the same argument to Eq. 
(3.10) and find that the integral function is again asymptotic to zero. But by a theo
rem of Liouville, and analytic function which is bounded in the entire complex plane 
is constant and in this case the constant must be zero. We thus have

2iK +(k  cos 0)
J(w)  =

K -(w ) (w  — k cos 0)

If we were interested in the explicit form of the surface current density, we could 
obtain it from J (w )  by evaluating the Fourier inversion integral

7 J. S. Schwinger, loc. cit.



1947] REFLECTION OF AN ELECTROMAGNETIC PLANE WAVE 325

- I7T J f

K +(k  cos Q)eiwtdw
 ;

c K - (w ) (w  — k cos d)

where C is a contour which may be taken as a straight line within the strip of regu
larity of the Fourier transforms of I(z), $i(z), o(z) and K (z) .  The contour is closed 
above by a semi-circle, which by familiar arguments in contour integration may be 
shown to make no contribution to the value of the integral. In the next section we 
shall show that it is possible to find the reflection and transmission coefficients with
out evaluating this integral in detail.

4. Investigation of the far fields. In order to find the reflection and transmission 
coefficients, we now investigate the asymptotic form of <j>(x, z) for \z\ large. To this 
end we note that Eq. (2.3) can be written in Fourier integral representation as

$(*̂ i 0inc( '̂, z) j   ̂ )
4ir J  C   -

i f *  00 g i u j i + i k m p —  m a \ " ^  k l — w 2

C  m— »  V k *  —  W 2

where C is the contour which we described at the end of Section 3. This in turn, may 
simplified to

s) = 4>1do(*, «)
i r  .......... [sin \ / k 2 — w 2 (x — an — a) 4 - sjn _  wi fan — x ]du>

 j  f'iaic  ̂ ----------------------- -------- - ■  ------- ------------ -----------— , (4.1)
4x J c  y/k'1 — xv2 [cos a y /k 1 — w2 — cos (kp — wb)]

where n is the greatest integer contained in x /a .  From (4.1) one can get the asymp
totic form of <j>(x, z) as z becomes large and positive. Since J (w ) is regular in the lower 
half of the w  plane ^ N W ^ S n ^  cos d, we can close the contour C by a large semi
circle which passes between the poles in the upper half plane. For n a < x <  (m+ 1)o it 
can be seen that due to the form of the integrand, there is no contribution from this cir
cular arc as its radius becomes infinite. In the upper half plane cos (2a —9),
there are two poles which correspond to propagating modes, namely w =  k cos 6 and 
w =  k. All other modes are attenuated modes in the sense that they have large positive 
imaginary parts compared to the imaginary parts of k cos 6 and k. If we now express 
J(a>) as a function of w  and use the above described contour in the evaluation of the 
integral in (4.1) we have then to consider the asymptotic form of

i  r  [sin (x  — an — a )y /k 2 — w2 +  e'W-«*) s;n _  wi (aK - x)]K +(k cos 0)dw

2 ir J  c  (w — k cos 0) K +{w) sin a y /k 2 — xv2

This in turn is equal to sin e+z cos 6) — TV" sin Trx/a +term s which approach
zero for zJi>0]. For z large and positive, this is asymptotic to

irx
<t>inc(x, z) — Teil1 s in ------

a

Hence, save for a numerical factor, the functional form of 4>(x, z) as z becomes infinite 
is e itz sin irx/a, that is, it represents a travelling wave in the parallel plate region with  
propagation constant k, as it should. The amplitude of this wave is

^gin(tP-< 6)(_ )„[1 _|_ e<(*p-«&)]^+(ft cos 6)
T  =  T  e'e  =  -------------------------------------------------------------—-----

(k — k cos 6)aiKK+(K)
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and depends of course on the particular parallel plate region for which it has been 
computed. Since T  is the amplitude of the wave transmitted in the parallel plate re
gion it is the transmission coefficient because the amplitude of the incident wave has 
been taken to be unity. If we now assume that k is real, the magnitude of T  is

T  =
23l2k sin (a — 0)

\ / { k  cos 0 +  k) (k — k cos (2a — 8)

a quantity independent of the particular parallel plate region considered. Its phase 
angle depends, of course, on the particular parallel plate region. We shall not give 
the phase angle explicitly since we shall not use it in our later discussions.

For 2 large and negative we close the contour in the lower half of the w  plane. 
There is again no contribution from the circular arc which is drawn between the poles 
in the lower half plane and so we need only evaluate the residues from the poles in the 
lower half plane. The dominant contribution now arises from the pole w — k cos (0 — 2a) 
and in this case the dominant term is

K +(k  cos 8)eiklx sin <2“- 9>+2 cos

¿[cos (2a — 8) — cos d\K +  [k cos (2a — 0)]

all other terms in the integrand approaching zero for z large and negative. Here 
K +  [& cos (2a —0)] means, as usual, the derivative of K +(w) with respect to w  evalu
ated a .tw  =  k cos (2a —0). The amplitude of the reflected plane wave is the reflection 
coefficient R  if the amplitude of the incident wave is taken as unity, so that we now 
have

R =
K +(k  cos 0)

k[cos (2a — 0) — 005 0]!?+ [& cos (2a — 0)]

Assuming, once again that k is real, the reflection coefficient may then be rewritten 
in complex polar form as follows:

R =  — £»(01—02) ( k cos 0 — K)(k cos (2a — 0) +  k) 

( k cos 0 +  K)(k cos (2a — 0) — k)

where now

0 i

ka
cos a -\ sin (a — 0)

2 t h

arc sin -
ka

1  sin0
7T11

ka cos 0
2irn - a - « )

+  E

ka
cos a H sin (a — 0)

2 X»
arc sin

f /
ka

1 —  sin 0
irn

ka cos 0 

2 irn



1947] REFLECTION OF AN ELECTROMAGNETIC PLANE WAVE 327

+ E ka cos 0
arc sin -

ak  
— — cos

' V 1 -

+  ^ a  —̂  cos a — In 2 sin aj- ,

ka
— cos 0 
7m

and

02 =  -  E

ka
cos a H sin (0 — a)

2irn ka
arc sin

©

+  E
cos a  -f-

ka

ir)l

ka

cos (0 — 2a)

2x«

sin (2a — 0) 

sin (0 — a)

arc sin -
/  ka 

4 / 1  —  si 
V 7rn

sin (2a — 0)
2»7T

cos (0 — 2a)
x \
 a I
2 /

+ E

ka
— cos (2a — 0)
Tty i

arc sin
ka\ -

) sin2 (2a — 0)

ak
■ cos (2a — 0) < 1 +

I / - © ’ 

© t )

ak
 (cos (2a

mr
e)

cos a — In 2 sin a

It is evident that there will be restrictions on a / \  and 0 if we arc to have a single 
reflected plane wave. These restrictions become evident when we study the arc sin 
sums and observe that conceivably the first term in the sums beginning with index 
unity can exceed unity. We have tacitly assumed that they do not, for otherwise 
they would appear in the amplitude factor as real terms. Thus we must see what is 
implied by the condition that all factors in the infinite products be complex, or equiva
lently A^>0. If we demand that A j> 0  it is clear that all other A„s, n — 1, 2, • • • will 
also be > 0 . The condition A i> 0  is equivalent to

(i)

and

(ii)

sin aak 2 a

ir X cos2 1(0 — a)

ak

x

sin a

sn21(0 -  a)

Condition (ii) is always satisfied since a / \  is always positive. Condition (i) can be 
more restrictive than the condition l / 2 < a / X < l .  For example, if 0 = x / 12, a  =  5x/12, 
then condition (i) implies

a/X <  .65.
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5. No propagation in the parallel plate regions. In the Fourier transform solution 
of the integral equation (3.4) we have assumed that there was only one propagating 
mode in the parallel plate region, i.e.,

> 7r.r
I m(z) eUz sin — > k >  0 

a

for z large and positive and z in the parallel plate region. Suppose now we dispense 
with this assumption and ask what form the reflection coefficient takes if we now as
sume that k2< 0 , i.e., 0 < a /X < l /2 .  In this case k  is, of course, imaginary and

/ ■—n ■" "j 7r «V
I m{z) ~  e~ (T 'a 1 sin —

a

for z large and positive and z in the parallel plate region. The result we desire can be 
obtained most easily by studying the result which we have obtained in Section 3.

We note that if k  is purely imaginary and k  is real, the amplitude of the reflection 
coefficient becomes complex of magnitude unity. Indeed for k2< 0

A k  cos 6  —  K ) ( k  cos (2a —  0 )  - j -  k )  

r ( k  cos 9 +  k)(£ cos (2a —  9) —  k )

(. ka cos 0 ka cos (2a — 6) j
exp< i

( T ) ' s[a' e / 1 -  ( ~ )  sin* (2ot ~  j

Thus for this situation, the amplitude of the reflection coefficient is —1. The phase 
angle 0 /  is given by

ka cos 9
0 i  =  0 i  +  arc s in   —  ;

while 02  is now given by

ka cos (2a — 9)
02  =  ©2 +  arc s in     —  .

t  /  / a k \-
y  1 -  \ —  ) sin2 (2a -  9)

Hence the reflection coefficient for 0 < a /A < l /2  is now — For a single re
flected wave, the inequality (i) in Section 4 must still be satisfied, although now it is 
not as severe.

6. Discussion of results. It should be pointed out that some of the results ob
tained from our calculations can be interpreted in a simple physical manner. For con
venience, in this discussion, instead of the angle 9 we use the angle i,  which the inci
dent wave makes with the normal to the trace of the edges of the plates. It is readily 
verified that

TT
i  =  6 — a  -1-----

2
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and also that the angle r which the reflected wave makes with the normal is also 
equal to i. The condition that there be only one reflected wave

2a sin a

X cos* -¿(0 — a)

is seen to be a result of simple grating theory. If the waves scattered by a uniform 
grating are not to interfere constructively in the region from which the waves are 
incident (except for the specular case r =  i) the condition a'{  1 +sin i ) < \  must be 
satisfied where a' is the distance between neighboring scatterers. In our case 
a' =  o esc a. Expressing 0 in terms of i, the relation

2a sin a

X cos2 £(0 — a)

is seen to be equivalent to a esc a ( l  +sin i)  <X. If this condition is satisfied and the 
condition for no propagation, X > 2 a, is also satisfied, the plates act as a perfect plane 
mirror. However, while the magnitude of the reflected wave is unity, its phase is not 
7r but 0 i  — 0 2 . It is easily shown that it will be tt on any plane parallel to that of the 
trace at a distance d  given by

(4ird/\)  cos i  +  2mir =  0 2' — ©i m =  0-, +  1, ±  2, • • • .

Therefore, as far as all distant fields are concerned, the plates behave in this case like 
a perfect plane mirror whose surface coincides with any of the planes given by the 
above equation.

When transmission is possible in the parallel plate region the wavelength in this 
region differs from that in free space. One would, therefore, expect to find some anal
ogy with the phenomena associated with a plane interface between two dielectric 
media. This can be shown for the case a  =  ̂ r/2. In this case the magnitude of the re
flection coefficient is

, , k cos i  —  K

| i? l  =  7 — 'k  COS I  +  K

This expression is identical with that obtained for the reflection at a dielectric inter
face of a wave with the electric vector parallel to the interface. The phases are differ
ent in the two cases and one can again find a set of planes at a distance d from the 
trace given by

(47rd / \ )  cos i  +  2mir =  0 2 — 0 i, m  =  0, ±  1, • ■ •

such that the distant fields are identical in the two cases if we regard any one of the 
planes as the interface.

The expression for the magnitude of the reflection coefficient should be of use in 
estimating the reflection of waves incident on a metal lens provided that the radius 
of curvature of the lens (i.e., the angle a)  does not vary too rapidly.
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A PROBLEM IN THE PROPAGATION OF SHOCK*

BY

MONROE H. MARTIN 
University o f M aryland

Introduction. This paper deals with a single problem in the rectilinear motion of 
a gas, namely, what is  the subsequetit behavior of a gas initially  at rest i f  its initial density  
is  a constant po in  the region | x | <  1 and a constant p2<po in  the region | x\ > 1?

The behavior of the gas is an idealization of the behavior of the atmosphere in 
an infinitely long right circular cylinder after an explosion within the cylinder.

It is assumed that the pressure p  and density p of the gas are related by the isen- 
tropic law p  =  kip y where h? is constant for all x  and all t. Under the law of conserva
tion of energy1 (Rankine-Hugoniot equation) there is a change2 in entropy across a 
shock and the results in the paper may be regarded as an approximation to the actual 
state of affairs only in the case where the change in density across the shock is very 
small with a correspondingly small change in entropy.

At times the author has not hesitated to restrict attention to a monatomic gas 
( 7  =  5 /3) in order to avoid formal mathematical difficulties.3 The behavior of the gas 
undergoes marked changes as the difference po —P2 between the initial densities is per
mitted to vary.4

If po —P2 is sufficiently small the two initial shocks give rise to shocks traveling in 
opposite directions towards infinity as t increases indefinitely. Up to a certain instant 
the shocks travel with constant velocity greater than the velocity of sound in the un
disturbed gas. After this instant their velocity of propagation decreases monotonically 
with time, to approach the velocity of sound in the undisturbed gas as the shocks 
recede to infinity.5 The behavior of the gas between the two shocks is followed up to a 
stage when the mapping8 of Riemann’s (r , s)-plane upon the (x, f)-plane loses its one- 
to-one character. The further behavior of the gas still awaits determination.

Plates 1 and 2 at the end of the paper present qualitatively the variation of density 
(or pressure), over the gas for p0 — p2 sufficiently small.

1. Fundamental principles. Assuming that the pressure p  is a monotonic increas
ing function of the density p and denoting the velocity by 11, the partial differential 
equations

* Received March 8, 1946.
1 See Ricmann-Weber, D ie partiellen Differentialgleichungen der M alhemalischen P hysik , 6th ed., 

Friedr. Vieweg & Sohn Brawnschweig, 1919, vol. 2, pp. 549-550.
2 Indeed under the Rankine-Hugoniot hypothesis it follows from formula (10) on p. 513 of Riemann- 

Weber, op. cit. that the entropy of the gas in back of the shock depends upon the ratio of the densities of 
the gas on the two sides of the shock. This ratio changes as the shock propagates and consequently the 
the entropy of the gas in back of the shock is not constant.

2 The examination of other values of y has been begun by R. C. Rand in his doctorate thesis entitled 
The rectilinear motion o f a gas subsequent to an  internal explosion. A copy of this thesis is on file in the li
brary of the University of Maryland.

* R. C. Rand, loc. cit.
8 See, however, the last sentence in §6 of the present paper.
6 For a discussion of this mapping see Riemann-Weber, loc. cit., pp. 533-536 or The rectilinear motion

of a gas, Amer. J. Math. 65, 391-401 (1943). This paper will be cited as I.



p (« i +  u xtt )  +  G 2p x = 0 ,  p i  +  (pi 0 *  =  G~ =  G 2(p )  =  p ' ,

for u, p become

r t +  a r x =  0, s, +  &sx = 0 ,  a =  u +  G, /3 =  u — G, (1)

if we set

11 =  r +  s, f  (G/p)dp =  r — s >  0. (2)
J  o

Clearly u, p arc monotonic increasing functions of r + s , r — s respectively and

a =  a(r, s) =  r +  5 +  G(p(r -  s)), $ =  /3(r, s) =  r +  s -  G(p(r -  i)) (3)

satisfy
a ( -  s, -  r) =  -  0(r, s), /3 (- s, -  r) =  -  a(r, s). (4)

A point of the (u, p)-plane, or its correspondent by (2) in the (r, s)-plane, is said 
to represent or be a state of the gas. The points of the (r, s)-plane representing states 
of the gas comprise a half-plane r } t s  termed the state plane. Points representing states 
having the same velocity (density) lie on the lines r + s  =  const, (r —5 =  const.) and 
the velocity (density) of a state increases with the distance of the point (r, s) from 
the line of zero velocity r — —s (the line of zero density r =  s). The velocity is positive 
or negative according as (r, 5) lies above or below the line r — —s.

In general a solution r =  r(x, t), s =  s(:c, i) of (1) transforms a region of the (x, /)- 
plane into a region in the state plane and is single valued. The inverse transformation 
T: x = x ( r ,  s), t = t ( r ,  s) is not necessarily single-valued and is regarded as assigning 
the state (r, s) to its transform (x , t). Corresponding to (1) there is the system

x-r — ptr = 0 ,  — at, =  0, (5)

of partial differential equations for x(r, s), t{r, s) in T. The Jacobian /  of T  is

J  =  -  {a -  0)t,l, =  -  2Gtrt.. (6)

If x, t are solutions of (5), the system of Pfaff

x. — at — v x — f3t — v
dw  =  (x — at)dr +  (x — f}t)ds, dv =  2 ----------------dr — 2 ------------------ds,

a  — P a — <3

is completely integrable, and conversely. When we write

x — át =  wr, x — fit =  w„ (7)

the integrability condition for the second equation becomes7

(a  -  ff)wr, — pr(wr -  w,) =  0. (8)

Taking w  a solution of (8) it follows from (7) that a transformation T  is

jSwr — aw, wr — w,
T u: x ■= ------------------- > I =  —
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a  — a  —

The following theorem is a direct consequence of (4).

1 Cf. Riemann-Weber, loc. cit., pp. 536-538 or pp. 393-394 of I.
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T h e o r e m  1. Given w — w(r, s) a solution of (8), another solution is  w = w (  — s, —r) 
and T w, Tw m ap points which are reflections of each other in  the line of zero velocity 
r =  —s, into points which are reflections of each other in the line x — 0.

As a corollary, we see that if w(r, s) = w (  — s, —r) points which are reflections of 
each other in the line r — —s, are carried by T w into points which are reflections of each 
other in a; =  0.

The theorem is obvious a priori on physical grounds. Given any motion of the 
gas, its particles may be reflected in the plane x =  0 to gain another motion.

Taking r =  r0 =  const., the second equation in (1) upon multiplication by dp /d s  
becomes

d{x  — pt, p)
Pt  +  P P .  =    r =  0,

d(x, t)

and therefore a solution of (1) is given implicitly by8

r =  r0, x -  Pt =  SKp), (9)

^ (P)  denoting an arbitrary function of p. Corresponding to s =  5o =  const., a solution 
of (1) is obtained from

x — at =  <I>(a), 5 =  s0. (10)

For a fixed s in (9) the state (r0, s) is assigned9 to all points of the straight line 
x —pt='Z'(P). This line is termed a propagation line and the state (r0, s) is said to be 
propagated along it. Physically the state (r0. s) is propagated through the gas with a 
velocity p  with respect to a fixed plane.

Let us assume that T w puts the states of a region R  of the state plane in (one-to-
one correspondence with the points of a region X  of the (x, /)-plane. The transform 
by T w of a segment of r= const. (s =  const.) in R  is a curve in X  termed an r-curve 
(s-curve). The r and 5-curves provide a curvilinear coordinate system on X  from which
the state of the gas may be read off at any point of X .

From (5) the slope of an r(5)-curve10 is 1 /a  (1 /P);  from (9), (10) the propagation 
lines drawn from the points of an r(s)-curve have slope l / p  (1 /a ). Therefore the 
tangents drawn to s(r)-curves at the points of an r(s)-curve are propagation lines and, in  
so fa r  as they do not intersect, m ay be used to assigned the states on the r(s)-curve to the 
points of the region covered by them.

Two r(5)-curves C, C transforms of r =  r0 (s = s 0) under Tw, Ts respectively are 
said to be propagated from each other if the propagation lines drawn from points of
C, C which are transforms of the same state are identical.

L e m m a  1. Two r\s\-curves C, C transforms by T w, T s  of r =  r0 [5 =  s 0] are propagated 
from each other if, and only i f  w ,(r0, s) = w ,(r0, s) \wr{r, s0) =«v(r, sf) ].

From (7) parametric equations of C, G are

C: x — a(r0, s)t -  wr(r0, s), x — P(r0, s)t — w.(r0, s),

C: £ — a(r0, s)l =  wr(r0, s), x — p(r0, s)t =  w,(r0, s).

8 Cf. Riemann-Weber, loc. cit., p. 518.
9 Cf. Riemann-Weber, loc. cit., pp. 516-520.
10 First noted bv R. C. Rand.
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Along a propagation line propagating the state (r0, s) we have x —(3(r0, s)t =  const. 
Hence propagation lines drawn from a point on C and a point on C, both transforms 
of the same state (r0, 5) will be identical if, and only if, w,(r0, s) = w ,( r 0, s).

It is interesting to note that tangents drawn to C, C at points which are trans
forms of the same state are parallel.

L e m m a  2. Given two r\s]-curves C, C which are propagated, from each other, curve C 
will pass through a point (x, I) on the propagation line propagating the state (r0, 5 ) ,  

[(g so)] from C i f  and only i f  wr(r0, s) =  £ — a ( r 0, S)i[w,(r, s0) =  50)f]. This con
dition determines w r(r0, s) [w,(r, s0) ] uniquely.

The first part of the lemma follows from the parametric equations of C. To prove 
the second part we set r — r ,̂ w — w  in (8) to obtain an ordinary, linear differential 
equation for wr since w , —wi  is a known function of s. This determines wr uniquely, 
for wr is known when 5 =  3.

2. Shocks and buffer waves. Under the assumption that G increases with p it 
follows that G =  G(p(r — s)) is an increasing [decreasing] function of r[s] for fixed 
5[r]; from (3), one concludes that a [(3] is an increasing function of r[s] for fixed s[r].

L e m m a  3 . I f  initially r — r0 for — »  < £ <  +  «> and s =  si or 52 as .x < 0  or x  >  0  with 
Si <  52, subsequently the state of the gas is unchanged exterior to the “ buffer region” between 
the lines x = 3 ( r 0, Si)t, x=j3(ru, sf)t. Within this region the state (r0, 5) with  5 i< 5 < 5 2 is  
propagated11 along the propagation line x  =/3(r0, s)t.

Initial states are propagated along the propagation lines

.x — /3 (r0, Si)l = ki <  0 , x — 0(ro, sf)l = k2 >  0 , (3(r0, 5i) <  (3(r0, *2) .

which diverge as shown in Figure 1 to assign the state (r0, 5i) to the region on the left 
of OAi and the state (r0, s2) to the region on the right of OA2. To obtain the states in

t

the buffer region A \O A 2 one sets 'If03)=O in (9) and draws the propagation line 
x=/3(r0, s)t from 0. Along this propagation line the state is (r0, 5) and as 5 ranges from 
5i to 52 the propagation line-turns from OAi to OA2 to assign states to all points of the

11 Cf. Riemann-Weber, loc. cit., pp. 520-521.
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buffer region. It will be observed that the states vary continuously along a line 
l  =  t o > 0 .

In this solution of (1), the inverse transformation T  is not single-valued the, seg
ment Si ^ s  of r =  r0 being carried by T  into the half-plane 0.

Physically the buffer region corresponds to a disturbance P iP 2 affecting two bodies 
of gas of different uniform states in contact with one another initially, the end points 
of the disturbance traveling with the local velocity of sound in the two bodies of gas. 
The passage of this disturbance through the gas is termed a buffer wave.

A shock exists at x =  £ if piT^pt and is propagated with a velocity12

, / Pi pi — pi / Pi pi
£ =  «i ±  \ /  — ------------ =  «2 ±  \ /  — —

y pi pi — P2 y Pi pi

pi
d i)

pi — pi 

where

Hi =  « (£  — 0 ), p i =  p(£ — 0 ), p i  =  p(£  — 0 ),

«2 =  « (£  +  0 ), pi =  p(£ +  0 ), p i  =  />(£ +  0 ).

The curve * =  £(i) in the (a;, f)-plane is termed a shock curve. It will be sufficient
for the purposes of this investigation to consider progressive condensation shocks
arising when p i> p 2 and the positive sign is taken in (11). For a shock of this type one 
has the condition

u i — «2 — s / i p i  — pi){pi 1 — Pi 0 , (12)

with

£ =  {uipi — UiPi) (p i — p 2) _ I . (13)

If (rh Si), (f2, Si) denote the correspondents of («i, pi), (Ui, p2) by (2) and the state
(t2, £2) on the right of the shock is given, the state (n, Si) on the left of the shock is not
uniquely determined but, by (12), may be any point of the curve.

r +  i  =  f i  +  52 +  V ( p  — p 2)(P2-1 — P ’), p =  P(r — s), p =  p(r — s) >  p2 (14)

in the state plane. This curve is termed the compatibility curve of the state (r2, 52) 
and its equation may be written in the parametric form

r =  +  J2 +  v +  V ( P  ~  p i ) { p i l ~  P-1)} .
.   (14')

s -  § | r2 +  -  v +  V (p -  pi)(p2-1 -  p_1) } , v >  v2,

upon introducing the parameter v =  r —s, where, of course, i>2 =  r2 —52-

L e m m a  4 . The compatibility curve of a stale ( r 2, sf) rises with increasing r from the 
point (r2, S2), at which it  has a horizontal tangent.

Both derivatives of r, 5 with respect to v will be positive provided

— G2(p) >   -----— =  G2(p) where p2 <  p <  p,
Pi p ~  Pi

u  See, for example, Riemann-Weber, op. cit. p. 513.
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which inequality holds for p > p 2 
under the assumption that G in
creases with p.

We shall now consider the si
multaneous generation of a shock 
and buffer w ave13 as pictured in 
Figure 2 where B is a buffer region 
between two regions R 0, R i  of uni
form state (ro, s0), ( r i ,  S i )  respec
tively and OS  is the shock line 
separating R x from the region i?2 
of uniform state (r2, s2).

L em m a  5. A shock and buffer wave are generated simultaneously13 at the contact of two 
bodies of gas of different uniform states {ra, So), (r2, s2) provided the point (r0, So) in the 
state plane lies directly underneath the compatibility curve of the state (r2, s2).

Choosing the state (r2) s2) in R 2 arbitrarily, the state in Ri  must be represented by 
a point on the compatibility curve of the state (r2, s2) ; and if this point lies directly 
above (r0, s0) the existence of the buffer region B is assured by Lemma 3.

3. The isentropic case. Here p = k 2py with k, y >  1 constants and G increases with 
p so that the results of §2 remain in force. Moreover

7 — 1
G =   (r

1 + 7 3 — 7 
s), a  = — —  r -|  — i, ß =

7 1 +  7_  r  — Sf (15)

and (8) becomes

(r — s)wr, — m(wr — w,) =  0, m  =
3 - 7

(16)
2(7 -  1)

For monatomic gases 7  =  5/3  one finds a  =  § (2r+s), /3 =  f(r + 2 s ) . Also m =  1 and
(16) becomes

(r — s)w„ -  (wr 

the general solution of which is

R -  S

•w.) =  0,

w = ----------> R =  R{r), S =  S(s),
r — s

R(r), S (s ) being arbitrary functions. The transformation T w is

(r  +  2s)wr — (2r  +  s)w, 3 wr

r — s 2
or, from (17)

w.

r — s

r +   ̂
(r -  s')3 

3(R -  S)

CR - S ) -
(r  +  2s) R' +  (2 r +  s)S'

( r  -  5)3

3 R' +  S'

(r -  s)3 2 (r -  s y

13 Cf. Rieniann-Weber, loc. cit., pp. 527-529.

(16')

(17)

(18)

(18')
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so that

t _  3 (r -  s)*R" -  2(r -  s)(2R' +  S') +  6(R  -  S)

t.

2 (r -  5)4

3 (r -  5)25" +  2(r -  5)(P' +  25') -  6(7? -  S)
(19)

2 (r -  j)<

primes denoting differentiations of R, S  with respect to their arguments.

L e m m a  6 . For a monatomic gas the compatibility curve of a state (r2, s2) is an arc of 
an algebraic curve of eighth degree ending at (r2, 52) ,  about which the points of the arc per
m it the expansions

3 3 2
r =  r2 +  v — V2 +  k(v — v2) +  • • • , s =  s2 +  k(v — v2) +  • ■ • , k =  l/3z>2. (20)

A t all other points r is  a regular analytic function of s with a positive derivative and r, s 
are regular analytic functions  (14') of the uniformizing parameter v, with respect to which 
they possess positive derivatives.

For monatomic gases equations (14), (14') become

r +  5 =  r2 +  52 +  vVs-[(r ~  s) i ~  (r= ~  *2) 5][(r2 — s2)~3 — (r — ¿)~3]. (21)

r =  l [ r 2 +  i 2 +  v +  V A ( v 5 ~  * t ) ( » 2~ 3 -  v - 3) ] ,  ^ i r )

s =  ifr 2 +  s2 — v +  — it) (»T3 — w-3)],

from which the statements in the lemma follow straight forwardly.
We return to the general adiabatic case. A point in the state plane represents a 

state for which the velocity is subsonic, sonic or supersonic according as the point 
lies in, on the boundary of, or exterior to the region a > 0 ,  j3<0 between the straight 
lines «  =  0, /3 =  0.

L e m m a  7 . The angle of inclination 0 of the tangent at a point of an r\s]-curve is  less 
{greater} than the angle of inclination <j> of the propagation line drawn from this point. 
Both angles lie between 0 and it and are decreasing functions of .s [/].

The lemma is obvious in view of (15) and previous results in §1 on the slopes of 
r, 5-curves and propagation lines.

L e m m a  8 . I f  T u. puts a region R  of the state plane in  (1-1) correspondence with a 
region X  of the (x, t)-plane and i f  the Jacobian J  of T v never vanishes in  R, the curvature 
of an r {s{-curve in X  has a fixed sign and the parts of the propagation lines drawn on the 
convex side do not intersect.

4. The first initial value problem. Returning to the problem formulated in the in
troduction, the correspondents of the initial states (0, pa), (0, p2) of the gas are repre
sented by the points Pa{r0, 50), P 2(r2, s2) of the state plane in Figure 3a. Both P 0, P 2 
lie on the line of zero velocity r + 5  =  0, with r g > r 2, since p o > p 2.

From Lemma 4 we observe that P 0 lies directly underneath a point Q(ro, si) of 
the compatibility curve of P 2 and therefore, according to Lemma 5, a shock and 
buffer wave are generated simultaneously in the gas at * =  1. In Figure 3b the shock
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line from .4(1, 0) is A Q "  and the buffer region is Po'AQ'. States in the regions 
OAPo , Q'AQ", Q "A x  are represented by points Pa, Q, P 2 respectively in Figure 3a. 
It is obvious from symmetry considerations that a shock line A Q "  and a buffer region

F ig . 3a. F ig . 3b.

Pa AQ' emanate from A ( — 1, 0) and that states in the regions OAPo , Q'AQ", Q"Ax  
are represented by points Pa, Q, Pa in Figure 3a with Q the reflection of Q in the line 
r + 3  =  0. In the buffer region emanating from A [A ], we have r =  ro[i =  'So] and the 
equations of the propagation line are

x  — j3(r0, s)t =  + 1 , So 2? s £5 Si, [* — a(r, s 0)t =  — 1 , n  ^  r g  r0]
( n  =  - s x ) .  (22)

As i[r ] ranges from 5o|/o] to Si[ri] the propagation line from A [ A ]  turns from 
A P a  [APa ] to A Q '[A Q '] ,  with t =  Go'1 where G0 =  G(p0) at P o l  These propagation 
lines intersect on the t-axis above Pa to assign different states to their intersection 
points. We avoid such a physical impossibility by terminating them on the arcs 
Pa Q', Pa Q' in Figure 3b. The propagation lines assign the states on QPoQ to the 
points of Q'Pa Q' and we seek a Tw which carries QPoQ into Q'Pa Q' and assigns the 
same states to the same points of the latter arc. A comparison of (7) with (22) leads 
to the following initial value problem.

T h e  F ir s t  I n it ia l  V a l u e  P r o b l e m . Given two constants r 0, So,find a solution w (1) 
° f  (16) for  which w f \ r ,  s0) =  — 1, s) — + 1 .

Before giving the solution for the general adiabatic case, we recall a few facts 
concerning the resolvent14 of (16). This resolvent is a two parameter family of solu
tions v =  v{r, j; r0, s0) of the conjugate equation (r — s)vra+ u i(v r— v,) = 0  meeting the
initial conditions vr(r, s0; r0, Jo) = + 1 , v ,(r0, s; r0, s 0) = — 1, and is given by

fro — s \ n r — r0 r — r0\
v =  (r — r0) 1--------- ) F i(l — m\ m; — m\ 2 ;---------- ; ------------)

Vo — so/ so -  r0 s — r0/

(r — s0\ m s — Sa s — s0\
 ) F i(l — m \m \  — nr, 2 ; --------- ; ---------- ),
r0 — So/ ra — So r — s0/

<x = o u =r+s = o

14 See I, in particular §3 and §5.
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where Pi is Appell’s first hypergeometric function of two variables. The solution w (1) 
of the first initial value problem is obtained by replacing m by — m and changing the sign 
of the resolvent.

Monatomic gases present the simplest mathematical problem and from now on 
they will receive our attention exclusively. For them ut — 1 and

2 2 2  2

(r ~  ro)(r ~  so) +  (s -  r0)(s -  s0) r0 -  r -  (s' -  s0)
vt)w  = -----------------------------------------------------= ----------------------------- i (23)

r — s r — s

the last equation holding provided ro+so =  0.
Comparison of (17) and (23) yields

2 2 2 2
R -  r0 — r , S =  s — s0; (24)

so that (18') and (19) become

(1) (r -  s)2 +  6(rs +  roSo) m rs +  roSo
x =  — (r +  s ) --------------------------------1 t =  — 6  > (25)

( r -  s )3 (r - s ) 3

=  9(r -  s)~4(as -  2r„) =  -  9(r — s)~4(/3r -  2r\), (26)

where the superscripts record that w =  w (1) in T w. In the subsonic region of the state 
plane a > 0 ,  /3<0 and, therefore in this region

trV <  0, t!V >  0, J W >  0. (27)

The square PoQPiQ  in Figure 3a is termed the prim ary  region. As p0 increases 
from p2 the primary region expands from point P 2 till eventually P i leaves the state 
plane. We consider only values of po for which the primary region lies entirely in the 
subsonic region and forego examination of the several interesting cases which arise15 
when this is not the case.

Arc Po Q', the transform of PoQ by T wa), is tangent to 4̂Po' at Po and has slope 
tan 0 =  l /a > O . Since Z(1> increases by (27) and the acute angle 0 decreases by Lemma 
7 with increasing s, arc Po Q' is concave downwards. Likewise arc Q 'P [  the trans
form of QPi by T w0), is concave downwards. From (23) and the corollary to Theorem  
1 it follows that arcs P d Q', Q 'P i  are concave downwards.

The boundary PoQPiQ  of the primary region and the boundary Po Q'PI Q' of 
its transform under T ww  are in one-to-one correspondence with J (1)> 0  holding in 
the interior of the primary region. It follows16 that the interiors of the two regions 
are in one-to-one correspondence to assign a unique state to each point of the region 
Po' Q 'PI Q' in Figure 3b.

5. The second initial value problem. To extend our knowledge of the states of the 
gas we draw propagation lines from the points of the arc Q 'P I .  These propagation 
lines are tangent to r-curves on Q'PI  and according to Lemma 8 do not intersect on 
the convex side of Q ' P I .

The equation of the propagation line from Q' is

2 CD ro +  Si
x  (2r0 +  Si)t =  wr (ro, s0 =  — 1 — 2 --------- >

3 r0 — si

15 A beginning in this direction has been made by Rand, loc. cit.,
16 See, for example, G. A. Bliss, Fundamental existence theorems vol. I l l ,  Amer. Math. Soc. Col

loquium Publications, reprinted 1934, p. 42.
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and the equation of the shock line from A  is, from (13), since r2+ 5 2 =  0,

(ro +  si)(r0 -  St)3
x ----------------------------------  t =  1.

( r o  —  s i ) 3 —  ( r 2 —  s i ) 3

The two lines intersect in a point Q"  with coordinates

x "  =  1

where

12r0 12r0 (r0 — s{)3 — (r2 — 52) 3
+  — — —  (r. +  Si)(r0 -  SiY, t"  =      ^      , (28)

A(r0, Si) X(r0, ii) ro — 5i

X(r; s) =  (r — s)4 — 2(2r +  s)(r2 — s2)3. (29)

Referring to Lemmas 1 and 2 a solution w w  of (16') transforms Q P i into an 5-curve 
propagated from Q 'P i  and containing Q" if

w f \ r ,  5 i) =  w ra> ( r ,  5 i) , r ^ r g  r0, wa(2)(r0, si) =  x" — f(r0 +  2jr1)Z, / , (30)

the latter condition determining wA3) uniquely on Q P i.

s 1

F ig . 4b.

Let the arc Q " P {'  in Figure 4b indicate the prolongation of the shock line A Q ".  
On the right of Q " P i '  the state of the gas is P 2(r2, si) and the states immediately on
the left of Q " P i'  are represented by points (r, 5 )  on the compatibility curve (21).
Thus Q " P i '  is the transform by T wm of the compatibility curve (?P2.

On the one hand the slope of Q " P i'  is

dt

dx

t S  +  Zj t,r' 4* Zj

xTr' +  x,  2 (r +  2s)trr' +  (2r +  5)ZS 

where r = r(s) is defined implicitly by (21) and its derivative r' is

8(r — s)s — 20(r2 — 52) 3(r +  25)2 — 3(r2 — 52) 5
r =

8(r -  s)s -  20(r2 -  52)3(2r +  5)2 -  3(r2 -  52)5
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On the other hand, from (13)

dl (r — s)3 -  (r2 -  52) s

dx  (r T  s){r — s)3 

and a comparison of the two results yields the condition 

t. n(r, s)

(31)

tr X(r, s) 

along QP2, or

r' = 5, n(r, s) =  (r — s )4 +  2(r +  2s)(r2 — 52)3, (32)

(2) (2) (2) 
bWrr — 2(1 +  5 )w „  T  w„  =  0. (32')

T h e  S ec o n d  I n it ia l  V a l u e  P r o b l e m . To construct a solution w w  of (16') meeting 
the conditions (30) on the side Q P i of the primary region and the condition (32') along 
the arc QP2 of the compatibility curve.

From (24) the first condition in (30) is met by taking

R =  fo — r ,  S(sf) =  5i — So, (33)

in (17) and, from (28), the second condition determines

u(ro, Ji)
S'(si) =  2 Si -  4r0 —;   • (34)

X(r0, si)

The parametric equations of the arc Q " P ('  are obtained by placing 5 =  5! in (18') 
and substituting for R, S(si), S'(si) from (33), (34). In particular it is readily verified 
that x ( P P )  >1 .

Taking condition (32') in the form (32), and substituting for tT, t , from (19) with 
R = r l  — r3 it will be found that this condition becomes17

2 5 I T S  (r — 5)2 (i) (i)
S" +  2  S ' T 6 ------------5  =    ~ ( t ;  - S i r ) ,  (35)

r -  s (r -  5 ) 2 3

where 5, Zr(1), /j(1) are the rational functions of r, s defined in (32), (26), and r is the 
algebraic function of 5 defined in (21) with r2T -?2 =  0. Thus to obtain the solution 
of the second initial value problem we set R = P 0 — r'1 in  (17) and choose S  to be the solution 
of the ordinary differential equation of second order (35), subject to the initial conditions 
in  (33), (34).

L em m a  9. The value of 5 at a point P  of the compatibility curve Q P 2 tends to T  00 
as P  tends to P 2. More precisely 5 is a positive regular analytic function of the parameter  
v on QP2, except at v =  v2, where it has a pole of the third order and a Laurent expansion 
of the form

5 = vl(v — v2) 3(1 T  ■ • • )■ (36)
To prove 5 > 0  we have

3 3 3 3 3 3
X =  v(v — v2) — 3uv2, u — v(v — v2) T  3uv2,

17 The form of the second member in (35) is due to Rand.
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and the equation of the compatibility curve QP2

15z>2«V =  (o* — vl)(v* — vl).

It is obvious that p > 0 for v > v 2, and X > 0  follows from \ p = v 2(v3 — vf)2 — 9uiv l > 0  for 
v > v 2. To establish this inequality, one multiplies the equation of the compatibility 
curve by 3^ and observes that 3vl(y5 —v\) < 5 v 6(v3 —t|) holds for v > v 2. Now r '> 0  by  
Lemma 6 and therefore 5 > 0  for v > v 2 by (32).

From (20) one has u =  r - \ - s = v  — d2 +  2k(!j — 1/2)’+  • • • , so that

X =  6v2(v — v2Ÿ +  • • • , m =  \̂{v — »2) +  ■ • • , r' =  vl(v — v2) 2(1 +  ■ • • ), (37)

hold along QP2, and the Laurent expansion for 5 then follows from (32).
It is apparent from (20) and Lemma 9 that the coefficients of the differential

equation (35) present a singular point at s =  s2.
L em m a  10. The introduction of v as i?idependent variable in  the differential equation

(35) leads to a differential equation for V  =  S(s(v)) in  which the coefficients are regular 
analytic functions of v for v à  v2.

Retaining the prime to denote differentiation with respect to 5 and indicating 
differentiation with respect to v by a dot, so that S ' — V /i ,  S "  =  (SV — V s ) / i 3, the 
differential equation (35) becomes

. 2 —2 v3S* (i) (i)
V + ( 2 ( 2  +  B ) è / v - 3 / S ) V +  6Sv  ( 1 + 8 ) 7  =  —  (t. -  Str ),  (38)

in which the coefficients are regular analytic functions of v for v > v 2 by Lemmas 6 
and 9. Moreover if the coefficients are expanded in powers of v — v2 using (20) and
(36), it will be found that they are also regular about v2.

L em m a  11. Provided p0 — p2> 0  is sufficiently small, S  and S ' are negative fo r  
s2i f s  rf Si with S  tending to a finite limit and S' to — <x> as s approaches s2.

Since the coefficients in (38) are regular at v =  v2, the solution determined by 
F(t>o) =  Vo, V(v0) — Vo may be expanded18 in a power series in v —v2, v0 — v2, V0, Vo pro
vided the absolute values of these quantities are sufficiently small.

Taking v0 for the value of v corresponding to point Q on the compatibility curve, 
v0 — v2 can be made arbitrarily small by taking p0 — p2 sufficiently small, with the co
ordinates of Q given by

ro — r2 +  Vo — W2 4* k(v0 — ZJ2)3 +  ' * ■ , =  s2 +  k(vo — v2)3 +  • • • . (39)

The initial conditions for 5  in (33), (34) lead to the initial conditions

p(r0, J i)l
S l - 2 r 0 7 7 — (40) 

X(r0, Si)J

for V. From (37), (39) we obtain the expansions

F(»0) =  — f 2(»o — »2) — («0 — v2) 2 +  ■ ■ ■ , F(»o) =  — 2(vo — v2) +  • • • , (41)

F(flo) =  Si — r0, F(t>o) =  2i(fli, [

18 J. Horn, Gewöhnlich» Differentialgleichungen beliebiger Ordnung, Sammlung Schubert, vol. 50> 
Leipzig, 1905, pp. 27-28.
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valid for sufficiently small |i»o —t»î|. It follows from (38) that the expansion of F(flo) 
in powers of v0 — v2 begins with a term of at least first degree in v0—v2.

When the expansions (41) are substituted in the expansion of the solution V  in 
powers of v — v2, vo ~ v2, Fo, Fo it appears that V may be expanded in powers of v — v2, 
vo — v2 provided |w — v2\ , | z/o—«21 are sufficiently small. To obtain the linear and quad
ratic terms of this expansion, we substitute from (41) in Taylor’s series

V(v0)
V =  V(v0) +  V(vo)(v — vo) -----  — (v ~  Vo)2 +  • • •

to obtain

V =  — v2(v0 — v2) -  2(v0 -  v2)(v — d2) +  (vo ~  v2)2 +  • ■ • ,

the third term in Taylor’s series being neglected since F(t>o) contains the factor v0 — v2.
' It follows that both V, V  are negative for v2^ v ^ v 0 for sufficiently small v0—u2> 0 . 

It is clear that 5  tends to a finite negative limit as 5 tends to s2 and, since i  is positive 
and tends to zero as v tends to v2, one concludes that S'  tends to — 00 as 5 tends to s2, 
provided, of course, that po — po. is sufficiently small.

The subregion P 2Q P iR P 2 in Figure 4a of the primary region is termed the second
ary region.

L em m a 1 2 . The partial derivatives t f \  t f ] and the Jacobian J m  =  —IG tfH ^ of T wm 
are negative in  the secondary region for sufficiently small po — p>>0.

We take R, S  in (19) as determined by the second initial value problem and find

(2) 1 (1) 3S' 95 (2) 1 (D 3 5" 65' 95
", TT "F T7 ’■ I* — _ I92 (r — s)3 (r — i ) 4 2 2 (r — s)2 (r — s)3 (r — s)4

from which 42>< 0  follows from (27) and Lemma 11 for sufficiently small po — p2> 0 .  
To prove /)2) < 0  we have

2 - f  8 1 F  ä (f — s)2 (i) _ (i)
5" +  2 -------- 5' +  6 - - 5  =      Cl! -  Sir ),

f  — s (r — s)2 3

where f =  r(i) is the function of s defined in Lemma 6 and 5 =  5(f, 5), i ^  = t f \ r ,  s), 
¿j(1) = /jl)(r, s). When 5 "  is eliminated from /j2) it is found that 42) = ^ 45 '-f-55+ C , 
where

6 r  8 f — i l  /  8 r0\
A =  - ------- _    1 +  —  >  6(f -  s ) - ‘(r -  s)~~2 ( — ------ ),

(r — s)(r — s)2 L 2 r — sJ V 2 r j

»  -  (,  _  , 4  - 1). [ ‘ +  5 -  ( “ ) ’]  >  ~  ( » - - 1  ■

c -  + 4 (— W "  -  c , < f  <&" +
2 2 \  r — s /  2

in view of the inequalities

2ri =  ri — Si <  r — s ^  f — 5 <  r0 — s0 =  2r0,
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valid in the secondary region, t, has a negative upper bound and t, a positive lower 
bound in the secondary region independent of p0. Moreover r0t n  tend to r2 as p0 

approaches p2. In view of Lemma 9 we have A  > 0 , B  > 0 , C < 0, and therefore ^2)< 0  
by Lemma 11 for sufficiently small po —P2.

We shall now investigate the mapping by T wm of the secondary region upon the 
(x , ¿)-plane. Taking R, S  in (18') as determined above in the solution of the second 
initial value problem, T wm is

#<« =  (r +  *X3ro ~  r~) ~  4rs' _  3 r +  * 5  _  2r +  J s ,
(r — 5 ) 3 (r — s')3 (r — s) 2

r o — rs 3S 3 S'
tm  =  3 ---------------------------------- --------------

(r — 5) 3 (r —  s)3 2  ( r  — 5 ) 2

From Lemma 11 it follows (at least for p0 — p2 sufficiently small) that x (2), / (2> become 
infinite as the point (r , 5) of the secondary region approaches the side RP«. We shall 
accordingly consider first the mapping by of the subregion U Q PiTU ,  the line 
T U  being parallel to i?P2.

Sides PiQ, T U  transform into 5-curves P C  Q", T " U " . From Lemma 12 t decreases 
and from (5) x increases as r increases along PiQ, TU .  We conclude from Lemma 7 
that Pi" Q", T " U "  are concave downward as shown in Figure 4b.

Side P \ T  transforms into an r-curve P {  T "  which is concave upwards.
Arc Q U  of the compatibility curve transforms into the shock curve Q " U " .  Along 

Q U  x  and t are monotonic decreasing functions of v, as is the slope d t/dx  of Q " U " , 
for, from (31)

d / d t \  \ r  +  pi

d v \d x )  (r +  s )2(r — s) 4

inasmuch as A >0, p > 0  hold on QU. The shock curve is accordingly concave upwards
to imply that the velocity of propagation of the shock decreases as t increases.

Finally we let U  approach P 2 along QP2. The 5-curve T " U "  recedes to infinity in 
the (x, ¿)-plane and the secondary region, exclusive of side P P 2, is accordingly mapped 
in (1-1) fashion by T wm upon a region indicated by P 2" Q "P { R "  in the (x, /)-plane 
to determine the states of the gas in this region.

The slope of the r-curve P C  T "  at T "  tends to 1 / a { r h 52) as T "  recedes to infinity. 
The slope of the shock curve at U"  is, from (11),

dt /  p2  p  —  P2

dx V  p p — P2

where p denotes the density for the state U  and p = p ( p ) .  As U—>P2 we have p—>p2, 
which implies d t /d x —->1/G2. This means that the velocity of propagation of the shock 
tends toward the local velocity of sound in the exterior body of gas through which 
the shock travels as it recedes to infinity.

The determination of the states of the gas in the region P C Q " P i '  R "  may now be 
left to symmetry considerations or Theorem 1.
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ds /S2(ri, i)(rt — j )3

After S "  is eliminated by (35) it will be found that d T / d s <  0 holds for sufficiently 
small po — P2- The principle of the argument is essentially the same as the one employed 
to prove that Z® < 0  in Lemma 12 and is omitted.

From symmetry considerations propagation lines drawn from P i '  R "  do not in
tersect in the region x < 0 . Propagation lines drawn from P i '  R "  and P i '  R "  symmetri
cally placed with respect to the /-axis intersect upon it and, excepting the two drawn 
from P i ' , P i ' , assign different states to their points of intersection. This is avoided 
in Figure 5b by terminating the propagation lines on arcs P { " N '" ,  P i "  N '" ,  the 
coordinates of P { "  being x =  0, / =  —w f >(ru Si)/I3(ru ¿i).

6. The third initial value problem. We take up the problem of determining the 
states of the gas in the region of the (x, /)-plane lying above the curve R " P i  P i  P i  R "  
in Figure 4b.

Propagation lines drawn from P i ' R "  in Figure 5b have slope 1//3 < 0  and, from 
Lemma 8 can intersect only on the concave side of P i ' R " .  We shall prove that they  
do not meet in the region x > 0  if p0 — P2 is sufficiently small. Since 0  is a monotonic 
decreasing function of 5 by Lemma 7, it will be sufficient to prove that the /-intercept
T  of a propagation line is a monotonic decreasing function of s.

In the equation of a propagation line Z=/3~1x + 7 '  we replace x, / by the coordinates
of a point on P i '  R "  obtained from to obtain

_ w( >(ri, s) _ (ri — s)S' + S + r\ — r0" .
/S(ri, j) P(ri, s)(ri  -  s)2

from which

dT  /3(ri, s)(ri — s) S" +  4s(ri — s)S' +  4sS +  4j(ri — r0)

v=r-s = o

u=r+s = o

F ig . 5a.

A

F ig . 5b.



By Lemma 1 an r-curve, the transform of P iR  by Tww will be propagated from
P l ' R "  provided

w,(3)(ri, s) =  w ? \ r x, s) f°r =  -7 ^  si. (42)

and by Lemma 2 will contain P /  ', in case

(3). . «(ri, ii) (2) (2)
Wr (fi, Si) =  —  -  w, (r 1, Si) =  — w, {rh s,). (43)

0(rh ii)

At points symmetric to the /-axis states have the same density and opposite veloci
ties. From the corollary to Theorem 1 this will be the case in the region above
N " 'P (  ' N '"  if this region is the transform by T w of a region in the state plane sym 
metric to the line r+ 5  =  0, provided w(r, s) = w ( — s, —r ) holds in this region.

T h e  T h ir d  I n it ia l  V a l u e  P r o b l e m . To construct a solution of (16') meeting 
the symmetry condition w m (r, s) = w m ( —s, —r) and the initial conditions (42), (43) 
on the side P i R  of the secondary region.

The solution of this initial value problem

s S ( - r ) + S ( i )w w (r, s) = ------------------------ ; (44)
r — s

is obtained by setting P =  —S( — r) in (17), where S(s) is the function entering in the 
solution of the second initial value problem.

The symmetry condition is obviously fulfilled. From (33) we find w (3)(n, s) 
= wA2)(?-i, 5) and (42) follows by differentiation. Condition (43) is likewise a conse
quence of (33).

The subregion PiRP^RPi  of the secondary region in Figure 5a is termed the 
tertiary region.

The mapping by Tw{» of the tertiary region upon the (a;, /)-plane is not (1-1). 
If R  is replaced by —S ( — r) in (19) one obtains

(3) 3 ( r - 5 ) 2S " ( - r )  +  2 ( r - i ) [ 2 S ' ( - r ) + S ' ( 5 ) ]  +  6 [ 5 ( - r ) + 5 ( i )]
t     —-------------------------------------------   (45)

2 (r -  sY

In particular on r =  — 5 (along P 1P 2)

¿(3) =  _  SsS'(s) +  3S(s)].

For po — pi sufficiently small /® is positive along P 1P 2 in view of (27), (35) and Lem
mas 9 and 11. On the other hand, if we fix r in (45) and allow 5 to approach Si it ap
pears that /)3> eventually becomes negative because of the behavior of S, S' as 5 tends 
to 52. Hence there exists a subregion PfP^M Pi  of the tertiary region within which 
/A  is nositive, except along M P i  where t f  ] = 0 .

Differentiating equations (5) partially with respect to r and 5 and eliminating x T„ 
we find that t satisfies the partial differential equation (a — /3)/r, =/3,/r — a d ,  which re
duces, in the adiabatic case, to

1 7 + I
(r ~  s)l„ =      (/r -  /.).

2 7 — I
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P l a t e  1. Variation of density p with distance x  for fixed time /.
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Y .  X = X (A) 

P

A

P

2L X(A)< X<X(P,") 

P

J Y  X (Q ')<X <X (A )
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p.
I •

I X  x (Q")s x < x (n ")

P l a t e  2. Variation of density p with time t for fixed distance x .
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It follows that in a region in which tT is positive and is negative, /r(/s) is a monotonic 
increasing function of s(r) for fixed r(s).

From / (3)(r, s) =  l m ( — s, —r) we have t f \ r ,  s) =  — t)3\  — s, —r) and thus /® =  —/j3) 
along-PjPi- It follows that /s(3) is negative along P 1P 2, and consequently is negative in 
a suitably restricted region containing P 1P 2. When we procede from P 1P 2 to the left 
along a line s= con st., lf3) decreases and accordingly is negative everywhere in
P ,P 2JlfPi.

Along M P 2 d t ^ / d s  is positive and j )3) =  — 2G tf)tf'1 changes sign as (r, s) crosses 
M P 2. Thus the mapping of the tertiary region cannot be (1-1).

It is clear that /j3) vanishes along an arc M P 2, the reflection of M P 2 in P iP 2- 
Within the region P iM P 2M P i  we have J (3) > 0 . The application of T wm to the tertiary 
region to obtain further information about the states of the gas must be restricted to 
a square P1NP3N within the region P \M P 2M P \  with sides on P \M , P \M .  Such a 
square is carried by P^w into the region P ( " N ' " P l " N ' "  of Figure 5b, within which 
the states of the gas may be regarded as known.

The prolongation of the solution into the rest of the (.r, /)-planc still awaits solu
tion and it should be noted here that further extension of the solution may modify 
the states assigned above to the region R " P ( '  Q " P i'  and its reflection in the /-axis.

7. Graphical presentation of variation of density. Plates 1 and 2 portray the varia
tion of density (and thus the pressure) of a monatomic gas for sufficiently small 
P o  —  P 2 in so far as our analysis permits. They were obtained by comparing Figures 5a 
and 5b with the aid of (2). No attempt was made to indicate quantitative changes in 
the density, or to determine the curvature of the curved portions of the graphs. The 
small circles indicate points at which p* and p t undergo jumps. Figures V III, IX  of 
Plate 2 are based on the conjecture that x(Q") < x ( N " ) .

The coordinates of various points in Figure 5b have been computed from formulas 
found in the text and are given below. Once po, P2 are given, r0, r2 are determined from
(2) and Si may be determined graphically as the j-coordinate of Q in Figure 5a.

Po : X =  0, t =  3/2ro,

Q': x
(ro +  s i)i5r0 +  si) _ 6r0

)
iro — i i )2 (ro -  s 1)2

2 2 2T./  ̂ ' r° ‘ TiP i : X =  0, / =  r— )
4 rl

2r0 +  Si p(ro, 5i) 6r0 p(ro, Si)
Q": X  =  s(Q') +  4r0    - ,  t  =  l(Q') + ........................    ,

( r o - i i ) 2 X(fo, Si) (ro -  5i)2 X(r0, 5i)

P i ': ,.1 + A í^ lií) , , , K P I )
2 r 1 X(ro, íi) 2 r, X(r0, îx)

ro p(r0, ii)
P i " : x  = 0 ,  / =  t (P { )  +  3

ri X(r0, jj)
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THE PROPAGATION OF A SPHERICAL OR A CYLINDRICAL 
WAVE OF FINITE AMPLITUDE AND THE PRODUCTION  

OF SHOCK WAVES*

BY

YUNG-HUAI KUO 
California Institu te  o f Technology

1. Introduction. When a mass of gas is set into motion by a sudden rise of pres
sure which possesses either a cylindrical symmetry or a spherical symmetry in the 
case of an explosion, pressure or density will be propagated into space as a cylindrical 
or spherical wave of finite amplitude in a manner different from that of the propaga
tion of sound. The most conspicuous phenomenon of such a non-linear wave motion 
is perhaps the appearance of a shock wave. In the case of plane waves of finite ampli
tude, the problem was studied independently by B. Riemann1 and S. Earnshaw.2 It 
was shown that when a compressed slab of gas is released, two progressive waves are 
produced travelling in opposite directions, with constant deformation in the wave
form during the course of the propagation. Eventually both waves develop into shock 
waves.

With regard to the spherical or cylindrical compression waves, the situation is 
quite different because the amplitude of the wave falls off at a much greater rate than 
for plane waves, while the wave propagates from the center of disturbances. The 
question is whether this rapid diminution of amplitude would prevent the formation 
of a shock. J. J. Unwin3 has calculated a specific example of motion produced by a 
sudden release of a compressed sphere of air, and concluded that there is no indication 
of the development of a shock wave. Inasmuch as he adopted a numerical method for 
one special case, the concludion reached cannot be regarded as general. In fact, 
W. Hantzsche and H. W endt4 considered a similar problem, where the sphere had a 
finite radius and expanded with the speed of sound into still air. The motion, in its 
early stage, is supposed to be continuous in pressure or density and velocity. But after 
a finite duration, the wave-front becomes a discontinuity surface characterized by an 
infinite velocity gradient in spite of the diminution of amplitude.

In view of these disagreeing results, it is felt that it is desirable to investigate this 
problem from a broad standpoint taking account of all initial boundary conditions. 
The problem of explosion such as the burst of a bomb is only one of many similar 
problems and, to be sure, the most interesting one. According to G. I. Taylor, the 
physical process taking place during an explosion can be treated, as a combination of 
two problems. The first problem is concerned with the effects produced in the atmos

* Received May IS, 1946.
1 Riemann, B., Uber die Forlpflanzung ebener Luftwellen von endlicher Schwingungsweite, Abhand- 

lungen d. Gesellschaft der Wissenschaften zu Gottingen, Math.-Phys. Klase 8 , 43 (1860).
2 Earnshaw, S., On the mathematical theory o f sound, Phil. Trans. Roy. Soc. London, 150, 133 (1860).
3 Unwin, J. J., The production o f waves by a sudden release o f a spherical distribution o f compressed 

air in  the atmosphere. Proc. Roy. Soc. (A) 178, 153 (1941).
1 Hantzche, W. and Wendt, H., Z u m  Verdichlungsstoss bei Zylinder- und  Kugelwellen, Jahrbuch 1940 

der deutschen Luftfahrtforschung I, 536.
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phere by a rapidly expanding spherical or cylindrical solid shell which compresses the 
surrounding air. In this case the motion of air in contact with the shell is completely 
prescribed by the motion of shell itself. The second problem deals with the motion 
produced by a compressed sphere or cylinder of air which is suddenly released. Each 
one of these constitutes a separate mathematical problem. To enlarge the scope of 
this discussion, the very meaning of the term explosion will be understood here as 
any process that is capable to create a pressure disturbance with spherical or cylindri
cal symmetry, propagating as a wave of finite amplitude.

An explosion is assumed to take place, during a short interval of time, in an in
finite space which is filled only with air not abstructed by any solid bodies. Since the 
coefficients of viscosity and heat conduction for gases are generally very small, so 
long as the motion is continuous, the air may be regarded as non-viscous and non
conducting. The thermodynamic change of state of a fluid-particle along the path is 
then adiabatic; and if, initially, the entropy of the air is uniform throughout the space, 
the motion is isentropic. For the first problem stated above this condition is satisfied. 
Namely, at the moment the shell starts to expand, the outside air may certainly be 
assumed to be at the standard conditions. After the shell has started to expand, it 
compresses the air and, thereby, sets it into motion; but, during this process, no heat 
has been imparted to the air, its thermodynamic state must remain on the same 
adiabatic curve. In the case of a compressed sphere or cylinder of air, it is reasonable 
to assume that the pressure or density was built under adiabatic compression at all 
points. Hence as long as the motion is continuous, it will be isentropic.

The present study reveals that such a continuous and isentropic motion generally 
does not exist in the whole field. This type of motion breaks down when a “limiting 
line” appears, which would make the solution multi-valued. This would be impossible 
unless the motion is discontinuous. Hence, the appearance of a “limiting line” serves 
to indicate the necessity of presence of a shock wave in the actual motion. After the 
shock is formed, the Rankine-Hugoniot theory asserts that the process through which 
a fluid-particle has undergone by crossing the shock-front is irreversible and, conse
quently, the entropy increases in a discontinuous manner. The jump in entropy is 
not constant, however. It varies as the shock wave propagates, because the conditions 
at the shock change with time. As a result the motion behind such a non-uniform 
shock cannot be isentropic. Therefore once the “limiting line” appears, isentropic flow 
cannot be maintained and the resultant flow cannot be analyzed by the present 
method.

The mathematical condition for the appearance of a “limiting line” in the case 
of a spherical or cylindrical isentropic motion is that one of the two families of char
acteristics admits an envelope, just as in the case of a plane wave. Along this envelope 
the accelerations of the fluid-particles are infinite. In fact, a closer examination in
dicates that the motion generally must break down even before the “limiting line” 
is reached. It then seems that any motion of a compressible fluid has a tendency to 
develop a shock wave and that the effect of the “spreading” in the case of a non-linear 
spherical or cylindrical wave plays but a minor role.

2. Differential equations of motion. The motion under consideration is supposed 
to be axially or spherically symmetric, i.e., at any instant the velocity u t pressure £ 
and density p depend on the time and the radial distance x  only. If the effects of vis
cosity and of body force are neglected, the equations governing the motion are
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(2 .1)
P

/  a u \
Pt +  upx +  p(  Wx H 1 =  0. (2 . 2)

£ /

Here the subscripts denote the partial derivatives with respect to the variable indi
cated by the subscript; a — 1 for a cylindrical and a  —2 for a spherical wave. In each 
case, the variable x will be interpreted differently. Furthermore, it is assumed that the 
motion is continuous and that the effects of viscosity and heat-transfer in the fluid 
can be ignored. If initially constant, throughout the fluid, the entropy then remains 
constant. In other words, for an ideal gas the relation between the pressure and den
sity is

appropriate initial conditions the mathematical problem can then be solved, at least 
theoretically. However, we may understand the singular behavior of such a solu
tion and the conditions for its existence without actually solving the differential 
equations.

By eliminating the pressure with the aid of Eq. (2.3) and by introducing the square 
of the sonic speed as a variable in the place of the density, we reduce Eqs. (2.1) and

where v is positive.
As it stands, this system of equations can reveal but little information concerning 

the behavior of the solution. To expose such properties, one has to transform the dif
ferential equations to a new coordinatc-system and then study the condition under 
which the transformation would be valid. In the case of a steady irrotational motion, 
this is well-known as the hodograph method which has been effectively and success
fully applied by W. Tollmien6 and H. S. Tsien6 in investigating the two dimensional 
and three dimensional isentropic motion respectively. By a slight modification, it 
can also be applied to the present problem. To this end, the following one-one point- 
transformation is introduced

P =  K P\ (2.3)

where y  stands for the ratio of the specific heats and K  is a constant. With a set of

(2.2) to

u t +  uux +  vx =  0, (2.4)

and c is the speed of sound defined by y /y (p /p ) -  This system of differential equations 
is of the hyperbolic type, the two families of real characteristics C being determined by

(dx  — u d ty  — ßvdt2 =  0, (2 . 6)

5 Tollmien, W., Grenzlinien adiabatischer Potentialströmungen, Z. angew. Math. Mech. 21, 140 (1941).
6 Tsien, H. S., The “lim iting  lin e” in  m ixed subsonic and supersonic flow s af  compressible flu ids, N.A.C.A. 

Tech. Note 961 (1945).



u =  u(t, a:), v =  v(t, a;). (2.7)

We have

XV ty
til =   > u x = --------->

J  J

xu lu
Vt =  i v x —  i

J  J

provided the Jacobian J(u, v)^stux v — lcxu9i 0. Equations (2.4) and (2.5) will then be 
transformed into

a;„ — utv +  /„ =  0, (2.8)

afiuv
a:« — uty +  fi vtv  (tu xv — tvxu) =  0. (2.9)

a;

This system of equations can be simplified considerably by introducing a function  
x(w, v) defined by

x — ul =  I =  — Xv, (2 . 10)

so that Eq. (2.8) is satisfied identically while Eq. (2.9) reduces to

afiuv 2
foXvv (XtltiXvt? Xut' XvXvv) =  Xl- (2.11)

X

The corresponding characteristics T in the u, z/-plane are determined by

( afiuv \  2afiuv (  1 Xuu — xA
1  X w  ) d v 2 ---------------Xut-dudv — a f iu v  ( --------- 1-------------------- ) d u 2 =  0.  ( 2 . 1 2 )

x /  a; \ a u  x /

3. Limiting line. The relationship between the characteristics C and T associated 
respectively with the differential equation in the I, x- and u, y-planes has an important 
bearing on the singular character of the solution and its elucidation often contributes 
much toward the understanding of the nature of the physical problem. For this pur
pose, we first transform the differential equation (2.6) by means of the following pair 
of relations:

dx  =  (xmi Xf uxuv)du -{- (xu? uxw)dv, 

d t  =  — x « f d u  — X w d v .

Substituting in Eq. (2.6) together with Eq. (2.11), we bring the equation of the char
acteristics C into the form
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J
'/ a f iu v  \  2 a f iu v  (  1 x«u — xA 1
( 1  x»v ) d v % -----------------X u v d u d v  — a f iu v -( -------- 1-------------------- ) d u 2 = 0 .  ( 3 . 1 )
A X /  X \ a u  X /  J

This shows that if 0, the characteristics C in the t, x-plane correspond to the 
characteristics Y in the u ,  n-plane. However, circumstances may arise such that

2
J{u, fl) — XmiXi’t’ Xuv XvXvv Hi (*1.2)
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while

(  aftuv \  2aftuv / l  X«« ~  XA
I 1 — ——  Xw ) d v - ------------Xwdudv — afiuv-1------- 1----------------) du2 ^  0
\  x /  x \  ail X )

and the characteristic equation (2.6) is again satisfied. This means that if a point 
moves along a line X defined by Eq. (3.2), the corresponding point will describe a 
line I in the t, x-plane, having the same tantents as the characteristics C. It does not 
coincide, however, with any one of the characteristics C. This may be proved as 
follows.

The differential equation for the path 5 of a fluid-particle in the t, x-plane is

On the other hand, the vanishing of the Jacobian, when combined with Eq. (2.11),

The condition under which this result holds is both necessary and sufficient. This

the path a  with T+ and <r with T_. Furthermore, the paths a  do not have an envelope 
and that of T is

which corresponds to p =  0 and is, of course, uninteresting. Hence, it cannot belong 
to either family of the characteristics T. The only alternative is that it is an envelope 
of one family of the characteristics C in the t, £-plane. By analogy with the steady

(3.3)

The corresponding path a in the u, iz-plane is given by

(3.4)

Now the differential equation for one family of characteristics, say T+, is

(3.5)

can be written as

(x«t -  y / X v v ) ( x u v  +  V P v Xi-t) =  0. (3.6)

It is easy to see that

(3.7)

or

(3.8)

shows that the lines X+ and X_ are respectively the locus of the points of tangency of

/3jj =  0

irrotational motion it is again called “limiting line,” the justification will be found in 
the following section.

4. The properties of the “limiting line.” Being the envelope of one family of real
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characteristics in the t, rc-plane, the “limiting line” will be entirely in the field of mo
tion. It is, therefore, paramount to investigate the behavior of the solution along 
this line.

Consider first the line element of a path s of a fluid-particle at the “limiting line” /. 
Generally, for any line element one obtains from Eq. (2.10)

d,X =  (Xiiu — uxuv — Xv)du +  (x«o — uxw)dv, 

dt =  — Xuvdu — Xwdv.

Along a path 5 given by d x /d t  — u, we have

(Xu« — x»)du +  Xuvdv =  0.

Using this relation to eliminate dv from dx and dt and by regarding u as a parameter, 
we obtain the following parametric equations for the path s:

2 _
_ X u u X v v  X u v  X v X v v  / .

dx  =  u -------------------------------du, (4.1)
X u v

_  2  _ _

_ X u u X v v  X u v  X v X v v
dt = -------------------------------dii. (4.2)

X u v

According to our previous findings, /  =  0 yields two lines X+ and X_, each of which 
associates with only one group of characteristics T in the u, »-plane. This shows that 
on the “limiting line” dx and dt both become differentials of higher order and will 
change sign on crossing the line X. This agrees, of course, with the cuspidal nature of 
the singularity.

Dividing both sides by dx  and dt respectively, we obtain the following expressions 
for the derivatives u x and u t along s:

(«*). =  —  ^ (4. 3)
«(XuuXvv — x ; „ — Xt-Xii)

(««). =  -------------   (4.4)
X u u X v v  X uv X v X v v

Thus on the “limiting line” the acceleration of a fluid-particle becomes infinite as Xu» 
is finite there. This implies also an infinite pressure gradient [see Eq. (2.1)].

The physical state to which J(u , v ) = 0  corresponds can be readily deduced. It 
can be summarized in the statement that if the Jacobian vanishes, then the motion 
in the immediate neighborhood of the line / = 0  is a compressive one. To prove this, 
let us consider the ratios v t/ u z, u t/ v x, u t/ u x and v , /v x which, according to the relations 
obtined in Section 2, equal

w< Xtio otfiuv J  Xut

11 x  X v v  % X v v  M x  X v v

U, X v v  Hi ,  ̂ , «/3m» /
  =  U  1, —  =  — u  + -p v --------- 1------------------- --
V X X u v  V X X u v  % X u v

In the u, »-plane, the expressions on the right-hand side are everywhere continuous. 
At the line X+ corresponding to X« =  Vfivxw, they become
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By continuity, the relative signs of the differential quotients hold in the neighborhood 
of the “limiting line.” Thus, we conclude that either v t > 0 ,  yx> 0  and « ,< 0 ,  u z < 0 
or V i < 0 ,  vx< 0  and « ¡ > 0 ,  u x> 0 .  The first case is exactly the condition for a compres
sive motion. Whereas the second case may either correspond to a rarefaction or to a 
change of sign of the Jacobian J(u, v). As the rarefaction does not conform to the 
geometric properties of 7  =  0, the second case corresponds to the second branch of the 
solution and hence can be disregarded.

5. Lost solution. In the previous sections, we assume that the Jacobian J(n, v) 
does not vanish. Thus the one-to-one correspondence between the t, x- and u, ti-planes 
is assured and the condition 7  =  0 is restricted to the singular line /. In a special case 
the Jacobian may vanish identically, however. This vanishing of the Jacobian estab
lishes a relation between v and u in the u, u-plane and, as a result, yields a class of 
solution not contained in the transformation (2.7). To study this form of solution, 
let us first set

This type of solution has been discussed by K. Bechert7 whose main result was as 
follows. By eliminating x and t the system of Eqs. (5.2) and (5.3) can be reduced to a 
second order non-linear total differential equation, based on the existence of a linear

type being amenable to numerical integration. The main feature of the solution, how
ever, can be discussed in the following manner.

Along ii =  const., i.e., along

on account of Eq. (5.2). Since dv/dit  is a function of u alone, on u =  const. (d v /d u )u is

V =  v ( u ) . (5.1)

The differential equations (2.4) and (2.5) can then be rewritten as

/  dv\ 
u t - f  I ■u  +  —  j  u z =  0 , (5.2)

(5.3)

relation between t and x. By a slightly different procedure it can be shown that in
stead of a second order differential equation one can obtain a first order one of Abel’s

du =  iixdx +  Htdt — 0,

the slope of the curve u =  const, equals

(5.4)

7 Bechert, K., Über die Ausbreitung von Zylinder- und Kugelwellen in reibungsfreien Gasen und  
Flüssigkeiten, Ann. Phys. (5) 39, 169 (1941).
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constant. Therefore, the curve « = co n st. is a straight line in the t, x-plane. In con
formity to the assumption (5.1), there exists a parameter £ defined by

£ = -  . (5.5)
Co(t -f- to)

where c0 is the speed of sound at u =  0, and to a suitable constant. It is clear that 
£ =  const. corresponds to « =  const. In other words, both v and u  may be regarded as 
functions of £.

If the determinant v'2—pv?£0, it, and u t can be expressed in terms of u. We have

a3uv 1
« > = -71— 7F ’ (5 -6)X v 1 — pv 

aBuv u +  v'
M‘ =  ~n I T ’ (5 ' ?)X v — pv

where the prime denotes the total differentiation with respect to u. Like in the gen
eral case, here again the solution possesses a singular line on which the partial deriva
tives generally become infinite. Its other properties will be studied presently. From 
Eq. (5.4) it is found that

Q . - + *

while the characteristics are

( ~ )  -  « \ d t J c
+

On the other hand, where the singular line X, i.e. the line

v'2 — ¡3v =  0, (5.8)

intersects the integral-curve v(u), we have

Q - ”±v®-(IX- (5-9)
This shows that at the singular point of the solution v(u), the « = co n st. line be
comes the envelope of one family of characteristics C. Hence the envelope is a straight 
line. Furthermore, according to Eqs. (4.1) and (4.2) the parametric equations of the 
path 5 are

dx  =  ——  (v' +  \/f}v)(v ' — \Z fiv )du , (5.10)
ajW

dt =   —  (n' +  V Ñ W  ~  y/f}v)du. (5.11)
afiuvv'

Since each factor on the right-hand side corresponds to a group of the characteristics 
C, on crossing the line X, where this factor vanishes, the elements dx  and dt change
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their signs. This proves that the line I, the image of X, possesses all the characteristics 
of a “limiting line.”

It is interesting to note the difference between plane and spherical waves. In the 
former case, Eq. (5.8) would be satisfied identically. This lets the lines u  =  const, de
generate into the characteristics. Indeed, it is also possible for one family of the char
acteristics which are straight lines to have an envelope; the differential quotients u x, u t 
are finite, however. Consequently, we have no “limiting line,” in the strict sense. 
This docs not mean, of course, that the solution is regular. As a matter of fact, the 
solution already becomes many-valued before this line is reached.

6. Lost solution: a special problem. From the foregoing conclusions, a compres
sive spherical or cylindrical wave always becomes indeterminate when a singular line 
is reached. As an illustration the following special problem is considered.

Suppose there is a divergent spherical or cylindrical wave propagating with veloc
ity c0 into still air. On the wave-front, where the motion agrees with the outside con
ditions, the state-variables p, p  become equal to those of the still air and the velocity  
is zero. The path of the wave-front is then described by

are propagated with constant speed. In other words, these quantities depend only 
on a common parameter.

To simplify the amount of mathematical work involved, the differential equations
(2.4) and (2.5) will be put into the following equivalent form:

In the case of a lost solution, there exists a parameter £ defined by (5.5) such that 
£ =  1 corresponds to the initial curve (6.1). Then,

x — co(t T  to).

T he mathematical problem can thus be formulated in the following way:

u =  0, when x 2: c0(t +  to), |  

u 0, when x <  c0(t +  to) - )

( 6 . 1)

(6 . 2)

A particularly simple case will be the one where both the pressure and the velocity

2 cV»
(c2 — <t>x)<t>xi — 2<t>x<j>zt — 4>ti 4— - —  =  0 (6.3)

x

by introducing a potential-function </>(/, x):

u =  4>x, (6.4)

<t>(t, *) =  cl{t +  /o)/(£) (6.5)

and hence

u(t, x) =  c0/'(£),

c2 =  d l i -  j  r - K f  - £ / ' ) ] ,

(6 . 6)

(6.7)

where the prime indicates the total differentiation with respect to £, and the function 
/(£) satisfies
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[c2 -  d ( f  -  ay]af"  +  2e l f  =  0 (6 . 8)

subject to the initial conditions

/(I )  =  0, / ' ( l )  =  0. (6.9)

The first condition, n a m ely /(l) = 0 , is necessary to make c =  Co on £ =  1. When the 
conditions (6.9) are substituted in Eq. (6.8), it appears th a t /" ( l )  is arbitrary. We 
need not be alarmed by this situation, but recall that in this particular type of initial 
value problem, the “support” is a characteristic. Physically, this means that the ini
tial conditions prescribed in this manner do not “know” the internal structure of the 
motion, because they propagate ahead with larger speed. It is only natural, then, that 
such an arbitrariness should arise which enables us to fit properly the physical condi
tions specified. This arbitrariness is only a partial one, however, since for a compres
sive motion the sign o f /" ( l )  is necessarily negative; for on £ =  1

Thus, for any compressive motion the absolute value of /" ( l )  is determined in con
sistence with the physical process.

The differential equation (6.8) which determines the interior motion of a mass of 
air, has two singular points in the £, /-plane given by the vanishing of the coefficient 
o f/"(£). The geometrical interpretation is evident, when (6.8) is written as

( c  +  «  — c o £ ) (c  — m  - f- c 0£)

that is, when one family of characteristics become tangent to a line £ =  const., an 
infinite curvature would occur if u  is finite there. According to what has been said 
in the last section, this characterizes the “limiting line” of the solution.

Let us push the discussion a step further. For this purpose only the first order 
terms need be retained. Taking j3 as a small parameter, one has accordingly

(pi) i +  Po(w i)i =  0,

according to Eq. (2.2). In a compressive motion (p ,)i> 0 , it follows that

(« * )i =  - A D  < o. (6 .10)
X

(6 . 11)

(6.13)

(6 .12)

—  = ------------------------ , 0 g  £ g  1.
d£ £ («, — £)=— !

(6.14)

Aside from the two singular lines

w =  £ +  1, (6.15) w =  £ -  1, (6.16)
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where the slope of w is infinite, there are two additional singularities (1, 0) and (0, 0) 
where the slope is indeterm inate. T he point (1, 0) acts as a sort of nodal point which 
m akes the initial condition insufficient. T he point (0, 0) is a saddle point as locally 
the equation behaves like

d w  2 w
  = ---------, (6.17)
dï £

which form is obtained by neglecting (w —£)2 as com pared with 1.
T he situation  can now be sum m arized. The integral curve starting  from (1, 0) 

rises as £ decreases and eventually  intersects with the line (6.15) where it will have a 
vertical tangent a t £ < 1 . A fter it crosses this line its slope changes sign. T his causes 
the curve to bend backw ard again. Thus, £ is seen to  assume a minimum value. Owing 
to  the fact th a t the origin is a saddle point, no integral curve could possibly cross 
the line £ =  0. T his fact m akes the continuation of the solution as far as £ =  0 impossi
ble.

7. Continuation of the solution. T he results obtained in the previous sections 
show th a t, in the case of the propagation of a spherical or cylindrical wave, a con tinu 
ous solution does no t exist th roughout the dom ain considered and can be constructed, 
a t  m ost, as far as a singular line I in the /, x-plane from a suitably chosen initial data. 
T he line I thus acts as a sort of “fron tier” into which no solution can en ter and a t 
which the solution is turned back as a second branch. T he dom ain then is doubly 
covered. Physically, this is impossible and hence m ust be rejected as a solution. T he 
question is: is it possible to  connect it with a different solution beyond this line?

First; consider the line X as a “su p p o rt” with a given set of initial d a ta  and then 
solve the initial value problem 8 for a M onge-Am père equation. Regarding X as a 
param eter, we have along thé line X

d du  dv
—  X «  =  X u u —  +  X « »  —  ’ i 7 * 1 )
dX dX dX

d du dv
- X .- -  , (7 .2 )

and hence

2 du  d d
( X u u X u u  Xuu )  , ' X  ur j X u  X u r  Xu*

dX dX dX

S ubstitu ting  this into Eq. (2.11) we obtain a linear relation between the partia l de
rivatives:

Xuu T
'aßuv (dxu /dX  

x  I d l l /  dX
X u}

otßuv dxv /dX  .
X u u  — 7—  X uu  =  Xu.  (7 .3 )

x a u / d \

Since X is not a characteristic, Eqs. (7.1), (7.2) and (7.3) are sufficient for a unique 
determ ination of Xuu, Xuu and Xuui and consequently a unique integral surface. The 
uniqueness of the solution is sufficient to  show th a t the solution, when transform ed

8 Courant, R. and Hilbert, D., Methoden der math. Physik, vol. 2, J. Springer, Berlin, 1937, p. 344.



360 Y U N G -H U A I KUO

back to  the t, x-plane, will correspond to  the very one th a t  doubles back a t  the “lim it
ing line.” A continuous solution is thus o u t of the question.

T he a lternative  procedure would be to continue it by joining it sm oothly a t  the 
line X to the lost solution. This is also impossible. Indeed, if this were possible, the 
line X would have to  coincide w ith the integral curve v(u) in order to  provide a con
tinuous solution. This is contradictory , because it is easy to show th a t the line X does 
not satisfy the differential equation for v (u ) .

The other possibility which rem ains to  be investigated is to  identify'- the “lim iting 
line” as a shock wave so as to construct a discontinuous solution. This would require 
the continued solution to  satisfy the shock conditions. Since, in general, the “limiting 
line” I is curved, as a result there would be a non-uniform  shock wave in the motion, 
for which both  the speed and the streng th  are no longer constan t and therefore the
entropy  would be constan tly  changing across the shock. T his very fact m akes the
original assum ption untenable. H ence to  continue discontinuously a solution w ith 
entropy  constan t everywhere is also impossible.

The problem m ight be solved, however, if the original hypothesis of isentropic 
m otion is abandoned. T o  include the possibility th a t  a  shock wave m ay exist w ithin 
the m otion, the continued solution m ust satisfy the following more general set of 
equations:

u, +  u u x +  — =  0, (7.4)
P

(  a u \
Pi  +  « P i  +  p ( « x  H— -— ) =  0, (7.5)

(pP~y)t +  u(pp-y)x =  0. (7.6)

T he task  then  is to construct a solution which should satisfy both  the initial and the 
shock conditions in a region bounded by the initial curve, the shock line and a char-, 
acteristic draw n to the initial curve through the point where the envelope first ap 
pears. T he shock line, however, is no t given, it should be chosen in such a w ay th a t  it  
yields a solution fulfilling all the prescribed conditions. T he m athem atical problem 
thus tu rns out to  be extrem ely difficult.

T he au th o r wishes to  th an k  D r. H. S. Tsien for his invaluable discussions and 
criticism.
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O N  P R O J E C T IL E S  O F M IN IM U M  W A V E  D R A G *

BY

W ILLIAM  R. SEARS  
Cornell University**

1. Introduction. T he wave resistance of slender bodies of revolution in sym m etri
cal supersonic flow was calculated approxim ately by  von K ârm ân ,1 by means of a 
d istribu tion  of singularities along the axis of the projectile. T he individual singularity 
is characterized by a potential of the form <£,(x, r) =  j (x — £.)2 — a 2r 2}-!/2, where a;, r 
are cylindrical coordinates, x being measured downstream  from the nose of the projec
tile and r radially from the axis, is the value of x  corresponding to the singularity, 
a  is the cotangent of the M ach angle of the undisturbed flow, so th a t

a  =  V ( u / a y  -  1,

U and a being the stream  velbcity and the velocity of sound in the undisturbed flow. 
I t  will readily be verified th a t  <£j(x, r) is a solution of the linearized potential equation 
for supersonic flow with axial sym m etry

/  U2 \  d2<f> d24> 1 d<}>
(  1) — - =  — +  — — • (1)
\  a2 )  dx2 dr2 r dr

Von K arm an calculated the wave resistance by integrating the transport of mo
m entum  across a cylindrical surface enclosing the body. In his approxim ation, the 
integral is independent of r and can be evaluated in the lim it r—>0. T he result isf

R  =  -  irp f  f  / '(* ) /'(£ ) log | x -  £ | dxdÇ, 
J  0  J o

(2)

where R  is the wave resistance and /(x ) is the function specifying the d istribution of 
singularities along the x axis. For bodies of finite length / ,/ (x )  is found to  be indenti- 
cally zero for x > l ;  hence both integrals in (2) can be replaced by integrals from 0 to I.

For slender bodies, von K arm an showed th a t approxim ately

U dS
M l  =  7  7 !  ( 3 )Z7T ( I X

where 5  is the cross-sectional area of the body.
In the present paper we shall am plify the analogy, already m entioned by von 

Karm dn, between the wave resistance of a slender projectile and the induced drag of a 
wing. I t  will be shown th a t th is analogy suggests a useful form for the calculation of

* Received June 11, 1946.
** T his work was undertaken while the author was employed by Northrop Aircraft, Inc.
1 T h. de KArmdn, The problem of resistance in  compressible fluids, A tti del V Convegno della “Fonda- 

zione Alessandro V olta ,” Rome, 1935, pp. 222-276.
t  Von K drm in1, Eq. (9.12). It might be mentioned that this formula is m ost easily obtained from 

Eq. (9.11) of the same reference by first integrating by parts with respect to x in order to obtain a form 
symmetrical in x  and £; it will then be found that a double integral carried over half the first quadrant 
of an x, $ plane can be identified with half the same integral carried over the entire quadrant.
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the wave drag. T he properties of projectiles of m inimum wave drag for given length 
and volume, and for given length and caliber, will then be investigated.

2. The induced-drag analogy. Form ula (2) for the wave drag can be w ritten  in 
the form

R  =  -  ttp f  f '(x )F (x)dx  (2')
J  o

or, afte r integration by parts, a ssu m in g /(0 ) = /( /)  = 0 ; i.e. th a t the body has sharp 
points a t front and rear,

R — ttp f  ‘f(x)F '(x)dx,  (2")
d 0

where

Fix)  =  f V ( i ) lo g  | s - f | d f .  (4)
j  0

In the form (2"), von K arm an’s analogy between the wave resistance and the 
induced drag of a finite wing in the P randtl lifting-line theory2 is evident: f (x )  is 
proportional to  the circulation distribution over the span of the wing, F'(x) is the 
corresponding downwash distribution, and R  is the induced drag.

I t  is also useful to p u t (4) in another form, sometimes more convenient for calcula
tion. L et us introduce the coordinates 6 and d  defined by

I
x — — (1 +  cos 6),

I
f =  —  (1  +  COS d),

T he expression for F(x) then becomes

1 r r
F(x) =  — I / '( f )  log | cos 9 — cos 0 \ sin Odd, (6)

2  J  o

provided th a t  /o/(£)d£ =  0, as is always the case for closed bodies, in accordance w ith
(3). Now the definitions in (5) can be taken to cover the range —7 rg t?g ir,
a n d / '(£ )  can a rb itra rily  be defined to be an odd function of d. T hen (6) can easily be
p u t in to  the form

F(X) = 4  f  V(S) log
L */ —x

or, after integration by  parts,

I f 1 0 - d
F{x) =  -  -  I /( f )  c o t— —  dd. (7)

•/ —x 2

sin • sin ddd

0 Ú 9,

d ś  7T.

(5)

J L. Prandtl, Tragflügeltlieorie I, from Vier Abhandlungen zur H ydrodynam ik and Aerodynamik, 
Göttingen, 1927, pp. 9-35.



T he induced-drag analogy pointed out above suggests th a t /(£ )  be expanded in a
sine series; this is the usual technique employed in the P randtl wing theory :3

/ x \  i u  « /  e\

\ t )  " T P -  “ " ( % ) •  (8)

Substitu ting  in (7) and (2 '). we obtain the following expression for the wave drag:

7T3 p U 2 *  2
R = -----------;2E  nbn (9)

4 2 i

— again analogous to a well-known expression for the induced drag of a wing.3
3. M inim um  wave drag for given volume and length. T he expression for the cross- 

sectional area S  corresponding to (8), in the approxim ation represented by (3), is
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irl2
S =  |  [x — 0 +  -J- sin 20]6i — X  bn

S'

2

'sin (» — 1)0 sin (» +  1)0' 

n — 1 n +  1
} • (10)

I t  is clear th a t  for closed projectiles, pointed front and rear, b\ m ust vanish.* Also, 
the to tal volume occupied by the projectile is

Vol. = J Sdx  =  (0, -  $6,) (11)
or, for closed pointed bodies,

Vol. =  -  ¿2. (12)

Hence, for given length and volume, the minimum wave resistance is obtained 
when only b2 is different from zero. The geometry of this body is given by

x / 2 Z>2 x /202
5  =  (sin 0 — |  sin 30) =  sin3 0 (13)

4 3

and its wave resistance is
x 3 PU 2 2 2

R —   ------  I 02
2 2

9 PU2 
=    X 2  S m*x

d - r - y8 2

, ± i £ l ( ± Y p ! L T . (M)
i  2 \  2 /  L (I /2 ) 'J

T his is eight times the wave drag of von K arm an’s ogive* of equal length and vol
ume, or abou t 11.1 times th a t of von K arm an’s ogive of equal length and caliber. ( I t

* Th. von K irm in  and J .M . Burgers, Aerodynamic Theory, edited by W .F . Durand, vol. 2, J. Springer, 
Berlin, 1934, pp. 172-175.

* If biT^O while bi — b t— ■ ■ • = 0 , the ogive considered by von Kdrmdn1 is obtained. Its maximum  
cross-sectional area is v^Pbi/A and occurs at its stern, x  =  l. According to (9), its wave drag is 
(xV 4)(p lP /2)P b\ or (p[7i/2 )5 mai (dm.* //)5, where Sm„x is its maximum cross-sectional area and dmnx is its 
maximum diameter, or caliber.
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should be m entioned th a t  this comparison m ay be misleading in view of the fact th a t 
von K drm an’s ogive has a b lu n t stern, so th a t its wave drag certainly does not repre
sent its entire resistance, even in the absence of skin friction. N evertheless, the wave 
resistance of th a t  ogive m ay be taken as a convenient reference.)

T he shape of the forward half of the sym m etrical projectile represented in (13) 
is drawn in Fig. 1, for the case l= 4 d max. For comparison, there is also shown the shape 
of von K arm an’s ogive having the same caliber and one-half the length.

F i g . 1. Profiles of various projectiles of minimum wave drag: (a) volum e and length given, (b) caliber 
and length given, (c) von Kdrmdn’s ogive of equal caliber and one-half the length. (Projectiles (a) and 
(b) are symmetrical fore-and-aft.)

4. M inim um  wave drag for given caliber and length. To a ttack  the problem of the 
body shape for m inim um  wave drag, caliber and length specified, we re tu rn  to the 
expression for the wave drag given in (2 ') and (4) and employ the m ethods of v aria
tion calculus. By virtue of the sym m etry  w ith respect to  x  and £, the  variation of the 
resistance w ith varying body form assum es a simple form; viz.,

oi? =  -  xP | J  ‘ Sf'(x) J  / '« )  log | * -  £ | d& x

+  J  / '(£ )  J  $/'(£) log | x  -  ? |

=  -  2xp f  8/ '(x)F(x)dx.  (15)
j  0

In this section we shall provide for the possibility [excluded in obtaining (2 " )]  
th a t  dS/dx,  and th ere fo re /(:*;), is discontinuous a t the station  where the maxim um
diam eter occurs, x  = m. Hence, in tegrating  by p arts  in (15), and again assum ing sharp
points a t bow and stern, we write
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5R =  —  2 t P | f ( » ) 5  [ / & ) ] „  -  J  8f (x)F '(x)dx^

=  -  2rp |F ( « ) i  [/■(*)]„ +  L-  f  8S (x )F "(x )d x j  , (16)

where [f(x)]m denotes the value of the discontinuity in f (x )  a t  x  = m, and the area 
function S(x) has been assumed to be continuous.

In the form (16) it is clear th a t  the shape of the p art of the body forward of the 
maximum section a t  x  = m  can be held fixed while S(x)  is varied over the rear part 
to achieve a  minimum of R; then the rear shape can be fixed in this m inim um -drag 
configuration while S(x)  is varied in front to minimize R-, the resu lt will be the m ini
m um -drag shape for given maximum cross section a t  x  =  m. We shall also assum e th a t 
the discontinuity of slope represented by [/(x)]m is not varied in the process; it will 
appear la ter th a t this is valid. The m inim um -drag condition 8R = 0 is then obtained 
when

F"(x) = 0 )
> 0 ^  x m,

F(x) =  cix +  c2)
(17)

F"(x) = 0 )
>m £  x ^  I.

F(x) =  c3x  +  c j

T he analogy with the induced drag of a wing is again useful. The analogous prob
lem is the following: to  determ ine the spanwise circulation distribution f (x )  so as to 
obtain minimum induced drag, it being required th a t the to tal lift be zero, b u t th a t 
the lift carried on one side of a station  x  — m  have a given value, equal and opposite to 
th a t carried on the o ther side of th a t  station. T he result obtained in (17) sta tes th a t  
the condition of minimum drag results when the downwash F'(x)  is constan t in each 
of the two parts of the wing.

Fortunately , investigations have been m ade4’6 of the behavior of the circulation
distribution near a point on a lifting line where the downwash in discontinuous. I t
is found th a t  the circulation function is continuous b u t has a vertical tangen t and dis
continuous cu rvatu re  a t  such a  point. Applying this result to  our projectile problem , 
we can conclude th a t  /(x ) will exhibit a singularity of this type a t  x  =  m. M oreover, 
since F(x) can be in terpreted  as the downwash corresponding to the circulation dis
tribu tion  S (x ), we conclude th a t F(x) cannot be discontinuous a t  x  = m if we exclude 
singularities of th is type from the shape function S(x). Accordingly, we w rite

(ci — c3)m -  Ci — c2. (18)

T he resistance of the m inimum-wave-drag body is easily calculated from (2 '); i t  is

4 A. Betz and E. Petersohn, Zur Theorie der Querruder, Z. angew. M ath. Mech. 8, 253-257 (1928); 
also N at. Advis. Com. for Aeron. Tech. Memo. N o. 542 (1929).

5 H. M ulthopp, Die Berechnung der Auftriebsverteilung von Tragflügeln, Luftfahrtforschung 15,153—
169 (1938).
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R  =  — 7 r p |—  (^3 — c{)Smax +  (CiVl +  c2) [ / ( * ) ]  m |

U
P ^ (^1 P3)*^maxi (1 9 )

where S max is the cross-sectional area a t  x = m .
The form of f ( x )  corresponding to (17), and subsequently the shape of the body, 

can be determ ined by inverting (7) by  m eans of the so-called “R eciprocity T heo
rem ” :6

1 r 2’ 8 — &
~  T T  I cot ——  dd. (20)

Z7T“ J  o ^

The quadratures involved are ra ther tedious, b u t can be carried out. The result is

/(* )
I f  1 — cos (6 +  n) )

=  —  <(c3 -  ci){x -  m) log   —   +  l(c3 -  c'i)n +  trcijf sin 6} , (21)
2t -  { 1 — cos (6 — n) )

where m = ( / /2 ) ( l+ c o s  ix). I t  can quickly be verified th a t this function has the type of 
singularity a t  x  — m  th a t  was predicted by the wing analogy.

This expression can be integrated again to evaluate the constants Ci and c3 and 
then to determ ine the function S(x). By integrating  from x  =  0 to x =1 it is determ ined 
th a t  (p3 Ci) (/x "2 sin 2n)+irci = Q. Finally, by carrying ou t the lengthy quadratures 
necessary to apply the condition (f//2Tr)Smax =  / 0”‘/(.v)dx, it is found th a t

u — -I sin 2u
ci =  4£ tfm. x I  (22)

I- sin4

T he wave resistance (19) then assumes the form

PU2
R  = ------

2 \  I J  sin4 p
or (23)T 7 9 / J v O / / v On —O

( d max Y  7T-

\  I )  sin4

T hus the wave drag varies sym m etrically abou t m = l / 2 or p = tr/2, and is least if the 
m aximum cross section is located a t  m id-length— i.e., for a sym m etrical projectile. 
T he wave drag of this projectile is 7rs times as great as th a t  of von K ârm ân’s ogive of 
equal length and caliber. I ts  shape is indicated in Figure 1.

5. Concluding rem arks. A som ew hat sim ilar analysis of projectile shapes for m ini
mum wave resistance has been made by H aack ,7 who considered only sym m etrical 
projectiles. T he results obtained here are in agreem ent w ith  H aack’s for such projec
tiles, except for the value of the drag of the m inim um -wave-drag body for given length 
and volume, which seems to have been tabu lated  erroneously in the earlier paper.

6 R. Courant and D. Hilbert, Methoden der mathematischen Physik, vol. 1, J. Springer, Berlin, 1931, 
p. 83.

7 W . Haack, Geschossformen kleinslen Wellenwiderstandes, Bericht 139 der Lilienthal-Gesellschaft fiir 
Luftfahrt.
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T H E  B O U N D A R Y  L A Y E R  IN  A  C O R N E R *

BY

G. F. C A RRIER  
Brown University

1. Introduction . T he lam inar flow of a  re la tively  non-viscous fluid through a  chan
nel is characterized by the presence of a thin boundary  layer along the walls. In
s tra ig h t channels, such boundary  layers are usually  assum ed to  have the velocity 
d istribu tion  determ ined by Blasius [l ] for the flow p ast a flat plate, and  the flow 
p a tte rn  in the neighborhood of any  corner is no t m entioned. I t  seems of in terest to 
develop here the change in the Blasius flow im plied by such a corner.

2. The boundary layer problem . W e shall consider the lam inar flow of an incom 
pressible fluid which impinges w ith the uniform velocity V  on the edges # =  0 of the 
half planes y=*0, z =  0.

T he N avier-Stokes equations and  the con tinu ity  condition which govern such 
flows are

(v-grad) v +  p~l grad p =  vAv, (1)

div v =  0. (2)

H ere v is the velocity w ith com ponents u, v, w; p  is the pressure, v the kinem atic 
viscosity, and  p the density.

As v. K arm an has pointed ou t [2], the essence of the trea tm en t of such equations 
in a boundary  layer problem is to elim inate higher order term s (by a pertu rbation  
scheme or otherw ise) in such a m anner th a t the order of the equations is no t decreased. 
In this w ay no boundary  conditions need be relaxed. We m ay accom plish this by  using 
w hat is essentially P ran d tl’s coordinate transform ation [ l] ,  nam ely

t, =  y /{ v x /V )1'-, f  =  z/{ v x /V y > \  (3)

We also define the param eter £ =  (v/  Fx)1/2.
Since the flow both  w ithin and outside the boundary  layer m ay be expected to 

be essentially in the x direction and  slowly varying in x, we m ay a tte m p t to  find a solu
tion in the form

■ 11 =  V[u0(t], f) +  £î<i(t), f) +  £!M2 +  • • • ] (4)
v =  F(£»i +  £2fl2 +  • • • ) (5)

w = V(£wi +  £2i£>2 +  • ■ ■ ) (6)

P =  pVi(p0 +  £/>i +  • • • )• (7)
We commence the series for v and  w w ith  a  term  of order £, because we wish a  solution 
for which v /V ,  w /V ,  are small. Furtherm ore, if we included term s »o, w 0, the following 
set of equations would contain term s of order £-1 w ith no contribu tion  from the 
viscous term s of Eqs. (1) and  (2). T hus the  solutions wherein Vq, Wo were no t identically 
zero would no t provide results corresponding to the phenom enon under investigation .!

* Received Aug. 30, 1946.
t  Actually, the fact that our results constitute a solution which obeys the differential equation and 

boundary conditions is sufficient justification for taking r , s œ , 3 0 .



T he substitu tion  of Eqs. (4) to  (7) into Eqs. (1) and (2) leads to  the system

«o , v dpo f  dpo
 (ridllo/dri  +  f d « o / d f )  +  'OidUo/dri +  W i d U o / d f i ----------------------------------

2 2 dri 2 0 f

/ a 2 a2\
- ( v + i p ) “ ,  +  «  " )  +  ■ "  m

dpo dp\ ( Uo T dvi a»i1 a2vi \
V  +  i 1 7 - i , ( T L ’ V  +  f 1 7 J  +  l ? +  ' • )  +  • • • - °  w

”  +  +  - °  (10) 

d u 0 t  duo d v i  d w i
 1 —  +  {(■••) +  ■•■ = o. (ii)

2 dr) 2 d£  dr] d£

T he solution of th is system  of equations requires th a t  the coefficient of each power 
of £ in each equation vanish. T he first order approxim ation to  the result is defined by 
the vanishing of the coefficients of £°. T he resu lt can be expected to  be valid only when 
the rem aining term s of the series are negligible, th a t  is when £ is small. T hus the 
solution, like th a t for the flat plate, is valid only a t  sufficiently large distances from 
the leading edges of the planes.

W e now note th a t  the £° term s of Eqs. (9) and (10) vanish only if £o =  const; the 
£° term  of Eq. (11) vanishes if we w rite

«o = g ,t(v , f), »i = K vg vr -  gt)< «a = Kfs*t ~  £»)•
T hus it rem ains to find g(-q, f) such th a t,

g(0 .  f )  =  g , ( 0 ,  f )  =  g(v, 0 )  =  gt(rj, 0 )  =  0

and
lim g,t(ij, f) =  1,

the im plied sym m etry  condition

s K  *) =  g(b, a),

and the differential equation  implied by Eq. (8)

gmC +  gnttt +  M stgiif +  (12)

We m ay expect th a t  far from the corner the solution will be essentially th a t for
the flat plate. Hence, we write

g(v, f) =  /oW /otf) +  Kv,  f) (13)

w here/o  is th a t  solution of
2f "  +  / / "  =  0

such th a t / ( 0 )  = / '( 0 )  =  0;/«»«,(a) =  1. T his function is tabu la ted  in [l ].
E quations (12) and  (13) lead to  the equation
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hm t +  f -f  2a(jj, f)/»„f +  2<z(f,

+  ¿K7?! f)A, +  +  K ^ w r  +  K K i t )  ~  tV̂ O?* f), (14)

where

« ( u ,  f )  =  ł / o ( n ) / o '  ( f ) , b ( v ,  f )  =  -I/o' '  M / o '  ( f )

^ lC ^, f )  =  i { f o ( v ) f o " ( v ) / ó ( n i l  - / o ( f ) ]  + / o ( f ) / o " ( f ) / o ' W [ l  — /o ' (rr) ] } .

T his equation m ay be in tegrated  once each over tj and f  taking account of the 
boundary conditions to yield (when <p= —25h„{)

A ip +  2a(r/, Ç)dip/drj +  2 a ( f ,  ?j)ây>/ôf +  Z>M f )  f +  6 (f , ij) f <pd£
J  o ^ 0

r ip d fj == f)* (15 )
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i f
5 0 1

<pdi7 +  <pf

T he boundary  conditions are

*(0, f) =  ■T’M  0) =  lim ^(ij, f) =  0. 
u.r-oo

T his last form of the equation seems best suited for num erical evaluation. T h e  relaxa
tion m ethod [3] appears to be the m ost appropriate  for the determ ination of <p so 
we form the difference equation derived from Eq. (15) by tak ing  points spaced un ity  
a p a rt in 77 and T he subscrip ts m  and  tt are used to  index these po int positions. T he 
difference equation is

<pm+l.n +  <pm-1.» +  ¥>m,n-1 +  V’m.n+l — 4<p mn “I” ®mn (<Pm+l,n ~  <Pm-l.n)
/» n m

"1“ ® nm (^m ,n+ l <Pm,n—l)  +  b mn j <pdT] +  6nm I pdf 
0 *•' 0

+  .01 jfm .n + l — pm,H-l) V’df +  (^m+l.n ~  'Pm-l.n) <P<f| +  ^  mn =  0. (16)

In this equation the integrals m ay be evaluated  by the simple trapezoidal rule since 
the  function i-p is very “sm ooth” although if more accuracy is desired a simple g raphi
cal m ethod is conveniently employed.

T a b l e  I

r
v 0 1 2 3

f)
4 5 6 7 8 /o' (n)

0 0 0 0 0 0 0 0 0 0 0
i 0 .58 1.00 1.00 .64 .25 .08 .02 .00 .330
2 0 1.00 1.60 1.46 .86 .28 .08 .02 .00 .630
3 0 1.00 1 .46 1.23 .61 .16 .04 .01 .00 .846
4 0 .64 .86 .61 .24 .03 .01 .00 .955
5 0 .25 .29 .16 .03 .01 .00 .992
6 0 .08 .08 .04 .01 .00 .00 .999
7 0 .02 .02 .01 .00 1.000
8 0 00 .00 .00 1 .000



370 G. F. C A R R IE R

Fig. 1. Contours of constant U  in corner boundary layer.

repeat the foregoing procedure. I t  is not necessary to get extrem ely accurate values 
of <p (especially since a, b, A  are no t known too finely) because the velocity u 0=fo {v) 
/o' Oh S') will be accurate to three places when ip is known to the one h un
d red ths digit. T he functions/o ' and  <p are tabu la ted  in T able I and  contours of con
s ta n t Mo are shown in Fig. 1.
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T he num erical procedure is th is: guess values for <p a t  all points m, n 'A 8. Replace 
the zero on the righ t side of Eq. (12) by Qmn and com pute each Qmn (the residuals). 
T hen revise the guesses for the <pmn in such a w ay as to decrease the Qmn, disregarding 
the changes in the values of the term s containing integrals. W hen considerable im
provem ent has been made, recom pute the Qmn using the com plete equation (12) and
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D IF F E R E N T IA L  E Q U A T IO N S  B Y  R E L A X A T IO N  

M E T H O D S *

H. MOTZ 
University of Sheffield, England

1. Introduction. In the course of a s tudy  of boundary  value problems arising in 
radiation theory  and electrostatics, the trea tm en t of singularities dem anded special 
a tten tion . In  m ost problem s of practical im portance boundaries w ith sharp corners 
occur. Such sharp corners give rise to singularities of various types. W hen the com 
puted function is bounded, b u t has a branch point a t the corner, the difficulty is 
no t serious. T he use of a graded net w ith a finer mesh size near the corner is possible. 
Conformal transform ation which autom atically  provides a finer net near corners is 
also successful. T he mesh size near the corner should be of the order of m agnitude of 
the radius of curvature of the corner, and when this is small a m athem atical idealiza
tion involving infinitely sharp  corners is preferable. T he special trea tm en t outlined 
in this note m akes use of such an idealization and shortens the  labour considerably. 
Special trea tm en t is essential when the function approaches infinite values near the 
corner.

2. P lane harm onic functions. Solutions of V2<£ =  0 are bounded when the boundary 
condition prescribes constan t values near the corners. I t  can be shown th a t they  are 
also bounded when d<f>/dv is constant, where v is the direction normal to  the boundary. 
T his type of boundary condition occurs e.g. when two plane harmonic functions <f> 
and \f/ are com puted inside a boundary B  for the purpose of a conformal transform a
tion

x +  i y  =  4>(x, y )  +  i<p(x, y )

and i/'= const. is specified a t  the boundary forming the corner. W hen expressed in 
polar coordinates r, d centered a t  P  (Fig. 1), the equation

VV =  0 (1)
becomes

d 2<f> d(f> d 2<f>
r2 + r — +   =  0. (2)

d r 2 d r  d d 2

W ith cj>(r, d) = R(r) ■ Q(d), the following equations for R  and 0  are obtained

d2Q
 +  » 20  =  0, (3)
d02

d2R  dR
r2------h r  n2R  =  0. (4)

dr2 dr

In these equations n 2 stands for a  positive constant, and

i/0
  =  0 when 0 =  0, 0 =  a.
dd

* Received Jan. 2, 1946.



Hence oo

<t> =  X) A ur" cos nd (5)
A:——co

where n = irk/a (k= 0 ,  + 1 , ± 2 , ± 3 , • • • ).
In order to investigate the term s w ith negative exponent in this series, we exclude 

the corner by a small circle of radius p. On this circle (d<£/3r)„..o =  0. I t  is found th a t

-  p2nA +t (s =  1, 2, 3, • • • ).

W hen p—»0, the circle contracts tow ards the point P  and the term s w ith negative 
exponents vanish. T hus <£ will be represented by the series

7T 2 tT 3 tT
<f> = A o +  A irT/a cos — d +  A 2r2T/a cos — d - f  A 3rZTla cos —  t? +  • • • (6)

a a a

in the neighbourhood of P.
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3. M ethod of special trea tm ent. T he m ethod of trea tm en t will now be explained 
w ith reference to  the example of a corner w ith a  =  27r, 7r / a  =  | .  In the trea tm en t of 
two-dim ensional problem s by  relaxation m ethods,1,2 the function <f> is com puted a t  
points of a net with small b u t finite mesh size. L et us denote by <f>0 the value of <£ 
a t  such a point, by <f>it <f>2 , <t>z, <¿>4 the values of <£ a t  the nearest neighbouring points. 
T he mesh length is a. A t points where the function is regular, double T aylor expansion 
shows th a t

4 1 iv  1 iv
a2V20 — XI = ------- Ao ( s ) --------A0 (y) • • ■ , (7)

m=i 12 12

where Aov(x), A '̂Xy), are the fourth central differences in the * and y  direction, re
spectively, a t  the po int where d) =̂ >o- This expansion can only be used when the right 
hand side converges. A t a singularity  and its nearest neighbouring points this expan
sion is no t valid. Figure 2 shows an example of a boundary where <j> = 0 on A E ,  
<£ =  1000 on E B ,  and dcf>/dv = 0 on all o ther boundaries. T he T aylor expansion fails a t

1 H. W . Emmons, Numerical solution of partial differential equations, Quarterly Appl. M ath., 2, 
173-195 (1944).

8 D. N . de G. Allen, D . G. Christopherson, L. Fox, J. R. Green, H. M otz, F. S. Shaw and R. V. South- 
well, Relaxation methods applied to engineering problems, Phil. Trans. Royal Soc. London (A), 239, 3 6 7 -  
386, 419-537, 539-578 (1945).
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P', Q', R ',  and S'.  In order to obtain valid equations a t  these points, we consider series 
of the type (6) a t  the pivotal points P, Q, R, S

<f> =  A 0 +  A i r 112 cos — +  A 2r cos t? +  A 3r*n  cos 3 /2d +  • ( 8)

Only the first four term s are retained. T he units of r can be so chosen th a t r  =  l a t  
P , Q, R, S. In term s of 0«, 4>q, 0«, <j>s one obtains

581

557

5 2 C

4 7 e

44C

4ie

407

D

5 9 8  625 671 737 8 1 8 9 0 7

A  o  —  

A t  =  

A 2 =

A 3 =

F i g . 2

0.25 (if i r  +  4>q +  0« +  <f>s).

1(?00

589 6 1 5 661 730 814 9oe 100C

563
P

585 629 703
9

803 901 100C

523 533

+10

P>
561

+13

Q1
669 789 897 100C

& <3 O' 464 436

F
+14

328 208 ‘ . 1Q£ 0

434

+1

412

R>

368

S'

289

-1 4

194 97 0

40d

R

382

-1 0

336

-1 3

267

S

183 93 0

399 37 £ 326 260 17S 91 0

0.191 (0« — 4>r) — O.462(0s — 4>q),

O.354(0q — 4>p — 4>n +  4>s),

O.191(0q — 4>s) +  0.462(0« — 4>p)•

A t the special points P', Q', R ',  and S',  we find from (8)

4>p' — 0.4570« -f- O.2350Q -f- 0.2090« -)- 0.0990s,

0 q' =  0.2350« T  O.5930Q T  0.0990« 0.0730s,

0«' =  0.2090« -T 0.0990c T  0.4570« -T 0.2350s,

0 s ' =  0.0990« -f- O.O/30Q "T 0.2350« -f- 0.5930s.

(9)

(1 0 )
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These are the equations used a t  special points. The relaxation procedure is carried out 
norm ally everywhere, observing th a t equations (10) hold a t  special points. T he resid
ual a t  a special point due to  an increm ent a t  a pivotal point P  is therefore the prod
uct of th is increm ent w ith the coefficient of <j>r in the equation which holds a t  the 
special point. This is in accordance with the usual relaxation procedure. T he removal 
of a residual a t  a special point is particularly  easy. I t  is simply subtracted  from the 
value of 0  a t  the special point in question. Due to  th is removal the usual residuals 
accrue a t  ordinary  neighbouring points, b u t of course, no residuals are passed on to 
special points.

Figure 3 refers to an example w ith a  =  3 -7r/2. Here we re ta in  three term s only 
Special points are P', Q', R \  pivotal points P, Q, R.  T he equations a t  special points are

<j>P' =  O.4860P -f- 0.257<£<3 T  0.2570s,

<j}Qr =  O . 2 5 7 0 P  -f- O .6 1 2 0 Q  T  0 . 1 3 1 0 s ,  ( I I )
=  O . 2 5 7 0 P  T  0 . 1 3 l 0 o  4 "  0 . 6 1 2 0 s .

I t  should be checked w hether the three first term s of the series

0 =  ^o +  A ir213 cos-f# - f  A rt*13 cos £ < ? + • • •  (12)

which has been used for the derivation of (11) represent the function 0  adequately. 
This is done by com paring the result of the relaxation com putation a t  points S, T, 
where ordinary difference equations have been used w ith the values of 0  calculated 
by m eans of the first th ree term s of (12).

A sim ilar check was carried out a t  analogous points in the example of Fig. 2. I t
was found th a t the agreem ent was not satisfactory. T he errors have been recorded in
Fig. 2 underneath  the respective 0  values. In this case it is possible (with the net 
shown in Fig. 4) to  retain  five term s of the series. Pivotal points are T, U, V, W, X ; 
special points T', U', V ' , W r, X ' , and the equations for 0  a t special points are

0r , as 0.546 0 r T  0.313 <t>u T  O.O62s0v T  O.O6250iv -f- O.O160X»

0 c i' =  0.156 0 r  +  0.578 0c? 4 "  0.188 0 v  T  0.047 0 j r  T  0.031 <px■

<t>v =  0.031 0 r 4~ 0.188 <f>u T  0.562 <f>v T  0.188 <t>w ~F 0.031 4>x, (13)

0iv' =  0.031 0 r T  0.047 0 u -f- 0.188 0v T  0.578 0iv 4- 0.156 0x,

<t>x‘ =  0.016 0 r 0.06250c/ 4“ 0.062 <j>v T  0.313 0iv 4" 0.546 <t>x-



The result is again checked by com paring the result of the relaxation procedure w ith 
the <f> values near the corner calculated from

</> =  Ao +  A \ r in  cos -¿t? +  / l 2r cos -f- A 3r3li cos +  A 4r2 cos 2t?,
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5 9 0 6 0 7 6 4 3 7 0 0 7 7 6 8 6 3 9 5 4 L 0 0 0

5 7 3 5 8 9 6 2 3
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U i
6 3 9 7 4 5 8 4 9 9 5 0 L 0 0 0
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V
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- 5

V '
4 9 9 4 9 9
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T
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4 5 7 4 4 6 4 2 0
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2 7 1

X i

2 5 4

1 5 6

X

1 5 0

5 1

5 0

0

0

4 5 2 4 0 9

+ 5

3 7 5

V
3 1 6

+ 1

2 3 4 1 4 2 4 8 0

4 0 8 3 9 0 3 5 4 2 9 8 2 8 3 1 3 7 4 8 0

F ig. 4

where the ^4’s are given by

A o =  0.250(fo +  4>v +  fo ’) +  0.125(<̂>5r +

A i =  0.354(fo — <f>w) +  0.250(fo —'for),

A% = — 0.500fo +  0.250(fo +  <t>x), (14)

A t  =  0.354(fo — <t>u) +  0.250(fo — <j>x),

A t  =  0.250(fo — <t>u — fo\) +  0.125(07- +  0.v).

T he agreem ent is now much better. In Fig. 4 the errors have been recorded. I t  will 
be noticed th a t the mesh points of Fig. 2 lie between those of Fig. 4. By interpolating 
values a t  m idpoints of the meshes of Fig. 4, we find th a t  the solutions given in the 
two figures are in fair agreem ent.

W hen the above tes t fails, a finer net should be used as a rule, because the calcula
tion becomes ra ther cum bersome when more th an  five term s of the series are retained.

T o obtain, w ithout the special trea tm ent, a result which differs from the one of 
Fig. 2 by  less th an  1% a t any point of the net, the net near the corner would have to 
be 7 times as fine.
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4. O ther examples. As an example of a corner where the value of the function is 
specified, let us consider an electrostatic potential \p. In  this case the series is

^  =  A 0 +  / l i r 1/2 sin ft? -f- / l 2r sin t? +  A r312 sin ft? +  • • • . (15)

T he com ponents of the electric field in Cartesian cordinates, E Xl E v, are no t bounded 
on a sharp corner when a> ir .  L et us consider the term  rn cos Mt? of the series (5). 
E x and E v will contain term s r ’l_1 sin (n — 1)$, r n_1 cos (» — 1)$, respectively, and nega
tive exponents of r will therefore occur when a> ir .  T he m ethod outlined above can 
still be used to  com pute a function w ith such a singularity. In the case a  = 2 v  the 
negative exponent — f  occurs. Term s w ith exponents — f  and + f  depend ont? in the 
same m anner. I t  is therefore necessary to choose pivotal points which have no t all 
the same distance from the corner.

T he m ethod is equally applicable to solutions of the wave equation

VV +  k2<t> =  0 . (16)

In Cartesian coordinates and w ith £ = x /a ,  r ,= y /a  (where a is the mesh length of the 
net), Eq. (16) becomes

d24> d2<f>
 + ---- + k 2a2<f> = 0 . (17)
d e  d r ,2

Referring again to the case a  =  27r, d<t>/dv = 0 and retaining five term s, we see th a t the 
expression (5) holds a t pivotal points. A t the special points we have

J u 2(ka) 7i(fea) J  3iz{kd)
<j> = A o +  A i     cos ft? +  A 2 --------------cos t? +  A 3 -------------- cos ft?

J i /2(2ka) Jr{2ka) J 3/i(2ka)

Jzika)
+  A 4 --------------cos 2i?,

Ji{2ka)

where J n are the Bessel functions of order n. W hen ka < 0  • 1, the ratios J n( k a ) /J n(2ka) 
differ from (f-)n only in the third decimal. W hen the mesh length a is small com pared 
w ith  the wave length / =  27t/&, the special equations are therefore the same for solu
tions of the wave equation and those of Laplace’s equation.

5. Conformal transform ation. W hen a solution of more com plicated differential 
equations, e.g. the equations of viscous flow, or V4E =  0, is com puted it is often an ad
vantage to  remove singularities a t  the boundary by a conformal transform ation  
<j)=4>(x, y), ip=\p(x, y). L et us suppose th a t  it is desired to transform  the interior of 
the boundary shTwn in Fig. 2 into the interior of a rectangle in the <j>, \f/ plane.

T he lines 0 = const. a t  suitable intervals can be found from the ^-values recqrded
in Fig. 2. T he lines \p' — const, are orthogonal to the lines <f> =  const, and are best com 
puted separately.

T he condition for orthogonality

d<j> d\p' d<f> d f

dx dx dy dy

is satisfied when



^  _  x —  — -  — x — -  (18)
3 a: 3y dy dx

where X is a constant. From these equations it follows th a t

d'4> d2<i> ■ d y  d y
— - H---— =  0, — — H-------— =  0. (19)
dx dy2 d a d y

T he boundary conditions for \p' are d\p'/dv = 0 on E A , EB , \p' = 0  on EF, ip' = const, 
on A D , DC, and CB. T he last constan t is a rb itra ry  and m ay be given a convenient 
value, e.g. 1000 for three figure accuracy.

I t  is easily seen th a t it is necessary to determ ine the constan t X in (18), in order 
to  carry  on with the com putation of the original equation (e.g. V4F = 0 ) . In the co
ordinates <p and ip=}np', this equation becomes

f  d- d- \  /  a 2 32 \
( ----+ ----- ) ( ------+ -------) F =  0.
\d y - dp-) \d<f>2 dp2)

T he constan t X is determ ined by (18). These equations can be regarded as an esti
m ate of X a t  every point. D enoting the finite differences in the x  and y  directions a t
the mesh point i by

D x4>(i), D v4>(i), D y ( i ) ,  D ,y { i ) ,

the quan tities 8\(i) and 52(i) defined by

t>i(i) = DA>(i) -  ^Dv<P'(i), 82(i) =  Dy4>{i) +  \ D y { i )  ' (20)

are not all zero, b u t constitu te  a  m easure of the com putational error. I t  is desired to 
find a m ean value for X for which the variance of the com putational error is a mini
mum. T he sum

H  +  5z(»)]
»

is thus minimized with respect to X and the following expression for X is obtained:

£  [ D y i ) D y { i )  - D y^ i ) D y { t ) \

x = ^  ;--------- T------7--------- 7-------  (2 1 )
£  ( { D y ( i ) } 2 +  { D y ( i ) } 2)
*

I t  has been found th a t, w ith the help of this technique of separate com putation  of 
the two transform ation functions and using the special trea tm en t of corners a t  the 
boundary conformal transform ations can be com puted with great accuracy.
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T H E  G E N E R A L  V A R IA T IO N A L  P R IN C IP L E  O F  T H E  T H E O R Y  
O F  S T R U C T U R A L  S T A B IL IT Y *

BY

W ILLIAM  PRAG ER  
Brown University

1. Introduction. T his paper is concerned w ith the general problem of structu ra l 
s tab ility  in the elastic or plastic range. Tw o slightly different form ulations of this 
problem are found in the literature. According to  the first, one considers a deform able 
body which, initially, is free from stresses, and which is then  subjected to  a system  
of loads of gradually increasing intensity . As long as these loads are sufficiently small 
the equilibrium  configuration which the body assum es under their influence will be 
stable; one asks for th a t  in tensity  of the loads for which this equilibrium  configuration 
first becomes unstable. According to the second form ulation of the problem of s tru c
tural stability , one considers a given configuration of a deform able body and an equi
librium system  of body and surface stresses and asks w hether, in the presence of these 
initial stresses, the given configuration is stable or not. This second point of view is 
adopted  in this paper because:

(1) it clearly separates the stab ility  problem  from the problem  of finding the 
stresses produced by the given loads, and

(2) the m anner in which the initial stresses are produced is irrelevant for the solu
tion of the stab ility  problem. In  particular, i t  is by  no m eans necessary th a t  the initial 
stresses are produced by loads which are applied to an otherwise stressfree body; 
they  m ay be produced by  tem perature changes or m ay partly  be due to previous over
straining of the body.

Once this second point of view is adopted, stress-strain  relations en ter into the dis
cussion a t  one point only: we m ust be able to predict the infinitesimal changes in 
stress which correspond to  the infinitesimal strains associated w ith  a system  of in 
finitesimal displacem ents from the considered equilibrium  configuration. As the re la
tions between these infinitesimal changes in the stresses and strains are essentially 
linear, the only difference between the elastic and plastic ranges consists in the fact 
th a t  in the plastic range a different set of coefficients m ust be used in these linear 
relations according to  w hether the change of stress constitu tes “loading” or “unload
ing,” while no such distinction need be m ade in the elastic range.

In  Section 2, the general problem of structu ra l stab ility  is reduced to an eigen
value problem for the displacem ents from a  configuration of indifferent equilibrium  
to  a neighbouring configuration of this type. Except for the consideration of plastic 
deform ations, we follow Biezeno and H encky1 in this derivation, b u t sim plify the  dis
cussion by the system atic use of tensors. In Section 3, a  variational principle is derived 
which is equivalent to  the eigen-value problem  form ulated in Section 2. As an ex
am ple for the  application of this principle, th e  lateral buckling of an  unevenly heated 
lam ina is trea ted  in Section 4.

* Received June S, 1946.
1 C. B. Biezeno and H. H encky, Proc. Roy. Acad. Amsterdam, 31, 569-592 (1928).
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2. The eigen-value problem associated with the general problem of structural sta
bility. We consider a given configuration of a deform able body and an equilibrium system 
of body and surface stresses which is given to w ithin an a rb itra ry  factor X. I f  X is 
sufficiently small, this equilibrium configuration will be stable; we ask for  that value o f \  
for which it becomes indifferent, assuming that the additional stresses which are produced 
by infinitesimal displacements from  the given equilibrium configuration are linearly re
lated to the corresponding infinitesimal strains. This critical value of X will be called 
the safety factor of the considered equilibrium  configuration. W ith respect to  a system  
of rectangular C artesian coordinates Xi, let us denote the com ponents of the given 
stresses by  Xtr,-,- and the com ponents of an infinitesimal displacem ent from the given 
equilibrium  configuration by If the unit vector along the outw ard norm al to the 
surface is denoted by m ,  the surface stresses are

\ T  j =  XcTijiii. (1 )

T he quantities a n  m ust satisfy the equilibrium  conditions

an.i = 0, (2)

where the subscript i  after the com m a denotes differentiation w ith respect to  Xi, and 
the usual sum m ation convention regarding repeated subscripts is adopted.

T he infinitesimal strain  associated w ith the displacem ents is given by

Cij ~  2 (2L,; T  Ujti) . (3)

Since the relation between this strain  and the corresponding additional stress r,-,- is 
assum ed to be linear, we have

Tii — Cijkitki, (4)

where Cijki is a fourth order tensor which is sym m etric w ith respect to i  and j  and 
w ith respect to k and I. If, in particular, m  and e,-,- are assumed to  be related to  each 
other by the generalized law of Hooke, we have

Cijki =  2Go^S{k5ki —   — OijSkiJ, (5a)

where Go denotes the modulus of rigidity, v  Poisson’s ratio, and 8 a  is the K ronecker 
delta. If the body under consideration can be expected to  behave like an isotropic 
elastic solid for an infinitesimal displacem ent from the given equilibrium  configura
tion,2 i.e. if the stresses Xtr,-,- do nowhere exceed the elastic lim it of the m aterial, the 
expression (5a) m ay be used in connection w ith the stress-strain relation (4). On the 
other hand, where the stresses Xc,-,- exceed the elastic lim it, different expressions m ust 
be used for Cijki according to w hether the stresses r <}- associated w ith  the strains e,-,- 
constitu te “loading” or “unloading.” We reserve the com plete discussion of suitable 
stress-strain relations beyond the elastic lim it for another paper and give b u t one ex
ample here. Defining the stress deviation as Sij = o n  — \akk8ij and its  intensity as 
5  =  \sijSn, we set

2 M. A. B iot [J. Appl. Phys., 10, 860-864 (1939)] and, more recently, F. D. Murnaghan [Proc. Nat. 
Acad. Sci., 30, 244-247 (1944)] have pointed out that an elastic solid under initial stress can be strictly  
isotropic only if  the initial stress is of the nature of a hydrostatic pressure. For the conventional structural 
materials, however, this small anisotropy caused by the initial stress can be disregarded as long as the 
initial stress does not exceed the elastic limit.
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and

/ v \ Go — G
'ijki = 2Go( $\j$ki j ~ r SijSki for Sij€ij ^  0\ 1 — 2 v / 5

Cijki = 2Go(sik5ji ~    — Ö,-jSk^j for Stye»-/ <  0-

(5b)

(5c)

Here G0 denotes the value which the modulus of rigidity assumes in the elastic range, 
while G =  G(5) is the so-called tangent modulus of rigidity. In the elastic range G =  G0, 
and (5b) as well as (5c) reduce to (5a). T he stress-strain relations which are obtained
by substitu ting  (5b) and (5c) into (4) were suggested by J. H. Laning in an unpub
lished paper (1942); they  constitu te  a generalization of stress-strain  relations which 
the present au tho r had used in earlier papers.3 We note th a t  Cijki — Ckin, according 
to (5a), (5b), and (5c).

A generic particle w ith the coordinates xi  in the initial s ta te  has the coordinates 
Xi= Xi+U i  in the considered neighbouring state , and

dxi =  (dij +  Ui,,)dxj — (5n +  e,y +  u {j)dxj,  (6)

where the deform ation ey is defined by (3) and

w»y =  Mm>. y u i.i) (7)

is the ro tation  associated w ith the displacem ent U{.
T he infinitesim al force 'Kdf,- which is transm itted  across the surface elem ent d S  in 

the initial s ta te  equals
\ d f  j =  \T jd S  = \oijUidS. (8)

T he force which is transm itted  to the corresponding m aterial elem ent in the neigh
bouring s ta te  will be w ritten  in the form

\ d f j  — \onnidS.  (9)

N ote th a t the norm al vector «,• and the area d S  in  the initial state are used in (9). 
T his m eans th a t  the stress tensor Xi,-,- is defined in the Lagrangian m anner4 w ith the 
initial s ta te  as the s ta te  of reference. Consequently, Xcr,-,- is n o t a  sym m etric tensor; 
it will be w ritten  in the form

XiTij =  XcTjy ri” T{j “b Tij "b T\jt (Id)

where the term s r,-,-, r(,, and t[J are infinitesimal changes of stress defined in the 
following m anner:

(1) the tensor r,-,- is sym m etric; it  represents the change of stress associated with 
the infinitesimal strain  e a n d  is given by Eq. (4);

(2) the tensor Ty, too, depends on the strain  ti,-; it is antisym m etric and repre
sents the change of stress necessary to  restore the m om ent equilibrium  which is
expressed by the sym m etry  of a n  in the initial s ta te  and which is disturbed by  the
deform ation ;

5 W . Prager, Proc. Sth Internat. Congr. Appl. Mech. Cambridge, M ass., 1938, pp. 234-237; Prik- 
ladnaia M atem atika i M ekhanika 5, 419-430 (1941); Duke M ath. J. 9 , 228-233 (1942).

* H. Jeffreys has recently given a similar analysis using the Eulerian approach [Proc. Cambridge 
Phil. Soc. 38, 125-128 (1942)]. The Lagrangian approach seems more suitable, however, for the problem  
under consideration.
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(3) the term  x{" , finally, depends on the ro tation Wj,-; it  represents the change of 
stress, w ith respect to  th e jfixed coordinate axes, which is produced by this rotation.

sis, the order in which the deform ation e,-,- and the ro tation wt)- are applied is im m a
terial.

The antisym m etric tensor r'tJ depends only on To find its m athem atical ex
pression, it is therefore sufficient to consider a pure homogeneous deformation, i.e., a 
deform ation for which m,.,- is independent of the coordinates and «»,) =  « /,»=  e«/. On 
account of (9), the equations of equilibrium  for the deformed body are

Since these equations m ust hold not only for the entire body, b u t also for an a rb itra ry  
portion of it, we m ust have

Using the sym m etry  of the tensors a,-,- and m  in addition to  the Eqs. (10), (11), (2), 
and neglecting higher order term s, we m ay therefore write (12) in the form

T he tensor depends only on T o find its m athem atical expression, it is suffi
cient to  consider a rigid body ro tation, i.e., a  system  of displacem ents iii which de
pend linearly on the coordinates Xi and satisfy By this ro tation  the
com ponents of the infinitesimal force transm itted  across a given surface elem ent are 
transform ed according to

For the considered rigid body rotation  T,-,=r<'y =  0. Using (8), (9), and (10), we 
m ay therefore write (14) in the form

R eturning now to the consideration of a rb itra ry  infinitesimal displacem ents u it 
we write in accordance w ith (10), (13), and (15):

Since only first order term s in and need be considered in the following analy-

or

(dijXk dikxfj'i 0. (12)

(13)

d j i — (Si, +  Ui, j )df j  = (8ij +  o}ij)dfj — df i  +  Uijdfj . (14)

(15)

\ < T i j  =  Xcr.-y +  T , j  +  —  O j k ( k i )  —  Xcr a-OJfcy.

On account of (2), the equilibrium condition (11) furnishes therefore 

[ r ,-y  +  ~~ j k ( k i )  —  =  0 ,

and the condition dji  = dfi  furnishes

[r,-,- +  iX(<Tik(ki — O jk tu ) ~  XoikO>kj\n> =  0.

(16)

(17)

( 18)
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Except for our more general definition of the tensor r,,-, Eqs. (17) and (18) agree with 
those derived by Biezeno and H encky. Biot6 obtained the same relations from his 
non-linear theory of elasticity, and Neuber6 has recently discussed the formal rela
tion of the. differential equations (17) to  the fundam ental equations of elasticity. As 
was already pointed ou t by Biot, Eqs. (17) differ som ewhat from the equations which 
T refftz7 derived using an unconventional definition of stress. If the given s ta te  of 
stress, Xtr,-,-, is homogeneous and if the coordinate axes have the directions of the p rin 
cipal axes of this s ta te  of stress, Eqs. (17) reduce to  the form given by Southw ell.8

By m eans of (3), (4), and (7), the quantities r,-,-, and ce,-,- can be expressed in 
term s of the first derivatives of the displacem ent In  th is m anner an eigen-value 
problem for the displacem ent U{ is obtained. T he sm allest eigen-value X is the desired 
safety factor for the given d istribution of initial stresses. We refrain from form ulating 
this eigen-value problem explicitly, because in all b u t the m ost simple cases its  exact 
solution would hardly  seem possible.

3. The variational principle associated with the  general problem  of structura l s ta 
bility. T he form of Eqs. (17) and  (18) suggests th e  existence of an  equivalent v aria 
tional principle from which approxim ate solutions of s tab ility  problem s can be ob
tained. Indeed, let us establish the Euler equations and natu ra l boundary conditions 
of the variational problem

5 ^  [C pqrstpqtrs ~i~ X(7pg(ttr,plL,<j trp^rq) ](7lJ 0 , (1 9 )

where only the displacem ents u p and hence strains epq are to  be varied, b u t no t the 
stresses a pq and the coefficients Cpqrs which depend on the stresses. If the integrand 
of the left-hand side of (19) is denoted by F, the E uler equations and natural bound
ary  conditions are

d /  dl 

d x \ d u
Since

=  T  5 , p 6 y 7 ) ,

d t t j . i
we have

OF
  — 2 C ijk l(k l +  X [2crikUj,k — Giktjk — <sjkdk\
d U j'i

=  2r  i j  +  X[<rit e i /  — cr — 2 o ik<j)kj \ .

E quations (20) and (21) thus are indeed identical w ith (17) and (18).
T he variational principle (19) can be used in very much the same m anner in which 

the principles of m inim um  potential energy and m inim um  com plem entary energy 
are used in elastic ity :9 by reasonable assum ptions concerning the displacem ents m,-

‘ M . A. Biot, Phil. M ag. (7), 27, 468^189 (1939).
6 H . Neuber, Z. angew. M ath. M ech. 23, 321-330 (1943). T he author is indebted to Professor 

E. Reissner for the reference to this paper.
7 E. Trefftz, Z. angew. M ath. M ech. 13, 160-165 (1933).
8 R . \ r. Southwell, Phil. Trans. Roy. Soc. London (A), 213, 187-244 (1913).
8 See, for instance, E. Volterra, Atti Accad. Lincei, Rend. (6), 20 ,424-428 , 463-467 (1934); 21, 14-19 

(1935) ¡2 3 , 329-332 (1936).

- )
0, (20)

OF

diij.i
Hi =  0. (21)
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the class of adm itted  functions is restricted and the variational problem  simplified. 
In using this technique, we m ust see to  it  th a t  the restrictions imposed on the  displace
m ents Ui do n o t rule out the possibility of fulfilling the boundary conditions (17).

4. An example. To illustrate the m anner of application of the variational principle 
form ulated in Section 3, let us discuss the lateral buckling of an elastic, prism atic 
beam of the length I which is built in a t  both ends. We assume th a t  the cross section 
of this beam  is doubly sym m etric. T aking  the origin of the coordinates a t  one end 
of the beam, we let the axis of Xi coincide w ith the axis of the beam and the axes of 
x2 and x 3 w ith  the axes of sym m etry  of the cross section Xi =  0. T o sim plify the expres
sion (5a) for the coefficients C ««, we shall assum e th a t  v = 0. T his assum ption is in 
conform ity w ith  the spirit of the engineering theory  of the bending of beam s; in 
using it we m ust keep in mind th a t Y oung’s m odulus Eo equals twice the modulus of 
rigidity  Go if v =  0.

As to the initial s ta te  of stress, let us consider the case where

C i i  — CX o, (22)

while all o ther com ponents of a n  vanish. T he constan t c in (22) obviously has the 
dimension of a  stress divided by a length. In  an originally unstressed beam  w ith 
built-in ends a  stress d istribution of the type (22) can be produced by  changes of 
tem perature which vary  linearly w ith x 2. If the w idth of the beam (m easured in the 
direction of x3) is small in comparison to its height, (measured in the direction of x2) 
the stresses (22) m ay produce lateral buckling. T he infinitesimal displacem ents as
sociated w ith this type of instability  m ay be described in the following m anner: 
a generic cross section Xi of the beam undergoes a translation u (x i) in the direction 
of the .-c3-axis, a ro tation  — u'(xi)  ab o u t the x2-axis which m akes the cross section 
rem ain norm al to the ben t centerline of the beam, and, sim ultaneously, a ro tation  
— d(xi) abou t the xi-axis; in addition to this rigid body displacem ent the cross section 
undergoes a warping — w(x2l x 3)d'(xi) which is associated with the tw ist —6’(xi). T he 
corresponding displacem ent com ponents are

u i ==  —  X 31 l ' ( x i )  —  w ( x 2 , X i ) O ' ( X i ) , x 30(xt), it3 =  w(*i) — x28(xi). (23)

Note th a t  on account of the assum ption v — 0 the longitudinal extension dui/dxi  is 
not accom panied by any lateral contraction. Particu larly  simple expressions for u2 
and u3 are thus obtained. T he m atrices of the derivatives and of the strains e,-,- 
therefore are

Ui.i =

Uj =

— x3u"  — wd

x 3e' ■ 
u'  -  x-,e'

— x 3u"  — ivO" 

\6’ {x3 — dw/dXi)

+  dw/dx3)

— O'dw/dxz 

0 

0

W { x  3 — dw /dN ->) 

0 

0

— u' — d'dw/dx3 ~ 

-  9 

0

— \9'{x2 +  dw /dx3) ~ 

0 

0

(24)

(25)

Since c r =  0 unless i = j  = 1, we need only m*iWh — for the evaluation of the term  
w ith the factor A in (19). Now, for a  doubly sym m etric cross section the  w arping func-
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tion w  is odd in x3 as well as in x3. T aking account of this fact, and keeping in mind 
th a t an is odd in x 2 and even in *3, we find th a t

j' a u (u k iu k\ — «ki(ki)dv =  — 2c J  u'6'xldv =  — 2c l3 j* u'6'dxu (26)

where I 3 denotes the m om ent of inertia of the cross section w ith respect to the a;3-axis.
We now proceed to the evaluation of term  Cpqr,epqers in (19). W ith ^ =  0, Eq. (5a) 

takes the form £;,-*( =  2Go§ii§j! and the' stress-strain relation (4) reduces to

n ,  =  26V,7. (27)

In applying this, we shall replace 2G0 by £ 0 whenever i —j .  In  view of (25), we have

Cpqrstpqtrj =  Tpqepq =  Eo(xzu" +  •w8")~ +  4Go(ti2 +  eh), (28)

where ti2 and ei3 depend on the tw ist 6r and on the warping w per un it tw ist in pre
cisely the same m anner as in the case of pure torsion. In  this case, however, the in
tegral of 4Go(e?2+ i? 3) over the cross section equals. GqC6'2, where G0C denotes the  to r
sional stiffness of the beam. Adopting the w arping w per un it tw ist found in the case 
of pure torsion, and setting*

r = J  w2dA, (29)

where dA  denotes the area clem ent of the cross section, we obtain

f Cpq„epqer.dv =  £ 0/2 f u'n dxi +  £ 0r  f +  G0C f 6n d x u (30)
J  J  0 0 ”  0

where / 2 is the m om ent of inertia of the cross section w ith respect to the a:3-axis. 
Substitu ting  the expressions (26) and (30) into (19), we obtain

£o/2miv +  \ci3e" = 0 , £»reIV -  G0ce" +  \ c i 3u"  = o (3 1 )
as the Euler equations for our problem, and

6"  — 0 for Xi =  0 and a,'i =  I (32)

as the natu ra l boundary conditions. In addition to these natu ra l boundary  conditions, 
we have the imposed boundary conditions

8 — u — u' =  0 a t Xi =  0 and Xi =  I. (33)

T he safety factor X is found as the lowest eigen-value of the problem form ulated by 
Eqs. (31), (32) and (33).

* N ote that for the doubly sym m etric section considered here the point xu 0, 0 is the shear center 
of the cross section *j. Since w  is odd with respect to xt and x 3, we have «> =  0 a t this point. These remarks 
identify the definition (29) with that given by J. N . Goodier, Eng. Exp. Station, Cornell University, Bulle
tin N o. 27 (1941), p. 9.
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U N S T A B L E  S O L U T IO N S  O F  A  C L A S S  O F  H IL L  
D IF F E R E N T IA L  E Q U A T IO N S *

BY

G A B R IE L  HORVAY  
McDonnell A ircraft Corporation

1. Introduction. L inear differential equations w ith periodic coefficients play an  im 
p o rtan t role in problem s of engineering and physics. T he best-know n of these equa
tions is M ath ieu ’s equation. A som ew hat more com plicated equation is

d*v
 1- \9-ie-u+ +  d-pr'*  +  e0 +  0ie{* +  d o e ^ v  =  0 (la)
# 2

which reduces to M ath ieu’s equation for

do 1 6o, 6—i = 6—i =  6 \ ,  6—2 = 02 = 0,
where the asterisk is used to denote the conjugate complex quan tity .

T his paper is concerned with the determ ination of the solutions

=  <?* £  c * lk* (2)
—co

of Eq. ( la )  sub ject to the restrictions

00 =  00, 0-1 =  01, 0-2 =  02 (lb)

and
0 i  =  0 ( m ) ,  0 2  =  O(ff) ,  ( 3 )

where | i i s a  small positive q u an tity . I t  will be seen th a t solution of the problem in
volves the determ ination of the “characteristic exponent” cr from the equation

sin iica =  \ /©  sin tt\/0o( (4)

where ©  denotes the expansion

© =  1 +  C55 +  C.€ +  CnV +  CSS* +  C!t5e +  • ■ • (5)

in the three real com binations

5 =  0_i0i, £ =  0-2^2, v — 2(616-2 +  6- 162) (6a)

of the four quantities, real and im aginary p arts  of 0i and  02. ©  is a power series in ju2 
since

5 =  0(m2), £ =  0(m4), V =  0(m4). (6b)

The coefficients C of the series depend on do alone.
T he num erical evaluation of the coefficients of the expansion is the principal aim 

of this paper. T his is best accom plished by first re-expressing the “doubly infinite”
I l i l l  determinant D  in term s of its “sim ply infinite” principal subdeterm inan ts D n,

* Received June 13, 1946.
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V  =  /(Do, D lt D w  - ), (7)

and then expanding D„ into the series

D„ =  1 -f- A ¡ 5  +  A , 6  +  A vi] -f- /I}55 +  • • ■ . (8)

T he coefficients of the expansions (7) and (8) are tab u la ted  in Tables II  and  I re 
spectively for a convenient range of 6a- For the sake of sim pler p rin ting  the  no ta tion

Ai<ci„>c =  {n, S'e’r f}  (8')

will be used whenever the subscrip t of A  becomes excessively long.
T he practical solution of Eq. (1) is carried ou t in four steps. F irst, the determ i

nan ts  D „, Eqs. (8), are evaluated  by  m eans of T able I. N e x tD , Eq. (7), is determ ined 
from Table II . T he th ird  step  consists in solving Eq. (4) or one of its varian ts (13a, b, 
c) for <r, and  the last step  is the determ ination  of the coefficients ck of solution (2). A 
convenient m ethod for carrying ou t this last step  is discussed in Section 2. T he deriva
tions of the form ulas for {n , S'e’77} and for the coefficients of (7) are presented in 
Section 3. A num erical example is given in Section 4.

T he present paper is based on a stu d y  which was recently  undertaken  a t the 
M cDonnell A ircraft Corp. under the sponsorship of the Bureau of A eronautics, U. S. 
N avy D epartm ent. T he study  was prom pted by recent instances of control difficulties 
of some helicopters and ro to r blade failures of others. As will be shown in a separate 
paper ,1 the n a tu ra l modes in which hinged ro tor blades flap can be represented by 
solutions of Eq. (1) m ultiplied by suitable dam ping factors. I t  will be found th a t  the 
stab ility  of the blade m otion decreases as the speed of advance of the helicopter in 
creases (as n increases). N evertheless, instab ility  does no t set in, because an aero
dynam ic dam ping effect outweighs, a t  all feasable speeds, the tendency tow ards in
stab ility  which results from the flapping motion.

T he w rite r’s thanks are due to his colleague, E lizabeth J. Spitzer, for checking the 
derivations and the num erical work. T he w riter also wishes to  express his indebted
ness to  Messrs. W. R. Foote, H. Poritsky  and J. J. Slade, who in their paper on 
ro tational in stab ility  of shafts2 applied a  Laplace expansion to  a doubly infinite de
term inan t, and  thus suggested the present approach.

2 . M ethod of solution. T he solution of Eq. ( la )  is assum ed in the standard  form
+°°

vty) = ckeik*. (2)
—00

S ubstitu tion  of expression (2) in to  Eq. ( la )  leads to  the infinite se t of homogeneous 
equations for the coefficients c*(<r):

k — —2 : d^c- i~\-diC—3T  [(cr — 2 i)2+io]c_2+ 0_iC_i+S_2Co

k — —1 : 62C—3T 01C-2T  [(ff—7)2T^o]c_iT0_iCo"f'^—2̂ 1

k =  0: 02 C „ 2 ~ \ ~ @ [<r2T^o]coT^— 2C2

1 G. H orvay, Rotor blade flapping motion, to be published soon.
J W. R. Foote, H. Poritsky and J. J. Slade, Critical speeds of a  rotor -with unequal shaft flexibilities, 

mounted in  bearings of unequal flexibility, Journal of Applied M echanics, 10, A77, 1943.

= 0,
=  0 , (9) 

=  0,



k——l: 0 2 C _ l  +  0 l C o +  [ ( f l r + i ) 2 +  ö o ] c i  +  ö _ l C 2  +  0 _ 2 C 3  = 0 ,

k — —2: diCo-\-diCi~\- [(cr+2i)2+0o]c2+0_iC3+0_2C4= 0,
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T he equations are consistent if their determ inan t, A(o-), vanishes. T he consistency 
criterion

A (<r) =  0

can be expressed in the much sim pler form 3''1

sin i ir a  — ±  %/D sin t \ / 6 o,

where

0  m  A ( 0 )  =

(10)

(4)

1 d-\yi d-oy-i 0 0

dll’l 1 d-iyi d-2>’i 0

d^yo ffiyo 1 d-iyo 0-2>’O
0 62yi öiyi 1 d-iyi

0 0 02>'2 d iy2 1

(11a)

is the determ in an t of system  (9) for cr =  0 when each equation is divided by the coeffi
cient of the diagonal term , and

L _ .  a m

0  is either positive or negative, and  so is do■ T hus the q u an tity  y / v  s' n ny/do >s
either real or pure im aginary. In  the first case set

q =  \Æ T sin ir\/do =  — \/~ -  0  sinh v y /  — do. (12a)

In the second case set

q' =  q / i  =  — V  — 0  sin x\/0 o =  — \ / 0  sinh x \ /  — 90. (12b)

Then the solution of the transcendental equation (4) is given by 

1
+  a =  — log (q / i  +  V 1 — ç2) +  mi

X

-  ?

(m — 0, +  1, +  2, • ■ • ),

+  m i  for — 1 ^  q 1, (13a)

log (? +  V7?2 “  1) +  (w -  5')2 for ? g  — 1, q ̂  1, (13b)
IT

— — log (<?' +  \ / g '2 +  1) +  m i  for q imaginary. (13c)
x

=  — arc tan _____
22 y l  -  ?2 

l

3 W hittaker and W atson, A course of modern analysis, Cambridge, 1927, p. 416.
* M . J. O. Strutt, LanUsche, Mathieusche und verwandle Funktionen in  P hysik  und Technik, Springer 

1932 (Edward Bros., 1944), p. 22.
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Once 0  is known, the calculation of <x from (13) is simple m atter. For any m there 
are two solutions <j\ and 02 which differ only in sign

<T2 =  — a 1. (14a)

L et <j\ be the solution w ith the positive real p a rt

ci =  o> +  nr,-, o> ^  0. (14b)

T he function v\ (t[/) (or associated w ith ci (or w ith  02) is readily  obtained by plac
ing ci (or c2) in to  the system  (9) which is now lim ited to  the equations k = —N ,  
- N - \ - 1, • • • ,  —1, + 1 ,  • • • ,  T  N.  Assuming c* =  0 for k < —N  and k >  +  N ,  one 
can solve the 2N  equations for C-n, C-at+i, ■ ■ • , C- 1, C \,  ■ ■ ■ , Cn in term s of the a rb i
tra ry  constan t c0, and then use equation & =  0 as a check. T he g reater is N,  the more 
harm onics are taken in to  account, and the more accurate  is the solution. In practice 
the calculations are m ost conveniently carried out by solving equations k = N  and 
k = — N  for cn and  c_.v in term s of the variables c,v_1, c.v-2 and  c_.v+i, c_.v+2, respec
tively. T he results are then su b stitu ted  into equations k = N — 1 and  k — — 1V+1; 
sim ilarly Ca'-i and  c_a'+i are determ ined. C ontinuing the process one finally arrives a t  
equations & = + l  and  f e = —1 involving the two variables C\ and  c_i only, and the 
param eter c0 which can be assum ed as 1. One elim inates one of the unknowns, say  c_j 
determ ines from the real and  im aginary p arts  of the rem aining equation the real and  
im aginary parts  of C\,  and then, retracing the steps, ob tains in succession the num eri
cal values of c_i, C2, C-2, • • • , C s ,  C-.v-

E vidently , in principle, it is im m aterial w hat m i (m — 0, + 1 , ± 2 , • • • ) is used 
in the <t of Eqs. (9). For instance, the set of equations k = —N  to + N  w ith m — 2, 
the set of equations k ~ — N  — 2 to 4-iV —2 w ith m — 4, and the set of equations 
k =  —N + 3  to +tV-(-3 w ith m — — 1 are identical. T hus, as one passes to the lim it 
N —>00, any  m  and any 2 N + 1  adjoining equations will lead to  the same function 
i'lO/') [°r WO]- practice, where one is lim ited to  a finite num ber of equations, 
2 ^ + 1 ,  it  is best to  use the centrally  located equations k =  — N  to -(-iV w ith an m 
which m akes c0 the dom inating term  in the series (2).

In  general »1, associated w ith 01, and V2, associated w ith cr2, are linearly independent 
functions. An exceptional case arises when crr =  0, and  cr,- is an integral m ultiple of 
T hen substitu tion  of 01 and  <r2 into the system  (9) leads to  the same function

+ M

i>i =  e"*X ) Cke***, (v =  0 or | ) .  (15a)
—00

T he second, linearly independent, solution is now a “quasiperiodic function” :4“

[ +« +" -1
1 22 Ckeik* +  2  dice™* , (v =  0, §). (15b)

—00 —X J

For convenience the functions (15a) will be called “purely periodic” functions.
D eterm ination  of the purely  periodic solutions (15a) forms the subject m a tte r  of 

m ost investigations on M athieu  and  Hill differential equations. T he purely periodic

■,a M. J. O. Strutt, loc.cit., p. 23. As an exception there m ay be two purely periodic solutions. For in
stance, for 0o =  4, 01 =  02 =  0, one obtains t'i =  cos 2^, t’2 =  sin 2^.
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solutions are usually of g reatest in terest, because they separate  the /¿-regions of s ta 
bility  (o> =  0; z>i and  v2 are oscillatory) from the /¿-regions of instab ility  (trr > 0 , i>i—>«> 
as i/'—>co). A purely periodic solution can be obtained, cf. Eqs. (12), (13), only when 
q' =  0 ( 0  =  0, or perhaps d0 = k 2), or when q — ±  1 (O and  6q are such th a t y / o  sin iry/F0 
=  1 or V  —O  sinh -try/—0O=1)- 1° general do = k 2 does no t provide a purely periodic 
function.

In  the present analysis the principal in terest is a ttached  to  the unstable solutions
+00

zuWO =  (ov >  0) (16)

of (1) which, after m ultiplication by  a dam ping factor e- " ^ 2, are still stable. These 
solutions are in the “transition  region” which extends from the /¿-value for which v(\p) 
is purely periodic to  the /¿-value for which e~n*n  v(\//) is purely periodic. I t  will be seen 
in Reference 1 th a t  a  rapidly  advancing helicopter usually operates in the transition  
region.

3. Expansion of H ill’s infinite determ inant. I t  will be convenient to call the  de
te rm inan t O,  Eq. (11a), a doubly infinite determ inan t to  indicate th a t  it  extends to 
infinity both  upw ard and downward. Sim ply infinite determ inan t are the principal 
subdeterm inants of V ,

(17a, b)

T he first extends to  infinity downward, the second upw ard. Sim ply infinite determ i
nants are also the auxiliary subdeterm inants

1 B-iy„ 0-iyn 0

01) Vf I 1 0-\yn+i 0 - 2 )» + l 1 0 _ l)'n+ 3 0 _ 2 )’n+3

Dn = 02)’»+2 0 iy?i+ j 1 0 _ ] ) ’,,+2 ; E„ = 0 l ) ’n+2 1 0 - t ) ’n+2 0 - l ) ’n+2

0 02)»+ 3 0 l ) ’n+3 1 02)’n+l

0

0 iy » + i

02)'n

1

Oiyn
6-iyn+i

1

5» =

0 1 )» 0 - 1 ) ’,. 0 -  2 )’n 0

02)’n+ l 1 0—l ) ’» + l 0 -2 ) 'n + l l 0 _ i  y n+3 0—2)'n+3 0

0 0 l ) ’»+2 1 0 _ l ) ’n+2 ; T n = 0l)',,+ 2 1 0 - l ) » + 2 0

0 02)»+3 0 l)'n+ 3  1 02)’,1+1 01)'»+1 1 0_2)'n+ l

. 0 02)',. 01)’» 0 - 1 ) »

(18a, b)

S n differs from D„ only in the first colum n; T n differs from E n only in the rightm ost 
column.

One readily  establishes the recurrence relations

Dn =  Dn+i -  d-iynS„+i +  did-«yny„+1S n+2 -  ty nyn+2Dn+z

+  G2 y nV n+iy n+%y n+ (19a)

Sn =  OtfnDn+1 ~  0- l 62ynyn+lD„+2 +  iynyn+lS„,o. (19b)

A Laplace expansion of the doubly infinite determ inan t (D along a dividing line
between row k =  0 and k =  — 1 leads to  the following expression involving only sim ply
infinite determ inan ts of type D n, E n, S r, T n:

V  =  DoEi — SoTi +  yoyi(0-.i6iDiT2 +  did-2S iE 2)

— ((yoÿiDiEz +  y\D2E 2 +  yoyiSiT2)

+  e (yoyiysyvDiEt -I- yoyiy?E2D3 +  yoyiytDiEs). (20)



Since, b y  v irtue of (lb )

E n = Z>* =  D n, (21a)

T n =  5* ( ^  S„, when $* dh 0* ^  0s) (21b)

and by v irtue  of (2) and (19b)

S nTm =  0 (M2), (21c)

a replacem ent of by D n and  a repeated insertion of (19b) in to  (20) g radually  elim i
nates all b u t the D„ type of determ inan ts from the expression for D . I t  is also found 
th a t  0i, 0_i, 02, 0-2 appear only in the com binations 5, e, 17 given in (6a). Thus, by  v irtue  
of (6b), the expansion of D  progresses in powers of /12. Using the notation

2
yon2 =  >o>i>2, (22a)

one finds th a t  to  n i0 term s

© = D0D1 — SyoiDiD2 — t(yo2D\Dz +  yuD 2) +  7?(2 yoii© 2  +  ’¿yauD 1D3)

— 5 i ( 4 y o n 2 © 2 © 3  +  2 y o i2 3 © i© 4 )  +  e2(> o i2 3 © i© 4  +  2 y a n tD 2Dz)
2

+  ejj(4yoii23©2©4 +  2yn » * P J h  +  2yoim©3)

— 5e2(4yoii234©2©5 +  Ayo\i22zDzDi  -f- 2yoi2345©i©6) +  - - - . (23)

T he same process can also be carried ou t for the sim ply infinite determ in an t D n. 
D isregarding the  exceptional case 6o = k 2 (y* =  <x>), one finds th a t to  /x10 term s

Do — Di — 5yoiD2 +  ( — «>02 +  2r)yoi2)©3 +  ( — 23e +  e2)yoi23©4

-f- 2€77yoi234©5 — 25e2yoi2343D6 +  • ■ ■ , (24a)

and  D„ is obtained from D 0 by  increasing the subscrip ts in the la t te r ’s expression by n.
(24b)

I t  will be convenient to  in troduce a t  this po int the no tation

Z T3S6 =  y356 +  3'467 +  >578 +  ‘ - , (22b)

Z  >12 ¿ C  >356 =  >12 Z  >356 +  >23 Z  > « 7  +  >’34 Z  >57? - » - ■ • • .  ( 2 2 c )

N oting th a t
lim Dn =  1, (25)
n—»«

one obtains, by  repeated  application of (24),

Do =  (1 — 5>’oi)Z?2 +  ( — Syi2 — «>02 +  2ijyoi2)©3 d* • ■ ■

=  [f — (>oi +  > 1 2 ) 5  — y  02« +  2yoi27i]£)3 +  • • • - (26a)

=  1 +  A°s5 +  A°,e +  A lv  +  ■ ■■ , (26b)

where

0 ^  ̂ 0  ̂ 0 %1 0
d j  =  — Z  > 01, A ,  =  — Z  > 02, d ,  =  2 Z  > 012, d g 1 =  Z  > 01Z  > 23, • • ■ . ( 2 7 )
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T he coefficient of a general term , like ôe2, is obtained as follows: E quation  (24a) 
gives rise to  the following sym bolic products containing 5e2:

[ -  5y0i] [ -  eyw\ [~  «ryoa], (a)

[— <5yoi] [«2yoi23], (b)

[— eyo2][— 25ey»oi23 J. (c)

[l] [— 25e2yoi2346]. (d)

I t  is found th a t  (a) contributes

— 22 3«  22 324 22 y ^  ~  22 yo222 iy3422 357 ~  22 30222 335 22 3«? (28a)

to A °(,. (N ote th a t no subscripts can be repeated, nor can any  be skipped as one 
passes from one 22 to the next 22; furtherm ore (a) gives rise to three d istinc t sum m a
tion expressions, because yi-.r+i can appear in the first place, in the second place, and 
in the th ird  place.) T he relation (b) yields

— 22 yoiE y^a — 22 ^0123 22 y*̂  (2 8 b)
which (c) yields

2 22 N02 22 3*3456 +  2 X) y„m £  3*46 (28c)
and  (d) yields

— 2 ^3  3012345- (28d)

T he contributions (28a, b, c, d) sum up to  {0, Se2}. By increasing the subscripts of 
the expressions (28) by 2, one obtains

A}S = -  22 3*23 22 346 22 379 -  22 3*24 22 3*56 22 379 -  22 324 22 367 22 389 
— 22 3*23 22 3*4667 — 22 3*2345 22 3*67 +  2 ^  3*24 2 2 3*6678
+  2 ^ )  32346 2  2 3*68 — 2 2  2 3*234567. (29)

The determ ination  of the o ther [n, S V + 'j is similar.
T he num erical values of the coefficients {11, S'Vr)k ) are given in T able I to  5 

decimal places, for 0O ranging from + 0 .9  to  —1.0 (the in teresting  range in helicopter 
theory). In the evaluation of {», ô'Vrç*} the first 51 y m were taken  in to  account. 
(The accuracy obtainable is thus equivalent to  the use of a  101-row approxim ant to
0 . )  y o to  320 were com puted in some instances to  6, in some instances to  7 decimal 
places; 321 to  350 were com puted to  7 decimal places. I t  is expected th a t  the entries of 
T able I are in error by not more than  2 un its in the fifth decim al p lace.6

I t  is readily seen th a t  the present m ethod is no t lim ited to Eq. (1), b u t can be 
extended to  the general Hill differential equation where 8meim* form a convergent 
series.

For the special case of M ath ieu ’s equation (e =  7; =  0), one finds by (23) and (27) 
th a t

0  = D^Do -  h y M  =  1 - 2 5  £  — ~  -  - i — —  +  0(52)
Ar— 0  0 0  —  V o  —  ( k  - f -  \ ) £

7T COt 7V\/Oo
=  1 - 2 5  —  =  +  0(52). (30)

(40o -  l ) V 0 o

6 An experienced computer can calculate a column of Table I in som ewhat less than a day.



T his form ula was used by H . Brem ekam p in 1926 in a s tudy  of the flow of electrons 
in m etals.6

4. Example (a). G iven 0 =  0.2, 6i = 0.19685+0.33465f, 02 =  0.03875-0.10258L  
Determ ine i>i, v<t. One finds 5 =  0.15074, « =  0.01202, 77=  —0.01635, and, by Table I, 
A . =  1.8422, A  =  0.9434, A  =  0.9934, D 3 =  0.9980, A  =  0.999, A  =  A  =  1.000. Like
wise, by T able II, 0  =  2.3291. Therefore, g = - \ / 0  sin ir^/do— 1.5052 and  by (13b) 
(Ti =  0.30782+7/2, cr2 =  —0.30782 —i/2 .  T he associated functions i'iC/0 and  Vt(jp) are 
determ ined from the equation system  (9). Norm alizing to c0= 1, and  using the equa
tions k =  —4 to k =  + 4 ,  one ob ta ins7

( 'P 'P
=  ( -  0.1898 +  1.9817i)fi+0-3078t<  — 0.0958 cos — +  s in  b  0.2076 cos —

I 2 2 2

3ip 5ip 5 \p 7\p
-  0.0083 s in  0.0125 cos —  -  0.0038 s i n  b 0.0008 cos —

2 2 2 2

392 G A BR IEL HORVAY [Vol. IV, No. 4

7 <p
+  0.0019 sin — +  

2 }
c \p \p

vt =  (1.6652 +  0.7467f)e-°-307̂ < c o s  b 0.4484 s i n  b 0.2107 cos —
I 2 2 2

3xP 5<P 5\p 7\p
-b 0.0188 s in  b 0.0041 c o s  b 0.0101 sin — +  0.0005 cos —

2 2 2 2

+  0.0020 sin — +  
2 }■

5. Example (b). Given 0o =  O, 01 =  O.37249-bO.63323f, 02 =  0.13875-0 .36728L  D e
term ine <r. One finds

q =  x\/D 0o-sin x \/0o /x \/0o  =  x \ / 0.4392 =  2.082,

(t 1 — — <r2 =  0.4339 -b i /2 .

8 M. J. O. Strutt, loc. cil., p. 26.
7 N ote that the use of <n = 0 .3 0 7 8 2 — i /2  leads to  the above expression of fi when C\ is normalized to  

1, and to the conjugate com plex of the above when c0 is normalized to 1.
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T a b le  I.* Numerical values of \n , b't’i f }.

00 =  .9 .8 .7 .6 .5 .45 .4 .35

{o. a) 7 .83180 4 .63590 3 .70199 3 .38325 3 .38203 3 .48245 3 .65865 3 .92977
to. t ) —.90665 - .2 4 8 7 1 .00257 .16467 .30899 .38655 .47423 .57886
o. rj) 6 .36577 3 .5 1 9 2 4 2 .63695 2 .27050 2 .14607 2 .15140 2 .20218 2 .30622
o. a2 j - .5 5 0 1 5 - .3 0 1 1 7 - .2 2 3 5 2 - .1 9 0 3 7 - .1 7 8 5 8 - .1 7 8 2 2 - .1 8 1 6 2 - .1 8 9 3 7

io , a< j .52473 .27858 .20047 .16578 . 15052 .14789 .14837 .15229
(0, St, } - .1 5 9 5 2 - .0 8 6 1 1 - .0 6 3 0 7 - .0 5 3 1 0 - .0 4 9 0 8 - .0 4 8 6 7 - .0 4 9 2 8 - .0 5 1 0 5
0, 5') .00265 .00143 .00104 .00087 .00081 .00080 .00081 .00083
0. i 2} - .4 1 4 2 7 - .2 2 6 5 8 - .1 6 8 0 1 - .1 4 3 2 0 - .1 3 4 0 3 - .1 3 3 7 2 - .1 3 6 2 2 - .1 4 1 9 9
0, et,) - .0 0 5 9 0 - .0 0 3 6 3 - .0 0 3 0 1 - .0 0 2 7 8 - .0 0 2 8 0 - .0 0 2 9 2 - .0 0 3 0 6 - .0 0 3 3 0

(0. v1} - .0 0 6 3 8 - .0 0 3 4 2 - .0 0 2 4 9 - .0 0 2 0 8 - .0 0 1 9 1 - .0 0 1 8 9 - .0 0 1 9 0 - .0 0 1 9 6
(0 ,a*<} - .0 0 4 6 3 - .0 0 2 4 8 - .0 0 1 7 8 - .0 0 1 5 0 - .0 0 1 3 6 - .0 0 1 3 3 - .0 0 1 3 3 - .0 0 1 3 6
(0, Sh,} .00049 .00025 .00019 .00015 .00014 .00014 .00013 .00014
0, 0e2} .00317 .00170 .00123 .00103 .00095 .00093 .00094 .00096

(0, 0<>;J - .0 0 0 2 1 - .0 0 0 1 2 - .0 0 0 0 9 - .0 0 0 0 8 - .0 0 0 0 7 - .0 0 0 0 7 - .0 0 0 0 7 - .0 0 0 0 7

1, a) -3 .2 7 9 3 1 - 1 .6 1 4 1 0 -1 .0 5 9 9 1 - .7 8 3 4 2 - .6 1 7 9 7 - .5 5 7 9 5 - .5 0 8 0 2 - .4 6 5 8 4
i.  <) -1 .2 6 5 0 7 - .6 3 9 3 4 - .4 3 0 3 3 - .3 2 5 5 3 - .2 6 2 4 1 - .2 3 9 4 3 - .2 2 0 2 1 — .20392
1 . 77} - .8 0 2 6 8 - .3 8 7 0 0 - .2 4 9 0 5 - .1 8 0 4 8 - .1 3 9 6 4 - .1 2 4 8 8 - .1 1 2 6 4 - .1 0 2 3 3
1, a2} .04439 .02131 .01366 .00986 .00759 .00678 .00610 .00553
1. a«} - .0 1 6 4 6 - .0 0 7 6 3 - .0 0 4 7 1 - .0 0 3 2 8 - .0 0 2 4 3 - .0 0 2 1 3 - .0 0 1 8 7 - .0 0 1 6 6
1. St,) .00739 .00351 .00223 .00160 .00122 .00109 .00098 .00088
1, a2} - .0 0 0 0 9 - .0 0 0 0 4 - .0 0 0 0 3 - .0 0 0 0 2 - .0 0 0 0 2 - .0 0 0 0 1 - .0 0 0 0 1 - .0 0 0 0 1
1. <2) .03150 .01513 .00970 .00701 .00540 .00482 .00434 .00394
1. «77 j .00132 .00063 .00041 .00030 .00024 .00020 .00019 .00017
1. v' \ .00019 .00009 .00006 .00004 .00002 .00002 .00002 .00002

(2, aj - .0 5 3 5 1 - .0 5 1 6 0 - .0 4 9 8 1 - .0 4 8 1 3 - .0 4 6 5 4 - .0 4 5 7 9 - .0 4 5 0 5 - .0 4 4 3 4
2. <} - .0 3 0 5 0 - .0 2 9 5 8 - .0 2 8 7 2 - .0 2 7 9 1 - .0 2 7 1 4 - .0 2 6 7 8 - .0 2 6 4 2 - .0 2 6 0 7
2, v\ - .0 0 6 1 9 - .0 0 5 9 1 - .0 0 5 6 5 - .0 0 5 4 1 - .0 0 5 1 9 - .0 0 5 0 8 - .0 0 4 9 8 - .0 0 4 8 7
2. a2} .00025 .00024 .00023 .00021 .00021 .00020 .00020 .00019
2 , a«} .00001 .00001 .00001 .00001 .00001 .00001 .00002 .00002
2. St,} .00002 .00002 .00002 .00002 .00002 .00002 .00002 .00002

{2. <2} .00017 .00017 .00016 .00015 .00015 .00014 .00014 .00013

(3, a) - .0 1 3 6 8 - .0 1 3 4 9 - .0 1 3 3 0 - .0 1 3 1 1 - .0 1 2 9 3 - .0 1 2 8 4 - .0 1 2 7 5 - .0 1 2 6 7
[3, <} - .0 0 9 1 4 - .0 0 9 0 3 - .0 0 8 9 2 - .0 0 8 8 1 - .0 0 8 7 1 - .0 0 8 6 6 - .0 0 8 6 1 - .0 0 8 5 6
(3, >7} - .0 0 0 9 2 - .0 0 0 9 0 - .0 0 0 8 8 - .0 0 0 8 6 - .0 0 0 8 6 —.00084 - .0 0 0 8 4 - .0 0 0 8 3
(3 , a2) .00003 .00003 .00003 .00003 .00003 .00003 .00003 .00003
{3. a<j .00001 .00001 .00001 .00001 .00001 .00001 .00001 .00001
{3. <2} .00002 .00002 .00002 .00002 .00002 .00002 .00002 .00002

4, a} - .0 0 5 5 1 -  .00546 - .0 0 5 4 3 - .0 0 5 3 8 - .0 0 5 3 4 - .0 0 5 3 2 - .0 0 5 3 0 - .0 0 5 2 8
4. «} - .0 0 4 0 1 - .0 0 3 9 9 - .0 0 3 9 6 - .0 0 3 9 3 - .0 0 3 9 1 - .0 0 3 9 0 - .0 0 3 8 8 - .0 0 3 8 7
4, T7} - .0 0 0 2 4 - .0 0 0 2 4 - .0 0 0 2 3 - .0 0 0 2 3 - .0 0 0 2 3 - .0 0 0 2 3 - .0 0 0 2 3 - .0 0 0 2 3
4 . a<) .00001 .00001 .00001 .00001 .00001 .00001 .00001 .00001

{5. aj - .0 0 2 7 6 - .0 0 2 7 5 - .0 0 2 7 3 - .0 0 2 7 2 - .0 0 2 7 1 - .0 0 2 7 0 - .0 0 2 6 9 - .0 0 2 6 9
[5. e } - .0 0 2 1 3 - .0 0 2 1 2 - .0 0 2 1 1 - .0 0 2 1 0 - .0 0 2 0 9 - .0 0 2 0 9 - .0 0 2 0 8 - .0 0 2 0 8
{5. V) - .0 0 0 0 8 - .0 0 0 0 8 - .0 0 0 0 8 - .0 0 0 0 8 - .0 0 0 0 8 - .0 0 0 0 8 - .0 0 0 0 8 - .0 0 0 0 8

[6, a} - .0 0 1 5 8 - .0 0 1 5 7 - .0 0 1 5 7 - .0 0 1 5 6 - .0 0 1 5 5 - .0 0 1 5 5 - .0 0 1 5 5 - .0 0 1 5 5
¡6. «} - .0 0 1 2 6 - .0 0 1 2 6 - .0 0 1 2 6 - .0 0 1 2 5 - .0 0 1 2 5 - .0 0 1 2 5 - .0 0 1 2 5 - .0 0 1 2 5
{6. - .0 0 0 0 3 - .0 0 0 0 3 - .0 0 0 0 3 - .0 0 0 0 3 - .0 0 0 0 3 - .0 0 0 0 3 - .0 0 0 0 3 - .0 0 0 0 3

00 .3 .25 .2 .15 .1 .05 0**

0 . a) 4 .33216 4 .93480 5 .8 7 8 7 4 7 .49588 10.78515 20 .74569 1.000000
0, t ) .71097 .88889 1.14867 1.57391 2 .41481 4 .92154 .250000
0 . v\ 2 .48046 2 .75850 3 .2 1 0 1 3 4.00081 5 .6 2 9 5 7 10.59568 .500000
0 . a2) - .2 0 2 7 9 - .2 2 4 5 6 - .2 6 0 2 1 - .3 2 2 9 6 - .4 5 2 5 5 - .8 4 8 2 5 - .0 3 9 8 6 5
0. St) .16054 .17498 .19957 .24378 .33621 .62017 .028683
0. St,} - .0 5 4 3 2 - .0 5 9 7 7 - .0 6 8 8 3 - .0 8 4 9 0 - .1 1 8 2 4 - .2 2 0 2 8 -  .010290
0 . a*i .00089 .00098 .00112 .00138 .00192 .00357 .000166
0 , <2} - .1 5 2 0 1 - .1 6 8 2 7 - .1 9 4 9 4 - .2 4 1 8 6 - .3 3 8 8 4 - .6 3 4 9 6 - .0 2 9 8 3 5
0 , <77} - .0 0 3 6 4 - .0 0 4 1 6 - .0 0 4 9 6 - .0 0 6 3 0 - .0 0 9 0 5 - .0 1 7 3 6 - .0 0 0 8 3 6
0. T,2) - .0 0 2 0 8 - .0 0 2 2 8 - .0 0 2 6 2 - .0 0 3 2 2 - .0 0 4 4 8 -  00832 - .0 0 0 3 8 8
0 , SU) - .0 0 1 4 4 - .0 0 1 5 8 - .0 0 1 8 0 - .0 0 2 2 1 - .0 0 3 0 5 - .0 0 5 6 6 - .0 0 0 2 6 2
0 . aM .00014 .00015 .00018 .00022 .00032 .00059 .000028
0 . a<2} .00103 .00112 .00129 .00160 .00222 .00412 .000194
0 , 0*77} - .0 0 0 0 7 - .0 0 0 0 7 - .0 0 0 0 8 - .0 0 0 0 9 - .0 0 0 1 2 -  .00023 - .0 0 0 0 1 2

1. a) - .4 2 9 7 5 - .3 9 8 5 3 - .3 7 1 2 6 - .3 4 7 2 6 - .3 2 5 9 6 - .3 0 6 9 4 - .2 8 9 8 7
1. <) - .1 8 9 9 3 - .1 7 7 7 8 - .1 6 7 1 2 - .1 5 7 6 9 - .1 4 9 2 9 - .1 4 1 7 6 - .1 3 4 9 6
1» V ) - .0 9 3 5 4 - .0 8 5 9 5 - .0 7 9 3 4 - .0 7 3 5 5 - .0 6 8 4 4 - .0 6 3 8 8 - .0 5 9 8 0
1. a2} .00505 .00463 .00426 .00395 .00366 .00341 .00319
1. a«) - .0 0 1 4 9 - .0 0 1 3 4 - .0 0 1 2 0 - .0 0 1 0 9 - .0 0 0 9 9 - .0 0 0 9 1 - .0 0 0 8 3
1, St,} .00080 .00073 .00067 .00062 .00057 .00053 .00050
1. a*} - .0 0 0 0 1 - .0 0 0 0 1 - .0 0 0 0 1 - .0 0 0 0 1 - .0 0 0 0 1 - .0 0 0 0 1 - .0 0 0 0 1
1, <21 .00359 .00330 .00303 .00281 .00261 .00243 .00227
1. <7 ) .00014 .00014 .00012 .00012 .00011 .00011 .00010

{l. W .00002 .00002 .00001 .00001 .00001 .00001 .00001

* N ote 1. (n, 5'Vij*) which a rc  less than  .00001 In m agnitude, or for which n > 6 ,  are not shown.
0 0 

A 5 A f  D ,
* *  N ote 2, For5?= 0 (y«= 00) the coefficients , ------ , • • • of - —  are  given.

y• y» y»
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0 « .3 .25 .2 .15 .1 .05 0**

(2. S) - .0 4 3 6 5 - .0 4 2 9 7 - .0 4 2 3 2 - .0 4 1 6 8 - .0 4 1 0 6 - .0 4 0 4 5 - . 0 3  98 7
(2, <} - .0 2 5 7 3 - .0 2 5 4 0 - .0 2 5 0 7 - .0 2 4 7 5 - .0 2 4 4 5 - .0 2 4 1 5 - . 0 2 3 8 5
12. V \ - .0 0 4 7 7 - .0 0 4 6 8 - .0 0 4 5 8 - .0 0 4 5 0 - .0 0 4 4 2 - .0 0 4 3 3 - .0 0 4 2 5
(2, a2} .00019 .00018 .00018 .00018 .00017 .00017 .00017
12, 5«) .00002 .00002 .00002 .00002 .00002 .00002 .00002

2. Sv \ .00002 .00002 .00002 .00002 .00002 .00002 .00002
(2, «’ 1 .00013 .00013 .00013 .00013 .00012 .00012 .00012

{3, 6) - .0 1 2 5 8 - .0 1 2 5 0 - .0 1 2 4 1 - .0 1 2 3 3 - .0 1 2 2 5 - .0 1 2 1 7 - .0 1 2 0 9
{3. <) - .0 0 8 5 1 - .0 0 8 4 6 - .0 0 8 4 2 - .0 0 8 3 7 - .0 0 8 3 2 - .0 0 8 2 7 - .0 0 8 2 3
3, v\ -  .00082 - .0 0 0 8 1 - .0 0 0 8 0 - .0 0 0 7 9 - .0 0 0 7 8 - .0 0 0 7 8 - .0 0 0 7 7

{3. á2) .00003 .00002 .00002 .00002 .00002 .00002 .00002
{3, St 1 .00001 .00001 .00001 .00001 .00001 .00001 .00001
(3. «2} .00002 .00002 .00002 .00002 .00002 .00002 .00002

{4, 6) - .0 0 5 2 6 - .0 0 5 2 4 - .0 0 5 2 2 - .0 0 5 2 0 - .0 0 5 1 8 - .0 0 5 1 6 - .0 0 5 1 4
(4. «1 - .0 0 3 8 6 - .0 0 3 8 5 - .0 0 3 8 3 - .0 0 3 8 2 - .0 0 3 8 1 - .0 0 3 8 0 - .0 0 3 7 8
(4. »} - .0 0 0 2 2 - .0 0 0 2 2 - .0 0 0 2 2 - .0 0 0 2 2 - .0 0 0 2 2 - .0 0 0 2 2 - .0 0 0 2 2

[S.  S) - .0 0 2 6 8 - .0 0 2 6 8 - .0 0 2 6 7 - .0 0 2 6 6 - .0 0 2 6 6 - .0 0 2 6 5 - .0 0 2 6 4
{5. « } - .0 0 2 0 7 - .0 0 2 0 7 - .0 0 2 0 7 - .0 0 2 0 6 - .0 0 2 0 6 - .0 0 2 0 5 - .0 0 2 0 5
Î5. 77J - .0 0 0 0 8 - .0 0 0 0 8 - .0 0 0 0 8 - .0 0 0 0 8 - .0 0 0 0 8 - .0 0 0 0 8 - .0 0 0 0 8

(6, 5} - .0 0 1 5 5 - .0 0 1 5 5 - .0 0 1 5 4 - .0 0 1 5 4 - .0 0 1 5 4 - .0 0 1 5 3 - .0 0 1 5 3
{6. €j - .0 0 1 2 4 - .0 0 1 2 4 - .0 0 1 2 4 - .0 0 0 2 4 - .0 0 1 2 4 - .0 0 1 2 3 - .0 0 1 2 3
(6 , »;} - .0 0 0 0 3 - .0 0 0 0 3 - .0 0 0 0 3 - .0 0 0 0 3 - .0 0 0 0 3 - .0 0 0 0 3 - .0 0 0 0 3

.. Qo - - . 0 5 - . 1 - . 1 5 - . 2  - . 2 5 - . 3 - . 3 5 - . 4

{o. a} -1 9 .3 2 2 0 7 -9 .3 5 1 3 7 - 6 .0 4 4 8 2 - 4 .4 0 2 7 3 - 3 .4 2 5 3 8 - 2 .7 7 9 6 3 -2 .3 2 2 8 3 -1 .9 8 3 7 1
(0 .«} -5 .0 6 7 0 7 -2 .5 6 2 2 0 - 1 .7 2 4 4 7 - 1 .3 0 3 8 0 - 1 .0 5 0 1 5 - .8 8 0 1 3 - .7 5 8 0 2 - .6 6 5 9 0
0. rj\ - 9 .4 6 2 3 8 - 4 .4 8 7 4 0 -2 .8 4 3 6 0 -2 .0 3 1 1 9 -1 .5 5 0 4 5 - 1 .2 3 4 8 8 -1 .0 1 3 2 2 - .8 4 9 8 9(o. .75141 .35491 .22402 .15940 .12120 .09616 .07860 .06569

(0. Sej - .5 3 1 9 4 - .2 4 7 2 4 - .1 5 3 5 2 - .1 0 7 4 5 - .0 8 0 3 7 - .0 6 2 7 4 - .0 5 0 4 2 - .0 4 1 4 4
(0. St,} .19281 .09051 .05679 .04017 .03036 .02396 .01947 .01617
(o. a* i - .0 0 3 1 1 - .0 0 1 4 6 - .0 0 0 9 2 - .0 0 0 6 5 - .0 0 0 4 8 - .0 0 0 3 8 - .0 0 0 3 1 - .0 0 0 2 6
(0. «2} .56222 .26550 .16755 .11919 .09061 .07188 .05874 .04908
o, t r , } .01609 .00775 .00500 .00363 .00281 .00226 .00188 .00160

10. T,2) .00724 .00338 .00211 .00149 .00112 .00088 .00072 .00059
{0 . a2e) .00488 .00227 .00141 .00098 .00074 .00059 .00047 .00039
o, a M - .0 0 0 4 8 - .0 0 0 2 3 - .0 0 0 1 4 - .0 0 0 1 0 - .0 0 0 0 8 - .0 0 0 0 6 - .0 0 0 0 6 - .0 0 0 0 4
o, a«2 } - .0 0 3 5 7 - .0 0 1 6 7 - .0 0 1 0 3 - .0 0 0 7 3 - .0 0 0 5 5 - .0 0 0 4 4 - .0 0 0 3 5 - .0 0 0 2 9

(0. Ser,] .00023 .00010 .00006 .00004 .00003 .00003 .00002 .00001

1, a j - .2 7 4 4 5 - .2 6 0 4 6 - .2 4 7 7 2 - .2 3 6 0 7 - .2 2 5 3 8 - .2 1 5 5 3 - .2 0 6 4 3 - .1 9 8 0 0
; .« } - .1 2 8 8 0 - .1 2 3 1 8 - .1 1 8 0 5 - .1 1 3 3 2 - .1 0 8 9 7 - .1 0 4 9 4 - .1 0 1 2 0 - .0 9 7 7 2
1. 77) - .0 5 6 1 4 - .0 5 2 8 2 - .0 4 9 8 1 - .0 4 7 0 7 - .0 4 4 5 7 - .0 4 2 2 7 - .0 4 0 1 6 - .0 3 8 2 1
1. a2j .00299 .00281 .00264 .00249 .00235 .00223 .00211 .00201
1. a«j - .0 0 0 7 6 - .0 0 0 6 9 - .0 0 0 6 4 - .0 0 0 5 9 - .0 0 0 5 4 - .0 0 0 5 0 - .0 0 0 4 7 - .0 0 0 4 3
1. St,) .00046 .00043 .00040 .00038 .00036 .00034 .00032 .00030
1. a2} - .0 0 0 0 1 - .0 0 0 0 1 - .0 0 0 0 1 - .0 0 0 0 1
l . « 1) .00213 .00200 .00188 .00178 .00168 .00159 .00151 .00143
1. « > 7  } .00009 .00009 .00008 .00008 .00007 .00007 .00007 .00006
1. 17.M .00001 .00001 .00001 .00001 .00001 .00001 .00001

2. a) - .0 3 9 2 9 - .0 3 8 7 3 - .0 3 8 1 9 - .0 3 7 6 6 - .0 3 7 1 4 - .0 3 6 6 3 - .0 3 6 1 4 - .0 3 5 6 6
2 ,«} - .0 2 3 5 7 - .0 2 3 2 8 - .0 2 3 0 1 - .0 2 2 7 5 - .0 2 2 4 9 - .0 2 2 2 3 - .0 2 1 9 8 - .0 2 1 7 4
2. 17} - .0 0 4 1 7 - .0 0 4 0 9 - .0 0 4 0 1 - .0 0 3 9 4 - .0 0 3 8 7 - .0 0 3 8 0 - .0 0 3 7 3 - .0 0 3 6 7
2. a2} .00016 .00016 .00016 .00015 .00015 .00015 .00015 .00014
2. a«¡ .00002 .00002 .00002 .00002 .00002 .00002 .00002 .00002
2. St7 } .00002 .00002 .00001 .00001 .00001 .00001 .00001 .00001
2. «2I .00011 .00011 .00011 .00011 .00011 .00010 .00010 .00010

(3. a) - .0 1 2 0 1 - .0 1 1 9 3 - .0 1 1 8 5 - .0 1 1 7 8 - .0 1 1 7 0 - .0 1 1 6 3 - .0 1 1 5 5 - .0 1 1 4 8
13. e} - .0 0 8 1 8 - .0 0 8 1 4 - .0 0 8 0 9 - .0 0 8 0 5 - .0 0 8 0 1 - .0 0 7 9 6 - .0 0 7 9 2 - .0 0 7 8 8
¡3, rj 1 - .0 0 0 7 7 - .0 0 0 7 6 - .0 0 0 7 5 - .0 0 0 7 5 - .0 0 0 7 4 - .0 0 0 7 3 - .0 0 0 7 3 - .0 0 0 7 2
(3. a2 } .00002 .00002 .00002 .00002 .00002 .00002 .00002 .00002
13. 6t \ .00001 .00001 .00001 .00001 .00001 .00001 .00001 .00001
(3. «2} .00002 .00002 .00001 .00001 .00001 .00001 .00001 .00001

{ 4 . a} - .0 0 5 1 2 - .0 0 5 1 0 - .0 0 5 0 9 - .0 0 5 0 7 - .0 0 5 0 5 - .0 0 5 0 3 - .0 0 5 0 1 - .0 0 5 0 0
14.«} - .0 0 3 7 7 - .0 0 3 7 6 - .0 0 3 7 5 - .0 0 3 7 4 - .0 0 3 7 2 - .0 0 3 7 1 - .0 0 3 7 0 - .0 0 3 6 9
4 . 17} - .0 0 0 2 2 - .0 0 0 2 2 - .0 0 0 2 1 - .0 0 0 2 1 - .0 0 0 2 1 - .0 0 0 2 1 - .0 0 0 2 1 - .0 0 0 2 1

5. a) - .0 0 2 6 4 - .0 0 2 6 3 - .0 0 2 6 2 - .0 0 2 6 2 - .0 0 2 6 1 - .0 0 2 6 1 - .0 0 2 6 0 - .0 0 2 5 9
5. «} - .0 0 2 0 4 - .0 0 2 0 4 - .0 0 2 0 4 - .0 0 2 0 3 - .0 0 2 0 3 - .0 0 2 0 2 - .0 0 2 0 2 - .0 0 2 0 2
5 . 17} - .0 0 0 0 8 - .0 0 0 0 8 - .0 0 0 0 8 - .0 0 0 0 8 - .0 0 0 0 8 - .0 0 0 0 8 - .0 0 0 0 8 -  .00008

{6. a} - .0 0 1 5 3 - .0 0 1 5 3 - .0 0 1 5 2 - .0 0 1 5 2 — .00152 - .0 0 1 5 2 - .0 0 1 5 1 - .0 0 1 5 1
(6. «} - .0 0 1 2 3 - .0 0 1 2 3 - .0 0 1 2 3 - .0 0 1 2 2 - .0 0 1 2 2 - .0 0 1 2 2 - .0 0 1 2 2 - .0 0 1 2 2
(6. >71 - .0 0 0 0 3 - .0 0 0 0 3 - .0 0 0 0 3 - .0 0 0 0 3 - .0 0 0 0 3 - .0 0 0 0 3 - .0 0 0 0 3 - .0 0 0 0 3
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T a b l e  I. (Continued)

0 0 - . 4 5 - . 5 - . 5 5 - . 6 - . 7 - . 8 - . 9 - 1 . 0

0 , a} - 1 .7 2 2 7 4 - 1 .5 1 6 2 2 - 1 .3 4 9 1 0 - 1 .2 1 1 3 8 - .9 9 8 4 9 - .8 4 2 3 7 - .7 2 3 6 2 - .6 3 0 6 7
0 , <} - .5 9 3 8 5 - .5 3 5 8 8 - .4 8 8 1 9 - .4 4 8 2 3 - .3 8 4 9 7 - .3 3 7 0 6 - .2 9 9 4 7 - .2 6 9 1 7
0. V ) - .7 2 5 2 0 - .6 2 7 3 3 - .5 4 8 7 9 - .4 4 8 6 3 - .3 8 6 7 0 - .3 1 6 1 7 - .2 6 3 4 9 - .2 2 3 0 0
0 , a2 } .05584 .04813 .04195 .03691 .02924 .02374 .01965 .01652
0 , a«} - .0 3 4 6 4 - .0 2 9 3 6 - .0 2 5 1 6 - .0 2 1 7 6 - .0 1 6 6 6 - .0 1 3 0 6 - .0 1 0 4 3 - .0 0 8 4 6
0, St,} .01368 .01172 .01016 .00888 .00695 .00559 .00457 .00380
0 . a»} - .0 0 0 2 2 - .0 0 0 1 9 - .0 0 0 1 6 - .0 0 0 1 4 - .0 0 0 1 1 - .0 0 0 0 9 - .0 0 0 0 7 - .0 0 0 0 6
0 , <2} .04172 .03595 .03133 .02757 .02184 .01772 .01467 .01233
0. tT, } .00139 .00121 .00107 .00096 .00078 .00064 .00055 .00047
0. T,2} .00050 .00043 .00037 .00032 .00025 .00020 .00016 .00013" o. a2« I .00033 .00028 .00024 .00021 .00016 .00013 .00010 .00008
0 . sh,} - .0 0 0 0 3 - .0 0 0 0 3 - .0 0 0 0 2 - .0 0 0 0 2 - .0 0 0 0 1 - .0 0 0 0 1 - .0 0 0 0 1 - .0 0 0 0 1
0 , a«2} - .0 0 0 2 5 - .0 0 0 2 1 - .0 0 0 1 8 - .0 0 0 1 6 - .0 0 0 1 2 - .0 0 0 1 0 - .0 0 0 0 8 - .0 0 0 0 7
0 , a«»?} .00001 .00001 .00001 .00001

1. 5} - .1 9 0 1 7 - .1 8 2 8 8 - .1 7 6 0 8 - .1 6 9 7 1 - .1 5 8 1 5 - .1 4 7 9 3 - .1 3 8 8 2 - .1 3 0 6 7
1. <1 - .0 9 4 4 8 - .0 9 1 4 4 - .0 8 8 5 9 - .0 8 5 9 1 - .0 8 1 0 2 - .0 7 6 6 4 - .0 7 2 7 2 - .0 6 9 1 7
1. »7} - .0 3 6 4 1 - .0 3 4 7 3 - .0 3 3 1 8 - .0 3 1 7 3 - .0 2 9 1 1 - .0 2 6 8 2 - .0 2 4 8 0 - .0 2 3 0 0
1. a2 } .00191 .00182 .00173 .00166 .00151 .00139 .00128 .00118
1. a«} - .0 0 0 4 0 - .0 0 0 3 7 - .0 0 0 3 4 - .0 0 0 3 2 - .0 0 0 2 8 - .0 0 0 2 4 -  .00020 - .0 0 0 1 8
1. M .00029 .00027 .00026 .00025 .00022 .00020 .00018 .00017
1. «*} .00136 .00130 .00124 .00118 .00108 .00099 .00092 .00085
1. <>?! .00006 .00006 .00006 .00006 .00005 .00005 .00004 .00003

2, a} - .0 3 5 1 9 - .0 3 4 7 3 - .0 3 4 2 8 - .0 3 3 8 4 - .0 3 3 0 0 - .0 3 2 1 9 - .0 3 1 4 1 - .0 3 0 6 7
2. «} - .0 2 1 5 0 - .0 2 1 2 6 - .0 2 1 0 3 - .0 2 0 8 1 - .0 2 0 3 7 - .0 1 9 9 5 - .0 1 9 5 5 - .0 1 9 1 7
2, v) - .0 0 3 6 1 - .0 0 3 5 4 - .0 0 3 4 9 - .0 0 3 4 2 - .0 0 3 3 1 - .0 0 3 2 0 - .0 0 3 1 0 - .0 0 1 5 0
2. a2 } .00014 .00014 .00014 .00013 .00013 .00012 .00012 .00012
2 , a«} .00002 .00002 .00002 .00002 .00002 .00002 .00002 .00002
2, St7} .00001 .00001 .00001 .00001 .00001 .00001 .00001 .00001

{2, «2J .00010 .00010 .00010 .00009 .00009 .00009 .00008 .00008

{3. a) - .0 1 1 4 1 - .0 1 1 3 4 - .0 1 1 2 7 - .0 1 1 2 0 - .0 1 1 0 6 - .0 1 0 9 3 - .0 1 0 8 0 - .0 1 0 6 7
{3. «} - .0 0 7 8 4 - .0 0 7 7 9 - .0 0 7 7 5 - .0 0 7 7 1 - .0 0 7 6 3 - .0 0 7 5 5 - .0 0 7 4 8 — .00740 *
(3. T,] - .0 0 0 7 2 - .0 0 0 7 1 - .0 0 0 7 1 - .0 0 0 7 0 - .0 0 0 6 8 - .0 0 0 6 7 - .0 0 0 6 6 - .0 0 0 6 5
{3. a2 } .00002 .00002 .00002 .00002 .00002 .00002 .00002 .00002
{3. St\ .00001 .00001 .00001 .00001 .00001 .00001 .00001 .00001
(3. e2} .00001 .00001 .00001 .00001 .00001 .00001 .00001 .00001

{4. a} - .0 0 4 9 8 - .0 0 4 9 6 - .0 0 4 9 4 - .0 0 4 9 2 - .0 0 4 8 9 - .0 0 4 8 5 - .0 0 4 8 2 - .0 0 4 7 9
14, «} - .0 0 3 6 8 - .0 0 3 6 6 - .0 0 3 6 5 - .0 0 3 6 4 - .0 0 3 6 2 - .0 0 3 6 0 —.00358 - .0 0 3 5 6
[4 . 7,1 - .0 0 0 2 1 - .0 0 0 2 0 - .0 0 0 2 0 - .0 0 0 2 0 - .0 0 0 2 0 - .0 0 0 2 0 - .0 0 0 2 0 - .0 0 0 2 0

[s. a} - .0 0 2 5 9 - .0 0 2 5 9 - .0 0 2 5 8 - .0 0 2 5 7 - .0 0 2 5 6 - .0 0 2 5 5 - .0 0 2 5 3 - .0 0 2 5 2
15. «} - .0 0 2 0 1 - .0 0 2 0 1 - .0 0 2 0 0 - .0 0 2 0 0 - .0 0 1 9 9 - .0 0 1 9 8 - .0 0 1 9 7 - .0 0 1 9 7
(5 . 77} - .0 0 0 0 8 - .0 0 0 0 8 - .0 0 0 0 8 - .0 0 0 0 8 - .0 0 0 0 8 - .0 0 0 0 7 - .0 0 0 0 7 - .0 0 0 0 7

(6, a} - .0 0 1 5 1 - .0 0 1 5 1 - .0 0 1 5 0 - .0 0 1 5 0 - .0 0 1 5 0 - .0 0 1 4 9 - .0 0 1 4 9 - .0 0 1 4 9
(6. <} - .0 0 1 2 2 - .0 0 1 2 1 - .0 0 1 2 1 - .0 0 1 2 1 - .0 0 1 2 1 - .0 0 1 2 0 - .0 0 1 2 0 - .0 0 1 2 0
U . v ) - .0 0 0 0 3 - .0 0 0 0 3 - .0 0 0 0 3 - .0 0 0 0 3 - .0 0 0 0 3 - .0 0 0 0 3 - .0 0 0 0 3 - .0 0 0 0 3
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T a b l e  II. Expansion of 5D (row 1 Xrow 2X row  3, see Eq. 23). 
Numerical tabulation of the coefficients in row 3.

0.
r ow 1 
r ow 2 ( 
r ow 3 (

1 5 «  r¡ 
DoDi ] ( DiDt  ) (D iD t D \)  [ D \

1 J 1 — yoi  J ( — yoi —y n )  \ 2 yon
D iD ii
2 you J

ÍD tD t  
( —4 yom

D\Di ) 
—2 you»)

.5 1 4.00000 .57143 -4 .0 0 0 0 0  16.00000 2.28571 9.14285 .26891

.45 1 4.04040 .62598 -3 .3 0 5 7 9  14.69238 2.27628 8.27740 .26623

.4 1 4.16667 .69445 -2 .7 7 7 7 8  13.88889 2.31482 7.71606 .26916

.35 1 4.39561 .78278 -2 .3 6 6 8 7  13.52495 2.40856 7.41094 .27845

.3 1 4.76190 .90090 -2 .0 4 0 8 2  13.60543 2.57400 7.35428 .29586

.25 1 5.33333 1.06667 -1 .7 7 7 7 8  14.22222 2.84445 7.58519 .32508

.2 1 6.25000 1.31579 -1 .5 6 2 5 0  15.62500 3.28948 8.22369 .37380

.15 1 7.84314 1.73160 -1 .3 8 4 0 8  18.45445 4.07436 9.58673 .46037

. 1 1 11.11111 2.56410 -1 .2 3 4 5 7  24.69135 5.69800 12.66222 .64023

.05 1 21.05263 5.06329 -1 .1 0 8 0 3  44.32135 10.65956 22.44119 1.19100
0* 0 1.00000 .25000 0 2.00000 .50000 1.00000 .05556

- . 0 5 1 -19 .0 4 7 6 2  -4 .9 3 8 2 7  -  .90703 -3 6 .2 8 1 1 8 -9 .4 0 6 2 4 -1 7 .9 1 6 6 6 -1 .0 3 9 3 6
- . 1 0 1 -9 .0 9 0 9 1  -2 .4 3 9 0 2  -  .82645 -16 .5 2 8 9 1 -4 .4 3 4 5 8 -8 .0 6 2 8 7 -  .48732
- . 1 5 1 -5 .7 9 7 1 0  -1 .6 0 6 4 3  -  .75644 -10 .0 8 1 9 1 -2 .7 9 3 7 9 -4 .8 5 8 7 6 -  .30533
- . 2 1 -4 .1 6 6 6 7  -1 .1 9 0 4 8  -  .69444 -6 .9 4 4 4 4 -1 .9 8 4 1 2 -3 .3 0 6 8 6 -  .21566
- . 2 5 1 -3 .2 0 0 0 0  -  .94118 -  .64000 -5 .1 2 0 0 0 -1 .5 0 5 8 8 -2 .4 0 9 4 1 -  .16280
- . 3 1 -2 .5 6 4 1 0  -  .77519 -  .59171 -3 .9 4 4 7 7 -1 .1 9 2 6 0 -1 .8 3 4 7 8 -  .12823
- . 3 5 1 -2 .1 1 6 4 0  -  .65681 -  .54870 -3 .1 3 5 4 1 -  .97306 -1 .4 4 1 5 7 -  .10407
- . 4 1 -1 .7 8 5 7 1  -  .56818 -  .51020 -2 .5 5 1 0 2 -  .81169 -1 .1 5 9 5 5 -  .08635
- . 4 5 1 -1 .5 3 2 5 6  -  .49938 -  .47562 -2 .1 1 3 8 8 -  .68880 -  .95006 -  .07289
- . 5 1 -1 .3 3 3 3 3  -  .44444 -  .44444 -1 .7 7 7 7 8 -  .59259 -  .79012 -  .06238
- . 5 5 1 -1 .1 7 3 0 2  -  .39960 -  .41623 -1 .5 1 3 5 7 -  .51561 -  -.66530 -  .05399
- . 6 1 -1 .0 4 1 6 7  -  .36232 -  .39063 -1 .3 0 2 0 8 -  .45290 -  .56612 -  .04718
- . 7 1 -  .84034 -  .30395 -  .34602 -  .98863 -  .35759 -  .42069 -  .03687
- . 8 1 -  .69444 -  .26042 -  .30864 -  .77160 -  .28935 -  .32150 -  .02953
- . 9 1 -  .58480 -  .22676 -  .27701 -  .61557 -  .23869 -  .25126 -  .02411

- 1 . 0 1 -  .50000 -  .20000 -  .25000 -  .50000 -  .20000 -  .20000 -  .02000

row 1 eij
6t row 2 ÍDxDi DtDt  ) (D tD i  D\Di D\ ) í D iD , DiDi DiDt )

row 3 ( y#m 2 y«it J (4  yams 2 you»« 2 y m t t  ) \  - -4 yon»« -■4 y«imt —2 yomu j
.5 _ 13445 -4 .5 7 1 4 3  1.07563 .01735 1.30612 .06941 .30732 .00071
.45 — 13312 -4 .1 3 8 7 0  96812 .01712 1.16583 .06226 .27271 .00070
.4 — 13458 -3 .8 5 8 0 3  .89721 .01726 1.07168 .05752 .24922 .00070
.35 — 13922 -3 .7 0 5 4 7  .85676 .01779 1.01520 .05475 .23498 .00072
.3 — 14793 -3 .6 7 7 1 4  .84532 .01885 .99382 .05384 .22846 .00076
.25 — 16254 -3 .7 9 2 6 0  .86688 .02064 1.01136 .05504 .23117 .00083
.2 — 18690 -4 .1 1 1 8 5  .93450 .02366 1.08206 .05915 .24592 .00095
.15 — 23019 -4 .7 9 3 3 7  1.08323 .02904 1.24503 .06834 .28136 .00117
.1 — 32011 -6 .3 3 1 1 1  1.42273 .04027 1.62336 .08948 .36480 .00162
.05 — 59550 -1 1 .2 2 0 5 9  2.50737 .07468 2.84066 .15722 .63478 .00300
0* — 02778 - .5 0 0 0 0  .11111 .00347 .12500 .00694 .02778 .00014

- . 0 5 .51968 8.95833 -1 .9 7 9 7 4  -  06476 -2 .2 1 1 9 3  - .12335 - .4 8 8 8 2 -.0 0 2 6 0
- . 1 24366 4.03144 - .8 8 6 0 4  - .0 3 0 2 6  - .9 8 3 2 8  - .05503 - .2 1 6 1 0 -.0 0 1 2 1
- . 1 5 15267 2.42938 -.5 3 1 0 1  - .0 1 8 9 1  - .5 8 5 3 9  - .03288 - .1 2 7 9 6 -.0 0 0 7 5
- . 2 10783 1.65343 - .3 5 9 4 3  - .0 1 3 3 1  - .3 9 3 6 7  - .02218 - .0 8 5 5 8 -.0 0 0 5 3
- . 2 5 08140 1.20470 - .2 6 0 4 8  - .0 1 0 0 2  - .2 8 3 4 6  - .01603 - .0 6 1 2 9 -.0 0 0 4 0
- . 3 .06412 .91739 - .1 9 7 2 8  - .0 0 7 8 7  - .2 1 3 3 5  - .01210 - .0 4 5 8 8 -.0 0 0 3 1
- . 3 5 .05203 .72078 - .1 5 4 1 8  - .0 0 6 3 7  - .1 6 5 7 0  - .00943 - .0 3 5 4 4 -.0 0 0 2 5
- . 4 .04318 .57978 - .1 2 3 3 6  - .0 0 5 2 7  - .1 3 1 7 7  - .00752 - .0 2 8 0 4 -.0 0 0 2 1
- . 4 5 .03644 .47503 - .1 0 0 5 4  - .0 0 4 4 3  - .1 0 6 7 5  - .00611 - .0 2 2 5 9 -.0 0 0 1 7
- . 5 03119 .39506 - .0 8 3 1 7  - .0 0 3 7 8  - .0 8 7 7 9  - .00504 - .0 1 8 4 8 -.0 0 0 1 5
- . 5 5 .02700 .33265 - .0 6 9 6 7  - .0 0 3 2 6  - .0 7 3 1 1  - .00421 -.0 1 5 3 1 -.0 0 0 1 3
- . 6 02359 .28306 - .0 5 8 9 7  - .0 0 2 8 4  - .0 6 1 5 4 .00355 - .0 1 2 8 2 -.0 0 0 1 1
- . 7 .01843 .21035 - .0 4 3 3 7  - .0 0 2 2 1  - .0 4 4 7 5  - .00260 -.0 0 9 2 3 -.0 0 0 0 9
- . 8 01476 .16075 -.0 3 2 8 1  - .0 0 1 7 6  - .0 3 3 4 9  - .00195 - .0 0 6 8 4 -.0 0 0 0 7
- . 9 .01206 .12563 - .0 2 5 3 8  - .0 0 1 4 3  - .0 2 5 6 4  - .00150 - .0 0 5 1 8 -  .00006

- 1 . 0 .01000 .10000 - .0 2 0 0 0  - .0 0 1 1 8  - .0 2 0 0 0  - .00118 -.0 0 4 0 0 - .0 0 0 0 5

* N ote  1. F o r 0o»O ( y i - ~  ■») the  coefficients of O / y .  a re  given.
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O N  T H E  M E C H A N IC A L  B E H A V IO U R  O F  M E T A L S  IN  T H E  
S T R A IN -H A R D E N IN G  R A N G E *

BY

G. H. H A N D E L M A N , C. C. L IN  a n d  W. PR A G E R  
Brovin University

1. Introduction. T he present paper is concerned w ith certain  stress-strain  re la
tions purporting  to  describe the m echanical behaviour of quasi-isotropic m etals in 
the strain-hardening range. As a preparation  for a  more precise characterization  of 
these relations, let us consider the tension tes t of a  m etal like copper or alum inum  
which does not flow under a constant stress, but exhibits strain hardening. If the  te s t 
involves loading only, i.e., if the reduced tensile stress1 <r or the tensile stra in  e in 
crease th roughout the test, the resulting diagram  of reduced stress versus strain  will 
have the general appearance of the curve OPQ in Fig. 1. On the o ther hand, if th e  
te s t specimen is unloaded afte r a  cer
tain  point, such as P , has been reached 
along th is curve, the  stress-strain  d ia
gram  for unloading is found to  be very 
nearly a s tra ig h t line P A  which is p a r
allel to  the tan g en t of the curve OPQ 
a t  0.  A fter com plete unloading, th e  
specimen shows a perm anen t extension 
which corresponds to  the perm anent 
strain  represented by OA.

T o sim plify the discussion, le t us 
assum e a t  p resen t th a t  the m aterial is Q' 
incompressible. A longitudinal extension 
e of the  isotropic specimen is then ac- F ig . 1. Typical curve of reduced stress vs. strain, 

com panied by  a  uniform lateral con
trac tion  of th e  m agnitude e/2. If the  discussion is restric ted  to s ta tes  of stress and 
strain  which can be reached by a  single loading followed by  one com plete or partia l 
unloading a t  the m ost, th e  m echanical behaviour of the m aterial in simple tension is 
therefore com pletely defined by the  curve OPQ. I t  will be assum ed in the  following 
th a t  for the  m aterials under consideration the  stress-strain  diagram  in simple com 
pression (OP'Q ' in Fig. 1) is obtained by reflecting th e  curve OPQ w ith respect to 
the  origin 0 ,  and th a t the  practically  im p o rtan t portion of the curve Q'OQ, i.e., the 
portion corresponding to  small and m oderate strains, is represented w ith sufficient 
accuracy by a developm ent of the  form

« =  <7 +  a3<r3 +  a6iP +  • • • , (1)

where a3, as, ■ ■ ■ are constants. (The coefficient of the linear term  on the right-hand 
side of (1) m ust be u n ity  since a is the reduced stress. No even powers of a can occur

* Received September 17, 1946.
1 T he reduced stress is defined as the quotient of the stress by Young’s modulus.
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on the righ t-hand side of (1), because the stress-strain  diagram s for tension and com 
pression are assum ed to be congruent.)

In  the case of simple tension or compression, the mechanical behaviour of the m a
terial during the first loading is readily represented by a finite  relation of the form (1); 
the behaviour during the  first unloading, however, is m ost n a tu ra lly  represented by 
the differential stress-strain  relation

de =  da, (2)
for th is form avoids explicit reference to  the s ta te  of stress a t  which the unloading 
began. Accordingly, i t  is often convenient to  w rite Eq. (1), too, in differential form :

de = a(a)da. (3)

Here, a(<r) = de/dcr=  l+303cr2-|-5a5(r4-t- • • ■ equals the quo tien t of Y oung’s modulus 
by the so-called tangent modulus. T o  arrive a t  a com plete analytical description of the 
mechanical behaviour of the m aterial in simple tension and compression, we m ust sup
plem ent the preceding equations by analy tical criteria for loading and  unloading. 
For tension (cr>  0) loading corresponds to da >  0 and  unloading to da < 0 ;  for com pres
sion (cr<0) these criteria m ust be reversed. A satisfactory  criterion for loading and 
unloading is therefore furnished by the sign of ada = d{\a'i).

T he present paper is concerned w ith the extension of this analysis to  general 
s ta tes  of stress and strain  which can be reached by a  single loading followed a t  m ost 
by one com plete or partia l unloading. In the case of simple tension or compression, a 
differential stress-strain  relation of the form (3) which is valid for the first loading can 
always be in tegra ted  under the initial condition e =  0 for cr =  0 and  is thus equivalen t 
to  a finite stress-strain  relation. For more general s ta tes  of stress, however, a  suitably  
generalized form of the differential stress-strain  relation (3) m ay be in tegrable or not. 
T he distinction between differential and  finite stress-strain  relations for the first load
ing is therefore no longer a  purely form al m atter, b u t acquires physical significance. 
One of the. main results of the following discussion consists in the rem ark th a t  the 
assum ption of a finite stress-strain  relation for the first loading is incom patible w ith 
certain  postulates concerning the m echanical behaviour under those changes of stress 
which constitu te  neither loading nor unloading. T his is shown in Section 3. Sections 2 
and 4 are devoted to the discussion of finite and differential stress-strain  relations, 
respectively. Section 5 gives a m ethod of correlating experim ental resu lts w ith the 
present theory. F inally, Section 6 contains a  discussion of the lim itations of the 
theory.

2. F inite s tress-s tra in  relations. Using rectangu lar C artesian coordinates 
(i =  1, 2, 3), we denote the displacem ent from the stan d ard  s ta te  by the stra in  by 
€,*y and  the reduced stress by cr,,-. For the small deform ations to which the  following 
discussion is restric ted , the strain  e.yis given by

e < , -  =  K m * ' . í  +  M j  . * ) »  ( 4 )

where stands for duffdxj,  etc. A dopting the usual sum m ation convention regard
ing repeated subscripts, we define the mean normal strain as

and  the strain deviation as
0 — 3ÉU1 

e, , =  f , , eSij,

(5)

(6)
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where 5,-y is the K ronecker delta. Sim ilarly, the  reduced mean normal stress s  and the 
deviation 5tJ- of the reduced stress are defined as

s =  j  <ru (7)

and
s i ; cT\j ”  sSij. ( S )

According to the definitions of the deviations e,j and S u ,  we have

eu =  0, sa =  0. (9)

T he task  of generalizing the finite stress-strain  relation (1) is simplified by the 
rem ark th a t the first term  on the righ t-hand  side represents th a t  p a r t of the to ta l 
strain  e which is recovered upon complete unloading. T he rem aining term s on the right- 
hand side of (1) accordingly represent the perm anen t strain . In Fig. 1 the total s train  
is represented by the segm ent OB, the recoverable s train  by A B ,  and  the permanent 
s train  by OA.

S etting

U j  =  4  +  t'/ j, (1 0 )

where e(, denotes the recoverable and ef/ the perm anent strain , we m ay assum e th a t
the recoverable strain  is related to  the reduced stress by  m eans of the generalized law
of Hooke:

4  =  ( 1  + v ) s a +  ( 1  -  2 v)s5u.  ( U )

H ere v denotes Poisson's ratio . We are then left w ith the task  of supplem enting (11) 
by  a relation which expresses the perm anent s train  occurring during the first loading 
in term s of the reduced stress. For an isotropic m aterial, th is relation can only con
tain scalar constan ts in addition  to the tensors e[J, a i}- and 5¿¿, and  their invariants. 
F urtherm ore, the  principal axes of e f  and an  m ust coincide. U nder the pressures com 
m only encountered in the testing  of m aterials, no perm anent change of volume is 
observed, i.e., ««'=0 and e!f = e'f. A s ta te  of hydrostatic  pressure therefore does not 
produce any  perm anent strain , and two sta tes of stress which differ only by a s ta te  of 
hydrostatic  pressure m ay be expected to produce identical perm anent strains. T he 
perm anent s train  (¡J is thus independent of s and depends only on the deviation s,j. 
F urtherm ore, if the stress-strain  diagram s for simple tension and simple compression 
are congruent, a reversal of the signs of all stresses m ay be expected to produce a mere 
reversal of the signs of all principal strains. F inally, if the ratios of the principal 
stresses are kept constan t during the loading process, the ratios of the principal per
m anen t strains, too, can be expected to remain constant.

In a recent paper,2 W. Prager established the m ost general stress-strain  relation 
which is com patible w ith the preceding postulates. W ith the notations

J 2 ^  \ S i j S j i ,  J 3 =  3S i j S j k S k i ,  ( 1 7 )

and
t i j  —  SikSlcj  3-7 26 i j ,  (1 3 )

P rager’s stress-strain  relation can be w ritten  in the form

* W . Prager, Strain-hardening under combined stresses, J. Appl. Phys. 16, 837-840 (1945).
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u'i = F{J2, A )  [ P ( /2, +  Q(J2, A ) J z hi], (14)

where P  and Q m ust be homogeneous in the com ponents of the stress deviation, the 
degree of P  exceeding th a t of Q by  4. T he expressions (12) are second and  th ird  order 
invarian ts  of the stress deviation Sij (the first order in v arian t Su vanishes). T he tensor 
(13) is the deviation of the square suSkj of the stress deviation Sij.

Com bining (11) and  (14), we obtain  the desired generalization of the finite stress- 
strain  relation (1):

«¿i =  (1 +  v)sij +  (1 -  2v)s5ij +  F (J2, A )  [P{J2, j l ) s i j  +  Q(J2, j \ ) J z tu ). (15)

3. Neutral changes of stress. Inadmissibility of finite stress-strain relations. In
the case of simple tension or compression the sign of <rda — d i^a 2) proved to  be a  satis
factory  criterion for loading and unloading. Accordingly, one m ight consider the pos
sibility of using the sign of a ¡¡dan as a  criterion in the general case. If, however, the 
term  “loading” is reserved for such changes of stress which are accom panied by a 
change of the  perm anent strain , th is criterion is no t satisfactory . Indeed, on account 
of (8) and  the second Eq. (9), we have

vijdffij (sij ~sSij)(dS{j  -}- d s 31jj Sijdsn ~|- 3sds. (16)

If loading were to  correspond to a n d a n X ) ,  a change of stress for which dsij—0 m ight 
therefore constitu te  loading in spite of the fact th a t  such a change of stress is no t 
accom panied by a change of the perm anen t strain . T o  avoid th is difficulty, we shall 
use the  sign of S ijd s ij= d J2 as the desired criterion, an  increase of J 2 corresponding to 
loading, a  decrease to  unloading.

W hereas for uniaxial stress any  change of stress constitu tes either loading or un 
loading, we have three kinds of change of stress in the general case, according to  
w hether J 2 increases, rem ains constan t, or decreases. An infinitesim al change of stress 
for which d J 2 — 0, will be called a  neutral change of stress. For instance, any  change of 
stress which affects only the m ean norm al stress, b u t leaves the stress deviation u n 
touched, is a  neutra l change of stress. A more in teresting  example of a  neu tra l change 
of stress is given by

cr 0 01 0 d r O '

O a  = 0 0 0 , d c i j  - d r 0 0

0 0 0 0 0 o ,

Equation  (17) represents the stress system  which arises from a  com bined tension and  
torsion tes t of a thin walled circular cylinder. Specifically, consider such a test piece 
which is pulled to an a rb itra ry  tensile stress <r. If the trac tion  is then kep t constan t 
and  a sm all to rque applied, the. resulting  system s of stress and  increm ents of stress 
are represented by Eq. (17).

L et us now suppose th a t  for the first loading {dJ2> 0) we have the finite stress- 
strain  relation (15) and  for unloading (dJ2< 0) the generalized-law of Hooke in the 
differential form d t i j  = (1 + v ) d s i j  + (1 — 2 v ) d s 8 i j . (18)

T he sim ultaneous use of the stress-strain  relations (15) and  (18) will lead to  obvious 
difficulties, unless these relations give identical strain .increm ents for neu tra l changes



of stress. We shall show th a t, in general, th is continuity condition is no t fulfilled. In 
deed, if (15) is w ritten  in differential form, the first two term s on the righ t-hand  side 
equal the right-hand side of (18); the con tinu ity  condition therefore requires the  v an 
ishing of the rem aining term s on the righ t-hand  side of the differential form of Eq. 
(15). Consider, for example, the stress and increm ent of stress given by Eq. (17). A 
simple com putation will show th a t
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& 0 0 S a 0 0

S i j  — 0

br<051 0 h i  = 0 - W 0

0 0 0 0  - 1 rflV

0 d r 0 ] 0 \ a d r 0 '

d s  ( j  — d r 0 0 d t n  = 3 a d r 0 0

. 0 0 0 . 0 0 0 ,

as well a s d J 2 — d J 3 = 0. For this special case the differential form of Eq. (14) reduces to

de/i =  F(Jt, A )  [ ^ ( / 2, Jl)dsu  +  Q (/2, j \ ) j 3 din], (19)

where / 2 and J 3 are evaluated for an  a rb itra ry  s ta te  of pure tension. Since this s ta te  
of stress satisfies the condition for a neutra l change of stress ( d /2 =  0), deij m ust vanish. 
We find then, upon su b stitu tin g  the values of dsn  and dt/j previously com puted, th a t

E ( /2, Jl)  [ P ( /2, Jl)  +  A ) J 3 a] =  0. (20)

Now let us re tu rn  to  the finite stress-strain  relation, Eq. (15), for the case of pure 
tension. T he first com ponent of the stra in  tensor (the o ther non-vanishing term s 
differ from this only by a constan t factor) becomes

en = <r +  §P(/2, jl) [P(/2, j\)a +  & (/2, j\)J3o'2]. (21)

T he invarian ts appearing in Eq. (20) have been evaluated  for an  a rb itra ry  s ta te  of 
pure tension. C onsequently, Eq. (20) is valid for pure tension and the second term  in 
Eq. (21) equals zero. (A sim ilar rem ark holds true  for each of the o ther non-vanishing 
strain  com ponents.) Therefore, the stress-strain  relation will reduce to  H ooke’s law 
for pure tension if the con tinu ity  condition is to  be fulfilled. On the o ther hand, we 
have seen in Section 1 th a t  the stress-strain  law for tension need n o t be linear. T hus 
the m ost general finite  stress-strain  law coupled w ith Hooke’s law for unloading will 
no t be sufficiently flexible to represent a tensile te s t if the con tinu ity  condition is to 
be fulfilled. I t  is necessary, therefore, to  tu rn  to  differential stress-strain  relations if 
both  loading and  unloading are to be adequately  represented.

4. Differential stress-strain relations. A system  of differential stress-strain  rela
tions can be obtained from the properties discussed in Section 2 provided certain  of 
these are rew ritten  in such a w ay as to  be d irectly  applicable in differential form. 
We shall assum e th a t  given the com ponents of the stress tensor (T.j and  the increm ents 
don  there correspond unique strain  increm ents de{j. T his im plies th a t  the increm ent 
in strain , den, depends only on the s ta te  of stress a t  the given in stan t, an, and the 
increm ent in stress, dan, and  is independent of the w ay in which th is s ta te  of stress 
has been achieved provided only loading has taken place. In particu lar, we shall
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assum e th a t this dependence is such th a t  the increm ents in strain  are linear functions 
of the  increm ents in stress. T hus ¿ 6,7 can be w ritten  in the form

den =  (1 ~t~ v)dsij +  (1 — 2v)ds5ij +  c,-;u derm, (22)

where the fourth order tensor cijki is a function of a ,7 only. For unloading, the m aterial 
is assum ed to  satisfy the differential form of H ooke's law given in Eq. (18). Loading is 
supposed to take place when d J z> 0  and unloading occurs for d J 2< 0. For a neutra l
change of stress, dJi  =  0, the con tinu ity  condition requires th a t Eqs. (18) and (22)
coincide. Consequently,

Cain da hi = 0 whenever dJ  2 =  Ski dsm =  0 .

Since Ski is a deviator, dJz m ay also be w ritten  in the form dJz = ski da hi■ T hus the 
linear form in daki, can  daui, m ust vanish w henever ski daki vanishes. T he coefficients 
of daki in the two forms m ust be proportional or

Cijkl ~  C i jS k l ,

where the second order tensor C>j is a function of aki alone. T he stress-strain  relations 
then become

dtij =  (1 +  v)dsn +  (1 — 2p)ds8n  +  CijdJt, when dJ* 2: 0; j

duj  =  (1 +  v)dsij +  (1 — 2v)ds8ij, when dj% g  0. f

In a certain  sense, the term  Cn  measures the perm anent deform ation. Indeed, let 
us consider the infinitesim al cycle of stress which results when first d a n ' s applied 
and then —da ,7. We assume, in addition, th a t  the m aterial is being loaded when dan  
is applied. T he perm anent increm ent in strain  deij will then be

de'n =  Cij dJ2. (24)

Since the perm anent strain  is independent of a s ta te  of hydrosta tic  stress for pressures 
w ithin the range norm ally encountered in testing  of m aterials, the tensor C,j can only 
be a function of the com ponents of the stress dev ia to r ra th e r than  the stress tensor 
itself. Furtherm ore, there can be no perm anen t change in volum e; th a t  is, de[( = 0 or 
Ci, =  0 . Since the tensors den, dsn, and 8,7 are sym m etric, C,7 will also be sym m etric. 
In addition, a reversal of the signs of all the stresses is assum ed to  produce a reversal 
of sign of all the stra in  increm ents. This implies th a t  C n  m ust be an odd function 
of the stress com ponents and thus will vanish when all the Sij vanish.

T he m aterial is supposed to  become ortho trop ic under the  stress a n  in the sense 
th a t the Cn  can be represented as a power series in the stress dev ia to r 5,7- w ith scalar 
coefficients. These coefficients are either constan ts or else functions of the invarian ts 
of 5,7, i.e., functions of and Jz. I t  is convenient a t  this poin t to change from the su b 
scrip t notation  for tensors to G ibbs’ no ta tion ; the tensor Cn will be denoted  by C 
and 5,7 by S. T he m ultiplications indicated below are the usual m atrix  m ultip lications. 
U nder the assum ptions sta ted  above, the tensor C can be w ritten  as

00

C =  E  a2»+l( / ?> Jz)S -n+1. (25)
n * ® 0

We note th a t only odd powers appear in Eq. (25) since C is assum ed to be an odd



function of the stresses. E quation  (25) can be simplified fu rther by the H am ilton- 
Cayley theorem  which s ta tes  th a t  the tensor S m ust satisfy its  own characteristic 
equation .3 For the stress deviator S, this implies th a t

5 3 =  J 2 S +  J 3 I, (26)

where I is the u n it tensor. T hrough Eq. (26), we can reduce4 any power of S greater 
than  the second to a  linear com bination of I, S, and S 2 w ith  coefficients which are 
functions of J 3 and  J 3. For example, consider the reduction of the power S5. According 
to Eq. (26),

5 4 =  / 2S 2 +  / 3S;

thus

s 6 = j 2s 3 +  / 3s 2 = / ,  s 2 +  J 2S  +  JtJ t I.
In general, we can rewrite Eq. (25) as

C =  a(J2, J 3)S 2 +  6(7*. 7 ,)S  +  c ( /2, / , ) / , : 1.

We recall th a t  C;, =  0; since S is a deviator, th is implies th a t

2a(Jt , J 3)J* +  3c(J2, J 3) J 3 =  0,

or
2 J 2

c{Jt, J») — — o(J2, J 3).
3 J  3

Consequently,
C =  a(Jt, J 3) [S2 -  | / 2I]  +  b(Jt, J»)S.

T he expression appearing in square brackets is ju s t the tensor ¿,7 which was defined 
in Eq. (13). R etu rn ing  now to the subscrip t notation we can w rite the tensor C,y as

C,7 =  a ( / 2, J +  b{Ji, J 3)sij.

A  fu rther simplification can be m ade by noting th a t Cij m ust be an  odd function of th e  
stress com ponents. Since J 2 is even, J 3 odd, /<,- even, and 5,7 odd, we m ust have

2  2 

Cij =  p{J3, J 3)sij +  q{J3, J 3) J 3Ui-

T hus the com plete differential stress-strain  relations can be w ritten  in the form 5

¿€i,-=(l+i>)7s«7+(l — 2v ) d s b j j + \ p ( J 2, J i)S i} - \ -q {J 2, ' J i ) J i U i \d J 2 when if/2^ 0  1 ^
</€<,•= (1 +i/)d5,,-+ (1 — 2v)dsdi,-, when ' d J , £ 0 . j

5. Further study of the stress strain relations. Experimental determination. In
this section we shall discuss the relation between the differential form of the stress- 
strain  relation (cf. (27))

3 M . B6cher, Introduction to higher algebra, The M acmillan Co., N ew  York, 1907, p. 296.
4 This technique has been used recently by Marcus Reiner, Am. J. M ath. 67, 350-362 (1945) and 

W. Prager, loc. cit.
5 These relations contain, as special cases, the stress-strain laws developed by W . Prager, Proc. Fifth

International Congress of Applied Mechanics, Cambridge, M ass., 1938, pp. 234-237, and by J. H. Laning 
in an unpublished paper (1942).
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de/i =  { fiU i, Jl)s<i +  g ( /, ,  A ) J *U i) d J ,, d Jt ^  0 (28)

and the integral form

t i f  =  F (J2, j \) [P(J2, j I)sh  +  Q(J„ j \ )J zk j] ,  (14)

which holds only when the ra tios of the principal stresses are kep t co n stan t during the 
loading process, i.e., if

s u - k s u ,  (29)

where sf f  is fixed while k is the scalar variable. We shall then  show how a series of 
tests necessary to establish the Lode diagram  will be sufficient to  determ ine the  stress- 
s train  relations com pletely. F irs t of all, i t  is convenient to bring ou t the hom ogeneity 
properties in the relations (28) and (14) by introducing the sym bols

« =  J 3/ J 2, t . j  =  J 3 h j / J i ,  (30)

where a  is dimensionless, while 7 has the same dim ensions as J 2. T he relation (14) 
can be w ritten  in the form

t'i'j =  X (/2, ot){sij +  f i (a)yi j] , (31)
where

X ( /2, a) =  F ( J 2, A ) ,  /3(a) s  0 J 2, A ) / P ( / , f j\). (32)

N ote th a t )3 is independent of J 2, because of the hom ogeneity relation between P  and 
Q established in Section 2 .

W ith a sim ilar change of notation, the relation (28) can be w ritten  as

du'i =  G(J2, a ){st j  +  dJ2 ^  0 (33)

where

G(J2i «) p  p (J2, A ) , /S'(a) =  J 2q(J2, 7,*)/#(/*. A ) .  (34)

Since we did no t establish a hom ogeneity relation between p  and  q, we canno t im m edi- 
lately  conclude th a t /3' is independent of J 2. However, we shall see im m ediately th a t  
this is true  and  th a t  indeed

m p. (35)

We shall also show th a t  G (J2, a ) m ay be ob tained  from  X (J2, a)  by the relation

X d\
G{J2, <x) = ---- + -------  (36)

272 d J2
T he relations (35) and (36) will then determ ine the differential relation (33) com
pletely once the integral relation (31) is known by  a  series of experim ents of the 
special type (29). I t  is to be noted th a t  the functions G(72, «) and  /3(a) in (33) d e te r
mined through the use of (31) will by  no m eans restric t the application of (33) to 
processes connected in any  m anner w ith (29).

T o establish the relations (35) and (36), consider the application of (31) and  (33) 
to  a process of the type (29). L e t delj be the change in «(/ corresponding to  a change dk. 
Then
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and  (31) gives

dk
dJ2 =  2 J i  — , da =  0 ;

k

d \ dk
d e n  =  — -  d J i { s i j  +  ß y n }  +  X { j í /  +  ß j a ]  —  

dJ  2 k
while (33) yields

de'n =  G(/*, +

E quating  coefficients of 5,y and  7 ,7 , we obtain  the relations (35) and (36).

(37)

F ig .  2a. T he a —¡3 diagram (Eq. (38)) of the experimental results of Taylor and Quinney for copper, 
aluminum, mild steel and decarburized mild steel. The data for mild steel are too scattered for a definite 
curve to be drawn.

T he experim ental determ ination of the stress strain  relations can then be reduced 
to  th a t of (31) alone. T his can be done by a series of tests  of the type (29), which is 
of the class described by Lode ,6 T aylor-Q uinney7 and  H ohenem ser-Prager .8 Indeed,

9 W . Lodge, Forschungsarbeiten a.d. Gebiete d. Ingenieurwesens, No. 303, VDI-Verlag, Berlin, 1928.
7 G. I. Taylor and H. Quinney, Phil. Trans. Roy. Soc. London (A) 230, 323-362 (1931).
8 K. Hohenemser and W . Prager, Z. angew. M ath. M ech. 12, 1-14 (1932). An English translation of 

this paper is available as R .T .P . Translation No. 2468 (Durand Reprinting Com m ittee, in care of Cali
fornia Institute of Technology, Pasadena 4, Calif.).



the relation /3(a) is m erely ano ther presentation of Lode’s diagram . I t  can be easily 
verified th a t a , 0 are related  to Lode’s param eters9 /x and  v by the relations

4  /t2(9  -  m2) 2 

“ ~  27 (3 +  m2) 8 '

_  9(3 +  yt2) 2 1 -  u/n

2(9 — yt2) ^2(1 +  2v/n) -  3

T his new system  has the advan tage th a t j3 gives d irectly  the ex ten t of deviation from 
“von M ises’ second hypothesis” discussed by T aylor and Quinney, which is equiva
lent to  pu ttin g  /3 =  0. Indeed, one principal aim of T aylor and Quinney is to find out
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F ig . 2b. T he a  —/3 diagram (E q . (38)) of the experimental results of Taylor and Quinney for lead, 
cadmium and glass. T he data are too few to  allow any curve to be drawn.

th is ex ten t and  is therefore to determ ine the value of /3. Figs. 2(a) and  2(b) show the 
results of T aylor and Q uinney converted into the (a, /3) diagram . T his diagram  re
veals any  experim ental error more strongly, since /3 is essentially related  to  the slope 
of the (/x, v) curve; e.g.,

9 \V. Lode, loc. cit., pp. 1 and 12.
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dv 9 - 4 ( 3
— = ---------  for ► 1,
dp  9 + 2 ( 3

dv 2(3
— = 1 +  — for /* =  0. 
dp. 3

I t  should be noted in passing th a t a  m ust satisfy the inequality

0 <  a  <  4/27 (39)

to insure real values of p.
H aving determ ined (3(a) from (38), we m ay determ ine X ( /2, a ) by noting th a t 

(cf. (31))

h  a  i t i f i / i  =  X2/ 2 {1 +  3a/3 +  W P °-} • (40)

For each loading process given by (29) the value of a  is fixed, and (40) gives the de
pendence of X2 on J ‘2 if 12 is determ ined for given values of J 2. A series of tests with
different principal axes will then give the fu rther dependence of X on a.

6. Concluding rem arks. In closing, we note some of the lim itations of the stress- 
strain  relations developed in this paper. I t  has been pointed ou t previously th a t  these 
equations have been developed to cover the case of one loading followed by a t  m ost 
one unloading. This restric tion is quite essential, for relations (27) are no t applicable 
for a second loading. For example, if we consider a simple tensile test, the stress-strain  
diagram  obtained from (27) for the second loading would be a mere translation  of the 
diagram  for the first loading. T his does not agree w ith  the experim ental results. Sec
ondly, we note th a t these equations apply  only to  m etals which exhibit s tra in -harden 
ing. T hey  are no t applicable, for example, to m aterials which yield under constan t 
shearing stress or satisfy von M ises’ yield condition, /2  =  const.

——ir~id~itor'ed th a t the results presented here will provoke experim ental work to 
tes t their validity . Among the various features which should be tested  are two as
sum ptions m ade in developing the differential stress-strain  laws. T he first hypothesis 
(cf. Section 4) sta tes th a t  the increm ents in strain  are uniquely determ ined by the 
com ponents of the stress tensor cr.y and the increm ents dan  w ithou t reference to the 
previous h istory  of loading provided only one loading has taken place followed by 
a t  most one unloading. T he range in which such a hypothesis is valid should be ex
plored em pirically. Secondly, the assum ption involved in the  transition  from Eqs. 
(24) to  (25) should be examined carefully. According to these two relations, the prin
cipal axes of the increm ent in perm anent strain  de[j will coincide w ith  the principal 
axes of the existing s ta te  of stress $n independent of the increm ents in stress d<r,y, 
provided only loading takes place. T his conclusion should be tested  by experim ent.




