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THE REFLECTION OF AN ELECTROMAGNETIC PLANE WAVE
BY AN INFINITE SET OF PLATES, I*

BY

J. F. CARLSON1land A. E. HEINS2
Radiation Laboratory,] Massachusetts Institute of Technology

1. Introduction. It has been shown by J. Schwinger that a special class of bound-
ary value problems in electrodynamics can be formulated mathematically as Wiener-
Hopf4integral equations. These problems may be described as follows. A plane wave
is incident upon a number of semi-infinite parallel metallic structures of zero thickness
and perfect conductivity. By parallel structures we mean parallel planes or cylinders
with parallel axes. It is then possible to express the electric or magnetic field at all
points in space in terms of the surface current density on the metal with the aid of an
appropriate Green’s function. The vanishing of the components of the electric field
which are tangential to the semi-infinite cylindrical metallic surfaces, leads to a sys-
tem of inhomogeneous integral equations for the various surface current densities.
This system of integral equations assumes the general form

() = z | Kiix —y)fi(y)dy, x>0, i=19eee,«

where the fj(y) are unknown functions, while the Kij(x) and gi(x) are known. The
particular problem which we shall discuss below possesses certain periodicities, and
for this case we find it possible to reduce the system to a single integral equation of
the form

90 = JfO K(x —y)f(y)dy, x> 0, (1.1)

that is, an inhomogeneous Wiencr-Hopf integral equation. Here f(y) is unknown,
while K(x) and g(x) are known functions.

The advantage of formulating this particular class of boundary value problems as
Wiener-Hopf integral equations is that such equations are susceptible to a rigorous

* Received April 3, 1946.

1Now at lowa State College, Ames, lowa.

2Now at the Carnegie Institute of Technology, Pittsburgh, Pa.

5This paper is based on work done for the Office of Scientific Research and Development under con-
tract OEMsr-262 with the Massachusetts Institute of Technology'.

4R. E. A. C. Paley and N. Wiener, The Fourier transform in the complex domain, Am. Math. Soc.
Colloquium Publication, 1934, Ch. IV.

E. C. Titchmarsh, Theory of the Fourier integral, Oxford University Press, Ch. XI, 1937.

J. S. Schwinger, The theory of guided waves, Radiation Laboratory Publication. To be published.
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solution. We may thus find the functional form of the various surface current densi-
ties as well as the electric field. However, in such problems as we have described above,
the physically interesting quantities may be calculated from the far field and these
guantities in turn are closely related to the Fourier transform of the surface current
densities. Since Eq. (1.1) is solved by transform techniques, these quantities can be
obtained immediately.

The problem which we treat here is the following. A plane monochromatic electro-
magnetic wave whose direction of propagation lies in the plane of the paper, is inci-
dent upon an infinite set of staggered, equally spaced, semi-infinite metallic plates
of zero thickness and perfect conductivity. These plates extend indefinitely in a direc-
tion perpendicular to the plane of the paper. (See Fig. 1 for aside view.) The angle of
stagger with respect to a fixed direction (that of the cross section of the plates in
Fig. 1) is a, while the direction of propagation with respect to this fixed line is 0,
where a—w<6 <a and 0<ag7r/2. This structure has some properties which are analo-

gous to those of metal mirrors and gratings. Thus when it is excited by a plane wave
with arbitrary direction of propagation, there will be reflected plane waves in certain
directions depending on the relative dimensions, the wave length and the direction
of incidence.

2. Formulation of the problem. We assume that the electric field of the incident
wave has only one component, namely, the component which is perpendicular to the
plane of the paper. Since the incident electric field is independent of y and the bound-
ary conditions on the plates must be fulfilled independently of y, no other components
of the electric field will be excited. Thus all components of the magnetic field can
be derived from this single component of the electric field Ey(x, z) =0(x, z). For this
case both of the components of the magnetic field lie in the plane of the paper and

we shall refer to this problem as an “Il plane” problem.
If we now write the Maxwell equations5in the form
VX E=im
and
VX H = - ikE,

where k = 27t/X, and Xis the free space wave-length, we see immediately that the only
components of the magnetic field are
6 The time dependence of all field quantities is taken to be e~ikci and may therefore be suppressed.

c is the velocity of light. In the engineering literature, the time dependence is written as exp(ikct). In
order to convert our final results to standard engineering form, one merely replaces i by —.
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@
ikHx= -
dz
and
>
iklJz = ﬂ
dx

Upon eliminating TIXand Hzfrom the above equations we obtain the two dimensional
wave equation,

— _+ b k¢= 0

dx2 dz2

which is to be solved subject to the boundary condition, $—0 on the metal plates
since g) is the tangential component of the electric field. There are also conditions at
infinity on the function c¢j>(x, z) which we shall discuss later when we have need of
them.

We now formulate the equation which expresses the electric field in terms of the
surface current density oh the metal plates. To this end, we start by modifying the
structure in Fig. 1, so that there are now only a finite number of parallel plates, each
of which is taken to be finite in length. The length of each plate is such that the ampli-
tudes of the attenuated modes are negligibly small relative to the amplitude of the
propagated mode in the parallel plate region before the end of the structure is

n - .

Fig. 2.

reached. (See Fig. 2 for a side view.) If we employ the free space Green’s function, we
may express <€(v, z) in terms of d<j>/dn, the normal derivative on the metallic plates.
We have from Green’s theorem

> dG
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where the contour C is the one indicated by the dotted line in Fig. 2, ds* is the element
of arc length along it and G(x, z, x', z') is the free space Green’s function. The outer
boundary of the contour C is taken to be a circle of large radius. This is merely for
convenience and the outer boundary might have been any other closed curve.
G(x, z, x', z") satisfies the homogeneous wave equation

dk) d

+ —+ kG =0
dx2 dz2

save for the point x =x\ z=7z". At this point

dG 'O
4 dz" = - 1
dx
and
dg i-2'+0
dx' = - 1
4 dz Zm*z'— 0

This may be expressed symbolically by saying that G(x, z, x*, z') satisfies the inhomo-
geneous wave equation

dxG . d%s Lk
-------- - k&I = —S(x —x")S(z —1"),
dx2  dz2 ( S )
where d(x—x") is the Dirac delta function and is zero everywhere save at x ==x', where
it becomes infinite in such a fashion as to make the integral

4 5(x —x")dx" = 1

On the plates <f>(x, z)=0, while d(f>/dn* is the tangential component of the magnetic
field on the plates. Since the tangential component of the magnetic field suffers adis-
continuity which is proportional to the surface current density when we go from one
side of a given plate to the other side of it, the only contribution we get from the in-
tegration along the metallic plates is

23 f G(x, z, ma, z')Im(z")dz",

and the limits of integration are those which cover the full length of each plate. The
sum is carried out over the finite number of plates as shown in Fig. 2. 1m{z) is propor-
tional to the surface current density on the mth. metal plate. There is complete can-
cellation of the integrals taken along the paths which lead from one plate to the next
or which lead from the end plates to the large circle enclosing all of the plates.

We now calculate the contribution from the large circle. In the first plape, the free
space Green’s function which represents an outgoing wave for Vx2+z2 V x'2+z'2
is G(x, z, x', z") = {i/lE)H8) [k \/ {x—*/)2+ (z—=2")2] where is the Hankel function
of the first kind. The contribution from the large circle is
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where

G(r, /1, p, fi) = 7 H™[Wr* + - 2rr' cos (p - 0Y)]

and x = rsin ft, z = r cos /3. If we now expand G(r, r*, j3 /3") in terms of cylindrical waves
we have

®
G(r. r\ P, P) = Z E H”\kr')Jm(kr)eimw \ r<r.
‘=@ M
Furthermore, for any point outside of the region of the plates
®
4>(x, z) — c«(ico.»+l.inf) j_ anHw (kr)eirfi, (2.2)
m—® "

where the first term represents the incident plane wave whose direction of propaga-
tion is 6, while the second term represents the scattered wave. We shall not be inter-
ested in the explicit form of the a,,’s and indeed, we shall show that they do not enter
explicitly into the formulation of the integral equation. The expression for the plane
wave, e*Az os Hlsin A may be expanded in terms of cylindrical waves by noting that
o
00s 6+x Sin 6) '—"dfjferjoos (5-/3) =’ g+Hiwr/2  «kf)
m—®

If we now evaluate the integrals in (2.1) we get immediately
con B+XSIN6) = 0ino(N>:)

i.e., the incident field.
For our final equation we then have

%, z) = <hnl¥x, z) + E f Im(z")G(x, z, ma, z')dz".
Tp J

If we now let q become positively infinite, p negatively infinite, and let each plate
extend indefinitely to the right, we can then express z), the y component of the
electric field, in terms of the incident field and the surface current density on the
plates, that is,

tx z) = dno(*, z2) + — ¢ 3 f Imz )HA[kV(z - z'Y + (* - may]dz’, (2.3)
4 MMYMMH mb J

where a=b tan a. We now impose the electromagnetic boundary condition, namely
that 4>{x, 2) vanishes on the metallic plates, and we get a system of simultaneous in-
tegral equations of the Wiener-Hopf type for Im(z). That is, for x = na

0 = 4>Una, z) + — E f Im(z)HA~A[W (z - 2'Y + (n - m)W]dz® (2.4)
4 J mb 0

for all n withz>nb, n=0, +1, +2, <+ 6Due to the periodic nature of the structure,
the infinite set of simultaneous integral equations can be cast into the form (1.1).

61t is possible to obtain the integral equation (2.3) directly from the infinite structure indicated in
Fig. 1. We have intentionally avoided this because it requires a more detailed knowledge of the field at
infinity.
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We close our discussion of the formulation of the integral equation (2.3) with some
remarks about the range of values of a/A which is allowed. In the parallel plate regions
for z large and positive, z) is asymptotic to sin (irx/a)e'‘zwhere K= \/k2—(ir/a)2
If now k<ir/a, i.e., A>2<z, k will be pure imaginary and hence for z sufficiently
large and positive, <>(x, z) will vanish exponentially. In this case, the parallel plate
regions cannot sustain a propagating mode. If k>ir/a, i.e., 2a <\, then kis real and the
parallel plate region can sustain at least one mode consistent with the polarization
which we have employed. In order that a second mode not propagate in this parallel
plate region, we must further assume that a < A We also assume that there is a single
reflected wave. Such a restriction puts further limitations on a/A as well as on 6.
These restrictions will appear when we have obtained the solution of the problem.

3. Fourier transform solution of the integral equation. Before we turn to the
Fourier transform solution of the integral equation (2.4) we shall first convert it into
one of the Wiener-Hopf type. We note that the surface current density of the with
plate has the same magnitude as that of the zeroth plate provided we measure the
distance along the mth plate from its edge. Hence, the surface current density on the
mth plate differs from that of the zeroth plate only by a phase factor. This phase fac-
tor arises because the amplitude of the incident wave differs from plate edge to plate
edge by the factor

where lo(z) is the surface current density on the zeroth plate. Equation (2.4) may
then be rewritten as
© @

4 oL’

m<:—eo‘J 6
where p=bcos 9 +a sin 9. If we replace z by z +nb, Eqg. (3.1) will read
g\k [(*+«&) cos O+na sin @

00

lo(z")eik”rH ) {k\f\'{n —m)b + (z —z")}2+ (» —w)2a2]dz',z > O.

Finally, when we divide the last equation by eik*nand put m —n = g, we get

and this equation is of the Wiener-Hopf type.
In order to put this equation into a form which amenable to solution by Fourier
transform methods, we extend it for negative z to be

sy — e T (75 2. 2y z< 0, (3.3)

Qtea— 3 J° 0 0

where <£i(z) is an unknown function which is, save for a phase factor, the tangential
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component of the scatteredelectric field at x = na. In viewof the periodic nature of
the structure, the dependenceof the integral equationonn isnot explicit We may
now replace Eqgs. (3.2) and (3.3) by the equation

i » r"
fa(z) = *,(*) + " E J /(;(zVV'fIO’\tV ?x2+ i+ 2- 'YW, (3.4)

where now
<) -2 0 for z> 0,
foz) * 0 for 2< 0,
JO for 2< 0,

0o(2) = | .
\eik*cos 6 for z > O.

For analytical convenience, it is now assumed that k has a small positive imaginary
part. This is tantamount to assuming that the medium is slightly absorbing.

Before we can apply the Fourier transform in the complex plane to the solution
of Eq. (3.4) it is necessary to study the growth order of the functions fa(2), 70z)
and oo(z). It is clear from a direct study of the integral Egs. (3.2) and (3.3) that these
functions are integrable for all finite z. The half planes of regularity of the Fourier
transforms of 0o (z), $%(z) and lo(z) are, of course, determined from their growth orders
at infinity and we now proceed to determine these orders. Since we Know oo(z) €ex-
plicitly, it is clear that its Fourier transform is

r* 1
e-™faVv)dz' = | -r
Jo ifw — k cos d\
and is regular in a lower half of the w plane defined by the inequality 3mw < 3m(& cos 6)-
Save for a translation on the z variable and a phase factor which is independent of z,
10(z) is, in certain units, the surface current density on any metallic plate. For z suffi-
ciently large and positive, J0(z) is asymptotic to the surface current density in any of
the parallel plate regions, that is, it is asymptotic to ei,z. Since io(s) is integrable at the
origin, the Fourier transform of 10(z), that is

is regular in some half plane defined by

iRtkfynk

3mw < 3m00 ~ = > 3mk,
\ K\

since 9ie(&)/| x| > 1L

We now investigate the asymptotic form of <i(z) for z large and negative. Before
doing this, however, it is convenient to give another representation of the kernel of the
integral equation (3.4). The kernel

00

7 E eiip7H<O])[V ? X2+ (gb + 2)2]
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has the Fourier integral representation

if* 9 gtfcpi-Hlala*fc2-w2—wgb
| «*" Z 7= ; dw, (3.5)

4 X 5.-® V.« ~ W

where C is a contour which lies in the strip of regularity of the sum in (3.5). It is
closed in the upper or lower half planes by a large semi-circle which passes between the
poles of this sum depending upon whether s> 0 or z< 0. The strip of regularity is,
of course, determined by the region in which the infinite series in (3.5) converges. A
direct study of this series will reveal that the ordinates of convergence are given by
the inequality, 3nt& cos (2a —9) cos 6. This now clarifies the reason why
we imposed a small but positive imaginary part on k. Had we not done this, the series
would only converge on the real axis of the w plane and as we shall see in the actual
solution of the Wiener-Hopf equation, this situation would have presented us with
some analytical difficulties.
We may now write the sum in the integral (3.5) in closed form as

e'wz sin ay/k2 — w2dw
47r) € y/k2—w2[cos ay/k2 — w2 —cos (kp — wh) ]
For s<0, we close the path C in the lower half of the w plane. The poles in the lower
half plane are w = k cos (2a—9) and two infinite sequences of poles both of which have
negative imaginary parts. We shall have more to say about this double set of poles

presently. Suffice it to be noted at this point, that the kernel has a second representa-
tion which for z< 0 may now be written as

gifcr cos (2a—8)

) + terms which attenuate exponentially for z large and negative.
2ak sin (a —6)

It is clear then, that for z large and negative, <£i(z) ‘s asymptotic to
gik(z-z') cos (2a—0)

. U(z")dz',
L 2ak sin (a —#6)
and thus, the Fourier transform of <£i(z), i.e.,
0
e~iwz4>i(z)dz,
is regular in the upper half of the w plane cos (2a —9).

The Fourier transforms involved in this problem then have a common strip of
regularity, 3m((ife cos (9 —2a)) <3tnw<3im (£ cos 9) and it is thus permissible to apply
the Fourier transform to the integral equation (3.4) within this strip.

Let $i(w) be the Fourier transform of <>i(z) and J(w) the Fourier transform of
lo(z). The Fourier transform of the integral equation (3.4) is then

. 1 J(w) sin ay/k2 — w2 .
42i(s{0 = L (3.6)

i(w — k cos 6) 2y/k2 — w2 [cos ay/k2 — w2 —cos (kp —wb)J

The Wiener-Hopf theory now tells us that we can split this transform equation into
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two parts. One part will be regular in an upper half plane, 3fmw>3mfe cos (6 —2a), the
other in a lower half plane 3mw<Sni& cos 0 and both of these half planes have a
common region of regularity. It is well to note here that we use the term regularity
in a slightly extended sense. We imply by regularity that the function has neither
zeros, branch points nor poles in the region of regularity. That is, the function as
well as its reciprocal is “regular” in the conventional sense of the term. Suppose we
assume that we can write

K-(w) sin ay/k2 —w?2
K+(w) y/k2—w2][cos ay/k2—w2—cos (kp — toJ)]
where K-(w) is regular in the proper lower half plane and K+(w) is regular in the
proper upper half plane and that there is a common strip of regularity for both K~(w)
and K +(w). Then
., K+(w J(wW)K-(w
$1(W)K+(W) = — (w) —d (w)K-(w) (3.7)
i(w — k cos 6) 2

The left side of Eq. (3.7) is regular in an upper half plane while the second term on
the right side is regular in a lower half plane. The term

K+(w)
i(w — k cos 6)
is only regular in the strip of regularity. This function may be decomposed into two

functions in such a manner that one function is regular in the appropriate upper and
the other in the appropriate lower half plane, since

K +(ui) K+(w) — K+(k cos 6) K+(k cos 6)
i(w — k cos 6) i(w — k cos 6) i(w — k cos 6)
The first term on the right no longer has a singularity at w = k cos 6, but is regular

in the upper half plane and the second term is regular in the lower half plane. Thus
Eqg. (3.7) can be rewritten in the form

Xv(w)\}g+t(w\) K+(w) - K+(k coi_d_)_: J(W)K-(w)+ ___K+(kcosd)_ .

t(w — k cos d) 2 i(w — k cos 6)

(3.8)

The right side of the equation is regular in the lower half plane cos 9
while the left side is regular in the upper half plane 3fmu>>3iiitife cos (9—2a). Both
sides have a common strip of regularity and hence the left side of (3.8) is the analyti-
cal continuation of thé right side. Such an equality can only hold if both sides of
Eqg. (3.8) are equal to an integral function, that is, a function regular everywhere in
the complex w plane. We have then

J(w)K-(w) K+(k cos 6)
------------------ — = integral function (3.9)
2 i(w —kcos 9
and also
K+(w) — K+(k cos 9)
Li(w)K+(w) ] = integral function. (3.10)
i(w — k cos 9)
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We shall now show that it is possible to decompose the function

sin a\/ k2 —w2
y/k2— W2 [cCOS ay/k2 — w- — Q3B (kp — iff»)]
into two functions, one of which is regular in the lower half plane cos 6,
while the other is regular in the upper half plane cos (6—2a). The de-
nominator of the fraction may be written as
cos ay/k2—w2—cos (kp — wbh)

- \ay/k2—w2+ kp —wb\ _ [kp —wb —ay/k2—w2]
2sin sin

%[ay/k2 — w2+ kp — TP>[¢ep — wbh — ay/k2 — w2]

s (al/k2—w2+ kp —wb)2 (fop — wb —a\/&2 — w2 2-
X -
”r] [I 4»21 4%» 212
a\/&2—T2+ kp —
= t[(kP- Why-- ((2(("2_ Wajn fi - (0"nA2—tr2+ kp—w &) /2 nr
™l L 27T
X n 1 allkz—wz+ qu-r i y fez-u>2+ kp-xcb)/2nT
2hit
X ﬁ f 1 kp —wb _ay/ k2 —wz& (kp—wb— k2—w2)/2nir
no-ioL 2tlir I
X kp _Wb _ay/ kZ_WZ_Q(kpfu;bfay k2—iv-)/2nr
R T 2«TT

The exponential factors in each of these products has been inserted to render the
products absolutely convergent. The above expression may now be rewritten to read

re kp —wh)2 a2k2—w2'
Kaz+ &(w - cri)(w- € 11 )1 - -1 ~ _ e(kp-wb)in~ (311
n=—co — \ ZnTT 4» 2r2

where the prime on the products denotes the absence of the term n —0 in the product.
The infinite product in the last expression may now be expressed in a manner such
that it puts into evidence the portion which is regular in the correct upper half and
lower half planes. Indeed we may express (3.11) as

00

@2+ bA(w - <)(w - € IT [A"- fT,Je[f>?bf“ai)2ml+(r/2- “)

n«*— o0

00
X IX ; [A + ityn) k p —wb—uai)/2nx]—i(r/2 —a)"

n——oo0

where now
<A = kcos 6, a* = k cos (2a — 6),
and
kp A2 / aky / kp \ wa esc a
N = ljlsin2a”n 'F, = cosall--mmmm- I+

2TiiJ  \ 2ttk/ \ 2irn’) 2kh
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where again, the exponential factors following the infinite products have been chosen
to insure the absolute convergence of the product. One should note at this point that
the choice of these exponential factors is not unique and indeed need only be asymp-
totic to the factors which we have chosen. However, we shall see that a second in-
tegral function x(w)< introduced into the decomposition of K(w), is determined in
terms of the factors which we have chosen. We have finally that the factor

(W — Q1) I>: [A, — tV\rn]Ct(*P»wH«ei)l2ra]+i<T/2-a)J)J) [An + nlel(ki>-wb-wai)l2rn]-i(r/2-a)

n=—e n**|

has no zeros in the lower half plane 3fmw<3fmA cos 0, while the factor

to !
W — IX [NMi_jidfn]e[("*i>-I»6-woi)/2Tn]+i(r/2-a) [An+ I'AnleUs>fr-"<*)2Tn]-i(ir/2-a)
n— «»—0
has no zeros in the upper half plane cos (6—2a)]. The factorization of

sin ay/k2—w2

y/k2- w2
is more direct, for
sin ay/k2—w h a\k2- w*l
y/k2 —\\2 w1 L J
a3 “f lak\ iawl
— (w —K)e~iawl*(w + KeiwrH 4/ 1 —(— g-<<on/m»
X B2 V Xmij unJ
iawfvn
The factor
a U lak\2 iawl
—(w - fgeia“/ril Va/ 1- (—)H eriM,r
X »«il r \xn/ xii J
has no zeros in the lower half plane Qmw <3»«. while the factor
a “f Ink\2 iawl
— O + K)eittwiTI I Va/ 1- 1—) eiawlm
X 2 LV vrn/ xw J

has no zeros in the upper half plane Smw>3im(—K. We thus find that

= ML Ilé 1- 'E +TT(I J e I.‘ IM (W )

(it — <-ﬁ) H [a,,f n [a*+ w(*7z—a)
— o0

4

is free of zeros and poles in the lower half plane cos 0. The factor ex(u)
will be determined so as to make K-(w) have algebraic growth as |#j—0 for
3hTiie<0. With x(w) so chosen, the integral function sought can only be of algebraic
growth for |«j|—<» K-(w) is regular in the lower half plane cos 0.
Finally,

*

-1
(02+ bxw - adexcH I (a, - W2-q) MICpusHTa)y2¥n“xr/2-Q)

K+(w) e ————
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has no zeros or poles in the upper half plane cos (6—2a).

We shall now discuss the asymptotic form of K-(w) as |w |—»<», 3imw/<0. This
procedure will enable us to determine the unknown integral function xfaO- ft has
been shown by Schwinger7that functions of the form of K-(w) are independent of ka
for |w| —°0, 3mw<0, and t <ak<2ir. Thus
‘}\I/ r 14 faw"1 gqaw|xna iaw/r

2L TUJ T

5 Ve o T ST S

x)

X (3.12)

1
R dna+  asaH LS 1 ] @tk o
The products in (3.12) are now in the form of gamma functions and

acsca\2 . . |/ — wa csc ote~ia\ ./ wa csc ae™\
(W Veiveitirr'( ] B Changadit

K-{w) 2m |/ \Y/ 2ir [\ 2i /
iaw / iaw\ [iaw\
(1H ) eiav,i,rr (-—-- )
Mo\ o/ \ 7T

where y is the Euler-Mascheroni constant. Using the Stirling expansion theorem
for |w|—co, <0 we get

exMacscia | aw G-S-g-e-l-e_*‘il_l(lmcacor)/z;r]« o {a_wesca e‘a) 4[O=AeAIA - 22
K-(w) m
W \~)
QgXM+iav/tK*“-*1*) cota+In (cx0a)/2)
a2
where C is a constant. Thus if we choose
—iawr/ t\ .
x(w) = {a Icota —In2sina
m L\ 2/

K-(w) will have algebraic growth for |w| large, (Jmzt'CO.

Now J(w), which is proportional to the Fourier transform of the surface current
density on the various plates, approaches zero for |w| large, 3fmw<0. This assumes,
of course, that 10(z) can at most be of exponential growth for z large and positive and
is integrable for z finite. Thus K-(w)J(w) approaches zero for |w| large and 3*niw<0.
If we now return to Eq. (3.12) we see that as |w\ becomes large, 3fmw <0, the integral
function in (3.9) is asymptotic to zero. We may now apply the same argument to Eq.
(3.10) and find that the integral function is again asymptotic to zero. But by a theo-
rem of Liouville, and analytic function which is bounded in the entire complex plane

is constant and in this case the constant must be zero. We thus have
2iK+(k cos 0)
J(w) =
K-(w)(w —k cos 0)

If we were interested in the explicit form of the surface current density, we could
obtain it from J(w) by evaluating the Fourier inversion integral

7J. S. Schwinger, loc. cit.
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K+(k cos Q)eiwtdw ]
U € K-(w)(w —k cos d)

where C is a contour which may be taken as a straight line within the strip of regu-
larity of the Fourier transforms of 1(z), $i(z), o(z) and K(z). The contour is closed
above by a semi-circle, which by familiar arguments in contour integration may be
shown to make no contribution to the value of the integral. In the next section we
shall show that it is possible to find the reflection and transmission coefficients with-
out evaluating this integral in detail.
4, Investigation of the far fields. In order to find the reflection and transmission

coefficients, we now investigate the asymptotic form of >x z) for \z\ large. To this
end we note that Eq. (2.3) can be written in Fourier integral representation as

i o giuji+tikmp— ma\"Akl—w2

BN Oinc(”™, 2) j ~)

4irJ ¢ m— » Vk* — W2

where C is the contour which we described at the end of Section 3. This in turn, may
simplified to

9 = 45, 9
i sin \/k2—w2(x —an —a) 4- sjn wi fan —x Jd>
j fiaic [sin \/ (x 2 ) - [ ) = ! . (41
4x Jc y/k'l—xv2 [cos ay/k1l— w2 — cos (kp —wb)]

where n is the greatest integer contained in x/a. From (4.1) one can get the asymp-
totic form of <>(x, z) as z becomes large and positive. Since J(w) is regular in the lower
half of the w plane "NW ~Sn” cos d, we can close the contour C by a large semi-
circle which passes between the poles in the upper half plane. For na<x< (m+ 1)o it
can be seen that due to the form of the integrand, there is no contribution from this cir-
cular arc as its radius becomes infinite. In the upper half plane cos (2a—9),
there are two poles which correspond to propagating modes, namely w =k cos 6 and
w = k. All other modes are attenuated modes in the sense that they have large positive
imaginary parts compared to the imaginary parts of k cos 6 and k. If we now express
J(a>) as a function of w and use the above described contour in the evaluation of the
integral in (4.1) we have then to consider the asymptotic form of

ir [sin (x —an —a)y/k2—w2+ e'W-«*) s;n _ wi (@K - x)]K+k cos 0)dw
2irdc (w — k €0s 0)K +{w) sin ay/k2 —xv2
This in turn is equal to sin etz os 6 —TV" sin Trx/a +terms which approach

zero for zJi>0]. For z large and positive, this is asymptotic to
<tine(x, z) — Teill sin--—---

Hence, save for a numerical factor, the functional form of 4>(x, z) as z becomes infinite
is eitz sin irx/a, that is, it represents a travelling wave in the parallel plate region with
propagation constant k, as it should. The amplitude of this wave is

Agin(tR<6)(),,[1 | e<(*p-«&)]™(ft cos 6)

T= T ee =
(k — k cos 6)aikKK+(K)
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and depends of course on the particular parallel plate region for which it has been
computed. Since T is the amplitude of the wave transmitted in the parallel plate re-
gion it is the transmission coefficient because the amplitude of the incident wave has
been taken to be unity. If we now assume that k is real, the magnitude of T is

2312k sin (a —0)
\/{k cos 0+ K)(k —k cos (2a —8)

a quantity independent of the particular parallel plate region considered. Its phase
angle depends, of course, on the particular parallel plate region. We shall not give
the phase angle explicitly since we shall not use it in our later discussions.

For 2 large and negative we close the contour in the lower half of the w plane.
There is again no contribution from the circular arc which is drawn between the poles
in the lower half plane and so we need only evaluate the residues from the poles in the
lower half plane. The dominant contribution now arises from the pole w —k cos (0 —2a)
and in this case the dominant term is

K+(k cos 8)eiklx sin 2~ >2as
¢[cos (2a —8) —cos d\K+ [k cos (2a —0)]
all other terms in the integrand approaching zero for z large and negative. Here
K+ [&cos (2a—0)] means, as usual, the derivative of K +(w) with respect to w evalu-
ated a.tw = k cos (2a—0). The amplitude of the reflected plane wave is the reflection
coefficient R if the amplitude of the incident wave is taken as unity, so that we now
have
K+(k cos 0)
k[cos (2a —0) — 005 0]!?+ [&cos (2a —O0)]

Assuming, once again that k is real, the reflection coefficient may then be rewritten
in complex polar form as follows:

(k cos 0 —K)(k cos (2a —0) + K

R = — (0162
(k cos 0+ K)(kcos (2a —0) —K
where now
ka
cos a A\ sin (a —0)
] 2¢n ka cos 0
0i arcsin - .

ka . 2im - a -« )

1 sin0
™

ka
cosa H sin (a —0)
. 2X» ka cos 0
arc sin
+ E ka . 2irn
1— sin0

f/ irn
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ka cos 0 ka

+ arc sin - — cos 0
E il
'V o1-
ak o
— — CO0S + ~a —£cosa—In2sin aj-,
and
ka
cosa H sin (0 —a)
. 2irn ka
02 = - E arcsin ‘ cos (0 — 2a)
a
sin (2a —0)
© inl
ka .
cos a - sin (0 —a)
E . 2X« 0 22)
arcsin - cos (0 — 2a
* / ka 27T
4/1 —_ sin(2a—0)
v n
ka
— cos (2a —0)
: Tiyi ak
+ E arcsin (cos (2a )

kal\ -
| ),sin2(2a —0)

ak
xos (2a —0) <1+ © t) cosa —In2sina

\
al
/
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It is evident that there will be restrictions on a/\ and 0 if we arc to have a single
reflected plane wave. These restrictions become evident when we study the arc sin
sums and observe that conceivably the first term in the sums beginning with index
unity can exceed unity. We have tacitly assumed that they do not, for otherwise
they would appear in the amplitude factor as real terms. Thus we must see what is

implied by the condition that all factors in the infinite products be complex, or equiva-

lently A~>0. If we demand that Aj>0 it is clear that all other A,;s, n—1, 2, * ¢« will

also be >0. The condition Ai>0 is equivalent to

ak 2a sin a
@) ir X €0s21(0 —a)
and
ak sin a
(if) X sn21(0 - a)

Condition (ii) is always satisfied since a/\ is always positive. Condition (i) can be
more restrictive than the condition I/2<a/X <I. For example, if 0=x/12, a = 5x/12,

then condition (i) implies
a/X < .65.
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5. No propagation in the parallel plate regions. In the Fourier transform solution
of the integral equation (3.4) we have assumed that there was only one propagating
mode in the parallel plate region, i.e.,

> L rr
1 m(z) elz sin — > k>0
a

for z large and positive and z in the parallel plate region. Suppose now we dispense
with this assumption and ask what form the reflection coefficient takes if we now as-
sume that K<O0, i.e.,, 0<a/X<I/2. In this case « is, of course, imaginary and

/| mniM'] FY
Imz) ~ e~ (T'a lsin —
a

for z large and positive and z in the parallel plate region. The result we desire can be
obtained most easily by studying the result which we have obtained in Section 3.

We note that if « is purely imaginary and « is real, the amplitude of the reflection
coefficient becomes complex of magnitude unity. Indeed for K<0

Ak COS6 — K)(k COS (28 — 0) -j- k)

r (kcos9+ K)Ecos(2a — 9 — «

. ka cos o ka cos (2a —6) j
exp<ti

(T)'s[a' e [1- (=) sin*(@at~ i
Thus for this situation, the amplitude of the reflection coefficient is —1. The phase
angle 0/ is given by

) ) ) ka cos 9
0i =01 + arcsin —

while 02 is now given by

- ka cos (2a —9)
02 = @2 + arcsin — .
t / [ak\-
y 1-\—)sin2(2a- 9

Hence the reflection coefficient for 0<a/A<1/2 is now — For a single re-
flected wave, the inequality (i) in Section 4 must still be satisfied, although now it is
not as severe.

6. Discussion of results. It should be pointed out that some of the results ob-
tained from our calculations can be interpreted in a simple physical manner. For con-
venience, in this discussion, instead of the angle 9 we use the angle i, which the inci-
dent wave makes with the normal to the trace of the edges of the plates. It is readily
verified that

™
i=6—a -t—
2
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and also that the angle r which the reflected wave makes with the normal is also
equal to i. The condition that there be only one reflected wave

2a sin a
X cos* -¢(0 —a)

is seen to be a result of simple grating theory. If the waves scattered by a uniform
grating are not to interfere constructively in the region from which the waves are
incident (except for the specular case r=i) the condition a'{1+sin i)<\ must be
satisfied where a' is the distance between neighboring scatterers. In our case
a'= o0 esc a. Expressing 0 in terms of i, the relation

2a sin a
X C0S2£(0 —a)

is seen to be equivalent to a esc a(l +sin i) <X. If this condition is satisfied and the
condition for no propagation, X>2a, is also satisfied, the plates act as a perfect plane
mirror. However, while the magnitude of the reflected wave is unity, its phase is not
Tbut 0i —02. It is easily shown that it will be tt on any plane parallel to that of the
trace at a distance d given by

(4ird/\) cos i + 2mir = 02 —O©i m=0+ 1 & 2 eee

Therefore, as far as all distant fields are concerned, the plates behave in this case like
a perfect plane mirror whose surface coincides with any of the planes given by the
above equation.

When transmission is possible in the parallel plate region the wavelength in this
region differs from that in free space. One would, therefore, expect to find some anal-
ogy with the phenomena associated with a plane interface between two dielectric
media. This can be shown for the case a = /¥/2. In this case the magnitude of the re-
flection coefficient is

y kcosi — K

1?1 = T<os 1+ « '

This expression is identical with that obtained for the reflection at a dielectric inter-
face of a wave with the electric vector parallel to the interface. The phases are differ-
ent in the two cases and one can again find a set of planes at a distance d from the
trace given by

(@rrd/\) cos i + 2mir = 02 —0i, m=20, £ 1, me

such that the distant fields are identical in the two cases if we regard any one of the
planes as the interface.

The expression for the magnitude of the reflection coefficient should be of use in
estimating the reflection of waves incident on a metal lens provided that the radius
of curvature of the lens (i.e., the angle a) does not vary too rapidly.
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A PROBLEM IN THE PROPAGATION OF SHOCK*

BY

MONROE H. MARTIN
University of Maryland

Introduction. This paper deals with a single problem in the rectilinear motion of
a gas, namely, what is the subsequetit behavior of a gas initially at rest if its initial density
is a constant poin the region |X| < 1and a constant p2<po in the region |x\ >1?

The behavior of the gas is an idealization of the behavior of the atmosphere in
an infinitely long right circular cylinder after an explosion within the cylinder.

It is assumed that the pressure p and density p of the gas are related by the isen-
tropic law p = kipy where h? is constant for all x and all t. Under the law of conserva-
tion of energyl (Rankine-Hugoniot equation) there is a change2 in entropy across a
shock and the results in the paper may be regarded as an approximation to the actual
state of affairs only in the case where the change in density across the shock is very
small with a correspondingly small change in entropy.

At times the author has not hesitated to restrict attention to a monatomic gas
(7 =5/3) in order to avoid formal mathematical difficulties.3The behavior of the gas
undergoes marked changes as the difference po—P2between the initial densities is per-
mitted to vary.4

If po—Pzis sufficiently small the two initial shocks give rise to shocks traveling in
opposite directions towards infinity as t increases indefinitely. Up to a certain instant
the shocks travel with constant velocity greater than the velocity of sound in the un-
disturbed gas. After this instant their velocity of propagation decreases monotonically
with time, to approach the velocity of sound in the undisturbed gas as the shocks
recede to infinity.5The behavior of the gas between the two shocks is followed up to a
stage when the mapping8of Riemann’s (r, s)-plane upon the (x, f)-plane loses its one-
to-one character. The further behavior of the gas still awaits determination.

Plates 1 and 2 at the end of the paper present qualitatively the variation of density
(or pressure), over the gas for p0—p2 sufficiently small.

1. Fundamental principles. Assuming that the pressure p is @ monotonic increas-
ing function of the density p and denoting the velocity by 11, the partial differential
equations

* Received March 8, 1946.

1See Ricmann-Weber, Die partiellen Differentialgleichungen der Malhemalischen Physik, 6th ed.,
Friedr. Vieweg & Sohn Brawnschweig, 1919, vol. 2, pp. 549-550.

2Indeed under the Rankine-Hugoniot hypothesis it follows from formula (10) on p. 513 of Riemann-
Weber, op. cit. that the entropy of the gas in back of the shock depends upon the ratio of the densities of
the gas on the two sides of the shock. This ratio changes as the shock propagates and consequently the
the entropy of the gas in back of the shock is not constant.

2The examination of other values of y has been begun by R. C. Rand in his doctorate thesis entitled
The rectilinear motion of a gas subsequent to an internal explosion. A copy of this thesis is on file in the li-
brary of the University of Maryland.

*R. C. Rand, loc. cit.

8See, however, the last sentence in 86 of the present paper.

6For a discussion of this mapping see Riemann-Weber, loc. cit., pp. 533-536 or The rectilinear motion
ofa gas, Amer. J. Math. 65, 391-401 (1943). This paper will be cited as I.
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p(«i + uxtt) + Gpx =0, pi + (pi0* = G~ =G2(p) = p°',
for u, p become
rt+ arx= 0, s, + &x =0, a=u+ G, B3= u—@G, @)

if we set
UL=r+ s, f Glp)dp =1 —s > 0. 2
Jo

Clearly u, p arc monotonic increasing functions of r+s, r—s respectively and
a=a(,s)=r+ 5+ G(p(r- s)), $=1/3rs)=r+ s- Gp(r- i) 3)
satisfy
a(-s - 1= - 0(r, s), /13(- s, - r)= - a(r, s). 4

A point of the (u, p)-plane, or its correspondent by (2) in the (r, s)-plane, is said
to represent or be a state of the gas. The points of the (r, s)-plane representing states
of the gas comprise a half-plane r}ts termed the state plane. Points representing states
having the same velocity (density) lie on the lines r+s =const, (r—5= const.) and
the velocity (density) of a state increases with the distance of the point (r, s) from
the line of zero velocity r——s (the line of zero density r =s). The velocity is positive
or negative according as (r, 5) lies above or below the line r ——s.

In general a solution r=r(x, t), s=s(c, i) of (1) transforms a region of the (x, /)-
plane into a region in the state plane and is single valued. The inverse transformation
T: x=x(r, s), t=t(r, s) is not necessarily single-valued and is regarded as assigning
the state (r, s) to its transform (x,t). Corresponding to (1) there is the system

xr—ptr=0, —at, = 0, 5)
of partial differential equations for x(r, s), t{r, s) in T. The Jacobian / of T is
J= - {a- Ol = - 26Gtrt. (6)
If x, t are solutions of (5), the system of Pfaff
X —at —v X —f3 —v

dw = (x —at)dr + (x — f}t)ds, dv = 2 dr — 2 ds,
a—P a—s3

is completely integrable, and conversely. When we write
X —at = wr, x —fit= w,, @)
the integrability condition for the second equation becomes7
(a - ffywr, —pr(wr- w,) = 0. (8)
Taking w a solution of (8) it follows from (7) that a transformation T is
Tu: X -:----j-S-Nr--:-fi-Y\fl> = — "
a — a —
The following theorem is a direct consequence of (4).

1Cf. Riemann-Weber, loc. cit., pp. 536-538 or pp. 393-394 of I.
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Theorem 1. Given w—w(r, s) a solution of (8), another solution is w=w ( —s, —)
and Tw, Tw map points which are reflections of each other in the line of zero velocity
= —s, into points which are reflections of each other in the line x —0.

As a corollary, we see that if w(r, s) =w(—s, —r) points which are reflections of
each other in the line r——s, are carried by Twinto points which are reflections of each
other in g=0.

The theorem is obvious a priori on physical grounds. Given any motion of the
gas, its particles may be reflected in the plane x = 0 to gain another motion.

Taking r=r0=const., the second equation in (1) upon multiplication by dp/ds
becomes

d{x —pt. p)

Pt + PP, = = 0,
dex, 1)

and therefore a solution of (1) is given implicitly by8
r=ro X - Pt = SKp), 9)

~(P) denoting an arbitrary function of p. Corresponding to s = 50= const., a solution
of (1) is obtained from

x —at = <IX@a), 5= s0 (120)

For a fixed s in (9) the state (rQ, s) is assigned9 to all points of the straight line
x —pt="Z"'(P). This line is termed a propagation line and the state (rQ, s) is said to be
propagated along it. Physically the state (r0. s) is propagated through the gas with a
velocity p with respect to a fixed plane.

Let us assume that Twputs the states of a region R of the state planein (one-to-
one correspondence with the points of a region X of the (x, /)-plane. The transform
by Twof a segment of r=const. (s=const.) in R is a curve in X termed an r-curve
(s-curve). The r and 5-curves provide a curvilinear coordinate system on X from:
the state of the gas may be read off at any pointof X.

From (5) the slope of an r(5)-curveldis 1/a (1/P); from (9), (10) the propagation
lines drawn from the points of an r(s)-curve have slope I/p (1/a). Therefore the
tangents drawn to s(r)-curves at the points of an r(s)-curve are propagation lines and, in
so far as they do not intersect, may be used to assigned the states on the r(s)-curve to the
points of the region covered by them.

Two r(5)-curves C, C transforms of r=r0 (s=s0 under Tw, Ts respectively are
said to be propagated from each other if the propagation lines drawnfrompoints of
C, C which are transforms of the same state are identical.

Lemma 1. Two r\s\-curves C, Ctransforms by Tw, Ts of r=r0 [5 = s0] are propagated
from each other if, and only if w,(r0, s) =w,(r0, s) \wr{r, s0Q =«v(r, sf)].

From (7) parametric equations of C, G are
C: x —al(r0, s)t - wr(rQ s), x  —P(r0, s)t — w.(r0s),
C: £ —a(r0, s)l = wr(rg, s), X —p(r0, s)t = w,(r0s).

8 Cf. Riemann-Weber, loc. cit., p. 518.
9 Cf. Riemann-Weber, loc. cit., pp. 516-520.
10 First noted bv R. C. Rand.
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Along a propagation line propagating the state (r0, s) we have x —(3(r0, s)t = const.
Hence propagation lines drawn from a point on C and a point on C, both transforms
of the same state (r0, 5) will be identical if, and only if, w,(ro, s) =w,(r0, s).

It is interesting to note that tangents drawn to C, C at points which are trans-
forms of the same state are parallel.

Lemma 2. Given two r\s]-curves C, C which are propagated, from each other, curve C
will pass through a point (x, 1) on the propagation line propagating the state (r0, s),
[(g so)] from Cif and only if wr(rQ, s) = £—a(r0, S)i[w,(r, sO) = 50f]. This con-
dition determines wr(r0, s) [w,(r, sO ] uniquely.

The first part of the lemma follows from the parametric equations of C. To prove
the second part we set r—r, w —w in (8) to obtain an ordinary, linear differential
equation for wr since w,—wi is a known function of s. This determines wr uniquely,
for wris known when 5= 3

2. Shocks and buffer waves. Under the assumption that G increases with p it
follows that G= G(p(r —s)) is an increasing [decreasing] function of r[s] for fixed
5[r]; from (3), one concludes that a [(3] is an increasing function of r[s] for fixed s[r].

Lemma 3. If initially r—0for —» <£< + « and s=si or 52as X<0 or x>0 with
Si < 52, subsequently the state of the gas is unchanged exterior to the “buffer region” between
the lines x=3(r0, Si)t, x=j3(ru, sf)t. Within this region the state (r0, 5) with 5i<5<52is
propagatedIlalong the propagation line x =/3(r0, s)t.

Initial states are propagated along the propagation lines
x —13(ro, Si)l = ki < o, x —O0(ro, sf)l = k2> o, (3(r0, 5i) < (3(r0, *2).

which diverge as shown in Figure 1 to assign the state (r0, 5i) to the region on the left
of OAi and the state (r0 s2 to the region on the right of OA2 To obtain the states in

the buffer region A\OA2 one sets ‘If03)=0O in (9) and draws the propagation line
x=/3(r0, s)t from 0. Along this propagation line the state is (r0, 5) and as 5 ranges from
5i to 52the propagation line-turns from OAi to OA2to assign states to all points of the

1 Cf. Riemann-Weber, loc. cit., pp. 520-521.



334 MONROE H. MARTIN [Vol. 1V, No. 4

buffer region. It will be observed that the states vary continuously along a line

| =t0>0.
In this solution of (1), the inverse transformation T is not single-valued the, seg-
ment Si™s of r = rObeing carried by T into the half-plane 0.

Physically the buffer region corresponds to a disturbance PiP 2affecting two bodies
of gas of different uniform states in contact with one another initially, the end points
of the disturbance traveling with the local velocity of sound in the two bodies of gas.
The passage of this disturbance through the gas is termed a buffer wave.

A shock exists at x = £ if piTpt and is propagated with a velocityl2

£= «ix \//—F_>i -p-i-_--_-P-i--: «@ % \//E E p.i di)
y pi pi —P2 y Pi pi—pl
where
Hi = «(£ —0), pi = p(€ —0), pi = p(£ — 0),
«2 = «(E + 0), pi = p(E + 0), pi = />E + 0).

The curve* = £(i) in the (g, f)-plane is termed ashock curve. Itwill besufficient
for the purposes of this investigation to considerprogressive condensation shocks
arising when pi>p2and the positive sign is taken in (11). For a shock of this type one
has the condition

ui —«2 —slipi —pi){pi 1—Pi 0, (12)
with
£ = {uipi — UiPi)(pi — p2_1I. (13)
If  (rhSi), (f2Si)denote the correspondents of («i, pi), (Uip2by (2)andthestate

(t2, £20 onthe rightofthe shock is given, the state (n, Si) on the leftofthe shockis not
uniquely determined but, by (12), may be any point of the curve.

r+i="Fi+ 5+ V((p —pa(P21 —P’), p = P(r—s), p= p(r—s) > p2 (14)

in the state plane. This curve is termed the compatibility curve of the state (r2 52
and its equation may be written in the parametric form

r= + 32+ v+ V(P ~ pi){pil ~ P1)}. 14"
s - §|'r2+ - v+ V(- pip2l- p1}, v > v2
upon introducing the parameter v=r—s, where, of course, 2= r2—&-

Lemma 4. The compatibility curve of a stale (r2, sf) rises with increasing r from the
point (r2 &), at which it has a horizontal tangent.

Both derivatives of r, 5 with respect to v will be positive provided

— G2(p) > -—— = G2(p) Wwhere p2< p < p,
Pi p — Pi

u See, for example, Riemann-Weber, op. cit. p. 513.
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which inequality holds for p>p2
under the assumption that G in-
creases with p.

We shall now consider the si-
multaneous generation of a shock
and buffer wavel3 as pictured in
Figure 2 where B is a buffer region
between two regions RO, Ri of uni-
form state (ro, s0), (ri, si) respec-
tively and OS is the shock line
separating Rx from the region i?2
of uniform state (r2, s2.

Lemma 5. A shock and buffer wave are generated simultaneouslyl3at the contact of two
bodies of gas of different uniform states {ra, So), (r2 s2 provided the point (r0, So) in the
state plane lies directly underneath the compatibility curve of the state (r2 s2.

Choosing the state (r2 s? in R2arbitrarily, the state in Ri must be represented by
a point on the compatibility curve of the state (r2 s2 ; and if this point lies directly
above (r0, sQ the existence of the buffer region B is assured by Lemma 3.

3. The isentropic case. Here p =k 2y with k, y> 1 constants and G increases with
p so that the results of §2 remain in force. Moreover

7—1 1 + 7 3 —7 7 1+ 7
G = (r s), a=——r- — 1, R _ T — ¥ (15)

and (8) becomes
3-7

207 - 1

For monatomic gases 7 =5/3 one finds a = §(2r+s), 3=f(r+2s). Also m=1 and
(16) becomes

(r —s)wr, —m(wr —w,) = 0, m (16)

(r—s)w,, - (wr sw) = 0, (16"

the general solution of which is
R > R = R{r), S = S(s), 17)

R(r), S(s) being arbitrary functions. The transformation Twis

(r+ 2s)wr — (2r + s)w, 3 wrow. 18)
r—s 2 r—s
or, from (17)
r+ A (r+ 25)R" + (2r + s)S'
(r ')3CR_S)- 5)3
- S -
(r-9 (18)

3(R-9) 3 R+ §'
(r- s)3 2 (r- sy
BCf. Rieniann-Weber, loc. cit., pp. 527-529.
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so that
t 3 (r- s)*R" - 2(r- s)(2R" + S") + 6(R - 9)
2 (r- 5)4 (19)
3 (r- 53"+ 2(r- 5)(P"+ 25) - 6(7? - S)
b2 r- <

primes denoting differentiations of R, S with respect to their arguments.

Lemma 6. For a monatomic gas the compatibility curve of a state (r2, s2 is an arc of
an algebraic curve of eighth degree ending at (r2, 52, about which the points of the arc per-
mit the expansions

3 3 2
r=r2+ v—W+ k(v—v2 + eee,  s= 52+ k(v—v2) + me, k= 1322 (20)

At all other points r is a regular analytic function of s with a positive derivative and r, s
are regular analytic functions (14") of the uniformizing parameter v, with respect to which
they possess positive derivatives.

For monatomic gases equations (14), (14') become

r+ 5=r2+ 52+ vVs-[(r~ s)i ~ (r=~ *)5][(r2 —=2~3HAr —¢)~3. (21)
r= I[r2+ i2+ v+ VA (5~ *t)(»23 - v-31, Ain)
s = ifr2+ s2—v + —it) (»T3—w3)],

from which the statements in the lemma follow straight forwardly.

We return to the general adiabatic case. A point in the state plane represents a
state for which the velocity is subsonic, sonic or supersonic according as the point
lies in, on the boundary of, or exterior to the region a>0, j3<0 between the straight
lines « =0, 13=0.

Lemma 7. The angle of inclination 0 of the tangent at a point of an r\s]-curve is less
{greater} than the angle of inclination $>of the propagation line drawn from this point.
Both angles lie between 0 and it and are decreasing functions of s[/].

The lemma is obvious in view of (15) and previous results in 81 on the slopes of
r, 5-curves and propagation lines.

Lemma 8. If Tu puts a region R of the state plane in (1-1) correspondence with a
region X of the (x, t)-plane and if the Jacobian J of Tv never vanishes in R, the curvature
of an r{s{-curve in X has afixed sign and the parts of the propagation lines drawn on the
convex side do not intersect.

4, The first initial value problem. Returning to the problem formulated in the
troduction, the correspondents of the initial states (0, pa), (0, p2 of the gas are repre-
sented by the points Pa{r0, 50, P2(r2 s2 of the state plane in Figure 3a. Both PO, P2
lie on the line of zero velocity r+5 =0, with rg>r2 since po>p2

From Lemma 4 we observe that PO lies directly underneath a point Q(ro, si) of
the compatibility curve of P2 and therefore, according to Lemma 5, a shock and
buffer wave are generated simultaneously in the gas at * = 1. In Figure 3b the shock

n_



1947] A PROBLEM IN THE PROPAGATION OF.SHOCK 337

line from .4(1, 0) is AQ™"™ and the buffer region is Po'AQ’'. States in the regions
OAPo , Q'AQ™, Q"Ax are represented by points Pa, Q, P2 respectively in Figure 3a.
It is obvious from symmetry considerations that a shock line AQ" and a buffer region

«=0 §=2=9
Fig. 3a. Fig. 3b.

Pa AQ' emanate from A (—1, 0) and that states in the regions OAPo , Q'AQ", Q"AX
are represented by points Pa, Q, Pa in Figure 3a with Q the reflection of Q in the line
r+3 = 0. In the buffer region emanating from A[A], we have r=ro[i="'S] and the
equations of the propagation line are

X —j3(ro, s)t = +1, So 2?s £ Si, [* —a(r, sOt = —1, n "~ rg r0

(n = -sx). (22)
As i[r] ranges from 5o0|/0] to Si[ri] the propagation line from A[A] turns from
APa [APa ] to AQ'[AQ’], with t= Go'l where Go= G(p0) at Pol These propagation
lines intersect on the t-axis above Pa to assign different states to their intersection
points. We avoid such a physical impossibility by terminating them on the arcs
Pa Q', Pa Q" in Figure 3b. The propagation lines assign the states on QPoQ to the
points of Q'Pa Q' and we seek a Twwhich carries QPoQ into Q'Pa Q' and assigns the

same states to the same points of the latter arc. A comparison of (7) with (22) leads
to the following initial value problem.

The First Initial Value Problem. Given two constants r0, So,find a solution w(2)
°f (16) for which wf\r, s0) = —1, s) —+1.

Before giving the solution for the general adiabatic case, we recall a few facts
concerning the resolventX4 of (16). This resolvent is a two parameter family of solu-
tions v=v{r, j; r0, s0) of the conjugateequation (r—s)vratui(vr—v,) =0 meeting the

initial conditions vr(r, s0; r0, Jo) = +1,v,(r0, s; r0,s0) = —1, and is givenby
fro —s\ n . r—r0 r—r0
v=(r—rQ l------- ) Fi(l —m\'m; —m\ 2; :
Vo —so/ so- r0 s—r
r—sOm . s—S% s —s0
( ) Fi(l —m\m\ —nr, 2;----—-—--- — ),
0 — So/ ra—S r —s0

14 See |, in particular §3 and §b.
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where Pi is Appell’s first hypergeometric function of two variables. The solution w(J)
of the first initial value problem is obtained by replacing m by —m and changing the sign
of the resolvent.

Monatomic gases present the simplest mathematical problem and from now on
they will receive our attention exclusively. For them ut—1 and

2 2 2

(r~ro)(r~ so)+ (s- rO(s - sO _ rE)- r - (s'- s0O

ww = i (23)
r—s r—s
the last equation holding provided ro+so = 0.
Comparison of (17) and (23) yields
22 2 2
R- r0—r, S =5 —s( (24)
so that (18") and (19) become
(6] (r- s)2+ 6(rs + roSo) m rs + roSo
X = —(r+ s) 1 t = —6 > (25)
(r- s)3 (r-s)3
= 9(r - s)~4as - 2r,) = - 9(r —s)~4(/3r - 2r\), (26)

where the superscripts record that w=w (0 in Tw. In the subsonic region of the state
plane a>0, /3<0 and, therefore in this region

trv < 0, tv> 0, JW > 0. (27)

The square PoQPiQ in Figure 3a is termed the primary region. As p0 increases
from p2 the primary region expands from point P2till eventually Pi leaves the state
plane. We consider only values of po for which the primary region lies entirely in the
subsonic region and forego examination of the several interesting cases which arisel
when this is not the case.

Arc Po Q', the transform of PoQ by Twa), is tangent to MPo"' at Po and has slope
tan 0= 1/a>0. Since Al>increases by (27) and the acute angle 0 decreases by Lemma
7 with increasing s, arc Po Q" is concave downwards. Likewise arc Q'P[ the trans-
form of QPi by Two), is concave downwards. From (23) and the corollary to Theorem
1 it follows that arcs Pd Q', Q'Pi are concave downwards.

The boundary PoQPiQ of the primary region and the boundary Po Q'PI Q' of
its transform under Tww are in one-to-one correspondence with J (1)>0 holding in
the interior of the primary region. It followsl that the interiors of the two regions
are in one-to-one correspondence to assign a unique state to each point of the region
Po'Q'PI1 Q" in Figure 3b.

5. The second initial value problem. To extend our knowledge of the states of
gas we draw propagation lines from the points of the arc Q*PI. These propagation
lines are tangent to r-curves on Q'PIl and according to Lemma 8 do not intersect on
the convex side of Q'PI.

The equation of the propagation line from Q" is

2 @
X 3 (2r0+ Si)t = wr (ro,s0 = —1 —2 - >

15 A beginning in this direction has been made by Rand, loc. cit.,
16 See, for example, G. A. Bliss, Fundamental existence theorems vol. Il1l, Amer. Math. Soc. Col-
loquium Publications, reprinted 1934, p. 42.

the
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and the equation of the shock line from A is, from (13), since r2+52=0,

(ro + si)(r0- St)3

(ro — si)3 — (r2 — S|)3
The two lines intersect in a point Q" with coordinates
12r0 12r0  (r0 —s{)3— (r2—523
x" = 1+ ——— (r. + Si)(r0- Siy, t" = N . , (28)
A(r0, Si) X(rQ, ii) ro — i

where
X(r;s) = (r —s)d—2(2r + s)(r2— s23 (29)

Referring to Lemmas 1and 2 a solution ww of (16") transforms QPi into an 5-curve
propagated from Q'Pi and containing Q" if

wflr, 5i) = wa>(r, 5i), r”™~rg rQ wq2)(rQ, si) = x" —f(r0+ 2jryz,/, (30)
the latter condition determining wA3 uniquely on QPi.

S 1

Fig. 4b.

Let the arc Q"P{' in Figure 4b indicate the prolongation of the shock line AQ".
On the right of Q" Pi* the state of the gas is P2(r2 si) and the states immediatelyon
the left of Q" Pi" are represented by points (r, 5) on the compatibilitycurve(21).
Thus Q" Pi" is the transform by Twm of the compatibility curve (?P2

On the one hand the slope of Q"Pi" is

dt tS + 3 tr 4 3
dx  xT + X, 2 (r+ 28)tr' + (2r + 5ZS
where r=r(s) is defined implicitly by (21) and its derivative r' is
8(r —s)s —20(r2—523r + 25)2—3(r2—>525
8(r - s)s- 20(r2- 5232r + 5)2- 3(r2- 525
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On the other hand, from (13)
dl (r—s)3- (r2- 532s

(31)
dx (r T s){r —s)3
and a comparison of the two results yields the condition
t. n(r, s)
rr=25 n(r,s) = (r —s)4+ 2(r+ 2s)(r2—523 (32)
tr X(r, s)
along QP2 or
bWr(rZ) —2(1 + 5)w,,(2)T w,,(z) = 0. (329

The Second Initial Value Problem. To construct a solution ww of (16") meeting
the conditions (30) on the side QPi of the primary region and the condition (32') along
the arc QP2of the compatibility curve.

From (24) the first condition in (30) is met by taking

R =fo—r, S(sf) = 5i — o, (33)
in (17) and, from (28), the second condition determines
u(ro, Ji) .

S'(si) = 2Si - 4r0 X0, si) (34)

The parametric equations of the arc QP (" are obtained by placing 5=5! in (18")
and substituting for R, S(si), S'(si) from (33), (34). In particular it is readily verified
that x(PP) >1.

Taking condition (32') in the form (32), and substituting for tT, t, from (19) with
R =rl —r3it will be found that this condition becomesT

2% PsiretlS 5 (r_E)(Zt;(i)-Sir(?,

35
r- s (r-s)2 3 (35)

where 5 A1), j(I) are the rational functions of r, s defined in (32), (26), and r is the
algebraic function of s defined in (21) with r2T 2= 0. Thus to obtain the solution

of the second initial value problem we set R=P0—r'lin (17) and choose S to be the solution
of the ordinary differential equation of second order (35), subject to the initial conditions
in (33), (34).

Lemma 9. The value of 5 at a point P of the compatibility curve QP2tends to T @O
as P tends to P2 More precisely 5is a positive regular analytic function of the parameter
v on QP2 except at v=v2 where it has a pole of the third order and a Laurent expansion

of theform

3 3 3 3 3 3
X= v(v —vd —3uv2 u—v(v —v2 T 3uv2

To prove 5>0 we have

17 The form of the second member in (35) is due to Rand.
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and the equation of the compatibility curve QP2
156252«V = (o* —vl)(v* —vI).

It is obvious that p>0 for v>v2 and X>0 follows from \p = v 2(v3—vf)2—9uivI>0 for
v>v2 To establish this inequality, one multiplies the equation of the compatibility
curve by 37 and observes that 3vi(y5—\) <5v6v3—t|) holds for v>v2 Now r‘'>0 by
Lemma 6 and therefore 5>0 for v>v2by (32).

From (20) one has u=r-\-s=v —d2+ 2k(lj—1/2)’+ « ¢+, so that

X = ew eee , m= /‘/—»z)+ Mee , ' = Wl"'.'), (37

hold along QP2 and the Laurent expansion for 5 then follows from (32).

It is apparent from (20) and Lemma 9 that the coefficients of the differential
equation (35) present a singular point at s =s2

Lemma 10. The introduction of v as i?idependent variable in the differential equation
(35) leads to a differential equation for V = S(s(v)) in which the coefficients are regular
analytic functions of vfor va v2

Retaining the prime to denote differentiation with respect to 5 and indicating
differentiation with respect to v by a dot, so that S'—V/i, S" = (SV—Vs)/i3 the
differential equation (35) becomes

. 22 v3B* (i) ()
V+(2(2 + B)&/v-3/S)V+ 6Sv (1+8)7 = — (t. - Str), (38)

in which the coefficients are regular analytic functions of v for v>v2 by Lemmas 6
and 9. Moreover if the coefficients are expanded in powers of v—v2 using (20) and
(36), it will be found that they are also regular about v2

Lemma 11. Provided pO0—p2>0 is sufficiently small, S and S' are negative for
s2ifs rf Si with S tending to afinite limit and S' to — < as s approaches s2

Since the coefficients in (38) are regular at v=v2 the solution determined by
Ht>0) = Vo, V(v0) —Vo may be expanded18in a power series in v—v2, v0—v2, V0, Vo pro-
vided the absolute values of these quantities are sufficiently small.

Taking v0 for the value of v corresponding to point Q on the compatibility curve,
v0—v2 can be made arbitrarily small by taking p0—p2 sufficiently small, with the co-
ordinates of Q given by

ro—r2+ \o—W4*k(vo—22)3+ '*nm, = 52+ k(vo —Vv2)3+ eee . (39)
The initial conditions for 5 in (33), (34) lead to the initial conditions

) o p(ro, Ji)l
F(flo) = Si —rQ, Fto) = 2ifli [ SI-2ro77— _ (40)
X(rQ, Si)J
for V. From (37), (39) we obtain the expansions
F>Q = —f2(00 —») —(«0 —v)2+ mmm, F(») = —2(vo —Vv2) + oo, (41)

18J. Horn, Gewdhnlich» Differentialgleichungen beliebiger Ordnung, Sammlung Schubert, vol. 50>
Leipzig, 1905, pp. 27-28.
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valid for sufficiently small |ixo—t»i|. It follows from (38) that the expansion of F(flo)
in powers of v0—v2begins with a term of at least first degree in vO—v2

When the expansions (41) are substituted in the expansion of the solution V in
powers of v—v2 vo~v2 Fo, Fo it appears that V may be expanded in powers of v—v2
vo—v2 provided |w—v2\, |zZlo—«21 are sufficiently small. To obtain the linear and quad-
ratic terms of this expansion, we substitute from (41) in Taylor’s series

V(v0
V = V(0O + V(vo)(v —vo) -—-- — (v~ VO)2+ oo

to obtain
V= —v2v0—v2 - 2(v0- v(v —d) + (vo ~ vI)2+ e me

the third term in Taylor’s series being neglected since Ht>0) contains the factor vO—v2

"It follows that both V, V are negative for v2~ v~ v0for sufficiently small vO—w2>0.
It is clear that 5 tends to a finite negative limit as 5 tends to s2and, since i is positive
and tends to zero as v tends to v2 one concludes that S' tends to — as 5 tends to s2

provided, of course, that po—yo is sufficiently small.
The subregion P2QPiRP2in Figure 4a of the primary region is termed the second-

ary region.
Lemma 12. The partial derivatives tf\ tf] and the Jacobian J m = —IGtfH” of Twm
are negative in the secondary region for sufficiently small po—p>>0.

We take R, S in (19) as determined by the second initial value problem and find

@ 1@ 35" 95 ®@ 1@O 3 5" 65' 95

2 r—sB =A™ T 2" 20 —s2 (r—s)3 (—s)4

9

from which 42><0 follows from (27) and Lemma 11 for sufficiently small po—p2>0.
To prove /)2 <0 we have

2-f8 1F & f—s)2 @i _ @
+ 6- - = ar - Sir)
f—s (r —s)2 3

where f=r(i) is the function of s defined in Lemma 6 and 5= 5(f, 5), i™ =tf\r, s),
Ay =/jh(r, s). When 5" is eliminated from /j2) it is found that 42="45'-f-55+C,
where

Az g8 =iy 6(f - s)-(r - s)-2/ S 5%
r—s)(r —s)2L 2 r —sJ \52 rj’
» - (_ .4 - . ["+5- (" )1 > ~(»--1 =m
C- +4(—W"-c,<f &'+
2 2V r —s/ 2

in view of the inequalities

2ri=ri—Si<r—s”™ f—s5< r0—s0= 2r0
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valid in the secondary region, t, has a negative upper bound and t, a positive lower
bound in the secondary region independent of p0. Moreover r@ n tend to r2 as po
approaches p2 In view of Lemma 9 we have A >0, B >0, C<0, and therefore ~2)<0
by Lemma 11 for sufficiently small po—P2.

We shall now investigate the mapping by Twm of the secondary region upon the
(x, ¢)-plane. Taking R, S in (18") as determined above in the solution of the second
initial value problem, Twm is

#<« = (r+ *X3ro~ ry)~ 4rs' _ 3 r+ * 5 _ 2r+ Js,
(r—s5)3 (r—s"3 (r—s)2
ro—rs 3S 3 S
tm = 3 —

(r—s5)s (r - s)3 2 (r — 5)2

From Lemma 11 it follows (at least for po—p2 sufficiently small) that x(2), / (2>become
infinite as the point (r, 5) of the secondary region approaches the side RP«. We shall
accordingly consider first the mapping by of the subregion UQPIiTU, the line
TU being parallel to i?P2

Sides PiQ, TU transform into 5-curves PC Q", T" U". From Lemma 12t decreases
and from (5) x increases as r increases along PiQ, TU. We conclude from Lemma 7
that Pi" Q™, T"U"™"™ are concave downward as shown in Figure 4b.

Side P\T transforms into an r-curve P{ T" which is concave upwards.

Arc QU of the compatibility curve transforms into the shock curve Q"U™. Along
QU x and t are monotonic decreasing functions of v, as is the slope dt/dx of Q"U",
for, from (31)

d/dt\ \r + pi
dv\dx) (r+ s)Ar —s)4

inasmuchas A>0, p>0 hold on QU. The shock curve is accordingly concave upwards
to imply that the velocity of propagation of the shock decreases as t increases.

Finally we let U approach P2along QP2 The 5-curve T" U™ recedes to infinity in
the (x, ¢)-plane and the secondary region, exclusive of side PP 2 is accordingly mapped
in (1-1) fashion by Twm upon a region indicated by P2' Q"P{ R™ in the (x, /)-plane
to determine the states of the gas in this region.

The slope of the r-curve PC T™ at T" tends to l/a{rh 52 as T' recedes to infinity.
The slope of theshock curve at U™ is, from (11),

dt /p2 p — P2

dx V. p p—P2

where p denotes the density for the state U and p=p(p). As U—>P2we have p—p2,
which implies dt/dx—>1/G2. This means that the velocity of propagation of the shock
tends toward the local velocity of sound in the exterior body of gas through which
the shock travels as it recedes to infinity.

The determination of the states of the gas in the region PCQ"Pi* R" may now be
left to symmetry considerations or Theorem 1.
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6. The third initial value problem. We take up the problem of determining the
states of the gas in the region of the (x, /)-plane lying above the curve R"Pi PiPi R"™
in Figure 4b.

\HSO

SO

Fig. 5a. Fig. 5b.

Propagation lines drawn from Pi'R™ in Figure 5b have slope 1//3<0 and, from
Lemma 8 can intersect only on the concave side of Pi*R™. We shall prove that they
do not meet in the region x>0 if p0—P2 is sufficiently small. Since 0 is a monotonic
decreasing function of 5 by Lemma 7, it will be sufficient to prove that the /-intercept
T of a propagation line is a monotonic decreasing function of s.

In the equation of a propagation line Z=/3~X+ 7' we replace x, / bythecoordinates

of a point on Pi* R™ obtained from to obtain
_ V%S_(rl%’&'r\ —r0.
1S(ri, j) P(ri, s)(ri - s)2
from which

dT  /3(ri, s)(ri —s) S™ + 4s(ri —s)S' + 4sS + 4j(ri —r0Q)
ds ISAri, i)(rt —j)3

After S" is eliminated by (35) it will be found that dT/ds< 0 holds for sufficiently
small po—P2-The principle of the argument is essentially the same as the one employed
to prove that Z®<0 in Lemma 12 and is omitted.

From symmetry considerations propagation lines drawn from Pi* R do not in-
tersect in the region x <0. Propagation lines drawn from Pi' R* and Pi' R symmetri-
cally placed with respect to the /-axis intersect upon it and, excepting the two drawn
from Pi*, Pi", assign different states to their points of intersection. This is avoided
in Figure 5b by terminating the propagation lines on arcs P{"N"'", Pi" N'", the
coordinates of P{" being x=10, /= —w f>(ru Si)/I13(ru ¢i).
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By Lemma 1 an r-curve, the transform of PiR by Tww will be propagatedfrom
PI'R" provided

w@)(ri, s) = w?\rxs) f°r = N si (42)

and by Lemma 2 will contain P/ ', in case

Wi sy = <@ g o WP, (43)

0(rh ii)

At points symmetric to the /-axis states have the same density and opposite veloci-
ties. From the corollary to Theorem 1 this will be the case inthe region above
N*"™'P( "N*" if this region is the transform by Twof a region in the state planesym-
metric to the line r+5 =0, provided w(r, s) =w (—s, —) holds in this region.

The Third Initial Value Problem. To construct a solution of (16') meeting
the symmetry condition wm(r, s) =wm(—s, —r) and the initial conditions (42), (43)
on the side Pi R of the secondary region.

The solution of this initial value problem

S(-r)+S(i).
r—s '

ww (r, sf = (44)
is obtained by setting P= —S(—r) in (17), where S(s) is the function entering in the
solution of the second initial value problem.

The symmetry condition is obviously fulfilled. From (33) we find w(3)(n, s)
=wA2)(™, 5) and (42) follows by differentiation. Condition (43) is likewise a conse-
guence of (33).

The subregion PiRP~ARPi of the secondary region in Figure 5a is termed the
tertiary region.

The mapping by Twp of the tertiary region upon the (g, /)-plane is not (1-1).
If R is replaced by —S(—r) in (19) one obtains

(€) 3 (r-5)&8"(-r) + 2(r-i)[2S'(-r)+S"'(5)] + 6[5(-r)+5(i)]
‘ 2 (r- sy

(45)

In particular on r= —5 (along P1P2)
B = _SsS'(s) + 3S(9)].

For po—pi sufficiently small /® is positive along P1P2in view of (27), (35) and Lem-
mas 9 and 11. On the other hand, if we fix r in (45) and allow 5 to approach Si it ap-
pears that /)3>eventually becomes negative because of the behavior of S, S* as 5 tends
to s2. Hence there exists a subregion PfPAMPi of the tertiary region within which
/A is nositive, except along MPi where tf]1=0.

Differentiating equations (5) partially with respect to r and 5 and eliminating xT,
we find that t satisfies the partial differential equation (a —3)/r, =/3,/r—ad, which re-

duces, in the adiabatic case, to
1 7+1
(r~ s, = (Ir- 1).
2 |
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Plate 2. Variation of density p with time t for fixed distance x.
Plate 1. Variation of density p with distance x for fixed time /.
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It follows that in a region in which tTis positive and is negative, /r(/s) is a monotonic
increasing function of s(r) for fixed r(s).

From /(3)(r, s) =Im(—s, —r) we have tf\r, s) = —)3 —s, —r) and thus /® = —j3
along-PjPi- It follows that /¢3 is negative along P 1P2, and consequently is negative in
a suitably restricted region containing P 1P 2 When we procede from P 1P2 to the left
along a line s=const., If3 decreases and accordingly is negative everywhere in
P ,P 2JIfPi.

Along MP2dt~/ds is positive and j)3 = —2Gtf)itf'l changes sign as (r, s) crosses
M P2 Thus the mapping of the tertiary region cannot be (1-1).

It is clear that /j3 vanishes along an arc M P2 the reflection of MP2in PiP2
Within the region PiMP2MPi we have J (9 >0. The application of Twm to the tertiary
region to obtain further information about the states of the gas must be restricted to
a square PINP3N within the region P\MP2MP\ with sides on P\M, P\M. Such a
square is carried by P”™w into the region P("N'"PI"N"'" of Figure 5b, within which
the states of the gas may be regarded as known.

The prolongation of the solution into the rest of the (r, /)-planc still awaits solu-
tion and it should be noted here that further extension of the solution may modify
the states assigned above to the region R"P(* Q" Pi' and its reflection in the /-axis.

7. Graphical presentation of variation of density. Plates 1and 2 portray the varia-
tion of density (and thus the pressure) of a monatomic gas for sufficiently small
po— p2in so far as our analysis permits. They were obtained by comparing Figures 5a
and 5b with the aid of (2). No attempt was made to indicate quantitative changes in
the density, or to determine the curvature of the curved portions of the graphs. The
small circles indicate points at which p* and pt undergo jumps. Figures VIII, 1X of
Plate 2 are based on the conjecture that x(Q™) <x(N™).

The coordinates of various points in Figure 5b have been computed from formulas
found in the text and are given below. Once po, P2are given, r0, r2are determined from
(2) and Si may be determined graphically as the j-coordinate of Q in Figure 5a.

Po: X=0, t = 3/2ro,

(ro + si)i5r0+ si) _ 6r0

Q: X . .
iro —ii)2 (ro - s1)2

N 2 g ¢

gt x=0 /= T rliz)
4 rl
Q": x = s(Q") + 4r0 2ro+ S plro, 5i2, t= 1Q) + o Gro ....... p(ro. S) ,
(ro-ii)2 X(fo, Si) (ro - 5i)2 X(r0, 5i)

Pi" ,.1+AI”‘|iI’), ., KPI)

2 ri X(ro, ii) 2 1, X(rg ix)

ro p(r0 ii)

Pi":x =0, /= t(P{) + 3 X0, i)
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THE PROPAGATION OF A SPHERICAL OR A CYLINDRICAL
WAVE OF FINITE AMPLITUDE AND THE PRODUCTION
OF SHOCK WAVES*

BY

YUNG-HUAI KUO
California Institute of Technology

1. Introduction. When a mass of gas is set into motion by a sudden rise of pres-
sure which possesses either a cylindrical symmetry or a spherical symmetry in the
case of an explosion, pressure or density will be propagated into space as a cylindrical
or spherical wave of finite amplitude in a manner different from that of the propaga-
tion of sound. The most conspicuous phenomenon of such a non-linear wave motion
is perhaps the appearance of a shock wave. In the case of plane waves of finite ampli-
tude, the problem was studied independently by B. Riemannland S. Earnshaw.2 It
was shown that when a compressed slab of gas is released, two progressive waves are
produced travelling in opposite directions, with constant deformation in the wave-
form during the course of the propagation. Eventually both waves develop into shock
waves.

With regard to the spherical or cylindrical compression waves, the situation is
quite different because the amplitude of the wave falls off at a much greater rate than
for plane waves, while the wave propagates from the center of disturbances. The
question is whether this rapid diminution of amplitude would prevent the formation
of a shock. J. J. Unwin3 has calculated a specific example of motion produced by a
sudden release of a compressed sphere of air, and concluded that there is no indication
of the development of a shock wave. Inasmuch as he adopted a numerical method for
one special case, the concludion reached cannot be regarded as general. In fact,
W. Hantzsche and H. Wendt4considered a similar problem, where the sphere had a
finite radius and expanded with the speed of sound into still air. The motion, in its
early stage, is supposed to be continuous in pressure or density and velocity. But after
a finite duration, the wave-front becomes a discontinuity surface characterized by an
infinite velocity gradient in spite of the diminution of amplitude.

In view of these disagreeing results, it is felt that it is desirable to investigate this
problem from a broad standpoint taking account of all initial boundary conditions.
The problem of explosion such as the burst of a bomb is only one of many similar
problems and, to be sure, the most interesting one. According to G. I. Taylor, the
physical process taking place during an explosion can be treated, as a combination of
two problems. The first problem is concerned with the effects produced in the atmos-

* Received May IS, 1946.

1 Riemann, B., Uber die Forlpflanzung ebener Luftwellen von endlicher Schwingungsweite, Abhand-
lungen d. Gesellschaft der Wissenschaften zu Gottingen, Math.-Phys. Klase 8, 43 (1860).

2 Earnshaw, S., On the mathematical theory of sound, Phil. Trans. Roy. Soc. London, 150, 133 (1860).

3Unwin, J. J., The production of waves by a sudden release of a spherical distribution of compressed
air in the atmosphere. Proc. Roy. Soc. (A) 178, 153 (1941).

1 Hantzche, W. and Wendt, H., Zum Verdichlungsstoss bei Zylinder- und Kugelwellen, Jahrbuch 1940
der deutschen Luftfahrtforschung I, 536.
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phere by a rapidly expanding spherical or cylindrical solid shell which compresses the
surrounding air. In this case the motion of air in contact with the shell is completely
prescribed by the motion of shell itself. The second problem deals with the motion
produced by a compressed sphere or cylinder of air which is suddenly released. Each
one of these constitutes a separate mathematical problem. To enlarge the scope of
this discussion, the very meaning of the term explosion will be understood here as
any process that is capable to create a pressure disturbance with spherical or cylindri-
cal symmetry, propagating as a wave of finite amplitude.

An explosion is assumed to take place, during a short interval of time, in an in-
finite space which is filled only with air not abstructed by any solid bodies. Since the
coefficients of viscosity and heat conduction for gases are generally very small, so
long as the motion is continuous, the air may be regarded as non-viscous and non-
conducting. The thermodynamic change of state of a fluid-particle along the path is
then adiabatic; and if, initially, the entropy of the air is uniform throughout the space,
the motion is isentropic. For the first problem stated above this condition is satisfied.
Namely, at the moment the shell starts to expand, the outside air may certainly be
assumed to be at the standard conditions. After the shell has started to expand, it
compresses the air and, thereby, sets it into motion; but, during this process, no heat
has been imparted to the air, its thermodynamic state must remain on the same
adiabatic curve. In the case of a compressed sphere or cylinder of air, it is reasonable
to assume that the pressure or density was built under adiabatic compression at all
points. Hence as long as the motion is continuous, it will be isentropic.

The present study reveals that such a continuous and isentropic motion generally
does not exist in the whole field. This type of motion breaks down when a “limiting
line” appears, which would make the solution multi-valued. This would be impossible
unless the motion is discontinuous. Hence, the appearance of a “limiting line” serves
to indicate the necessity of presence of a shock wave in the actual motion. After the
shock is formed, the Rankine-Hugoniot theory asserts that the process through which
a fluid-particle has undergone by crossing the shock-front is irreversible and, conse-
quently, the entropy increases in a discontinuous manner. The jump in entropy is
not constant, however. It varies as the shock wave propagates, because the conditions
at the shock change with time. As a result the motion behind such a non-uniform
shock cannot be isentropic. Therefore once the “limiting line” appears, isentropic flow
cannot be maintained and the resultant flow cannot be analyzed by the present
method.

The mathematical condition for the appearance of a “limiting line” in the case
of a spherical or cylindrical isentropic motion is that one of the two families of char-
acteristics admits an envelope, just as in the case of a plane wave. Along this envelope
the accelerations of the fluid-particles are infinite. In fact, a closer examination in-
dicates that the motion generally must break down even before the “limiting line”
is reached. It then seems that any motion of a compressible fluid has a tendency to
develop a shock wave and that the effect of the “spreading” in the case of a non-linear
spherical or cylindrical wave plays but a minor role.

2. Differential equations of motion. The motion under consideration is supposed
to be axially or spherically symmetric, i.e., at any instant the velocity ut pressure £
and density p depend on the time and the radial distance x only. If the effects of vis-
cosity and of body force are neglected, the equations governing the motion are
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(2.2)
P
/ au\
Pt + upx+ p( wx H £/1: 0. (2.2

Here the subscripts denote the partial derivatives with respect to the variable indi-
cated by the subscript; a —1 for a cylindrical and a —2 for a spherical wave. In each
case, the variable x will be interpreted differently. Furthermore, it is assumed that the
motion is continuous and that the effects of viscosity and heat-transfer in the fluid
can be ignored. If initially constant, throughout the fluid, the entropy then remains
constant. In other words, for an ideal gas the relation between the pressure and den-
sity is

P= KP\ (2.3)

where y stands for the ratio of the specific heats and K is a constant. With a set of
appropriate initial conditions the mathematical problem can then be solved, at least
theoretically. However, we may understand the singular behavior of such a solu-
tion and the conditions for its existence without actually solving the differential
equations.

By eliminating the pressure with the aid of Eq. (2.3) and by introducing the square
of the sonic speed as a variable in the place of the density, we reduce Egs. (2.1) and
(2.2) to

ut+ uux+ vx= 0, (2.4)

and c is the speed of sound defined by y/y(p/p)- This system of differential equations
is of the hyperbolic type, the two families of real characteristics C being determined by

(dx —udty —Rvdt2 = 0, (2.6)

where v is positive.

As it stands, this system of equations can reveal but little information concerning
the behavior of the solution. To expose such properties, one has to transform the dif-
ferential equations to a new coordinatc-system and then study the condition under
which the transformation would be valid. In the case of a steady irrotational motion,
this is well-known as the hodograph method which has been effectively and success-
fully applied by W. Tollmien6and H. S. Tsien6in investigating the two dimensional
and three dimensional isentropic motion respectively. By a slight modification, it
can also be applied to the present problem. To this end, the following one-one point-
transformation is introduced

5 Tollmien, W., Grenzlinien adiabatischer Potentialstromungen, Z. angew. Math. Mech. 21, 140 (1941).
6 Tsien, H. S., The “limiting line”in mixed subsonic and supersonicflows af compressiblefluids, N.A.C.A.
Tech. Note 961 (1945).
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u=u, oa) v= vt oa). (2.7)
We have
XV ty
til = > UXS e >
J J
Xu lu
vt = i VX — i
J J

provided the Jacobian J(u, v)"stuxxv—Ixu% 0. Equations (2.4) and (2.5) will then be
transformed into

a,, —utv+ /[, = 0, (2.8)
afiuv

a« —uty + fivty (tuxv — tvxu)
a

I
e

(2.9)

This system of equations can be simplified considerably by introducing a function
X(w, v) defined by

x —ul = I = — Xy, (2.10)
so that Eq. (2.8) is satisfied identically while Eqg. (2.9) reduces to
afiuv

2
foXvv « PatixXv?  Xut' XvXw) = Xl- (2.11)

The corresponding characteristics T in the u, z/-plane are determined by

afiuv  \ 2afiuv (1 Xuu — XA
(1 XW ) dv2 --emmemmeeeee- Xut-dudv — afiuv ( 1 )ydu2 = 0. (2.12)
X / a \au X /
3. Limiting line. The relationship between the characteristics C and T associated

respectively with the differential equation in the I, x- and u, y-planes has an important
bearing on the singular character of the solution and its elucidation often contributes
much toward the understanding of the nature of the physical problem. For this pur-
pose, we first transform the differential equation (2.6) by means of the following pair
of relations:

dx = (xmi  Xf  uxuv)du {- (xu?  uxw)dy,
dt = — x«fdu — Xwdv.

Substituting in Eq. (2.6) together with Eqg. (2.11), we bring the equation of the char-
acteristics C into the form

'/ afiuv =~ \ 2afiuv (1 xu—xA 1
J )&1 X»V YAV Y =-mmmmmmmmmmaaen Xuvdudv — afiuv-( -—-—----- e ydu2 =0. (3.1)
X / X \au X / J

This shows that if 0, the characteristics C in the t, x-plane correspond to the
characteristics Y in the u, n-plane. However, circumstances may arise such that

Hu, ) —XmiXit X Xwxw  H (*1.2)
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while
E aftuv  \ 2aftuv R X ~ XA
1—— Xw)dv--—-——e Xwdudv — afiuv-1------- 1 yduz2”™ 0
\ X / X \ ail X )

and the characteristic equation (2.6) is again satisfied. This means that if a point
moves along a line X defined by Eqg. (3.2), the corresponding point will describe a
line 1'in the t, x-plane, having the same tantents as the characteristics C. It does not
coincide, however, with any one of the characteristics C. This may be proved as
follows.

The differential equation for the path 5 of a fluid-particle in the t, x-plane is

(3.3)
The corresponding path a in the u, iz-plane is given by

(3.4)
Now the differential equation for one family of characteristics, say T+, is

(3.5)

On the other hand, the vanishing of the Jacobian, when combined with Eq. (2.11),
can be written as

(x«t - y/Xvv)(xuv + VPvXit) = 0. (3.6)
It is easy to see that
(3.7)
or
(3.8)

The condition under which this result holds is both necessary and sufficient. This
shows that the lines X+ and X_ are respectively the locus of the points of tangency of
the path a with T+ and «<with T_. Furthermore, the paths a do not have an envelope
and that of T is

Bi=0

which corresponds to p= 0 and is, of course, uninteresting. Hence, it cannot belong
to either family of the characteristics T. The only alternative is that it is an envelope
of one family of the characteristics C in the t, £-plane. By analogy with the steady
irrotational motion it is again called “limiting line,” the justification will be found in
the following section.

4. The properties of the “limiting line.” Being the envelope of one family of real
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characteristics in the t, rc-plane, the “limiting line” will be entirely in the field of mo-

tion. It is, therefore, paramount to investigate the behavior of the solution along
this line.

Consider first the line element of a path s of a fluid-particle at the “limiting line” /.
Generally, for any line element one obtains from Eq. (2.10)

dX = (Xiiu —uxuv — Xv)du + (x«0 — uxw)dv,
dt = — Xuvdu — Xwadv.
Along a path 5 given by dx/dt —u, we have
(Xu« — x»)du + Xuvdv = 0.

Using this relation to eliminate dv from dx and dt and by regarding u as a parameter,
we obtain the following parametric equations for the path s:

XuuXvv Xuzv T XvXwy / .
dx = u du, (4.1)
Xuv
- 2
dt = XuuXvv Xuv XvXvv dii. (42)
Xuv

According to our previous findings, / = 0 yields two lines X+ and X_, each of which
associates with only one group of characteristics T in the u, »-plane. This shows that
on the “limiting line” dx and dt both become differentials of higher order and will
change sign on crossing the line X This agrees, of course, with the cuspidal nature of
the singularity.

Dividing both sides by dx and dt respectively, we obtain the following expressions
for the derivatives uxand ut along s:

(«*). = — N (4.3)
«(XuuXvv — x;, — Xt-Xii)

(€€). = mmmmmmmmenees (4.4)
XuuXvv Xuv XvXvv
Thus on the “limiting line” the acceleration of a fluid-particle becomes infinite as Xu»
is finite there. This implies also an infinite pressure gradient [see Eq. (2.1)].

The physical state to which J(u, v)=0 corresponds can be readily deduced. It
can be summarized in the statement that if the Jacobian vanishes, then the motion
in the immediate neighborhood of the line /= 0 is a compressive one. To prove this,
let us consider the ratios vt/uz, ut/vx, ut/uxand v,/vxwhich, according to the relations
obtined in Section 2, equal

WK Xtio  offiuv J Xut
11x Xvv % Xvv M x Xvv
U, Xvv Hi A «3m» [/
= U 1, — = — U+ PV B -
VX Xuv VX Xuv % Xuv

In the u, »-plane, the expressions on the right-hand side are everywhere continuous.
At the line X+ corresponding to X« = Vfivxw, they become
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By continuity, the relative signs of the differential quotients hold in the neighborhood
of the “limiting line.” Thus, we conclude that either vt>0, yx>0 and «,<0, uz<O0
or Vi<o, vx<0 and «i>0, ux>0. The first case is exactly the condition for a compres-
sive motion. Whereas the second case may either correspond to a rarefaction or to a
change of sign of the Jacobian J(u, v). As the rarefaction does not conform to the
geometric properties of 7 = 0, the second case corresponds to the second branch of the
solution and hence can be disregarded.

5. Lost solution. In the previous sections, we assume that the Jacobian J(n, v)
does not vanish. Thus the one-to-one correspondence between the t, x- and u, ti-planes
is assured and the condition 7 = 0 is restricted to the singular line /. In a special case
the Jacobian may vanish identically, however. This vanishing of the Jacobian estab-
lishes a relation between v and u in the u, u-plane and, as a result, yields a class of
solution not contained in the transformation (2.7). To study this form of solution,
let us first set

V= v(u). (5.1)
The differential equations (2.4) and (2.5) can then be rewritten as
/ dv\
ut-f lm+ —j uz = o, (5.2)

(5.3)

This type of solution has been discussed by K. Bechert7 whose main result was as
follows. By eliminating x and t the system of Egs. (5.2) and (5.3) can be reduced to a
second order non-linear total differential equation, based on the existence of a linear
relation between t and x. By a slightly different procedure it can be shown that in-
stead of a second order differential equation one can obtain a first order one of Abel’s
type being amenable to numerical integration. The main feature of the solution, how-
ever, can be discussed in the following manner.
Along ii = const., i.e., along

du = iixdx + Htdt —0,

the slope of the curve u = const, equals

(5.4)
on account of Eq. (5.2). Since dv/dit is a function of u alone, on u = const. (dv/du)uis

7 Bechert, K., Uber die Ausbreitung von Zylinder- und Kugelwellen in reibungsfreien Gasen und
Flussigkeiten, Ann. Phys. (5) 39, 169 (1941).
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constant. Therefore, the curve «=const. is a straight line in the t, x-plane. In con-
formity to the assumption (5.1), there exists a parameter £ defined by

£=. . (5.5)
Co(t -f- to)

where cOis the speed of sound at u=0, and to a suitable constant. It is clear that

£=const. corresponds to « = const. In other words, both v and u may be regarded as

functions of £
If the determinant v'2—pv?£0, it, andut canbe expressed in terms of u. We have

a3uv 1

« > = -l \7':1’—pv (5-6)
aBuv u + V'

M= X gn —FIJ\T' (5'?)

where the prime denotes the total differentiation with respect to u. Like in the gen-
eral case, here again the solution possesses a singular line on which the partial deriva-
tives generally become infinite. Its other properties will be studied presently. From
Eq. (5.4) it is found that

while the characteristics are

+
(dtdc - «
On the other hand, where the singular line X i.e. the line
v'2—iv = 0, (5.8)

intersects the integral-curve v(u), we have

Q - "A®(IX- 59

This shows that at the singular point of the solution v(u), the «=const. line be-
comes the envelope of one family of characteristics C. Hence the envelope is a straight
line. Furthermore, according to Eqgs. (4.1) and (4.2) the parametric equations of the
path 5are

dx = — (v' + V/f}v)(v' — \Zfiv)du, (5.10)
ajw

dt = S — "+ VRW ~ y/fiv)du. (5.11)
afiuwv'

Since each factor on the right-hand side corresponds to a group of the characteristics
C, on crossing the line X, where this factor vanishes, the elements dx and dt change
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their signs. This proves that the line I, the image of X, possesses all the characteristics
of a “limiting line.”

It is interesting to note the difference between plane and spherical waves. In the
former case, Eq. (5.8) would be satisfied identically. This lets the lines u = const, de-
generate into the characteristics. Indeed, it is also possible for one family of the char-
acteristics which are straight lines to have an envelope; the differential quotients ux, ut
are finite, however. Consequently, we have no “limiting line,” in the strict sense.
This docs not mean, of course, that the solution is regular. As a matter of fact, the
solution already becomes many-valued before this line is reached.

6. Lost solution: a special problem. From the foregoing conclusions, a compres-
sive spherical or cylindrical wave always becomes indeterminate when a singular line
is reached. As an illustration the following special problem is considered.

Suppose there is a divergent spherical or cylindrical wave propagating with veloc-
ity cOinto still air. On the wave-front, where the motion agrees with the outside con-
ditions, the state-variables p, p become equal to those of the still air and the velocity
is zero. The path of the wave-front is then described by

x —co(t T to). (6.1)
The mathematical problem can thus be formulated in the following way:
u=20 when x 2 cOt+ to), |
u 0, when x < cQt + to)-)

(6.2)

A particularly simple case will be the one where both the pressure and the velocity
are propagated with constant speed. In other words, these quantities depend only
on a common parameter.

To simplify the amount of mathematical work involved, the differential equations
(2.4) and (2.5) will be put into the following equivalent form:

2cV»
(C2—<NtH — 2t —tid—-— =0 (6.3)
X
by introducing a potential-function <X(, x):
u = 4%, (64)

In the case of a lost solution, there exists a parameter £ defined by (5.5) such that
£= 1 corresponds to the initial curve (6.1). Then,

St *) = clft + lo)/(E) (6.5)
and hence

u(t, x) = c0'(£), (6.6)

2=dli-j r-Kf-£/"], (6.7)

where the prime indicates the total differentiation with respect to £, and the function
/(£) satisfies
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[c2- d(f - aylaf" + 2elf = 0 (6.8)
subject to the initial conditions
(1) =0, "1y = 0. (6.9)

The first condition, namely/(l) =0, is necessary to make c= @on £= 1. When the
conditions (6.9) are substituted in Eqg. (6.8), it appears that/" (1) is arbitrary. We
need not be alarmed by this situation, but recall that in this particular type of initial
value problem, the “support” is a characteristic. Physically, this means that the ini-
tial conditions prescribed in this manner do not “know” the internal structure of the
motion, because they propagate ahead with larger speed. It is only natural, then, that
such an arbitrariness should arise which enables us to fit properly the physical condi-
tions specified. This arbitrariness is only a partial one, however, since for a compres-
sive motion the sign of/" (1) is necessarily negative; foron £=1

(pi)i + Po(wi)i = 0,
according to Eq. (2.2). In a compressive motion (p,)i>0, it follows that

(«¥)i=-A D <o (6.10)

X
Thus, for any compressive motion the absolute value of /" (I) is determined in con-
sistence with the physical process.
The differential equation (6.8) which determines the interior motion of a mass of

air, has two singular points in the £ /-plane given by the vanishing of the coefficient
of/"(£). The geometrical interpretation is evident, when (6.8) is written as

(c + « — cof)(c — m -f- cOf)
(6.11)

that is, when one family of characteristics become tangent to a line £= const., an
infinite curvature would occur if u is finite there. According to what has been said
in the last section, this characterizes the “limiting line” of the solution.

Let us push the discussion a step further. For this purpose only the first order
terms need be retained. Taking j3as a small parameter, one has accordingly

(6.12)

(6.13)

— = , 0g £g 1 6.14
dE £ («, —£)=—1 959 ( )

Aside from the two singular lines

W= £+ 1, (6.15) w=£- 1 (6.16)
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where the slope of w is infinite, there are two additional singularities (1, 0) and (0, 0)
where the slope is indeterminate. The point (1, 0) acts as a sort of nodal point which
makes the initial condition insufficient. The point (0, 0) is a saddle point as locally
the equation behaves like

dw 2w
R , (6.17)
di £
which form is obtained by neglecting (w—£)2as compared with 1

The situation can now be summarized. The integral curve starting from (1, 0)
rises as £ decreases and eventually intersects with the line (6.15) where it will have a
vertical tangent at £<1. After it crosses this line its slope changes sign. This causes
the curve to bend backward again. Thus, £is seen to assume a minimum value. Owing
to the fact that the origin is a saddle point, no integral curve could possibly cross
the line £= 0. This fact makes the continuation of the solution as far as £= 0 impossi-
ble.

7. Continuation of the solution. The results obtained in the previous sections
show that, in the case of the propagation of a spherical or cylindrical wave, a continu-
ous solution does not exist throughout the domain considered and can be constructed,
at most, as far as a singular line 1 in the /, x-plane from a suitably chosen initial data.
The line | thus acts as a sort of “frontier” into which no solution can enter and at
which the solution is turned back as a second branch. The domain then is doubly
covered. Physically, this is impossible and hence must be rejected as a solution. The
question is: is it possible to connect it with a different solution beyond this line?

First; consider the line X as a “support” with a given set of initial data and then
solve the initial value problem8 for a Monge-Ampeére equation. Regarding X as a
parameter, we have along thé line X

d du dv
— X« = Xuu—_ + X«» — 7 i7*1)
dX dXx dX
d du dv
- X.-- : (7.2)
and hence
2 du d_ d
(XuuXuu Xuu) , * Xur ;( Xu Xur Xu*
dX d dX

Substituting this into Eq. (2.11) we obtain a linear relation between the partial de-
rivatives:

‘aBuv (dxu/dX otBuv dxgdx

Xuu T Xu} Xuu

Xuu = Xu. (7.3) .
x 1dll/dX X au/d\

Since Xis not a characteristic, Egs. (7.1), (7.2) and (7.3) are sufficient for a unique
determination of Xuu, Xuu and Xuui and consequently a unique integral surface. The
uniqueness of the solution is sufficient to show that the solution, when transformed

8 Courant, R. and Hilbert, D., Methoden der math. Physik, vol. 2, J. Springer, Berlin, 1937, p. 344.
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back to the t, x-plane, will correspond to the very one that doubles back at the “limit-
ing line.” A continuous solution is thus out of the question.

The alternative procedure would be to continue it by joining it smoothly at the
line X to the lost solution. This is also impossible. Indeed, if this were possible, the
line X would have to coincide with the integral curve v(u) in order to provide a con-
tinuous solution. This is contradictory, because it is easy to show that the line X does
not satisfy the differential equation for v(u).

The other possibility which remains to be investigated is to identify'- the “limiting
line” as a shock wave so as to construct a discontinuous solution. This would require
the continued solution to satisfy the shock conditions. Since, in general, the “limiting
line” | is curved, as a result there would be a non-uniform shock wave in the motion,
for which both the speed and the strength are no longer constantandtherefore the
entropywould be constantly changing across the shock. Thisvery fact makes the
original assumption untenable. Hence to continue discontinuously a solution with
entropy constant everywhere is also impossible.

The problem might be solved, however, if the original hypothesis of isentropic
motion is abandoned. To include the possibility that a shock wave may exist within
the motion, the continued solution must satisfy the following more general set of
equations:

u, + uux+ — = 0, (7.4)
P

é au\
Pi+ «Pi+ p(«x h——) =0, (7.5)

(pP-y)t + u(pp-y)x = 0. (7.6)

The task then is to construct a solution which should satisfy both the initial and the
shock conditions in a region bounded by the initial curve, the shock line and a char-,
acteristic drawn to the initial curve through the point where the envelope first ap-
pears. The shock line, however, is not given, it should be chosen in such a way that it
yields a solution fulfilling all the prescribed conditions. The mathematical problem
thus turns out to be extremely difficult.

The author wishes to thank Dr. H. S. Tsien for his invaluable discussions and

criticism.
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ON PROJECTILES OF MINIMUM WAVE DRAG*

BY

WILLIAM R. SEARS
Cornell University**

1 Introduction. The wave resistance of slender bodies of revolution in symmetri-
cal supersonic flow was calculated approximately by von Karman,1 by means of a
distribution of singularities along the axis of the projectile. The individual singularity
is characterized by a potential of the form <£€,(x, r) = j(x —£.)2—a 2 2}-1/2, where &, r
are cylindrical coordinates, x being measured downstream from the nose of the projec-
tile and r radially from the axis, is the value of x corresponding to the singularity,
a is the cotangent of the Mach angle of the undisturbed flow, so that

a=V(ulay - 1

U and a being the stream velbcity and the velocity of sound in the undisturbed flow.
It will readily be verified that <£j(x, r) is a solution of the linearized potential equation
for supersonic flow with axial symmetry

/ U2 \d2e dz> 1 &
1) —-= — + — — 1)
a2 dx2 dr2 r dr
Von Karman calculated the wave resistance by integrating the transport of m
mentum across a cylindrical surface enclosing the body. In his approximation, the
integral is independent of r and can be evaluated in the limit r—0. The result isf

R=-ipf f /'(*)'(E) log |x- £]|dxdC, (2
Jo Jo

where R is the wave resistance and /(x) is the function specifying the distribution of

singularities along the x axis. For bodies of finite length /,/(x) is found to be indenti-

cally zero for x>1; hence both integrals in (2) can be replaced by integrals from 0 to I.
For slender bodies, von Karman showed that approximately

U ds

Moo= o hix! <

where 5 is the cross-sectional area of the body.

In the present paper we shall amplify the analogy, already mentioned by von
Karmdn, between the wave resistance of a slender projectile and the induced drag of a
wing. It will be shown that this analogy suggests a useful form for the calculation of

* Received June 11, 1946.

** This work was undertaken while the author was employed by Northrop Aircraft, Inc.

1Th. de KArmdn, The problem of resistance in compressiblefluids, Atti del V Convegno della “Fonda-
zione Alessandro Volta,” Rome, 1935, pp. 222-276.

t Von Kdrminl, Eq. (9.12). It might be mentioned that this formula is most easily obtained from
Eqg. (9.11) of the same reference by first integrating by parts with respect to x in order to obtain a form
symmetrical in x and £; it will then be found that a double integral carried over half the first quadrant
of an x, $ plane can be identified with half the same integral carried over the entire quadrant.
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the wave drag. The properties of projectiles of minimum wave drag for given length
and volume, and for given length and caliber, will then be investigated.

2. The induced-drag analogy. Formula (2) for the wave drag can be written in
the form

R=- ttpf f(X)F(x)dx 3
Jo

or, after integration by parts, assuming/(0) =/(/) =0; i.e. that the body has sharp
points at front and rear,

R —tqodfo‘f(x)F‘(x)dx, (2"

where
Fix) = .fOV(i)Iog |s-f|df. 4
j

In the form (2"), von Karman’s analogy between the wave resistance and the
induced drag of a finite wing in the Prandtl lifting-line theory2is evident: f(x) is
proportional to the circulation distribution over the span of the wing, F'(x) is the
corresponding downwash distribution, and R is the induced drag.

It is also useful to put (4) in another form, sometimes more convenient for calcula-
tion. Let us introduce the coordinates 6 and d defined by

X —— (1 + cos 6), 0 U9,
| ©)
f=_— @+ cosd), ds
The expression for F(x) then becomes
1 rr .
F(x) = — | ['(f) log |cos 9 —cos 0\ sin Odd, (6)
1 Jo

provided that /o/(E)d£ = 0, as is always the case for closed bodies, inaccordance with
(3). Now the definitions in (5) can be taken to cover the range —T7rgt?gir,
and/'(£) can arbitrarily be defined to be an odd function ofd. Then (6) can easily be
put into the form

F(X) = zt J_XV(S) |(g sin e sin ddd
or, after integration by parts,

1 f1 0-d
F{x) = - - -/I—x/(f) cot—— dd. @)

JL. Prandtl, Tragflugeltlieorie I, from Vier Abhandlungen zur Hydrodynamik and Aerodynamik,
Gottingen, 1927, pp. 9-35.
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The induced-drag analogy pointed out above suggests that/(£) beexpanded in a
sine series; this isthe usual technique employed inthe Prandtl wing theory:3
[ x\ iu « / e\
\t) " T P - “"(%)- 3

Substituting in(7)and (2'). we obtain the following expression forthe wavedrag:

713 p U 2 * 2
R = oo ;2E _nbn 9)
4 2 i
—again analogous to a well-known expression for the induced dragof a wing.3
3. Minimum wave drag for given volume and length. The expression for the cross-
sectional area S corresponding to (8), in the approximation represented by (3), is
irl2 s 'sin (» — 10 sin (» + 1)0
S = | [x —0+ <sin 20]6i — X bn 3. (10)
2 n—1 n+ 1

It is clear that for closed projectiles, pointed front and rear, b\ must vanish.* Also,
the total volume occupied by the projectile is

vol. =J sdx = Q- B) D

or, for closed pointed bodies,

Vol. = - 02 (12)

Hence, for given length and volume, the minimum wave resistance is obtained
when only b2is different from zero. The geometry of this body is given by

x 12222 . . x 1202,
5= (sin 0 — | sin 30) = sin30 (13)
4 3
and its wave resistance is
X3 PU2 22
2 2
9 PU2

Ei£1(xYpILT. (M)
i 2 \2/ L(1/2)3

This is eight times the wave drag of von Karman’s ogive* of equal length and vol-
ume, or about 11.1 times that of von Karman’s ogive of equal length and caliber. (It

*Th.von Kirmin and J.M. Burgers, Aerodynamic Theory, edited by W .F. Durand, vol. 2, J. Springer,
Berlin, 1934, pp. 172-175.

* If biT"O while bi—bt— mme =0, the ogive considered by von Kdrmdnlis obtained. Its maximum
cross-sectional area is v~Pbi/A and occurs at its stern, x=1. According to (9), its wave drag is
(xV4)(pIP/2)Pb\ or (p[7i/2)5mai (dm*//)5 where Smx is its maximum cross-sectional area and dmnx is its
maximum diameter, or caliber.
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should be mentioned that this comparison may be misleading in view of the fact that
von Kdrman’s ogive has a blunt stern, so that its wave drag certainly does not repre-
sent its entire resistance, even in the absence of skin friction. Nevertheless, the wave
resistance of that ogive may be taken as a convenient reference.)

The shape of the forward half of the symmetrical projectile represented in (13)
is drawn in Fig. 1, for the case I=4dmax. For comparison, there is also shown the shape
of von Karman’s ogive having the same caliber and one-half the length.

Fig. 1. Profilesof various projectiles of minimum wave drag: (a) volume and length given, (b) caliber
and length given, (c) von Kdrmdn’s ogive of equal caliber and one-half the length. (Projectiles (a) and
(b) are symmetrical fore-and-aft.)

4, Minimum wave drag for given caliber and length. To attack the problem of the
body shape for minimum wave drag, caliber and length specified, we return to the
expression for the wave drag given in (2') and (4) and employ the methods of varia-
tion calculus. By virtue of the symmetry with respect to x and £, the variation of the
resistance with varying body form assumes a simple form; viz.,

0i? = - xP|J “Sf'(x)J ['«) log | *- £]d&x
+J /(E)J S$I'(E) log | x - ?|

= - zxp_fo g'(x)F(x)dx. (15)
j

In this section we shall provide for the possibility [excluded in obtaining (2")]
that dS/dx, and therefore/(:*;), is discontinuous at the station wherethemaximum
diameter occurs, x =m.Hence, integrating by parts in (15), and againassuming sharp
points at bow and stern, we write
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5R = — 2tP|f(»)5 [/&)]. - J g(xX)F'(x)dx»
= - 2rp|F(«)i[m®)],+ L f 8&X)F"(x)dxj , (16)

where [f(xX)]m denotes the value of the discontinuity in f(x) at x=m, and the area
function S(x) has been assumed to be continuous.

In the form (16) it is clear that the shape of the part of the body forward of the
maximum section at x =m can be held fixed while S(x) is varied over the rear part
to achieve a minimum of R; then the rear shape can be fixed in this minimum-drag
configuration while S(x) is varied in front to minimize R-, the result will be the mini-
mum-drag shape for given maximum cross section at x = m. We shall also assume that
the discontinuity of slope represented by [/(X)]m is not varied in the process; it will
appear later that this is valid. The minimum-drag condition 8R =0 is then obtained
when

F'(x) = )
>0 "N X m,
F(x) = cix + c2
(17)
P =0 >m £ x N L

F(x) = cX + cCj

The analogy with the induced drag of a wing is again useful. The analogous prob-
lem is the following: to determine the spanwise circulation distribution f(x) so as to
obtain minimum induced drag, it being required that the total lift be zero, but that
the lift carried on one side of a station x —m have a given value, equal and opposite to
that carried on the other side of that station. The result obtained in (17) states that
the condition of minimum drag results when the downwash F'(x) is constant in each
of the two parts of the wing.

Fortunately,investigations have been made4%® of thebehaviorof the circulation
distribution near a point on a lifting line wherethe downwash in discontinuous. It
is found that the circulation function is continuous but has a vertical tangent and dis-
continuous curvature at such a point. Applying this result to our projectile problem,
we can conclude that/(x) will exhibit a singularity of this type at x = m. Moreover,
since F(x) can be interpreted as the downwash corresponding to the circulation dis-
tribution S(x), we conclude that F(x) cannot be discontinuous at x =m if we exclude
singularities of this type from the shape function S(x). Accordingly, we write

(ci —c3dm - G —c2 (18)

The resistance of the minimum-wave-drag body is easily calculated from (2"); it is

4 A. Betz and E. Petersohn, Zur Theorie der Querruder, Z. angew. Math. Mech. 8, 253-257 (1928);
also Nat. Advis. Com. for Aeron. Tech. Memo. No. 542 (1929).

5H. Multhopp, Die Berechnung der Auftriebsverteilung von Tragfligeln, Luftfahrtforschung 15,153—
169 (1938).
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R = —7rpl— ™3 — c{)Smex + (Civl + c[/(*)]Im]|
U
P A (™ P3)*maxi (19)

where Smax is the cross-sectional area at x=m.
The form of f(x) corresponding to (17), and subsequently the shape of the body,
can be determined by inverting (7) by means of the so-called “Reciprocity Theo-
rem” 6
1 r? 8—&
~TT | cot —— dd. (20)
Z7T*J o n
The quadratures involved are rather tedious, but can be carried out. The result is
1— cos(6 + n)
+

I f .
I R P

I(c3- c'i)n + trcijf sin 6;} . (21)
where m = (//2)(l+cos ix). It can quickly be verified that this function has the type of
singularity at x —m that was predicted by the wing analogy.

This expression can be integrated again to evaluate the constants G and c3 and
then to determine the function S(x). By integrating from x =0 to x =1 it is determined
that (p3 Ci)(x '2sin 2n)+irci =Q Finally, by carrying out the lengthy quadratures
necessary to apply the condition (f//2Tr)Smex=/07(.v)dx, it is found that

u—- sin 2u
ci = 4£tfmx | | (22)
|- sin4

The wave resistance (19) then assumes the form

_ PU2 (dmaxY 7T
2N ) s
or ™ /3 vol /I von—o (23)

Thus the wave drag varies symmetrically about m=1/2 or p=tr/2, and is least if the
maximum cross section is located at mid-length—i.e., for a symmetrical projectile.
The wave drag of this projectile is 7rs times as great as that of von Karman’s ogive of
equal length and caliber. Its shape is indicated in Figure 1.

5. Concluding remarks. A somewhat similar analysis of projectile shapes for mini-
mum wave resistance has been made by Haack,7who considered only symmetrical
projectiles. The results obtained here are in agreement with Haack’s for such projec-
tiles, except for the value of the drag of the minimum-wave-drag body for given length
and volume, which seems to have been tabulated erroneously in the earlier paper.

6 R. Courant and D. Hilbert, Methoden der mathematischen Physik, vol. 1, J. Springer, Berlin, 1931,
p. 83.

7W. Haack, Geschossformen kleinslen Wellenwiderstandes, Bericht 139 der Lilienthal-Gesellschaft fiir
Luftfahrt.
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THE BOUNDARY LAYER IN A CORNER*

BY

G. F. CARRIER
Brown University

1. Introduction. The laminar flow of a relatively non-viscousfluidthrough a chan-
nel is characterized by the presence of a thin boundary layeralong thewalls. In
straight channels, such boundary layers are usually assumed to have the velocity
distribution determined by Blasius [l ] for the flow past a flat plate, and the flow
pattern in the neighborhood of any corner is not mentioned. It seems of interest to
develop here the change in the Blasius flow implied by such a corner.

2. The boundary layer problem. We shall consider the laminar flow of an incom-
pressible fluid which impinges with the uniform velocity V on the edges # = 0 of the
half planes y=*0, z= 0.

The Navier-Stokes equations and the continuity condition which govern such
flows are

(v-grad) v + p~lgrad p = VAv, (@)

divv = 0. 2

Here v is the velocity with components u, v, w; p is the pressure, v the kinematic
viscosity, and p the density.

As v. Karman has pointed out [2], the essence of the treatment of such equations
in a boundary layer problem is to eliminate higher order terms (by a perturbation
scheme or otherwise) in such a manner that the order of the equations isnot decreased.

In this way no boundary conditions need be relaxed. We may accomplish this by using
what is essentially Prandtl’s coordinate transformation [I], namely

t, = y/{vx/V)1-, f = z/{vx/Vy>\ 3)

We also define the parameter £= (v/ Fx)1/2
Since the flow both within and outside the boundary layer may be expected to

be essentially in the x direction and slowly varying in X, we may attempt to find a solu-
tion in the form

KL= V[udQt], f) + £ii(t), f) + £IM+ eee ] 4)
V= FE»i+ £X2+ o) (5)
w = V(Ewi + £2£2+ e« mm) (6)
P= pVi(pO+ £5i+ eee)e @)

We commence the series for vand w with a term of order £, because we wish a solution
for which v/V, w/V, are small. Furthermore, if we included terms »o, w0, the following
set of equations would contain terms of order £1 with no contribution from the
viscous terms of Egs. (1) and (2). Thus the solutions wherein Vg Wowere not identically
zero would not provide results corresponding to the phenomenon under investigation.!

* Received Aug. 30, 1946.

t Actually, the fact that our results constitute a solution which obeys the differential equation and
boundary conditions is sufficient justification for taking r,sce ,30.
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The substitution of Egs. (4) to (7) into Eqgs. (1) and (2) leads to the system

«o , vV dpo f dpo
(ridllo/dri + fd«o/df) + 'OidUo/dri + WidUo/dfi -
dri 2 Of
/a2 a2\
- (v +ip)“, + « ") + m" m
dpo dp\ (WT dvi aril adi \

Vv +i17-i,(TL'V + f173+1 2?2 + '0)+000-° w
Y+ e (10)
du0 t duo dvi dwi .
2 d) 2 df dr:]l_ g T {(mmee) + mm= o, (i1)

The solution of this system of equations requires that the coefficient of each power
of £in each equation vanish. The first order approximation to the result is defined by
the vanishing of the coefficients of £°. The result can be expected to be valid only when
the remaining terms of the series are negligible, that is when £ is small. Thus the
solution, like that for the flat plate, is valid only at sufficiently large distances from
the leading edges of the planes.

We now note that the £° terms of Eqgs. (9) and (10) vanish only if £0= const; the
£° term of Eq. (11) vanishes if we write

«@=gtv, TF), »=kvgvr- gy«@= Kfst~ H)
Thus it remains to find g(-g, f) such that,
9(0. ©) = g0, ©) = g(v, 0) = gt(f, 0) = o
and
lim g,t@j, f) = 1,
the implied symmetry condition
sK *) = g(b, a),
and the differential equation implied by Eq. (8)
gmC + gnttt + Mstgiif + (12)

We may expectthat far from the corner thesolution will be essentially that for
the flat plate. Hence, we write

g(v, f) = loW/otf) + Kuv, f) (13)

where/o is that solution of
2" +//" =0

such that/(0) =/'(0) = 0;/«»«,(a) = 1. This function is tabulated in [I].
Equations (12) and (13) lead to the equation



1947] THE BOUNDARY LAYER IN A CORNER 369
hmt + f -f 2a(jj, f)/»,f + 2<(f,

+ KADA, + + KAwr + kkit) ~ tVNO?>f), (14)
where

«(u, f)

to(n)lo' (f), b(v, f) = -l/lo'"" M /o' (f)
AlcA, f) = i{fo(v)fo"(v)/6(nil -/o (f)] +/o(f)/o"(f)/o'W [I — /o' (rr)1}.

This equation may be integrated once each over tj and f taking account of the
boundary conditions to yield (when <p=—25h,})

Aip + 2a(r/, Q)dip/drj + 2a(f, J)ay>/6f + Z>M ) f + 6(f, ij) f <pdf
Jo ~0
i f 7+ ipdfj = f)* 15
LE W7+ T ipdfj ) (15)

The boundary conditions are

*©, f) = ®M 0) = lim 2(ij, f) = 0.
ur-00
This last form of the equation seems best suited for numerical evaluation. The relaxa-
tion method [3] appears to be the most appropriate for the determination of $so
we form the difference equation derived from Eq. (15) by taking points spaced unity
apart in 7and The subscripts m and tt are used to index these point positions. The
difference equation is

<pm+l.n + <pm-1» + ¥>m,n-1+ Vm.n+l — 4<gmn “I" ®nn(<Pm+l,n ~ <Pm-l.n)
/»n m
"« ®nm(*m,n+l <Pmn—) + bmn jO <] + GWT’I#lO pdf

+ .01 jfm.n+| — pmH-I) wif + (“m+lLn ~ 'Pm-Ln) <P<fl+ *m= 0. (16)

In this equation the integrals may be evaluated by the simple trapezoidal rule since
the function ipis very “smooth” although if more accuracy is desired a simple graphi-
cal method is conveniently employed.

Table |
r f)

v 0 1 2 3 4 5 6 7 8 o' (n)
0 0 0 0 0 0 0 0 0 0 0
i 0 .58 1.00 1.00 .64 .25 .08 .02 .00 .330
2 0 1.00 1.60 1.46 .86 .28 .08 .02 .00 .630
3 0 1.00 1.46 1.23 .61 .16 .04 .01 .00 .846
4 0 .64 .86 .61 .24 .03 .01 .00 .955
5 0 .25 .29 .16 .03 .01 .00 .992
6 0 .08 .08 .04 .01 .00 .00 .999
7 0 .02 .02 .01 .00 1.000
8 0 00 .00 .00 1.000
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The numerical procedure is this: guess values for pat all points m, n'A8. Replace
the zero on the right side of Eq. (12) by Qm and compute each Qmn (the residuals).
Then revise the guesses for the omin such a way as to decrease the Qmn, disregarding
the changes in the values of the terms containing integrals. When considerable im-
provement has been made, recompute the Qm using the complete equation (12) and

Fig. 1. Contours of constant U in corner boundary layer.

repeat the foregoing procedure. It is not necessary to get extremely accurate values
of 9 (especially since a, b, A are not known too finely) because the velocity u0=fo {v)
/o' Oh S) will be accurate to three places when ip is known to the one hun-
dredths digit. The functions/o' and <pare tabulated in Table | and contours of con-
stant Mbare shown in Fig. 1.
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THE TREATMENT OF SINGULARITIES OF PARTIAL
DIFFERENTIAL EQUATIONS BY RELAXATION
METHODS*

H. MOTZ
University of Sheffield, England

1. Introduction. In the course of a study of boundary value problems arising in
radiation theory and electrostatics, the treatment of singularities demanded special
attention. In most problems of practical importance boundaries with sharp corners
occur. Such sharp corners give rise to singularities of various types. When the com-
puted function is bounded, but has a branch point at the corner, the difficulty is
not serious. The use of a graded net with a finer mesh size near the corner is possible.
Conformal transformation which automatically provides a finer net near corners is
also successful. The mesh size near the corner should be of the order of magnitude of
the radius of curvature of the corner, and when this is small a mathematical idealiza-
tion involving infinitely sharp corners is preferable. The special treatment outlined
in this note makes use of such an idealization and shortens the labour considerably.
Special treatment is essential when the function approaches infinite values near the
corner.

2. Plane harmonic functions. Solutions of V&= 0 are bounded when the boundary
condition prescribes constant values near the corners. It can be shown that they are
also bounded when d<f>/dv is constant, where v is the direction normal to the boundary.
This type of boundary condition occurs e.g. when two plane harmonic functions €
and W are computed inside a boundary B for the purpose of a conformal transforma-
tion

X+ iy = 4>(x, y) + i<p(x, y)
and i/'=const. is specified at the boundary forming the corner. When expressed in
polar coordinates r, d centered at P (Fig. 1), the equation

VV =20 1)
becomes
d2& df>  d2e
r2 +r—+ = 0. 2
dr2 dr dd2
With g=r, d) =R(r) mQ(d), the following equations for R and 0 are obtained
d
X +»D =0, 3)
do2
dR dR
r2-----—- hr nR =0. 4)
dr2 dr
In these equations n2stands for a positive constant, and
i/0
=0 when 0=0, 0= a
dd

* Received Jan. 2, 1946.
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Hence
[¢9)

+= X) Aur" cos nd (5)
A—0
where n=irk/a (k=0, +1, £2, +3, ee»),
In order to investigate the terms with negative exponent in this series, we exclude
the corner by a small circle of radius p.On this circle (d<€/3r),..0=0. It is found that

- p2A+H (s= 1,23 ¢¢°).

When p—»0, the circle contracts towards the point P and the terms with negative
exponents vanish. Thus <€ will be represented by the series

3T

m 21T t
$£=Ao+ AirTlacos—d + A22T/acos —d -f AJZTla cos — tH ¢ e (6)
a a a

in the neighbourhood of P.

3. Method of special treatment. The method of treatment will now be explained
with reference to the example of a corner with a = 27r, #/a =|. In the treatment of
two-dimensional problems by relaxation methods,12 the function €is computed at
points of a net with small but finite mesh size. Let us denote by €0the value of €
at such a point, by <it <€, <z ¢4the values of <€ at the nearest neighbouring points.
The mesh length isa. At points where the function is regular, double Taylor expansion
shows that

ND — X L po'ls) a0 ly) )
a — = s com,
=] 12 12 y

where Aov(x), AVXy), are the fourth central differences in the * and y direction, re-
spectively, at the point where d)=">0- This expansion can only be used when the right
hand side converges. At a singularity and its nearest neighbouring points this expan-
sion is not valid. Figure 2 shows an example of a boundary where €£=0 on AE,
<£= 1000 on EB, and dcf>/dv=0 on all other boundaries. The Taylor expansion fails at

1H. W. Emmons, Numerical solution of partial differential equations, Quarterly Appl. Math., 2,
173-195 (1944).

8 D. N. de G. Allen, D. G. Christopherson, L. Fox, J. R. Green, H. Motz, F. S. Shaw and R. V. South-
well, Relaxation methods applied to engineering problems, Phil. Trans. Royal Soc. London (A), 239, 367-
386, 419-537, 539-578 (1945).
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P', Q', R', and S'. In order to obtain valid equations at these points, we consider series
of the type (6) at the pivotal points P, Q, R, S

$£= A0+ Airl2cos — + A2 cost?+ A3*n cos 3/2d + - (8)

Only the first four terms are retained. The units of r can be so chosen that r=1 at
P, Q R, S. In terms of 0«, 4 0«, $s one obtains

598 625 671 737 818 907 1(?00
581 589 615 661 730 814 90e 100C
P 9
557 563 585 629 703 803 901 100C
+10 +13
P> Q1
52C 523 533 561 669 789 897 100C
+14
F
47e EVe) 464 436 328 208 ¢ . 10f 0
+1 R> s’ -14
a4c 434 412 368 289 194 97 0
R 10 13 S
4ie 40d 382 336 267 183 93 0
407 399 37¢ 326 260 17s 91 0
D
Fig. 2
Ao — 0.25 (ifir + 4>g + O« + <f9).
At - 0.191 (0« —4>) — 0.462(0s — 4),
9
A2- 0.354(0q — 45p — &n + 49), ®)
A3= 0.191(0g — 4>s) + 0.462(0« — 4p)e
At the special points P', Q', R', and S', we find from (8)
4>p — 0.4570« -f-0.2350Q -f- 0.2090« -)- 0.0990s,
0g = 0.2350« T 0.5930Q T 0.0990«  0.0730s,
(10)

0«' = 0.2090« -T0.0990c T 0.4570«-T 0.2350s,
0s' 0.0990« -f-0.0/30Q "T 0.2350« - 0.5930s.
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These are the equations used at special points. The relaxation procedure is carried out
normally everywhere, observing that equations (10) hold at special points. The resid-
ual at a special point due to an increment at a pivotal point P is therefore the prod-
uct of this increment with the coefficient of $&r in the equation which holds at the
special point. This is in accordance with the usual relaxation procedure. The removal
of a residual at a special point is particularly easy. It is simply subtracted from the
value of 0 at the special point in question. Due to this removal the usual residuals
accrue at ordinary neighbouring points, but of course, no residuals are passed on to
special points.

Figure 3 refers to an example with a = 3-7r/2. Here we retain three terms only
Special points are P', Q', R\ pivotal points P, Q, R. The equations at special points are

P = 0.4860P f- 0.257<€3 T 0.2570s,
<)r = 0.2570P -f- 0.6120Q T 0.1310s, (1)

= 0.2570P T 0.13100 4" 0.6120s.
It should be checked whether the three first terms of the series
0 = "o + Air23cos-f# -f Art*I3cosE£<?+eee (12)

which has been used for the derivation of (11) represent the function 0 adequately.
This is done by comparing the result of the relaxation computation at points S, T,
where ordinary difference equations have been used with the values of 0 calculated
by means of the first three terms of (12).

A similar check was carried out at analogous points in theexample of Fig. 2. It
was foundthat the agreementwas not satisfactory. The errors have beenrecorded in
Fig. 2 underneath the respective 0 values. In this case it is possible (with the net
shown in Fig. 4) to retain five terms of the series. Pivotal points are T, U, V, W, X ;
special points T', U', V', Wr, X', and the equations for 0 at special points are

Or, as 0.546 Or T 0.313 <uT 0.062s0v T 0.06250iv -f- 0.0160X»

oci" = 0.156  or + 0.5780c? 4" 0.188 ovT 0.047 0jrT 0.031<xm
v = 0.031 or 4~ 0.188<tuT 0.562 <T 0.188 <twH0.0314>x,(13)
Oiv' = 0.031  Or T 0.0470u -f- 0.188 OvT 0.578 0iv4-0.1560x,

<t = 0.016 Or 0.06250c/ 4* 0.062 < 0.313 0iv4"0.546<tx
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The result is again checked by comparing the result of the relaxation procedure with
the $>values near the corner calculated from

£= Ao + A\rin cos -?+ /12 cos -f- A3r3li cos + Adr2cos 2t?,

590 607 643 700 776 863 954 L000
u
573 589 623 682 765 857 952 L000
Ui
541 552 578 639 745 849 950 L000
5 -2
v v mjt T
499 499 499 499 727 843 949 Lo0O
271 156 51 0
Xi X
w
457 446 420 359 254 150 50 0
+5 + 1
\%
452 409 375 316 234 142 48 0
408 390 354 298 283 137 48 0
Fig. 4

where the *4’s are given by

Ao= 0.250(fo + 4v+ fo’) + 0.15<H +

Ai = 0.354(fo —<Bw + 0.250(fo —for),

A% = —0.500fo + 0.250(fo + <), (14)
At = 0.354(fo —<tt) + 0.250(fo — <),

At = 0.250(fo —<tu—fo\) + 0.125(07- + 0.v).

The agreement is now much better. In Fig. 4 the errors have been recorded. It will
be noticed that the mesh points of Fig. 2 lie between those of Fig. 4. By interpolating
values at midpoints of the meshes of Fig. 4, we find that the solutions given in the
two figures are in fair agreement.

When the above test fails, a finer net should be used as a rule, because the calcula-
tion becomes rather cumbersome when more than five terms of the series are retained.

To obtain, without the special treatment, a result which differs from the one of
Fig. 2 by less than 1% at any point of the net, the net near the corner would have to
be 7 times as fine.
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4. Other examples. As an example of a corner where the value of the function is
specified, let us consider an electrostatic potential \p. In this case the series is

A= AO+ /liry2sin ft? f- /12 sint? + Ar32sin ft? + eee . (15)

The components of the electric field in Cartesian cordinates, EX E v, are not bounded
on a sharp corner when a>ir. Let us consider the term rncos M? of the series (5).
E xand Evwill contain terms r1.1sin (n—1)$, rn_1cos (» —1)$, respectively, and nega-
tive exponents of r will therefore occur when a>ir. The method outlined above can
still be used to compute a function with such a singularity. In the case a =2v the
negative exponent —f occurs. Terms with exponents —f and + f depend ont? in the
same manner. It is therefore necessary to choose pivotal points which have not all
the same distance from the corner.
The method is equally applicable to solutions of the wave equation

VV + k2= 0. (16)

In Cartesian coordinates and with £=x/a, r,=y/a (where a is the mesh length of the
net), Eq. (16) becomes

dz> dz2p
+ ——+ k2a2>= 0. a7

de dr,2

Referring again to the case a = 27r, dt>/dv=0 and retaining five terms, we see that the
expression (5) holds at pivotal points. At the special points we have

. _JuZka) 7i(fea) J dz{kd)
= Ao+ Ai cos ft? + A2----omoeee cos t? + A3-----m-m-mme- cos ft?
Ji/2ka) Jr{2ka) J3i(2ka)
Jzika)
mmmmmmmeeen cos 2i?,
Ji{2ka)

where J nare the Bessel functions of order n. When ka <0 <1, the ratios Jn(ka)/Jn(2ka)
differ from (f-)nonly in the third decimal. When the mesh length a is small compared
with the wave length /= 27t/&, the special equations are therefore the same for solu-
tions of the wave equation and those of Laplace’s equation.

5. Conformal transformation. When a solution of more complicated differential
equations, e.g. the equations of viscous flow, or V4E = 0, is computed it is often an ad-
vantage to remove singularities at the boundary by a conformal transformation
<G)=>(x, y), p=\p(x, y). Let us suppose that it is desired to transform the interior of
the boundary shTwn in Fig. 2 into the interior of a rectangle in the §3 \f plane.

The linesO =const. at suitable intervals can be found from the ~-values recqrded
in Fig. 2. Thelines \p'—const, areorthogonal to the lines €= const, and are best com-
puted separately.

The condition for orthogonality

a>dp db>df
dx dx dy dy

is satisfied when
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nNX— — - —X—- (18)
3a 3y dy dx
where Xis a constant. From these equations it follows that
d'4 dzem dy dy
—-H-—= 0, — —H-——-—= 0. (19)
dx dy2 da dy

The boundary conditions for \p' are d\p'/dv=0 on EA, EB, \p'=0 on EF, ip' =const,
on AD, DC, and CB. The last constant is arbitrary and may be given a convenient
value, e.g. 1000 for three figure accuracy.

It is easily seen that it is necessary to determine the constant X in (18), in order
to carry on with the computation of the original equation (e.g. VAF=0). In the co-
ordinates spand ip=}np’, this equation becomes

f d- d-\ / a2 32\
——t =) (- + - F= 0.

\dy- dpz)( \d<f2  dp2

The constant X is determined by (18). These equations can beregarded as an esti-
mate ofXatevery point. Denoting the finite differences in the x and ydirections at
the mesh pointi by

Dx>(i),  Dv&(i),  Dy(i), D.y{i).
the quantities 8\(i) and 52(i) defined by
t>i()) = DA>(i) - ~Dv<P(i), 8i) = Dy4{i) + \Dy{i) ' (20)

are not all zero, but constitute a measure of the computational error. It is desired to
find a mean value for X for which the variance of the computational error is a mini-
mum. The sum

H + 5z(»)]

»

is thus minimized with respect to X and the following expression for X is obtained:

£ [Dyi)Dy{i) -D y*i)Dy{t)\
X =

N --F 7 - F 1)
£ ({Dy(i)}2+ {Dy()}2

It has been found that, with the help of this technique of separate computation of
the two transformation functions and using the special treatment of corners at the
boundary conformal transformations can be computed with great accuracy.

6. Acknowledgment. The numerical work for this paper was done by Mis

L. Klanfer whose services were put at the author’s disposal by the Directorate of
Scientific Research of the British Admiralty.
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THE GENERAL VARIATIONAL PRINCIPLE OF THE THEORY
OF STRUCTURAL STABILITY™*

BY

WILLIAM PRAGER
Brown University

1. Introduction. This paper is concerned with the general problem of structural
stability in the elastic or plastic range. Two slightly different formulations of this
problem are found in the literature. According to the first, one considers a deformable
body which, initially, is free from stresses, and which is then subjected to a system
of loads of gradually increasing intensity. As long as these loads are sufficiently small
the equilibrium configuration which the body assumes under their influence will be
stable; one asks for that intensity of the loads for which this equilibrium configuration
first becomes unstable. According to the second formulation of the problem of struc-
tural stability, one considers a given configuration of a deformable body and an equi-
librium system of body and surface stresses and asks whether, in the presence of these
initial stresses, the given configuration is stable or not. This second point of view is
adopted in this paper because:

(1) it clearly separates the stability problem from the problem of finding the
stresses produced by the given loads, and

(2) the manner in which the initial stresses are produced is irrelevant for the solu-
tion of the stability problem. In particular, it is by no means necessary that the initial
stresses are produced by loads which are applied to an otherwise stressfree body;
they may be produced by temperature changes or may partly be due to previous over-
straining of the body.

Once this second point of view is adopted, stress-strain relations enter into the dis-
cussion at one point only: we must be able to predict the infinitesimal changes in
stress which correspond to the infinitesimal strains associated with a system of in-
finitesimal displacements from the considered equilibrium configuration. As the rela-
tions between these infinitesimal changes in the stresses and strains are essentially
linear, the only difference between the elastic and plastic ranges consists in the fact
that in the plastic range a different set of coefficients must be used in these linear
relations according to whether the change of stress constitutes “loading” or “unload-
ing,” while no such distinction need be made in the elastic range.

In Section 2, the general problem of structural stability is reduced to an eigen-
value problem for the displacements from a configuration of indifferent equilibrium
to a neighbouring configuration of this type. Except for the consideration of plastic
deformations, we follow Biezeno and Henckylin this derivation, but simplify the dis-
cussion by the systematic use of tensors. In Section 3, a variational principle is derived
which is equivalent to the eigen-value problem formulated in Section 2. As an ex-
ample for the application of this principle, the lateral buckling of an unevenly heated
lamina is treated in Section 4.

* Received June S, 1946.
1C. B. Biezeno and H. Hencky, Proc. Roy. Acad. Amsterdam, 31, 569-592 (1928).
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2. The eigen-value problem associated with the general problem of structural sta-
bility. We consider a given configuration of a deformable body and an equilibrium system
of body and surface stresses which is given to within an arbitrary factor X If Xis
sufficiently small, this equilibrium configuration will be stable; we ask for that value o f\
for which it becomes indifferent, assuming that the additional stresses which are produced
by infinitesimal displacements from the given equilibrium configuration are linearly re-
lated to the corresponding infinitesimal strains. This critical value of X will be called
the safety factor of the considered equilibrium configuration. With respect to a system
of rectangular Cartesian coordinates Xi, let us denote the components of the given
stresses by Xr-- and the components of an infinitesimal displacement from the given
equilibrium configuration by If the unit vector along the outward normal to the
surface is denoted by m, the surface stresses are

\T j = XcTijiii. (1)
The quantities an must satisfy the equilibrium conditions
an.i = 0, (2

where the subscript i after the comma denotes differentiation with respect to Xi, and
the usual summation convention regarding repeated subscripts is adopted.
The infinitesimal strain associated with the displacements is given by

Gij~ 2(A,: T Ujti). 3)

Since the relation between this strain and the corresponding additional stress r-- is
assumed to be linear, we have

Tii — Cijkitki, 4)
where Cijki is a fourth order tensor which is symmetric with respect to i and j and
with respect to k and I. If, in particular, m and e--are assumed to be related to each
other by the generalized law of Hooke, we have

Cijki = 2Go"S{k5ki — — OijSkiJ. (5a)

where Go denotes the modulus of rigidity, v Poisson’s ratio, and 8a is the Kronecker
delta. If the body under consideration can be expected to behave like an isotropic
elastic solid for an infinitesimal displacement from the given equilibrium configura-
tion,2i.e. if the stresses Xr-- do nowhere exceed the elastic limit of the material, the
expression (5a) may be used in connection with the stress-strain relation (4). On the
other hand, where the stresses Xc-- exceed the elastic limit, different expressions must
be used for Cijki according to whether the stresses r ¢associated with the strains e~
constitute “loading” or “unloading.” We reserve the complete discussion of suitable
stress-strain relations beyond the elastic limit for another paper and give but one ex-
ample here. Defining the stress deviation as Sij=on —\akk8ij and its intensity as
5 =\sijSn, we set

2M. A. Biot [J. Appl. Phys., 10, 860-864 (1939)] and, more recently, F. D. Murnaghan [Proc. Nat.
Acad. Sci., 30, 244-247 (1944)] have pointed out that an elastic solid under initial stress can be strictly
isotropic only if the initial stress is of the nature of a hydrostatic pressure. For the conventional structural

materials, however, this small anisotropy caused by the initial stress can be disregarded as long as the
initial stress does not exceed the elastic limit.
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|
"ijki = ZGo(\ 1 $\j$ki/ 5~ rSijski  for Sij€ij~ 0 (5b)
and

Cijki = 2Go(siksji ~ — Ojskrj  for Syer < O (5¢)

Here GOdenotes the value which the modulus of rigidity assumes in the elastic range,
while G= G(5) is the so-called tangent modulus of rigidity. In the elastic range G = GO,
and (5b)as well as(5c)reduce to (5a). The stress-strainrelations whichare obtained
by substituting (5b) and (5c) into (4) were suggested by J. H. Laning inan unpub-
lished paper (1942); they constitute a generalization of stress-strain relations which
the present author had used in earlier papers.3 We note that Cijki —Ckin, according
to (5a), (5b), and (5c).

A generic particle with the coordinates xi in the initial state has the coordinates
Xi=Xi+Ui in the considered neighbouring state, and

dxi = (dij + Ui,,)dxj — (bn + ey + u{j)dxj, (6)
where the deformation ey is defined by (3) and

wy = Mny  ui.i) @)

is the rotation associated with the displacement U{.
The infinitesimal force 'Kdf- which is transmitted across the surface element dS in

the initial state equals
\dfj = \TjdS = \oijuUids. (8)

The force which is transmitted to the corresponding material element in the neigh-
bouring state will be written in the form

\dfj —\onnids. ©)

Note that the normal vector «e+ and the area dS in the initial state are used in (9).
This means that the stress tensor Xi-- is defined in the Lagrangian manner4with the
initial state as the state of reference. Consequently, Xx--is not a symmetric tensor;
it will be written in the form

XiTij = Xy ri” T{ ‘b Tij "b T\jt (1d)

where the terms r-- r(, and t[J are infinitesimal changes of stress defined in the
following manner:

(1) the tensor r--is symmetric; it represents the change of stress associated with
the infinitesimal strain eand is given by Eq. (4);

(2) the tensor Ty, too, depends on the strain ti,-; it is antisymmetric and repre-
sents the change of stress necessary to restore the momentequilibriumwhich is
expressed by thesymmetry of an in the initial state andwhich isdisturbed by the
deformation;

5W. Prager, Proc. Sth Internat. Congr. Appl. Mech. Cambridge, Mass., 1938, pp. 234-237; Prik-
ladnaia Matematika i Mekhanika 5, 419-430 (1941); Duke Math. J. 9, 228-233 (1942).

*H. Jeffreys has recently given a similar analysis using the Eulerian approach [Proc. Cambridge
Phil. Soc. 38, 125-128 (1942)]. The Lagrangian approach seems more suitable, however, for the problem
under consideration.
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3) the term x{, finally, depends on the rotation W,; it represents the change of
stress, with respect to thejfixed coordinate axes, which is produced by this rotation.

Since only first order terms in  and need be considered in the following analy-
sis, the order in which the deformation e~ and the rotation wt)-are applied is imma-
terial.

The antisymmetric tensor rtJ depends only on To find its mathematical ex-
pression, it is therefore sufficient to consider a pure homogeneous deformation, i.e., a
deformation for which m,,- is independent of the coordinates and «»,) = «/,»= e«. On
account of (9), the equations of equilibrium for the deformed body are

or

Since these equations must hold not only for the entire body, but also for an arbitrary
portion of it, we must have

dijxk  dikxfj'i o 12)

Using the symmetry of the tensors a--and m in addition to the Eqgs. (10), (11), (2),
and neglecting higher order terms, we may therefore write (12) in the form

(13)

The tensor depends only on To find its mathematical expression, it is suffi-
cient to consider a rigid body rotation, i.e., a system of displacements iii which de-
pend linearly on the coordinates Xi and satisfy By this rotation the
components of the infinitesimal force transmitted across a given surface element are
transformed according to

dji — (Si, + Ui,j)dfj = (8ij + o}ij)dfj — dfi + Uijdfj. (14)

For the considered rigid body rotation T,-,=r4y= 0. Using (8), (9), and (10), we
may therefore write (14) in the form

(15)

Returning now to the consideration of arbitrary infinitesimal displacements uit
we write in accordance with (10), (13), and (15):

\<Tij = XAyt T+ — Ojk(ki) — Xa-0ufcy. (16)
On account of (2), the equilibrium condition (11) furnishes therefore
[y + —~ k(i) — = o, 17)
and the condition dji =dfi furnishes

[r-- + iX(<Tik(ki — Ojktu) ~ XoikO>kj\n> = 0. (18)
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Except for our more general definition of the tensorr,,-, Eqs. (17) and (18) agree with
those derived by Biezeno and Hencky. Biot6 obtained the same relations from his
non-linear theory of elasticity, and Neuber6 has recently discussed the formal rela-
tion of the. differential equations (17) to the fundamental equations of elasticity. As
was already pointed out by Biot, Egs. (17) differ somewhat from the equations which
Trefftz7 derived using an unconventional definition of stress. If the given state of
stress, Xr-- is homogeneous and if the coordinate axes have the directions of the prin-
cipal axes of this state of stress, Eqgs. (17) reduce to the form given by Southwell.8

By means of (3), (4), and (7), the quantities r-- and - can be expressed in
terms of the first derivatives of the displacement In this manner an eigen-value
problem for the displacement u{ is obtained. The smallest eigen-value Xis the desired
safety factor for the given distribution of initial stresses. We refrain from formulating
this eigen-value problem explicitly, because in all but the most simple cases its exact
solution would hardly seem possible.

3. The variational principle associated with the general problem of structural sta-
bility. The form of Egs. (17) and (18) suggests the existence of an equivalent varia-
tional principle from which approximate solutions of stability problems can be ob-
tained. Indeed, let us establish the Euler equations and natural boundary conditions
of the variational problem

57~ [Cparstpgtrs ~i~ X(7pg(ttr,plL,<j trp~rq) 1(713 0, (19)

where only the displacements up and hence strains epq are to be varied, but not the
stresses apq and the coefficients Cpgrs which depend on the stresses. If the integrand
of the left-hand side of (19) is denoted by F, the Euler equations and natural bound-
ary conditions are

d / dl oF
0, (20) . Hi=0. (21)
dx\du-) diij.i
Since

= T 5,p6y7),
dttj.i
we have
OF
dUj — 2CijkI(kl + X[2crikUj,k — Giktjk — <sjkdk\

= 2rij + X|[<ritei/ — o — 20ikg)kj\.

Equations (20) and (21) thus are indeed identical with (17) and (18).

The variational principle (19) can be used in very much the same manner in which
the principles of minimum potential energy and minimum complementary energy
are used in elasticity:9 by reasonable assumptions concerning the displacements m;

‘M. A. Biot, Phil. Mag. (7), 27, 4687189 (1939).

6H. Neuber, Z. angew. Math. Mech. 23, 321-330 (1943). The author is indebted to Professor
E. Reissner for the reference to this paper.

7 E. Trefftz, Z. angew. Math. Mech. 13, 160-165 (1933).

8 R. \r. Southwell, Phil. Trans. Roy. Soc. London (A), 213, 187-244 (1913).

8 See, for instance, E. Volterra, Atti Accad. Lincei, Rend. (6), 20,424-428, 463-467 (1934); 21, 14-19
(1935) j23, 329-332 (1936).
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the class of admitted functions is restricted and the variational problem simplified.
In using this technique, we must see to it that the restrictions imposed on the displace-
ments Ui do not rule out the possibility of fulfilling the boundary conditions (17).

4, An example. To illustrate the manner of application of the variational principle
formulated in Section 3, let us discuss the lateral buckling of an elastic, prismatic
beam of the length I which is built in at both ends. We assume that the cross section
of this beam is doubly symmetric. Taking the origin of the coordinates at one end
of the beam, we let the axis of Xi coincide with the axis of the beam and the axes of
x2and x3with the axes of symmetry of the cross section Xi= 0. To simplify the expres-
sion (5a) for the coefficients C««, we shall assume that v=0. This assumption is in
conformity with the spirit of the engineering theory of the bending of beams; in
using it we must keep in mind that Young’s modulus Eo equals twice the modulus of
rigidity Go if v=0.

As to the initial state of stress, let us consider the case where

Cii — CXo, (22)

while all other components of an vanish. The constant ¢ in (22) obviously has the
dimension of a stress divided by a length. In an originally unstressed beam with
built-in ends a stress distribution of the type (22) can be produced by changes of
temperature which vary linearly with x2 If the width of the beam (measured in the
direction of x3 is small in comparison to its height, (measured in the direction of x2
the stresses (22) may produce lateral buckling. The infinitesimal displacements as-
sociated with this type of instability may be described in the following manner:
a generic cross section Xi of the beam undergoes a translation u(xi) in the direction
of the 3axis, a rotation —u'(xi) about the x2axis which makes the cross section
remain normal to the bent centerline of the beam, and, simultaneously, a rotation
—d(xi) about the xi-axis; in addition to this rigid body displacement the cross section
undergoes a warping —w(x2 x3d'(xi) which is associated with the twist —6’(xi). The
corresponding displacement components are

Ui = — X311°(xi) — w(x2 Xi)0'(Xi), x D(xt), it3 = w(*i) —xB(xi). (23)

Note that on account of the assumption v—O0 the longitudinal extension dui/dxi is
not accompanied by any lateral contraction. Particularly simple expressions for u2
and u3are thus obtained. The matrices of the derivatives and of the strains e--
therefore are

— xu" —wd — O'dw/dxz —u' —d'dw/dx3 ~
Uii = XxE m 0 -9 (24)
u - x,e 0 0
— xau" — ivo" W {x3 — dw/dN->) —\9'{x2+ dw/dx3 ~
Uj = \6'{x3 — dw/dXi) 0 0 (25)
+ dw/dx3 0 0
Since cr=0 unlessi=j =1, we need only m*iwh— for the evaluation of the term

with the factor Ain (19). Now, for a doubly symmetric cross section the warping func-
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tion w is odd in x3as well as in x3 Taking account of this fact, and keeping in mind
that an is odd in x2and even in *3 we find that

J

where 13denotes the moment of inertia of the cross section with respect to the a3-axis.
We now proceed to the evaluation of term Cpgr,epgersin (19). With ~=0, Eq. (5a)
takes the form £;-*(= 2Go8ii§j! and the' stress-strain relation (4) reduces to

au(ukiuk\ — «ki(ki)dv = —2c\] u'e'xldv = —2c|3_|* u'e'dxu (26)

n, = 26V,7. 27

In applying this, we shall replace 2GOby £ Owhenever i —. In view of (25), we have

Cporstpatrj = Tpoepg = Eo(xzu" + «8")~ + 4Go(ti2+ eh), (28)

where ti2and ei3depend on the twist 6rand on the warping w per unit twist in pre-
cisely the same manner as in the case of pure torsion. In this case, however, the in-
tegral of 4Go(e?2+i?3) over the cross section equals. GC(B'ZWhere @XCdenotes the tor-
sional stiffness of the beam. Adopting the warping w per unit twist found in the case
of pure torsion, and setting*

r=J walh, (29)

where dA denotes the area clement of the cross section, we obtain
prq,,epqer.dv = £0/2 f u'ndxi + £0r f + GOC f endxu (30)
J Jo 0 "0

where /2is the moment of inertia of the cross section with respect to the a3axis.
Substituting the expressions (26) and (30) into (19), we obtain

fo/hiv + \CIEF" =0, £rreV- Q"+ \ciaw" =0 (31)
as the Euler equations for our problem, and
6" —0 for Xi=0 and ai=1 (32)

as the natural boundary conditions. In addition to these natural boundary conditions,
we have the imposed boundary conditions

8—u—u'=0 at Xi=0 and X =1 (33)

The safety factor X is found as the lowest eigen-value of the problem formulated by
Egs. (31), (32) and (33).

* Note that for the doubly symmetric section considered here the point xu 0, 0 is the shear center
of the cross section *j. Since w is odd with respect to xt and x3, we have «>= 0 at this point. These remarks
identify the definition (29) with that given by J. N. Goodier, Eng. Exp. Station, Cornell University, Bulle-
tin No. 27 (1941), p. 9.



385

UNSTABLE SOLUTIONS OF A CLASS OF HILL
DIFFERENTIAL EQUATIONS*

BY

GABRIEL HORVAY
McDonnell Aircraft Corporation

1. Introduction. Linear differential equations with periodic coefficients play an im-
portant role in problems of engineering and physics. The best-known of these equa-
tions is Mathieu’s equation. A somewhat more complicated equation is

1 \9-ie-u++ d-pr'* + e0+ Qie{*+ doe”v = 0 (1a)

which reduces to Mathieu’s equation for
o 160, 6 =6 : 6\, G_kQ:O

where the asterisk is used to denote the conjugate complex quantity.
This paper is concerned with the determination of the solutions

= <*£ c*lk* 2
_a)
of Eq. (la) subject to the restrictions
0 = 00, 0-1 = 01, 0-2=0 (Ib)
and
0i = 0(m), 02 = O(ff), (3)

where |iisa small positive quantity. It will be seen that solution of the problem in-
volves the determination of the “characteristic exponent” a from the equation

sin iica = \/© sin tt\/0o( %)

where © denotes the expansion
© = 1+ CH+ C€+ CrW+ CSS*+ Clthe + « me 5)

in the three real combinations
5= 0_i0i, £= 022, v — 2(616-2 + 6 162) (6a)

of the four quantities, real and imaginary parts of Oi and 02 © is a power series in ju2
since
5= 0(m32, £ = 0(m4, V= 0(m4j. (6b)
The coefficients C of the series depend on do alone.
The numerical evaluation of the coefficients of the expansion is the principal aim
of this paper.This is bestaccomplished by first re-expressing the “doubly infinite”
Ilill determinant D interms of its “simply infinite” principal subdeterminants Dn,

* Received June 13, 1946.
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V = /(Do, DtD w -), (7)

and then expanding D,, into the series
D,= 1-Fas+ ae+ aviiF-/I}H + <-n. (8)

The coefficients of the expansions (7) and (8) are tabulated in Tables Il and I re-
spectively for a convenient range of 6a For the sake of simpler printing the notation

Ai<d,e = {n, S'erf} (89

will be used whenever the subscript of A becomes excessively long.

The practical solution of Eq. (1) is carried out in four steps. First, the determi-
nants D,, Egs. (8), are evaluated by means of Table I. NextD, Eq. (7), is determined
from Table Il. The third step consists in solving Eq. (4) or one of its variants (13a, b,
c) for <, and the last step is the determination of the coefficients ck of solution (2). A
convenient method for carrying out this last step is discussed in Section 2. The deriva-
tions of the formulas for {n, S'e’77} and for the coefficients of (7) are presented in
Section 3. A numerical example is given in Section 4.

The present paper is based on a study which was recently undertaken at the
McDonnell Aircraft Corp. under the sponsorship of the Bureau of Aeronautics, U. S.
Navy Department. The study was prompted by recent instances of control difficulties
of some helicopters and rotor blade failures of others. As will be shown in a separate
paper,1the natural modes in which hinged rotor blades flap can be represented by
solutions of Eq. (1) multiplied by suitable damping factors. It will be found that the
stability of the blade motion decreases as the speed of advance of the helicopter in-
creases (as n increases). Nevertheless, instability does not set in, because an aero-
dynamic damping effect outweighs, at all feasable speeds, the tendency towards in-
stability which results from the flapping motion.

The writer’s thanks are due to his colleague, Elizabeth J. Spitzer, for checking the
derivations and the numerical work. The writer also wishes to express his indebted-
ness to Messrs. W. R. Foote, H. Poritsky and J. J. Slade, who in their paper on
rotational instability of shafts2applied a Laplace expansion to a doubly infinite de-
terminant, and thus suggested the present approach.

2. Method of solution. The solution of Eq. (la) is assumed in the standard form

4o
vty) = ckeik*. (2)
—m
Substitution of expression (2) into Eq. (la) leads to the infinite set of homogeneous
equations for the coefficients c*(<r):

k——2:  dci~\-diC38T [(cr—2i)2+io]c_2+ 0_iC_i+S_2® =0,

k——1: 62G-3T 01C-2T [(ffi—7)2T o]c_iTO_iCo"f -2 =0, (9

k=0: 02C,,2~\~@ [<2T*o]coTr— Q2 =0,
1G. Horvay, Rotor bladeflapping motion, to be published soon.

JW. R. Foote, H. Poritsky and J. J. Slade, Critical speeds of a rotor -with unequal shaft flexibilities,
mounted in bearings of unequal flexibility, Journal of Applied Mechanics, 10, A77, 1943.
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k_l 02C_1I+ 0lICo+ [(flr+ i) 2+ 6o0]ci+ o6_IC2+ 0_2C3 =0,

k——2: diCo-\-diCi~\- [(cr+2i)2+00]c2+0_iC3+0_2C4=0,

The equations are consistent if their determinant, A(o-), vanishes. The consistency
criterion
AQ) = 0 (10)

can be expressed in the much simpler form3'1

sin iira — * %/D Sin t\ 7o, @
where

1 d-\yi doyi O 0
dirl 1 d-iyi d-2¥i 0
0 m A(0) = dyo ffiyo 1  d-iyo 0-2>0 (11a)
0 6i  Oiyi 1 d-iyi
0 0 022 diy2 1

is the determinant of system (9) for a= 0 when each equation is divided by the coeffi-
cient of the diagonal term, and

0 is either positive or negative, and so is domThus the quantityy /v s'n ny/do s
either real or pure imaginary. In the first case set

q = \ETsin ir\do = —\/~- 0 sinh vy/—do. (12a)
In the second case set
q = qli=—V —0 sin XV O /o sinhx\i—w (12b)
Then the solution of the transcendental equation (4) is given by
1
+a=—1log(q/i + V1—¢2 + mi (m—0, +1, + 2, e me),
X
-2 i
= — arctan ~ 4+ mi for —1~ q 1, (13a)
2 yl - 2?2
|
ITIog ?+ vr?2“ 1) + (w- 5)2 for ?g —1, g~ 1, (13b)
——log (& +\/g'2+ 1) +mi for gimaginary. (13c)
X

3Whittaker and Watson, A course of modern analysis, Cambridge, 1927, p. 416.
*M. J. O. Strutt, LanUsche, Mathieusche und verwandle Funktionen in Physik und Technik, Springer
1932 (Edward Bros., 1944), p. 22.
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Once 0 is known, the calculation of <xfrom (13) is simple matter. For any m there
are two solutions g\ and 02 which differ only in sign

L= —al (14a)

Let g\ be the solution with the positive real part

ci = oo+ nr o " 0. (14b)
The function W\ ({[/) (or associated with ci (orwith 02) is readily obtained by plac-
ing ci (or c2 into the system (9) which is now limited to the equations k= —N,

-N-\-1, eee —1 +1, eee TN. Assuming c*=0 for k< —N and k> + N, one
can solve the 2N equations for C-n, C-at+i, mme  C-1, c\, mmm, Cnin terms of the arbi-
trary constant c0, and then use equation &= 0 as a check. The greater is N, the more
harmonics are taken into account, and the more accurate is the solution. In practice
the calculations are most conveniently carried out by solving equations k=N and
k=—N for cn and c_v in terms of the variables ¢v_1, cv-2 and c_.v+i, c_.v+2, respec-
tively. The results are then substituted into equations k=N —1 and k——1V+1;
similarly Ca-iand c_a'+i are determined. Continuing the process one finally arrives at
equations &=+1 and fe=—1 involving the two variables Q and c_i only, and the
parameter cOwhich can be assumed as 1. One eliminates one of the unknowns, say c_j
determines from the real and imaginary parts of the remaining equation the real and
imaginary parts of c\, and then, retracing the steps, obtains in succession the numeri-
cal values of c_i, @ C-2 * ¢+, cs, C.v-

Evidently, in principle, it is immaterial what mi (m—0, +1, +2, ¢« ) is used
in the ¢ of Egs. (9). For instance, the set of equations k= —N to + N with m —2,
the set of equations k ~ —N —2 to 4-iV—2 with m —4, and the set of equations
k= —N+3 to +tV-(-3 with m ——1 are identical. Thus, as one passes to the limit
N —>00, any m and any 2N+1 adjoining equations will lead to the same function
i'oM [°r WO practice, where one is limited to a finite number of equations,
27+ 1, it is best to use the centrally located equations k= —N to -(-iV with an m
which makes cOthe dominating term in the series (2).

In general »1,associated with 01,and V2 associated with a2 are linearly independent
functions. An exceptional case arises when ar= 0, and a;-is an integral multiple of
Then substitution of 01 and <2into the system (9) leads to the same function

+M
b= e"*X) Cke*, (v=0or]). (15a)
—®

The second, linearly independent, solution is now a “quasiperiodic function” 4

+« +" 1
122 Ckeik* + 2 dice™* |, (v=0,8). (15b)
—0 —X J

For convenience the functions (15a) will be called “purely periodic” functions.
Determination of the purely periodic solutions (15a) forms the subject matter of
most investigations on Mathieu and Hill differential equations. The purely periodic

m M. J. O. Strutt, loc.cit.,, p. 23. As an exception there may be two purely periodic solutions. For in-
stance, for 0Oo= 4, 01= 02= 0, one obtains ti=cos 2/, t2= sin 2/,
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solutions are usually of greatest interest, because they separate the /i-regions of sta-
bility (0>=0; zi and v2are oscillatory) from the /;-regions of instability (trr >0, i
as i/—>co). A purely periodic solution can be obtained, cf. Egs. (12), (13), only when
g'=0(0 =0, orperhaps do=k2), orwhen g—= 1 (O and 6qare such thaty/o siniry/FO
= 1orV —O sinh -try/—0C=1)- 1° general do=k2does not provide a purely periodic
function.

In the present analysis the principal interest is attached to the unstable solutions

+0
WO = (ov> 0) (16)

of (1) which, after multiplication by a damping factor e-""2 are still stable. These
solutions are in the “transition region” which extends from the /;-value for which v(\p)
is purely periodic to the /;-value for which e~n*n v(V/) is purely periodic. It will be seen
in Reference 1 that a rapidly advancing helicopter usually operates in the transition
region.

3. Expansion of Hill’s infinite determinant. It will be convenient to call the
terminant O, Eq. (11a), a doubly infinite determinant to indicate that it extends to
infinity both upward and downward. Simply infinite determinant are the principal
subdeterminants of V,

1 B-iy,, 0-iyn 0

o01)Vfi 1 0-\yr#i 0-2)»+1 1 0_lyn+3 0_2)1n+3
Dn = 02)»+2  Oiy?i+j 1 0_1)"+2 ; E, o= 0lyn+2 1 0-t)n+2 0-1)n+2 (17a, b)
0 02)»+3  0l)n+3 1 02)n+l  Oiy»+i 1 6-iyn+i
0 02)'n Oiyn 1

The first extends to infinity downward, the second upward. Simply infinite determi-
nants are also the auxiliary subdeterminants

01)» 0-1)’.  0-2)n 0
02)n+l 1 0—1)»+1 0-2)n+l I 0_iyn+3 0-2)n+3 0
5 = 0 01) 42 1 0_lyn+2 ; Tn = oIy, +2 1 0-)»+2 O (18a, b)
0 02)»+3  0lyn+3 1 02)\1+1  01)»+l 1 0_2)n+l

0 02)'. 01)» 0-1)»

Sndiffers from D,, only in the first column; Tndiffers from Enonly in the rightmost
column.
One readily establishes the recurrence relations

Dn= Dn+ - d-iynS,,+i + did-«yny,,+ISn+2- tynyntDntz
+ @ynVn+iyntdty n+ (19a)
Sn = OtfnDn+l ~ 016 nyn+ID,+2+ iynyn+lS,,,0. (19b)

A Laplace expansion of the doubly infinite determinant (D along adividing line
between rowk = 0 and k= —1 leads to the following expressioninvolving only simply
infinite determinants of type Dn, En, Sr, Tn:

V = DoEi —SoTi + yoyi(0-.i6iDiT2+ did-BiE2
— ((yoyiDiEz + y\D2E2+ yoyiSiT2
+ e (yoyiysyvDiEt -I- yoyiy?ED3 + yoyiytDiEs). (20)

de-



390 GABRIEL HORVAY [Vol. IV, No. 4

Since, by virtue of (Ib)

En= Z¥= Dn, (21a)

Tn= 5* (™ S,,,when &  dh 0* * 0s) (21b)
and by virtue of (2) and (19b)
SnTm= 0(M), (21c)

a replacement of by Dnand a repeated insertion of (19b) into (20) gradually elimi-
nates all but the D,, type of determinants from the expression for D. It is also found
that 0i, 0_i, 02 0-2 appear only in the combinations 5, e, Zgiven in (6a). Thus, by virtue
of (6b), the expansion of D progresses in powers of /12 Using the notation
2
yon2 = >0>i>2, (22a)
one finds that to niOterms
© = DOD1 — SyoiDiD2—t(yoD\Dz + yuD2 + 72y0iio2 + ;yauD1D3)
— 5i(4yon20203 + 2y0i230i0©4) + e2(>0i230i©4 + 2yantD Dz)
2
+ €jj(4y0ii23©204 + 2yn»*PJh + 2yoim©3)
— 5e2(4y0ii234©2©5 + Ayo\i2zDzDi -f- 2y0i23450i©6) + - - - . (23)

The same process can also be carried out for the simply infinite determinant Dn.
Disregarding the exceptional case 60=k2 (y*= <¢), one finds that to /x10 terms

Do — Di —5y0iD2+ (—«02 + 2r)yoi2)©3 + (— 23e + e2y0i23Cc4

-f- 2€77y0i234CH — 25e2y0i2343D6 + « mm (24a)
and D,, is obtained from DOby increasing the subscripts in the latter’s expression by n.
(24b)
It will be convenient to introduce at this point the notation
Z T3s6 = y356 + 3467 + >578 + - | (22b)
z >12,C >356 = >127Z >356 + >23Z >«7 + >34Z >572 -»-mes, (22¢)
Noting that
lim Dn= 1, (25)
n—«
one obtains, by repeated application of (24),
Do = (1 —5500)Z2 + (—Syi2 —«>02 + 2ijy0i2)©3 d* « mm
= [f — (>0i + >12)5 —yo02«+ 2yOi27i]E)3 + e oo - (26a)
= I AS+ Ae+ Alv + mmm | (26h)

where

0 AN 0 n 0% 0
dj = —z >0 A, = —z >@ d, =2z >02 dgi1=z >0z >B.-n. (27)
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The coefficient of a general term, like 6e2 is obtained as follows: Equation (24a)
gives rise to the following symbolic products containing 5e2:

[- 5Yy0i] [- eyw\ [~ «yoa], (a)
[— <Syoi] [«y0i23], (b)
[—eyo2][— 25ey»0i23J. (c)
[17 [— 25e2y0i2346]. (d)

It is found that (a) contributes

— 22 3« 22 32422 y" ~ 22 yo222 iy3422 357 ~22 30222 33522 32 (28a)

to A°(. (Note that no subscripts can be repeated, nor can any be skipped as one
passes from one 22 to the next22; furthermore (a) gives rise to three distinct summa-
tion expressions, because yi-.r+i can appear in the first place, in the second place, and
in the third place.) The relation (b) yields

—22 yoiE y™a —22 012322 Y (28b)
which (c) yields
222 Np22 3%+ 2X)y,m £ 3% (28c)
and (d) yields
— 213 3012345 (28d)

The contributions (28a, b, ¢, d) sum up to {0, Se2}. By increasing the subscripts of
the expressions (28) by 2, one obtains

AS= - 223822 3622 30 - 22 3%22 3%22 30 - 22 422 H722 3D
—22 32822 3%y —22 383622 367+ 2/ 3422 3%B
+ 27) 234622 3B —222 3B (29)

The determination of the other [n, SV +'j is similar.

The numerical values of the coefficients {11, S'Vrk) are given in Table | to 5
decimal places, for 00Oranging from +0.9 to —1.0 (the interesting range in helicopter
theory). In the evaluation of {», &'Vr¢*} the first 51 ym were taken into account.
(The accuracy obtainable is thus equivalent to the use of a 101-row approximant to
0.) yoto 320 were computed in some instances to 6, in some instances to 7 decimal
places; 321 to 350 were computed to 7 decimal places. It is expected that the entries of
Table I are in error by not more than 2 units in the fifth decimal place.6

It is readily seen that the present method is not limited to Eq. (1), but can be
extended to the general Hill differential equation where 8meim* form a convergent
series.

For the special case of Mathieu’s equation (e= 7= 0), one finds by (23) and (27)
that

0 =D"Do- hyM = 1-25f — ~ - -i—— +0(52
A—0 00 — Vo — (k -f- \) £
T COt MVOo
=1-25 — = + 0(52. (30)
(400 - 1)V Oo

6An experienced computer can calculate a column of Table I in somewhat less than a day.



392 GABRIEL HORVAY [Vol. IV, No. 4

This formula was used by H. Bremekamp in 1926 in a study of the flow of electrons
in metals.6
4, Example (a). Given 0=0.2, 6i=0.19685+0.33465f, 02=0.03875-0.10258L

Determine i3, W One finds 5= 0.15074, «= 0.01202, 77/= —0.01635, and, by Table I,
A.=1.8422, A =0.9434, A =0.9934, D3=0.9980, A =0.999, A =A =1.000. Like-
wise, by Table Il, 0 =2.3291. Therefore, g=-\/0 sin ir*/do—1.5052 and by (13b)
(M=0.30782+7/2, a2= —0.30782 —i/2. The associated functions i'iC/0 and Vi(jp) are
determined from the equation system (9). Normalizing to cO= 1, and using the equa-
tions k= —4 to k= +4, one obtains7

S P . P
(- 0.1898 + 1.9817|)f|+0-3)7&<|(—0.0958 cos - + sin ) b 0.2076 cos 7

. 3ip Sip . 5% p
- 0.0083 sin 0.0125 cos — - 0.0038 sin b 0.0008 cos —
2 2 2 2

7
+ 0.0019 sin ;+ }

c \p
(1.6652 + 0.7467f)e-°-3)7"<|cos b 0.4484 sin ) b 0.2107 cos 5

vt =
2
. 3P P . 9p p
-b 0.0188 sin b 0.0041 cos b 0.0101 sin — + 0.0005 cos —
2 2 2 2
+ 0.0020 sin — +
2 Jm
5. Example (b). Given 0o= O 01= 0.37249-b0.63323f, 02= 0.13875-0.36728L De-

termine <. One finds

g = x\/D0o-sin x\/00/x\/00 = x\/0.4392 = 2.082,
tl— —<2= 0.4339 -b i/2.

8 M. J. O. Strutt, loc. cil., p. 26.
7 Note that the use of <n=0.30782—i/2 leads to the above expression of fi when C is normalized to
1, and to the conjugate complex of the above when cOis normalized to 1.
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UNSTABLE SOLUTIONS OF A CLASS OF HILL. EQUATIONS

.9

7.83180
—.90665
6.36577
-.55015
.52473
-.15952
.00265
-.41427
.00590
-.00638
.00463
.00049
.00317
-.00021

27931
.26507
.80268

.04439

P W

o
-
=3
o
o

-.00009

-.05351

oo
oo
o w©
© =
NS

Vo
coo
coo
o bhu
INy=Y5!
SRR

-.00276

4.33216
71097
2.48046
-.20279
.16054
-.05432
.00089
-.15201
.00364
-.00208
.00144
.00014
.00103
.00007

-.42975
-.18993
-.09354
.00505
.00149
.00080
-.00001
.00359
.00014
.00002

Table 1.* Numerical values of \n, b't'if}.

.8

4.63590
-.24871
3.51924
-.30117
.27858
-.08611
.00143
.22658
.00363
.00342
.00248
.00025
.00170
-.00012

[uN

.61410
-.63934
-.38700

.02131
-.00763

.00351
-.00004
.01513
.00063
.00009

-.05160

.02958

-.00591
.00024
.00001
.00002
.00017

.01349
-.00903
-.00090
.00003
.00001
.00002

- .00546
-.00399
.00024
.00001

-.00275
-.00212
-.00008

-.00157
-.00126
-.00003

.25

4.93480
.88889
2.75850
-.22456
.17498
-.05977
.00098
.16827
.00416
.00228
.00158
.00015
.00112
-.00007

-.39853
-.17778
-.08595
.00463
-.00134
.00073
-.00001
.00330
.00014
.00002

7 .6 .5 .45
3.70199 3.38325 3.38203 3.48245
.00257 .16467 .30899 .38655
2.63695 2.27050 2.14607 2.15140
-.22352 -.19037 -.17858 -.17822
.20047 .16578 . 15052 .14789
-.06307 -.05310 -.04908 -.04867
.00104 .00087 .00081 .00080
-.16801 -.14320 -.13403 -.13372
-.00301 -.00278 -.00280 -.00292
-.00249 -.00208 -.00191 -.00189
-.00178 -.00150 -.00136 -.00133
.00019 .00015 .00014 .00014
.00123 .00103 .00095 .00093
-.00009 -.00008 -.00007 -.00007
-1.05991 -.78342 -.61797 -.55795
-.43033 -.32553 -.26241 -.23943
-.24905 -.18048 -.13964 -.12488
.01366 00986 .00759 .00678
-.00471 -.00328 -.00243 -.00213
.00223 00160 00122 .00109
-.00003 -.00002 -.00002 -.00001
.00970 00701 00540 .00482
.00041 00030 00024 .00020
.00006 00004 00002 .00002
-.04981 -.04813 -.04654 -.04579
-.02872 -.02791 -.02714 -.02678
-.00565 -.00541 -.00519 -.00508
.00023 00021 00021 .00020
.00001 00001 00001 .00001
.00002 00002 00002 .00002
.00016 00015 00015 .00014
-.01330 -.01311 -.01293 -.01284
-.00892 -.00881 -.00871 -.00866
-.00088 -.00086 -.00086 —.00084
.00003 00003 00003 .00003
.00001 00001 00001 .00001
.00002 00002 00002 .00002
-.00543 -.00538 -.00534 -.00532
-.00396 -.00393 -.00391 -.00390
-.00023 -.00023 -.00023 -.00023
.00001 00001 00001 .00001
-.00273 -.00272 -.00271 -.00270
-.00211 -.00210 -.00209 -.00209
-.00008 -.00008 -.00008 -.00008
-.00157 -.00156 -.00155 -.00155
-.00126 -.00125 -.00125 -.00125
-.00003 -.00003 -.00003 -.00003
.2 .15 1
5.87874 7.49588 10.78515
1.14867 1.57391 2.41481
3.21013 4.00081 5.62957
-.26021 -.32296 -.45255
.19957 .24378 .33621
-.06883 -.08490 -.11824
.00112 .00138 .00192
-.19494 -.24186 -.33884
-.00496 -.00630 -.00905
-.00262 -.00322 -.00448
-.00180 -.00221 -.00305
.00018 .00022 .00032
.00129 .00160 .00222
-.00008 -.00009 -.00012
-.37126 -.34726 -.32596
-.16712 -.15769 -.14929
-.07934 -.07355 -.06844
.00426 .00395 .00366
-.00120 -.00109 -.00099
.00067 .00062 .00057
-.00001 -.00001 -.00001
.00303 .00281 .00261
.00012 .00012 .00011
.00001 .00001 .00001

AS

m%qnitude, or
Af

D

e e+ of-— are given.
»

4

3.65865
47423
2.20218
-.18162
.14837
-.04928
.00081
13622
-.00306
.00190
-.00133
.00013
.00094
-.00007

.50802
22021

o. -
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~oh

oo
onN
O
[lo
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-.01275
-.00861

-.00208
-.00008

-.00155
-.00003

.05

20.74569
4.92154
10.59568
-.84825
.62017

o
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[SENEFN
oo
Bwo©
oo

-.00566

- 100023

-.30694

-
o
-
~
o

-.00091

for which n >6, are not shown.
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.35

3.92977
.57886
2.30622
-.18937
.15229
-.05105
.00083
-.14199
-.00330
-.00196
-.00136
.00014
.00096
-.00007

-.46584
—.20392
-.10233

0**

1.000000
.250000
.500000

.039865
.028683
.010290
.000166

.029835

.000836

.000388

.000262
.000028
.000194

.000012

.28987
.13496
.05980
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-.04365
-.02573
-.00477
.00019
.00002
.00002
.00013

-.01258
-.00851
- .00082
.00003
.00001
.00002

-.00526
-.00386
-.00022

-.00268
-.00207
-.00008

-.00155
-.00124
-.00003

-.05

-19.32207
-5.06707
-9.46238

75141
-.53194
.19281

.00311
56222
.01609
.00724
.00488

.00048

.00357
.00023

-.27445
.12880
-.05614
.00299
.00076
.00046
-.00001
.00213
.00009
.00001

-.03929
-.02357
-.00417
.00016
.00002
.00002
.00011

-.01201
-.00818
-.00077
.00002
.00001
.00002

-.00512
-.00377
-.00022

-.00264
-.00204
-.00008

-.00153
-.00123
-.00003

.25

-.04297

-.02540

-.00468
.00018
.00002
.00002
.00013

-.01250
.00846
-.00081
.00002
.00001
.00002

-.00524
-.00385

oo o
oo o
NN O
oo N
~o N

-.00008

-.00155
-.00124
-.00003

-1

-9.35137
-2.56220
-4.48740
.35491
-.24724
.09051
-.00146
.26550
.00775
.00338
.00227
-.00023
-.00167
.00010

-.26046
-.12318
-.05282
.00281
-.00069
.00043
-.00001
.00200
.00009
.00001

-.03873
-.02328
-.00409
.00016
.00002
.00002
.00011

-.01193
-.00814
-.00076
.00002
.00001
.00002

-.00510
-.00376
-.00022
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Table I. (Continued)

.2

-.04232
-.02507
-.00458
.00018
.00002
.00002
.00013

-.01241
-.00842
-.00080
.00002
.00001
.00002

-.00522
-.00383
-.00022

-.00267
-.00207
-.00008

-.00154
-.00124
-.00003

-.15

-6.04482
-1.72447
-2.84360
22402
-.15352
.05679
.00092
.16755
.00500
.00211
.00141
.00014
-.00103
.00006

24772
.11805
.04981
.00264
-.00064
.00040
-.00001
.00188
.00008
.00001

-.03819
.02301
.00401
.00016
.00002
.00001
.00011

.01185
-.00809
.00075
.00002
.00001
.00001

-.00509
.00375
.00021

.00262
-.00204
-.00008

-.00152
-.00123
-.00003

.15 1
-.04168 -.04106
-.02475 -.02445
-.00450 -.00442

.00018 .00017

.00002 .00002

.00002 .00002

.00013 .00012
-.01233 -.01225
-.00837 -.00832
-.00079 -.00078

.00002 .00002

.00001 .00001

.00002 .00002
-.00520 -.00518
-.00382 -.00381
-.00022 -.00022
-.00266 -.00266
-.00206 -.00206
-.00008 -.00008
-.00154 -.00154
-.00024 -.00124
-.00003 -.00003

-.2 -.25 -.3
40273 -3.42538 -2.77963
.30380 -1.05015 -.88013
.03119 -1.55045 -1.23488
.15940 .12120 09616
.10745 -.08037 -.06274
.04017 .03036 02396
.00065 -.00048 -.00038
11919 .09061 07188
.00363 .00281 00226
.00149 .00112 00088
.00098 .00074 00059
.00010 -.00008 -.00006
.00073 -.00055 -.00044
.00004 .00003 00003
.23607 -.22538 -.21553
11332 -.10897 -.10494
.04707 -.04457 -.04227
.00249 .00235 00223
.00059 -.00054 -.00050
.00038 .00036 00034
.00001
.00178 .00168 00159
.00008 .00007 00007
.00001 .00001 00001
.03766 -.03714 -.03663
.02275 -.02249 -.02223
.00394 -.00387 -.00380
.00015 .00015 00015
.00002 .00002 00002
.00001 .00001 00001
.00011 .00011 00010
.01178 -.01170 -.01163
.00805 -.00801 -.00796
.00075 -.00074 -.00073
.00002 .00002 00002
.00001 .00001 00001
.00001 .00001 00001
.00507 -.00505 -.00503
.00374 -.00372 -.00371
.00021 -.00021 -.00021
.00262 -.00261 -.00261
.00203 -.00203 -.00202
.00008 -.00008 -.00008
.00152 —.00152 -.00152
.00122 -.00122 -.00122
.00003 -.00003 -.00003
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.05

-.04045
-.02415
-.00433
.00017
.00002
.00002
.00012

-.01217
-.00827
-.00078
.00002
.00001
.00002

-.00516
-.00380
-.00022
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-.00205
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-.00123
-.00003
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UNSTABLE SOLUTIONS OF A CLASS OF HILL

-.45

-1.72274
-.59385
-.72520

-.01141
-.00784

-.00498
-.00368
-.00021

-.5

-1.51622
-.53588
-.62733

.04813
-.02936
01172
-.00019
.03595
.00121
.00043
.00028
-.00003
-.00021
.00001

-.18288
-.09144
-.03473
.00182
-.00037
.00027
.00130
.00006

-.03473
-.02126
-.00354
.00014
.00002
.00001
.00010

-.01134
-.00779
-.00071
.00002
.00001
.00001

-.00496
-.00366
-.00020

-.00259
-.00201
-.00008

-.00151
-.00121
-.00003

Table I. (Continued)

-.55

-1.34910
-.48819
-.54879

.04195
-.02516
.01016
-.00016
.03133
.00107
.00037
.00024
-.00002
-.00018
.00001

-.17608
-.08859
-.03318
.00173
-.00034
.00026
.00124
.00006

-.03428
-.02103
-.00349
.00014
.00002
.00001
.00010

-.01127
-.00775
-.00071
.00002
.00001
.00001

-.00494
-.00365
-.00020

-.00258
-.00200
-.00008

-.00150
-.00121
-.00003

-.6

-1.21138
-.44823
-.44863

.03691
-.02176
.00888
-.00014
.02757
.00096
.00032
.00021
-.00002
-.00016
.00001

-.16971
-.08591
-.03173
.00166
-.00032
.00025
.00118
.00006

-.03384
-.02081
-.00342
.00013
.00002
.00001
.00009

-.01120
-.00771
-.00070
.00002
.00001
.00001

-.00492
-.00364
-.00020

-.00257
-.00200
-.00008

-.00150
-.00121
-.00003

99849
.38497
.38670

.02924

.01666

.00695

.00011

.02184
.00078
.00025
.00016

.00001
.00012

.15815
.08102

.02911
.00151
.00028
.00022
.00108
.00005

.03300
.02037

.00331

.00013
.00002
.00001
.00009

.01106
.00763
.00068
.00002
.00001
.00001

.00489
.00362
.00020

.00256
.00199
.00008

.00150
.00121
.00003

EQUATIONS
-.8 -.9
84237 -.72362
33706 -.29947
31617 -.26349
02374 .01965
01306 -.01043
00559 .00457
00009 -.00007
01772 .01467
00064 .00055
00020 .00016
00013 .00010
00001 -.00001
00010 -.00008
14793 -.13882
07664 -.07272
02682 -.02480
00139 .00128
00024 .00020
00020 .00018
00099 .00092
00005 .00004
03219 -.03141
01995 -.01955
00320 -.00310
00012 .00012
00002 .00002
00001 .00001
00009 .00008
01093 -.01080
00755 -.00748
00067 -.00066
00002 .00002
00001 .00001
00001 .00001
00485 -.00482
00360 —.00358
00020 -.00020
00255 -.00253
00198 -.00197
00007 -.00007
00149 -.00149
00120 -.00120
00003 -.00003

395



GABRIEL HORVAY

Table Il. Expansion of 5D (row 1 Xrow 2Xrow 3, see Eq. 23).
Numerical tabulation of the coefficients in row 3.

396
row 1
0. row 2 E
row 3
5
.45
4
.35
3
.25
2
15
.1
.05
0*
-.05
-.10
-.15
-2
-.25
-.3
-.35
-4
-.45
-.5
-.55
-.6
-7
-.8
-.9
-1.0
row 1 T
6t row 2 | pxpi
row 3 (y#m
5 - 13445
45 — 13312
A4 — 13458
.35 - 13922
3 - 14793
.25 - 16254
2 18690
.15 - 23019
1 — 32011
.05 - 59550
0* - 02778
-.05 .51968
-1 24366
-.15 15267
-2 10783
-.25 08140
-.3 .06412
-.35 .05203
-4 .04318
-.45 .03644
-.5 03119
-.55 .02700
-.6 02359
-7 .01843
-.8 01476
-.9 .01206
-1.0 .01000

1 5 «
DoDi ] (DiDt ) (DiDt D\) [D\ DiDii IDtDt
1] 1 —yoi J ( —yoi —yn) \ 2 yon 2 youl ( —4 yom
1 4.00000 57143 -4.00000 16.00000 2.28571 9.14285
1 4.04040 62598 -3.30579 14.69238 2.27628 8.27740
1 4.16667 69445 -2.77778 13.88889 2.31482 7.71606
1 4.39561 .78278 -2.36687 13.52495 2.40856 7.41094
1 4.76190 .90090 -2.04082 13.60543 2.57400 7.35428
1 5.33333 1.06667 -1.77778 14.22222 2.84445 7.58519
1 6.25000 1.31579 -1.56250 15.62500 3.28948 8.22369
1 7.84314 1.73160 -1.38408 18.45445 4.07436 9.58673
1 11.11111 2.56410 -1.23457 24.69135 5.69800 12.66222
1 21.05263 5.06329 -1.10803 44.32135 10.65956 22.44119
0 1.00000 .25000 0 2.00000 .50000 1.00000
1 -19.04762 -4.93827 - .90703 -36.28118 -9.40624 -17.91666
1 -9.09091 -2.43902 - .82645 -16.52891 -4.43458 -8.06287
1 -5.79710 -1.60643 - .75644 -10.08191 -2.79379 -4.85876
1 -4.16667 -1.19048 - .69444 -6.94444 -1.98412 -3.30686
1 -3.20000 - .94118 - .64000 -5.12000 -1.50588 -2.40941
1 -2.56410 - 77519 - 59171 -3.94477 -1.19260 -1.83478
1 -2.11640 - .65681 - 54870 -3.13541 - 97306 -1.44157
1 -1.78571 - 56818 - .51020 -2.55102 - .81169 -1.15955
1 -1.53256 - .49938 - 47562 -2.11388 - .68880 - .95006
1 -1.33333 - 44444 - 44444 -1.77778 - 59259 - .79012
1 -1.17302 - .39960 - 41623 -1.51357 - 51561 - -.66530
1 -1.04167 - .36232 - .39063 -1.30208 - .45290 - .56612
1 - .84034 - .30395 - .34602 - .98863 - .35759 - .42069
1 - .69444 - 26042 - .30864 - .77160 - .28935 - .32150
1 - .58480 - .22676 - .27701 - 61557 - .23869 - .25126
1 - .50000 - .20000 - .25000 - .50000 - .20000 - .20000
i . .
DtDt) DtDi DiDi D\ iDiD, DiDi
2 y«itd 4 yams 2 your« 2 ymtt \--4 YOI -md y«imt
-4.57143 1.07563 .01735 1.30612 .06941 .30732
-4.13870 96812 .01712 1.16583 .06226 27271
-3.85803 .89721 .01726 1.07168 .05752 24922
-3.70547 .85676 .01779 1.01520 .05475 .23498
-3.67714 .84532 .01885 99382 .05384 .22846
-3.79260 .86688 .02064 1.01136 .05504 23117
-4.11185 .93450 .02366 1.08206 .05915 .24592
-4.79337 1.08323 .02904 1.24503 .06834 .28136
-6.33111 1.42273 .04027 1.62336 .08948 .36480
-11.22059 2.50737 .07468 2.84066 15722 63478
-.50000 11111 .00347 12500 .00694 .02778
8.95833 -1.97974 - 06476 -2.21193 - 12335 -.48882
4.03144 -.88604 -.03026 -.98328 - .05503 -.21610
2.42938 -.53101 -.01891 -.58539 - .03288 -.12796
1.65343 -.35943 -.01331 -.39367 - .02218 -.08558
1.20470 -.26048 -.01002 -.28346 - .01603 -.06129
191739 -.19728 -.00787 -.21335 - .01210 -.04588
72078 -.15418 -.00637 -.16570 - .00943 -.03544
57978 -.12336 -.00527 -.13177 - .00752 -.02804
47503 -.10054 -.00443 -.10675 - .00611 -.02259
.39506 -.08317 -.00378 -.08779 - .00504 -.01848
.33265 -.06967 -.00326 -.07311 - .00421 -.01531
.28306 -.05897 -.00284 -.06154 .00355 -.01282
.21035 -.04337 -.00221 -.04475 - .00260 -.00923
.16075 -.03281 -.00176 -.03349 - .00195 -.00684
.12563 -.02538 -.00143 -.02564 - .00150 -.00518
.10000 -.02000 -.00118 -.02000 - .00118 -.00400

* Note 1. For 00»O (yi-~ m) the coefficients of O /y . are given.

D\Di )
—2 you»)

.26891
.26623
.26916
.27845
.29586
.32508
.37380
46037

—2y0mj

.00071
.00070
.00070
.00072
.00076
.00083
.00095
.00117
.00162
.00300
.00014
-.00260
-.00121
-.00075
-.00053
-.00040
-.00031
-.00025
-.00021
-.00017
-.00015
-.00013
-.00011
-.00009
-.00007
.00006
-.00005
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ON THE MECHANICAL BEHAVIOUR OF METALS IN THE
STRAIN-HARDENING RANGE*

BY

G. H. HANDELMAN, C. C. LIN and W. PRAGER
Brovin University

1 Introduction. The present paper is concerned with certain stress-strain rela-
tions purporting to describe the mechanical behaviour of quasi-isotropic metals in
the strain-hardening range. As a preparation for a more precise characterization of
these relations, let us consider the tension test of a metal like copper or aluminum
which does not flow under a constant stress, but exhibits strain hardening. If the test
involves loading only, i.e., if the reduced tensile stressl< or the tensile strain e in-
crease throughout the test, the resulting diagram of reduced stress versus strain will
have the general appearance of the curve OPQ in Fig. 1. On the other hand, if the
test specimen is unloaded after a cer-
tain point, such as P, has been reached
along this curve, the stress-strain dia-
gram for unloading is found to be very
nearly a straight line PA which is par-
allel to the tangent of the curve OPQ
at 0. After complete unloading, the
specimen shows a permanent extension
which corresponds to the permanent
strain represented by OA.

To simplify the discussion, let us
assume at present that the material is Q
incompressible. A longitudinal extension
e of the isotropic specimen is then ac- Fig. 1 Typical curve Of reduced stress vs. strain,
companied by a uniform lateral con-
traction of the magnitude e/2. If the discussion is restricted to states of stress and
strain which can be reached by a single loading followed by one complete or partial
unloading at the most, the mechanical behaviour of the material in simple tension is
therefore completely defined by the curve OPQ. It will be assumed in the following
that for the materials under consideration the stress-strain diagram in simple com-
pression (OP'Q' in Fig. 1) is obtained by reflecting the curve OPQ with respect to
the origin 0, and that the practically important portion of the curve Q'0Q, i.e., the
portion corresponding to small and moderate strains, is represented with sufficient
accuracy by a development of the form

«= g+ a3+ aP+ e | 1)

where a3 as, mmm are constants. (The coefficient of the linear term on the right-hand
side of (1) must be unity since a is the reduced stress. No even powers of a can occur

* Received September 17, 1946.
1The reduced stress is defined as the quotient of the stress by Young’s modulus.
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on the right-hand side of (1), because the stress-strain diagrams for tension and com-
pression are assumed to be congruent.)

In the case of simple tension or compression, the mechanical behaviour of the ma-
terial during the first loading is readily represented by afinite relation of the form (1);
the behaviour during the first unloading, however, is most naturally represented by
the differential stress-strain relation

de - da, (2

for this form avoids explicit reference to the state of stress at which the unloading
began. Accordingly, it is often convenient to write Eq. (1), too, in differential form:

de = a(a)da. 3)

Here, a(<r) =de/dcr= 1+303cr2-|-5a5(r4-t- « « m equals the quotient of Young’s modulus
by the so-called tangent modulus. To arrive at a complete analytical description of the
mechanical behaviour of the material in simple tension and compression, we must sup-
plement the preceding equations by analytical criteria for loading and unloading.
For tension (cr> 0) loading corresponds to da> 0 and unloading to da<0; forcompres-
sion (cr<Q) these criteria must be reversed. A satisfactory criterion for loading and
unloading is therefore furnished by the sign of ada =d{\a'i).

The present paper is concerned with the extension of this analysis to general
states of stress and strain which can be reached by a single loading followed at most
by one complete or partial unloading. In the case of simple tension or compression, a
differential stress-strain relation of the form (3) which is valid for the first loading can
always be integrated under the initial condition e= 0 for or = 0 and is thus equivalent
to a finite stress-strain relation. For more general states of stress, however, a suitably
generalized form of the differential stress-strain relation (3) may be integrable or not.
The distinction between differential and finite stress-strain relations for the first load-
ing is therefore no longer a purely formal matter, but acquires physical significance.
One of the. main results of the following discussion consists in the remark that the
assumption of a finite stress-strain relation for the first loading is incompatible with
certain postulates concerning the mechanical behaviour under those changes of stress
which constitute neither loading nor unloading. This is shown in Section 3. Sections 2
and 4 are devoted to the discussion of finite and differential stress-strain relations,
respectively. Section 5 gives a method of correlating experimental results with the
present theory. Finally, Section 6 contains a discussion of the limitations of the
theory.

2. Finite stress-strain relations. Using rectangular Cartesian coordinates
(i=1, 2, 3), we denote the displacement from the standard state by the strain by
€yand the reduced stress by o~ For the small deformations to which the following
discussion is restricted, the strain e.yis given by

e<,- = K m*.i + Mj.*)» (4)
where stands for duffdxj, etc. Adopting the usual summation convention regard-
ing repeated subscripts, we define the mean normal strain as

0—3AU Q)

and the strain deviation as
e, = f,, eSij, (6)
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where 5-yis the Kronecker delta. Similarly, the reduced mean normal stress s and the
deviation 5t}of the reduced stress are defined as

s = ju ()

and
Si; cN\j - sSij. (s)

According to the definitions of the deviations e,j and su, we have
eu = 0, sa = 0. 9)

The task of generalizing the finite stress-strain relation (1) is simplified by the
remark that the first term on the right-hand side represents that part of the total
strain ewhich is recovered upon complete unloading. The remaining terms on the right-
hand side of (1) accordingly represent the permanent strain. In Fig. 1the total strain
is represented by the segment OB, the recoverable strain by AB, and the permanent
strain by OA.

Setting

Uj = 4 + t7j, (10)

where ¢, denotesthe recoverable and ef/ the permanentstrain,we may assume that
the recoverablestrain is related to the reduced stress by means of thegeneralized law
of Hooke:

« =  +v)sa+ @ - 2v)sbu. (u)

Here v denotes Poisson's ratio. We are then left with the task of supplementing (11)
by a relation which expresses the permanent strain occurring during the first loading
in terms of the reduced stress. For an isotropic material, this relation can only con-
tain scalar constants in addition to the tensors €[J, ailand 5¢, and their invariants.
Furthermore, the principal axes of ef and an must coincide. Under the pressures com-
monly encountered in the testing of materials, no permanent change of volume is
observed, i.e.,, ««'=0 and elf=¢'f. A state of hydrostatic pressure therefore does not
produce any permanent strain, and two states of stress which differ only by a state of
hydrostatic pressure may be expected to produce identical permanent strains. The
permanent strain (jJ is thus independent of s and depends only on the deviation s,j.
Furthermore, if the stress-strain diagrams for simple tension and simple compression
are congruent, a reversal of the signs of all stresses may be expected to produce a mere
reversal of the signs of all principal strains. Finally, if the ratios of the principal
stresses are kept constant during the loading process, the ratios of the principal per-
manent strains, too, can be expected to remain constant.

In a recent paper,2W. Prager established the most general stress-strain relation
which is compatible with the preceding postulates. With the notations

J 2~ \SijSji, J 3= 3SijSjkski, (17)

and
tij — SikSlcj 3-726i], (13)

Prager’s stress-strain relation can be written in the form

*W. Prager, Strain-hardening under combined stresses, J. Appl. Phys. 16, 837-840 (1945).
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ui = F{32 A) [P (/2 + Q(J2 A)Jzhi], (14)

where P and Q must be homogeneous in the components of the stress deviation, the
degree of P exceeding that of Q by 4. The expressions (12) are second and third order
invariants of the stress deviation Sij (the first order invariant Su vanishes). The tensor
(13) is the deviation of the square suSkj of the stress deviation Sij.

Combining (11) and (14), we obtain the desired generalization of the finite stress-
strain relation (1):

wi= (L+ v)sij+ (L- 20s5ij + F(J2A) [P{I2j1)sij + QU2 j\)JIztu).  (15)

3. Neutral changes of stress. Inadmissibility of finite stress-strain relations. In
the case of simple tension or compression the sign of <rda—di*a2) proved to be a satis-
factory criterion for loading and unloading. Accordingly, one might consider the pos-
sibility of using the sign of ajjdan as a criterion in the general case. If, however, the
term “loading” is reserved for such changes of stress which are accompanied by a
change of the permanent strain, this criterion is not satisfactory. Indeed, on account
of (8) and the second Eq. (9), we have

vijdffij  (sij ~sSij)(dS{j -+ ds3%j  Sijdsn 4 3sds. (16)

If loading were to correspond to andanX), a change of stress for which dsij—0 might
therefore constitute loading in spite of the fact that such a change of stress is not
accompanied by a change of the permanent strain. To avoid this difficulty, we shall
use the sign of Sijdsij=dJ2as the desired criterion, an increase of J2corresponding to
loading, a decrease to unloading.

Whereas for uniaxial stress any change of stress constitutes either loading or un-
loading, we have three kinds of change of stress in the general case, according to
whether J2increases, remains constant, or decreases. An infinitesimal change of stress
for which dJ2—0, will be called a neutral change of stress. For instance, any change of
stress which affects only the mean normal stress, but leaves the stress deviation un-
touched, is a neutral change of stress. A more interesting example of a neutral change
of stress is given by

o 0 01 0 dr O
oa= 0 0 O dcij - dr 0 O
0 0 O 0 0 o,

Equation (17) represents the stress system which arises from a combined tension and
torsion test of a thin walled circular cylinder. Specifically, consider such a test piece
which is pulled to an arbitrary tensile stress <. If the traction is then kept constant
and a small torque applied, the. resulting systems of stress and increments of stress
are represented by Eq. (17).

Let us now suppose that for the first loading {dJ2>0) we have the finite stress-
strain relation (15) and for unloading (dJ2<0) the generalized-law of Hooke in the

PRI gt = H)gsi) + (L —Hsl]. a9

The simultaneous use of the stress-strain relations (15) and (18) will lead to obvious
difficulties, unless these relations give identical strain.increments for neutral changes
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of stress. We shall show that, in general, this continuity condition is not fulfilled. In-
deed, if (15) is written in differential form, the first two terms on the right-hand side
equal the right-hand side of (18); the continuity condition therefore requires the van-
ishing of the remaining terms on the right-hand side of the differential form of Eq.
(15). Consider, for example, the stress and increment of stress given by Eq. (17). A
simple computation will show that

& 0 0 Sa 0 0

Sij — 0 =& o0 hi = 0 W 0
0 0 0 0 grfl

0 dr 0] 0 \adr 0

ds(j — dr 0 0 dtn = 3adr 0 0

0 0 0 .0 0 0

aswell asdJ2—dJ3=0. For this special case the differential form of Eq. (14) reduces to

defi = F(3t, A) [~(/2 dl)dsu + Q (/2 j\)j3din], (19)

where / 2and J3are evaluated for an arbitrary state of pure tension. Since this state
of stress satisfies the condition for a neutral change of stress (d/2= 0), deij must vanish.
We find then, upon substituting the values of dsn and dt/j previously computed, that

E (/2 31) [P (/2 31) + A)J3a] = 0. (20)

Now let us return to the finite stress-strain relation, Eq. (15), for the case of pure
tension. The first component of the strain tensor (the other non-vanishing terms
differ from this only by a constant factor) becomes

en= <+ 8P(2]JD) [P(/2]V)a+ & (/2]\)Jsd2]. 1)

The invariants appearing in Eq. (20) have been evaluated for an arbitrary state of
pure tension. Consequently, Eq. (20) is valid for pure tension and the second term in
Eqg. (21) equals zero. (A similar remark holds true for each of the other non-vanishing
strain components.) Therefore, the stress-strain relation will reduce to Hooke’s law
for pure tension if the continuity condition is to be fulfilled. On the other hand, we
have seen in Section 1that the stress-strain law for tension need not be linear. Thus
the most general finite stress-strain law coupled with Hooke’s law for unloading will
not be sufficiently flexible to represent a tensile test if the continuity condition is to
be fulfilled. It is necessary, therefore, to turn to differential stress-strain relations if
both loading and unloading are to be adequately represented.

4, Differential stress-strain relations. A system of differential stress-strain rela-
tions can be obtained from the properties discussed in Section 2 provided certain of
these are rewritten in such a way as to be directly applicable in differential form.
We shall assume that given the components of the stress tensor (Tjand the increments
don there correspond unique strain increments de{j. This implies that the increment
in strain, den, depends only on the state of stress at the given instant, an, and the
increment in stress, dan, and is independent of the way in which this state of stress
has been achieved provided only loading has taken place. In particular, we shall



402 G. H. HANDELMAN, C. C. LIN AND W. PRAGER [Vol. 1V, No. 4

assume that this dependence is such that the increments in strain are linear functions
of the increments in stress. Thus ¢6,7can be written in the form

den = (1 +v)dsij + (1 — 2v)ds5ij + c¢,-;u derm, (22)

where the fourth order tensor cijki is a function of a,;7only. For unloading, the material
isassumed to satisfy the differential form of Hooke's law given in Eq. (18). Loading is
supposed to take place when dJz>0 and unloading occurs for dJ2<0. For
change of stress, dJi =0, the continuity condition requires that Eqgs. (18)
coincide. Consequently,

Caindahi = 0 whenever dJ2= Skidsm = 0.

Since Ski is a deviator, dJz may also be written in the form dJz =ski dahimThus the
linear form in daki, can daui, must vanish whenever skidakivanishes. The coefficients
of daki in the two forms must be proportional or

Cijkl ~ Cijskl,

where the second order tensor Cyis a function of akialone. The stress-strain relations
then become

dtij = (1 + v)dsn+ (1 —2p)ds8n + CijdJt, when dJ* 2: 0; j
duj = (1 + v)dsij + (1 — 2v)dsSij, when dj% g O.f

In a certain sense, the term Cn measures the permanent deformation. Indeed, let
us consider the infinitesimal cycle of stress which results when first dan's applied
and then —day. We assume, in addition, that the material is being loaded when dan
is applied. The permanent increment in strain deij will then be

den = CijdJ2 (24)

Since the permanent strain is independent of a state of hydrostatic stress for pressures
within the range normally encountered in testing of materials, the tensor C,j can only
be a function of the components of the stress deviator rather than the stress tensor
itself. Furthermore, there can be no permanent change in volume; that is, de[(=0 or
Ci, = 0. Since the tensors den, dsn, and 8,7 are symmetric, C7 will also be symmetric.
In addition, a reversal of the signs of all the stresses is assumed to produce a reversal
of sign of all the strain increments. This implies that cn must be an odd function
of the stress components and thus will vanish when all the Sij vanish.

The material is supposed to become orthotropic under the stress an in the sense
that the Cn can be represented as a power series in the stress deviator 57-with scalar
coefficients. These coefficients are either constants or else functions of the invariants
of 57, i.e., functions of and Jz. It is convenient at this point to change from the sub-
script notation for tensors to Gibbs’ notation; the tensor Cn will be denoted by C
and 5,7by S. The multiplications indicated below are the usual matrix multiplications.
Under the assumptions stated above, the tensor C can be written as

00

C= E ad+|(/>Jz)S-mi (25)

n*®0

We note that only odd powers appear in Eq. (25) since C is assumed to be an odd

anc
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function of the stresses. Equation (25) can be simplified further by the Hamilton-
Cayley theorem which states that the tensor S must satisfy its own characteristic
equation.3 For the stress deviator S, this implies that

53=J% + J4, (26)

where | is the unit tensor. Through Eq. (26), we can reduced4any power of S greater
than the second to a linear combination of I, S, and S2with coefficients which are
functions of J3and J3 For example, consider the reduction of the power S5 According
to Eq. (26),

54=/282+ | 3;

thus
S6=jx3+ /3F2=/,82+ 125 + Jtitl.
In general, we can rewrite Eq. (25) as
C = a(J2J33S2+ 6(7*.7,)S + c(/2/))/,:1L
We recall that C;, = 0; since S is a deviator, this implies that
2a(Jt, J3J* + 3c¢(J2J3J3= 0,

or

2J2
c{Jt, J») — — 3J30(JZJ3).

Consequently,
C = a(Jt, J3[S2- |/2A] + b(JIt,I»)S.

The expression appearing in square brackets is just the tensor ¢,7 which was defined
in Eq. (13). Returning now to the subscript notation we can write the tensor Cy as

C7=a(/2] + b{Ji, J Jsij.

A further simplification can be made by noting that Cij must be an odd function of the
stress components. Since J2is even, J3odd, /<s-even, and 57 odd, we must have

Cij = p{J3 J3sij + q{I3 IIUL

Thus the complete differential stress-strain relations can be written in the form5

B -=(1+i>)7s«7+(l —2v)dsbjj+\p (I 2, Ji)Si}-\-q{J2 'Ji)Jivi\dI2 when if/2"0 1 N
<fe<e=(1+i/)d5,,-+ (1 —2v)dsdi,-, when 'dJ,£0. j

5. Further study of the stress strain relations. Experimental determination. In
this section we shall discuss the relation between the differential form of the stress-
strain relation (cf. (27))

3M. Bé6cher, Introduction to higher algebra, The Macmillan Co., New York, 1907, p296.

4This technique has been used recently by Marcus Reiner, Am. J. Math. 67, 350-362 (1945) and
W. Prager, loc. cit.

5These relations contain, as special cases, the stress-strain laws developed by W. Prager, Proc. Fifth
International Congress of Applied Mechanics, Cambridge, Mass., 1938, pp. 234-237, and by J. H. Laning
in an unpublished paper (1942).
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de/i = (fiUi, Ds<i+ g(,, A)J*Ui)dJ,, dit~ o (28)
and the integral form
tif = F(J2j\) [P(32j Dsh + Q(J,, j\)JIzkj], (14)
which holds only when the ratios of the principal stresses are kept constant during the
loading process, i.e., if
su-ksu, (29)

where sff is fixed while k is the scalar variable. We shall then show how a series of
tests necessary to establish the Lode diagram will be sufficient to determine the stress-
strain relations completely. First of all, it is convenient to bring out the homogeneity
properties in the relations (28) and (14) by introducing the symbols

« =J3J2, t.j = J3hj/di, (30)

where a is dimensionless, while 7 has the same dimensions as J2 The relation (14)
can be written in the form

tij = X (/2 ot){sij + fi(a)yij], (31)
where

X(/2a) = F(J2 A), B@ s 0 J2A)P(/,f]\). (32)

Note that )3is independent of J 2 because of the homogeneity relation between P and
Qestablished in Section 2.
With a similar change of notation, the relation (28) can be written as

du'i = G(J2 a){stj + dij2~ 0 (33)
where
Gz« p p(J2A), /S'(a) = J(J2 7, *)/#(*. A). (34)

Since we did not establish a homogeneity relation between p and g, we cannot immedi-
lately conclude that /3" is independent of J2 However, we shall see immediately that
this is true and that indeed

m p. (35)
We shall also show that G(J2 a) may be obtained from X (J2 a) by the relation
629 = b (3)
272 dJ2

The relations (35) and (36) will then determine the differential relation (33) com-
pletely once the integral relation (31) is known by a series of experiments of the
special type (29). It is to be noted that the functions G(72 «) and /3(a) in (33) deter-
mined through the use of (31) will by no means restrict the application of (33) to
processes connected in any manner with (29).

To establish the relations (35) and (36), consider the application of (31) and (33)
to a process of the type (29). Let delj be the change in «(/corresponding to a change dk.
Then
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dk
dJj2= 2Ji—k, da = 0; (37)

and (31) gives
d\ dk
d = —- dJi{sij + B + X{jil + Bj —
en 472 i{sij yn} {ijf jal] K

while (33) yields
de'n = G(/*, +
Equating coefficients of 5,yand 7 7, we obtain the relations (35) and (36).

Fig. 2a. The a—i3diagram (Eq. (38)) of the experimental results of Taylor and Quinney for copper,
aluminum, mild steel and decarburized mild steel. The data for mild steel are too scattered for a definite

curve to be drawn.

The experimental determination of the stress strain relations can then be reduced
to that of (31) alone. This can be done by a series of tests of the type (29), which is
of the class described by Lode,6 Taylor-Quinney7and Hohenemser-Prager.8 Indeed,

9W. Lodge, Forschungsarbeiten a.d. Gebiete d. Ingenieurwesens, No. 303, VDI-Verlag, Berlin, 1928.

7G. I. Taylor and H. Quinney, Phil. Trans. Roy. Soc. London (A) 230, 323-362 (1931).

8 K. Hohenemser and W. Prager, Z. angew. Math. Mech. 12, 1-14 (1932). An English translation of
this paper is available as R.T.P. Translation No. 2468 (Durand Reprinting Committee, in care of Cali-
fornia Institute of Technology, Pasadena 4, Calif.).
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the relation /3(a) is merely another presentation of Lode’s diagram. It can be easily
verified that a, 0 are related to Lode’s parameters9/xand v by the relations

4 1129 - m22
“~ 27 3+ m)8'
_9(3+ w22 1- u/n
2(9 —y) "21 + 2v/n) - 3
This new system has the advantage that j3gives directly the extent of deviation from

“von Mises’ second hypothesis” discussed by Taylor and Quinney, which is equiva-
lent to putting 3= 0. Indeed, one principal aim of Taylor and Quinney is to find out

© LEAD
4 CADMIUM

A a GLASS

0 02 .04 06 .00 10 12 .14 .16 Js8

Fig. 2b. The a—/3diagram (Eq. (38)) of the experimental results of Taylor and Quinney for lead,
cadmium and glass. The data are too few to allow any curve to be drawn.

this extent and is therefore to determine the value of /3. Figs. 2(a) and 2(b) show the
results of Taylor and Quinney converted into the (a, /3) diagram. This diagram re-
veals any experimental error more strongly, since /3is essentially related to the slope
of the (/x, v) curve; e.g.,

9\V. Lode, loc. cit,, pp. 1and 12.
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dv 9-4(3

— T - for >,
dp 9+2(3

dv 23

— =1+ — for F=
dp.

It should be noted in passing that a must satisfy the inequality
0 < a< 4/27 (39)

to insure real values of p.
Having determined (3(a) from (38), we may determine X (/2 a) by noting that
(cf. (31))

h a itifi/i = X2 2{1 + 3a/3+ W P °}. (40)

For each loading process given by (29) the value of ais fixed, and (40) gives the de-
pendence of X2onJ2if 12is determined for given values of J2 Aseriesof tests with
different principal axes will then give the further dependence of Xon a.

6. Concluding remarks. In closing, we note some of the limitations of the stress-
strain relations developed in this paper. It has been pointed out previously that these
equations have been developed to cover the case of one loading followed by at most
one unloading. This restriction is quite essential, for relations (27) are not applicable
for a second loading. For example, if we consider a simple tensile test, the stress-strain
diagram obtained from (27) for the second loading would be a mere translation of the
diagram for the first loading. This does not agree with the experimental results. Sec-
ondly, we note that these equations apply only to metals which exhibit strain-harden-
ing. They are not applicable, for example, to materials which yield under constant
shearing stress or satisfy von Mises’ yield condition, /2 = const.

——ir~id~itor'ed that the results presented here will provoke experimental work to
test their validity. Among the various features which should be tested are two as-
sumptions made in developing the differential stress-strain laws. The first hypothesis
(cf. Section 4) states that the increments in strain are uniquely determined by the
components of the stress tensor cryand the increments dan without reference to the
previous history of loading provided only one loading has taken place followed by
at most one unloading. The range in which such a hypothesis is valid should be ex-
plored empirically. Secondly, the assumption involved in the transition from Egs.
(24) to (25) should be examined carefully. According to these two relations, the prin-
cipal axes of the increment in permanent strain de[j will coincide with the principal
axes of the existing state of stress $n independent of the increments in stress d<ry,
provided only loading takes place. This conclusion should be tested by experiment.






