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Q UART E R L Y  OF A P P L I E D  M A T H E M A T I C S

K. L. N IE L S E N f (Louisiana Stale University) a n d  J L. SY N G E  (The Ohio State University)

1. Introduction. N ext afte r the problem of the motion of a particle in a resisting 
medium, the problem of the m otion of a spinning shell is the m ajor problem of ex­
terior ballistics. M any crude trea tm ents have been given, b u t the problem was first 
discussed exhaustively by Fowler, Gallop, Lock and R ichm ond.1'2 Reference m ay also 
be m ade to trea tm en ts by C ranz3 and M oulton.4

An exact trea tm en t of the motion of a spinning shell as a hydrodynam ical problem 
is obviously ou t of the question. T he problem m ust be trea ted  aerodynam ically. This 
means th a t the forces exerted on the shell by the air m ust be regarded as dependent 
only on the instantaneous m otion of the shell. T he connection between the aero­
dynam ic force system  and the m otion cannot be deduced logically. I t  m ust appear in 
the m athem atical theory  as a hypothesis, preferably supported by experim ental ob­
servations.

B ut although m athem atical theory  cannot supply the aerodynam ic forces, it does 
give us some inform ation abou t them . Two basic ideas are im portan t here.

F irst, the shell has an axis of sym m etry . This fact has been used in all existing 
theories.

The second idea is a little  more subtle. I t  concerns the connection between the 
position of the mass center (or center of grav ity) of the shell and the aerodynam ic 
force system . In one m anner of speaking,-there is no such connection. F or two shells, 
moving w ith identical m otions bu t with different m ass-distributions, the aerodynam ic 
forces are the same. B ut we cannot introduce the aerodynam ic force system  into the 
m athem atical argum ent w ithout expressing th a t force s}rstem  m athem atically  as a 
force and a couple (or som ething equivalent). To do this, we m ust use a base-point,

* Received January 22, 1946. T his paper was written in 1942, when one of the authors (J. L. S.) was 
at the.U niversity of Toronto. It was issued as a restricted report in January 1943 by the Ballistic Research 
Laboratory, Aberdeen Proving Ground, with permission of the National Research Council of Canada. 
Later work by other authors, issued in restricted reports, has improved on some of the theory, but it has 
been thought advisable to publish the paper in its original form.

f  On leave with U. S. N aval Ordnance Plant, Indianapolis, Ind.
1 R. H. Fowler, E. G. Gallop, C. N . H. Lock, H. W . Richmond, The aerodynamics of a spinning  

shell, Phil. Trans. Roy. Soc. London (A) 221, 295-387 (1920).
2 R. H. Fowler, C. N . H. Lock, The aerodynamics of a  spinning shell, Part II, Phil. Trans. Roy. Soc. 

London (A) 222, 227-249 (1921).
3 C. Cranz, Lehrbuch der Ballislik, J. Springer, Berlin, 1925, p. 358.
4 F. R. M oulton, New methods in  exterior ballistics, University of Chicago Press, Chicago, 1926, 

chap. 6.
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and reduce the force system  to a force a t  th a t  base-point, together with a couple. 
I t  is well known th a t, for a  given force system , the force is independent of the base- 
point, b u t the couple is not.

Also, to  describe the m otion of the shell m athem atically , we m ust use a base- 
point. T he m otion is described by the velocity of th a t  base-point and  an angular 
velocity. T he angular velocity is independent of the choice of base-point, b u t the 
velocity is not.

Now it  is na tu ra l to  use the mass center as base-point. If there are two shells, 
Si and S 2, w ith mass centers Oi and 02, we m ay use Oi as base-point for Si and 02 as 
base-point for Si. Suppose th a t  the two shells are of identical geom etrical form (but 
Oi and 02 are no t geom etrically corresponding points) and th a t their m otions a t  the 
in stan t are the  same. (This m eans th a t  geom etrically corresponding points have equal 
velocities; the velocities of Oi and 02 are not the same.) Then the force system s on the 
two shells are the same. B ut the m om ents abou t Oi and 0» are not the  same.

If we set o u t to  form ulate aerodynam ic laws, using the m ass center as base-point, 
we m ust exercise great care. We m ust ensure invariance with respect to shift of mass 
center. We m ust make sure, in the case described above, th a t  when we apply  our law, 
first to  Si and then to  S2, we get equivalent force system s.

U nfortunately, Fowler e t a l .1 paid no a tten tio n  to  th is fact in form ulating their 
aerodynam ic laws (pp. 302-305), although they  draw  atten tio n  to the necessity for 
invariance (p. 305), and  in fact m ake use of it. By considering a special case, it  is 
easy to see the fallacy in their basic laws.

Consider the two shells described above. L et the velocity of 0 i be directed along 
the axis of the shell, and let the shell have an  angular velocity represented by  a vector 
perpendicular to  the axis (plane m otion). T he yaw is zero, and the effect of the air 
is a drag along the axis. B u t now consider S 2. On account of the angular velocity, the 
velocity of 02 is not along the axis; there is a yaw, and hence a cross wind force in 
addition to  a  drag. I t  is easy to  see th a t  the force system s on the two shells are not 
equivalent, as they  ought to  be since the m otions are the same.

T hus the theory  of Fowler e t al. contains a logical contradiction. I t  is very diffi­
cult to discuss critically a  theory  containing a  logical contradiction, for from incon­
sisten t hypotheses we m ay arrive alm ost anyw here (a t 1 = 0 , for example.) I t  m ay 
well be, however, th a t  the logical contradiction does no t invalidate the  physical con­
clusions of their paper. In the example given above, the yaw of S 2 m ay well be very 
small indeed in cases of practical interest, and the logical inconsistency m ay be no 
more serious th an  th a t  involved in writing 7r =  3.14. Used in one way, this statem ent 
leads to  1 = 0 ; used in ano ther w ay, it leads to im portan t practical results.

N evertheless it  is sound policy, in building up a theory  in applied m athem atics 
to  m ake it logically consistent as far as possible. In the present paper we shall take 
care to  s ta te  the aerodynam ic laws in such a  w ay as to  avoid logical inconsistency.

A part from the thorough trea tm en t of the theo ry  of the aerodynam ic force system 
in sections 3 and 4, the  following features of the present paper m ay be sum m arized 
here.

T he exact equations of m otion of the shell (independent of any  aerodynam ic hy ­
pothesis) are given a  very com pact form in (2.6). In  section 5 it is shown how the aero­
dynam ic functions m ay be found from high frequency photographs of a  shell. Such 
o b serv a tio n s should  p rov ide th e  u ltim a te  te s t  of th e  v a lid ity  of th e  ae ro d y n am ic
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m ethod . In  view of th e  success of th e  c ru d er ju m p  card  m ethod  of F ow ler e t  a l., 
i t  seem s p robab le  th a t  the  ae ro d y n am ic  h y p o th esis  is valid , an d , if so, th e  p ro ­
posed m ethod  of o b serv a tio n  should  give us all in fo rm ation  req u ired  concern ing  
the ae ro d y n am ic  functions.

T h ere  a re  th re e  cond itions for th e  s ta b ility  of a  sp inn ing  shell (section 7), b u t 
th ey  are  too  com plicated  to  in te rp re t in th e  general case. If M agnus effects a re  
ab se n t (section 8), th ey  becom e m uch sim pler, an d  in fac t th e re  is th en  ju s t  one 
s ta b ility  cond ition  (8.19). In  th is  cond ition  th e  effect of th e  position  of the  m ass 
cen te r is show n exp lic itly . T he cond ition  is s tro n g er th a n  th e  usual cond ition  
(8.13b) based  on th e  s ta b ility  fa c to r; a  shell w hich is considered s tab le  on the 
basis of th e  usual cond ition  m ay  in fa c t be u n stab le . W e are  v ery  m uch ind eb ted  
to  P rofessor E. J .  M cShane for his c ritica l com m ents on th is  p ap e r in its  original 
form . H e has in form ed us th a t  th e  ex istence of second s ta b ility  cond ition , 
s tro n g er th a n  the  usual one, has a lre ad y  been p o in ted  o u t by  R. H . K en t (R e­
p o rt No. 85, B allistic  R esearch  L ab o ra to ry ). T h is  cond ition  is im p lic it in the  
p ap er by  Fow ler e t  a l. (1.332, eq u a tio n  3.6234, and  4 .12); th is  is d iscussed in 
section 10, w here th e ir  m ethod  is b ro u g h t in to  line w ith  th e  m ore general m ethod  
of th e  p re sen t paper.

Som e well know n facts  a re  confirm ed by  th eo ry  in section 9. F o r a s tab le  
shell, a f te r  th e  o scilla tions have been dam ped  o u t, th e  axis of th e  shell alw ays 
p o in ts  above th e  tra je c to ry  and  to  th e  r ig h t if th e  spin  is rig h t-h an d ed . T he 
phenom enon of tra ilin g  is ex p la in ed ; th e  axis of th e  shell tu rn s  dow nw ard  a t  a 
ra te  ap p ro x im a te ly  equal to  th e  ra te  of tu rn in g  of th e  ta n g e n t to  th e  tra je c to ry .

D rif t also is d iscussed in section  9. A general cond ition  (9.17) is ob ta in ed  for 
s ta n d a rd  d rif t, i.e ., d r if t  to  th e  r ig h t for rig h t-h an d ed  spin . W hen we specialize 
to subsonic velocity and flat tra jec­
tory, this condition simplifies to  (9.20).
W hen the num erical values of Fowler 
et al. are inserted, this inequality  is 
liberally satisfied, so th a t  the  present 
theory is in agreem ent w ith the ob­
served facts.

2. Exact equations of motion. We 
shall now develop the equations of m o­
tion of a shell in convenient form. No as­
sum ption is m ade here regarding the 
aerodynam ic forces, and  th e  only as­
sum ption regarding the  shell is th a t  it 
has an axis of dynam ic sym m etry  (i.e., 
the m om ental ellipsoid a t  the mass cen­
te r is a spheroid). T hus our equations 
would apply, for example, to a homo­
geneous projectile of square section or 
to a  bomb w ith three or more fins, 
placed sym m etrically.

We shall use the following notation, F i g . 1

the m otion being referred to  a New tonian reference system :
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0  =  mass center of shell,
>» =  mass of shell,

A , C — transverse and axial m om ents of inertia a t  0 , 
q =  velocity of 0 , 
oj =  angular velocity of shell, 
h =  angular m om entum  of shell abou t 0 ,
F =  vector sum of aerodynam ic forces acting on shell, 
G =  m om ent of aero d y n am ic  forces a b o u t 0,
F ' =  w eight of shell.

T hen  th e  eq u a tio n s  of m otion are

;;zq =  F  -j" F ', li =  G. (2.1)

W e in tro d u ce  a r ig h t-h an d ed  u n it o rth o g o n al tr ia d , i, j, k, fixed n e ith e r in 
space nor in th e  shell (Fig. 1). W e tak e  k  along th e  axis of the  shell, and  i, j 
perpend icu lar to  k , b u t th e  final choice of i, j is deferred  for th e  p resen t. L e t i î  
be the an g u la r velocity  of the  tr iad .

W e m ay  now resolve th e  v ec to rs  as follows:

q =  «i + + tek,

0) =  oui + 0)2j + 0)3k,

a =  Oii + + n 3k,

h =  .4o)ii + /lo)2j + Co)3k,

F =  Fji + F é + Fz k,
G =  Gii + C2j + C3k,

F ' =  F i  i + F i  3 + F i  k.

(2.2)

C learly  =  fl2 =  W2-
In sca la r form th e  eq u a tio n s  of m otion (2.1) th en  read

m{u — v&z +  wco2) =  F i  +  F { , 

m(v — wioi +  tiQz) =  F 2 +  F i , 
m(w — «to2 +  do)j) =  Fz +  F I ,

A (¿01 — 03o$lz) T  Cu30)2 =  G1,

A (¿02 T  Wlilg) — Co)36)1 — G2,

Cw 3 =  G3 .

I t  is now co n v en ien t to  in tro d u ce  com plex v ariab les. W e w rite

(2.3)

(2.4)

u + iv =  f,
0)1 + 10)2 =  V,
F, + iFo =  F,

Ci + jG z =  G,

Fi + iFl =  F'

( 2 . 5 )
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We m u ltip ly  th e  second equ a tio n  of (2.3) by i  and  add  it  to  the  first, and  deal 
sim ilarly  w ith  th e  eq u a tio n s (2.4). T h u s we reduce the  eq u a tio n s  of m otion to  
the  fo rm :

T hese eq u a tio n s a re  ex ac t; no ap p ro x im atio n s have been m ade.
3. The general aerodynam ic hypothesis. W hat is here set down is probably a little  

m ore general an d  exp lic it th a n  p rev ious s ta tem en ts  ab o u t aero d y n am ic  force 
system s. T h ere  is no im p lica tion  th a t  th e  hypo thesis  is physically  ac cu ra te  in
all cases. All we can hope is th a t  d ed u c tio n s  from  these  assum ptions lead in s u it­
able cases to  re su lts  in fa ir ag reem en t w ith  observ atio n . B u t it  seem s best to  
m ake th e  h ypo thesis  m a th em atica lly  clear.

F ir s t  we consider a fluid, a t  re s t o r in m otion . W e are  n o t p a r tic u la rly  con- 
erned  w ith  th e  p ro p e rtie s  of th e  fluid. T he im p o rta n t th in g  is th a t  i t  defines

(i) a sca la r field of d en s ity  p;
(ii) a  sca la r field of local sound velocity  c;
(iii) a v ec to r field of v e loc ity  W.

T h is  la s t field defines tw o o th e r v ec to r fields, v o rtic ity  ( V = l / 2  ro t W )  and  ac ­
ce leration  (a = d W /rf i) .

U sually  in b a llis tic s  we deal w ith  th e  s ta tic  case in w hich W  =  0 and  p, c are  
func tions of h e ig h t only . A m ore a c cu ra te  m odel is th a t  in w hich W  is ho rizon ta l, 
b u t in d ifferen t d irec tio n s  a t  d iffe ren t heigh ts  to  allow for changes in th e  d irec­
tion  of th e  w ind w ith  v a ria tio n  of heigh t.

Now suppose we wish to  in v es tig a te  th e  m otion of a solid th ro u g h  th is  fluid. 
T o tre a t  th e  problem  ad eq u a te ly  we should of course consider th e  d is tu rb an ce  
p roduced  in th e  fluid by th e  solid. B u t we do n o t do th is . W e use th e  fluid m erely  
to  co m p u te  from  its  u n d is tu rb e d  m o tio n  th e  a e ro d y n am ic  forces a c tin g  on th e  
so lid .

L et 0*  be th e  cen tro id  of th e  solid, i.e ., th e  position  its  m ass cen te r w ould 
occupy w ere th e  solid of uniform  d en sity . L et th e  m otion of the  solid be d e ­
scribed  by  th e  v e loc ity  q* of 0 * and  th e  an g u la r v e loc ity  o>*.

T h e basic h y po thesis  is th en  as follows:
Aerodynam ic hypothesis: T h e  aero d y n am ic  force system  exerted  on the  solid 

by th e  fluid consists of
(i) an  a e ro s ta tic  force;
(ii) an  ae ro k in e tic  force system .

The aerostatic force a c ts  a t  0* an d  equals

f +  ¿£123 -  i m  =  (F +  F')/m,

1) +  ¿7,i23 -  ¿CV,7) =  G /A , (C' =  C /A ),

w — jiW2 T vo)i = (F3 T Fi )/m, 
d>3 — Gs/C.

(2.6)

pFo(a -  P) (3.1)

where p is th e  d en s ity  of th e  fluid a t  0 * , V 0 is th e  vo lum e of th e  solid, an d  P  
is th e  body  force per u n it m ass ac tin g  on th e  fluid a t  0*. (N o te  th a t  if a  =  0 an d  P 
is g ra v ity , th is  is sim ply  th e  A rchim edean  buo y an cy .) The aerokinetic force sys­
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tem is rep resen ted  by  a force F* a t  0 * and  a couple G*; these are fu n c tio n s  of p 
an d  c a t  0 * and  of th e  vec to rs

q* -  W, <o* -  V. (3.2)

If q* =  W  an d  w *= V , th en  F* =  0 and  G* =  0.
H encefo rth  we shall assum e W =  0, and  so F*, G* depend  only  on p, c, q*, w*, 

while th e  a e ro s ta tic  force is —p FoP. If we w ere d iscussing th e  ae ro d y n am ics  of a 
d irig ib le , th e  a e ro s ta tic  force w ould be very  im p o rta n t. F o r a shell it  is q u ite  
tr iv ia l an d  we shall o m it i t  a lto g e th e r.

T h u s for our purposes th e  ae ro d y n am ic  force system  consists of th e  force F* 
a t  0* and  th e  couple G*; th ey  are  fu n c tio n s of p , c, q*, an d  <o*.

I t  will be observed  th a t  o u r b ase -p o in t 0* has been chosen in a  defin ite  w ay 
w ith  resp ect to  th e  geometry of th e  solid, an d  n o t w ith  resp ect to  its  mass-dis- 
tribution.  T h is  frees o u r laws from  th e  ob jection  ra ised  in th e  In tro d u c tio n  to  
th e  laws of Fow ler e t al.

I t  is to  be no ted  th a t  i t  is by no m eans essen tia l to  select th e  cen tro id  as 
base p o in t. B u t i t  is least confusing to  choose, once an d  for all, a p o in t sim ply 
re la ted  to  th e  geom etry  of the  solid, an d  th e  cen tro id  seem s the  m ost n a tu ra l 
po in t to  tak e .

4. The aerodynam ic force system  for a shell with an axis of sym m etry. We now
consider a  shell w ith  an  axis of ae ro d y n am ic  sy m m etry . By th is  we m ean th a t  
its  ex te rio r is a  surface of revo lu tion . W e m igh t proceed for th e  p re sen t w ith o u t 
introducing the m ass-distribution of the shell, b u t it seems sim pler to  proceed 
a t  once to  th e  case of com plete  sy m m etry . We shall therefo re  suppose th a t  th e  
shell has a com m on axis of ae ro d y n am ic  an d  dyn am ic  sy m m etry . All th a t  is 
s ta te d  in section 2 is th en  valid  an d  we shall use the  sam e n o ta tio n .

T h e  m ass cen te r of th e  shell is a t  0  and  its  cen tro id  a t  0 *. L et us w rite

0 0 * =  rk,
and

q* =  velocity of 0 *,

<o* =  angular velocity of shell,

F* — vector sum of aerodynamic forces,

G* =  momentofaerodynamicforcesaboutO*.

T hen
q* =  q +  o  X rk, <■»*=' u , " 1 

F* =  F, G* =  G + F X rk. j
In th e  n o ta tio n  of (2.5) w ith  as te risk s  a tta c h e d  to  the  sym bols referring  to  0*, 
we have in consequence

(4.1)

(4.2)



Now F* an d  G* depend on q* and  <o*. I t  follows from  the  ae ro d y n am ic  sym ­
m etry  th a t  if th e  p a ir of vec to rs q*, to* is given a rigid body ro ta tio n  ab o u t the 
axis of sy m m etry , then  th e  p a ir of v ec to rs  F*, G* is also ro ta te d  rig id ly  a b o u t 
the  axis th ro u g h  the  sam e angle. H ence the  following ten  sca la r q u a n titie s  are 
u n alte red  by such a  ro ta t io n :

F 3, G 3 ,

u*Fl* +  v*Ff, v*Fi* -  u*Fo*, m*Gi* +  v*G*, v*G f -:u*Gt*, )

« 1*F}* +  co2*P2*, W.//G* -  o*F*, u f G f  +  u * G * } to2* C ,*  -  CO!*(.,*. J '

B u t, to  w ith in  such a  ro ta tio n , the  v ec to rs  q*, co* are  d e te rm in ed  by the  q u a n ti­
ties

W, CO,, «** +  »«, co,*a +  CO,«, » V *  +  I»W , l l V - ' A ' , * ,  (4.6)

betw een w hich th e re  ex ists the  id en tity

(U * -  +  +  C02* 2)  -  (if*COi* +  1»*C02* 2) 2 =  (lt*C02*  -  V*i0 !* )2. (4 .  7 )

T herefo re  th e  q u a n titie s  (4.5) a re  fu n c tio n s of the  q u a n titie s  (4 .6); in fac t, for 
a shell of given size and  shape, (4.5) a re  func tions only  of (4.6) an d  th e  a ir  scalars 
p, c a t  0*.

W e now w rite
u * F *  +  v * f 2* = su v * F *  — u * F i*  = s 2. (4.8)

M u ltip ly in g  th e  second eq u a tio n  by i  an d  su b tra c tin g  i t  from  th e  first, we get

|  *p* = s1 - i s i , (4.9)

th e  b a r den o tin g  th e  com plex co n ju g a te . D ealing  sim ilarly  w ith  th e  o th e r q u a n ti­
ties  in (4.5), we see th a t

f*F*, |*G*,
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V*F*, n*G*,
(4.10)

are  com plex fu n c tio n s of the  real q u a n titie s  in (4.6).
W e can n o t proceed fu r th e r  w ith o u t an  ad d itio n a l hypo thesis . We shall as­

sume that
F*,  F 2*, G*, C2*

are linear functions  of
« * ,  V * ,  « x * ,  Ci)2* .

T h is  is ce rta in ly  a reasonab le assum ption  when th e  la t te r  q u a n titie s  a re  sm all. 
W e can th en  w rite

F* =  aiu* +  a 2o* +  / W  -f- ¿ W ,  ]
r (4-11)

G* =  7 lie* +  7 2w* +  5io>i* +  52o>2*, J

w here th e  eigh t com plex coefficients a re  func tions of iv, W3, p and  c. W hen we 
form the  q u an titie s  (4.10) and  use th e  fac t th a t  these m ust be functions of the 
q u an titie s  (4.6), we find ai=fia i,  p2 = i&i, e tc ., and  so

F* =  £*T* +  1

G* =  f  P '*  +  r,*Q'*> I 

w here P * , Q*, P'*, Q1* a re  com plex functions of w, w3, p, c.

(4.12)
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T h e com ponen ts F3, G3 are functions of the  q u an titie s  (4.6). We shall assume  
that they are functions  only of w, oj3, p, c. T h is  also is a plausible assum ption  when 
u*, v*, co*, io* a re  sm all.

T o sum up : There are ten real aerodynamic functions of w, co3, p, c, contained 
in  the set

P*. Q*, Q'*. Fi C' * C/3 . (4.13)

L et us see w h a t these  a ssu m p tio n s  am o u n t to in th e  case of a shell in a w ind- 
tu n n e l. W e th in k  of th e  shell as m oving  an d  th e  a ir  a t  re s t. W e p u t

V* =  0, « ! *  =  CO 2* =  C03*  =  0,

F f  +  i F f  =  u*F*, G* +  iG* =  u*P'*.

In  th is  sim ple  case we m u st h av e , by  sy m m e try  since w3* =  0,

/?,* =  G* = G3* =  0,

F *  = u*P*, iG* =  u*P'*. (4.14)

a n d  (4.12) gives

and so we have

I t  is easy to see th a t these equations im ply th a t  (for small yaw ), the cross wind force 
and the m om ent are proportional to the yaw . This is the usual assum ption.

W e now pass from the centroid 0* to the mass center 0  by the transform ation
(4.4). We get for the force system  F, G on the shell

6 3 — G3*, (4.15)

(4.16)

F = Fy +  iF, =  {P +  nQ,

G -  Gi +  iGo =  £P' +  VQ \  u 3

where P, Q, P ' , Q' are complex functions of w, co3, p, c, given by

P  =  P*, Q = Q *  -  irP*,

P ' = P'* +  irP*, Q' =  Q'* -  irP'* +  ir(Q* -  irP*).

T his gives the transform ation of the aerodynam ic functions when we pass from the
centroid 0* to the mass center 0 .  A ctually this is the transform ation for passage from 
any base-point to  any  other, provided of course th a t both lie on the axis.

To show the real and im aginary parts of the aerodynam ic functions, we shall 
w rite (with sim ilar equations in asterisked form)

P  = Pi +  iP  2, Q =  (?! +  iQt ,

P' = P l  +  i P i ,  Q' =  Q{ +  iQJ.

T he transform ation (4.16) then gives
Pi  =  P i* ,

P-, =  P 2*,

Qx = Q i * + r P  2*,

(4.17)

&
P I  =  P{*  -  rP2*

rPx*, 

V

i >
Qi =  Qi* +  rPl*  +  r ( -  Q t  +  r P f ) ,  

rPi*  +  r(Q* +  rP*).
H =

Qi = Qi*

(4.18)
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The m ethod used above for the resolution of the aerodynam ic force system  is not 
the usual one. T hree im portan t vectors are involved: k the axis of the shell, q the ve­
locity of the mass center, o  the angular velocity. In resolving vectors, it is necessary 
to pick out one of these three as a fundam ental vector and build a  basic triad  on it. 
T he trad itional plan is to  pick ou t q as fundam ental and take k  as a  secondary vector, 
so th a t  q and  k together give one of the planes of the  basic triad. Resolution of F 
along q and perpendicular to q in this plane gives the usual drag  and lift. However 
convenient this m ay be for w ind-tunnel w ork in which q is fixed while k  is altered, 
it certainly appears less convenient than  the m ethod of the present paper for a simple 
m athem atical form ulation of the problem of the spinning shell. There is a fu rther 
objection to the usual plan ; the direction of q depends on the mass center.

The conventional term inology does not suit the present resolution. T he following 
is suggested. T he asterisk  indicates th a t  the centroid is used as base-point. T he same 
notation w ithout asterisks refers to the mass center.

u*i +  u*j =  cross velocity, 

wk  =  axial velocity, 

coji +  w2j =  cross spin, 

w3k =  axial spin.

P 1* | £* | — cross force due to cross velocity ( —),

£* | =  Magnus force due to cross velocity (+ ) ,

(4.19)

Q* I v* I =  M agnus force due to cross spin (+ ) ,

Q* | V* | =  cross force due to cross spin (+ ) ,

F3 =  axial force ( — ).

P l* | £* \ — Magnus torque due to cross velocity ( —), 

P i *  | s* I =  cross torque due to cross velocity ( — ),

7j* | =  cross torque due to cross spin ( —),

=  M agnus torque due to cross spin (+ ) ,

G3 =  M agnus axial torque ( —).

(4.20)

Q l * \

Q i * Iv *

(4.21)

It is a consequence of sym m etry  th a t  where the word “M agnus” is included above, 
the q u an tity  in question changes sign with a>3; where the word “M agnus” does not 
occur, the q u an tity  in question does not change sign w ith m3. F or uniform ity, we have 
called the axial (viscous) to rque “M agnus” ; there is justification for this in the fact 
th a t it is the viscous torque th a t sets up the circulation which is responsible for the 
o ther M agnus effects. T he signs in parentheses indicate probable signs of the various 
quantities when <a3 is positive, assum ing a center of pressure in fron t of the centroid.

Since
| r  | =  9* sin (q*. k). I V* | =  “  sin (to, k), (4.22)

it is clear th a t  the usual sine law of variation is im plicit in (4.20), (4.21). B ut since 
we suppose the angles in question to  be small, th e  sine, tan g en t and circular measure 
are not distinguishable.

I t  is convenient to introduce positive dimensionless aerodynam ic functions, as is 
done by Fowler e t al. So we w rite, paying atten tion  to dimensions and signs,
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p *  = -  pfl2w/i*, II

A, pa sii>3f * ,

Q * = p u W * , rO II p a 3wgt*,

il
*

-  pa'o)3f { * , P i*  = — pa3w f i* ,

Q(* = -  p a 'w g !* , Qi* = ptPoJsgi*

(4.23)

Here p is the air-density  and a the radius of the cross section of the shell. T he func­
tions (/*, g*) depend certainly on w/c, and possibly also on ao>3/c  and the Reynolds
num ber. T he above equations m ay be regarded as definitions of the eight aerodynam ic 
functions (/*, g*), which arc analogous to the / t ,  f.v, etc. of Fowler e t al. To the above 
equations we m ay add

F3 =  — pa2w2f 3, G3 = — pa4wu3g3, (4.24)

where f 3 and g3 are dimensionless; f 3 is the usual drag except for the slight difference
th a t we resolve along the axis of the shell and trea t w as basic instead of 3*.

As the notation is necessarily som ewhat com plicated, let us sum m arize as follows: 
Askerisked quantities refer to the centroid, unastcrisked to the mass center.
The aerodynam ic force system is denoted by

F* =  F ?  +  if'-*, G* =  G*  +  iG*, F3, G3.

T here are ten real aerodynam ic functions contained in the set

p *, Q*, P ’*, Q’*, f „ G3i

and these m ay be expressed in term s of the ten positive dimensionless aerodynam ic 
functions

/t 1 ya > S 1 > ,? 2  > J 1 > J2 j g 1 , g? , j 3 , g3-

The sam e notation m ay be used w ith reference to the mass center, b u t since the aero­
dynam ic force system has nothing to do w ith the mass center as such, the asterisked 
quantities are the more fundam ental. If we wish to  pass from 0* to 0,  we m ust tran s­
form by (4.18) and (4.23). T hus f *  = f u f *  = / 2, f 3* =  f 3, g3*= g 3, b u t the o ther functions 
change.

One more notation will be introduced for convenience in (6.4).
I t is clear from (4.20), (4.21), (4.23) th a t if the dimensionless aerodynam ic func­

tions (/*, g*) are constants, we have the following proportionalities, 5 denoting the 
small y aw :

cross force due to cross velocity « w25, 

cross torque due to cross velocity <x w28, 

axial force « w2,

axial torque «

(4.25)

The first three of these are in agreem ent w ith experim ent for subsonic velocities-—the 
effects vary  as the square of the velocity. T he last (axial torque) requires com m ent.

The form of G3 in (4.24) agrees w ith Fowler et al., b u t one m ay ask why (apart 
from the theory of dimensions) the factor w should be present. T he following is a  pos­
sible explanation. The rotation of the shell generates a ro ta ting  wake. If th is wake has, 
throughout, the sam e spin as the shell, it has angular m om entum  %Trpa4u 3 per unit 
length. In un it tim e a length w of wake is generated, and so, by the conservation of
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angular m om entum , the ra te  of loss of angular m om entum  of the shell is

— G 3 =  Wpcï'woos.

This argum ent not only confirms the form G3 of (4.24) ; it gives

g s  =  k -  ( 4 . 2 6 )

A crude argum ent of this sort m ust be accepted only provisionally in the absence of 
experim ental check.

5. D eterm ination of the aerodynam ic functions by observation. Fowler e t al. 
stressed the im portance of avoiding the simple empirical assum ptions previously em-

ployed. As in the case of the drag function, it is necessary to determ ine the aerody­
nam ic functions experim entally. W h at follows is a refinem ent and generalization of 
the jum p card m ethod of Fowler e t al. Unless there are technical difficulties, or unless 
the basic aerodynam ic hypothesis is wrong, the following m ethod should yield all the 
aerodynam ic functions quite simply, except perhaps g3, and no doub t a m ethod could 
be devised for it also.

Let a shell be fired horizontally and observations m ade of it not long a fte r it leaves 
the muzzle. These observations consist of high-frequency photographs, one set of 
photographs being taken vertically and the o ther set horizontally from the side. These 
photographs show successive positions of the shell a t  short in tervals of time.

We now turn  to the exact equations of m otion (2.6). There is some indeterm inacy 
in these because we have not yet chosen the vector i definitely. Let us choose it in 
the vertical plane through the axis of the shell (k), pointing downward (Figure 2).



212 K. L. N IE L SE N  A N D  J. L. SY N G E [Vol. IV, No. 3

Then
F' =  mg cos 0, (5.1)

and the first two equations of (2 .6) m ay be w ritten

F  =  ;«(£ +  t£il3 — iwri) — mg cos 0, j 

G =  A { t} -{- 23 — iC'033).  J
(5.2)

These equations are exact. We m ay p u t cos 0 =  1, since the axis of the shell is approxi­
m ately horizontal. Then il3 =  0 by (6.2).

Now m, A ,  C’ are known for the shell; w m ay be found from the observations or 
otherwise (muzzle velocity), and o>3 deduced from the rifling. To find £, 77 as functions 
of t, i t  is merely necessary to measure on the photographic plates the linear displace­
m ents of the mass center and the angular displacem ents of the axis of the shell, cor­
responding to the short intervals between successive photographs. Smooth graphs 
m ight be m ade showing u, v, «i, co2 as functions of t or the complex quantities £, 77 
m ight be p lotted  on an Argand diagram  w ith the values of t m arked in. In any  case 
it should no t be difficult to ob tain  £ and 17 also as functions of t from these graphs.

W hen these functions are inserted in the right-hand sides of (5.2), we have F  
and G as functions of t. By (4.15) we have

If we use two values of t, each of these equations yields two complex equations, and 
from them  P, Q, P ',  Q' can be found. Here we have a  good tes t of the aerodynam ic 
hypothesis, for the values of P, Q, P ',  Q' should be independent of the particu lar in­
stan ts  chosen.

I t  m ay be advisable, as a refinem ent, to  allow for the decrease in w between the 
two instan ts in question. This can easily be done from our knowledge of the drag 
function.

By repeating the experim ent on the same shell, b u t using different muzzle veloci­
ties and riflings, we obtain P , Q, P ',  Q' as functions of w and w3.

The next step  is to transform  from the mass center to the centroid. This is done 
by (4.16), and we obtain P*, <2*, P '* , Q'* as functions of w  and w3. Finally, the dim en- 
sionless aerodynam ic functions (/*, g*) are found from (4.23).

I t  should be stressed th a t these last functions are characteristic of the form  of the 
shell and com pletely independent of the mass distribution. Indeed, to a certain ex­
ten t they will be independent of the size of the shell, b u t this m ust be accepted w ith

6 . P lan  of solution and partial linearization of the equations. We now introduce 
fixed axes OoX0yoZt>, O0Z0 being directed vertically  upw ard. Let 9 be the inclination of k 
to the horizontal (Figure 2), and 4> the inclination of the horizontal projection of k 
to  Oox0. We have already m ade the vector i definite in section 5. We have then

(P  +  vQ =  F, £P' +  vQ' =  G. (5.3)

caution.

F ' =  mg cos 9i — mg sin Ok, j 

£2 =  — <j> cos 0i — 0j +  <f> sin 0k. J
(6.1)

Hence
■t] = — cos 6 +  iO), =  <j> sin 0. (6.2)
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We substitu te  from (4.15) in (2.6), and the equations of motion become 

|  3 — iwy — £ W +  i]Y -f- g cos 8,

17 +  i’9^3 — iC'oi3t] — £X' +  rjY',

where

w — nut +  nwj =  Fz/m ■

¿>3 =  Gs/C,

g sin 8,

(6.3)

X  = P /m , Y  =  Q/m, X '  = P ' /A ,  Y '  =  Q '/A . (6.4)

If we substitu te  from (6.2) for 17, il3 and regard X ,  Y, X ' , Y ' , F3, G3 as known func­
tions of w, W3, p, c, we have six real equations for the dependent variables u, v, w,
6, <j), a>3. B u t unless we assum e p, c to be constants, we m ust bring in fu rther equations. 
Let us assume them  to be functions of height (s0) only. By resolution of velocity we 
have

-t'o +  iyo =  («■ sin 6 +  iv +  w cos 6)6**,

¿0 = — M cos 8 +  w sin 6.
(6.5)

W hen the last of these equations is associated w ith (6.3), we have seven real equa­
tions for seven unknowns, nam ely, those stated  above and z0. W hen they  have been 
solved, the tra jecto ry  of the mass center is given by (6.5).

We now m ake the following two assum ptions: (i) the vertical plane through the 
axis of the shell tu rns slowly; (ii) the angle of yaw is small. T he first assum ption 
implies th a t  <j> and hence is sm all; the second implies th a t  £/w is small. On account 
of the smallness of we reject the second term s in the first two equations of (6.3), 
and on account of the smallness of !-/w we reject the second and th ird  term s in the 
th ird  equation.

Our partia lly  linearized equations now read

where

Î  — iwij =  £X  +  7)7 +  g cos 8, 

v -  ic'wsv =  +  vr ,
w = F3/m  — g sin 6,

«3 =  g 3/ c ,

j) =  — cos 8 +  id).

(6.6)

(6.7)

7. The stability of a spinning shell. In discussing rapid oscillations of the shell, 
we trea t w and o>3 as constan ts in the first two equations of (6 .6). C onsequently 
X ,  Y, X ' ,  Y '  are constants. In rapid oscillations differentiation w ith respect to t 
greatly  increases the  im portance of a  term . H ence we shall tre a t cos d as a  constan t in 
the first equation of (6 .6); the term  corresponding to  a  small change in 9 will be neg­
ligible in com parison w ith the term s in 77.

We have then  linear equations w ith constan t coefficients, which have solutions 
of the form
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a2 -  (iCV, + X  +  Y')a  +  ¿(C'co3X -  w X ' )  +  X Y '  — X 'Y  =  0, (7.2)

and

A ,  = -  — cos e(iC'w3 +  7 ') , 
E

Bs =
E

cos 0 ■ X ' ,
(7.3)

£  =  i(C'u3X  -  wX') +  X Y '  -  X 'Y .

T he condition for stab ility  is th a t both roots of (7.2) should have non-positive real 
parts.

If we write

K i = AT +  Y { ,

AT =  C'ctiz +  AT +  IT ',

AT =  -  C'o>3AT +  wAT' +  ATIT -  ATF2' -  X I  IT +  AT'IT,

AT =  CV,AT -  w.Y( +  ATIT' +  ATIT' -  AT'IT -  AT' IT,

then (7.2) becomes

a 2 -  (AT +  fAT)a +  (AT +  ¿AT) = 0.

T he condition for stab ility  m ay be w ritten

Ai -}- f  cos x ^  0-

where f , x  arc defined by

(7.4)

f  =  (A i — A 2 — 4AT) +  4(ATAT — 2A3) f  à  0,

f  sin 2X =  2(AiAT -  2AT), 

f  cos 2x =  Ai — K l — 4A3, ¿rr â  X S  è rr.

(7.5)

(7.6)

(7.7)

I t  is im m ediately evident th a t  there is instab ility  if AT > 0 . If AT SO, then the con­
dition (7.6) is equivalent to

AT à  f  cos' x.

or

2Aj ^  f  (1 +  cos 2X). 

On substitu ting  for f 2 cos 2x from (7.7), this becomes

AT +  AT +  4AT S r2-

(7.8)

(7.9)

(7.10)

T hus there is instability  if AT SO, A T + A T  + 4 A 3 < 0 . If AT ¿ 0 ,  K }  + K £  + 4 A 3S 0 , the 
condition (7.10) is equivalent to

(AT +  AT +  4AT) à  i , (7.11)
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and, on substitu tion  from (7.7), this becomes

K iK 3 +  K \K iK i -  K \  à  0. (7.12)

To sum up, the motion of the shell is stable if, and only if, the following three condi­
tions are all satisfied :

K i S  0, 

K \  +  k \  +  4K 3 à  0, 

k \ k 3 +  K lK 2K i -  k \  â  0.

(7.13a)

(7.13b)

(7.13c)

The K ’s are given by (7.4).
These conditions are more general than  any given previously.
If there is strong stab ility  (i.e., if the real p arts  of a it a 2 are negative and large), 

then the first term s in (7.1) die aw ay quickly. In fact, the rapid oscillations are 
dam ped out, and we arc left with

and also v ~  — cos 6-\-i9).
In (7.14), (7.15) and the last of (6.5) we have seven real equations for the seven 

quantities u, v, w, 6, </>, o>3, z0- it  is a function of w and  co3 as in (7.3); it also involves z0, 
since the properties of the air depend 011 z0 and aerodynam ic functions X ,  Y, X ' , Y' 
depend on the properties of the air. The above equations determ ine the motion of the 
stable shell.

We note th a t the equations (7.14), (7.15) are sim ply (6 .6) w ith the term s £, 1? de­
leted. To test w hether this trea tm en t is valid, we should solve (7.14), (7.15) for £, V* 
calculate £, r) by differentiating these solutions, and com pare these calculated values 
with the o ther term s in (6 .6). T hey should, of course, turn  ou t to be small.

8 . Stability in the absence of M agnus effects. If we accept the linear law (4.11), 
the aerodynam ic force system  (4.13) is the m ost general possible. As we shall see in 
section 10, the force system  of Fowler e t al. is a special case. The system (4.13) con­
tains ten real functions, and it appears impossible to m ake any  deductions of physical 
in terest w ithou t introducing some simplifications. We shall retain  a force system  a 
little more general than  th a t of Fowler e t al.; our system satisfies the fundam ental 
condition of invariance w ith respect to shift of mass center, whereas theirs does not.

Let us refer to (4.20), (4.21), and assum e th a t all Magnus effects vanish, except 
this means th a t

t =  -  — cos 0-( iC u i  +  Y')
E

(7.14)

t] =  - c o s e - x ' .  
E

W ith these we associate the last two equations of (6 .6), viz.

w =  F3/m  — g sin 6, ]

¿3 =  G3/C, j
(7.15)

P 2* =  Q* =  Pl* = Q±* = 0. (8.1)
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This leaves us w ith four real aerodynam ic functions, in addition to F3 and 6V

P i* <  0, 0 2* >  0, P i*  < 0, Q{* < 0. (8.2)

There can be no doub t th a t  these inequalities are physically valid.
We now transform  to the mass center 0  by (4.18). We find

p 2 =  Qt =  p i  =  Q> =  o. (8.3)

T hus the M agnus effects do no t reappear w ith change of base-point; in fact, the 
vanishing of Magnus effects is an invariant condition. For base-point O there are again 
ju s t four real aerodynam ic functions in addition to F3 and G3:

Pi  =  Pi*,

Qt = 02* -  rPi*,
P ’ =  P i*  +  rP * ,

Q[ = Q{* +  rP-i * +  r ( -  0 2* +  rPi*).

Then by (6.4), (7.4) and (8.3),

AT =  X , +  Y{ =  P ffm  +  Q U A ,

A*2 =  C'oj 3,

A , = w X i  +  X i Y l  +  X I F 2 = —  +  —  (PrQi +  P i Q i ) ,
A mA

(8.4)

C'cojAT =
wi

(8.5)

T he stab ility  conditions (7.13) read
X i +  I T 'g O ,  (8.6a)

(C'oj3)2 +  i w X i  +  (Xx +  T / ) 2 +  4(X 1F i +  X 2' Yi) â  0, (8.6b)

X i F / (C'oi3y  +  (X i +  F iJ ^ w X / + X iF /  +  X 2'F 2) è  0. (8.6c)

These are the stab ility  conditions in the absence of M agnus effects. Now by (4.23),
(6.4), (8.4), we have (since A* = m r 2-\-A)

X i  =

F ,  =

X i  =  -

pa^w

m />*,

pa3w

m

pa3w
( f i *  +  / .* )

AT +  Y {  = 

X iF ,' +  X i  Y2 =

p a 4»  r  r r 2
Vi  =  - - —  «(* +  -  (g2* +  /,'*) +  —  /.* , 

A  L a a- J

4 t e r  r T*
— \ g i *  +  —  f a * + / i * m - —1 L a ma-

p2a6w-

mA (fi*gl* ~  ft*/*'*)-

(8.7)
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If we substitu te  these expressions in (8.6) we get stab ility  conditions in term s of the 
functions (/*, g*). However, these conditions are som ewhat com plicated, and we shall 
m ake approxim ations.

T he f ’s of Fowler et al. hardly  exceed 10 in value. Our (/*, g*) functions are defined 
in a slightly different way, b u t it certainly seems legitim ate to assert th a t  the dimen- 
sionless quantities

pa3
e =  — /  (8.8)

m

are much less than  u n i ty , /  standing for any one of the (/*, g*) functions. Then it is 
clear th a t

(AT +  I T )2, AT 17 +  AT' IT

are both small relative to w X { . Consequently our stability  conditions (8.6) m ay be 
simplified to

AT +  17 ^  0, (8.9a)

(C 7 3)- +  4wA7  7  0, (8.9b)
A TI'/(C V ,)- +  (X a +  Y{y-wA7 ^  o. (8.9c)

I t  will be noticed th a t IT has disappeared from the stab ility  conditions in the last 
approxim ation. This aerodynam ic function corresponds to  cross force due to cross 
spin relative to the mass center [cf. (6.4) and (4.20)]. T hus it m ight be asserted that, 
for the discussion of s tab ility  in the absence of M agnus effects, cross force due to 
cross spin m ay be neglected. B ut this s ta tem en t is not en tirely  correct, because this 
cross force contributes to the m om ent Y {  , and IT' remains in the stab ility  conditions.

L et us examine the first s tab ility  condition (8.9a). On substitu tion  from (8.7) it
reads

—  (g2* +  / /* )  +  gl* +  ~ f i * ^  0. ( 8 .10a)
a map-

If r is positive (so th a t  the m ass center lies behind the centroid), this inequality is 
certain ly  satisfied; it is also satisfied for some negative range of r. B ut an  interesting 
question arises: Can we m ake the shell unstable by pushing its mass center forward 
tow ards the nose? T his is hardly  to  be expected on physical grounds, and  it m ay well 
be th a t (8.10a) is satisfied for all permissible values of r, i.e., all values which place 
the mass center inside the shell.

I t  is tedious (and perhaps of little  physical interest) to discuss the o ther stability  
conditions for sufficiently large negative values of r. We shall therefore assum e either 
th a t  r is positive, or, if it is negative, i t  is such th a t (8.10a) is satisfied and also



This is essentially the same as the usual stab ility  facto r.5 Then the second stab ility  
condition (8.9b) takes the familiar form

5 ^  1, (8.13b)

while the th ird  condition (8.9c) may be w ritten

(AT +  F i ) 2
5 ^ -------------------  (8.13c)

4 AT IT'

Since the fraction on the right is never less than  unity , this condition replaces (8.13b). 
L et us substitu te  in (8.13c) from (8.7) and sum up as follows:
S t a b i l i t y  c o n d i t i o n .  T he following assum ptions are m ade:
(i) M agnus effects are negligible (except th a t Gz m ay exist).
(ii) T he quantities « of (8.8) arc very  small.
(iii) The mass center is behind the centroid, or, if in front, its negative coordinate 

r is such th a t  (8.10a) is satisfied and also
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f i *  +  - h * >  0,
a

gi* +  -  (g-T+ m  +  —j ?  >  o.
a a-

(8.14)

Then the motion of the shell is stable if, and only if,

* >  —  [g» * +  (r/a)(gt* +  fi* )  +  {A*/ma*)h*Y 
S =  4/1 +  ( r /a){g* +  f i* )  +  (r2/o 2) /* ] ’

where 5 is as in (8.12), or equivalently

r 2 - C a>3
J = ------------p-----------------------------A =  A* -  m r \  (8.16)

4p«L-l w~ [fi* +  (r /a)f*  ]

To show the dependence on r more explicitly, we introduce the dimensionless qu an tity

2C 0)3
p  = -------------- > (8.17)

4 pasmw-

so th a t

P = s ~ - ( f i *  +  - f A .  (8.18)
ma* \  a /

Then the sole condition for stability reads

> (f i*  +  (>•/«)/.*) [g/* +  {r/a){gt* + / n  +  Q1*/»!«2)/.*]2 

4 /.* [g i'*+  (r/a)(gz* +  /{*) +  (f2/ a 2)/i*]

5 T . J. Hayes, Elements of ordnance, J. W iley and Sons, New York, 1938, p. 418.
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Since A*  is the transverse m om ent of inertia a t  the centroid, the position of the mass 
center is involved in this formula only in the symbol r.

We see therefore th a t  the usually accepted criterion for s tab ility  (8.13b) is not 
the true one; it m ust be replaced by one of the inequalities (8.13c), (8.15) o r (8 .19), 
which are of course equivalent to one another. As we rem arked in the In troduction , 
the existence of a second condition for stab ility  has been noticed by R. H. K ent. We 
shall refer to stab ility  again in section 10.

9. The trajectory of a stable shell in the absence of Magnus effects. L et us as­
sume, as in the preceding section, th a t  M agnus effects are absent, except th a t  G3 
m ay exist. T hen, using (8.3) and (6.4) with (7.14), we get for the trajecto ry  of a stable 
shell, after the disturbance has been dam ped out,

£ =  -  — cos 0(fC'co3 +  Y{),
E

g .
it =  i  — cos 0 • X i , 71 = — <j) cos 0 — id.

E

(9.1)

Here E  is as in (7.3); let us m ake the approxim ation indicated above (8.9), so th a t

E  =  w X 2 T  iC'oi3X i. 

Splitting (9.1) into real and im aginary parts we get

g

(9.2)

it =
E \-

g
e V

cos 0[AT(C'w3)'- +  w X l  IT 

cos 0'CVlWX i  ,

(9.3)

(where we have dropped a  term  X \  Y{ in comparison with w X i ) and

= —
E  | 

g
E  2

C ' ^ X i X u  

cos 0- w {X i  ) 2.

(9.4)

W e shall assume, as in section 8, th a t  X i,  X i , Y(  arc all negative. F urther, since the 
shell is stable, we have as in (8.9c)

B ut

and therefore

x , i t  (C'coj)2 +  (Xi +  Yiy-w Xi  a  o.

(AT +  Y i Y  > IT 2, x i  < 0, 

A T F /ic v .)2 +  v r - w x i  a  o.

(9.5)

(9.6)

I t  follows a t  once from (9.3) th a t  u is positive. T his m eans th a t the nose of the shell 
points above the trajectory.
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From (9.4) we see th a t <¿><0 if co3> 0 . T hus for positive (right-handed) spin the 
vertical plane through, the axis o f  the shell turns to the right? For negative spin it 
tu rns to the left.

These two facts arc well known to be true in practice.
There rem ain two outstanding  physical facts to explain. These are (i) the trailing  

of the shell along the trajectory , (ii) the drift.
We see from (9.4) th a t  9 is negative, i.e., the inclination of the axis of the shell 

to the horizontal decreases steadily. B ut does it decrease a t  th a t ra te  required for 
trailing? W e m ust be careful to avoid a circular argum ent. We have assumed th a t 
trailing takes place— otherwise the yaw is not small, and all our argum ents are based 
on the smallness of the yaw. We m ust now verify th a t 9, as given by (9.4), is approxi­
m ately equal to  the ra te  of tu rning of the tangen t to the tra jecto ry  of the m ass center. 
T he theory of the plane partic le-trajectory  gives, on resolution along the norm al,

g cos do
90 =  -    , (9.7)

w

where 60 is the inclination of the tangen t to  the horizontal. To establish the required 
result, we m ust com pare this w ith (9.4), and show th a t

I £ | 2
1—  = 1, (9.8)

(■wxty-

approxim ately. Now by (9.2), (8.12), (8.7), this fraction is

2 / C V j V  4s AT
1 +  A TI ) =  1 -----------

V w X l  J  -wXi

pa3 A /,**
= 1 +  4 s  -  (9.9)o r •*/ i / / Y /■ v 'm ma2 f 2*' +  ( r /a ) / :

T he last expression here is of the  order of se, where e is as in (8.8). Hence, unless the 
s tab ility  factor s is very  great, th is expression is very small, and the condition of 
trailing  is approxim ately fulfilled.

I t  is interesting th a t  if s is very g reat the verification breaks down, for th is is ju s t
w hat we would expect. If, by some mechanism, an enorm ous spin were im parted  to  a
shell, the gyroscopic stab ility  would be so great th a t  the direction of the axis would 
rem ain fixed and the shell would no t trail.

To discuss the drift, we w rite down (6.5) again:

Xo +  i y 0 — (« sin 6 +  iv +  w cos 9)e{*. (9.10)

T his is the horizontal velocity of the m ass center in complex form. Consider the com­
plex q u an tity

¿o +  iyo ,
a -j- ifi =    — ' (9.11)

xa +  iyo

I t  is obvious th a t  the vector x 0+ i y 0 tu rns to the left if j3 is positive, and to  the right
if d  is negative. I t  is our business to  investigate the sign of /3.

‘ Hayes, op. cit., 420.



We differentiate (9.10) logarithm ically and simplify the result by the fact th a t 
u /w  and v/w  arc small. This gives

fi = - ( — ?— )  +  *. (9-12)
d t \w  cos 6/

W ith the approxim ation (9.8), we have from (9.3), (9.4)

ec '„  (9 , 13)
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and so

where

w cos 6 w -X i w -X i

f i d  I ,

— = — log Z + A T , (9.14)
Z dl

Z  -  -  i ' T  • (9.15)
w2X i

As a term inology, let us say th a t a shell has standard  drift when it goes to the
righ t (/3 <  0) for right-handed spin (oj3> 0 ), and vice versa. Now Z  has the sam e sign
as «3- Hence we get a standard  d rift if

—  =  — log | Z | +  AT <  0. (9.16)
Z dl

Substitu ting  from (8.7), we see th a t this condition for standard drift reads

m d w3 „\
f *  > ------------ log-—--------------------------   (9 .1 /)

pa-w dt p w \ f l *  +  ( r /a ) f f )

L et us look into the m eaning of this inequality, assum ing th a t the dimensionless 
aerodynam ic functions are constants. T his corresponds to  a subsonic velocity [cf. 
(4.25)]. F urther, let the tra jecto ry  be flat, so th a t p is constant and 6 so small th a t 
it m ay be neglected.

T hen by (6 .6) and (4.24)

pa2 pa4 ,
iv =  w-fz, £¿3 =  wu3gz. (9.18)

m C

Let s be the arc length of the trajecto ry  (do not confuse with the stability  factor). 
T hen w = d s/d t,  ib =  wdw/ds, and so we have

1 dw pa2 1 dw 3 pa4— = ----------- f 3> — = _ _ - g 3. (9.19)
W ds pi £03 (is L

The right-hand side of (9.17) becomes



222 K. L. N IE L SE N  A N D  J. L. SY N G E [Vol. I \ ’, No. 3

F ig. 3

and so the condition for standard  drift reads

ma-[* +  g3 >  3y3> (9 20)

We m ay w rite f i  in place o f /* — they are equal. We note th a t m a2/ C  will lie between 
1 and 2.

We observe from (9.20) th a t  cross wind force and axial torque tend to  give s tan d ­
ard drift, bu t axial force acts the o ther way. L et us use the num erical values of Fowler 
et al. in (9.20). We have ( [l ], pp. 306, 309)

/ i  — J l  +  f i c  = / . v  =  3.34, 

/* =  /«  =  0.34.
(9.21)

We sec th a t  (9.20) is liberally satisfied, even if £3 =  0. T hus the present theory  appears 
adequate to  explain d rift w ithout bringing in M agnus effects.

10. The aerodynam ic force system  of Fowler, Gallop, Lock, and R ichm ond.1 In 
the preparation of th is section we are very m uch indebted to Professor E. J. M cShane, 
who read our paper in its original form and pointed ou t in detail the connections be­
tween our work and th a t of Fowler et al.

T he axis of the shell is indicated in Figure 3; O is the mass center and S the yaw. 
The aerodynam ic force system  of Fowler e t al. is represented by seven vectors— three
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forces (plain arrows) and four couples (arrows w ith crossbars). T heir term inology is 
as follows:

R =  drag,

L =  cross wind force,

K =  swerving force,

M =  moment tending to increase yaw, \ (10.1)

H  =  yawing moment due to yawing,

I =  axial moment,

J =  swerving moment.

We shall use the notation of the present paper for velocity, angular velocity and the 
radius of cross section of the shell (a), and consider only the  case of small yaw
(5 =  | tj/it>). T hen the dimcnsionless aerodynam ic functions of Fowler e t al. are de­
fined by

R = pa-w2fit,

L  =  pa?w38f i  =  pa-w | £ | Jl,

K  =  pa3ww,&fK =  pa3w31 £ | Jk,
M  =  pa3w-5fM =  pa3w | £ |/.v , (10.2)

II =  pa'w | n \ f u ,
I  =  paAwu3fr,

J  =  palwo33dfj = pa'u31 £ | f j .

Let i', j ',  k be an orthogonal triad  of unit vectors, w ith k along the axis of the shell. 
T he vector i ' lies as shown in the plane containing k and the velocity of 0.  Then, to 
the first order in 5,

R = -  R&i’ -  Rk,

L =  -  Li',

M =  -  M y,

H  =  -  II
COi

i' -  II

(10.3)

I =  -  7k,

J = -  Ti',
where co/, co2' arc the com ponents of o> along i', j'.

L et i, j be any  orthogonal un it vectors, perpendicular to k, so th a t the triad  i, j, k 
is th a t  considered in the present paper. I t  does no t m atte r a t  present w hether i lies 
in the vertical plane through k. We have

i
ai. +  Z)j

T T
j ' =

— ri +  «j

I T
03{ i ' T  033 j ' — COli T  W2j • (10.4)

The to tal aerodynam ic force is
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F = R + L + K = i  ( -  A5 A~ -  L -A  -  A"
■ * ( -  

+  j ( -  AÔ 

-  kF ,

U l III I ilw)
K

U l U l U l

iK

U l U l >

and so, since w h=  \ £ | ,

I  RF = F , +  i F ,  =  £ ----------
\  TO

Fa =  — R.

'I'he to tal aerodynam ic couple is

G =  M + H  +  I +  J  =  i(  M  A -  - / / A r - /
U l f )

+  j -  1 / - r - r -  -  II
U l

U l
v

ÏÏÏ
- j m r )

k I,
and so

£ v £
G = G i +  iCi =  -  i M  -t—r  -  H -,— ¡- -  /

U l
Gu = -  I.

C ertain quantities are defined as follows:

m U l
X =

mo>31 £ j

U — K T*
R

It =
II

a  u
r  =

mw

Then (10.6), (10.8) give

F  =  £(/X?hw3 — mu),

M yCu3 '

M w

Ï Ï T
i

Cu3

Jw
Y =

Cco3| £ 1

rjA h,

Fj =  — mw(u — k),

g 3 — — Cco3r .

(10.5)

(10.6)

(10.7)

(10.8)

(10.9)

(10.10)

Com paring these with (4.15), we see th a t the force system  of Fowler e t al. is a par­
ticular case of our general system , with

P = — mu +  im\o)3,

Q = o,
_  yt~oi3 • ^ 

TO TO
<2' =  -  -4/1.

( 1 0 .1 1 )

J
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The general system has eight real parts in these term s; the system of Fowler e ta l. 
has only five:

J \  —  — HIV , P  2 =  m \ w ;J,

P i  -  , P i . - J L ,
W W

Q {  =  ' — ' A  h .

(10.12)

I t  is clear from the transform ation (4.16) th a t 0  =  0 is not invarian t w ith respect to 
sh ift of m ass center. T hus Eqs. (10.11) describing the aerodynam ic force system  can ­
not be valid in general. I t  m ay happen of course th a t they  arc true for one particu lar 
mass center, b u t they cannot remain true when we shift the mass center.

Fowler et al. find little evidence for the existence of the M agnus effects J, K ,  or 
equivalently  7 , A. If we pu t them equal to zero, the survivors in (10.12) are

P j =  -  mv, P i  =  -  — , Q( =  -  Ah.  (10.13)
w 1

These should be com pared w ith (8.4), which are the general survivors in the absence 
of M agnus effects. We note th a t Qi is absent from (10.13), which m eans th a t the mass 
center is chosen so th a t Q* — r P * is zero, or a t least negligible.

By (6.4) we obtain from (10.13)

X , =  -  v, X I  =  -  — , Y{  =  -  h, (10.14)
A w

and so the stab ility  condition (8.13c) reads

(^ d” h)2
s i -  — • . (10.15)

Avh

We have referred in the In troduction  to a second stab ility  condition im plicit in the 
work of Fowler et ah ; it is

.  (-C + /0 2
4 kIi

(10.16)

T he difference between (10.15) and  (10.16) does not appear to be very great in prac­
tice. I t is a question of replacing v by k, and by (10.9), (10.2)

*  U l  '*  1 ( .0 ,1 7 )
k L w f i  10 

roughly.
There are very simple relationships between the dimensionless aerodynam ic func­

tions in the two theories. We take the mass center O as base-point, and use (4.23) 
w ithout asterisks, together with (10.12), (10.9), (10.2); we find

f i  =  fit +  f i .  -  /.v , f t  -  /a t,

f i  =  f j ,  f i  =  J m , g i  =  fn .
( 1 0 .1 8 )
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T he functions gi, g2, arc zero in the theory  of Fowler e t al.
As the paper of Fowler e t al. is one of the basic papers of modern ballistics, i t  will 

be useful to  sum m arize our criticism s as follows:
(i) T heir aerodynam ic foixe system  is no t the m ost general system  consistent 

w ith
(a) the aerodynam ic hypothesis,
(b) linear dependence on the cross com ponents in the case of small yaw,
(c) the sym m etry  of the shell.

(ii) T heir system  does n o t satisfy the  fundam ental requirem ent of invariance with 
respect to  sh ift of m ass center.

(iii) If only shells with mass centers near their centroids are considered, it m ay be 
th a t the above theoretical objections are of small practical im portance.

W e believe th a t  our exact dynam ical equations (6.3) provide a  clearer approach 
to  the problem of the spinning shell than  do the dynam ical equations of Fowler e t al. 
B ut it is frankly adm itted  th a t  our simple trea tm en t of the equations of m otion in 
section 7 does no t appear to be as satisfactory  m athem atically  as their m ethod. We 
have m ade the plausible b u t ra th e r crude assum ption th a t  it  is permissible to  regard 
cos Q, w, oj3 as constan t during the oscillation. I t  would be interesting to apply  their 
more refined m ethods to our differential equations, b u t this we m ust defer for the 
present.
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T R A N S F O R M A T IO N  G R O U P S  O F T H E  
T H E R M O D Y N A M IC  V A R IA B L E S*

BY

W ALLACE D . H AYES  
Lockheed Aircraft Corporation

Abstract. A certain class of transformations on the thermodynamic variables E, 11, F, G, S, T, P , and 
V  which leave the fundamental equations invariant is investigated and found to form a group of order 
thirty-two. T he quotient group with respect to  a normal subgroup of order four gives the octic group ob­
tained by other investigators, the normal subgroup containing trivial but non-excludable transformations. 
In contradistinction to previous investigators, it is not necessary to use absolute values or a rule of signs. 
Examples are given of the application of the transformations.

Certain transform ations on the fundam ental therm odynam ic variables will change 
members of a large class of therm odynam ic equations valid for reversible processes 
into o ther valid equations of sim ilar form. These transform ations have been investi­
gated by Koenig1 and Buckley2 and found to form the group of order eight called the 
octic group. Koenig restricted his transform ations to pure substitutions, or perm uta­
tions, took care of a difficulty in sign by introducing absolute values and a rule of 
signs, and discussed a geometric m ethod of exhibiting the transform ation group. 
Buckley showed th a t  Koenig’s group could be derived in p art by  Lie’s theory of con­
tac t transform ations, and listed a num ber of families of therm odynam ic equations 
to which Koenig’s transform ations apply. Although of course m athem atically  correct, 
the application of Lie's theory is no t essential in this case.

In order to elim inate the inconvenient and som ewhat disturbing use of absolute 
values and a rule of signs, the following exposition of the theory of these transform a­
tions is presented. The transform ations considered are not limited to pure perm uta­
tions b u t allow changes in sign, and the octic group is finally obtained ou t of a larger 
transform ation group as a  quotient group w ithout the necessity of using absolute 
values or a rule of signs. T he transform ations are represented by m atrices whose ele­
m ents in any single row or column are all null except for one elem ent which equals 
1 or — 1.

T he therm odynam ic quantities involved are3: the internal energy E,  the en­
thalpy  II ,  H elm holtz’ function F, G ibbs’ function G, the en tropy  S, the absolute 
tem peratu re T  (intensive), the absolute pressure P  (intensive), and the  volume V. 
All these quantities except T  and P  are extensive quantities. T he quantities II ,  F, 
and G are defined relative to E  by

* Received Aug. 26, 1945.
1 F . O. Koenig, Families of thermodynamic equations, I ,  Journal of Chemical Physics, 3 , 29 (1935).
2 F. Buckley, Transformations of the fundam ental equations of thermodynamics, Journal of Research 

N B S, 33, 213 (1944).
3 This notation is perhaps the m ost common in scientific literature, with the symbol U  often used in 

place of E. T he functions F  and G, invented by' Helm holtz and Gibbs respectively, are generally known as 
the free energy and the thermodynamic potential, while the American Standards Association has used 
the term free enthalpy for the function G. The standard usage of American chem ists is that of Lewis and 
Randall, where the functions A and G are denoted by A and F, respectively', and are termed the work func­
tion and the free energy.
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II =  E  +  PV, 

F =  E  -  s r ,  

6' =  E  +  P F  - 57’.

(la)

(lb)

(lc)

These definitions, together w ith  the fundam ental therm odynam ic equation for dE  
give the equations

dE  == TdS -  PdV, 

dll  =  TdS  +  VdP, 

dF =  -  SdT  -  PdV, 

dG =  -  SdT  +  VdP.

(2a)

(2b)

(2c)

(2d)

T he transform ations considered are all transform ations which leave Eqs. (1) and
(2) invariant, such transform ations preserving the valid ity  of any equations derived 
from Eqs. (1) and (2). T he class of equations to which the transform ations apply is 
therefore the class of equations thus derived. If the symbol x  is used to  denote un­
determ ined m atrix elements, the transform ations will be of the form

E

II

F

G

S

T

P

LV  J

From the invariance of Eqs. (2), the following seven observations on the tran s­
form ations are m ade:

I .  T he off-diagonal 4 by 4 subm atrices are necessarily null. This fact allows the 
transform ations to be pu t in the separated form

- F i ­ ~x ■V X x~ "0 0 0 0"

l l X X X ;V 0 0 0 0

F' X X X 0 0 0 0

G' _ X X ■V X_ _0 0 0 0.

S ' •o 0 0 o -
-

X ■V .%•■

V 0 0 0 0 X X X

P ' 0 0 0 0 X S X

_V'_ .0 0 0 0. a; * x_

(3)

-R i ­

l l '

F'

_ 6 '_
~ S'~

V

P'

_ F '_

X

X

•V

X

X

X

X

X

c

LC

: n :

:l] C

;V

X

X

X

:T

- R -

II
T?r

_ c _
" 5 “

T1

p

_ v  _

(4a)

(4b)

I I .  If one of the variables (E IIF G ) is changed in sign, all of them  m ust be thus 
changed. Such transform ations m ay a t this point be excluded as trivial. This exclusion 
limits the transform ation (4a) to pure perm utations.
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I I I .  The invariance of the equation

E -  II -  F +  G = 0 (5)

derivable from (1) m ay be used to lim it the transform ations (4a) to eight in num ber, 
all of which are of the type considered.

IV .  Since S  is always associated with T  in Eqs. (1) and (2), as is P  w ith V, the 
form of the transform ations (4b) m ust be as shown w ith two diagonally opposed 2 
by 2 subm atrices null.

V. The 2 by 2 subm atrices of Eqs. (4b) are necessarily of one of five forms, which 
are abbreviated thus:

[ :  a -

[ ■ ¡ - a —

[ . :  a - *  
" 0 - 1 1  

.  1 0_T *'

° 1 - ,
OJ

0 0 

L o

(6a)

(6b)

(6c)

(6d)

(6e)

VI.  T ransform ations of the type in which, for example, both  P  and V  are changed 
in sign are adm itted ly  trivial b u t cannot be excluded because they  are necessary for 
closure of the group of transform ations (4b).

V II .  A given transform ation (4b) defines a t most one transform ation (4a). The 
converse is not true, however, and the correspondence is found to be four to one. 
T hus the num ber of transform ations (4b) is thirty-tw o.

T he eight transform ations (4a), the corresponding th irty -tw o transform ations 
(4b) expressed using the abbreviations in Eqs. (6), together with eight symbols repre­
senting group elements, are listed in Table I.

T he transform ations (4a) form a group of order eight which is designated as M. 
T he transform ations (4b) form a group of order th irty -tw o which is designated as G. 
T he group G is four to one homomorphic to M, the normal subgroup

/Ve  a-] Fc o ~ \ f —e o~\V — e o l \

\L0 eJ l_0 — cJ L o e j  L o — c j /
(7)

of G corresponding to the inden tity  elem ent of M.  From this correspondence is estab ­
lished the isomorphism

or the congruence

At ~  G'/iV

M  =  G mod N.

(8a)

(8b)
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This group is the octic group, whose m ultiplication table in term s of the group ele­
m ents shown in T able I is given in Table II. T his m ultiplication table is consistent 
w ith m atrix  m ultiplication of the m atrices representing either transform ations (4a)

T a b l e  I : T h e  t r a n s f o r m a t i o n s  o f  t h e  t h e r m o d y n a m i c  v a r i a b l e s .

Group
Element

~  E ~
Transformations II  

of F 
_ G _

~ s ~
Transformations T  

of P  
_  K _

m i
- 1 0 0 0 “  

0 1 0  0 
0 0 1 0  

_ 0  0 0 1_

f e  0 1  
o e 1,

[ :  - 3

~ —e o~ 
_ 0 C- 
" —e o~ 
_ 0 '

llh
- o o o i -  

0 0 1 0  
0 1 0  0 

_1 0 0 0_

~i o~ 
_o i_  
~i 0~ 
o —i_

" —i  o~ 
0 i_  

~ —i 0~ 
o —i_

t

nti
- o o o i -  

0 1 0  0 
0 0 1 0  

_1 0 0 0 _

~o e l  r  o e l  
_c o \ } l - e  oj ,  
~ o —c l  r  o —e l  
_e o \ y \ _ - e  o \ .

mt
- 1 0 0 0 “  

0 0 1 0  
0 1 0  0 

_ 0  0 0 1_

El  a ,  

El  H

o i~ 
_ —i  o _ 

o —i~ 
_ —i 0 _

-

m s
“ 0 1 . 0  0 -  

1 0  0 0 
0 0 0 1 

_ 0  0 1 0_

re o l  r  ~ e °~
L°  *J> L 0 i~
f e  o l  r  —e o~
L °  — J,  L 0

Vlr,
“ 0 0 1 0 “  

0 0 0 1 
1 0  0 0 

_0  1 0 0 _

~i o~ 
_° e_ 
~i o '  
_o —e_

,

.

i  o~ 
0 C -  

~ —i 0~
0

■

- 0 1 0 0 -  
0 0 0 1 
1 0  0 0 

_ 0  0 1 0 _

[ i  : ]  

[ i  : : ]

. !

.

o e~ 
_ —i  o _ 
~ o —e~ 
_ —i o_

-

tna
“ 0 0 1 0 “  

1 0  0 0 
0 0 0 1 

_ 0  1 0 0 _

~o i~
__e o _ 
~ o — i~ 
_e o_

. [ - :  a

[ - :  " 3

»

or (4b). T he non-identical transform ations of the subgroup AT are those of the trivial 
type m entioned in observation V I, and their elim ination in the process giving Eqs. (8) 
is tan tam o u n t to disregarding a change in sign of both  5  and T  or of both P  and V.
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To illustrate the general application of these transform ations the equations ob­
tained by transform ing two given therm odynam ic equations are shown in T able III . 
The two given equations are those shown in the table opposite the symbol ni„ which

T a b l e  II: M ultiplication table for the octic group.

nil 7)12 7)1 i 7)1 a 7)15 7)11 7)17 7)18

nil nil 7)1-2 7)13 7)1 A 7)h nit 7)17 7)1 s
7)1-2 7)h 7)11 7)U 7)13 7)lt 7)15 7)1 s 7)17
ntz 7)13 7)1 K 7)11 7)1-2 7)18 7717 nit 7)15
mi nn 7)13 7)1-2 nil 7)17 7)1 s nib 7)11
nis m$ 7)11 7)l7 ni& 7)11 7)12 7)1% 7)1 a
nit nit 7)l5 7)1 S 7)17 7)12 7)11 nil 7)lz
m T 7)1-1 7)1 & 7)15 7)11 nil 7)13 7)12 7)11
nig 7)18 7)1: Tttt 7)15 7)13 7)1 i mi 7)h

T a b l e  III: Exam ples of equations obtained from the transformations.

Transformation First Example Second Example

7)11
/  dS  \  1 /  dE  \  
\ d T  ) v  ~  T \ d T  ) v

/O P  \  P  1 /OE  \

\ o r  ) v ~  ~f +  Y \ o v ) T

7)12
/ o r  \  1 / o g  \  

\ 0S l p  J V o S I p
/0 V  \  V 1 /0 G  \  

V a J A  ~  J ~  J \ oF ) s

7)13
/O P  \  1 /0 G  \  
VAF ) T _  I7  Vat7 A-

/  os \  S  1 / 0G \
\ 0 V ) T ~  7  +  V \ 0T ) v

7)li
/aF\ i / 0E  \  
\ 0 P  ) s ~  ~ Y \ o p ) s

/O T  \  T  1 /0 E  \  
Vap/.?~ p  _  Y Y o s J p

7)15
/a5\ 1 /oii\
\ 0T ) p  ~  T \ 0T ) p

/OV  \  V 1 (0 /1  \
Var ) p ~  't ~  T \ o F ) p

7)11
/O T  \  1 /OF  \

\ a s ) v ~  ~ ~ s \ a s ) r
/OP  \  P  ^  1 /OF \
\  os ) v  ~ 7 + 7VaFA

7)17
/ o p  \  1 /  o n \  
w / s -  F V a F A

/ 0 T  \  T  1 /  0 H \  
\ o v ) s ~  V V V d S / v

7)1 s
/O V  \  1 /OF \  
\ 0 p ) t ~  ~ J \ o p ) r

( ° L )  ^  +
\ 0P  I t  P  P  \ 0 T  Ip

represents the iden tity  transform ation. As an example of the carrying ou t of one of 
these transform ations, the m 7 transform ation of the second equation of Table II I  is 
here given in detail. The transform ed value of E  is shown by

0 1 0  0 

0 0 0 1 

1 0  0 0 

L0 0 1 0 J

~E ~ ~H -
11 G

F E

_ C _ _ F _

(9a)

to be II.  For the (S T P V )  transform ation any  one of the four m atrices given m ay be 
used, as
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~ s ~ ~0 0 1 0" ~ s
T 0 0 0 1 T

P 0 - 1  0 0 p

_Lr _ _1 0 0 P_ _ v

Hence the equation

is transform ed into

/ d P \  _  P  1 /cI E \  

\ d T j v  ~  T + T \ d v ) 1

S d T \  T  1 / d H \  

( d V / s  ~  V ~  F  \ d s ) >

P 

V 

- T  

L 5 J

(9b)

(10a)

(10b)

Since m 7= » i6»«3 from T able II, Eq. (10b) can also be obtained by applying m% 
to the equation obtained by the »H transform ation of Eq. (10a).
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C O N S T R U C T IO N  O F A  C O M P L E T E  S E T  O F  S O L U T IO N S  
O F A  L IN E A R  P A R T IA L  D IF F E R E N T IA L  E Q U A T IO N  IN  

T W O  V A R IA B L E S, B Y  U SE  O F  P U N C H  
CA R D  M A C H IN E S *

UY

ST E FA N  B E R G M A N ”
Brown University

1. Introduction. M any problems in Engineering and Physics lead to the d eter­
m ination of a function U satisfying the partial differential equation

1 /d -U  d - U \  1 dU  1 dU
L{U) 53 + v r  + T  a(;v' y) + T  ?> T~ + ?<*• yW = 0 i 1-*)4 \  ox- Oy2 /  2 dx  2 dy

in a dom ain D , which function assumes certain  prescribed values on the boundary of
D. Here a, /3, y  are polynomials in x, y  (or can be approxim ated by such polynom ials).

Recently a procedure, “the m ethod of particu lar solutions,” has been developed 
for the solution of problems of this kind [2 ] .f T he idea of this method is to determ ine 
a t first a “com plete” set of particu lar solutions of (1.1), i.e., a set of functions each of 
which satisfies (1.1); this set [denoted by p,.(x, y), {v — \, 2, • • ■ )], is chosen in  such 
manner as to possess the property that every solution U can be approximated in any sim ­
ply connected domain by a conveniently chosen finite combination

N
23 a,p„(a, y) (1.2)
V=s 1

of the above particular solutions. In the case of the Laplace equation {d-U/dx-)  
+  (d2t/ /3 y 2) = 0 , such a se t can be obtained by taking the real and im aginary parts 
of the powers ( s + iy ) 1’-1, (v = l,2,  ■ ■ ■ ); i.e., pi = l, p i= x , pa=y, p4= * 2—y2, ps = 2xy, 
etc. In the following, a procedure will be described for finding analogous solutions 
for any equation of the form (1.1). T he second step of the m ethod consists in indicat­
ing a rule for determ ining the a„ so th a t (1.2) assumes on the boundary of D values 
which approxim ate the prescribed values of U. In order to apply the m ethod of par­
ticular solutions to  an actual problem and obtain numerical results of interest to an 
engineer or physicist, it is frequently necessary to carry  ou t lengthy com putations. 
These com putations can as a rule be performed m ost efficiently by the use of special 
com puting devices, such as punch card machines. Before the com putations can be 
carried o u t on such machines, however, it  is necessary to organize the com putations 
so th a t they can be given to the operators of the machines. T his organization is often 
a problem in itself, as in the case of the example given below.

In the present paper there is described a working procedure for com puting the 
above set of particular solutions, and for carrying ou t the associated numerical com­
putations by the use of punch card machines.

* Received Oct. 11, 1945.
”  Now at Harvard University.
t Numbers in brackets refer to references at the end of this paper.
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2. Notation. In the following, it is convenient to use the complex variables z and 
z instead of x  and y. We have z = x + iy ,  z = x  — \y, where x  and y  are cartesian coordi­
nates in the plane. We then have

U, =
dU 1 (i)U d U \  dU 1 /d U  dU \

=  — (  i  ), U-z = ------=  —  + i ----- ),
2 \ d x  dy )  dz 2 \ d x  d y j

1 1 / d 2U d-U \
U zz =  —  A U  =  —  --------+ ---------  .

4 4 \  dx- dx- )

In term s of s and ż E q. (1.1) then assumes the form

U , t  +  A U  z +  B U Z +  C U  =  0 , (2.1)

where 2A  = a  +  id. 25  = a  — id, C = y.
R e m a r k . In the above case, B  =  .4 . However, in the following we derive formulas 

w ithout m aking this assum ption and we note th a t in general (2.1) is equivalent to a 
system  of two equations, one corresponding to the real p a r t and one to the im aginary 
part.

3. Some previous resu lts  on particular solutions. T he m ethod to be described in 
the following is based on the following theorem , proved in [2] p. 542.

T h e o r e m . For every partial differential equation (2 .1) there exists a function

E(z, z, t) =  exp j^ -  J  .'lr/sj [\ +  X) tivzvQu‘\ z ,  z)J ( 3 . 1)

such that the functions*

p2,+i(2. s) =  Re j^z1' J* E(z, z, 0(1 — /2)’-I/2rf/J,

h2(z, z) =  Im [ z ' J  E(z, z, 0 (1  -  i2)’’-V2rf/J,P2̂ +2

{ v  =  0, 1, 2, • • • ), (3.2)

form  the required complete set of particular solutions,** i.e., a set possessing the properties 
mentioned in  §1. The Q(p) aref given by the recurrence formula

* As has been proved in [ l ] ,  the series (3.1) converges for \x | <  » ,  |y |  <  » ,  | / |  g l  and therefore 
the functions p„ are entire functions. W e note that they are independent of the domain for which the 
boundary value problem is considered.

In the N .A .C .A . Technical N otes Nos. 972, 973, 1018 and 1096 the functions Qw (z, z) have been com ­
puted for the com pressibility equations.

** If E(z, z , /) is real, then p-.(z, s) vanishes identically and we have to change the numeration of the 
p,.(s, s) accordingly. The proof that (7.1) w h ere / is an arbitrary function of a complex variable is a solu­
tion of (1.1) is given in [l ] §1. Substituting (lip /instead of into (1.16) of [l ] p. 1174 and integrat­
ing with respect to s we obtain (3.3). (N ote that there are som e m isprints in [l ] which are indicated in 
the Trans, of the Amer. M ath. Soc. vol. 57, p. 311, Footnote 15.)

t Unless otherwise indicated the arguments of the functions Q ip), F, A , etc., are (z, z).
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(i)Q - 2  f  Fdz,

 L _ 0) +  +  FQ(p- " ) d z \
2/1 -  1 L j  0 J

(/■ =  2, 3,  4, • • • ).

Q<P)(S, 0) =  0, (/» =  1, 2, 3, ■ ■ • ),

where

D yl^/s +  7?, /' /I 7? -  A 2 +  C.

If the coefficients A ,  B , C of (2.1) are polynomials

;V A' A' A' AT A’

A  =  2 3  2 3  & m ,n Z mZ n j ^  == 2 3  2 3  C  =  2 3  2 3  ^ * n .»2W,S n »
m=0 n»=*0 m=*0 n=0 rn*=0 n*= 0

then for the coefficients dWi» and / m,„ of the developm ents

.V M  -U

f l = E Z  d m ,nZ mZ n , f = E E  U , n Z mz n,
m=»0 ?i=0 m®0 n=0

we obtain the relations

(?« +  l ) a m+i ,„ _ i
d o tn ~  hotn, (7m, 71 "4“ bjn,ny

/-
[ i=m n “]

(ill “1“ “b  ̂  ̂ i I ~b n,n*

,'=,0 j-0 J

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

4. D eterm ination of the <2(p). Since the .4, 5 ,  C (see (2.1)) are assum ed to be 
polynomials, D  and F  are also polynomials in z, z, as is indicated in (3.6). (Both F  
and D  are assum ed to  be of the same degree; th is is always permissible, since some 
f ’s or d's can be assumed to  equal zero.) We now write*

(p —1) -r~ ' v ~ ' (p —D  (p —1) ,
Q = 1 ^ 1 ^  Q i j  22 , qit0 = o, (4.1)

and proceed to  the representation of q(̂ n in term s of the q% °. Form al com putations 
yield

Up-1) v 1 O'—1 v '  / • I (p—1) ' J
h  = ¿ 1  zZjQ i.i  22 =  L ,  0  +  !)?.'./+ lS S ,

* The relations — 0 follow from the equation Q(,,_1)(z. 0) = 0 . See (3.3). N ote that if one of the 
subscripts m , it of dm,„ becomes negative or larger than M , it is necessary to substitute 0 for the corre­
sponding dm,n. The same holds for
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X S (/*.« +  /».I* +  /».J2 +  ' ' ' ) J X z (?*'.lS +  i/i.23 +  • • • )

DQ.
(p -1)

[?

E V *  / V '  V '  r  (P—D  \
2 - , I 2 -j ¿Li fm —i,n—jQ i,i JZ Z i 

m n \ t—1 j=t 1 /

| [ s . V .

(4 .2 )

+  2</ i ,oS +  Sqi,jZ +  • • • )

= X x (  X X (./ + D ^ Ä ) ‘Vm n \  »«0 ;-0 /
n+1

Z o  I v - '  r~v  . j  ( p —1) \  m _ n
2 - ,  I 2 -i 2 - i  jd m —l.n -J + lQ i.i  I s  z  i
,t \  i-0 j- 1 /

„ ( p - n
/‘<2 +  £>0 ; —X s X {rf— 1,091,1 +  [2rfm-i,o9«.2 +  (rf«-l.l +  /m-»".0)9112]

i - 0

+  [3rfm_i,o9i.3 +  (2<£m—i, 1 + /m -i,o )9 i,2  +  (¿m -i,2 +  /m -i,l)9i,l ]s +  • • • }

L  r X  X  (jdm-i.n-i+1 +  / m - i .n - ; ) ? . ' .+  (« +  1) X  ^m-i,09i,n+l J 2 S . (4.3)
in n L.  i - 0  r

Therefore

(i)
q m ,k

2

(p) 2
q«i, i — ~~

2 p -

Cp) 2

(4.4)

Qm ,n
2 p

 f" X dtn-i.OQi.l "I" (W!— 1 L i-0
r~ 1 m n—1

- - X X
1 L n i-o i- i

(P-i)
l)9m + l.l , (/> =  2, 3, • • • ),

(k d m —i , n —k “I” f m —i , n —k —l ) Q i , k

, V ' (p- 1) L t Cp- n+ X (rfm-i,09i.n + (»» + 1)9».+1

(4.5)

(w =  0, 1, 2, • ■ • , 11 =  2, 3, 4, • • • , p = 2, 3, • • • ).,

5. Evaluation of the qi£n. If we assum e th a t  the dm,n and are determ ined, the 
evaluation of the q$„ represents a considerable com putational task. M erely w rit­
ing down the various pairs which have to be multiplied together and adding the re­
sulting products is quite laborious. Therefore, it is convenient to organize the 
determ ination of the q$n in such m anner th a t  one can sec autom atically  w hat 
quantities have to be m ultiplied and added. After such a procedure has been de­
veloped it can be conveniently employed for performing the com putation on punch 
card machines.

We shall describe such a procedure, assuming for the sake of sim plicity th a t M  
in (4.1) is a given num ber, nam ely M  = 3. T he changes th a t have to be made when M  
assumes other values are in m any instances clear. If however this is not the case, 
then we shall w rite these formulae ou t explicitly for the general case, i.e., retaining M.  
T he expressions q ^n (£>>!) to be evaluated are given in (4.5) in the form of sums of
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products of two sets of num bers; the first set are the coefficients of gyT1*, ancl the 
second set are g£*-1). This suggests the construction of a set of cards and stencils. 
The coefficients of gift- 11 are entered on the cards. T he stencils arc cards with holes cu t 
in them, and the quantities gi,t-1> are entered on the stencils in such a way th a t when 
a stencil is placed over a card properly, quantities on the cards appear in the holes 
in the stencil beside the giit-I) by which they are to be multiplied.

A card is constructed for each value of n ; these cards are called the [S, n]  cards. 
A stencil is constructed for each value of p \  these stencils are called the [Q, P \  
stencils. In order to com pute g®, and hence construct the [Q, p ]  stencil, we require 
the [Q, p  — l ]  stencil and the [S, n] cards corresponding to* « =  1,2,  • • • , p ( M + 1).

Each [S, «] card contains a m atrix  {s®} of M  + 2  rows and M  + 1  columns; 
r indicates the row and k the column. Also when il 1 = 3,

Sr.l; =  ---- [ ( »  +  T —  5) i/4_J.,6_r +  f i - k A - r ] -
II

(n) . , (») , , <») , / (») , /
5 l. l  =  /3.3/W  S 1 ,2 =  J 2 ,3/ 1 1  J l .3 /1.3 /W  5 1,4 — / 0,3/W

$ 2 .1=  $ 2 .2 =  [(H —3 ) i/2.34-/2.2]/** $2.3— ^2,4= [(w~“3 )i/o.3”h/o.2]A*

3̂.i>= [(w —2)^3.2-f/3.i]/« sl,z=  [(n — 53.3=  [(n—2 )di,2-{-fi,i\/n  53.4=  [(«—2)rfo.2+/o.i]/«

54.1=* [(^  1)¿¿3.1 "H fsto\/H s{,2=  [ ( »  — l) < / j, l+ /2 .o ] /w  54,3= [(W““l)< il.lH " /l.o ]/w  54.4= [(W"” l)rfo ,l+ /o ,o V w

(n) , (n) , (n)_ , (n)
5&,1=  « 3,0 ^4,1“  “ 2,0 5fj, 3— “ 1,0 5^,4— “ o.O

F ig. 1. A [S, n]  card** in the case M  =  3.

For n ^ M + 1 (i.e., in our case for 4), the elem ents of the first M + 2 — n lines 
are to be set equal to zero, i.e., in our case 4 ”) =  0 for k ^ S  — n.

A [Q, p ] stencil consists of (p +  l ) ( ih /+ l )  — p  columns and (p - \- l) (M -\- l)  rows. 
T he g®„ in the last M  columns and M -\-1 last lines are equal to  zero. In  the case 
M  =  3, typical stencils are as shown in Figs. 2 and 3 (toe interiors of the rectangles 
should be cu t out).

T he num ber of remaining columns in any stencil will be three greater and the 
num ber of rows four greater than  in the stencil for the preceding value of p. The 
[Q, l ]  stencil has 7 columns, 7 “deleted” columns, and 8 rows; hence the [Q, 2] 
stencil will have 10 columns, 10 “deleted” columns, and 12 rows; etc. (The [Q, l]  
stencil has 7 columns ( +  7 “deleted” columns) and 8 rows and the S cards have 
4 columns and 5 rows.) See Fig. 2.

Each m em ber gjfj, on the [Q, p } stencils is specified by three numbers, one super­
script and two subscripts. The superscript remains constan t for each Q stencil, i.e., 
all num bers com puted for the [Q, 2] stencil will have the form g®,, for the [Q, 3] 
stencil g®„, etc. T he subscripts give the position of the num ber on the paper, indicat­
ing column and row respectively; gi|l means th a t the num ber is on the [Q, l ]  stencil 
in the fourth column and third row; gffj th a t the num ber is on the [Q, 2] stencil in 
the fifth column and second row; etc.

* W e note that in increasing p  to p  + 1 the number of [S, n \  cards increases to ( p + l ) ( M + 1); 
however p ( M + 1) of these cards are exactly the sam e cards used at the jHh stage, so that it is necessary 
to prepare only M  + 1 new [S, n ] cards.

** The numbers on the S stencil are the coefficients of q , q ¡, " in (4.5).
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q(1>
0,1 q (1)

1,1 2,1

q(1)
0,2

q(1)
1,2 2,-2

q<L>
0,3 1,3 2,3

q(1)0,4 q<«
1,4

q(1)2,4

0,0 1,5 O r:

0,6 1,6 '2,6

q(1)
0,7 1,7 2,7

q(1)
o,a 1,8

I (l)
2,8

F i g . 2 .

Using (4.4), we determ ine g ^v, (m = 0, 
p = 5, 6, 7, 8) we set equal to zero. T hus 1 
catecl in Fig. 2. T he stencil [Q, 2] consists 
deleted columns, i.e. the holes in the stencils 
pu tation  of the [Q, 2] stencil. T o com pute q 
script (m, n) indicates the q^„ on which w< 
four more rows and three more columns o 
stencil, there will be no corresponding 
in these last 3 columns and last four rows 
s tru c t the rem ainder of the [Q, 2] stencil, 
[S, w] card so th a t the num ber 4r+2,M+i on 
left of q^n * There are then 20 num bers on 
num bers on the [Q, l ]  stencil, which indica 
be obtained; once the products are com put 

In  this m anner we m ay ten ta tively  fill i 
pu te the product of (m +  l )g i^ lin and add tl 
num ber is m ultiplied by —2/3  [in the case < 
tain the “final g®jn” of the stencil [Q, 2], 

Having com pleted the [Q, 2] stencil we i 
[Q, 2] and g®, replacing [Q, l ]  and q ^n, re 
Similarly, we can com pute as m any Q stenc

il [Q, 1].

, 2, 3, /) =  1, 2, 3, 4); &)v (m = 4, 5, 6 or 
e stencil [Q, l ]  has the appearance incli- 
of 10 columns and 12 rows (besides the 

). See Fig. 3. We now proceed to the com- 
22, we proceed as follows: the second sub- 
: m ust fix our a tten tion . Since there are 
n the [Q, 2] stencil than  on the [Q, l]  
for these last colum ns and rows— we fill 
an the [Q, 2] stencil with zeros. T o con- 
ive place the [Q, l ]  stencil on top of the 
the [S, »] card occupies the space to  the 
the S card ad jacent (on the left) to 20 

tes the products (20 in all) which have to 
cd they  are to be summed, 
n the whole [Q, 2] stencil. Now we com ­
bs to  each of the “ten ta tive  If this
jf an a rb itra ry /)  by — 2 /(2p  —1)], we ob-

nay  repeat the above operations b u t w ith 
spectively, to com pute the [Q, 3] stencil, 
ils as desired.

* "here [Q, l ]  stencil covers the [S, 4 ] card, and the arrangement for the com puta­
tion of is indicated.
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F ig. 3. Stencil [Q, 2].
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AS)
-Ml

AS) AS) 
* 13

J5)
¿14

..(5)sn ,.(5)
■'22

J5)
S23 ß

¿24
(5)

•*31
,(S)
■'32

J5)
'3 3

J5)
¿34

,(5>
'Ml

-<5)
■'42

v(5)
'M3

c(5)
¿44

.(8)
■'51

AS)
■52

J5)
'5 3

J5)
¿54

F ig. 4. [S, 5) card.

6. Example. In this section, we shall illustrate our general descritpion by a spe­
cific example. We shall indicate the operations to be performed on punch card m a­
chines only. T he arrangem ents and the m ethods of how the com putation is to be per­
formed on these machines can be found in books on punch card m ethods e.g. in [3], 
More specifically we refer for operations concerning complex num bers to [4], and for 
com putations used in the present paper to [5].

( 5 )
8

11
q «

0 , 1

( 5 )
8 1 2

1 , 1

( 5 )
8

1 3
q < * >

2 , 1

( 5 )8
1 4
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3 1

q(D
0 ,3

s ' 5 )

3 2

qCD
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s ' 5 )

3 3

q(D
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s ' 5 )

3 4

q(D
3 , 3

, ( 1 )

4 , 3

q ( D

5 , 3

q(l)
6 , 3

s'5>
4 1

,«ł >0 ,4
s'5)

4 2 1 , 4
s '5)

4 3
, (1)

2 , 4
s'5)

4 4
q(l>

3 , 4
, (1)

4 , 4
q(l)

5 , 4
q «

6 , 4

e<5>
5 1

qW
0 ,5

s '5)
5 2

q « «
1 , 5

b'5)
5 3

q «
2 , 5

s'5)
5 4

q W
3 , 5

q «
4 , 5

qW
C ,  5

q «
6 , 5

n(1) o(1) a(1) q( l) r.W „ «
0,6 1 , 6 2,6 3 , 6 4 , 0 5 , 6 6,6

qW
0 ,7 1 , 7 2 , 7

q(l)
3 , 7 4 , 7 <(li5 , 7

q «
3 , 7

q(l)
o,a 1 , 8 2,8 3 , 8 4 , 8

q<«
5 , 8

q «
6,8

1' IG. 5. V  hen stencil [Q, 1 ] is placed on the [S, 5 ] card in order to com pute g^'l, the appear 
as indicated above. £ « £ ¿ * £ + 1*2 !. gives the “tentative $ £ .”

As an illustration of the above method, we now give am,„, bm,n, cm,n the specific 
values,

2m n +  i ( » t ’ — n1)



(/«  +  n ) +  i { m  — it)
Cll.U 1» Cpt n ' '

(»* +  11 )

In Table 1 the values of dm,„ and /«,» which have been determ ined according to 
(3.7) and (3.8) are tabulated  for » ¡= 0 , 1, 2, 3, 4, n  =  0, 1, 2, 3, 4.
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T a b le  1. T he values of d,„,„ and

m n Re(d„,,„) Ini Re I m

0 0 1.0000 0.0000 0.0000 - 1  .0000
1 1.0000 0.0000 - 1 .0 0 0 0 0.0000
2 0.2500 0.0000 - 0 .5 5 0 0 2.1000
3 0.1111 0.0000 - 0 .3 7 7 8 2.7167

1 0 1.0000 0.0000 0 .0000 - 2 .0 0 0 0
1 0.0000 - 2 .0 0 0 0 - 2 .1 0 0 0 - 1 .2 0 0 0
2 - 0 .8 0 0 0 - 0 .6 0 0 0 - 3 .4 0 0 0 1.6500
3 — 0.6667 0.0000 - 3 .1 9 6 2 3.5581

2 0 1.0000 0.0000 0 .2500 - 4 .5 0 0 0
1 0.0000 - 3 .2 0 0 0 - 3 .2 0 0 0 - 4 .0 5 5 0
2 - 0 .9 0 0 0 - 1 .2 0 0 0 -5 .4 9 4 2 - 1  .1538
3 -0 .9 2 3 1 - 0 .3 8 4 6 -6 .0 1 5 4 1.6216

3 0 1.0000 0.0000 0.2222 -5 .9 1 5 7
1 0.0000 - 4 .0 0 0 0 - 3 .2 3 2 4 - 6 .3 1 8 3
2 - 0 .9 4 1 2 - 1 .7 6 4 7 - 6 .2 1 5 4 - 4 .0 2 1 6
3 - 1 .0 6 6 7 - 0 .8 0 0 0 -7 .6 5 3 4 - 1 .1 2 0 0

To determ ine by.use of punch cards we proceed as follows: for each num ber 
on an S card, we make one punch-card, and separate into groups. Thus, in order to 
com pute the [Q, 2] stencil which has 8 rows we would need 8 groups of S cards. See 
Table 2. In the group [S, l ]  there would be four cards, in [S, 2] eight cards, in [S, 3] 
twelve cards, in [S, 4] sixteen cards, in [S, 5] and in all succeeding groups tw enty  
cards.

We arrange the num bers in the first line of the [Q, l ]  stencil (sec T able 3) as 
follows:

Ço.i 0 0 0

ffW
„ 0 1
90,1 0 0

„ 0 )
92,1 <7(1)9 i , i nM90,1 0

23,1 u (l)92,1 91,1 Ço.i

94,1 s i1}
r 0>
92,1 î S

, / »
95,1 « a

J i )
93,1

r 0 )
92,1

c (1)96.1 ë o (1)94,1
At)
93,1

For each of these we punch one card and separate into groups as indicated. We do 
the same for each row of the [Q, 1 ] stencil, so th a t we will have seven such groups in 
to tal. (There are then four ^oii, 2m . • • ‘ cards and a to tal of six zero cards.)
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T aule 2. The values of .si"', for « =  1, 2, 3, 4, S.*

[Vol. IV, No. 3

n i j R e ( # ) I m ^ ’,0) n i j R e (4 ;}) (Im (4;>)

1 5 4 1.0000 0.0000 4 5 3 1.0000 0 .0000
5 3 1.0000 0.0000 4 3 0 .0000 - 2 .0 0 0 0
5 2 1.0000 0.0000 3 3 - 0 .9 2 5 0 - 0 .6 0 0 0
5 1 1.0000 0.0000 2

5
3
2

- 1 .0 1 6 7  
1.0000

0.4125
0.0000

2 5 4 1.0000 0.0000 4 2 0.0625 - 3 .3 7 5 0
4 4 0.5000 - 0 .5 0 0 0 3 2 - 1 .2 5 0 0 - 1 .6 1 2 5
5 3 1.0000 0.0000 2 2 -1 .6 0 4 3 - 0 .3 8 4 6
4 3 0.0000 - 2 .0 0 0 0 5 1 1.0000 0 .0000
S 2 1.0000 0 .0000  "" 4 1 0.0555 - 4 .4 7 9 2
4 2 0 .1250 - 3 .7 5 0 0 3 1 - 1 .2 7 8 7 - 2 .4 6 1 9
5 1 1.0000 0.0000 2 1 - 1 .8 2 0 5 - 1 .2 0 5 4
4 1 0.1111 — 4.9583''

1.0000 0 .00005 5 4
3 5 4 1.0000 0.0000 4 4 0 .8000 - 0 .2 0 0 0

4 4 0.6667 —0.3333' 3 4 - 0 .0 5 0 0 0 .0000
3 4 - 0 .2 5 0 0 0.0000 2 4 - 0 .0 6 5 5 0 .4200
5 3 1.0000 0 .0000  J] 1 4 - 0 .0 7 5 5 0.5433
4 3 0.0000 — 2.0000 5 3 1 .0000 0 .0000
3 3 - 0 .9 6 6 7 - 0 .6 0 0 0 4 3 0.0000 - 2 .0 0 0 0
5 2 1.0000 0.0000 3 3 - 0 .9 0 0 0 - 0 .6 0 0 0
4 2 0.0833 - 3 .5 0 0 0 2 3 - 0 .9 4 6 7 0.3300
3 2 - 1 .3 6 6 7 -1 .7 5 0 0 ^ 1 3 - 0 .6 3 9 2 0 .7116
5 1 1.0000 o .o o o o ’“1' 5 2 1.0000 0.0000
4 1 0.0741 - 4 .6 3 8 9 4 2 0 .5000 - 3 .3 0 0 0
3 1 -1 .3 9 1 2 - 2 .6 9 4 3 i"1: 3 2 - 1 .1 8 0 0 - 1 .5 3 0 0

2 -1 .4 6 8 1 - 0 .3 8 4 62
4 5 4 1.0000 0.0000 1 2 - 1 .2 0 3 1 0.3243

4 4 0.7500 - 0 .2 5 0 0 5 1 1.0000 0 .0000
3 4 - 0 .1 2 5 0 0.0000 4 1 0 .0444 - 4 .3 8 3 3
2 4 - 0 .1 0 9 7 0.5250 3

2
1

1
1
1

- 1 .2 1 1 2  
- 1 .6 6 9 7  
- 1 .5 3 0 7

- 2 .3 2 2 5
- 1 .1 2 4 3
- 0 .2 2 4 0

T a b l e  3. The values of g”’*.

m k R etei") m • Refsl" ) Ini (si” )

0 1 0.0000 2.0000 2 i - 0 .5 0 0 0 9.0000
2 1.0000 0.0000 2 3.2000 4.0500
3 0 .3666 - 1 .4 0 0 0 3 3.6628 0.7692
4 0 .1889 - 1 .3 5 8 3 4 ■ 3 .0077 - 0 .8 1 0 8

1 1 0.0000 4.0000 3 1 - 0 .4 4 4 4 11.8333
2 2.1000 1.2000 2 3.2324 6.3183
3 2.2667 - 1 .1 0 0 0 3 4 .1436 2.6810
4 1.5981 - 1  .7791 4 3.8267 0 .5600

* The s ^ ’s for n =  6, 7, 8 have to be com puted in a similar manner.
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S tarting 'w ith  the group of cards for line one, we take the “d o t” product for each 
sub-group w ith the [S, l ]  cards.* Let the num bers in the first row of the [S, l ]  card 
be denoted by s ^ ,  4-i. »53. »54? I we then have to com pute the following products:

$•»21 + o -4S + o -4l + o  :,g
si!i ■ 4!l + 4!i -4!l + 0 -4!* + o -

• ■.................... si!’-4!] + <ii,b 4!J +"so!i'«M + 0 -4!’
41) i „ 0 ) .  4 l) i „«>.,.(1) i „ (0 .4 1 )93,1 -'5,4 I 92.1 »5,3 9l,l »5,2 > 9o,l »5,1

.(1)5,1r 0 ). d0 _i_ „(1). 40 _l „(1). -0) 4- n(1) • d ‘>94,1.. ''5,4. I 93,1 »6,3 * 92,1 »5,2 ' 31,1 »1

T he actual procedure is to form the products 4u'4li> 2u’'4!l> sili'4!<> 
o -413/ So!i-»11 9u  • 4!;’ and en ter these together with appropriate signs etc. on the 
corresponding cards. These cards are then assorted in sub-groups as indicated and the 
products summed to yield the desired “d o t-p roduct.”

T o com pute the num bers'w hich are to appear in the second line of the [Q, 2] 
stencil, the num bers in the second line of the [Q, l ]  stencil are arranged as follows:

V7(l) HO,2 . ‘ 0 0 0
n{l) ’ Hi,2 3ÔÎ2 0 0

- ctt 9o.l 0

$ t ; (,)92,2 9 $ SoM

„(0
96,2 9.5.2 94,2 9 $

n u m b e r s o n e  c a r d  i s p u n c h e d  a n d s e p a r a t e d

cards as indicated below, using the cards previously punched for the first line of the 
[Q, l ]  stencil:

o(1)90,2 o(1)9o,i 0 0 0 0 0 0
o(,i91,2 „(09i,i 9o,2 4 1) 9o,i 0 0 0 0
„(1)92,2 92,1 9l,2 o(1)91.1 i7(1)9o,2 4090,1 0 0
rt<0 „CO _C0 „(0 40 41) 41) „<09.3,2 93,1 92,2 92.1 9l,2 9 i.i il),2 9o,i

The dot product of each of these groups in the [S, 2] cards are then taken. T hus:

Qo,i ' d2)5,4 4_ „(1). of*) 9 9o,l »4,4 + 0 ■42)»5,3 +  0 ,(2)4,3 +  0 -4S +  0 .‘i g +  o •»54 +  o • S-(2) »4,1

$ •
42)»5.4 4- nw ■ t(2) i 9 3,1 *4,4 + r (0 . 92,2 42)»5,3 4- r °).92,1 ■42)4,3 +  9ÏÏ-»S + : « M +  9o?2■42 +  9o!’• s(2) »4,1

T he actual products are again taken as indicated before, and then reassorted and 
summed.

T his process is repeated for each line of the [Q, 1 ] stencil until each group has 
tw enty  cards in it, after which the first line is discarded when a new line is added so 
th a t there are never more than  tw enty  cards. In this w ay the “ten ta tive  [Q, 2] s ten ­

* N o te  th a t,  in general, bo th  and  4 »  are  complex, and in c n le r  to  com pute  glP„ 11 • on punch
card m achines we have to  use rules for th e  ev a luation  of com plex num bers.
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cil” is com puted and it is necessary only to add (w +  l)gm+i,n and m ultiply the result 
by —2/3 to obtain the actual values of the elem ents of the stencil [Q, 2]. This pro­
cedure m ay then be repeated to  obtain the values of the elem ents of the stencils 
[Q, 3], (i.e. the quan tities g^ ,) [Q, 4] etc.

In Tables 2 and 3 the values of the elem ents of the cards [S, n \  and those of the 
stencil [Q, l ]  are given.

7. Conclusion. Application of the differential analyzer to the construction of par­
ticular solutions. As soon as a sufficient num ber of [Q , p ] stencils (i.e. q^„) have 
been prepared we can, by (3.1) and (3.2) and standard  m ethods of evaluation of 
polynomials on punch card machines, determ ine the values of p2,_i and p2, for a suffi­
ciently dense lattice of points.

The second step, the determ ination of the coefficients a, in the expression (1.2) in 
order to obtain a solution of (1.1) which assumes the prescribed boundary values, 
will be discussed in a subsequent paper. The basic idea of the procedure to  be em ­
ployed has already been indicated in [2]; we shall however discuss this in more detail 
from the point of view of numerical analysis.

Sometimes we need solutions of (1.1) in connection w ith questions o ther than  the 
boundary value problem, and it is convenient to  apply the m ethod of particu lar solu­
tions in the following slightly modified form.

As was proved in [ l] , §1,

U(z, z) = J  ‘ E(z, 5, 0 / [ (* /2 ) ( l  -  n ]d t/ (  1 -  r-y>\ (7.1)

w here/  is an a rb itra ry  analytic function of a  complex variable, which is regular a t  the 
origin, is a solution of (1.1).

There are instances in which a large num ber of solutions of the sam e equation 
are required, and the corresponding fu n c tio n s /a re  known. (See (7.1).) (This situation  
occurs, for example, if an “a tla s” of solutions has been prepared.) In these cases it  is 
then very convenient to em ploy graphical methods. In  the following we shall indicate 
two graphical m ethods for the evaluation of (7.1). Both can be perform ed con- 
viently by use of a differential analyzer.

I. One prepares once and for all for a given equation (1.1) diagram s in which the 
curves

Y  =  E x(z„, s „  t ) =  Re [E(z„ z „  t )  j, — 1 g  t  g  1, (s„, z , )  fixed,

Y  =  E 2(z,, z„ t) = Em [E(s„, z„ /)], — l i d  1, (z,, z„) fixed,

for a num ber of points (x, y) = (x„, y„), v = l, 2, 3, • ■ • are drawn. F u rth er one has to
prepare tables for the values -¿2,(1 —/£), for fM=  —1, — 1 + a ,  — l+2or, • - - , 1, where
a  is a sufficiently small positive constant. z„ — x ,+ iy ,  denote the coordinates of points 
mentioned above. If now the function f(z) = u(z, s)-Ht>(s, 2) is given, say in the form 
of two diagram s for curves m(z, z )= co n st. and i»(z, z) =  const., we draw  (using the 
tables m entioned above) the curves

Y  =  « [z ,(l -  /2), ¿ (1  -  I2)], V = v [z,.( 1 -  /-), z ,(l -  /?)], - l i / i l .  (7.3)

Using these diagram s and those m entioned above and employing a differential an a­
lyzer (or sim ply an in tegrator) we com pute the real part of (7.1),
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/ . <-i
[ E l { z „  Zy, t ) u [ j jZ y {  1 — t ' ) ,  1 -  / - ) ]

i — 1
— E 2( z „  Zy, / ) » [ ï Z , ( 1  — t'1) ,  is i . (  1 — t 2) \ \ d t ,  ( 7 . 4 )

and analogously its im aginary part.
II. Sometimes it is not sufficient to determ ine the values of (7.1) a t  a set of points 

(.v»t y,) which arc prescribed in advance. Then one can apply the following procedure 
which was suggested to the au tho r by M r. Hans K raft.

One prepares (once and for all) diagram s

E i{z ,z ,h )  = const., E->{z, z , t v)  =  const.,/„ const. t7 -5 )

for a set of values ly — — 1, — 1 + a ,  — 1 + 2 a, * - - 1.
Using these diagram s and the tables (described in method I, for every required 

value of 2 we can easily determ ine the curve (7.3) and evaluate the real and im aginary 
p art of (7.1).

Remark. The procedure I can be performed by the use of punch card machines. 
In this case instead of diagram s (7.2) it is necessary to prepare m aster cards.

T he au th o r should like to thank  Professor George E. H ay for his exceedingly help­
ful advice and friendly criticism.
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T H E  LIFT OF A D ELT A  W IN G  AT SU P E R SO N IC  S P E E D S*

MACH CONE AT THE

H. J. STEWART 
California Institute of Technology

1. Introduction. T h e  use of th e  tw o d im ensional linearized th eo ry  of supersonic  
flows in  th e  so lu tion  of airfoil problem s as in troduced  b y  A ck ere t1 has been ex trem ely  
successful in solving these problem s and  the  resu lts  have generally  been com plete ly  
sa tis fac to ry  for engineering purposes. T h e  generalization  of these re su lts  to  th e  th ree  
d im ensional finite span  problem s has, how ever, progressed ra th e r  slow ly due  to  m a th ­
em atica l com plications. T h e  flow n ear th e  tip  of a  rec tan g u la r w ing w as given (in ­
co rrec tly ) b y  S ch lich ting .2 T h e  d rag  of a “d e lta ” w ing (a  w ing hav ing  an isosceles 
triang le  for its  p lanform  w ith  th e  sy m m etric  v ertex  po in ting  in to  th e  oncom ing flow 
as in Fig. 1) has been de term ined  by  P u c k e tt.3 T hese tw o flow p a tte rn s  an d  m any  
o th e r  techn ica lly  in te restin g  finite span  flow problem s are  p a r tic u la r  cases of conical 
flows. A conical flow is one for w hich the  fluid p roperties  (pressure, velocity , etc .)

a re  c o n s ta n t along each rad ia l line e m a n a t­
ing from  th e  given origin. T h e  co n cep t of 
a conical flow w as given by  B usem ann* who 
developed  ce rta in  general techn iques for 
tre a tin g  these  flows an d  who app lied  the  
m eth o d  to  several p rob lem s includ ing  
S ch lich tin g ’s problem .

T h e  m eth o d s of an a ly sis  used by  B use­
m ann  have, how ever, p roved  to  be ra th e r  
obscure, an d  it  has been found d ifficult to 
follow these  m ethods in th e  so lu tion  of 
ad d itio n a l conical flow problem s, in p a r­
ticu la r th e  c u rre n tly  very  in te re s tin g  p ro b ­
lem of th e  lift of a d e lta  w ing. A new 
m ethod  of tre a tin g  these  conical flow a ir ­
foil p rob lem s w hich uses th e  well know n 

th e o ry  of conform al tran sfo rm a tio n  h as  been devised . I t  is th e  purpose of th e  p res­
en t paper to  discuss th is  m ethod  an d  to  ap p ly  th is  m ethod  to  th e  problem  of the  
lift of a d e lta  w ing. In  th is  ap p lica tio n  it  is only  necessary  to  consider th e  case for 
w hich th e  lead ing  edges of th e  d e lta  w ing a re  w ith in  th e  M ach cone from  th e  vertex . 
T h e  o th e r  case for w hich th e  lead ing  edges a re  ou ts id e  the  M ach cone has a lread y  
been solved by  P u ck e tt.

In  the  p re se n t m ethod  no essen tia l m a th em atica l difference is found in th e  so lu tion  
of th e  tw o cases.

F ig. 1. Delta wing in a supersonic flow.

* Received May 21, 1946.
1 J. Ackeret, Z.F.M., 16, 72 (1925).
5 H. Schlichting, Luftfahrtforschung, 13, 320 (1936).
3 A. J. Puckett, Aero. Sei. (To be published shortly).
4 A. Busemann, Schriften der Deutschen Akademie für Luftfahrtforschung, 7B, 105 (1943). Also 

Luftfahrtforschung, 12, 210 (1935).
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2. General theory of conical flows. I t  is well know n th a t  the linearized th e o ry  of 
s tead y  supersonic flows is based on th e  P ra n d tl-G la u e rt equation ,

d2P d-P d'2P
(1 — M 2) ---- + -------+  —  =  0,

dx2 ¿>v2 ds2 ( 1 )

.w here the u n d is tu rb ed  flow of M ach n u m b er M  is tak en  to  be parallel to the  x  axis. 
H ere, P  m ay  d en o te  a  velocity  o r acceleration  p o ten tia l, o r one of the  velocity  com po­
n en ts  u, v, w in rec tan g u la r C artesian  coord inates x t y, z, o r a  p ro p e rty  of th e  s ta te  
of th is fluid such as p ressure or en th a lp y . I t  can  be seen th a t  the  coo rd inate  tra n s ­
form ation

r—LM2 -  1

■ c
1 -  (M- -  1)

(y2 +  s2) 

y 2 +  z

1 / 2 R  cos to

MY/ M -

x*

- 1 / 2

=  [1 -  (A/2 -  1) ta n 2 w]- 1 / 2

6 =  tan-1 (y /z ),

w here R = (x2+ y 2+ 32)1/2 an d  w = 
eq u a tio n , Eq. ( 1), in to

( 2)

= ta n  I [(y2-hzî) ‘/î/* ] ,  tran sfo rm s th e  P ra n d tl-G la u e r t

2 d2 l
d>

+  2r
dP
dr + (1 -  A*2)

dF  
d/a _

+
1

d2P
dd-

0. (3 )

T h e  surfaces on w hich 8 is c o n s ta n t are  the  m erid ional p lanes th ro u g h  th e  x  ax is; 
the  surfaces on w hich ¡x is c o n s ta n t are cones ab o u t the  x  axis; an d  th e  surfaces on 
w hich r is c o n s ta n t a re  hyperboloids. I t  m ay  also be no ted  th a t  r  =  0 and  m = 00 on 
the  M ach cone th ro u g h  the  origin. B oth  p and  r are  real w ith in  the  M ach  cone and 
com plex ou tside  it. T h e  harm onic  so lu tions of E q. (3) m ay  be w ritten  in the  form

P = Y . a ,
(r 1 (P .

‘ I r " "  ’ 1 k "Q & )  s \  sin (md)) ’
(4)

by  the  well know n th eo ry  of th e  L ap lace eq u a tio n . H ere, P ”‘ and  <2» deno te  Legendre 
functions of the  first and  second k ind , respectively . B y in tro d u c in g  th e  norm al sp h eri­
cal coo rd inates as given in E q. (2), Eq. (4) is seen to  give th e  harm on ic  so lu tions of 
the  P ra n d tl-G la u e rt eq u a tio n  in  spherical coord inates.

B u sem an n ’s conical flows are included in th e  general solu tion  of Eq. (4) as a special 
case. F o r exam ple, if P  is a ve locity  po ten tia l, th en  n — 1. On the  o th e r hand , if P  
is one of the  C artesian  velocity  com ponen ts (m ,  v , w ) ,  a p ro p e rty  of th e  s ta te  of the 
fluid such  as the  pressure o r en th a lp y , or th e  accelera tion  p o ten tia l, then  « = 0 .  I t  
is th e  la t te r  case w hich is of p a rtic u la r  in te re s t here, for P  is then  in d ep en d en t of r, 
and  E q. (3) becom es

(m2 -  1 )
dn

a2p
H 7 = 0.

aa2
(5)

I t  is a p p a re n t th a t  th is  m ay  be reduced to  th e  L aplace eq u a tio n  in tw o d im en­
sions;* in fac t, if

This result was first communicated to the author by Mr. W. D. Hayes.
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'/* +

E q. (5) becom es

d (  d P \  d2P
s — I s  ) -t =  0 .  ( 6 )

d s \  d s )  dd2

T his is th e  norm al form  of th e  L aplace eq u a tio n  in tw o dim ensional po lar coo rd inates. 
I t  is seen th a t  s  is a  function  only  of n  an d  is th u s c o n s ta n t on a n y  one of the  cones for 
w hich co is co n s tan t. T h e  re la tio n s betw een  5 and  co arc  as follows:

\ / M 2 — 1 tan co
5 =  ...... 7= ^ -— ^ .-:.:r................................ (7 )

1 +  \ / l  -  (M 2 -  1) ta n 2 co

y  25
\2 M 2 — 1 tan co =   -----------  (S)

1 +  5 2

I t  m ay  fu r th e r  be no ted  th a t  5 =  1 on th e  M ach  cone th ro u g h  th e  origin.
Since the  redu c tio n  to  Eq. (6) is possible, an y  of the  q u a n titie s  w hich P  m ay  

rep resen t can  be w ritten  as the  real (or im ag inary) p a r t  of an  a n a ly tic  function  of 
the  com plex v ariab le  f  w here

r  =  se'e- (9)

F u rth e rm o re , all th e  m ethods of tre a tm e n t of such functions, in p a r tic u la r  the  m eth o d  
of conform al tran sfo rm atio n , m ay  be used in th e  analysis of these  q u an titie s . If P  is 
the  harm onic co n ju g a te  of P  and

P +  iP  =  P ( f ) ,  (10)

the  C auchy-R iem ann  eq u a tio n s  for these co n ju g a te  func tions m ay be w ritten

dP dP dP
s  =  ----- =  (¿u2 — 1) ----->

ds dd dy.
( 11)

dP dP dP
 =  S  =  (m2 _  ! ) -----

de ds dn

In  the  d irec t airfoil problem , the  airfoil geom etry  is given, and  if the  2 axis is 
tak en  norm al to  the  airfoil p lane, the  b o u n d a ry  cond itions for de te rm in in g  th e  flow 
a re  th u s given in te rm s of the  d is tu rb an ce  velocity  co m p o n en t w. I t  is desired  in th is 
case to  com pu te  th e  pressure  d is trib u tio n  w hich m ay  be easily  expressed in te rm s of 
the  axial d is tu rb an ce  velocity  co m ponen t u. In  the  inverse airfoil p roblem , a pressure 
d is tr ib u tio n  is defined, an d  it  is desired  th a t  th e  airfoil shape  be co m p u ted . In  e ith e r 
case the  b o u n d ary  cond ition  is given in  te rm s of one velocity  com ponen t an d  a n o th e r 
velocity  co m p o n en t gives the  desired  resu lt. F o r a  conical flow th e re  are sim ple  re la ­
tions betw een  the  com plex functions rep resen tin g  th e  various C artesian  velocity  co m ­
p onen ts. T h e  use of these  re la tio n s is th e  essence of th e  p resen t m ethod  of tre a tm e n t 
of conical flows. T hese  re la tions betw een  the  com plex func tions correspond ing  to  the  
C artesian  d is tu rb an ce  velocity  com ponen ts u, v, w w hich will be w ritten



it +  in =  U (f), i- +  iv =  V (<-), w +  iiv -  W (f), (12)

are essen tia lly  the  v o rtic ity  re la tions.
T h e  fu n d am en ta l linearized re la tions governing the  s te a d y  flow of a  fluid a t  su p e r­

sonic speeds are the  v o rtic ity  re la tions

dv dw dll dw dll dv
—  = ----- , (13) —  =  — , (14) —  = — , (IS)
dz dy ds dx dy dx

and  the linearized eq u a tio n  of co n tin u ity

dv dw dll
—  + -----= (M 2 -  1 ) — ■ (16)
dy dz dx

If these are  solved s im ultaneously , it  is easily  seen th a t  each of the  velocity  com po­
n en ts  obeys the P ra n d tl-G la u e r t eq ua tion , Eq. (1). F o r an y  conical flow each of the
velocity  com ponen ts m u st be a function  on ly  of th e  coord inates n  and  9. By m eans of 
th is fact, Eqs. (13) to  (16), respectively , m ay  be w ritten  as follows:

, /  dv d w \  (  dw dv\
— 1) I cos 0  sin 0 ------) =  I cos 6 ------- |- sin d — ), (17)

\  d)i dii)  \  dd dd)

(li2 — l ) 31'- dw du du
  =  ii(ii- — 1) cos 9 — sin 0 —  > (18)
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V/M -  -  1 du dii dd

(,ii- — 1) 3/'- dv dll du
 —   =  ,u(ii2 — 1) sin 0 ------- j- cos 0 — t (19)

\ / M ‘z -  1 dii d/i dO

dll (  dv dw
-  \ / M 2 -  1 {ii2 -  1)3/2

du
( dv d w \

sin 0 —■ +  cos 0  I

d/i d ii)
/  dv d w \

F ( cos 6  sin 6 ■— - ). (20)
\  dd dd J

If Eqs. (18) and (19) are  com bined , it is seen th a t

du On2 - l ) s /2 /  dv d w \
— =  —......—.... ; I cos d -------- sin d -------). (21)
dO \ / M 2 -  1 V d/i d / i )

dii (n2 — l )l/2 /  dv d w \
— =  — ( sin d ------- f  COS d ----- ). (22)
dii \ / M 2 — 1 \  d/i d/i /

F u rth e rm o re , E qs. (20) and  (22) show th a t

li1 — 1 /  dv d w \  (  dv d w \
 ( sin d  1- cos d  ) =  — ( C(,s 9  sin 9 -----). (23)

H \  du d i i )  \  dd d d )

If th e  d e riv a tiv es  w ith  respect to  ju are  e lim inated  from  E qs. (17) and  (23) by 
m eans of the  C auchy-R iem ann  eq u a tio n s [cf. E q . (11)] for v, w, v and  w, these eq u a ­
tions m ay  be w ritten  as follows:
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± ( s i  
M \

i ( -
M \

dv 3w
• h cos d ----
30 36

dv dv
 h cos 0
30 30

M cos 0
dv

30

dv

sin 0
3w

36
) = 0,

div \
— sin 0  I - 0.

30 30 )

(2 4 )

(25)

—  (s i  
M \

<3V 3W
sin 0  b cos 6 —

36 30
cos 0

If E q . (25) is m u ltip lied  b y  i  and  added  to  Eq. (24), i t  is seen th a t

3V . 3 W \
-— sin 6 -----

M \  du da /  \  30 36,

Since V and  W  arc  functions of the  com plex variab le  f , th is m ay  fu rth e r  be w ritten

dW dW  in sin 6 — cos 0

~df = rff sin 0 +  in cos 6 

and , by th e  defin ition  of s an d  Eq. (9),

_ T d W  

dû

(26)

(27)

dV . 1 

~da ~  4 1 +  r 2
(28)

A sim ilar t re a tm e n t of Eqs. (21) and (22), V being e lim inated  by  E qs. (17) and  (27), 
show s th a t

</U _  2f dW

~dF ~  ~  (1 +  n  V l n  -  l ~ d f  '
(29)

/
/

\
\

RlC

\

/

T hese  tw o re la tions, E qs. (28) an d  (29), a rc  
th e  fu n d am en ta l re la tio n s for th e  p re sen t 

\  tre a tm e n t of conical supersonic  flow prob-
w=o lems.

3. E xam ple. Lift of a d e lta  wing. T h e  
 ̂ ( general tech n iq u es  developed  in th e  p rev ious

,mÇ ii w 1 W°T7 -i | section  will now be used to  co m p u te  th e  lift
* ¡s. j of a  d e lta  w ing a t  a sm all angle of a tta c k

/  for th e  case in w hich th e  lead ing  edges are
\  /  inside of th e  M ach  cone (see Fig. 1). T h e  z

axis is tak en  norm al to  th e  airfoil. T h e  con­
d itio n s in th e  f  p lane a re  show n in Fig. 2. 
N o te  th a t  th e  airfoil c u ts  th e  f  p lane on the  
im ag in ary  axis. T h e  b o u n d a ry  co n d itions for 
d e te rm in in g  th e  vertica l ve locity  w a re  then

w = 0 on s =  1,
(30)

w = Wo =  — Ua on the airfoil,

w here U is th e  velocity  of th e  m ean  flow an d  a  is th e  angle of a t ta c k  of the  airfoil.
This b o u n d a ry  value problem  can  be solved b y  conform ai tran sfo rm a tio n . F irs t, 

a p p ly  th e  tran sfo rm atio n

F ig. 2. Boundary conditions in the f  plane.

(31)
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T h is  m aps the in te rio r of the u n it circle in th e  f  p lane in to  the  en tire  f i  p lane w ith  
th e  region R ef >0 co rresponding  to  the  region J m J i > 0. T h is  tran sfo rm ed  p lane is

im£,

JÂT w »0

• A -I
«iC,

A

Fig. 3. Boundary conditions in the plane.

shown in Fig. 3. T h e  po in ts  a t  the  w ing tips, f  =  ±  iso, a re  transfo rm ed  in to  th e  p o in ts  
<Ti =  ±  1 / k  w here

2s q ,------- -—
k =     =  \ i M -  — 1 tan o)0. (32)

1 +

Second, app ly  th e  tran sfo rm atio n

i.e.,

_ ___

v a  -  r i ) ( i  - m

i i — sn(£i),

(33)

(34)

w here th e  e llip tic  function  has the  m odulus k. T h en  the  region I w f i > 0  is m apped 
in to  the  rec tang le  hav ing  its  corners a t  fa — ± K ,  i K ’ ± K  w here K  an d  K '  a re  the 
com plete  e llip tic  in teg ra ls  of the  first kind hav ing  a  m odulus of k and  k '  w here

k> = ; v i  -  k2 = (35)

By in teg ra tin g  around  the s lit from  —1 to 1 in the  plane, it  is seen th a t  th e  region 
m aps in to  the  rectang le  hav ing  corners a t  £ « ~ 2 K ± K ,  2K ± K - \ - i K ' .

N ow , the  tran sfo rm atio n  given by  Eq. (31) is double  valued , i.e., tw o po in ts  in 
the  f  p lane correspond to  each p o in t in th e  f i p lane. T h e  f i  p lane m u st th u s  be con­
sidered as a tw o sheeted  R iem ann surface w ith  one sheet corresponding to  th e  in te rio r 
of th e  u n it circle in th e  if p lane and  the  o th e r sheet corresponding  to  the  ex terio r of 
the  u n it  circle in the  f  p lane. F u rth e rm o re , the  value of th e  dow nw ash velocity  w 
m u st be equal and  opposite  a t  inverse po in ts  in the  f  plane. T h is perm its  the  an a ly tic  
c o n tin u a tio n  of w th ro u g h o u t the  en tire  f  p lane; in p a rticu la r  i t  is seen th a t  w — —wo 
on th e  ex te rio r po in ts  co rresponding  to  the  airfoil. T h e  tw o sheets in th e  f i  p lane 
a re  connected  th ro u g h  th e  slit from  —1 to  + 1 .  A co n to u r c u ttin g  th is  line passes 
from  th e  u p p er to  the  low er sheet or vice-versa. T h e  sheet w hich corresponds to  the  
ex te rio r region of th e  f  p lane is th u s seen to  be m apped  in to  th e  rec tang le  h av in g  
corners a t  £2 = K ± 2 K ,  K ± 2 K —iK '.  T h e  en tire  p lane is m apped  in to  a basic  rec­
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tangle  in th e  if2 p lane as show n in Fig. 4. As has periods of 4 K, 2 iK '  [see Eq. (34)]^ 
in j"o, th is  p a tte rn  is repeated  th ro u g h o u t the ifs p lane.

T h e  function  d~W/d^2 (b u t n o t W  itself) m u st be d o ub ly  periodic in the  p lane 
w ith  periods 4A  and  2 iK ' , th e  first co rresponding  to  a loop a round  the  po in ts  fi =  ±  1 
and  th e  second correspond ing  to  a loop a round  the  po in ts  f i  =  l ,  \ / k  o r —1, — l / k .  
T h e only s ingu larities of W  or d W /d fs m u st be a t  th e  po in ts  co rresponding  to  th e  a ir ­
foil leading edges, i.e., a t  the  po in ts  co n ju g a te  to  i K ' ± K .  F inally  dW /d fa  m u st be 
pure  im ag inary  on the  lines Im {t = n K '  and  Re£2 = K + 2 n K  (n being an y  in teger). 
All of these cond itions are  satisfied by  the  Jacob ian  ellip tic  function

dW
—  =  iDcd2n(fr), 
d{°

(36)

w here n is an y  positive in teger and  D  is a real co n stan t. If th is  is in teg ra ted  i t  is seen 
th a t  for « > 0 ,  W  has a  pole of o rd er 2 n — 1 a t  the  w ing tips. T h e  cases for w > lc a n  
th en  be d iscarded  as th e  s in g u la rity  a t  th e  w ing tip s  is seen to  correspond  to  a  source- 
sink  com plex w hich has an  infin ite  to ta l lift. F u rth e rm o re , th e  case for n = 0 m ay  be 
d iscarded  as [see E q. (29)] it  requ ires th a t  U (f) have a logarithm ic  s in g u la rity  on the  
M ach cone. T h e  a p p ro p ria te  so lu tion  is th u s

,/W
=  i D c d ^ 2).

T h e  c o n s ta n t D  m ay  be ev a lu a ted  from  the fa c t th a t

' i K' d W
•wo

If th is in teg ra tion  is carried  o u t, it  is seen th a t

k-wo
D — —

E (k  0

(37)

(38)

(39)

w here E (k ')  is th e  com plete ellip tic  in teg ral of th e  second kind having  a m odulus k' 
as given by  E q. (35).

If the  v ariab le  is e lim inated  from  Eq. (37) by  m eans of Eq. (31) and  (33), it is 
seen th a t
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T h u s, from  Eq. (29), 

d ü

2 w<i ( i +  n -
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(40)

4 Wo m + n (41)

Since U =  0 a t  f  =  l ,  the  in teg ral of Eq... (41) is

kvio f  1
U =

( r 2 +
1/2

(42)

On th e  to p  side of the airfoil f  = hj w here — .Vo <  17 < .''0, so

fewo 1 +  V'
11 — —

E (k ' ) \ /A n  -  1 11/2
(43)

[M - (1 -
T h is  re su lt m ay be considerab ly  sim plified if we in troduce  [from  Eq. (8) and  (30)]

(44)
k =  \ / M 2 — 1 tan  w0 

Wo =  — Ua

and

E q u a tio n  (43) then  becom es

tan  w 

tan  wo

4 tan  wo
(45)

E (k ' ) \ / l  -  t-

T h e  slope of th e  lift cu rve  dCi./da  is given by  the  m ean value of A /a (u /U )  over 
the  surface of th e  w ing; th u s

dCi. 4 r  “° sec2 w(/w= —7- f  
R( k ) J  0

and , by E q. (44),

da E(k') J  0 V l  -  Ï- 

dCj. 2 t  tan  wo

da E{V)

(46)

(47)

In the  lim it for w hich w0 o r 50—>0, k ' —>\; so E{k')^>\.  F o r th is  case w hich was given 
by Jo n es5

* R. T. Jones, N.A.C.A., Technical Note 1032 (1945).
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k • \|m2 -  I Ian co.

F ig. 5. Lift of a delta wing.

Fig. 6. dCiJda. vs. M  for a delta wing with oi =10°.

dCL

da
= 2^r  t a n  t o 0 .

On the o th e r lim it for w hich k '—>0; so E (k ’)^nr'/2. F o r th is  case

dC i. 

da
=  4  t a n  w 0  =

\ / M i -  1

(48)

( 4 9 )

1 his lim it, th e  sam e as the  tw o d im ensional so lu tion , had p rev iously  been o b ta ined  
b y  P u ck e tt.

I t  m ay  fu r th e r  be no ted  th a t  the  q u a n tity  \ \ / A P  — 1 d C i /d a  is a  fu nc tion  on ly  
of th e  p a ra m e te r  k = \ / A P — 1 tan  w0- T h is  re su lt is show n graph ica lly  in Fig. 5, and  
th e  slope of the  lift cu rve  for a p a r tic u la r  case, w o = 10°, is show n as a function  of 
M ach  n u m b er in Fig. 6.
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L IN EA R IZE D  SU P E R SO N IC  FL O W S W IT H  AXIAL SY M M E TR Y *

BY

WALLACE D. HAYES**
California Institute of Technology

1. Introduction. T h e  s tu d y  of spa tia l linearized supersonic flow m ay  he aided  by 
the  s tu d y  of som e sim ple fu n d am en ta l flows w ith  axial sy m m etry . T h ro u g h  the p rin ­
ciple of superposition , these flows m ay be com bined to  give m ore general flows a b o u t 
various o b jec ts  and  a b o u t lifting  system s. I t  is the  purpose of th is  p ap er to  express the 
eq u a tio n s of linearized supersonic flow in a system  of conical coord inates, to  develop 
a th eo ry  for fu n d am en ta l flows w ith  axial sy m m etry , and  to  describe exam ples of 
such flows and  of th e ir  com bination  by  superposition .

V arious exam ples of the  fu n d am en ta l equ a tio n s and so lu tions here described will 
be given in la te r  papers, to g e th e r w ith  th e  developm ent of som e concepts useful in 
th is  field.

2. The velocity potential. S te a d y -s ta te  com pressible irro ta tio n a l flow can be d e ­
scribed by  a ve locity  p o ten tia l <p whose g rad ien t is the  velocity  vector. U nder the  as­
su m ption  th a t  the  velocity  dev ia tio n s from  a  uniform  supersonic flow of th e  M ach 
num ber M  are sm all, th e  d ifferen tia l equa tion  for th is  po ten tia l takes the  linear 
fo rm 1'2

4>rr --------4>r-H----- - <t>M — { M ‘Z — =  0  (1 )
r  r 2

in cy lindrical coord inates.
T h e  fu n d am en ta l uniform  flow is given b y  the  p o ten tia l <t>o= Vz w here V  is the 

velocity  corresponding  to  the  M ach n um ber M.  E q u a tio n  (1) will be considered as 
yielding velocity  d ev ia tio n s w hich m u st be added  to  the  velocity  of the  fu n d am en ta l 
flow to  describe th e  n e t flow.

A new coord ina te  is in troduced  to  replace the  coord inate  r:

t =  (r/z) (2)

T h is  q u a n ti ty  is the  ra tio  of the  tan g en ts  of the po lar angle and  of the  M ach angle. 
E q u a tio n  (1) w ith  r e lim inated  and t in troduced  becom es

(1 — t2)<f>tt H (1 — < -)----- 4>ee +  2tz<j>iz — Z'<plz =  0. (3)
t /2

By sep ara tio n  of variab les a  so lu tion  of the  form

* Received March 25, 1946.
** This paper was prepared while the writer was employed by the Lockheed Aircraft Corporation.
1 R. Sauer, Theoretische Einfiihrung in  die Gasdynamik, Springer, Berlin, 1943. Reprinted by Ed­

wards Bros., Ann Arbor, 1945.
5 G. I. Taylor, and J. W. Maccoll, The mechanics of compressible fluids, in Durand, Aerodynamic  

theory, vol. 3, Berlin, 1935.



<(> =  zn <P(f, 6) (4a)

or

4> = z" sin (md +  0) T(l) (4b)

is found . T h e  function  satisfies th e  equa tion

1 1
(1 -  f2)4>(( +  —  (1 +  2(n -  l)/'-)T, -  n(n -  l)<f> +  — 4>99 = 0 (5)

and  m ay  be called the  velocity  po ten tia l for generalized conical flow. If w =  l ,  the
function  <ï> describes conical flow. T h e  function  T  satisfies the eq u a tio n

1 1
(1 -  r-)Tlt +  —  (1 +  2.(» -  l)r-)T t -  —  (rn* +  n{n -  1 )t-)T  =  0. (6)

t I“

S uperposition  of so lu tions of the  ty p e  of (4a), (4b) will give a general so lu tion .
T h e  velocity  com ponen ts are

25f> WALLACE 1). HAYES [Vol. IV, No. 3

V & P -  1
u = --------------- <f>i (7a)

in the  rad ia l d irec tion ,

in the  az im u th a l d irec tion , and

\ / M 2 -  1
v -  ---------------4>i (7b)

i
w =  <f>c  (¡>i (7c)

in the  axial d irection . T h e  pressure in linearized supersonic flow is given in term s of 
the  velocity  com ponen ts by

/  u-  +  v- \
P = -  p U 7«' H-------  — )-

and  the  pressure coefficient by

/  w u- +  a2 \
C P =  - 2  ( — + ----------- ).

\ V  2 V ! )

(8a)

(8b)

T h e  p a r t  of E qs. (8a ), (8b) in  u  and  v is n o t necessary  if w  is of the  sam e m agn itude  
as « and  a. In  m any  im p o rta n t cases, how ever, w2+ a 2 is of th e  sam e m ag n itu d e  as Vw 
and  E qs. (8a), (8b) m u st be used in its  com plete  form . In  these cases the  v a lid ity  of 
th e  solu tion  should be checked.

T h e  s in g u la rity  of (5) o r (6) a t  / =  +1 corresponds to  the  tw o M ach  cones ex­
ten d in g  from  th e  origin in th e  th ree  dim ensional flow. V arious ranges of t correspond 
to  various regions of flow, as show n in the  following tab le .
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Raille of t Region of Flow

0 £ /< 1 inside downstream cone

- 1  < / g o inside upstream cone

1 < / <  )
outside both cones

-  W < / <  — !]

3. So lu tions of th e  d ifferen tia l equation  (6). T h e  p a ram e te r  n is res tric ted  to  in ­
tegers and  the p a ram e te r  m to  non-negative integers. T h e  d ifferen tial equation  for T, 
Eq. (6), has regu lar s ingu larities of exponen ts ( +  tn, — in) a t  / =  0, (0, n +  \ )  a t  
t = ± 1 ,  and  ( — n, 1 — n) a t  t=  » .  T h e  so lu tions a b o u t the origin are

T  =  / ’" / ' I
n +  in +  1

; 1 +  ni ; i-
— it +  m

¡it  - f -  m + 1  il +  m  T  2

= /'"(l — /-)    . -------- ------- ; 1 +  m

T  = t~ ”'F\
i — .

m

2

n
A

in +  1
; 1 — in; t-

( )i — in + 1  it — in +  2
 -  ;    ; 1 -  in ; t-

(9a)

(9b)

( 10a)

( 10b)

w here F  deno tes the hypergcom etric  function . T h e  solu tion of neg a tiv e  exponen t, 
Eqs. (10a), (10b) is no t well defined.

I t  is of considerab ly  m ore value to  express the solu tions a b o u t t- = 1, since then  
b o th  so lu tions are  well defined and  tw o d is tin c t typ es of solution m ay  be d is tin ­
guished. One type  of solu tion , designated  as type  I, is the  solution  of zero exponent 
a t  t2 =  1 and  is real th ro u g h o u t the  range of /. T h e  resu ltin g  solution for 0 has no singu­
la rity  on the  M ach  cones. T h e  o th e r type  of so lution, designated  as ty p e  II , is the 
solution of exponen t h +  |  a t  t- =  1 and  is real only for t - < 1 or only for t->  1. T he re­
su lting  solu tion  for <p is defined only w ith in  the  M ach cones or only ou tside the  M ach 
cones. T hese so lu tions m ay  be expressed as follows:

I) T  =  I "F

= r mF

it +  in n +  m +  1
; -  n +  -i; 1 -  l-

III in +  1
« +  i ;  1 -  i'1

H )
¡n  +  in +  1 it -j- m +  2 

T  =  / ’"(l -  t - ' r + F ----------------• -------------------- ; n +  I ; 1 -  t

i - " i i  -  t-y+H'

2 2 

- in + 1  n — in +  2
0

; 11 +  A ;  1 -  A

( 11a)

( l ib )

( 12a)

(12b)



T h ree  special cases are d istingu ished  accord ing  to  the  re la tiv e  values of n and  m:

case A : — a> <  n 5= — m — 1, 
case B : — m g  n ^  m — 1, 
case C : m £ n < »

T h e  d is tr ib u tio n  of these cases for sm all values of m and  n  is show n in th e  tab le :
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" n 
m

- 3 - 2 - 1 0 1 2

0 A A A C C C
1 A A B B C C
2 A B B B B C
3 11 11 B B B B

From  a considera tion  of E qs. (9) to  (12) the  form s of th e  tw o ty p es of so lu tions 
in  th e  various cases m ay  be found. F o r all so lu tions excep t so lu tions I-A  (i.e., so lu tions 
of ty p e  I in case A) and  so lu tions II-C , the  form  is exp lic it in te rm s of a  polynom ial 
in t2 or in ( I —/2). So lu tions I-A  and  II-C  have logarithm ic  singu larities a t  ( = 0  and  
arc  discussed la te r. T h e  polynom ial form s are  expressed as follows:

Solutions Form
Order of P(t'-) 

whichever is integral of
Equation for  
Calculation

I-A logarithmic
I I-A /"(1 - i J)»+iP (i3) ) ( —n — m — 1) or J( — n — m — 2) (9b) or (12a)

I-B l~mP (t*) 1 (« +  ;«) or 1 (« +  w — 1) (10a) or ( l ib )
II-B r » ( i  -p )»+Sp(i3) {( — n + rn  — 1) or %( — n +  nt — 2) (10b) or (12b)
I-C } ( n —m) or l(n  — m — 1) (9a) or (1 la)

II-C logarithmic

T h ere  is a  connection  betw een  the  so lu tions of E q. (6) an d  th e  L egendre functions 
w ith  the  sam e values of n and  mi excep t th a t  — n — 1 is used w hen n  is negative . H ow ­
ever, since L egendre func tions a re  cu s to m arily  defined on ly  for m s n o r t n £ n  — 1, 
respectively , th ey  are  of assistance  here only  in cases A and  C. T h e  polynom ial so lu ­
tions are

I-C) T  =  (1 -  <2)" /2i> : [ ( l  -  r ) _ !J, (13a)

I I-A) T  =  (1 -  /2)n/2P ” „_ i[(l -  /*)“ *]• (13b)

T hese  so lu tions a re  m ost easily  o b ta in ed  by  transfo rm ing  E q . (1) in to  L ap lace’s e q u a ­
tion by  in troduc ing  the  v ariab le  i z / y / A P — 1.

T h e  polynom ial so lu tions m ay  be ob ta in ed  in a n o th e r  form  from  an  expression 
given by  A. R . F o rsy th ,3 and  th e  law  for d iffe ren tia ting  th e  hypergeom etric  functions. 
W hen  n is n o t positive, these so lu tions a re

3 A. R. Forsyth, A treatise on differential equations, 6th ed., Macmillan, Lontlon, 1933, p. 235.



d~" _____  _____
1) T  = '/ - '•  —-—  [(1 +  \ / l  -  2- ) - ”+'" +  (1 -  \ / l  -  22) - "  *J, (14)

d~n
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II) T  =  2±”‘ —— -  1(1 +  \ / l  -  22)—Tm -  (1 -  \ / l  -  22) - " + "'j, (15)
rf(2-) "

and  w hen « +  1 is no t negative,

<2’“+
I )  T  =  2 ± n i ( l  -  2 2 ) - ‘+ J  [ ( 1  +  v / l  -  / ' - ) » ‘+ i +  • »  _  ( i  _  V T  _  / * ) « + * » ] ,  ( 1 6 )

«(2 )"

( / « + 1   _________

II) T  =  2- " '( l  -  22)" + ! -[(1 +  \ / l  -  2s) M+1+m +  (1 -  \ / l  -  22)"+1+ ’nJ. (17)
d ( 2 2)  " +1

4. Logarithmic solutions. T h e logarithm ic  so lu tions I-A  an d  II-C  are m ost easily 
expressed in  te rm s of the  L egendre functions, as in E qs. (13a), (13b). T h e y  are

I-A) T =  ( l - 22) n/| ” _1[ ( l - 2) - }J, (18a)

II-C ) T  = (1 -  t2)nnQmn [(1 -  (18b)

Since the  v a lid ity  of E qs. (14) to  (17) does n o t depend  upon m being an  in teger,
an d  since an  ap p ro p ria te  so lu tion  of th e  form  of these equ a tio n s vanishes as a log­
a rith m ic  so lu tion  is app roached , th e  logarithm ic  so lu tions m ay  also be ob ta in ed  by  
d iffe ren tia tin g  such so lu tions w ith  respect to  m. T h e  logarithm ic  so lu tions in th is  form  
are

i - a )  t  =  t±m [ ( i  +  v r = l o g  ( i  +  % r ^ 7 2)
ti(t-) ”

+  (1 -  \ / T -  22)-"T"' log (1 -  \ / l  -  22) ], (19)

d » + 1  _____  _________

II-C ) T  =  2±"(1 -  22)" + i-------- —  [(1 +  v 1 -  22) ’‘+1Tm log (1 +  \ / l  -  22)
(2(22)"+1

+  ( i  -  \ /T ^ r 72) n+i:Fm log ( l  -  VT~=n?)J. (20)

5. G en era tin g  equations. T h e  fu n d am en ta l eq u a tio n , E q. (1), expressed in C a r­
te sian  coo rd inates is in v a ria n t u n d er d ifferen tia tion  w ith  respect to  an y  of these co­
o rd inates. So lu tions of the  ty p e  of Eq. (4b) expressed in C artesian  coord inates and
d iffe ren tia ted  w ith  resp ec t to  these coord inates are  still so lu tions of E qs. (1) and  (3).
T h is  fac t p e rm its  a  given solu tion  of p a ram ete rs  n  and  m to  yield so lu tions of pa ram e­
te rs  n — 1 and  m, m + 1 , o r m — 1 :

m
T(n -  1, m +  1) =  —  T  -  T t =  -  

m
T(h -  1, m -  1) =  —  T  +  T,  =  +  

t

T h e  procedures y ielding these new so lu tions can be considered procedures of su p e r­

d
(21a)

d
(21b)

d
—  (t+mT). 
dt

(21c)
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position ; for exam ple, one so lu tion  superposed  on its  negative  an infin itesim al d is­
tance dow nstream  yields the new solution given by  Eq. (21a)

T hese eq u a tio n s are n o t to  be considered recurrence re la tions, as no system  has 
been estab lished  for specifying so lu tions w ith  respect to  the  m u ltip lica tiv e  a rb itra ry  
co n stan t.

In  a sim ilar m an n er so lu tions w ith  the  p a ram e te r  n  increased by  1 m ay  be o b ­
ta ined  by reversing  Eqs. (21a), (21b), and  (21c) w ith  su itab le  in teg ra tions.

6. In te g ra l re la tio n . An in tegral re la tion  connecting  tw o so lu tions w hose p a ram e­
te rs  differ in  value m ay be o b ta ined  e ith e r from  the correspond ing  re la tion  for th e  
Legendre functions or d irec tly  from  Eq. (6). If T\ d eno tes a  so lu tion  corresponding  
to  «i an d  tiii and  T 2 a so lu tion  corresponding  to  n2 and  m 2, the re la tion  is

'id I

(2 2)

S e ttin g  tii — Hi or ?Wi =  ;»2, we o b ta in  sim pler eq u a tio n s as special cases w hich m ay  be 
used to  o b ta in  o rthogonality ' re la tions betw een solutions.

7. Two-dimensional cross-flow. T h e  so lu tions of ty p e  I for w hich >w=|m| are 
given byr T  =  /". T h e  corresponding  so lu tions for <f> in cy lindrical coo rd inates are

4> — r" sin ( | ii | 6 -f- 0).

T hese so lu tions give tw o-dim ensional cross-flow because of th e  fac t th a t  2 does no t 
ap p ear. T h is  cross-flow, as a  re su lt of the  linearizing assum ptions, ap p ears  as an  in ­
com pressible flow.

8. Conical flow. T h e  so lu tions of e ith e r  ty'pe for w hich n =  1 give so lu tions of 
conical flow, of w hich only those of ty'pe II  are  here trea ted . Since the  exp o n en t of 
these  so lu tions a t  /2 =  1 is 3 /2 , b o th  the  p o ten tia l and  th e  velocity  vanish on th e  M ach 
cone. T h e  first few so lu tions a re :

w = 0) V l  — t- — ta n h -1 -y/j — t2,
tn — 1) /~1\ / i — t2 — t ta n h - 1 -y/l —
in =  2 ) /- 2(1 - / 2)3' 2,
m = 3) /- 3(1 - / 2)3' 2,

T h e  flowr ab o u t an  infin itesim al c ircu lar cone a t  zero incidence is given by  th e  first 
so lu tion  (II , 1, 0), the  solu tion  of ty p e  II  w ith  « =  1 and  m = 0. T h e  flowr ab o u t the 
sam e cone a t  a  sm all angle of a tta c k  is ob ta in ed  b y  superposing  so lu tions ( I I ,  1, 1) 
an d  (I, 1, 1) w ith  ap p ro p ria te  c o n s ta n ts  on the  ( II , 1, 0) so lution. A s ta n d a rd  t r e a t­
m en t of th is  case wall be found on pp. 46 to  49 of S au e r’s book .1

9. Infinitesimal horseshoe vortices. An infin itesim al horseshoe v o rte x  can be 
rep resen ted  by' a  sem i-infin ite  line dipole in th e  sam e m an n er as a p lan a r vo rtex

b
/- I ( 1 -  /2)~H"i+»2+t>7’17’2(//

+  (»1 -  »»*)(« 1 +  no +  1) f  /( l  -  /2)-H«.+n2+3)r i T
J  a

/  d T  i d 7 2\
/(I -  / * ) " » ( 7’ 2  T i  )

\  dt dt )

+  (»1 -  H2)f2( l  -  /2)- iV'l+n.+ l) r i r 2 l
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system  can be rep resen ted  by  a p la n a r dipole system . T h u s  a  lifting  e lem ent and  o th e r  
lifting  system s can be represen ted  by  so lu tions of type  II w ith  m — 1, as show n in the  
following table.

Solution
Semi-Infinite Line 
Dipole of Strength

Designation in Terms of 
Lifting Properties

(II, - 1 ,  1): r > ( i - ¿ !)~ 5 Constant “Lifting element”
(1 1 ,0 ,1 ): r ‘( l - p ) +* Proportional to s “Lifting line”
(II, 1, 1): r ‘( l —/*)+l—/ta n h -‘ (1 - I 2)+i Proportional to 3J “Lifting infinitesimal triangle”

T h e  “lifting  e lem en t” solu tion, since the po ten tia l has exponen t —|  and  th e  veloci­
ties —-§■ a t  /2 =  1, has a troub lesom e sin g u la rity  on th e  M ach  cones. A sim pler sin ­
g u la rity  has the  “lifting  line” solution, whose p o ten tia l vanishes and  w hose velocities 
have exp o n en t a t  t2 = 1. W hen these so lu tions are  superposed to give lifting  sys­
tem s of finite d im ension, th e  s in g u la rity  in th e  velocities usually  d isappears. T h e  th ird  
solu tion is the  sam e as th e  one w hich gives the  lift on an  inclined c ircu lar cone. E x­
am ples of th e  superposition  of such so lu tions to  form  a lifting  system  will be given in 
a la te r  paper.

10. T h e  acce lera tion  po ten tia l. Since th e  axial ve locity  com ponen t w is a d e riv a ­
tive of the  velocity  po ten tia l in C artesian  coord inates, i t  satisfies the  sam e equations, 
Eqs. (1) to  (6), as does th e  velocity  po ten tia l. T h e  acceleration  po ten tia l, whose fu n ­
d am en ta l th eo ry  will be found in a p ap er by  L. P ra n d tl,4 equals — p /p  for linearized 
flow, an d  also equals Vw-\- |(m 3+ v2) from  E q . (8a). H ence th e  ap p ro x im ate  accelera­
tion  p o ten tia l defined by  i^=  Vw satisfies E qs. (1) to  (6). T h e  re la tion  of th is  q u a n tity  
to  th e  velocity  p o ten tia l for a given fu n d am en ta l flows is of th e  ty p e  w hich leads to  
E q. (21a), and  hence th e  correspond ing  accelera tion  p o ten tia l is given by  a  so lu tion  
w ith  n  decreased  by 1. I t  is im p o rta n t to  n o te  th a t  th is  does n o t give th e  tru e  lin ea r­
ized accelera tion  p o ten tia l w here id-fl-t:2 is n o t of sm aller m agn itu d e  th a n  Vw. T h u s  
th e  tw o-d im ensional cross-flow described  above h as  no ap p ro x im ate  accelera tion  po­
ten tia l, a n d  th e  acceleration, p o ten tia l is given incorrec tly  in th e  v ic in ity  of the  axis 
for o th e r  flows. H ow ever, th e  tru e  accelera tion  p o ten tia l m ay  n o t itse lf be superposed , 
and  often  th e  difference betw een th e  ap p ro x im ate  an d  tru e  linearized  accelera tion  po­
te n tia l d isap p ears  un d er superposition .

T h e  “lifting  e lem en t,” “lifting  lin e ,” and  “ lifting infin itesim al tr ia n g le ” have  a p ­
p rox im ate  acceleration  p o ten tia l so lu tions (II , —2, 1), ( I I , —1, 1), and  ( I I , 0, 1), 
respectively . W ith  conical flow, th e  ap p ro x im ate  acceleration  po ten tia l is a  function  
only  of t and  9 and  can be show n to sa tisfy  L ap lace’s eq u a tio n  in tw o dim ensions.

* L. Prandtl, Théorie des Flugseuglragfliigels in  zusammendriickbarem M edium , Luftfahrtforschung,
13, 313 (1936).
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T H E  O P E N IN G  O F A G R IFFIT H  CRACK U N D E R  
IN T E R N A L  P R E SSU R E *

BY
I. N. SNEDDON ( University of Glasgow) a n d  H. A. ELLIOTT ( University of Bristol)

1 . T h e  d e te rm in a tio n  of th e  d is tr ib u tio n  of stress in the  neighbourhood  of a  
c rack  in an  e lastic  body  is of im p o rtan ce  in  th e  discussion of certa in  p ro p erties  o f th e  
solid s ta te . T h e  th e o ry  of cracks in a  tw o-d im ensional e las tic  m edium  w as firs t d e ­
veloped by G riffith1 w ho succeeded in solving the  eq u a tio n s of e lastic  equ ilib rium  in 
tw o dim ensions for a  space bounded  by  tw o concen tric  coaxial ellipses; by  considering  
the  in n er ellipse to  be of zero eccen tric ity  an d  by  assum ing  th a t  th e  m a jo r ax is of th e  
o u te r  ellipse w as v e ry  large G riffith  then  derived  th e  so lu tion  correspond ing  to  a  v e ry  
th in  crack  in th e  in te ro r of an  in fin ite  e lastic  solid. Because of the n a tu re  of the  co­
o rd in a te  system  em ployed  b y  G riffith  th e  expressions he derives for th e  com ponen ts 
of s tress in th e  v ic in ity  of th e  c rack  do n o t lend them selves easily  to  c o m p u ta tio n . 
An a lte rn a tiv e  m ethod  of d e te rm in in g  th e  d is tr ib u tio n  of s tress in th e  neighbourhood 
of a  G riffith  c rack  w as g iven recen tly  by one of u s2 m ak ing  use of a  com plex stress- 
function  s ta te d  by  W e ste rg a a rd .3 T h is  m ethod  suffers from  th e  d isa d v a n ta g e  th a t  the  
W este rg aard  stress-fu n c tio n  refers only  to  th e  case in w hich th e  G riffith c rack  is 
opened  u n d er th e  ac tio n  of a  uniform  in te rn a l p ressu re ; th e  stress-func tion  co rrespond­
ing to  a  va riab le  in te rn a l p ressu re  does n o t a p p e a r  to  be know n.

In  th e  p resen t no te  we discuss th e  d is tr ib u tio n  of s tress in th e  neighbourhood  of a 
G riffith  crack  w hich is su b jec t to  an  in te rn a l p ressure , w hich m ay  v a ry  a long  the  
len g th  of th e  crack , by  considering  th e  correspond ing  b o u n d a ry  value  problem  for a 
sem i-infin ite  tw o-d im ensional m edium . T h e  analysis  is the  ex ac t analogue of th a t  for 
th e  th ree-d im ensiona l “c irc u la r” c racks developed in th e  prev ious p a p e r2 excep t th a t  
now we em ploy  a  F o u rie r cosine tran sfo rm  m ethod  in place of th e  H ankel transfo rm  
m eth o d  used th e re . A m eth o d  is given for d e te rm in in g  th e  shape  of th e  c rack  resu lting  
from  th e  ap p lica tio n  of a  va riab le  in te rn a l pressure  to  a v e ry  th in  crevice in th e  in ­
te rio r of an  e lastic  solid, an d  for d e te rm in in g  th e  d is tr ib u tio n  of stress th ro u g h o u t th e  
solid. T h e  converse problem  of d e te rm in in g  th e  d is tr ib u tio n  of pressure necessary  to  
open a  crevice to  a  c rack  of prescribed  shape is also considered. As an  exam ple of th e  
use of th e  m ethod  th e  expressions for th e  com ponen ts of s tress, due  to  th e  opening 
of a  crack  u n d er a  uniform  pressure, a re  derived  an d  a re  found to  be in ag reem en t 
w ith  those found in th e  earlie r p a p e r .2

2. W e consider th e  d is tr ib u tio n  of stress  in th e  in te rio r of an  infin ite  tw o-d im en­
sional e lastic  m edium  w hen a  very  th in  in te rn a l c rack  —c ś y ś c ,  x  =  0 is opened u n ­
d er th e  ac tio n  of a  pressure  w hich m ay  be considered to  v a ry  in m ag n itu d e  a long  the  
leng th  of th e  crack . F o r sim p lic ity  we shall consider th e  sym m etrica l case in w hich th e  
app lied  p ressu re  is a  function  of |y |  b u t  th e  analy sis  m ay  easily  be ex tended  to  th e

* Received March 12, 1946.
1 A. A. Griffith, Phil. Trans. (A) 221, 163 (1921).
2 I. N. Sneddon, Proc. Roy. Soc. (A) (in the press).
3 H. M. Westergaard, J . Appl. Mech. 6, A49 (1939).
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m ore general case in w hich th ere  is no such sy m m etry . T he stress in such a  m edium  
m ay  be described by th ree  com ponen ts of stress a x, <rv and  r xv\ the  correspond ing  
com ponen ts of the d isp lacem en t v ec to r will be deno ted  by u x an d  u y. T h e  d ifferen tial 
e q u a tio n s dete rm in in g  th e  s tress-com ponen ts are4

dcrx d r zv dr zy d<rv
- + ~  =  0, ( 1) =  (2) 
ox ay ox oy

T h e  b o u n d ary  cond itions to  be satisfied a re  th a t  all the  com ponents of stress an d  of 
the  d isp lacem en t v ec to r m u st tend  to zero as .r2+ y 2 ten d s to  in fin ity , an d  th a t

Tx„ = 0, <rx = — p(y),  (3)
w hen x  = 0 an d  —c ^ y ^ c .

I t  is obvious from  th e  sy m m etry  ab o u t th e  axis.v =  0 th a t  th e  problem  of d e te rm in ­
ing th e  d is trib u tio n  of s tress in the  neighbourhood of the  crevice is eq u iv a len t to th a t  
of d e te rm in in g  the s tress in the  sem i-infin ite  elastic  m edium  *S:0 w hen the  b o u n d ary  
x =  0 is sub jec ted  to  the  following cond itions:

(') Txy —0, for all va lues of y,
(ii) <rx = - p ( y ) ,  \y\  g c ,  

u z = 0 \ y \ ^ c -
From  th e  sy m m etry  a b o u t th e  second axis y =  0 we m ay tak e  as so lu tions of the 

elastic  eq u a tio n s (1) an d  (2) the  exp ressions:5

2 r 00
<rx =  —  I <?(p)( 1 +  px)e fX cos pydp, (4)

7T J  0 

2
<r„ =  —  I <?(p)( 1 — px)e~l>x cos pydp, (5)

x  J  o

2x r  ”
t zv = — I p4>(p)e-rz sin pydp. (6)

x  J  0

T hese  expressions sa tis fy  the  eq u a tio n s of equilib rium  an d  the  b o u n d ary  condition (i)
a b o v e ; th e  function  <?(p) is de te rm in ed  from  th e  se t of cond itions (ii). T h e  com po­
n en ts  of th e  d isp lacem en t v ec to r are  sim ilarly  found to  be

2 ( 1 + a) r ” , i cos py
11 z = -   -----— — I <t>{p)e-pI{ 2(1 — or) +  px)  dp, (7)

J  o P

=

t E  J  0 P

2 ( 1  + <A r" , > sin py
I 4>(p)e '■■'{(I — 2«r) -  p x }   dp.

J  o Pt E

W hen .r =  0, eq u a tio n s (4) and  (7) reduce to

22 r
—  I $ ( p )  COS p y d p ,  
X j  0

( 8)

(9)

4(1 — a-) p  * cos py
Ux = ------------ —

t E / cos py
i ( p )  -< /p . (10)

0 P
4 A. F.. H. Love, The mathematical theory of elasticity, 4th ed., Cambridge, 1934, p. 208.
5 I. N. Sneddon, Proc. Cambridge Phil. Soc. 40, 229 (1944).
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If we in se rt the  b o u n d ary  cond itions (ii) in to  Eqs. (9) and  (10) an d  m ake th e  s u b s titu ­
tions

P =  s / f ,  3’ =  vc, g (v )  =  -  ^  P (vc ) ,  =  ( 1!l)

we o b ta in  a  p a ir  of “d u a l” in teg ra l eq u a tio n s

f  ÇFfàJ-i/îifâdÇ = g(v), 0 <  <  1
d o

f  F(£)J-.ir.(fr)d£ =  0, t] > 1
J  0

( 12)

for the d e te rm in a tio n  of th e  function  F(£). Once F(%) has been found, <j>(p) can be 
w ritten  dow n and  the  com ponen ts of stress ca lcu la ted  by  m eans of E qs. (4), (5) 
and  (6).

3. T h e  dual in teg ral eq u a tio n s  (12) are  a  special case of a  p a ir  of eq u a tio n s con­
sidered  b y  B u sb rid g e ;6 the  so lu tion  m ay  be o b ta in ed  by  su b s titu tin g  a  =  l ,  v — —1/2 
in th e  general solu tion  given in the  p a p e r .6 In  th is  we o b ta in

(13)

F(Z) = M t ) f  ‘ y 'lV  -  yi)u'g(y)dy

+  $ f  n >,-( 1 — u-)ll-du f  g(yii)y:,/-Ji(^y)d} 
d 0 do

T h u s if the  pressure p(y)  is given by  a T ay lo r series of the form

P(y) = po22 a „ (—)  , (14)
n -0  \  C /

co n v erg en t for th en  the  correspond ing  expression for <ji(p) is read ily  found
to  be

$ ( p )
A r(i« + h )  [  r 1 )

J p o c V 'V E  -J -— trrrb, a„<Jo(cp) +  CP I y"+-Ji{cpy)dy> . (15)
<>i r ( J n  T  2) ( d„ )r ( i «  +  2)

S u b s titu tin g  for <p(p) from E q. (15) in to  E q . (10) and  m aking  use of the  re su lts7

1
I ./ o(cp) cos pydp =

d 0

/ p./,(rp) cos pydp =
«

\  c- — y- 

c

(c* -

0 <  V <  c

0 <  y < c

we find th a t  the  norm al co m p o n en t of the  d isp lacem en t along th e  crack  is given by  w, 
w here

2 < i  - ¿ w  £  ntjj> t  .  +  m -  r   ...........................  ......... | .  ( 1 6 )

J t - E  r(-5*:+2) W e ’-  -  y '- W  J ,  (««-!)■« /w =

I. W. Busbridge, Proc. London Math. Soc. (2) 4 4 ,  115 (1938).
G. N. Watson, The theory of Bessel functions, 2nd ed., Cambridge, 1944, p. 405.
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F o r the case of a uniform  pressure pu we tak e  au =  l ,  «,, =  (), n }z \  and  find

2(1 -  <j-)p0

E
■ v V  -  y~. (17)

If we w rite

E q. (17) reduces to  the  form

b — 2(1 — <r-)pac/E,

y -  w

■ ^ + 7 7 =  1 c- b-

w hich show s th a t  th e  effect of th e  uniform  pressure is to  w iden th e  crevice in to  an 
e llip tic  crack.

4. I t  is also of in te re s t to  de te rm ine  w h a t d is trib u tio n  of pressure will p roduce a 
crack  of prescribed shape. In  th is  case we assum e th a t  the  v alue  of the  norm al d is­
p lacem en t u z is know n all along the  y-axis; we have

iw(y), y £ \ c \ ,  x =  0,
u z =  < . .

I 0, y  ^  | c |, a; =  0.

In v e rtin g  E q . (10) by  th e  F o u rie r cosine rule an d  su b s titu tin g  th is  value for u x we 
have

E  r c
=  -  w :  w(y) cos pydy. (18)

2(1 — a-) J  o

W ith  th is value of $(p) in Eqs. (4), (5) an d  (6) we o b ta in  expressions for the  com po­
n en ts  of stress in th e  in te rio r of th e  elastic  solid.

F o r exam ple if we take

( i - f ) .

th en , from  E q. (18)

4>{p) =
Et sin cp

(1 — a~)cp \  cp
cos cp

)■
(19)

S u b s titu tin g  from  (19) in to  E q . (9) ave o b ta in  fo r the  norm al com ponen t of the  stress 
a long  x  =  0,

~  . . y u
sin u  sin -

f  * c1 — ■— I ------------------  du
c J  o «

2 Et

Now

/ .

7 r ( l  — <r-)c

cos qx — cos px

(2 0 )

dx  =  log
P-

so th a t  E q. (20) reduces to
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giv ing  th e n o rm a l  co m p o n en t of s tress a long  the crack . T h is  s tress is n egative  when 
y  = 0 b u t  becom es positive  for a  va lue  of y  betw een 0 and  c, so th a t  if a crack  of th is 
shape  is to  be m a in ta in ed  th e  app lied  s tre ss  m u s t be tensile  (and  v e ry  large) n ea r th e  
edges y =  ± c  of the  crack.

S. E xpressions for th e  p o ten tia l func tions m(z), il(z) of S tevenson  co rresp o n d in g  
to  th is  problem  can easily  be deduced  from  th e  an a ly sis  of Section 3. I t  w as show n by  
S tev en so n ,8 th a t  if we w rite

th en  th e  com ponen ts of the  s tress an d  th e  d isp lacem en t can be expressed in te rm s of 
tw o “p o te n tia l” functions w(z), S2(z) by  m eans of the  eq u a tio n s

in th e  absence of body forces.
I t  follows from E qs. (4) to  (8) th a t  the  stresses an d  th e  com ponen ts of the  d is­

p lacem en t v ec to r  m ay  be derived  from  th e  p o ten tia l functions

w here $(p) is given by  E q . (15) in th e  case w here th e  app lied  in te rn a l p ressu re  is 
given by  E q . (14).

6. W e now consider the  d is tr ib u tio n  of stress in the  solid w hen th e  crevice 
~ c ^ y ^ c ,  .v =  0 is opened u p  by th e  ac tio n  of a uniform  pressure  po. T ak in g  a 0= l ,  
a„ =  0, n > 0 ,  in E q . (15) we o b ta in  for $(p) th e  expression

0 =  <tx +  <rv\ $  =  a x — <rv +  2 tVxV, D — Ux +  iuv

I T  & i — »
D =  --------  £ { (3  -  4<r)i2(z) -  zO'(z) -  « '(* )}

4

2 0  =  Q '(z) + T l',(z )

-  24> =  zÔ "(z) +  « " ( z )

( 2 2 )

(23)

$(p) = — inPoC'p \Jo(cp) H I z-J\{z)dz
1 c cp

0

an d , by  a w ell-know n recurrence re la tio n ,

(24)

S u b s titu tin g  from  E q . (24) in to  (4), (5) an d  (6) we o b ta in  th e  equa tions

0
( 2 5 )

* A. C. Stevenson, Phil. Mag., (7).34, 766 (1943).
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'¿(or — Ox) = pocx I pc pz cos pyJi(cp)dp, 
d 0

■ Tzv =  —  .poCX I p 'a ‘r » r  sin pyji(cp)dp
d 0

(26)

(27)

for the  d e te rm in a tio n  of the  com ponen ts of stress.
N ° w ,

f  pc~l>:J\{cp)dp = c(c2 + s2)“ 3'2, 
d 0

so th a t  w ritin g

z = x +  iy — re'6, 

we o b ta in  the  form ula

ic = rici6'i z +  ic -  r2eie-

I Ji(cp)pe~l>r(cos py — i sin py)dp =
J  0

In a  s im ila r w ay  we can estab lish  th a t

(r ir2)3/2
. g —  i3/2 (01+^2) t

/ /i(cp )e_ 'II(cos py — i sin pv)dp =  — i  1 ---------------ei(e .
o c l  M 'l*  j

(28)

(29)

(30)

E q u a tin g  real an d  im ag in ary  p a r ts  in E qs. (29) and  (30) and  su b s titu tin g  in to  (25), 
(26), an d  (27) we o b ta in  th e  expressions

\{<Tx +  crv) =  pa
( r ,r2)P2

cos (0 — -J01 — -¡62) — 1 > ,

r cos 0 /  c- \ 31- 3
¿(cy -  ^^) =  Po ---------( ------) cos -  (0i +  0»),

c V ir-i/  2

t  x y  — — pa~

r cos 0 /  c2 \ 3'2 3c2 \ 3'2 3
 J sin -
r\r-J 2

( 0 i  +  0 s )

(31)

\
for th e  com ponen ts of stress. E q u a tio n s  (31) are  ag reem en t w ith  those  derived  in the  
p rev ious p a p e r ;2 in m aking  th e  com parison i t  should  be n o ted  th a t  th e  angles 0, 0i, 02 
of th is  no te  are  th e  com plem ents of the  angles deno ted  by  these sym bols in th e  paper 
quo ted .

I t  follows from  E qs. (23) th a t  these equ a tio n s are  a  consequence of th e  S tevenson  
eq u a tio n s  (22) if we w rite

12(c) =  2paWc-  +  s2 w'(s) =  -  2/>„c2(c2 +  z2)-K
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A N A L Y SIS O F SH E A R  LAG IN  B O X  B E A M S BY T H E  
PR IN C IP L E  O F M IN IM U M  PO T E N T IA L  EN ER G Y *

BY

ERIC REISSNER.
Massachusetts Institute of Technology

1. In troduc tion . L e t us consider a th in -w alled  box beam  of w eb h e igh t 2h and  
co v er sh ee t w id th  2w w hich is b e n t in such a w ay  th a t  one of th e  cover sheets is in 
tension  w hile the  opposite  cover sh ee t is in com pression (Fig. 1). In  e lem en ta ry  beam  
th eo ry  th e  assum ption  is m ade th a t  th e  norm al s tress in the  cover sheets docs no t

II crv

1

\-  h —h - h  - ]

M +  i M .  d x

_ J  X

V +  4 ^  d x  
d x

F ig. 1. Sketch of spanwisc element of box beam with doubly symmetric cross section.

v ary  in the  d irection  across th e  sheet. Because of the sh ea r defo rm ab ility  of the  cover 
sheets th is  assu m p tio n  of e lem en ta ry  beam  th eo ry  is o ften  seriously  in e rro r for w ide 
beam s. In  aero n au tica l engineering th is  effect is know n u n d er the  nam e of sh ea r lag. 

In  recen t p ap e rs ,12 sh ear lag in box beam s has been analyzed  by  an  ap p lica tio n

* Received Feb. 22, 1946.
1 E. Reissner, Least work solutions of shear lag problems. Journal of the Aeronautical Sciences, 8, 284- 

291 (1941).
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of the  theorem  of least w ork w hich is the basic m inim um  principle for the stresses. 
T h e  p resen t p ap er co n ta in s an app lica tion  to  th e  problem  of sh ear lag of the  theorem  
of m inim um  po ten tia l energy, w hich is the  basic m in im um  principle for the  strains.3 
I t  is show n th a t  app lica tion  of th e  theorem  of m inim um  po ten tia l energy  to  the  p res­
e n t problem  leads to  sim pler and  m ore general resu lts th a n  the  app lica tion  of the  
theorem  of least w ork. W hile the  least-w ork  m ethod  furn ishes the  stresses in box 
beam s w ith  no cu t-o u ts , app lica tion  of the  m in im um -po ten tia l-encrgy  m ethod  fu r­
nishes, in a  sim pler m anner, th e  stresses in beam s w ith o u t or w ith  cu t-ou ts. I t  also 
furn ishes beam  deflections, and  is equally  conven ien t for beam s supported  in s ta t i ­
cally  d e te rm in a te  o r in s ta tic a lly  in d e te rm in a te  m anner.

A pplication , in th e  m an n er described below, of th e  m in im um -po tcn tia l-energy  
principle to  th e  problem  of bending  of th in-w alled  box beam s leads to  a  d ifferential 
eq u a tio n  for th e  beam  deflection w hich is a generalization  of the  re lation  2"  =  — M / E I ;  
th is  differential eq u a tio n  co n ta in s  an add itional te rm  proportional to  the  fo u rth  de­
riv a tiv e  of 2 w hich tak es  in to  acco u n t the  shear defo rm ab ility  of th e  cover sheets. 
As the  o rd e r of ¿he differential eq u a tio n  in th is  th eo ry  is h igher th a n  the  o rd er of the  
d ifferen tial equa tion  of e lem en tary  beam  theory , b o u n d ary  cond itions ap p ea r in ad d i­
tion to  those of e lem en ta ry  beam  theory . T hese ad d itio n a l b o u n d a ry  cond itions arc 
d ifferen t for beam s w ith  c u t o u ts  and  for beam s w ith o u t c u t outs.

T h e  m an n er of app lica tion  of th e  resu lts o b ta ined  in the  p resen t p ap er is show n by  
solving exp lic itly  the following four exam ples.

1. S im ply  su p p o rted  beam . Load d is tr ib u te d  accord ing  to  a  cosine law.
2. C an tilev e r beam  w ith  uniform  load d is trib u tio n . C over sheets fixed a t  the  su p ­

port.
3. C an tilev er beam  w ith  uniform  load d is trib u tio n . C over sheets n o t fixed a t  the 

su pport.
4. Beam  w ith  b o th  ends b u ilt in. U niform  load d istrib u tio n .
For the  sake of sim plicity , it  is assum ed in w h a t follows th a t  the  cross sections 

of the beam s arc  rec tan g u la r and  doub ly  sym m etrica l. I t  also is assum ed th a t  there  
is no con tinuous varia tio n  of cross-sectional properties.

T h e  a u th o r  believes th a t  th e  w ay in w hich the  principle of m inim um  po ten tia l 
energy  is here applied  to  th e  problem  of sh ear lag will prove useful in o th e r  problem s 
of s tru c tu ra l m echanics. As an  exam ple of such fu tu re  app lica tion , the  th eo ry  for 
com bined torsion and bending  of beam s w ith  open or closed cross sections is m en­
tioned.

2. F o rm ula tion  and  so lu tion  of problem . In the following, we analyze  a box beam  
of d o u b ly  sym m etrica l rec tan g u la r cross section, com posed of cover sheets, sidew ebs 
and  flanges. A given d is trib u tio n  of loads is applied  to  the  sidewebs, ac tin g  norm al 
to  th e  p lane of the cover sheets (Fig. 1). T o  th is  load d is trib u tio n  there  co rresponds a 
d is trib u tio n  of bending  m om ents M (x ) . T h e  spanw ise coo rd ina te  being x, let y  be the  
coord inate  in the  p lane of the  cover sheets perpend icu la r to  the  x  d irection , and  z(x) 
the  deflection of the  n eu tra l axis of the  beam .

5 F. B. Hildebrand and E. Reissner, Least work analysis of the problem of shear lag in box beams, 
N.A.C.A. Technical Note No. 893 (1943).

3 For a formulation of these theorems see for instance 1. S. Sokolnikoff and R. I). Specht, Mathe­
matical theory of elasticity, McGraw-Hill Book Co., Inc., New York, 1946, pp. 275-287.
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T h e  p o ten tia l energy  of the  b e n t beam  m ay  be considered as com posed of th ree  
parts . T h e  first p a r t  is the  po ten tia l energy  of the load system . T h is  m ay  be w ritten  
in the  form

d2zn - •• •/ id~z
M (x) —  dx, (1)

dx-
the  in teg ra l being ex tended  over the  en tire  leng th  of the  b eam .4 T h e  second p a r t  is 
th e  s tra in  energy  of sidew ebs an d  flanges! T h is  m ay  be w ritten  in th e  form

1 r  / d " z Yn» = 7  J  E I" ( - ¡ ¿ )  dx’ (2)
the q u a n tity  d en o ting  the  principal m om en t of in e rtia  of the tw o sidew ebs and  
flanges.

T h e  th ird  p a r t  is the  s tra in  energy  of the  tw o cover sheets. If it  is assum ed th a t  
the  norm al s tra in s  in the  chordw ise d irection  in the  sheets m ay  be neglected , as d is­
cussed in th e  reference given in F o o tn o te  1 , then  the  s tra in  energy of the  tw o sheets 
is given by  th e  in teg ral

H. =  y  f  J  2t[Eex +  Gy'Jdxdy, (3)

w here the q u a n tity  t deno tes the  cover shee t th ickness, an d  w here E  an d  G a re  th e  
effective m oduli of e la s tic ity  an d  rig id ity . S pan  wise norm al s tra in  ex a n d  sh ea r s tra in  
7  a re  th en  expressed in te rm s  of th e  spanw ise sheet d isp lacem en t u  a s  follows

du  du
«* =  -— , 7 =  —  ■ (4)

dx d y

T h e  theorem  of m in im um  p o ten tia l energy  s ta te s  th a t  the  to ta l p o ten tia l energy

i r  =  n ,  +  n w +  n ,  (5)

becom es a m in im um  for th e  co rrec t d isp lacem en t functions u an d  z, if only  such dis­
p lacem en t functions are  com pared  w hich sa tis fy  all cond itions of su p p o rt and  con­
tin u ity  im posed on the  d isp lacem ents.

D irec t ap p lica tion  of th is  cond ition  by  m eans of th e  calcu lus of v a ria tio n s  leads 
to  a  p a rtia l d ifferen tia l eq u a tio n  for u  and  to  a com plete  system  of b o u n d a ry  con d i­
tions. In  w h a t follows, an  o rd in a ry  d ifferen tia l e q u a tio n  for th e  beam  deflection  z 
and  b o u n d a ry  cond itions for i t  a re  o b ta in ed  in stead . T h is  is done b y  m ak ing  a  su itab le  
app ro x im atio n  for th e  sh ee t d isp lacem en ts u  an d  b y  app ly ing  the  ru les of th e  calcula- 
of v a ria tio n s  to  th e  re su lta n t ap p ro x im ate  expression for the  p o ten tia l energy  func­
tion.

A reasonable  a ssum ption  for the  spanw ise shee t d isp lacem ents is

- ±4[£+(1-5)t,(#«(*, y) = ± h — +  1 -  ) t/(r) . (6)

* Eq. (1) implies that the beam is supported in such a manner that the end forces and moments can 
do no work. This restriction shortens the developments slightly.
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T h e  second te rm  on th e  rig h t of E q. (6) rep resen ts the co rrection  due  to  sh ear lag. 
In stead  of the vanish ing  chordw ise varia tio n  of the  sh ee t d isp lacem ents of e lem en tary  
beam  theo ry , we now assum e a parabolic varia tion . T h e  re la tive  m ag n itu d e  of the 
function  U is a m easure for th e  m agn itu d e  of the  sh ear lag effect. T h e  form  of the 
co rrection  is such th a t  c o n tin u ity  of the  d isp lacem ents along the  flanges, th a t  is along 
y  =  ±-w, is preserved.

D en o tin g  d iffe ren tia tion  w ith  respect to  £ by  prim es, we o b ta in  th e  following ex­
pressions for the  s tra in s  in the  sheets from  Eqs. (6) an d  (4):

=  +  li

2h y 
7 =  +  —  —  U. 

w w

+

1

-  #M_ * \ w2/
(7)

( 8 )

On the  basis of Eqs. (7) and  (8) the  following expression for the  s tra in  energy of the 
sheets is o b ta in ed :

" - / /  " • ' { * [ * "  +  ( '  “  M  + c [ ~ 7

In  Eq. (9) the  in teg ra tio n  w ith  respect to  y  is carried  ou t. S ettin g

I ,  =  4 w t l l2, I  =  I s +  In ;

we have

I f f  8 4 G 4 )
l l s =  -  E l A ( z ' y -  +  r _ ( U r + - z " U ’ +  T  —  1 /4  

2 J  \ la  3 jh 3w- )
dx .

(9)

( 10)

( 11)

S u b s titu tin g  E qs. (11), ( |2 )  an d  (1) in to  Eq. (5), we o b ta in  the  following expression 
for the  po ten tia l energy  of the  system

II = J jy  £/(s")2 + A/V'jrf#
f  1 (8 4 G 4 )

+  j - E i ' ^ {Uy  +  - z'’ u ' +  - ~ u j d x. ( 1 2 )

D ifferen tia l equ a tio n s and b o u n d ary  cond itions for s and  U are o b ta ined  by 
m aking

511 =  0. (13)

T h u s , w ith  Xi and  x« deno ting  the ends of the  in te rva l of in teg ra tion ,
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As 5s" an d  5 U are a rb itra ry  in the  in te rio r of the  in te rv a l (xi, xi) the  te rm s m u ltip ly ­
ing them  m u st vanish . T h is  gives th e  following tw o d ifferen tia l eq u a tio n s

2 I ,  M
z"  +  U' + -----=  0, (15)

E I S

5 I  E l

5 G U 5 

2 E  wi +  4
=  0. (16)

T h e  in teg ra ted  portion  of Eq. (14) defines the b o u n d ary  and  tran s itio n  co n d itions 
for the  function  U. A t a section w here the  shee t is fixed, bU — 0 and

U = 0. (17)

A t a section w here the  shee t is no t fixed and  co nsequen tly  bU  is a rb itra ry ,

EI,[U '  +  | s " ]  =  0. (18)

T ran sitio n s  cond itions for a d ja c e n t b ays w ith  d ifferen t stiffness are :

V  and E I , \U '  +  f s " ]  continuous. (19)

T h e  above b o u n d ary  and  tran s itio n  cond itions are in add ition  to  those im posed on s 
and  M  in e lem en ta ry  beam  theory , as m ay  be verified by  repeated  in teg ra tio n  by  
p a r ts  of the  term  con ta in in g  5s" in the  in tegra l of E q. (14).

3. T h e  m odified b eam  equation  an d  its  b o undary  conditions. B y e lim ina ting  the 
q u a n tity  U from  Eqs. (15) to  (19), we o b ta in  a system  of re la tions con ta in in g  the 
beam  deflection z only.

T h e  d ifferen tial eq u a tio n  for s is derived  b y  d iffe ren tia tin g  E q. (16) an d  s u b s t i tu t­
ing U' from  Eq. (15). T h ere  follows

M E  T2 /  ’  M \ "  I .  ;
z" -\-------------ÎC2 — — ( s  H------- ) — z

E l  G L 5 \  E l  )  37
= 0 . (20)

W hen the  shear defo rm ab ility  of the  sheets is neglected , th a t  is w hen  it is assum ed 
th a t  G =  « ,  Eq. (20) reduces to  the  well know n resu lt of e lem en ta ry  beam  theo ry .

E q u a tio n  (20) m ay  be w ritten  in the  a lte rn a te  form

2 E  /  5 I , \  sIV M  2 E  M "
z " ------------( 1 -------------) ------ = ---------+ ---------------------- (21

5 C, \  6 7 /  wl E l  5 G w*EI

W ith  the  help of E qs. (15) an d  (16), the  b o u n d ary  cond ition  (17), w hich holds 
w hen th e  sheet is a tta c h e d  to  th e  su p p o rt, is transfo rm ed  in to

/  5 7 ,\  M '
( 1 ------------ )z ' ,, +  =  0. (22)V 6 7 /  E l

Sim ilarly , th e  b o u n d a ry  cond ition  (18), w hich holds w hen the  shee t is n o t a tta c h e d  
to  th e  su p p o rt, becom es
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T h e c o n tin u ity  cond itions (19) m ay be transfo rm ed  in an analogous m anner.
T h e  values of the sheet stresses m ay  be ob ta ined  from  Eqs. (9) and  (10). From

Eq. (9) i t  follows th a t  the flange stress is given by

o'/  — ±  Ehz".  (24)

For the  app lica tion  of the resu lts it m ay  be no ted  th a t  the  d ifferential equa tion
(21) can  first be solved for the  value of 
z"  w hich, accord ing  to  (24), gives d i­
rec tly  th e  ap p ro x im a te  value of the 
flange s tre ss  oy. T h e  m ag n itu d e  of the  
deflection z can then  be found from  the  
value of z"  as in e lem en tary  beam  th e ­
ory.

F o r the  ev a lua tion  of th e  solution 
w e define th e  following tw o p a ram ete rs

1
ii =

1 /

51,/61 

511 G 

2 E

(25)

(26)

W ith  (25) an d  (26) th e  d ifferen tial eq u a ­
tion  (21) becom es

1

(2)

—  Z 1V  =  -
k-

M  u M "  

E l  +  k2 E l
(27)

T r i T T T 1 T n _

th e  b o u n d a ry  cond ition  a t  an end sec­
tion  w here th e  shee t is a tta c h e d  to  the  
su p p o rt becom es

M ’
- n  ; (28)

E l
r ’ "

(3)

and  th e  b o u n d a ry  cond ition  a t  an  end 
section w here th e  shee t is n o t a tta c h e d  
to  th e  su p p o rt becom es

M

E l
(29) 2 w L

1

5
CVJ
1
\

I - ■ - -  -  - —

-¡i  i i i i i i i 1T T T T  i i t i i i i t r r

4. E xam ples of applications (Fig.
2). 1. Simply supported beam. Load dis­
tributed according to a cosine law. D esig­
n a tin g  th e  span  length  of the  beam  by  I 
a n d  assum ing  th e  origin of th e  coord i­
n a te  system  a t  th e  cen te r of th e  beam , p ICi 2. Diagrammatic sketches of beams analyzed 
we consider th e  m om ent d is tr ib u tio n  as examples of application of the theory.
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M  = M  o cos 7T •
I

A p a rtic u la r  so lu tion  of E q. (27) is

i y - M o  1 +  n(ir/kl)-
* -  i1 ) -\  7T /  E

COS 7T ----
£ /  1 +  (ir/M)* 7

(30)

(31)

[Vol. IV, No. 3

As E q. (31) satisfies the  b o u n d a ry  cond ition  (29) an d  the  cond ition  of van ish ing  d e ­
flection a t  th e  ends of the  beam , i t  is the  com plete  expression fo r the  deflection func­
tion . W hen l /& = 0 , E q . (31) reduces to  the  expression for z in th e  case w here shear 
lag is n o t tak en  in to  accoun t. T h e  fac to r

1 +  ( 2 t '2E / 5 G ) ( w / 1 ) 21 +  n{ir/kiy- 

1 +  { r / k i y  ~  1 +  (2tt2E/5G)(w/l)-( l  -  51,/61)
(32)

expresses the  effect of sh ea r lag on deflection and  flange stresses.
2. Cantilever beam with uniform load distribution. Cover sheets fixed at support. A s­

sum ing  th a t ,  c o n tra ry  to  w h a t is ind ica ted  in Fig. 2, th e  free end of th e  beam  has 
th e  co o rd in a te  .v =  0 an d  th e  fixed end of th e  beam  th e  co o rd in a te  x  = l, we. m a y  w rite  
th e  m o m en t d is tr ib u tio n  in th e  form

M

T h e  d ifferen tia l e q u a tio n  (27) th en  becom es

k2
Mo
E l t e -

2 n

Solving for z" , we find

Mo (
z" = ----- <C, si

E l  I
sinh kx  +  Co cosh kx

V i )  ( k iy  )

(33)

(34)

(35)

Satisfy ing  the b o u n d ary  cond ition  (29) w hen  a; =  0 and  (28) w hen x = l , we o b ta in

z = +
2{n -  1 )

( k iy  L
(cosh kx — 1)

sinh kl — kl 

cosh kl
■ sinh kx

} •
(36)

A ccording to  E q. (24), th e  flange s tress a t  the  fixed end of th e  beam  becom es

ay(/) — +
Moh

1 + 2(» -  1) 

kl

1 1
tanh k l  1----------------

kl kl cosh kl_

W e tak e  for a  num erica l exam ple

I ,  1

I  2 ’

G 3 

E ~  S ’

I

2 w

so th a t  accord ing  to  E qs. (25) an d  (26)

n = .1 .714 , kl — 6.34,

(37)

(38)

(39)
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an d  we find

Moli , I
„ / ( / ) =  +  { i +  .190}. (40)

B y app lica tion  of th e  least w ork  m e th o d 1’2 a  fac to r 1.186 is ob ta ined  instead  of the 
fac to r 1.190 in E q. (40).

T h e  deflection of the  beam  is ob ta ined  from  E q. (36) by  in teg ra tin g  tw ice and  
m aking  z(l) = z'(l) = 0 . In  th e  p re sen t case, the  co rrection  due to  shear lag for the  
m ax im um  deflection is ab o u t ten  percent.

3. Cantilever beam with uniform load distribution. Cover sheets not fixed at support. 
M o m en t d is trib u tio n  and  differential eq u a tio n  are  given b y  E qs. (33) and  (34). T h e  
co n s ta n ts  of in teg ra tio n  in (36) are  de te rm ined  by  sa tisfy ing  E q . (29) for ,v =  0 and 
for x  =1. T h e re  follows

—
2 (« -  1)

(cosh kx  — 1)

cosh kl — 1 — \{kl)~
(kiy-

sinh kl
sinh kx ( 4 1 )

T ak in g  again  I , / I  =  .5, we should  have, for th e  flange stress a t  the  supp o rted  end, a 
value tw ice as large as th e  s tress accord ing  to  e lem en ta ry  beam  th eo ry  for a  beam  
w ith  shee t a tta c h e d  to  th e  su p p o rt. In  the  p resen t so lu tion  th e  fac to r 2 is replaced by  
«  =  1.714. T h is  ind ica tes th a t  w ith  th e  assum ed parabo lic  chordw ise v a ria tio n  of sh ee t 
d isp lacem en t th e  cond ition  th a t  a t  the  su p p o rt of th e  beam  th e  sh ee t is free of stress 
is on ly  app ro x im ate ly  satisfied. T h e  sam e difficulty  arises in m ethods w hich incorpor- 
ra te  th e  a b ility  of th e  shee t to  ca rry  norm al stresses as effective w id th  co n trib u tio n s 
to  th e  s tre n g th  of stiffners .5 T h is  d ifficu lty  is n o t serious w hen th e  m ain  purpose  of 
such “c u t-o u t” ca lcu la tio n s is th e  d e te rm in a tio n  of th e  d is tan ce  over w hich th e  c u t­
o u t is effective an d  its  effect on the  over all beam  stiffness.6

T h e  localization of th e  effect of th e  c u t-o u t m ay  be seen b y  w riting  (41) in the  form

- m

T h is  e q u a tio n  ind ica tes  th a t  th e  influence of th e  c u t-o u t is sm all as soon as the  d is­
tan ce  l —x  satisfies th e  in eq u a lity

-  log (« -  1) 
/ — * > >   ---------

T h u s, th e  w ider the sh ee t and  the  sm aller th e  value of the  shear m odulus G, the  fa r­
th e r  aw ay  does the  effect of the  c u t-o u t ex tend  in th e  spanw ise d irection .

T h e  m ag n itu d e  of th e  beam  deflection is o b ta ined  from  (41) in the  form

5 P. Kuhn and P. Chiarito, Shear lag in box beams— methods of analysis and experimental investigations, 
N.A.C.A. Technical Report No. 739 (1943).

6 Exact solutions of problems of this kind have been obtained by F. B. Hildebrand, The exact solu­
tion of shear-lag problems in fla t panels and box beams assumed rigid in  the transverse direction, N.A.C.A., 
Technical Note No. 894 (1943).
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*(*) =' f  '  f  (44)

w hich de te rm ines th e  co n s ta n ts  of in teg ra tio n  such th a t  z(l)= z '( l)  = 0. F o r the  de­
flection a t  the  free end of the  beam , we have

M 0l2 ( 1 2(« — 1) r /  1 1 \  1 1 1 Ï
s(0) =  -—— <----- 1---- ----------- ( — + -------lc o th  k l --------------------------------

E l  1 4 kl LV 2 (k l)2/  kl (kl)2 sinh k l j j

F o r a beam  w ith  dim ensions as in (38) and (39), Eq. (45) becom es

(45)

Mol2
3(0) = ------- (.25 + .0 8 3 ) .  (46)

E l

T h is  ind ica tes th a t  for a beam  w ith  d im ensions as given sh ear lag due to lack  of sheet 
re s tra in t a t  the  supp o rted  end of the  beam  is responsible for a  th ir ty  pe rcen t increase 
of th e  m axim um  beam  deflection as com pared  w ith  the re su lt of e lem en ta ry  beam  
th eo ry  for a  beam  fully  res tra in ed  a t  the  su p p o rted  end. T h is  increase of deflection 
of th ir ty  percen t com pares w ith  one of hundred  per c en t w hich is o b ta in ed  if the  con­
tr ib u tio n  of th e  cover sheets is neglected.

4. Beam with both ends built-in. Uniform load distribution. T h e  d is tr ib u tio n  of 
bending  m om ents m ay be w ritte n  as

M  =  +  M u (47)

T h e  value of Mo is de te rm ined  by  th e  load in ten sity , th e  value of Mi  in th is  s ta tic a lly  
in d e te rm in a te  problem  has to  be d e te rm ined  from  th e  d isp lacem en t b o u n d a ry  cond i­
tions. T h e  b o u n d a ry  co n d itions are

2 ( ± y )  =  0, (48) z ' ( ± y )  =  0, (49)

, " ( ±  I ) . - , ,
M '( ±  1/2)
  (50)

E l  ’

F o r these b o u n d a ry  cond itions the  m om en t d is tr ib u tio n  is n o t affected by  sh ear lag,
provided  the  m o m en t d is tr ib u tio n  is sym m etrica l a b o u t th e  m id-span  section of the
beam . Indeed , th e  d ifferen tia l eq u a tio n  (27) m ay  be in teg ra ted  to  give

s '"  r x M  » M ’
 = — I  dx -[------------- ? (51)
k2 Jo  E l  k2 E l  V ’

the  lim its  of in teg ra tio n  being so chosen th a t  E q. (51) satisfies th e  cond itions of zero 
slope an d  zero vertica l sh ea r a t  the  m id-span  section. In view of (49) and  (50), 
E q. (51) im plies
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regardless of w h e th e r or no t shear lag is tak en  in to  accoun t. A considerab ly  less sim ple 
proof of the  sam e fac t b y  m eans of the  least w ork m ethod  has been given in th e  refer­
ence quo ted  in F oo tno te  2. For the  m om ent d is trib u tio n  of Eq. (47) there  follows, 
from  (52),

Mo Mi
+ ------=  0, (53)

and  hence

24

M  =  Mi (54)

W ith  th is  value of M  and  the  requ irem en t th a t  z"  be an even function of x, E q. (27) 
is solved in the  form

1

12

2(» -  1) 

(*/)2
+  C2 cosh k

T h e  c o n s ta n t Ci is de te rm ined  from  Eq. (50). T h ere  follows,

M 0 ( /  x \ -  1 n — 1 p cosh kx  1
2 = jr){(4) _Ti + Ekl Lsinh kl/2 k l /2_

(55)

(56)

T ak in g  a beam  five tim es as long as  w ide, th a t  is l /2w  = 5, and  assum ing th e  re ­
m ain ing  p a ram e te rs  as in (38) an d  (39), we o b ta in  th e  following expressions for the  
flange stresses a t  the  bu ilt-in  section  and  a t  th e  cen te r  section of the  beam

"(4)=
M 0h 1 

±  —  — (1 +  -283), 
I 6

Mok 1
*7(0) =  +  —  - ( 1  +  .106).

(57)

(58)

T hese resu lts  agree to  w ith in  a frac tion  of a p ercen t w ith  the corresponding  resu lts 
o b ta ined  by  the  least w ork m e th o d .2 I t  is w o rth y  of no te  th a t, for th is  beam  w ith  b o th  
ends bu ilt-in , shear lag is considerab ly  larger th a n  for a  can tilev e r beam  w ith  the 
sam e load, sam e w id th  an d  half th e  span  of the  beam  w ith  b o th  ends bu ilt-in . If both 
beam s had  the  sam e span, th e  d iscrepancy  would be even larger.

T h e  deflection s of the  beam  is ob ta in ed  from  (56) and  (48) in the  form

Mol-
E I

2 1

f  192

+
n -  1 r  1
(kl)* [H i) cosh (kl/2) cosh kx 

kl sinh kl/2
(59)

C orresponding  to  the  stresses of Eqs. (57) and  (58) we find for the  deflection a t  m id­
span

1 Mol2
2 (0 )  =

192 E l
(1 +  .145). (60)
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(
S hear lag in th is  beam  is th u s  responsib le for an  a lm o st fifteen pe rcen t increase in 
deflection. T h is  p ercen tage  increase of deflection, w hile ap p rec iab le , is considerab ly  
sm aller th a n  the  p ercen tage  increase of m ax im um  flange stress.

A cknow ledgm ent. T h e  resu lts  of th is  p ap er w ere o b ta in ed  in  1944 as p a r t  of w ork  
done for th e  s tru c tu re s  d e p a rtm e n t of th e  R esearch  L a b o ra to ry  of th e  C u rtiss -W rig h t 
C orp o ra tio n  (now C ornell A eronau tica l L ab o ra to ry ). F o r perm ission to  pub lish  th is 
p ap er th e  a u th o r  is in d eb ted  to  A. F . D onovan , C hief of the  s tru c tu re s  d e p a rtm e n t 
of th e  L ab o ra to ry .
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T H E  ANALOG Y B E T W E E N  M U L TIPLY -C O N N E C T ED  
SLICES A N D  SLABS*

BY

RAYMOND D. MIN D U N  
Department of Civil Engineering, Columbia University

1. In tro d u c tio n . T h e  analogy  betw een the  tw o-dim ensional field of s tress an d  the  
transverse  flexure of a th in  p la te  w as first applied  b y  K . W ieg h ard t1 to  th e  so lu tion  
of a  problem  involv ing  b o u n d ary  loading of a  sim ply-connected  body. As is well 
know n, th e  analogy  estab lishes the  p ro p o rtio n a lity  of th e  cu rv a tu re s  of th e  surface 
of th e  p la te  to  th e  com ponen ts of stress in th e  tw o-dim ensional field of stress. H . M . 
W este rg aard2 in troduced  the  useful term inology of slab  and  slice, free slice and  con­
s tra in ed  slice, and  gave the  b o u n d ary  cond itions for the  slab w hen the  slice is m u lti­
p ly-connected  and  is stressed by  b o undary  loads having no re su lta n t force on an 
in te rna l boundary . W estergaard  also proposed th e  use of th e  analogy  in th e  in vestiga­
tion of th e  stresses in the  B oulder C anyon D a m ,3 a  problem  involving g rav ity  and  
bo u n d ary  loading of a  sim ply  connected  body. An im pro v em en t in experim en ta l 
techn ique  w as co n trib u ted  b y  H . C ranz4 in in troduc ing  an  optical spherom eter5 for 
m easuring  th e  com ponen ts of surface cu rv a tu re . C ran z’s app lica tion  w as to  b o u n d a ry  
load problem s in sim ply  connected bodies.

I t  is the  purpose of th is  p ap e r to  give th e  general b o u n d ary  cond itions for the  
slab  w hen the  slice is m ultip ly -connected  and  is stressed by an y  com bination  of 
bo u n d ary  loading, body  forces, d islocations and  th e rm al d ila ta tio n s. T h e  analogy  has, 
in fac t, its  m ost useful app lica tions in th e  la s t th ree  cases as th e y  are e ith e r difficult 
to  reproduce, o r the  re su lting  stresses are  d ifficult to  m easure, in an  experim ental 
m odel of th e  slice itself, while the  analogous cond itions for the  slab, developed below, 
are easy  to  handle.

In  o rd er to  proceed, it  is necessary, first, to  se t dow n th e  general b o u n d a ry  value 
problem  for the  slice. I t  is conven ien t to  do th is  along th e  lines estab lished  by 
M ichell,6 w ith  the ad d itio n a l considera tion  of d islocations and therm al d ila ta tio n s.

2. A iry’s s tre s s  function  and  its  d ifferen tia l equations. In a  s ta te  of plane s tra in  
defined by  se ttin g

* Received April 9, 1946.
1 K. Wieghardt, Über ein neues Verfahren, verwickelte Spannungsverteilungen in  elastischen Körpern  

auf experimentellem Wege zu finden, Mitteilungen über Forschungsarbeiten a. d. Gebiete d. Ingenieur­
wesens, 49, 1S—30 (1908).

2 H. M. Westergaard, Graphoslatics of stress functions, Transactions, Amer. Soc. Mech. Eng., 56, 
141-150 (1934).

3 United States Department of the Interior, Bureau of Reclamation, Boulder Canyon Project, Final 
Reports (1938), Part V, Technical Investigations: Bulletin 2, Slab analogy experiments', Bulletin 4, Stress 
studies for Boulder Dam.

4 H. Cranz, Die experimentelle Bestimmung der Airysclien Spannungsfunktion mit H ilfe des Platten- 
gleichnisses, Ingenieur-Archiv, 10, 159-166 (1939).

3 E. Einsporn, Ebenheit, Zeitschrift für Instrumentenkunde, 57, 265-285 (1937).
6 J. H. Michell, On the direct determination of stress in an elastic solid, with application to the theory of 

plates, Proc. London Math. Soc., 31, 100-124 (1899).



7yz =  7zx = tz =  0

and  restric tin g  the  d isp lacem ents u  and  v to  be functions of x  and  y  only, the  re la tions 
betw een  s tra in , d isp lacem ent, s tress an d  tem p era tu re  in an  iso trop ic  e lastic  body  are

dl l  1 2
tz  =  —  =  —  [(1 — t>i)<rx — r i ( l  +  vx)<rv] +  (1 +  vi)ayT,  (2. la)

d x  L i

dv 1 , 2 .
e„ =  —  =  —  [ (1  — i>i)<Tv — v i (  1 +  vi)<rx] +  (1  +  v { )a iT ,  ( 2 . 1 b )

dy E i

dv d u  2( 1 + vi)
^ IV ~  a "a~ =  ~r Txy' (2. 1c)dx dy Ei

T hese  are  th e  re la tions for a  co n stra ined  slice. T h e  n o ta tio n s  for stress, s tra in  an d  d is­
p lacem ent arc  the  usual ones and  E h vx a rc  Y o u n g ’s M odulus an d  P oisson’s ra tio
for the  m ateria l of th e  slice, cti is the  coefficient of linear therm al expansion, and  T  is
the  tem p era tu re  in excess of a uniform  in itia l tem p era tu re .

W hen the  stresses are expressed in te rm s of A iry ’s stress  function  (<j>) and  a body 
force po ten tia l (F )  by

d~4> d~(p d'4>
<r x  =  — -  +  V ,  <Ty —  — — +  V ,  t  z v  = --------------- 1 ( 2 . 2 )

d y -  d x  d x d y

th e  eq u a tio n s of equilib rium  are  satisfied and  the  s tra in  re la tion

do »lO *\*>*€x d“6v d“7 zt/
+  — T  =  ~ 7 ~ -  (2 -3 )
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dy-  d x 2 dxdy

yields the  differential eq u a tio n  governing <£:

1 — 2vi 1 -f- vi
V'V  ----------------V2F ----------------- a iV 27’. (2 .4 )

1 — Vl 1 — Vl

In a s ta te  of p lane stress, defined by

O'Z T y Z ~  T ZX ~  0 ,

the  s tra in -d isp lacem en t-s tre ss-tem p era tu rc  re la tions becom e

du 1
ix = ----- =  (Ox — Vi<rv) +  otiT, (2 .5a)

dx Ei 

dv 1
«„ =   =  —  (cr„ — vie*) +  aiT,  (2 .5b )

d y  Ei

d w  vi
t 2 =  --- =  — (crx - f  <r„) - f  aiT,  (2. 5c)

d z  E

dv  dl l  2 ( 1  +  vi )
7  x y  h ~  T  x y  (2 . 5(1)

d x  d y  E i

T hese are  th e  re la tions for a  free slice. If the  com ponen ts of s tress are again  ex-
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pressed in te rm s of an A iry function  and  a  body force p o ten tia l by (2.2), the equ ilib ­
rium  eq u a tio n s are  iden tica lly  satisfied and the  s tra in  re la tions reduce to

V'ty =  -  (1 -  n )V 2F -  (1 +  Vl)aV-T  (2 .6 )

if te rm s associated  w ith  the  coord inate  z are neglected.
In  w h a t follows, the  case of plane s tra in  (constrained  slice) will be tre a te d , b u t  

the  resu lts  a re  d irec tly  applicab le  to  p lane stress (neglecting z-dependen t te rm s) if 
Y oung’s m odulus Ei,  Po isson’s ra tio  vt and the linear therm al expansion coefficient oa 
arc  replaced by E { , v[ and a[  w here

.Ei(l +  2vi) vi oti(l +  vt)
b,i =  ------------------- > vi =  — ; a i =   • (2. 1)

(1 T" Vi)2 1 +  Vl 1 +  2vi

3. Conditions on cp at a point on a boundary of the slice. M ichell6 gave th e  condi­
tions to  be satisfied, a t  each p o in t of each boundary , by  <p and  its  deriv a tiv e  norm al 
to  th e  b o u n d ary :

<P =  f  (Bl -  Am)ds +  a x  +  (3y +  7 , (3 .1)
J  0

dip
—  =  Al  +  Bvt +  al +  /3w, (3 .2)
du

w here a, ¡3, 7  are  co n stan ts , in general d ifferent for each boundary , ds is an  e lem en t 
of arc  of a boundary , dn  an e lem ent of norm al to  th a t  boundary , and

dy — dx
l = — , m =  , (3.3)

ds ds
/ »a /i « /»a /» i

Yds +  I Vmds, B  =  I Xds -  I Vlds, (3 .4)

0  ̂ 0 J  0 J  0
X  =  a ,1 +  T x l / m ,  Y = t  xyl +  <rvm. (3 .5)

In  a sim ply  connected  body, a, ¡3, 7 m ay  be assigned a rb itra ry  (including zero)
values as the  add itio n  of a linear function  of x  and  y to <j> does n o t affect the  stresses. 
In  a m u ltip ly -connected  body, th ree  add itional conditions on cp are required  for de­
term in ing  a, /3, 7 , on each ad d itiona l boundary . E qu a tio n s (3.1) to  (3.5) are  no t a l­
te red  by  in troducing  therm al d ila ta tio n s  and  dislocations of the  ty p e  considered here.

4. Conditions on <p for each boundary of the slice. T h e ad d itio n a l cond itions on <f> 
are  o b ta ined  by  assum ing th e  s tra in s  (and hence the  stresses) to  be con tinuous and  
requ iring  the  ro ta tio n s  an d  d isp lacem ents (a) to  be single-valued o r (b) to  have  p re­
scribed d iscon tinu ities (d islocations). M ichell6 gave the  cond itions for case (a). T h e  
cond itions for case (b), including, also, therm al d ila ta tio n s, are  derived by  following 
M ichell’s p rocedure w ith  m odifications along the  lines ind icated  by  V o lte rra .7

(i) Rotation condition. C onsidering the  ro ta tio n

1 / dv d u \

“■ ’ Y V T X X )'<4,1)
7 Love, Theory of elasticity, 4th eel., Cambridge Univ. Press, Cambridge, 1927, pp. 221-228.



we requ ire  th a t  th e  line in teg ra l of its  d ifferen tia l have  a  value, say  c, a f te r  one com ­
plete  c ircu it a round  (and along) a b o u n d ary . T hus,
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Now,

c = J )  </co

duz duz
-----dx + -----dv
dx dy

/ I  Qyxv dex\_____ \ A
\  2 dx

---------i a
d y )

(4 .2)

/  de„  1 d y *  A
+ ---------------------- ) dy. 4 .3

\ d x  2 dy J

R eplacing the  s tra in  com ponen ts by  th e ir  expressions in te rm s of (j), V  and  T, we find

E \C r  /  d d \  f  /  d V  d V  \
 -------=  (1 -  i/,) ®  ( —  (V2(j))dy -  —  ( v V M * )  +  (1 ~  2 n )  <p d y ------- 7 ~  d x )
1 +  vi J  \ d x  dy  /  J  \  dx  dy /(s( y 2<f>)dy -

d
_ ( v :
dy

•dT dT \
d v ---------

. dx dy /
+  EiOCi (

T hen

' d (y24>) Eic 1 — 2vi r  dV E xai r  dTrd{V-<t>) E xc 1 — 2vx r  dV E xa x r
®   ds =  ®   d s -----------------®

J  dn 1 — v2 1 — vi J  dn 1 — vx J
ds. (4 .4 ) 

dn

T h is  is the  first of M ichell’s th ree  cond itions on <f> for each b o u n d ary  of th e  slice. I t  
m ay  be observed th a t ,  if the  c ircu it of the  line in tegral in (4.3) w ere reducible, the  
in teg ra l would vanish  because, b y  G reen ’s theorem ,

i f  1 d j x v  d e A  /d e v 1 d yxy\

J \  2 dx d y )  X \ d x  2 dy )  '

m d2t v d2i x d2y xl\

+  (4 ' 5)

and  th e  surface in teg ra l van ishes by  v ir tu e  of (2.3).
(ii) Displacement conditions. W e a d m it a  tran s la tio n a l d islocation  a parallel to  x  

and  se t

/ r  dn dn r  (  l \  r
dn =  ® —  dx  H dy — ® I t xdx -\ y  xvdy  ) — ® <xzdy.

J  dx dy J  \  2 ' )  J
Now

(j) w¡dy =  yo J )  duz — <j) ydwz =  y0c — (j) y duz, 

w here y 0 is the  y-coord inate  of th e  s ta r tin g  p o in t of in teg ra tio n . Also

•/r'• It ,!v)
r  / I  d y xy 3 f , \  £  /  dev 1 dy xy\

=  w  y  ( -------------------------- dx  4 - (7) y I ------------------------------) ay.
J  \ 2  dx dy J  J  \ d x  2 dy )



H ence

1946] ANALOGY BETWEEN SLICES AND SLABS 283

£  f  / I  d y IV dex
a +  y0c =  0  U x  +  A'l----------------------

J  L \ 2 dx d y ,
dx

de A

d y )
/ d e u 1 d y xv

y i ’ +  y\ l ï ~ T ~ J ï
)  dy. (4 .6)

W e now n o te  th a t

/
l  o 1 r ,o r  (  d e x

e xd x  +  —  y xydy  =  L ^ x j o  H l 3 ' 7 x V|o  —  Q> ( x —  d x  +
1 d y xv 

—  y  dy
2 dy '

dy

the  te rm s o u tside  the  in tegra ls  vanishing because of the assum ption  of con tin u o u s 
s tra in s . E q u a tio n  (4.6) then  becom es

« + >*- —  -  - )  -  « - 1  ■/* + <f y(^  -  %=) (4■J  L V 2 dx dy )  d . r j  J  \ 3 . r  By }
7)

W hen the  s tra in  com ponen ts in (4.7) are  replaced by  th e ir  expressions in te rm s 
of 4>, V  an d  T, we find

Ei{a +  y0c) 

1 +
=  (1 -  Vi)/ ’{£(V2<f>)dy (VV)rf*

dy

/ ( dV dV \

y\ i ; d y  ~  i ÿ dv

/ ( d T  dT  \VU ,,v  “ )
r  r  9 d v  3r  i

— ®  X  ( 1  — r i )  —  +  ( 1  — 2 r i ) ------------ b  E i a i  ------- r f *
J  L dx dx d x j

r  (  d*<j> d34> \
+  ® ï  - —  dx  +  y --------  dy 1.

J  V dx3 dxdy2 J
(4 .8)

Now,

r  /  d3<b d*4> \  r  d-<t> d-<t> 1 ° r  fd-4> d-4> \/  (■'j "*+ ? W ?  "•’) ‘ [’ s + s d _ /  fc i x +i m  ’’)
- - £  - n , < ,J  d s \d x /

th e  term  o u tside  the in tegral van ish ing  because the stresses a re  con tinuous. B u t, 
from  (2.2), (3.3) and  (3.5),

d /d4>\d /d<t>\ 

d s \d x )
Vm -  Y.
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H ence (4.8) m ay be w ritte n :

f (  ¿(V V ) d ( V ^ ) \  1UW +  y 0c) 1 - 2  Vi r  /  dV d V \
® I A'   — x -  — ) ds-= ---------------------  ® [ y --------- :V------  )(/i

J  V dii ds J  1 — yj \ — v\ J  V  dn d s )

-  4 ' ( , , r r  v f ? >

1 — v \ J  \  dn d s )

-  ( 7  -  Vm)ds. (4 .9)

T h is  is M ichell’s second cond ition  on cf> for each b o u n d ary  of the  slice.
S im ilarly , a d m ittin g  a tran s la tio n a l d islocation  b in the  y -com ponen t of d isp lace­

m ent, we se t

b = (j) dv

and  we find

r/(VV) , d(V2<t>)\ E i ( b -  x0c) 1 -  2vx f  (  dV d V \
y  [- ,-r------) ds

r  / </(va») v rf(vy)\  ds _ _ Mb  -  a-oc) _  i -  2Vl r  /
J  V  ds dn J  1 — vs  1 — v\ j  \

m

ds dn )

Eya i C (  dT d T \
+  æ  ) ds

1 — vi J  \  ds dn J

/ ( X  -  Vl)ds, (4 .10)
,

w hich is the  la s t of M ichell’s th ree  conditions.
C orresponding  to  (4.5), a  sim ilar ap p lica tion  of G reen ’s theorem  to (4.6) reveals 

th a t  the  rig h t hand  side of th e  la t te r  van ishes for reducible c ircu its  and  th e  sam e 
resu lt is found for th e  co rresponding  step  in the  deve lopm en t of M ichcll’s th ird  con­
d ition .

T h e  d ifferen tia l eq u a tio n  (2.6), the  b o u n d a ry  cond itions (3.1) and  (3.2), an d  the 
th ree  cond itions (4.4), (4.9) and  (4.10) co n s titu te  a  s ta te m e n t of the  b o u n d a ry  value 
problem  of p lane e la s tic ity  for stresses induced  by  b o u n d a ry  loading, body  forces, 
d islocations, and  th e rm al d ila ta tio n s . T h e  general fo rm ula tion  of the  problem  reveals 
the  analogies, discovered by  M . A. B io t,8 betw een g rav ity  load ing  and  b o u n d a ry  
pressures, and  betw een  th e rm al load ing  and  b o u n d a ry  p ressures an d  dislocations.

5. T h e  slab  equations. In the  ap p ro x im ate  th eo ry  of th e  bend ing  of th in  p la te s9 
(slabs), th e  deflection (îc) is governed by  th e  d ifferen tia l eq u a tio n

DV4™ — Z, ( 5 . 1)

w here D  is the flexural rig id ity  of the p la te  an d  Z  is the  surface load, norm al to  the 
m iddle plane.

T h e  com ponen ts of c u rv a tu re  in the  y, z and  x, z p lanes are  given by

8 M. A. Biot, Distributed gravity and temperature loading in two-dimensional elasticity replaced by 
boundary pressures and dislocations, J. App!. Mech., 2, A 41-A 95 (1935).

8 Love, loc. cit,, p. 487.
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d2w d~w

d y2 dx2
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(5 .2)

On a b o u n d ary  of the slab, th e  shearing force (N)  norm al to  the  m iddle p lane, the 
flexural couple (G), an d  the  to rsional couple (H ) (all p er u n it of arc  length  s) arc

N  =  -  D —  (V2u>),
dll

G
rd'-w / d 2w l

=  -  D \   +  v2 ( ------+  —
La»2 \d s2 P'

d / d w \

"  “ ( 1 "  n ) D ^ ( i r ) '

(5 .3a)

(5 .3b)

(5.3c)

w here p' is th e  rad iu s of cu rv a tu re  of the  b o u n d ary  of the  unflexed slab an d  r2 is 
Po isson’s ra tio  for the  slab  m ateria l.

T h e  re su lta n t force and  th e  com ponents, parallel to  the  .v and  y axes, of th e  re­
su lta n t couple on a com plete  b o u n d a ry  are10

d H \

17) d s ’

d l l \  dx~
 ) +  G ,ds )  ds_

"■ - /  7  

M-=/K'v- f ) +cS>'
-  *0] *

S u b s titu tin g  (5.3) in (5.4) we find 

Ft =  -  D £ \ d

M

d d \  ~1

J  U n  +  < !  “  ' ! )  Vs to W j
ds,

(5 .4a)

(5 .4b)

(5.4c)

(5 .5a)

d d /dw \~[
(V2u/) 4  (1 -  Vi) —  —  ( — )

■  -p/  L tlv w' ’ '■ ~ 37 to viryj
dx  ra2w / d 2w l  awA~n 

-f- —   -f- v-> ( -------1-------  ) ( ds,
ds La»2 \ds" p d n )A )  

f  (dy f d 2w /d-w  1 d w \~
» • - - o f  {tob + '!W+7 to).

r  a a a / dw x it
-  +  ( ! - „ ) - - ( — ) _ } f c

(5. 5b)

(5. 5c)

6. T h e  analogy fo r sing ly -connected  bod ies. N o ting  the  s im ila rity  betw een the 
d ifferen tial equ a tio n s (2.6) and  (5.1) for d> and  w, we set

w =  K<f>, (6.1)

10 Love, lot. cit., p. 460.
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w here AT is a conversion c o n s ta n t hav ing  th e  d im ensions of leng th /fo rce .
T h en , from  (6.1) and  (2.6),

1 — 2ri 1 +  vi
V4it, = --------------- K V - V    KotiWT  (6 .2)

1 —  Vy 1 —  Vi

becom es th e  d ifferen tia l eq u a tio n  fo r th e  deflection of th e  analogous slab. H ence

1 — 2vi 1 -f vi
Z = ---------------------------------K D V 2V ------------------ :---------- K D a iV 2T  ( 6 . 3 )

1 — Vi 1 — ri

is the  norm al surface loading to  be applied  to  the  face of the  slab. In th e  case of a 
s tead y  s ta te  te m p e ra tu re  d is trib u tio n ,

V2T = 0 .  (6 .4)

If, in a d d itio n , th e  body force p o ten tia l is harm onic , th e  slab  is su b jec ted  to  edge load­
ing only. If e ith e r V  o r T  is no t harm onic , tran sv erse  loading is requ ired  on the  su r­
face of the  slab, and the  load m ay v a ry  slowly w ith  tim e.

T h e  edge cond itions (i.e., th e  e levation  an d  slope a t  each p o in t of a b o u n d ary ) of 
th e  slab  are  specified by  su b s titu tin g  w = K<p in (3.1) an d  (3.2). T h u s

g
(Bl — Am)ds +  ax  - f  fly +  7 , (6 .5)

1 dw
—  : =  A l  - f  Bin - f a / - f  Aw. (6-6)
K  dn

T h e  norm al com ponen ts of stress in the  slice are o b ta in ed  by  com bin ing  (2.2),
(5.2) and  (6.1), w ith  th e  re su lt

a x = ^ + v ,  <ry = - f  V . (6 .7 )
K  K

T h e  p rincipal s tresses an d  th e ir  d irec tions m ay  be ca lcu la ted  from  tw o se ts  of c u rv a ­
tu re  m easu rem en ts a t  each  p o in t.4 I f  the  b o u n d a ry  of th e  slab  is a scale m odel of the 
b o u n d ary  of the  slice, e.g., if th e  ra tio  of a  linear d im ension of th e  slab  to  th e  co rre­
spond ing  lin ear d im ension of th e  slice is k, th e  s tre ss  com ponen ts in th e  slice are  given 
by

k'K 1  k'-Kn
a x =  +  v, ay =  -  +  V.  (6.8)

A  A

F o r a  sing ly-connected  body, (6.1) to  (6.8) com plete ly  specify  the  analogy , since 
the  unknow n c o n s ta n ts  a, j3, 7  m ay be given a rb itra ry  values.

7. A dditional cond itions on th e  slab  for m u ltip ly -connected  bod ies. F o r a m ulti- 
p ly-connected  body , a, fl, 7  m u st be prescribed  for each  b o u n d ary . N ow , it  will be 
observed, from  (6.5) and  (6.6), th a t  a, (3, 7  specify a rigid body  tran s la tio n  and  ro ta ­
tion  of each com plete  b o u n d a ry  of the  slab. Such rigid body  m ovem ents m ay  be
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effected b y  app ly ing , on each b o u n d ary , a  re su lta n t force, norm al to  the m iddle plane 
of th e  slab, and  a  couple a b o u t an  axis p roperly  orien ted  in the  plane of the  slab. T h e  
m ag n itu d es of th e  force and  the  x  and  y  com ponents of the  couple on each b o u n d ary  
are dete rm in ed  b y  expressing FXI M Xl M v (see (5.5)) in te rm s of the specified b o u n d ary  
loadings, body  forces, d islocations, an d  tem p era tu re  d is trib u tio n  of th e  slice.

i. Resultant force on a boundary of the slab. R eplacing w b y  K(j> in (5.5a), we have

Rz = KD

Now

r  r  o a d / d<A~|
/  U N * -

J  ds dll \c )sj

ds. (7 .1)

because of the  assum ption  of co n tin u ity  of the  com ponen ts of stress in the slice. H ence

d
P z  = KD / dll

T herefo re , from  (4.4),

(1 ~  vi)F, =  _  E lC 
KD ~  1 +  Vi

/ dV f  dT
 ds -\- F.i«i ®  ds,

dn J  dn

(7.2)

(7 .3)

w hereby  Fz is expressed in te rm s of know n quan titie s .
ii. x-component of couple on a boundary of the slab. S u b s titu tin g  K<f> for w in (5 .5 b ):

/ f V  1 ^ - i k
\ 3 s 2 p' d n / } )

dx  r d2<j>

ds Ldn2
+  Vï (7.4)

E lim ina ting
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Now,

r  r  <>(y-<i>) n <> m i  , ,o
® .v ------------ h (1 — Vi)y--------- ( —  } í/í =  .vV’̂ Jo +

J  L ds ds dn \ d s ) J
(1 -  **) y

d /  dip

4> +  (1 — vi)
dy d /dtp

ds dn ©]
dn

ds.

(1
(7 .6)

T h e  te rm s ou tside  the  in teg ral vanish  on acco u n t of the  a ssum ption  of c o n tin u ity  of 
the  stress com ponents. T herefo re  the  first in tegral on the rig h t hand  side of (7.5) b e ­
com es

/{ ( 1  -  V i )

On a b o u n d a ry

dy d /dip 

ds dn

/d<t>\ dx T d'2<f> /d'<f> 1 d<£\”l)
( —  ) H V2(/>---------------v i l  —  + ---------- ) }ds.
\ d s )  ds _ dn- \ds- p’ d n )_)

d'2<p 1 dtp d-<p
V2(p =  h •— - — 1-------- i

dn- p’ dn ds°-

so th a t  (7.7) becom es

J  Li/i dll \ d s )  ds \<3i2 p'

d<p 

dll/ J
ds.

H ow ever, along a bou n d ary , 

d /d<p\
(7 . tO)

H ence, (7.9) becom es

dy

ds

(1 -  v2)

dx
—  ( 
ds

d-<p 1 dip
v ,

ds~ p dll

V.

/ (
_  d x \
V +  V — ) ds. 

ds/

S u b s titu tin g  back  in (7.5), we have, finally, 

(1 — vi)M x E / a  +  y 0c)

KD 1 T  vL

+  £ 1«! ^

— [(1 — r2)( l

-b (1 -  2r , ) / ( 3
dV

dn

d V \
.v ) ds

d s )

(7 .7 )

(7 .8)

(7 .9)

(7 .11)

(7 .12)

dT d T ' 1
d n d s  ,

1 CIS

Vl )  +  1 , / ( F  -  V m ) d s . (7 .13)

T h is  gives M x in te rm s of know n q u an titie s .



in .  y-component of couple on a boundary of the slab. S u b s titu tin g  K<p for w in (5.5c),

19461 ANALOGY BETW EEN SLICES AND SLABS 289

M, =  -  KD <£ i
dy r d 24>

4
J  (tfs Ldn" 

a(V20) d d /dtp'
+  (1 — v f ) --------

dll ds dll

/d-<P 1 d<p\~

\ a s 2 p' d n ) .

(7.14)

E lim in a tin g

/* dn
CV-<p)ds

betw een  (7.14) and  (4.10), w e have 

M v 

KD /{
d d d /dtp\

y —  (v24>) — C1 — vi ) x 'ds

+
dy r d 2<p / d 2<p

La»2 + 1,2 Va.?2

ds

, - + 1 - ) 1 1  ds La»2 \ds- p' a » / J j

E\(b  — Xqc) 1 — 2v\

d_ /dJA 

dn \ d s j

ds

1 -  vl 1 — V i

r  (  dv dV\
f  V*  1 '

Now ,

/ [ ’ ¿(VV)
ds

Eiai r  /  dT d T \  1 r
  <P [ y  +  * ------ ) d s ------------------ (p (X  -  Vl)ds. (7.15)
1 — v \ J  \  ds d n /  1 — v \ J

- / [ f w - u  ( 7 . 1 6 )

T h e  te rm s ou tside  the  in teg ra ls  in (7.16) vanish  on accoun t of the  a ssu m p tio n  of con­
tin u ity  of stresses. T herefo re  the  first in teg ra l on the rig h t hand  side of (7.15) becom es

/  i t  b a 24>

a »2
v2 I

/a^>

Vas2

1 d<t>\ 1  „ dx  a /d<j>\)

4 7  <7/J “  (1 _  "2) I s  ¡ ¡ w J  ds'

T h e n , using (7.8), (7.10) and  (7.11) and  no ting  th a t

dx dy  _
Tin “h On . Kj

ds

(7.17) m ay  be w ritten  in th e  form

(1 — v2) <j) 

S u b s titu tin g  back  in (7.15), we have

ds

( X  -  Vl)ds.

(7.17)

(7.18)

(7.19)
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-  ( 1  -  2 v i )  (j>  ( y  —  +  x
KD  1 +  vi J  V  ds dn

dT  d T \

ds

f a +

+  [ ( 1  -  V 2) ( l  ~  Vl) ^  (X Vl)ds. (7 .20)

8. R ecap itu la tion . T h e  stresses, in a m u ltip ly -connec ted  slice, re su lting  from  
b o u n d a ry  loadings X, Y, a  body  force po ten tia l V, d islocations a, b, c and  te m p e ra ­
tu res  T, arc re la ted  to  the  c u rv a tu re s  of a  slab  accord ing  to

K x Ku
Ox — —— +  V, o„ =  —  4- V 

A  A

if the  following cond itions are  satisfied on th e  slab :
(i) T h e  surface loading on the  slab  is

1 — 2vi 1 4  fi
2   ----------------K D V -V  KDaiV'-T; (6 .3)

1 — V \  1 — Vl

(ii) T h e  boundaries of the  slab  a re  geom etrically  iden tica l w ith  those of the  slice, 
w ith  e levations and  norm al slopes given by

w C ’ 1 dw
—  =  I (HI — Atn)ds -)■ otx 4- Py +  7 ,-----—--------=  4 /  4- Bm  4- od 4* (6 .5)
K  J  o K  dn

a t  each p o in t of each b o u n d a ry ,
(iii) T h ere  are a  re su lta n t force (Fz) and  re su lta n t couples ( M x) and  (M v), on each 
b o u n d ary , w ith  m ag n itudes given by

( 1  -  vi)F, E xc r  dV f  dT
1  J—L  = ---------------+  ( i  _  2vi) <b  ds +  Eiai <b —  ds, (7 .2)

KD  1 4- vi J  dn J  dn

(1 - v i ) M x Ei(a +  y« )  £  (  i V  d V \  ■-----------------------------    ¡- (i _  2vx) f t  1 y —---x —  )d s
KD  1 4- v\ J  \  dn ds /

f  (  dT  d T \

+  ‘■•"■.t v " '  ¿ n

-  [(1 -  v i) ( l-  — v . )  -  J ] (T  -  Vmjih,

K D  1 4 -  v i

,
ds d n )

r (  d T  d T \
— E ic t i  d )  ( y  ——  4 - *  ” —  ) ds

4 -  [ ( 1  -  v i ) { l  |  V i )  -  1 ]  j  (.X  -  I7l)ds. ( 7 .20)
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O N  A N  E X T E N S IO N  O F T H E  VO N K A R M A N -T SIE N  M E T H O D  
TO  T W O -D IM E N S IO N A L  SU B SO N IC  FLO W S W IT H  

CIRCULATION A R O U N D  CLOSED PR O FILES*

I)Y

C. C. LIN
Brown University

1. In tro d u c tio n . T h e  m eth o d  for trea tin g  com pressible flows, as developed by  
C h ap ly g in ,1 von K a rm a n 2 and  T sien3 leads to  a successful so lu tion  of the  flow p a tte rn  
p a s t solid bodies w hen the  flow has no c ircu lation . W hen the flow has a  finite c ircu la­
tion, as in the  case of airfoils, the profile shapes furn ished  by  th is theo ry  are no t closed. 
I t  is doub tless desirab le to  develop the  theo ry  so as to  rem ove th is  difficulty.

R ecen tly , B ers4 succeeded in o b ta in in g  flows w ith  circu la tion  a round  closed p ro ­
files. As is usual in the  case of a  first success, th e  new m ethod  has a  few d isadvan tages. 
In th e  first place, the  m app ing  betw een the  ac tu a l com pressible flow and  the asso­
c iated  incom pressible flow is no t regular a t  the  stag n a tio n  points. T hus, if the  profile 
in the  associated  incom pressible flow is regular everyw here, an g u la r po in ts would 
a p p e a r in th e  profile in the  com pressible case; and  vice versa. T h e  app lica tion  of the  
m ethod  is fu r th e r  com plicated  by  th e  fac t th a t  th e  angle th u s genera ted  depends on 
th e  free-stream  M ach num ber. F o r th e  engineer, the  tre a tm e n t has the  add itional 
inconvenience of involving th e  concep ts of R iem ann ian  geom etry  (which are  avoided 
in th e  p resen t tre a tm e n t) .

In  the  p resen t artic le  we shall describe a m ethod  w hich is free from  the  d isad ­
van tag es m entioned  above. T h e  d e riv a tio h 'is  very sim ple, and  no reference is m ade to  
R iem an n ian  geom etry . Y e t the  resu lt includes all the  previous ones as special cases. 
Indeed , th e  tre a tm e n t seem s to  be now in the m ost n a tu ra l and  the  m ost general 
form  w hich is o b ta in ab le  from  the  line of s tu d y  of C haplygin , von K ârm ân  and  T sien. 
I t  also has g rea t flexibility. G iven one incom pressible flow, there  is still an  an a ly tic  
function  a t  ou r disposal for co n stru c tin g  com pressible flows. T h is  freedom  of choice 
enables us to  avoid  m uch unnecessary  num erical labor in co n stru c tin g  flows of certa in  
general types. A large n u m b er of com pressible flows can be derived from  a  given in ­
com pressible flow by  th e  p resen t m ethod  w ith o u t num erical in teg ra tion .

A p a r t  from  giving a useful m ethod  for constru c tin g  com pressible flow p a tte rn s , 
th e  p resen t d evelopm en t has th e  following significance. F irst, th e  freedom  of d ispos­
ing of one an a ly tic  function  leads to  th e  solu tion  of th e  d irec t problem ,— nam ely  to

* Received May 18, 1946.
1 S. A. Chaplygin, On gas jets. Scientific Memoirs, Moscow Univ., Math. Phys. Sec. 21, 1-121 (1902).

(English translation published by Brown University, 1944. Also NACA TM No. 1063, 1944.)
3 Th. von KArmdn, Compressibility effects in aerodynamics. Jour. Aero. Sci. 8, 337-356 (1941).
3 Hsue-Shen Tsien, Two-dimensional subsonic flow of compressible fluids. Jour. Aero. Sci. 6, 339-407 

(1939).
4 L. Bers, On a method of constructing two-dimensional subsonic compressible flows around closed pro­

files, NACA T N  No. 969 (1945); On the circulatory subsonic flow of a compressible flu id  past a circular 
cylinder, NACA TN No. 970 (1945). See also S. Bergman, On two-dimensional flows of compressible fluids, 
NACA TN No. 972 (1945).
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ca lcu la te  th e  com pressib le flow p a s t a  given profile. Indeed , the solution of problems of 
compressible flow, either direct or inverse,— nam ely , th e  co n stru c tio n  of flows a round  
profiles e ith e r  given beforehand  or n o t— is now an a parallel footing with the incompres­
sible case. In  e ith e r  case, the  d irec t problem  requires a  m ethod  of successive ap p ro x i­
m a tio n s .5 Secondly, th e  ap p lica tio n  of th e  p ressure  coefficient fo rm ula  of von K ârm ân  
and  T sien  to  flows w ith  circu la tion  is justified  on the  sam e basis as in th e  c ircu la tion- 
free case. E xperim en ta lly , th e  fo rm ula  has been found to  be successful even w hen 
th ere  is c ircu la tion , a lthough  the  th eo ry  has so fa r been incom plete . T h e  o rig inal d e ­
v elopm en t of von K ârm ân  and  T sien  leaves th e  body  n o t closed, w hile th e  profiles 
given b y  the  m ethod  of B ers do n o t have th e  sam e a n a ly tic  n a tu re  in th e  incom ­
pressible and  th e  com pressible cases. T h e  p resen t m ethod  rem oves these difficulties.

F u r th e r  investiga tions of th e  significance of th e  p resen t m ethod  are  being carried  
o u t. T h e  p resen t a rtic le  co n ta in s  only  th e  essential re su lt an d  its  proof. I t  is hoped th a t  
a  com plete  discussion of fu r th e r  developm ents m ay  be pub lished  very  soon.

2. M eth o d  of constructing  tw o-d im ensiona l subson ic  flow s w ith  c ircu la tion  
a ro u n d  profiles. L e t p, p, u, v be the  pressure, d en sity  an d  com ponen ts of velocity  of 
a  s te a d y  tw o-dim ensional irro ta tio n a l flow in th e  x, y  p lane. L e t p  be a  fu nc tion  of the  
d en sity  p only  (given e ith e r  by  the  isen trop ic  re la tion  o r a n y  o th e r ap p ro x im a te  re la ­
tion ). T h en  th e re  ex ist th e  velocity  po ten tia l <j> and  th e  stream  function  ip defined by  
the  following differential re la tions:

d<j> = udx  +  vdy, (2. 1)

dp =  — pvdx -j- pudy. (2. 2)

T h e  velocity  com ponen ts u, v and  th e  d en s ity  p a re  fu r th e r  connected  by  B ernou lli’s 
eq u a tio n

—---- b f  —  == const., (q2 =  u- +  v2). (2 .3 )
2 J p

I t  is conv en ien t to  refer th e  d en sity  of th e  gas to  th a t  a t  th e  s tag n a tio n  p o in t and  to  
refer all th e  velocities to  th e  velocity  of sound  a t  s tag n a tio n . T h e  co o rd ina tes x, y 
m ay  be regarded  as referred  to  th e  size of th e  body , an d  the  pressure  as referred  to  
th e  p ro d u c t of s tag n a tio n  d en s ity  an d  th e  sq u are  of th e  velocity  of sound a t  s ta g n a ­
tion. T h ro u g h o u t th is  artic le , th is  process shall be im plied, an d  all the  q u an titie s  
un d er d iscussion are  dim cnsionless.

As is w ell-know n, th e  problem  sim plifies g rea tly  if th e  p ressu re-density  re la tion  is 
ap p ro x im ated  by

p — A — —  ■ (2 .4 )
P

T h is  is the  basis of the  m ethod  of C haplygin , von K ârm ân  and  T sien . A discussion 
of its  physical in te rp re ta tio n  m ay  be found in th e  papers of these  au th o rs . E q u a tio n
(2.3) leads to

5 For the incompressible case, see T. Theodorsen, Theory of wing sections of arbitrary shapes, NACA  
Rep. No. 411 (1931).

T. Theodorsen and I. E. Garrick, General potential theory of arbitrary wing sections, NACA Rep. No. 
452 (1933).
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1
c =  =  V I  - f  q \  (2 .5)

P

w here c is th e  local velocity  of sound. Indeed , B  m u st be equal to  u n ity  if th e  reference 
s tag n a tio n  q u a n titie s  are  calcu la ted  from  (2.3) b y  the  use of (2.4)

U nder th e  app rox im ation  (2.4), th e  following m ethod  m ay be used for c o n s tru c t­
ing tw o-dim ensional subsonic flows w ith  c ircu lation  a round  closed profiles.

Given an incompressible flow past a profile Po in  the f -plane ( f  =  { + « 7) described 
by the complex stream junction Fifl) and the complex velocity wo(f), choose a junction
¿(f) > regular in  the region exterior to P« and including the point at infinity, having no
root in  R q, and such that R 0

I itt'o(f) I <  I ¿(f) I <  W on Po, (2. 6)
and that

/
I r  V(f)

= <2' 7>H i )

where the integration is performed along any contour enclosing Po. Then

c  1 r  ^u(f)
* +  i y  = ¿(f)# -  -  (2-8)J  4 J  kit)

1

¿(f)
2 q w«(f)

-----------------  , (2 .9)
1 +  V I +  ?2 ¿(f)

4> +  t y = F (  f) (2.10)
gives the parametric representation oj a compressible flow past a profile P  in  the x, y  plane 
with f  as parameter, where P  has the same general analytic nature (e.g. same number 
oj corners, etc.) as the original profile Po- I n  these formulae, <j>, j  ore the velocity potential 
and stream junction defined by (2. 1) and q, 6 denote the magnitude and direction oj the 
velocity oj the compressible flow.

3. P roof. T h e  proof consists of tw o p a rts . F irs t, i t  is necessary  to  show  th a t,  a fte r 
th e  au x ilia ry  v ariab le  f  is e lim inated  from  (2.8) - ( 2.10), we o b ta in  p roper functional 
re la tions betw een cf>, p, q, 6 and  x, y. Secondly, we m u st show th a t  the profile F  is a 
closed cu rve  an d  is m apped  in to  P 0 b y  a  reg u la r m ap p in g  such th a t  th e  regions R, ex­
te rio r  to  P,  an d  Ro, ex terio r to  Po, a re  m apped  in to  each o th e r in a one-to-one m anner.

(a) T h e first p a r t  of the  proof is sim ple. I t  is well know n*1 th a t  u n d er the  ap p rox i­
m ation  (2.4), the  re la tions

dF 1 _____
= ---------------w*dF, F — F(w*) (3 .1)

w
w ith  z, F, w* defined by

z = x +  iy, 

F =  <f> +  i f ,  

2?
1 +  V i  +  ?2

(3.2)

6 Cf., for example, Eqs. (23), (26) of Tsien’s paper quoted in Footnote 3.
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would give a so lu tion  of the  differential eq u a tio n s of com pressib le flow. In stead  of 
try in g  to  estab lish  a  re la tion  betw een F  and w* d irec tly , we in tro d u ce  an auxiliary  
variable f such  th a t  F i f ) and  w*(f) are an a ly tic  functo ins. I t  is well know n th a t  g rea t 
sim plification is o b ta in ed  by  tak in g  F (f) to  be the  com plex p o ten tia l of an  incom ­
pressible flow sim ilar to  the  com pressible flow we desire. H ow ever, the  e x te n t of 
a rb ita rin ess  in th e  choice of w *(f) has n o t been carefu lly  exam ined . I t  is c lear th a t  
a n y  choice of w *(f) will be sufficient so fa r as sa tisfy ing  th e  differential eq u a tio n s is 
concerned.

In  the p resen t case we dispose of the  a rb itra ry  function  by  w riting

w * (f) =  w o (f) /fe ( f ) .  ( 3 .3 )

T h e  only req u irem en ts  on ¿ ( f )  are  the  general cond itions of reg u la rity  and  th e  re la ­
tions (2.6) and  (2.7), w hich will be discussed im m ediately .

(b) T h e  second p a r t  of the  proof is also very  sim ple. In  the  first place, the  profile 
P  is closed b y  v irtu e  of (2 .7).6 T h e  reg u la rity  of th e  m app ing  is estab lished  if the  
Jaco b ian  of th e  tran sfo rm atio n  m ain ta in s  th e  sam e sign and  does n o t vanish  o r b e ­
com e infin ite  in th e  region Ro, including the  b o u n d a ry  P o an d  th e  p o in t a t  in fin ity . 
I t  can  be easily  verified th a t  the  Jaco b ian  is

wo

Ti ( 3 . 4 )

From  th is  expression, i t  is clear th a t  the  req u irem en t is satisfied w hen k  satisfies th e  
re stric tio n s specified in th e  la s t section.*

4. D iscussion , (a) The function  ¿ (f) . T o  m ake use of the  freedom  in choosing the  
function  ¿ (f)  is th e  essential im p ro v em en t m ade in th e  p resen t paper. V on K ârm ân  
an d  T sien  gave an  in te rp re ta tio n  of w*(f) by  iden tify ing  i t  w ith  th e  com plex velocity  
w0(f) in th e  associated  incom pressib le flow. T h is  m eans th a t  th ey  p u t

¿ ( f ) - a  1 .  ( 4 . 1 )

T h ey  were therefore  unable  to  m eet the  req u irem en t (2.7) for closing th e  profile, for 
flows w ith  c ircu la tion . Bers overcam e th is  d ifficulty  b y  v irtu a lly  tak in g

¿ ( f )  =  c o n s t .  { w o ( f ) j ‘ ( 4 . 2 )

w here is the  free-stream  M ach  num ber. H ow ever, a t  the  s tag n a tio n  p o in ts  of the
incom pressib le flow

| ¿ ( f )  ¡ =  0 ,  ( 4 . 3 )

and  th e  m apping  betw een th e  profiles P  and  P 0 is n o t regu lar there. In  ap p ly in g  his 
m ethod  to  the  calcu la tion  of com pressib le flow p a s t a circle, Bers had  to  s ta r t  w ith  
the  ra th e r  com plicated  problem  of finding th e  incom pressib le flow p a s t tw o in te rse c t­
ing c ircu la r arcs w ith  th e  s tag n a tio n  po in ts  a t  the  po in ts  of in tersec tion  an d  w ith  th e

* Note added in proof: Professor K. O. Fried ricks pointed out to the author that, in the compressi­
ble as well as the incompressible case, a mapping with non-vanishing Jacobian does not always lead to 
a useful result: the region obtained may be simply-connected but multiply covered. This difficulty has 
not been experienced so far in some numerical examples which have been worked out.



angles p roperly  ad ju s ted  in re la tion  to  the free-stream  M ach num ber. Indeed, it  seem s 
th a t  a f te r  reaching  the  relation

(IF 1
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dz — -------------- w*dF,
w* 4

th e  m ost n a tu ra l d ev e lopm en t of the K arm an-T sien  m ethod  is to  leave i£>*(D qu ite  
free, as we have done here, instead  of connecting  it defin itely  w ith  wo, as w as done by  
prev ious au th o rs . T h e  p resen t m ethod  of leaving k(f)  free seem s to  be the m ost gen­
eral schem e.

If we d elibera te ly  w an t to  in tro d u ce  some singular po in ts  in P by  s ta r t in g  from  a 
profile P 0 w ith o u t a singu lar po in t, | | should be allowed to  take  the lim iting  val­
ues specified in (2.6) ; e.g., k(£) =0 w here w>o(f)=0.

A lthough &(D can n o t be tak en  to  be u n ity  w hen the flow has a circu lation , it 
should n o t d e p a r t  from  u n ity  very  m uch if the  profiles P  and P 0 are no t to  differ 
m uch from  each o th er. T h is  is easily seen from a com parison of te rm s in (cf. (2.8))

1 ~ ~1 »0 ,
dz =  k d t -------------di.  (4 .4)

4 k

T h e y  have the ra tio  (cf. (2.9) and  (2.5))

M 2
- ( ■ — = )  \ 1  +  \ / l  +  q V

= ,  (4 .5)
+  V I  +  q*/ (1 +  V I  -  M T -

w here M  is the  local M ach n um ber q/c. T h is  value is m uch sm aller th an  u n ity , excep t
for values of M  close to  u n ity .7 H ence, (4.4) is app ro x im ate ly  the  id e n tity  tran sfo rm a­
tion if k is v e ry  close to  u n ity . T h is  app rox im ate ly  preserves the  shape of the profile 
d u r in g  the  tran sfo rm atio n .

(b) Conformal mapping of compressible flows. If we m ake a con form al tran sfo rm a­
tion of th e  f-p lan e  in to  the  f-p la n e  by  the  an a ly tic  re la tion

r  =  M r) , (4-6)

we arc  m erely  m aking  a change of the  aux ilia ry  variab le  in (2.8)—(2.10)- Indeed , we 
have

w here

r ___ 1 r  w5('f) ~
« +  iy  =  kd'ç -  -  df,

J  4 J  M r)
(4 .7)

2 q Wo(r)

i +  V i  +  M r)
(4 .8)

4> +  i f  = P ( r ) ; (4 .9)

H f )  = m , (4.10)

wn(~n =  F Ê )  = n r )  %
«r

(4.11)

Cf., Fig. 3 of Tsien’s paper quoted in Footnote 3.
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and

K f )  =  ¿ (f )  i  • ( 4 .1 2 )
" f

W e n o te  th a t  th e  eq u a tio n s  (4 .7 )-(4 .9 ) are  of the  sam e n a tu re  as (2 .8 )-(2 .10). H ow ­
ever, the  profile P o, in to  w hich the  profiles P  and  P o are  m apped , m ay  b ear no re­
sem blance a t  all to  th e  original profiles. Indeed , th e re  is no loss in  g en era lity  in tak in g  
Po to  be a circle. The relations (4 .7 )-(4 .9 ) thus serve to transform the incompressible 
flow past a circle into a compressible flow past a profile of a quite arbitrary shape. R e­
ferring to  (4.6) an d  (4.12) an d  to  th e  fa c t th a t  ¿ ( f )  shou ld  be ta k e n  n o t fa r from  
u n ity , we see th a t  ¿ ( f )  should  be chosen so th a t  i t  is n o t very  m uch d ifferen t from  the  
d e riv a tiv e  of the  func tion  m app ing  P  in to  a  circle.

(c) Formulation of the direct problem. If we d isregard  the  in te rm ed ia te  s tep  of the  
f-p lan e  and  d ro p  the  tilde, we have a  m app ing  of the  n a tu re  described in Section 2, 
b u t w ith  ¿ ( f )  so chosen th a t  a  circle will be m apped  in to  som e profile P .  T h e  function  
¿ ( f )  m u st sa tis fy  th e  req u irem en ts  estab lished  th e re , b u t  i t  should  n o t be very  m uch 
d ifferen t from  th e  function  ¿ o (f)  w hich m aps th e  circle in to  P 0 by  th e  relation

s = f  ¿ o (f)d f.

T h u s  for each profile P , the  d e te rm in a tio n  of th e  com pressib le  flow p a s t i t  is 
eq u iv a len t to  the  d e te rm in a tio n  of a  p ro p er ¿ ( f )  m ap p in g  i t  in to  a  circle b y  (2.8), 
w here W o(f) is th e  flow p a s t th e  circle. T h ere  is no question  a b o u t th e  existence of 
such a  m app ing  function . I t  is c lear th a t  to  each  pu re ly  subsonic  flow, w here th e  a p ­
prox im ation  (2.4) is accu ra te  enough an d  therefo re  F=F(w*),  we m ay  find a  certa in  
¿ i ( f )  m ap p in g  th e  com pressib le flow in to  some incom pressib le flow. B y  considering  
successive conform ai tran sfo rm atio n s, we can therefo re  always m ap  th e  flow in to  a 
circle. T h e  ac tu a l m ethod  of finding ¿ ( f )  is all th a t  rem ains to  be done in th e  d irec t 
problem .

T h e  th eo ry  of subsonic com pressib le flows (so long as th e  ap p ro x im atio n  (2.4) is 
valid) is now p u t on an  equal foo ting  w ith  th e  incom pressib le flows. T h e  inverse 
problem  is com plete, the  d irec t p roblem  of finding a  m app ing  function  for a  given 
profile can  on ly  be solved (p rac tically ) by  successive app rox im ations, even in  the in ­
compressible case.s T o  develop a  m ethod  of successive ap p ro x im atio n s for th e  d irec t 
problem  in th e  com pressible case seem s to  be a  n a tu ra l n ex t step.*

5. A pplication of von M ise s ’ m e th o d  of g en e ra tin g  airfoils. In  th e  incom pressib le 
case, von M ises tran sfo rm s a  circle in th e  f-p lan e  in to  an  airfoil of a  q u ite  general 
shape b y  the  tran sfo rm atio n

H - tX - t) 0-7)
8 Cf., e.g. the papers quoted in Footnote 5.
* Note added in  proof: The essential difference of the two cases lies in the existence problem. While 

the existence of the incompressible flow follows from well-known results concerning the Laplace equation, 
very little seems to be known about the existence problem for compressible flows.
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w here Xi, • • • , X, a re  p o in ts  inside  the  circle, an d  X0 is a  p o in t on the b o u n d ary  (which 
transfo rm s in to  the  tra ilin g  edge of the  airfoil). A sim ilar m ethod  can be used here. 
In  (2 .8 )-(2 .10), we p u t

‘“»-(‘ -tX'-t)' (‘ “t) <5'2)
w ith  th e  sam e general re stric tions on the po in ts X. T h e  condition  th a t  the  po in ts X 
are  inside the  circle is exactly  th e  condition  required  of k (£ )  as s ta ted  in Section 2.

T h e  condition  (2.7) for th e  closure of the body  has also its  equivalence in the case 
considered by von M ises. T h e re  il isa

y  k m = o.

H ere, it  differs by  the  presence of a n o th e r term . T h e  cond ition  th a t

I H t)  | >  I hwott) I

on th e  circle is the  only ad d itiona l restric tion  in the  p resen t case. As it is a m ere 
inequality , there  is no g rea t d ifficulty  in ensuring  it  to  be satisfied.

T h e  in teg ra tio n  required  in estab lish ing  the  relation  betw een z and  f  can be read ily  
perform ed, as it  involves only ra tio n a l functions. T h is  ease of ca lcu lation , to g e th er 
w ith  th e  flexibility  of the choice of th e  p o in ts  X in contro lling  the  shape of th e  airfoil, 
are th e  a d v an tag es  of the  m ethod  of von M ises w hich are still p reserved in the p resen t 
app lica tion .

T h e  a u th o r  is g rea tly  indeb ted  to  D r. J . B. D iaz for very  helpful discussions in 
the  course of th e  investiga tion  and  to  Professors W . P rag er and  K. O. F ried richs for 
th e ir  in te re s t and  discussions.*

s Cf. W. F. Durand, Aerodynamic theory, vol. 2, J. Springer, Berlin, 1933, p. 78, Eq. (20.4).
* Note added in  proof: After the paper was completed and presented in a colloquium at Brown 

University, Professor E. Reissner informed the author that Professor A. Gelbart had recently presented 
a somewhat similar approach in a lecture at M.I.T.
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-N O T E S -
O N  T H E  ELASTIC D IS T O R T IO N  OF A CYLINDRICAL H O LE  

BY A LO CA LISED H Y D R O ST A T IC  P R E SSU R E *

B y  C. J. TRANTER ( M ilitary  College of Science, Shrivenham, England)

W hen  a h y d ro s ta tic  p ressu re  is ap p lied  over on ly  a  sm all p a r t  of th e  leng th  of a 
cy lind rica l hole ex ten d in g  th ro u g h  an  in fin ite  e lastic  solid, th e  stresses and  d isp lace­
m en ts  differ con sid erab ly  from  those  caused  b y  th e  ap p lica tio n  of th is  p ressu re  over 
th e  en tire  leng th  of th e  hole. T h is  problem  has been d iscussed  by  H . M . W e s te rg a a rd 1 
using an  ap p ro x im a te  m ethod  b u t  i t  is n o t easy  to  assess th e  accu racy  of his num erical 
resu lts . I t  is th e  pu rpose  of the  p re sen t n o te  to  give an  ex ac t so lu tion  an d  to  com pare 
num erical resu lts  w ith  those given by  W este rg aard .

T h e  an a ly sis  used here is a sim ple a d a p ta tio n  of th a t  given by  A. W . R a n k in 2 
for the  s im ila r p rob lem  of a b an d  of un iform  p ressu re  app lied  to  a long cy lind rica l 
sh a ft. T h e  num erica l ca lcu la tio n s are  n o t so fo rm idab le  as w ould a p p e a r  a t  first s ig h t 
an d  a m eth o d  given by  L. N. G. F ilon3 for e v a lu a tin g  trig o n o m etric  in teg ra ls  has 
p roved  very  v aluab le  in th is  connection . T h e  resu lts  for the  m axim um  rad ia l d is ­
p lacem en t show  th a t  th e  ap p ro x im atio n  used by  W este rg aard  is ra th e r  crude.

1. T h e  analy tica l so lution. W e use cy lind rica l co o rd in a tes  an d  consider the  p res­
sure load ing  as being  given b y  ar— — p, \ z\ <c, <rr =  0, |z | > c  on th e  su rface  of th e  
cy lind rica l hole r = a. W ith  th e  usual n o ta tio n 4 we therefo re  requ ire  to  find a  s tre ss  
function  cj) sa tisfy ing VV> = 0, r > a, — x  < z < co, (1)
w here V2 d eno tes d 2/ d r 2 +  ( l / r ) ( 3 /d r ) - l - d 2/d s 2 and  th e  b o u n d a ry  co n d itions

3 ( 32 ) i i
" T F  M < e '

=  0, I s I >  c,

r =  a, (2)

d ( a 2 )
, (1 — v ) V -  > <j> =  0, — x  <  2 <  c o , r  =  a, (3)

dr t. dz2)

v being Po isson 's ra tio  for the  m a te ria l of th e  c lastic  solid.
Once <p h as  been found , the  s tresses oy, r rz a re  given b y  th e  expressions show n in

(2) an d  (3) and  th e  rem ain ing  s tresses and  th e  rad ia l d isp lacem en t a re  given by

d ( 1 31 d ( d2 ) 1 +  r  d2<fi
  (4)

E  being  the  m odulus of e lastic ity .

* Received May 8, 1946.
1 H. M. Westergaard, Kdrnidn Anniversary Volume, 1941, p. 154.
! A. W. Rankin, Shrink-fit stresses and deformations, Journ. Appl. Mcch. 11, A77 (1944).
3 L. N. G. Filon, On a quadrature formula for trigonometric integrals, Proc. Roy. Soc. Edin. 49, 38 

(1928-29).
‘ S. Timoshenko, Theory of elasticity, McGraw-Hill Book Co., New York, 1934, p. 309.



Follow ing R ank in , we tak e

$ =  I Rb sin cX sin zXr/X (5)
• 7  o

w here R  is a fu nc tion  of r on ly  and  & is a function  of X. T o  sa tisfy  (1) we m u st have
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/  d- I d  \ -
( ---- + ------------- X2 ) A =  0,
\ d r 2 r dr  J

and  the  so lu tion , finite as r—*oo, of th is  eq u a tio n  is

R =  A K o(p) +  BpKi(p),  (6)

w here Ko(p), Ki(p)  a re  Bessel func tions of im ag inary  a rg u m en t, A  and  B  are co n stan ts  
to  be found and

P =  Xr. (7)

U sing the well know n re la tions

AT' (p) =  -  AT(p), 

pAT'(p) +  Ki(p)  =  -  pK o(p),

we find

( 8)

V2<£ = — 2 f  B K 0(p)b\2 sin cX sin zXi/X. (9)
*7 o

W ith

a — X<J, (10)

su b s titu tio n  from  (9) in to  (3) yields

( r„ ) r-a  = ( * ■ [ — BaKo(a) +  {2/1(1 -  v) -  A } Ai(a)]&X3 sin cX sin zXt/X,
• 7  o

so th a t,  to  sa tis fy  (3)

A / B  =  2(1 — v) — aA 'o(a)/A 'i(a). (11)

W e also find

(ur) r=„ = — J* ^ { /l +  (2r — l)./l} A'o(a) +  ^  h BaJ  A i(a )J  b \3 sin cX cos zXr/X,

and  since the  b o u n d a ry  cond ition  (2) can be rep resen ted  by

2p C “ sin cX cos sX 
(<rr)r_„ =  I      i/X,

7T J o  A

we have

i - 2 .
7rX4

{.-I +  (2r — l ) / l }  A'o(a) +  ^ h BaJ K\{a) ( 1 2 )



E q u a tio n s  ( 11) an d  ( 12) yield

7T\'D(a)bA  =  2/.[2(1 -  v)aKi(a)  -  a 2A 0(a)],
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1

rr\AD{a)bB = 2paKi(a),

w here

(13)

D(a) =  {a +  2(1 — r)} A i(a )  — a K 0(a). (14)

bA, bB  h av in g  now  been found , the  expressions for the  stresses and  rad ia l d isp lace­
m en t are  found  to  be given by

2 pa

7IT J  o
f  [apA 0(a )A 0(p) +  aKo(a)Ki(p) — pA 0(p)A i(a)

A n

C 2 -
sin —  a  cos —  a

— \p2 +  2(1 — v) j A i(a )A i(p ) ] ----------— —------------da
aD{a)

c z
M sin —  a  sin —  a

=  —  f  [«A 'o(a)Al(p) -  pA 0(p)A 1( a ) ] ---------------------------■ rf«
v  J  o D (a)

2Pa f “ r
tre =  I [aA^o(a) Ai(p) +  (2r — l)p A 0(p)A i(a)

7rr ^  o
c z

sin —  a  cos —  a

-  2(1 -  r)AT(«)AT(p)]   - ■ a da
aD(a)

2p r wr
<r, =  -  —  [aA 0(a)Ao(p) +  2A 0(p)Ax(a)

7T J  0

C Z
sin —  a cos —  a

-  pA x(a)A x(p)] * ■ ■■ * da
D{a)

Eu 2 pa

1 +  V
— f  [aKo(a)K1(p) -  pA 0(p)AT(a) 
7T J  o

(15)

c z
sin —  a cos —  a

-  2(1 -  O A xW A xO »)]   </a
aZ/(a:)

2. Numerical results for the maximum radial displacement at r  =  a. W hen  r = a, 
p = a  an d  th e  g re a te s t d isp lacem en t occurs w hen  s =  0, so th a t  we have

-E(«max)r=a 4 p a(l — v) f  “ A i(a) _ c
ada.

1 — v) r  A i(a) c
  I  sin —
ir J  o aD(a) a1 +  v ir J o  aD{a)



If th e  pressure  p  a c ts  over the  e n tire  len g th  of the  hole, the  d isp lacem en t (« ')r-«  is 
given by

E{u')r=a
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1 +  p

so th a t

pa,

(«max)r=<. 4 ( 1  — V) Ç  * Kl(ot) . C— v) r  A i(a )  o
  I  s i n — ada. (16)
7r J  o odD(a) a( 7 f ') r_ a  7T J  0 aD(a)

T h e  num erica l w ork  w as perfo rm ed  w ith  r  =  0.3 an d , above a  =  12, i t  w as found 
th a t  th e  first th ree  te rm s of th e  a sy m p to tic  expansion  of K \(a ) /a D (a ) ,  viz.,

A i(a ) 1 0.4 0.965

aD(a)  a 2 a 3 a 4

gave an  a d e q u a te  rep re sen ta tio n . In te g ra tio n  b y  p a r ts  th en  leads to  

2

r *  A i(a ) c T «*1 12c c 12c
— —  sin —  ada =  .08176 +  .01340 —  sin  ------.01778— c o s — -

J 12 aD(a) a L a 1 J  a a a

+ '2l [ T - si( v ) ] - [ 1 + '16083T ] 7 cl( v ) -
w here

/ ■' sina; r°° COS .V
 dx, Ci(x) =  — I  dx.

o x J  x x

T h e  ev a lu a tio n  of th e  in teg ra l in e q u a tio n  (16) from  a  =  0 to  a  =  12 w as perform ed as 
follows. T h e  fu n c tio n  K \(a ) /a D (a )  w as com p u ted  a t  in te rv a ls  of a  =  0.2 from  a  =  0 
to  a  =  2 and  a t  in te rv a ls  of a  =  0.5 from  a  =  2 to  a  = 1 2 . T h e  in teg ra l w as then  ev a lu ­
a te d  by  a  m eth o d  due  to  F ilo n 5 in w hich  S im pson’s rule is replaced b y  th e  form ula

fJ  A
F(x) sin kxdx — /;[a{A (d) cos kA — F{B) cos kB\  +  pSi, +

w here the  range of in teg ra tio n  is d iv ided  in to  in te rv a ls  of length  h, S 2, is the  sum  of 
all th e  even o rd in a te s  of th e  cu rve  y  =  F(x) sin kx  betw een  A  and  B  inclusive less half 
th e  first an d  la s t o rd in a te s , .S2,_i is th e  sum  of all the  odd o rd in a tes , and  a,  ¡3, y  are 
given in te rm s of \p = hk by

1 sin \p cos p  2 sin2 \p +  cos2 p  2 sin p  cos p
a = ----- 1--------------------------------— , /3

\p p 3

7 =  4
sin p  cos p

[1 +  cos2 p  2 sin p  cos p i

r  r  J ’

s Filon, loc. cit.
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T h is  form ula holds even w hen k is large, p rov ided  th a t  th e  function  F(x) can  be 
fitted  w ith  reasonab le  accu racy  over the  range 2h b y  parabo lic  arcs.

T o  avoid  an  in fin ity  a t  the  origin, the  in teg ra l a c tu a lly  e v a lu a ted  w as

T= r 12 r  i _  KÎ(c*r 
J  o L l.4a aD(a)_

c
sin —  a d a ,  

aaD(a)_

an d  w hen th is  h ad  been found, the  requ ired  in teg ra l w as given by

—  S i f — )  
1.4 V a )

As a check  th a t  th e  su b s titu tio n  of th e  a sy m p to tic  series d id  n o t lead to  u n a c c e p ta ­
ble e rro rs, the  range of in teg ra tio n  w as also d iv ided  in to  0 to  10, 10 to  in fin ity  and  the 
in fin ite  in teg ra l w as s im ila rly  co m p u ted  on th is  basis. L ittle  e x tra  w ork  w as involved  
and  excellen t ag reem en t w as o b ta in ed .

T h e  resu lts  a re  show n below , to g e th e r  w ith  those  given b y  th e  a p p ro x im a te  a n a ly ­
sis b y  W este rg aard . I t  is seen th a t  even his second ap p ro x im atio n  is q u ite  crude.

Y alucs of (nmax)r—o/(n  ) ,=«

c
a

Westergaard
Present Method

First Approximation Second Approximation

0.25
0.50

0.557
0.806

0.537
0.770

0.450
0.633

O N  T H E  R E PE A T E D  IN T E G R A L S OF B E SSE L  FU N C T IO N S*

By J. C. JAEGER (U niversity of Tasm ania)

I t  is well know n th a t

=  [ ( ¿ 2 +  ! ) . / , _  ¿ . J «  H  >  0 > ( 1)

and

( ¿ 2 +  ! ) ! / ! _  p ] n

L \ j n(t) 1 =  —  — , it >  0, (2)
(/>=+ 1)I/2

* Received Jan. 25, 1946.
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w here L \ f ( t ) }  is w ritten  for the L aplace transfo rm  o f / ( / ) ,  th a t is,

A t ) ]  = f  (3)
J  0

T hese  resu lts  h av e  im p o rta n t app lica tio n s in  the  th eo ry  of the  sem i-infinite dis- 
sipa tion less artific ia l transm ission  line w ith  sim ple te rm in a tio n s, and  th u s in  th e  ex­
pression of th e  so lu tions of corresponding  problem s on finite lines in te rm s of m u ltip ly  
reflected w aves.

In  an  im p o r ta n t class of sim ilar problem s in w hich th e  line is te rm in a ted  by  a 
m a tch in g  resistance, the  L aplace tran sfo rm s of the  so lu tions contain  powers of 
[1 +  (/>’ + 1) 1' 2] o r [ p + l  +  (p 2+ l ) 1/2] in the den o m in a to r, an d  the  functions w hich 
h av e  such L aplace tran sfo rm s do n o t seem to  have been given. T h e  o b jec t of th is  no te  
is to  show  th a t  th ey  can be expressed in te rm s of repeated  in teg ra ls  of Bessel functions 
an d  th a t  num erical values of these can read ily  be ob ta ined .

W e use th e  n o ta tio n

(D, r ‘ r ‘ J n{t)dt
Jtn (0 ~  I (/ /■•• I ---------  I II >  0,

J  0 J  0 f

Jin AO = dt- ■ ■ f  JAOdt, II 2; o, 
J o  Jo

(4)

for the r-plc integrals of J n( t ) / t  and /„ ( /)  respectively.
I t is convenient to use both these types of integral though there are m any relations 

between them , the sim plest being

Jin-lAO  +  Jin+iAO = 2 I t  Jtn \ 0  (5)

and

Ji,,-!AO ~  Jin+lAO = 2Jin,r-l(0, (6)

which follow' im m ediately from the recurrence formulae for J n(0- J ioAO  is tabulated1 
and J i (A  (/) =  (1 /-«) +  J i n(0  v'here J i n(0  is the ordinary Bessel integral function. For 
all values of n  and r  repeated application of the result

C ‘ °°
J n( 0 d t  — 2 23 Jn+2m+l(0

J  0 * TO«0

gives the formulae

Jin AO ~  2 )  / n+2m+r(0 (7)
mso \  rn /

,  2-  ±  ( -  +  ' - * ) y .+, . +r_ ,(1). (8)
,„«o (m  +  r -  1) \  m  /

For integral values of I, which arc in fact close enough for m any practical purposes, 
(7) and (8) m ay be evaluated rapidly from the Tables in Gray and M athew s.2

1 Lowan and Abramowitz, J. Math, and Phys., 22, 2 (1943).
2 Gray and Mathews, Treatise on Bessel functions, 2nd ed., 1922, Table II.
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T h e  L ap lace tran sfo rm s referred  to  above m ay now be w ritte n  dow n. F irs tly  we 
have im m ed ia te ly  from  (1) an d  (2)

T h en , since

it  follows th a t

L { n J i : \ t ) }  -  r - K *  + 1 ) - * ] "  (9)

L { J i n,r(t)) = ^  +  ^    —  • (10)
p rW +  1)1/2

1 /  1 \  1 1

i +  (/>2 +  i)V2 V p v \ p i +  i)1/3 p*

L{Jo(t) +  J ioM ) -  t) = • (n )

In  th e  sam e w ay  if n > 0

Ki>2 +  1)1/2 -  p]"

(13)

L{j„(t) + J i n.s(0  -  n J in (/)} =  - ---------------------------- (12), W " W ) J _}_ (̂ 2 _)_ 1) 1/2 V
S im ilarly

+  3 J in,*(/) +  2Jin.i(l) -  2 n J u \ t )  -  2 n J u \ t ) \

_ (¿>2 +  l ) 1/2[(/>2 +  1)1/2 ~  ÿ]»

[1 +  (ÿ2 +

if n  > 0 ,  an d  if n  =  0 th e  te rm  nJij?  (/) is to  be rep laced  by  t T~ 1/ ( r  — 1) !. A gain w ith  th is  
conven tion  we have

r ' ( ,  r.<D/A , ,  , <Xr.Cl)/ A , [ ( * * + *  ) i n - p ] "
L { 21lJln (I) 2(m +  l) /in + l(/)  } -  p + i  +  (p 2 +  1)1/2'  ( 14)

L { j n+2(t) — 2 / n+l(/) +  /„ ( /)  +  Jin+1,i(t) — 2Jin+l,i(t) +  / in ,  2(0 }

4 ( i 2 +  l ) 1 / 2 [ ( ÿ 2 +  l ) l / 2  -  p ] "

[p +  l +  (p*-+ 1)I/2]2
(15)

T hese  expressions m ay  be tran sfo rm ed  in m an y  w ays using (5) an d  (6) an d  gen­
eral resu lts  fo r h igher pow ers in th e  d en o m in a to rs3 m ay  be o b ta in ed  in th e  sam e w ay.

As an  exam ple of th e  w ay  in w hich th e  above functions arise , w e consider a  sem i­
infin ite  artific ia l transm ission  line w ith  m id-series te rm in a tio n , in w hich th e  series 
e lem en ts  a re  in d u c tan ces L  an d  th e  s h u n t e lem ents a re  condensers of cap ac ity  C. 
Suppose th a t  all condensers a re  charged  to  u n it p o ten tia l, a n d  th a t  a t  tim e  t — 0 th e  
line is d ischarged  th ro u g h  th e  m atch in g  resistance  \ / { L /C ) -  T h en  if I 0 is th e  c u rre n t 
in th e  resistance , /„  th a t  in th e  wth in d u c tan ce  L,  an d  Cvn is the  charge on th e  wth 
condenser, ap p ly in g  th e  L ap lace tran sfo rm a tio n  m ethod  in th e  usual w ay  we find th a t

T ( r )  «C[(1 +  P2A 2)1/2 -  t / o ] u
L \ I r \ = ------- ;---------------------------- ;— > r = 0, 1, ■ • • (16)

1 ’ 2 * [ l  +  (1 +  i 2A 2) 1/2J

3 The extension of (15) is trivial; for that of (13) the results needed are given in Chrystal, Textbook 
oj algebra, 2nd ed., 1906, vol. 2, pp. 204-205.



1 [(1 +  ¿ 7 0 1/2 -  P / a ] ' - '
L \vr \  = ---------- 7----------------------- ---— .• r =  1, 2, - - -  , (17)

P p [ l  +  (1 +  f / a 2) ' ' 2}

w here a  =  2(Z,C)~1/2.
I t  follows from  (12) th a t

(3)
vr = 1 Ji t r—i J h r —i,i(at) T  (2r  — l ) / ( 2r_i(a/) (18)

Ir = {C /L Y 'i \ji,r,r{at) +  Jh rA a t)  -  2r J i l \ a t ) } (19)

h  =  (C /L)U2{Jio.i(at) +  JioAat)  -  ^-1-}  (20)

=  -K C /i) ,/2{ (1 +  aH*)Ji0.i(at) -  a2t2( 1 +  / ,(« /) )  +  a / / 0(a f )}, (21)

w here (21) follows from  (20) by  in teg ra tio n  by p a rts .
If the  line is d ischarged  in to  in duc tance  \ L  an d  resistance \ / ( L / C )  in series, the 

solu tion  follows from  (14) in place of (12).
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O N  CERTAIN IN T E G R A L S IN  T H E  T H E O R Y  OF  
H E A T  C O N D U C TIO N *

By STEWART PATERSON (I.C .J. (Explosives) Limited, Stevenston, Scotland) 

In  a  recen t n o te 1 W . H o ren ste in  ev a lu a tes  th e  in teg ra ls

4> = J ’ x~3/2 exp ^ ---- -------- b^x'jdx,  ( 1)

<p = J" x~l/2 exp ^ -----— b2x j d x ,  (2)

in te rm s of th e  ta b u la te d  exponen tia l an d  e rro r functions. T h e  ev a lua tion  of the  m ore 
general in teg ra l, viz.

t
exp ( — s2 — ii2/ s 2)ds

1

from  w hich tj> a n d  a re  easily  derived , w as given by R iem an n .2
In teg ra ls  of th e  above ty p e  arise in the  so lu tion  by  classical m ethods of various 

h ea t conduction  problem s. I t  is th e  purpose of th is no te  to  p o in t ou t th a t  tre a tm e n t 
of m an y  such problem s b y  th e  H eav iside  “o p e ra tio n a l” o r eq u iv a len t L aplace tra n s ­
form  m eth o d  leads d irec tly  an d  n a tu ra lly  to  th e  requ ired  solu tion  in ta b u la te d  func­
tions.

T h u s , to  tak e  a sim ple case, the  classical so lu tion of 

do i  d2e
_  = ---------------------------e-^o, / - > o ,  e -> l, a —>o + ,  (3)
dl 4 da2

* Received Nov. 24, 1945.
1 W. Horenstein, Quart. Appl. Math. 3, 183-134 (1945).
2 B. Riemann, Partielle Differeniialgleichiin"C)i, 2nd ed., 1376, p. 173.



(where 6 is a function of a and t) will be

6 =  aTr~ll2<t>.

If, however,

6(a, p) =  I e~p'8(a, t)dt,
J  o

equations (3) transform into

s-e i
  =  4 (p +  b-)6; 8 —> —:! a —> 0 +  (4)
da- p

which lead at once to
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8 =  p~l exp [— 2a \ / (p +  ¿>2)]. (5)

The inversion theorem for the Laplace transform then gives
1 n y+i=o ________

6 =     I X- 1  exp [XI — 2<i\/(X +  ¿2)]</X,
2 IT i J  -y—ixj

(6)

along the usual contour.
By a series of obvious and natural steps,3 it is easy to show that this is equal to

: I X“ 1 exp [\ t  -  2(a +  b t ) \ / \ ] d \  H 7  X” 1 exp [ \ t  -  2 { a -  bi)y/%\d\ ,
I J  y '—ioo 4r7Ti J  y ^ —iec

}  - erf i v i +  iv /r) ] +  V  [ ‘ ■ erf ( i f  ~ b s / i )2

and it can be verified that this satisfies (3).

NOTE ON A FORMULA FOR THE SOLUTION OF AN 
ARBITRARY ANALYTIC EQUATION*

By HERBERT E. SALZER (M athematical Tables Project, New York City)

In a recent note D. R. Blaskett and IT. Schwerdtfeger1 give a fairly well known 
expansion for a root a  of the equation /(z) = 0 , as a power series in /(zo), where z0 is 
near a,  namely,

„  =  7  ( ~
, - o  v! L (1)a w ' J „«/(,„)

where w  denotes /(z ).
Of use in connection with (1) is a paper by Van Orstrand, “Reversion of Power 

Series,” Phil. Mag., (6) 19, 366-376 (1910). Van Orstrand’s article deals with the re­

3 H. Jeffreys, Operational methods in mathematical physics, Cambridge, 1931, p. 70.
* Received January 26, 1946.
1 This Quarterly 3, 266-268 (1945).
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version of the special type of power series y  =  aox+Gi£:!+ a 2X:i +  ■ • • to obtain a; as 
an integral power series in z =  y/ao, whose coefficients are given as polynomials in 
b i =  —ai/ao, as far as the term involving z n . Now the explicit expansion for (1) in 
terms of the derivatives of f ( z )  at z0 can be written down immediately, as far as v =  13, 
from Van Orstrand’s expansion on pp. 369-370, merely by

(A) replacing bt in his formula by — / (<+1)(zo)/(i+ l)!/'(zo),
(B) replacing his z by —/(zo)//'(z0), and
(C) adding the constant term z 0.
The truth of the last statement is obvious from the fact that when (1) is applied 

at the origin it yields Van Orstrand’s expansion and from the uniqueness of Van 
Orstrand’s expansion.

A NOTE ON THE CORRECTION OF GEIGER 
MÜLLER COUNTER DATA*

By H. B. MANN (Ohio State University)

The correction of Geiger Müller Counter data has been considered in a previous 
paper by J. D. Kurbatov and the author.1 According to the model described there 
the following result was proved: If the density of radiation is a constant a and if r 
denotes the resolving time, B {T )  the number of discharges during the time T; then

B{T) =  +  v, 0 )
1 +  Ü T

where tj is given by

rj =  — a f  f(t)dt
J  o

and i(0  satisfies the conditions

t{t) =  — a f  e(x)dx for t ^  t ,

J  t — T

(2)

ar
e(t) =  1 — e- “1  for 0 g  I ^  r.

1 +  ar

(3)

It was further shown that for a r < l .

{arY

1 — (ar)2
[1 -  (ar)*+1],

where s is the largest integer not larger than T / t .  In this paper an upper bound for 
| ?71 will be derived without the restriction a r < l .  We shall prove the following in­
equality:

* Received May 29, 1946.
1 J. D. Kurbatov and H. B. Mann, A  correction fo r  Geiger M uller counter data, Phys. Rev. 68, 40-43

(1945).
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Let [tf] denote the largest integer not larger than .v; then

I I ör fl2r (  r r i \
I v(T)  I g  (2eaT — 1) +  [ T  -  —  r )  (1 -  e - - ) lT/2r]

1 +  Q t  1 +  or \  L r J  /
(4)

Proof of the inequality  (4). From (3) we sec that t(t) is a continuous function of t. 
Applying the mean value theorem to (3) we have

t(t) =  -  are(l*), I -  r 5  t* g  /.

Hence «(/) changes its sign at least once in every open interval of length r and will 
therefore be 0 at least once in every such interval. Hence we have

In the interval 7 g ig H - r  Eq. (5) may be considered as a differential equation for 
e(t) with the initial condition that its solution be equal to t i t)  at the point t. Solving 
(5) with this initial condition we have, for t g i g i  +  r,

Let M (l)  be the maximum of the absolute value of e(/) in the interval [/.—r, /], then 

| é(/) | g  +  e~alM(i)(e'" — e°‘) — M(J) for l g  / g  / +  r. (7)

From (7) it follows that |e(/)| g M  for t ^ L  Hence we have 

P r o p o s i t i o n  2. I f  |« ( / ) | g i l f f o r  l — r  g /  ¿ 7 , then |e ( / ) |  g M f o r t ^ t  — r.

If e(J) =  0 then we obtain from (6)

| e(/) | g  g  M (ï)(  1 -  e~’T) for (8)

From (8) and Proposition 2 follows

P r o p o s it io n  3. I f  6(7) = 0  and |e (0 | =  3 /  for  7—7 g / g f ,  then |e(/) | g  Af(l — e~QT) 
for t ^ l

According to proposition (1) we have in the interval a r ^ / i ( a + l ) T  at least one 
point t a for which e(/a) = 0 .

Consider the points l\, t3, ■ ■ ■ , tiH+j. If M  is the maximum of |e(/) | in O g /g r  
we must have, according to Propositions 1, 2, and 3,

P r o p o s it io n  1. In every open interval of length t  there is  at least one point for  which 
e(/)= 0.

Differentiating (3) with respect to t we obtain

t'(/) =  at(t — t) — ae(t). (5)

(6)

I «(/) I â  M  for 0 g  / g  tu 

I e(l) | g  M(1 -  c~aT) for /, g  / g  /3,

I e(l) \ g  M { \  — e aT) k for 'tu- 1 ^  t g  /•*+!.



Hence

1946]

v \  =
r T

— a I e(x)dx 
J  o

H. 13. MANN

« “ * [ T I t ]

T .  e (a r)  — a I t ( x ) d x
a - 1 J  [7i/ t  1 r
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^ Af +  2Af(l -  e-or) +  21/(1 -  e -" )2 +  • • • +  fll/^ 7’ -  ^

'T

(1 -  e~aT) (r/2rl

^  l / ( 2 e "  -  1) +  T (1 — e_"r) |7'/2rl.

From (3) it can be seen that M  =  a r / (1 + « t )  and (4) follows.
The inequality (4) is very satisfactory and shows that even for large values of ar 

the quantity t; will be very small compared to o.7Y(l+<zt) even if T  is only a few 
minutes.

CORRECTIONS TO OUR PAPER

STABILITY OF COLUMNS AND STRINGS UNDER  
PERIODICALLY VARYING FORCES*

Q u a r t e r l y  o f  A p p l i e d  M a t h e m a t i c s , 3 , 2 1 5 - 2 3 6  (1 9 4 3 )

By S. LUBKIN a n d  J. J. STOKER (New York University)

The following errors were found in the tables printed on pp. 2 3 2 - 2 3 5 .

\  a(C„) 
0 for read

1.6 -0 .77898 -0.77897
1.8 -0.92281 -0 .92282
7.6 -5 .71537 -5.71538
9.2 -7.11974 -7.11975

0 \ for read

0.8
1.4
4.4 
7.6

11.0

0.55906
0.63015

-0.29781
-2.08644
-4 .29436

0.55406
0.63016

-0.29780
-2.08648
-4.29437

\ « ( C 0  
0 \ for read

0.6
3.4

20.0

1.12806
2.01478

-5.05198

1.12810
2.01477

-5.05199

\ « ( G )  
0 \

for read

0.6 2.26622 2.26621
1.0 2.28515 2.28516
2.2 2.31495 2.31493
2.8 2.29660 2.29661
5.6 1.85589 1.85591

\  a(5d 
0

for read

3.8 -0 .00468 -0.00464
6.8 -1.60383 -1.60379
8.4 -2.58478 -2.58477

\ a ( C . )
0 for read

3.6 -2.32402 -2.32401

* Received Aug. 16, 1946.
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\ « ( Ä )  
ß \

for read
ß

for read

1.6 2.51308 2.51309 1.6 4.07660 4.07659
2.0 2.66777 2.66776 1.8 4.09433 4.09432
3.8 3.46578 3.46579 2.4 4.15212 4.15211
4.4 3.69216 3.69215 2.6 4.17199 4.17200
5.6 4.01149 4.01150 12.0 3.38817 3.38820

\ a ( G )
ß

for read

1.6 4.09776 4.09777
2.4 4.24889 4.24891
2.8 4.35867 4.35865
4.8 5.18127 5.18128
6.0 5.74803 5.74303

ß  \
for read

16.0 6.52721 6.52709

Column headings for a  (5s) and a (.S's) are interchanged on p. 234.

ß
for read «(Se) 

ß \ for read

0.4 6.25333 6.25334 3.8 9.20714 9.20713
2.2 6.35487 6.35488 5.2 9.38281 9.38279
3.2 6.48591 6.48590 16.0 10.59848 10.59849
4.8 6.86185 6.86180 20.0 10.35813 10.35825
5.2 6.99394 6.99396
5.6 7.14093 7.14116

20.0 10.33749 10.33744

BOOK REVIEWS

Theory of Structures. By S. Timoshenko and D. H. Young. McGraw-Hill Book Com­
pany, Inc., New York and London, 1945. x iv + 4 8 8  pp. §5.00.
This valuable addition to text-book literature is based on the senior author’s earlier volume, pub­

lished in Russia in 1926 (S. Timoshenko, Theory of Structures, Leningrad). The book is intended for engi­
neering students with some background in mechanics. The keynote of this book is tha t familiarity with 
the general principles of mechanics is indispensable to a thorough understanding of the analysis of stresses 
in trusses and frames. For this reason two of the nine chapters are devoted to a comprehensive recapitula­
tion of the rudiments of plane statics and of such general theorems on elastic systems as the Principle of 
Least Work, Castigliano’s Theorem, Maxwell’s Reciprocal Theorem, etc.

As one would expect from the authors, the book is very clearly written. It abounds in carefully con­
structed figures and diagrams, and contains a wealth of well-graded problems.

The chapter headings are as follows: Elements of Plane Statics, Statically Determinate Plane Trusses, 
Influence Lines, Statically Determinate Space Structures, General Theorems Relating to Elastic Sys­
tems, Deflection of Pin-jointed Trusses, Statically Indeterminate Pin-jointed Trusses, Beams and Frames, 
Arches.

This book will be of considerable interest to structural engineers and will be welcomed by the teachers 
of mechanics and theory' of structures.

I .  S .  S O K O LN IK O FF
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Table of arc sin x. Prepared by the Mathematical Tables Project conducted under 
the sponsorship of the National Bureau of Standards. Official Sponsor: Lyman J. 
Briggs. Project Director: Arnold N. Lowan. Columbia University Press, New 
York, 1945. x ix+121 pp. $3.50.
The main tables give the values of arc sin x  to twelve decimal places, the intervals of the argument 

being .0001 in the range between 0 and .9890, and .00001 in the range between .98900 and unity. To 
facilitate interpolation the second (and, wherever necessary, the fourth) differences are tabulated, and 
auxiliary tables are given for the coefficients in the interpolation formulas of Newton-Gregory and 
Everett. For values of x  exceeding 0.99950, interpolation by means of differences becomes unsatisfactory'. 
For such values of x  the use of the formula arc sin(l — v) = ir /2 —f ( v ) \ /2 v  is recommended, and f(v )  
= 14-i;/12+3t>2/160+5i/3/896+  • • • is tabulated (with first and second differences) to thirteen decimal 
places at intervals of .00001 in the range from 0 to 0.00050.

W. P rager

Network A nalysis  and Feedback Amplifier Design. By Hendrick W. Bode. D. Van 
Nostrand Company, Inc., New York, 1945, xii +  551 pp. $7.50.
This book is concerned with a complete exposition of electrical circuit theory, the properties and de­

sign of feedback amplifiers, non-feedback amplifiers, and the discussion of certain problems of wide band 
transmission. A great deal of the material presented in this book has not appeared before in text book 
form.

The book is divided into nineteen chapters. The first two chapters are devoted to the presentation 
of the fundamental principles of linear, passive, electrical circuits and to a formulation of the fundamental 
equations of these circuits from the mesh and nodal standpoints. The response of linear circuits to driving 
functions of the exponential type is considered and the very useful concept of the complex frequency plane 
in the study of the properties of linear circuits is introduced.

In the next four chapters, the basic principles and theorems of feedback are considered in detail. A 
thorough discussion of stability, physical realizability, contour integration, Nyquist’s criterion for stabil­
ity, and the physical representation of driving point impedance functions, occupies a central position in 
the book. The remaining chapters are devoted to the design of impedance functions, equalizers, inter­
stage networks, single loop amplifiers, single loop feedback amplifiers, and a discussion of the relations 
between the real and imaginary components of network functions.

From a mathematical standpoint, the material presented in this book is a beautiful example of the 
power and utility of the application of the fundamental theorems of the complex variable to a most im­
portant physical problem. Since the subject of network analysis and synthesis is of such great importance 
not only' in itself but also because it serves as a model for the analysis of mechanical and acoustical sys­
tems, the excellent original analysis of the problem presented by' Dr. Bode in this book is a great contribu­
tion to the field of applied mathematics.

Lotus A. P i p e s
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