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ON THE MOTION OF A SPINNING SHELL*

BY

K. L. NIELSENf (Louisiana Stale University) and J L. SYNGE (The Ohio State University)

1. Introduction. Next after the problem of the motion of a particle in a resisting
medium, the problem of the motion of a spinning shell is the major problem of ex-
terior ballistics. Many crude treatments have been given, but the problem was first
discussed exhaustively by Fowler, Gallop, Lock and Richmond.12 Reference may also
be made to treatments by Cranz3and Moulton.4

An exact treatment of the motion of a spinning shell as a hydrodynamical problem
is obviously out of the question. The problem must be treated aerodynamically. This
means that the forces exerted on the shell by the air must be regarded as dependent
only on the instantaneous motion of the shell. The connection between the aero-
dynamic force system and the motion cannot be deduced logically. It must appear in
the mathematical theory as a hypothesis, preferably supported by experimental ob-
servations.

But although mathematical theory cannot supply the aerodynamic forces, it does
give us some information about them. Two basic ideas are important here.

First, the shell has an axis of symmetry. This fact has been used in all existing
theories.

The second idea is a little more subtle. It concerns the connection between the
position of the mass center (or center of gravity) of the shell and the aerodynamic
force system. In one manner of speaking,-there is no such connection. For two shells,
moving with identical motions but with different mass-distributions, the aerodynamic
forces are the same. But we cannot introduce the aerodynamic force system into the
mathematical argument without expressing that force s}stem mathematically as a
force and a couple (or something equivalent). To do this, we must use a base-point,

* Received January 22, 1946. This paper was written in 1942, when one of the authors (J. L. S.) was
at the.University of Toronto. It was issued as a restricted reportin January 1943 by the Ballistic Research
Laboratory, Aberdeen Proving Ground, with permission of the National Research Council of Canada.
Later work by other authors, issued in restricted reports, has improved on some of the theory, but it has
been thought advisable to publish the paper in its original form.

f On leave with U. S. Naval Ordnance Plant, Indianapolis, Ind.

1R. H. Fowler, E. G. Gallop, C. N. H. Lock, H. W. Richmond, The aerodynamics of a spinning
shell, Phil. Trans. Roy. Soc. London (A) 221, 295-387 (1920).

2R. H. Fowler, C. N. H. Lock, The aerodynamics of a spinning shell, Part Il, Phil. Trans. Roy. Soc.
London (A) 222, 227-249 (1921).

3 C. Cranz, Lehrbuch der Ballislik, J. Springer, Berlin, 1925, p. 358.

4F. R. Moulton, New methods in exterior ballistics, University of Chicago Press, Chicago, 1926,

chap. 6.
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and reduce the force system to a force at that base-point, together with a couple.
It is well known that, for a given force system, the force is independent of the base-
point, but the couple is not.

Also, to describe the motion of the shell mathematically, we must use a base-
point. The motion is described by the velocity of that base-point and an angular
velocity. The angular velocity is independent of the choice of base-point, but the
velocity is not.

Now it is natural to use the mass center as base-point. If there are two shells,
Si and S2 with mass centers Oi and 02, we may use Oi as base-point for Si and 02 as
base-point for Si. Suppose that the two shells are of identical geometrical form (but
Oi and 02 are not geometrically corresponding points) and that their motions at the
instant are the same. (This means that geometrically corresponding points have equal
velocities; the velocities of Oi and 02 are not the same.) Then the force systems on the
two shells are the same. But the moments about Oi and 0» are not the same.

If we set out to formulate aerodynamic laws, using the mass center as base-point,
we must exercise great care. We must ensure invariance with respect to shift of mass
center. We must make sure, in the case described above, that when we apply our law,
first to Si and then to S2, we get equivalent force systems.

Unfortunately, Fowler et al.1paid no attention to this fact in formulating their
aerodynamic laws (pp. 302-305), although they draw attention to the necessity for
invariance (p. 305), and in fact make use of it. By considering a special case, it is
easy to see the fallacy in their basic laws.

Consider the two shells described above. Let the velocity of 0i be directed along
the axis of the shell, and let the shell have an angular velocity represented by a vector
perpendicular to the axis (plane motion). The yaw is zero, and the effect of the air
is a drag along the axis. But now consider S2 On account of the angular velocity, the
velocity of 02 is not along the axis; there is a yaw, and hence a cross wind force in
addition to a drag. It is easy to see that the force systems on the two shells are not
equivalent, as they ought to be since the motions are the same.

Thus the theory of Fowler et al. contains a logical contradiction. It is very diffi-
cult to discuss critically a theory containing a logical contradiction, for from incon-
sistent hypotheses we may arrive almost anywhere (at 1=0, for example.) It may
well be, however, that the logical contradiction does not invalidate the physical con-
clusions of their paper. In the example given above, the yaw of S2may well be very
small indeed in cases of practical interest, and the logical inconsistency may be no
more serious than that involved in writing 7r= 3.14. Used in one way, this statement
leads to 1=0; used in another way, it leads to important practical results.

Nevertheless it is sound policy, in building up a theory in applied mathematics
to make it logically consistent as far as possible. In the present paper we shall take
care to state the aerodynamic laws in such a way as to avoid logical inconsistency.

Apart from the thorough treatment of the theory of the aerodynamic force system
in sections 3 and 4, the following features of the present paper may be summarized
here.

The exact equations of motion of the shell (independent of any aerodynamic hy-
pothesis) are given a very compact form in (2.6). In section 5 it is shown how the aero-
dynamic functions may be found from high frequency photographs of a shell. Such
observations should provide the ultimate test of the validity of the aerodynamic
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method. In view of the success of the cruder jump card method of Fowler et al.,
it seems probable that the aerodynamic hypothesis is valid, and, if so, the pro-
posed method of observation should give us all information required concerning
the aerodynamic functions.

There are three conditions for the stability of a spinning shell (section 7), but
they are too complicated to interpret in the general case. If Magnus effects are
absent (section 8), they become much simpler, and in fact there is then just one
stability condition (8.19). In this condition the effect of the position of the mass
center is shown explicitly. The condition is stronger than the usual condition
(8.13b) based on the stability factor; a shell which is considered stable on the
basis of the usual condition may in fact be unstable. We are very much indebted
to Professor E. J. McShane for his critical comments on this paper in its original
form. He has informed us that the existence of second stability condition,
stronger than the usual one, has already been pointed out by R. H. Kent (Re-
port No. 85, Ballistic Research Laboratory). This condition is implicit in the
paper by Fowler et al. (1.332, equation 3.6234, and 4.12); this is discussed in
section 10, where their method is brought into line with the more general method
of the present paper.

Some well known facts are confirmed by theory in section 9. For a stable
shell, after the oscillations have been damped out, the axis of the shell always
points above the trajectory and to the right if the spin is right-handed. The
phenomenon of trailing is explained; the axis of the shell turns downward at a
rate approximately equal to the rate of turning of the tangent to the trajectory.

Drift also is discussed in section 9. A general condition (9.17) is obtained for

standard drift, i.e., drift to the right for right-handed spin. When we specialize
to subsonic velocity and flat trajec-
tory, this condition simplifies to (9.20).
When the numerical values of Fowler
et al. are inserted, this inequality is
liberally satisfied, so that the present
theory is in agreement with the ob-
served facts.

2. Exact equations of motion. We
shall now develop the equations of mo-
tion of a shell in convenient form. No as-
sumption is made here regarding the
aerodynamic forces, and the only as-
sumption regarding the shell is that it
has an axis of dynamic symmetry (i.e.,
the momental ellipsoid at the mass cen-
ter is a spheroid). Thus our equations
would apply, for example, to a homo-
geneous projectile of square section or
to a bomb with three or more fins,
placed symmetrically.

We shall use the following notation, Fig. 1
the motion being referred to a Newtonian reference system:
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0 = mass center of shell,
>»= mass of shell,
A, C—transverse and axial moments of inertia at O,
q= velocity of 0,
oj= angular velocity of shell,
h = angular momentum of shell about O,
F = vector sum of aerodynamic forces acting on shell,
G = moment of aerodynamic forces about 0,
F'=weight of shell.
Then the equations of motion are

20 =F 4" F, li = G. (2.1)

We introduce a right-handed unit orthogonal triad, i, j, k, fixed neither in
space nor in the shell (Fig. 1). We take k along the axis of the shell, and i, j
perpendicular to k, but the final choice of i, j is deferred for the present. Letil
be the angular velocity of the triad.

We may now resolve the vectors as follows:

= «i + + tek,
= oui+ 0+ O3k
= Oii + + n,
= Jdo)ii + /lo)2j + Co)¥k, (2.2)

Fiji + Fé + Fzk,
= Gii+ Cj+ CX¥,

g
0
a
h
F
G
F' = Fii+ Fi3+ Fik

Clearly = fl2= We-
In scalar form the equations of motion (2.1) then read
m{u —v& + woo) = Fi + F{,
m(v — wioi + tiQz) = F2+ F i, (2.3)
m(w — «to2+ do)j) = Fz + F I,
A@0l—08) T Cud)2= G1
AT Wilg) — Co)BL —G2 (2.4)
Cws = Gs.

It is now convenient to introduce complex variables. We write

u + iv = f
oL + 102 =V,
F. + iFo = F, (2.5)
Ci + Gz = G,
Fi + iFl = F
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We multiply the second equation of (2.3) by i and add it to the first, and deal
similarly with the equations (2.4). Thus we reduce the equations of motion to
the form:

f+ ¢F123- im = (F+ F')/m

)+ Tix - (CV,7) = GIA, = C/A), (2.6)
WG =BT )im |
&8 — Gs/C.

These equations are exact; no approximations have been made.

3. The general aerodynamic hypothesis. W hat is here set down is probably a little
more general and explicit than previous statements about aerodynamic force
systems. There is no implication that the hypothesisis physicallyaccurate in
all cases. All we can hope is that deductions fromthese assumptions lead insuit-
able cases to results in fair agreement with observation. But it seems best to
make the hypothesis mathematically clear.

First we consider a fluid, at rest or in motion. We are not particularly con-
erned with the properties of the fluid. The important thing is that it defines

(i) a scalar field of density p;

(ii) a scalar field of local sound velocity c;

(iii) a vector field of velocity W.

This last field defines two other vector fields, vorticity (V =1/2 rot W) and ac-
celeration (a=dW /rfi).

Usually in ballistics we deal with the static case in which W =0 and p, c are
functions of height only. A more accurate model is that in which W is horizontal,
but in different directions at different heights to allow for changes in the direc-
tion of the wind with variation of height.

Now suppose we wish to investigate the motion of a solid through this fluid.
To treat the problem adequately we should of course consider the disturbance
produced in the fluid by the solid. But we do not do this. We use the fluid merely
to compute from its undisturbed motion the aerodynamic forces acting on the
solid.

Let 0* be the centroid of the solid, i.e., the position its mass center would
occupy were the solid of uniform density. Let the motion of the solid be de-
scribed by the velocity g* of 0* and the angular velocity o

The basic hypothesis is then as follows:

Aerodynamic hypothesis: The aerodynamic force system exerted on the solid
by the fluid consists of

(i) an aerostatic force;

(ii) an aerokinetic force system.

The aerostatic force acts at 0* and equals

pFo(a - P) (3.1)

where p is the density of the fluid at 0*, VO is the volume of the solid, and P
is the body force per unit mass acting on the fluid at 0*. (Note thatifa=0and P
is gravity, this is simply the Archimedean buoyancy.) The aerokinetic force sys-
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tem is represented by a force F* at 0* and a couple G*; these are functions of p
and cat 0* and of the vectors

gt - W,  <F- V. (3.2)

If g*=W and w*=V, then F*=0 and G*=0.

Henceforth we shall assume W =0, and so F*, G* depend only on p, c, g*, w*
while the aerostatic force is —p FoP. If we were discussing the aerodynamics of a
dirigible, the aerostatic force would be very important. For a shell it is quite
trivial and we shall omit it altogether.

Thus for our purposes the aerodynamic force system consists of the force F*
at 0* and the couple G*; they are functions of p, ¢, g*, and <o*

It will be observed that our base-point 0* has been chosen in a definite way
with respect to the geometry of the solid, and not with respect to its mass-dis-
tribution. This frees our laws from the objection raised in the Introduction to
the laws of Fowler et al.

It is to be noted that it is by no means essential to select the centroid as
base point. But it is least confusing to choose, once and for all, a point simply
related to the geometry of the solid, and the centroid seems the most natural
point to take.

4. The aerodynamic force system for a shell with an axis of symmetry. We now
consider a shell with an axis of aerodynamic symmetry. By this we mean that
its exterior is a surface of revolution. We might proceed for the present without
introducing the mass-distribution of the shell, but it seems simpler to proceed
at once to the case of complete symmetry. We shall therefore suppose that the
shell has a common axis of aerodynamic and dynamic symmetry. All that is
stated in section 2 is then valid and we shall use the same notation.

The mass center of the shell is at 0 and its centroid at 0* Let us write

00* = rk, (4.1)
and
g* = velocity of 0%
<o* = angular velocity of shell, 4.2)
F* —vector sum of aerodynamic forces, '
G* = momentofaerodynamicforcesaboutO*.
Then

gc=q+ o Xrk, <*= u,"1
F* = F, G*:G_IT:er.J

In the notation of (2.5) with asterisks attached to the symbols referring to 0%,
we have in consequence
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Now F* and G* depend on g* and <o* It follows from the aerodynamic sym-
metry that if the pair of vectors g*, to* is given a rigid body rotation about the
axis of symmetry, then the pair of vectors F*, G* is also rotated rigidly about
the axis through the same angle. Hence the following ten scalar quantities are

unaltered by such a rotation:
FS, Ga,

u*FI* + v*Ff, V*Fi* - u*Fo*, nm*Gi* + v*G*, v*Gf -:u*Gt*, )
«FF¥F + o2PZ, WJ/IG* - o*F>*, ufGf+ u*G*} tzxcx - ad*(,* 3

But, to within such a rotation, the vectors g*, o* are determined by the quanti-
ties

W Q) «** + »«, 0%+ 00« »V*+ Ib>W IV -TA' >, (4.6)
between which there exists the identity

(U*- + + a2 - (if*COI* + 1#00222 = (It*CO2* - V*i0!*)2 (4.7)

Therefore the quantities (4.5) are functions of the quantities (4.6); in fact, for
a shell of given size and shape, (4.5) are functions only of (4.6) and the air scalars
p, c at 0*.

We now write
u*F* + v*f2r = suU VFF* — U*Fi* = s2 (4.8)

Multiplying the second equation by i and subtracting it from the first, we get
| *p* = sl-isi, (4.9)

the bar denoting the complex conjugate. Dealing similarly with the other quanti-
ties in (4.5), we see that
f*F*’ |*G*,

(4.10)
VX, G,

are complex functions of the real quantities in (4.6).
We cannot proceed further without an additional hypothesis. We shall as-

sume that
F*, F 2, G*, cz

are linear functions of
«* V*, «X*, Q)2* .
This is certainly a reasonable assumption when the latter quantities are small.
We can then write
F* = aiu* + ao*+ /W ;W , ]
r

(4-11)
G* = Tlie* + 72v + 5io>i* + 522, J

where the eight complex coefficients are functions of iv, W8, p and c. When we
form the quantities (4.10) and use the fact that these must be functions of the

quantities (4.6), we find ai=fiai, p2=i&i, etc., and so
F* = £*T* + 1
(4.12)
G =fP*+ r*Q |

where P*, Q* P'*, QI are complex functions of w, w3 p, c.
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The components F3, G3are functions of the quantities (4.6). We shall assume
that they arefunctions only of w, ¢j3, p, ¢. This also is a plausible assumption when
u*, v*, co*, io* are small.

To sum up: There are ten real aerodynamic functions of w, o®3, p, ¢, contained
in the set

P, Q Q* Fi gs* (4.13)

Let us see what these assumptions amount to in the case of a shell in a wind-

tunnel. We think of the shell as moving and the air at rest. We put

V*:O, «!* = Q@r* = QB = 0,
and (4.12) gives
Ff+ iFf = u*F*, G* + iG* = u*P'™*,
In this simple case we must have, by symmetry since w3 =0,

*=G* =G¥ =0,
and so we have
F* = u*P*, iG* = u*P'*, (4.14)
It is easy to see that these equations imply that (for small yaw), the cross wind force
and the moment are proportional to the yaw. This is the usual assumption.
We now pass from the centroid 0* to the mass center 0 by the transformation
(4.4). We get for the force system F, G on the shell

F=F+ iF = {P+ nQ

L (4.15)
G- Gi+ iGo= £P'+ WQ\ 63—G3,
where P, Q,P', Q" are complexfunctions of w, a® p, ¢, given by
P = P*, Q = Q* - irP*,
. . . . (4.16)
P' =P + irP*, Q = Q* - irP™* + ir(Q*- irP*).

This givesthe transformation of the aerodynamic functions when we pass from the
centroid 0* to the mass center 0. Actually this is the transformation for passage from
any base-point to any other, provided of course that both lie on the axis.

To show the real and imaginary parts of the aerodynamic functions, we shall
write (with similar equations in asterisked form)

P:P|+IP2, Q:(’>I+ IQt1

. . (4.17)

P' =PI + iPi, Q = Qf + iQJ.
The transformation (4.16) then gives
Pi = pix,
P, = P2
x =Qi* + rpZ
& rPx*,
(4.18)

Pl = P{* - rRZ

i >
Qi* + rPI* + r(- Qt + rPf),
Q*  rPi* + r(Q*+ rP*).

Qi
Q
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The method used above for the resolution of the aerodynamic force system is not
the usual one. Three important vectors are involved: k the axis of the shell, g the ve-
locity of the mass center, o the angular velocity. In resolving vectors, it is necessary
to pick out one of these three as a fundamental vector and build a basic triad on it.
The traditional plan is to pick out g as fundamental and take k as a secondary vector,
so that q and k together give one of the planes of the basic triad. Resolution of F
along g and perpendicular to q in this plane gives the usual drag and lift. However
convenient this may be for wind-tunnel work in which q is fixed while k is altered,
it certainly appears less convenient than the method of the present paper for a simple
mathematical formulation of the problem of the spinning shell. There is a further
objection to the usual plan ; the direction of q depends on the mass center.

The conventional terminology does not suit the present resolution. The following
is suggested. The asterisk indicates that the centroid is used as base-point. The same
notation without asterisks refers to the mass center.

u*i + u*j = cross velocity,

wk = axial velocity,

(4.19)
coji + WJ = cross spin,
wX = axial spin.
P | £°| —cross force due to cross velocity (—),
£*| = Magnus force due to cross velocity (+),
Q* Iv* | = Magnus force due to cross spin (+), (4.20)
Q* | V*| = cross force due to cross spin (+),
F3 = axial force (—).
PI* | £\ — Magnus torque due to cross velocity (—),
pi~ | s* 1 = cross torque due to cross velocity (—),
o1+\ f*| = cross torque due to cross spin (—), (4.21)

o i+ lv= = Magnus torque due to cross spin (+),
G3 = Magnus axial torque (—).

It is a consequence of symmetry that where the word “Magnus” is included above,
the quantity in question changes sign with @8; where the word “Magnus” does not
occur, the quantity in question does not change sign with m3 For uniformity, we have
called the axial (viscous) torque “Magnus”; there is justification for this in the fact
that it is the viscous torque that sets up the circulation which is responsible for the
other Magnus effects. The signs in parentheses indicate probable signs of the various
quantities when <Bis positive, assuming a center of pressure in front of the centroid.

Since

|r | = 9*sin (g*. k). IV*| = “ sin (to, k), (4.22)

it is clear that the usual sine law of variation is implicit in (4.20), (4.21). But since
we suppose the angles in question to be small, the sine, tangent and circular measure
are not distinguishable.

It is convenient to introduce positive dimensionless aerodynamic functions, as is
done by Fowler et al. So we write, paying attention to dimensions and signs,
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P* = - pflaw/i*, > = pasicg*
* = uW * | o = pa3wgt*,
© * ’ . (4.23)
= - pa'o)JF{*, Pi* = — pa3wfi*,
Q(* = - pa'wg!*, Qi* = ptPoJsgi*
Here p is the air-density and a the radius of the cross section of the shell. The func-

tions (/*, g*)depend certainly on w/c, and possibly also on a8c¢ and theReynolds
number. The above equations may be regarded as definitions of the eight aerodynamic
functions (/*, g*), which arc analogous to the /t, f.v, etc. of Fowleret al. To the above
equations we may add

F3= —pa2wZ3 G3 =— padwu33 (4.24)

where f3and g3are dimensionless; f3is the usual drag except for the slight difference
that we resolve along the axis of the shell and treat w as basic instead of 3*.
As the notation is necessarily somewhat complicated, let us summarize as follows:
Askerisked quantities refer to the centroid, unastcrisked to the mass center.
The aerodynamic force system is denoted by

F* = F? + if'-* G* = G* + iG*, F3 G3
There are ten real aerodynamic functions contained in the set
P Q*, P Q™ £, G3i

and these may be expressed in terms of the ten positive dimensionless aerodynamic
functions

It ya> s> 2> i > D J g1, 9? , js3, 93

The same notation may be used with reference to the mass center, but since the aero-
dynamic force system has nothing to do with the mass center as such, the asterisked
quantities are the more fundamental. If we wish to pass from 0* to 0, we must trans-
form by (4.18) and (4.23). Thusf* =fuf* =/2f3=f3 g3=g3 but the other functions
change.

One more notation will be introduced for convenience in (6.4).

It is clear from (4.20), (4.21), (4.23) that if the dimensionless aerodynamic func-
tions (/*, g*) are constants, we have the following proportionalities, 5 denoting the
small yaw:

cross force due to cross velocity « w3,

cross torque due to cross velocity « w2,
. (4.25)
axial force « w2

axial torque «

The first three of these are in agreement with experiment for subsonic velocities-——the
effects vary as the square of the velocity. The last (axial torque) requires comment.

The form of G3in (4.24) agrees with Fowler et al., but one may ask why (apart
from the theory of dimensions) the factor w should be present. The following is a pos-
sible explanation. The rotation of the shell generates a rotating wake. If this wake has,
throughout, the same spin as the shell, it has angular momentum %flrpadi3 per unit
length. In unit time a length w of wake is generated, and so, by the conservation of
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angular momentum, the rate of loss of angular momentum of the shell is
— G3 = Wpci'woos.
This argument not only confirms the form G3of (4.24) ; it gives
gs = k- (4.26)

A crude argument of this sort must be accepted only provisionally in the absence of
experimental check.

5. Determination of the aerodynamic functions by observation. Fowler et
stressed the importance of avoiding the simple empirical assumptions previously em-

ployed. As in the case of the drag function, it is necessary to determine the aerody-
namic functions experimentally. W hat follows is a refinement and generalization of
the jump card method of Fowler et al. Unless there are technical difficulties, or unless
the basic aerodynamic hypothesis is wrong, the following method should yield all the
aerodynamic functions quite simply, except perhaps g3 and no doubt a method could
be devised for it also.

Let a shell be fired horizontally and observations made of it not long after it leaves
the muzzle. These observations consist of high-frequency photographs, one set of
photographs being taken vertically and the other set horizontally from the side. These
photographs show successive positions of the shell at short intervals of time.

We now turn to the exact equations of motion (2.6). There is some indeterminacy
in these because we have not yet chosen the vector i definitely. Let us choose it in
the vertical plane through the axis of the shell (k), pointing downward (Figure 2).

al.
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Then
F' = mg cos 0, (5.1)

and the first two equations of (2.6) may be written

F = ;«(£ + tEil3— iwri) —mg cos 0, j
(5.2)
G= A{g-{- 23— ic033). J

These equations are exact. We may put cos 0= 1, since the axis of the shell is approxi-
mately horizontal. Then il3= 0 by (6.2).

Now m, A, C’are known for the shell; w may be found from the observations or
otherwise (muzzle velocity), and o8deduced from the rifling. To find £ 7as functions
of t, it is merely necessary to measure on the photographic plates the linear displace-
ments of the mass center and the angular displacements of the axis of the shell, cor-
responding to the short intervals between successive photographs. Smooth graphs
might be made showing u, v, «i, 2 as functions of t or the complex quantities £ 7
might be plotted on an Argand diagram with the values of t marked in. In any case
it should not be difficult to obtain £and Talso as functions of t from these graphs.

When these functions are inserted in the right-hand sides of (5.2), we have F
and G as functions of t. By (4.15) we have

(P + vQ = F, £P' + VQ' = G (5.3)

If we use two values of t, each of these equations yields two complex equations, and
from them P, Q, P', Q' can be found. Here we have a good test of the aerodynamic
hypothesis, for the values of P, Q, P', Q' should be independent of the particular in-
stants chosen.

It may be advisable, as a refinement, to allow for the decrease in w between the
two instants in question. This can easily be done from our knowledge of the drag
function.

By repeating the experiment on the same shell, but using different muzzle veloci-
ties and riflings, we obtain P, Q, P', Q' as functions of w and w3

The next step is to transform from the mass center to the centroid. This is done
by (4.16), and we obtain P*, <* P'*, Q' as functions of w and w3 Finally, the dimen-
sionless aerodynamic functions (/*, g*) are found from (4.23).

It should be stressed that these last functions are characteristic of the form of the
shell and completely independent of the mass distribution. Indeed, to a certain ex-
tent they will be independent of the size of the shell, but this must be accepted with
caution.

6. Plan of solution and partial linearization of the equations. We now introduce
fixed axes OoXQuoa> OW0being directed vertically upward. Let 9 be the inclination of k
to the horizontal (Figure 2), and 4>the inclination of the horizontal projection of k
to Oox0. We have already made the vector i definite in section 5. We have then

n
1

mg cos 9i —mg sin Ok, j 6.1)
£2 = —4>cos 0i — Qj + <sin Ok. J '

Hence
d= — cos6+ i0), = $sin 0. (6.2)
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We substitute from (4.15) in (2.6), and the equations of motion become
| 3—iwy — E£W+ i]Y -f- g cos 8,
7+ 1903 —icoig —x' + NY,

(6.3)
W —nut + nwj = Fz/m m gsin 8,
&8 = Gs/C,
where
X = P/m, Y = Q/m, X' = P'/A, Y' = Q'/A. (6.4)

If we substitutefrom (6.2) for I7il3and regard X, Y, X', Y', F3, G3asknown func-
tions ofw, W8, p, cwe have six real equations for thedependentvariables u,v, w,
6, 9), &3 But unless we assume p, c to be constants, we must bring in further equations.
Let us assume them to be functions of height (s only. By resolution of velocity we
have

to+ iyo= (@sin 6+ iv+ w coS6)6™ 6.5)
¢0 =—Mcos 8+ wsin 6. '

When the last of these equations is associated with (6.3), we have seven real equa-
tions for seven unknowns, namely, those stated above and z0. When they have been
solved, the trajectory of the mass center is given by (6.5).

We now make the following two assumptions: (i) the vertical plane through the
axis of the shell turns slowly; (ii) the angle of yaw is small. The first assumption
implies that §and hence is small; the second implies that £/w is small. On account
of the smallness of  we reject the second terms in the first two equations of (6.3),
and on account of the smallness of !-/w we reject the second and third terms in the
third equation.

Our partially linearized equations now read

T —iwij = £X + 7)7+ gcos 8,

vV - ic'wsv = + vr,

. (6.6)
w =F3Im — g sin 6,
«3 =g3c,
where
)= — cos8+ id). (6.7)
7. The stability of a spinning shell. In discussing rapid oscillations of the shell,

we treat w and o3 as constants in the first two equations of (6.6). Consequently
X, Y, X', Y'are constants. In rapid oscillations differentiation with respect to t
greatly increases the importance of a term. Hence we shall treat cos das a constant in
the first equation of (6.6); the term corresponding to a small change in 9 will be neg-
ligible in comparison with the terms in 77.

We have then linear equations with constant coefficients, which have solutions
of the form
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where aa, a2are the roots of the equation

a2- (ICV, + X + Ya + ¢CcodX - wX') + XY' —X'Y = 0, (7.2)
and
A = - ECOS e(iC'w3+ 7,
7.3
Bs = (7.3)

cos OmX ',
E

£ = i(C'u3X - wx") + XY'- X'Y.

The condition for stability is that both roots of (7.2) should have non-positive real

parts.
If we write
Ki = AT+ Y{,
AT = Cctiz+ AT + IT", (7.4)
AT = - Co>3AT + WAT + ATIT - ATF2 - X1 IT + AT'IT,
AT = CV,AT - w.Y( + ATIT' + ATIT" - ATIT - AT IT,
then (7.2) becomes
a2- (AT + fAT)a + (AT + ¢(AT) = 0. (7.5)
The condition for stability may be written
Ai }fcosx ~ O (7.6)
where f, x arc defined by
f = (Al —A2—4AT) + 4(ATAT —2A3 fao,
f sin 2X = 2(AIAT - 2AT), (7.7)
f cos 2x = Ai — KI — 4A3 irra X S err.

It is immediately evident that there is instability if AT>0. If AT SO, then the con-
dition (7.6) is equivalent to

AT a f cos' x. (7.8)
or
2Aj N f (1 + cos 2X). (7.9)

On substituting for f2cos 2x from (7.7), this becomes

AT+ AT+ 4AT S r2 (7.10)

Thus there is instability if ATSO, AT+AT +4A3<0. If AT;0, K} +KE£ +4A3S0, the
condition (7.10) is equivalent to

(AT + AT+ 4AT) a i , (7.11)
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and, on substitution from (7.7), this becomes
KiK3+ K\KiKi - K\a 0. (7.12)

To sum up, the motion of the shell is stable if, and only if, thefollowing three condi-
tions are all satisfied:

Ki S 0, (7.13a)
K\ + k\ + 4K3a 0, (7.13b)
k\k3+ KIKXi- k\ & 0. (7.13c)

The K'’s are given by (7.4).

These conditions are more general than any given previously.

If there is strong stability (i.e., if the real parts of ait a2 are negative and large),
then the first terms in (7.1) die away quickly. In fact, the rapid oscillations are
damped out, and we arc left with

t = - ECOS 0-(iCui + Y")
(7.14)
= -cose-x".
4 E
W ith these we associate the last two equations of (6.6), viz.
w=F3Im —gsin6, ]
(7.15)

¢3 = G3C, j

and also v~ — cos 6-\-i9).

In (7.14), (7.15) and the last of (6.5) we have seven real equations for the seven
quantities u, v, w, 6, 5 08, z0-it is a function of w and aBas in (7.3); it also involves z0,
since the properties of the air depend 011 zOand aerodynamic functions X, Y, X', Y’
depend on the properties of the air. The above equations determine the motion of the
stable shell.

We note that the equations (7.14), (7.15) are simply (6.6) with the terms £ Pde-
leted. To test whether this treatment is valid, we should solve (7.14), (7.15) for £, VW
calculate £ 1 by differentiating these solutions, and compare these calculated values
with the other terms in (6.6). They should, of course, turn out to be small.

8. Stability in the absence of Magnus effects. If we accept the linear law (4.11),
the aerodynamic force system (4.13) is the most general possible. As we shall see in
section 10, the force system of Fowler et al. is a special case. The system (4.13) con-
tains ten real functions, and it appears impossible to make any deductions of physical
interest without introducing some simplifications. We shall retain a force system a
little more general than that of Fowler et al.; our system satisfies the fundamental
condition of invariance with respect to shift of mass center, whereas theirs does not.

Let us refer to (4.20), (4.21), and assume that all Magnus effects vanish, except
this means that

px=Q*= PI*P=Q*=o0 (8.1)
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This leaves us with four real aerodynamic functions, in addition to F3and 6V
Pi* < 0, 02> 0, Pi* <0, Q{* <o (8.2)

There can benodoubt that these inequalities are physically valid.
We now transform to the mass center 0 by (4.18). We find

p2=Qt=pi = @ = o (8.3)

Thus the Magnus effects do not reappear with change of base-point; in fact, the
vanishing of Magnus effects is an invariant condition. For base-point O there are again
just four real aerodynamic functions in addition to F3and G3:

Pi = Pi*,
Qt = 02* - rPi*,

P = Pi* + rP*, (8.4)
Q[ = Q{* + rP-i*+ r(- 02+ rPi*).
Then by (6.4), (7.4) and (8.3),
AT = X, + Y{ = Pffm + QUA,
A2 = Clojs,
A, = wXi + XiYl + XIF2=— + — (PrQi + PiQi), (8.5)
A mA
CCcojAT = )
Wi
The stability conditions (7.13) read
Xi+ IT'gO, (8.6a)
(Coj32+ iwXi + (Xx+ T/)2+ 4(XTFi+ X2Yi) a 0, (8.6b)
XiF/(Coy + (Xi+FiJrwX/ +XiF/+ X2F2 & 0. (8.6¢)

These are the stability conditions in the absence of Magnus effects. Now by (4.23),
(6.4), (8.4), we have (since A* =mr2-\-A)

a’w
Xi = P [>*
m
adw
F, = P
m
. padw
Xi = - (fix + /.%)
(8.7)
pad» I r r2
Vi = - - — * + - 2+ /) + — x|
! A L C )21
AT der r T*
+ Y = i*o+ = a* + i*m - =
{ 1L a' ! ma-
p2a6w-

XiF,' + XiyY2= Pk R o~ fpRfRR)
mA (fi*gl ft*/*'*)
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If we substitute these expressions in (8.6) we get stability conditions in terms of the
functions (/*, g*). However, these conditions are somewhat complicated, and we shall
make approximations.

Thef’s of Fowler et al. hardly exceed 10 in value. Our (/*, g*) functions are defined
in a slightly different way, but it certainly seems legitimate to assert that the dimen-
sionless quantities

/ (8.8)

are much less than unity,/ standing for any one of the (/*, g*) functions. Then it is
clear that

(AT + 1T)2  AT17 + ATIT

are both small relative to wX{. Consequently our stability conditions (8.6) may be
simplified to

AT + 17 ~ 0, (8.9a)
(C73-+ 4wA7 7 0, (8.9b)
ATI'/(CV,)- + (Xa+ Y{y-wA7 " o. (8.9¢)

It will be noticed that IT has disappeared from the stability conditions in the last
approximation. This aerodynamic function corresponds to cross force due to cross
spin relative to the mass center [cf. (6.4) and (4.20)]. Thus it might be asserted that,
for the discussion of stability in the absence of Magnus effects, cross force due to
cross spin may be neglected. But this statement is not entirely correct, because this
cross force contributes to the moment Y{,and IT remains inthe stabilityconditions.

Let us examinethe first stabilitycondition (8.9a). On substitution from (8.7) it
reads

— @2+ /I*) + gl*+ ~fi*"~ 0. (8.10a)
a mep-

If r is positive (so that the mass center lies behind the centroid), this inequality is
certainly satisfied; it is also satisfied for some negative range of r. But an interesting
question arises: Can we make the shell unstable by pushing its mass center forward
towards the nose? This is hardly to be expected on physical grounds, and it may well
be that (8.10a) is satisfied for all permissible values of r, i.e., all values which place
the mass center inside the shell.

It is tedious (and perhaps of little physical interest) to discuss the other stability
conditions for sufficiently large negative values of r. We shall therefore assume either
that r is positive, or, if it is negative, it is such that (8.10a) is satisfied and also
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This is essentially the same as the usual stability factor.5Then the second stability
condition (8.9b) takes the familiar form

51 1, (8.13h)
while the third condition (8.9c) may be written

(AT + Fi)2
A ST (8.13c)

Since the fraction on the right is never less than unity, this condition replaces (8.13b).
Let us substitute in (8.13c) from (8.7) and sum up as follows:
stability condition. The following assumptions are made:
(i) Magnus effects are negligible (except that Gz may exist).
(ii) The quantities «of (8.8) arc very small.
(ili) The mass center is behind the centroid, or, if in front, its negative coordinate
ris such that (8.10a) is satisfied and also

fi* + -h *> 0,
a

(8.14)
gi*+ - (g-T+m + —4? > o
a a-
Then the motion of the shell is stable if, and only if,
*> —  po*+ (rfa)(gt* + fi*) + {A*/ma*)h*Y
S= 41 + (r/a){g* + fi*) + (r202/*]"
where 5is as in (8.12), or equivalently
€ %3
= A= A* - mr\ (8.16)

T el weTHi* + (r/a)f*]

To show the dependence on r more explicitly, we introduce the dimensionless quantity

p e > (817)
4pasmw-

so that

P=s~-(fi* + -fA . (8.18)
ma* \ a /

Then the sole condition for stability reads
> (fi* + (/<)) *) [g/* + {rla){gt*+ /n + Q1*/»1«2)[.*]2
4/ *[gi'*+ (r/a)(gz* + /{*) + (f2a2/i*]

5T. J. Hayes, Elements of ordnance, J. Wiley and Sons, New York, 1938, p. 418.
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Since A* is the transverse moment of inertia at the centroid, the position of the mass
center is involved in this formula only in the symbol r.

We see therefore that the usually accepted criterion for stability (8.13b) is not
the true one; it must be replaced by one of the inequalities (8.13c), (8.15) or(8.19),
which are of course equivalent to one another. As we remarked in the Introduction,
the existence of a second condition for stability has been noticed by R. H. Kent. We
shall refer to stability again in section 10.

9. The trajectory of a stable shell in the absence of Magnus effects. Let us as-
sume, as in the preceding section, that Magnus effects are absent, except that G3
may exist. Then, using (8.3) and (6.4) with (7.14), we get for the trajectory of a stable
shell, after the disturbance has been damped out,

£= - E cos O(fC'co3 + Y{),
(9.1)
9 .
it:iEcoso-Xi, 1= — 9cos 0 —id.

Here E is as in (7.3); let us make the approximation indicated above (8.9), so that
E = wX2T iCoi3Xi. (9.2)

Splitting (9.1) into real and imaginary parts we get

it = S\ cos O[AT(CW3- + wXI IT

) (9.3)
g cos 0'CVIWXi ,
eV

(where we have dropped a term X\ Y{ in comparison with w X i) and
= — C'"XiXu
El
(9.4)

g .
cos O-w{Xi)2
E - {Xi)

We shall assume, as in section 8, that Xi, X i, Y( arc all negative. Further, since the
shell is stable, we have as in (8.9c)

x,it (Ccoj)2+ (Xi + Yiy-wXi a o. (9.5)
But
(AT + YiY > 1T2 Xi <0,
and therefore

ATFl/icv.)2+ vr-wxi a o. (9.6)

It follows at once from (9.3) that u is positive. This means that the nose of the shell
points above the trajectory.
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From (9.4) we see that <,><0 if a3>0. Thus for positive (right-handed) spin the
vertical plane through, the axis of the shell turns to the right? For negative spin it
turns to the left.

These two facts arc well known to be true in practice.

There remain two outstanding physical facts to explain. These are (i) the trailing
of the shell along the trajectory, (ii) the drift.

We see from (9.4) that 9 is negative, i.e., the inclination of the axis of the shell
to the horizontal decreases steadily. But does it decrease at that rate required for
trailing? We must be careful to avoid a circular argument. We have assumed that
trailing takes place—otherwise the yaw is not small, and all our arguments are based
on the smallness of the yaw. We must now verify that 9, as given by (9.4), is approxi-
mately equal to the rate of turning of the tangent to the trajectory of the mass center.
The theory of the plane particle-trajectory gives, on resolution along the normal,

g COS do
90= - , (9.7)
w
where 60is the inclination of the tangent to the horizontal. To establish the required
result, we must compare this with (9.4), and show that

£ |2
T
(mwxty-

approximately. Now by (9.2), (8.12), (8.7), this fraction is

= 1, (98)

2/CVij 4sAT
1+ ATI =1
VwX1 J -wXi

pa3 A o
m ma2f ¥ 4 (r/ayP

The last expression here is of the order of se, where e is as in (8.8). Hence, unless the
stability factor s is very great, this expression is very small, and the condition of
trailing is approximately fulfilled.

It isinteresting that if s is very great the verificationbreaks down, for this is just
what we wouldexpect.If, by some mechanism, an enormous spin wereimparted to a
shell, the gyroscopic stability would be so great that the direction of the axis would
remain fixed and the shell would not trail.

To discuss the drift, we write down (6.5) again:

(9.9)

Xo+ iy0O— (« sin 6+ iv + w cos 9)e{~. (9.10)

This is the horizontal velocity of the mass center in complex form.Consider the com-
plex quantity
;0 + iyo
ajifi= 7 2 l9.11)
xa + iyo
It is obvious that the vector xO+iyOturns to the left if j3 is positive, and to the right
if d is negative. It is our business to investigate the sign of /3.

‘ Hayes, op. cit., 420.
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We differentiate (9.10) logarithmically and simplify the result by the fact that
u/w and v/w arc small. This gives

fi=-(—2=) + = 9-12
dg\w cos ( )

With the approximation (9.8), we have from (9.3), (9.4)

e’, (9,13)
W c0S 6 w-Xi w-Xi
and so
D9 _g 'z +aT, (9.14)
z
where
z -v\;lei'T . (9.15)

As aterminology, let us say that a shell has standard drift when it goes to the
right (/3< 0) forright-handed spin (0j3>0), and vice versa. Now Z hasthe same sign
as «3 Hence we get a standard drift if

— =—1log |Z|+ AT < 0. (9.16)
z dl

Substituting from (8.7), we see that this condition for standard drift reads
m d | w3

og (9-17)\
pa-w dt pw\fl* + (r/a)ff)

f*x >

Let us look into the meaning of this inequality, assuming that the dimensionless
aerodynamic functions are constants. This corresponds to a subsonic velocity [cf.
(4.25)]. Further, let the trajectory be flat, so that p is constant and 6 so small that
it may be neglected.

Then by (6.6) and (4.24)

. pa2 pa4 ,
iv = w-fz, £3 = wu3jz. (9.18)
m C
Let s be the arc length of the trajectory (do not confuse with the stability factor).
Then w=ds/dt, ib=wdw/ds, and so we have

_1 dW: ______R§_2_f3> i dW3: pg“g 3 (919)

W ds pi a8 (is L
The right-hand side of (9.17) becomes
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and so the condition for standard drift reads

[*+ " @> 3y © 20)

We may write fi in place of/*—they are equal. We note that ma2C will lie between
land 2.

We observe from (9.20) that cross wind force and axial torque tend to give stand-
ard drift, but axial force acts the other way. Let us use the numerical values of Fowler
et al. in (9.20). We have ([I], pp. 306, 309)

/i —31 + fic = /v = 3.34,

9.21
I* = l« = 0.34. ( )

We sec that (9.20) is liberally satisfied, even if £3= 0. Thus the present theory appears
adequate to explain drift without bringing in Magnus effects.

10. The aerodynamic force system of Fowler, Gallop, Lock, and Richmond.1 In
the preparation of this section we are very much indebted to Professor E. J. McShane,
who read our paper in its original form and pointed out in detail the connections be-
tween our work and that of Fowler et al.

Fig. 3

The axis of the shell is indicated in Figure 3; Ois the mass center and Sthe yaw.
The aerodynamic force system of Fowler et al. is represented by seven vectors—three
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forces (plain arrows) and four couples (arrows with crossbars). Their terminology is
as follows:

= drag,

= cross wind force,

swerving force,

= moment tending to increase yaw, \ (10.1)

T < X~ x®
I

= yawing moment due to yawing,
I = axial moment,
J = swerving moment.

We shall use the notation of the present paper for velocity, angular velocity and the
radius ofcrosssection of the shell (a), and consider only the case ofsmall yaw
(5= |tj/it>).Then the dimcnsionless aerodynamic functions ofFowler et al. are de-
fined by

R = pa-wZit,
L = pa?wHi = pa-w|£]|JI,
K = pa3w,&K = pa3n31£| Jk,
M = pa3w-5fM = padw | £|/.v, (10.2)
Il = pa'w | n\fu,
I = paAwu3r,

J = palwoRifj = pa'u3lf|fj.

Leti', j', k be an orthogonal triad of unit vectors, with k along the axis of the shell.
The vector i' lies as shown in the plane containing k and the velocity of 0. Then, to
the first order in 5,

R = - R&’ - Rk,
S

M=- M
Y (10.3)
@

H=- 1 I - 11

| = - 7k,

J=- T

where co/, @ arc the components of o>along i', j'"

Let i, j be any orthogonal unit vectors, perpendicular to k, so that the triad i, j, k
is that considered in the present paper. It does not matter at present whether i lies
in the vertical plane through k. We have

: a+ i = r + «j O T B — i T W (10.4)
TT 1T

The total aerodynamic force is



K. L. NIELSEN AND J. L. SYNGE [Vol. IV, No. 3

224
FerR+L+K=i(- sA~-L-A - &
mc (- Ul )
+j(- AO K
ul ul ul
- kF, (10.5)
and so, since wh=\£ |,
iK
F=F, + iF, = gl R
\ Oyl ur > (10.6)
Fa = —R
'I'ne total aerodynamic couple is
G=M+H + 1 +J=i( MA--/IA r-]
ul ufl )
v
+ 9 - 1/ -r-r-- 1l - jmr)
ul Il
kl, (10.7)
and so
S . £ v £
G=Gi+ iCi= - iM-t— - H-—j-- [/
ul (10.8)
Gu=- I
Certain quantities are defined as follows:
_ Mw
m  mo>3LE|
Ul ] I_IT (10.9)
R 1 i Jw
U—KT* It = r = Y =
mw au Cu3 Cea3| £1
Then (10.6), (10.8) give
F = £(/X?hw3 — mu), Fji = —mw(u — K,
M yCu3 . (10.10)
rjAh, g3 — — Cco3r.

Comparing these with (4.15), we see that the force system of Fowler et al. is a par-
ticular case of our general system, with

P=—mu+ imo)3
Q=o
yt~0i3 o A (10.11)
D D
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The general system has eight real parts in these terms; the system of Fowler etal.
has only five:

J\ — — Hu, P2= m\w;l

Pi - , Pi.-JL, (10.12)
w w

Q{ ="'"—"'Ah.

It is clear from the transformation (4.16) that 0 =0 is not invariant with respect to
shift of mass center. Thus Egs. (10.11) describing the aerodynamic force system can-
not be valid in general. It may happen of course that they arc true for one particular
mass center, but they cannot remain true when we shift the mass center.

Fowler et al. find little evidence for the existence of the Magnus effects J, K, or
equivalently 7, A If we put them equal to zero, the survivors in (10.12) are

Pj = - mv, Pi = - , Q( = - Ah. (10.13)

These should be compared with (8.4), which are the general survivors in the absence
of Magnus effects. We note that Qi is absent from (10.13), which means that the mass
center is chosen so that Q* —rP *is zero, or at least negligible.

By (6.4) we obtain from (10.13)

X,=-v Xl =-—, Y{=-nh (10.14)

and so the stability condition (8.13c) reads

. (®~d h)2
S i- —. . (10.15)
Avh

We have referred in the Introduction to a second stability condition implicit in the
work of Fowler et ah; it is

(-C+/02
4K

(10.16)

The difference between (10.15) and (10.16) does not appear to be very great in prac-
tice. It is a question of replacing v by k, and by (10.9), (10.2)

* Ul o1 (.0,17)

roughly.

There are very simple relationships between the dimensionless aerodynamic func-
tions in the two theories. We take the mass center O as base-point, and use (4.23)
without asterisks, together with (10.12), (10.9), (10.2); we find

fi = fit + fi. - /lv, ft - /at,
(10.18)

fi =fj, fi =Jm, gi =fn.
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The functions gi, g2 arc zero in the theory of Fowler et al.

As the paper of Fowler et al. is one of the basic papers of modern ballistics, it will
be useful to summarize our criticisms as follows:

(i) Their aerodynamic foixe system is not the most general system consistent
with

(a) the aerodynamic hypothesis,
(b) linear dependence on the cross components in the case of small yaw,
(c) the symmetry of the shell.

(ii) Their system does not satisfy the fundamental requirement of invariance with
respect to shift of mass center.

(iii) If only shells with mass centers near their centroids are considered, it may be
that the above theoretical objections are of small practical importance.

We believe that our exact dynamical equations (6.3) provide a clearer approach
to the problem of the spinning shell than do the dynamical equations of Fowler et al.
But it is frankly admitted that our simple treatment of the equations of motion in
section 7 does not appear to be as satisfactory mathematically as their method. We
have made the plausible but rather crude assumption that it is permissible to regard
cos Q w, gj3as constant during the oscillation. It would be interesting to apply their
more refined methods to our differential equations, but this we must defer for the
present.
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TRANSFORMATION GROUPS OF THE
THERMODYNAMIC VARIABLES*

BY

WALLACE D. HAYES
Lockheed Aircraft Corporation

Abstract. A certain class of transformations on the thermodynamic variables E, 11, F, G, S, T, P, and
V which leave the fundamental equations invariant is investigated and found to form a group of order
thirty-two. The quotient group with respect to a normal subgroup of order four gives the octic group ob-
tained by other investigators, the normal subgroup containing trivial but non-excludable transformations.
In contradistinction to previous investigators, it is not necessary to use absolute values or a rule of signs.
Examples are given of the application of the transformations.

Certain transformations on the fundamental thermodynamic variables will change
members of a large class of thermodynamic equations valid for reversible processes
into other valid equations of similar form. These transformations have been investi-
gated by Koenigland Buckley2and found to form the group of order eight called the
octic group. Koenig restricted his transformations to pure substitutions, or permuta-
tions, took care of a difficulty in sign by introducing absolute values and a rule of
signs, and discussed a geometric method of exhibiting the transformation group.
Buckley showed that Koenig’ group could be derived in part by Lie’s theory of con-
tact transformations, and listed a number of families of thermodynamic equations
to which Koenig’s transformations apply. Although of course mathematically correct,
the application of Lie's theory is not essential in this case.

In order to eliminate the inconvenient and somewhat disturbing use of absolute
values and a rule of signs, the following exposition of the theory of these transforma-
tions is presented. The transformations considered are not limited to pure permuta-
tions but allow changes in sign, and the octic group is finally obtained out of a larger
transformation group as a quotient group without the necessity of using absolute
values or a rule of signs. The transformations are represented by matrices whose ele-
ments in any single row or column are all null except for one element which equals
lor —1

The thermodynamic quantities involved are3: the internal energy E, the en-
thalpy 1l, Helmholtz’ function F, Gibbs’ function G, the entropy S, the absolute
temperature T (intensive), the absolute pressure P (intensive), and the volume V.
All these quantities except T and P are extensive quantities. The quantities Il, F,
and G are defined relative to E by

* Received Aug. 26, 1945.

1F. O. Koenig, Families of thermodynamic equations, I, Journal of Chemical Physics, 3, 29 (1935).

2F. Buckley, Transformations of the fundamental equations of thermodynamics, Journal of Research
NBS, 33, 213 (1944).

3This notation is perhaps the most common in scientific literature, with the symbol U often used in
place of E. The functions Fand G, invented by’ Helmholtz and Gibbs respectively, are generally known as
the free energy and the thermodynamic potential, while the American Standards Association has used
the term free enthalpy for the function G. The standard usage of American chemists is that of Lewis and
Randall, where the functions Aand G are denoted by A and F, respectively®, and are termed the work func-
tion and the free energy.
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Il = E + PV, (la)
F=E- sr, (Ib)
6= E+ PF - 57" (Ic)

These definitions, together with the fundamental thermodynamic equation for dE
give the equations

dE = TdS - PdV, (2a)
dil = TdS + VdP, (2b)
dF = - SdT - PdV, (2c)
dG = - SdT + VdP. (2d)

The transformations considered are all transformations which leave Eqgs. (1) and
(2) invariant, such transformations preserving the validity of any equations derived
from Eqgs. (1) and (2). The class of equations to which the transformations apply is
therefore the class of equations thus derived. If the symbol x is used to denote un-
determined matrix elements, the transformations will be of the form

-Fi- ~x W x x- "0 0 0 0" E
I X x x vV 0 0 O 1
F' X X X 0 0 0 O F
X x W x 0 00O G
s 0 0 0 o- 7 x W %m S @)
\Y 0 0 0O X X X T
P 0 00O x S x P
A .0 0 0 O g * X LV

From the invariance of Eqgs. (2), the following seven observations on the trans-
formations are made:

l. The off-diagonal 4 by 4 submatrices are necessarily null. This fact allows the
transformations to be put in the separated form

-Ri- X X v -R -
" X X X 1
(4a)
F' & X X "
_6'_ X X X _C_
~GQ'e "
C :n: T 1
(4b)
P P

_F_ LC :I] C v _

1. If one of the variables (EIIFG) is changed in sign, all of them must be thus
changed. Such transformations may at this point be excluded as trivial. This exclusion
limits the transformation (4a) to pure permutations.
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I1l. The invariance of the equation
E-Il- F+G=0 5)

derivable from (1) may be used to limit the transformations (4a) to eight in number,
all of which are of the type considered.

IV. Since S is always associated with T in Eqgs. (1) and (2), as is P with V, the
form of the transformations (4b) must be as shown with two diagonally opposed 2

by 2 submatrices null.
V. The 2 by 2 submatrices of Eqs. (4b) are necessarily of one of five forms, which

are abbreviated thus:

[. a - (6a)
(6b)
[m j-a—
(6c)
[.: a-*
"0-11
(6d)
1 0T *
0 O
°1 -, (6e)
L o ad

V1. Transformations of the type in which, for example, both P and V are changed
in sign are admittedly trivial but cannot be excluded because they are necessary for
closure of the group of transformations (4b).

VI1I. A given transformation (4b) defines at most one transformation (4a). The
converse is not true, however, and the correspondence is found to be four to one.
Thus the number of transformations (4b) is thirty-two.

The eight transformations (4a), the corresponding thirty-two transformations
(4b) expressed using the abbreviations in Eqs. (6), together with eight symbols repre-
senting group elements, are listed in Table I.

The transformations (4a) form a group of order eight which is designated as M.
The transformations (4b) form a group of order thirty-two which is designated as G.
The group G is four to one homomorphic to M, the normal subgroup

Ve a-]Fc o~\f—e o0~\W—e ol\

\LO eJ10 —JL o ejL o—=<j/ O

of G corresponding to the indentity element of M. From this correspondence is estab-
lished the isomorphism

At~ G'iV (8a)
or the congruence
M = Gmod N. (8b)
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This group is the octic group, whose multiplication table in terms of the group ele-
ments shown in Table | is given in Table Il. This multiplication table is consistent
with matrix multiplication of the matrices representing either transformations (4a)

Table |I: The transformations of the thermodynamic variables.
~ E ~ ~ 8§~
Group Transformations 11 Transformations T
Element of F of P
_G_ _ K_
- 1.0 0 0 *“ fe 01 ~—e o~
mi 0 10 0 0 el o0 C
0 0 10 "—e o~
0 0 0 1 [: .3 0 '
- 0 0 O i - ~i o~ " o~
Ith 0 0 10 0 i 0 i_t
0 10 0 ~i 0~ ~—i 0~
1 0 0 O0_ 0 —i_ 0 —
- 0 0 0 i - ~0 el r o el
nti 0 10 0 C o\} I-e 0j,
0 0 10 ~0 —c r o —el
1 0 0 O0_ _e oly \_-e o\
- 1.0 0 0 *“ 0 i~
mt 0 0 10 El a, _—i o_ .
0 10 0 0 —i~
_0 0 o0 1_ El H _—i 0_
“0 1.0 0- re ol r~e o~
ms 10 0 0 Le *J> L 0 i~
0 0 0 1 fe ol r—e o~
0 0 1 oO_ L —J, L O
“0 0 1 0 * ~i o~ i o~
v, 0 0 0 1 ° e . 0 Cm
10 0 0 ~i o' ~—i 0~
0 1 0 O0_ 0 —€_ 0
- 010 0 - [o] e~
0 0 0 1 [I ]  _—l o__
10 0 0 ~ 0 —e~
0 0 1 0_ [ 1 _—i o_
“0 0 1 0 ~0 i~
tha 10 0 0 _e 0o_ [ - a »
0 0 0 1 ~0 —i~
_0 1 0 0_ _e o_ [-: "3

or (4b). The non-identical transformations of the subgroup ATare those of the trivial
type mentioned in observation VI, and their elimination in the process giving Egs. (8)
is tantamount to disregarding a change in sign of both 5 and T or of both P and V.
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To illustrate the general application of these transformations the equations ob-
tained by transforming two given thermodynamic equations are shown in Table IlI.
The two given equations are those shown in the table opposite the symbol ni,, which

Table Il: Multiplication table for the octic group.
nil )17 i Na ) i iy 718
nil nil i 13 A 7h nit nr s
w h nm U m it 75 s "
ntz 3 K i 2 718 m nit 15
mi nn 3 w2 nil iy s nib n
nis m$ il 7 ni& nu 2 % Na
nit nit 75 ns nr e i nil Nz
mT L N& 75 pil nil 3 M m
nig 718 L Titt 015 3 i mi 7h
Table IlIl: Examples of equations obtained from the transformations.
Transformation First Example Second Example
o / dS\ 1/dE\ /OP \ P 1/0E\
\dT )v~ T\T )v \or)v~ ~f+ Y\ov)T
/or\ 1/0g \ 0V \ V. 1/0G\
" \ 0S Ip JVoSlp ValJA ~J~ J\oF)s
" /OP \ 1/0G \ / 0S\ S 1/0G\
K VAF)T_  I7Vat7A- \OV)T~ 7 + V\OT )v
o /aF\ i /0E \ /OT\ T  1/0E\
\OP )s~ ~Y\op)s Vap/.?"'p_YYost
5 /a5\ 1 /0ii\ JOV\ V. 1(0/1\
V0T )p~ T\OT)p Varyp~ t~ T\oF)p
o /0T \ 1/0F \ /OP\ P ~ 1/OF\
\as)v~ ~ ~s\as)r vos)v ~ [ + 7VaFA
o lop \ 1/ on\ /0T \ T 1/ 0H\
w /s - FVaFA \ov)s~ V VVdS/v
/OV \ 1/0F \
s (°Ly ~ +
\0p )t~ ~J\op)r \OP 1t P P\OT Ip

represents the identity transformation. As an example of the carrying out of one of

these transformations, the m7 transformation of the second equation of Table Il is
here given in detail. The transformed value of E is shown by
0 10 O ~E ~ ~H -
0 0 0 1 11 G
(92)
10 0 O F E
LO 0 1 0J _C_ _F_

to be Il. For the (STPV) transformation any one of the four matrices given may be
used, as



232 WALLACE D. HAYES

~5~ ~0 0 1 0" ~s P
T 0 0 0 1 T \
(9b)
P 0-1 0 O p -T
Lr 1 0 0 P_ _v L 5J
Hence the equation
/dP\ _ P 1 /clE\
. (10a)
\dTjv ~ T+T\dv)1
is transformed into
SdT\ T 1 /dH\
(10b)

(dV/s ~ V ~ F \ds)>

Since m7=»i6x3 from Table Il, Eq. (10b) can also be obtained by applying nt
to the equation obtained by the »H transformation of Eq. (10a).
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CONSTRUCTION OF A COMPLETE SET OF SOLUTIONS
OF A LINEAR PARTIAL DIFFERENTIAL EQUATION IN
TWO VARIABLES, BY USE OF PUNCH
CARD MACHINES*

uy

STEFAN BERGMAN”
Brown University

1 Introduction. Many problems in Engineering and Physics lead to the deter-
mination of a function U satisfying the partial differential equation
1/d-U d-U\ 1 du 1 du

U 8B4\ 0x- +¥8/ +RaVYax + D >~ + < yW =0 il-%

in a domain D, which function assumes certain prescribed values on the boundary of
D. Here a, /3y are polynomials in x, y (or can be approximated by such polynomials).

Recently a procedure, “the method of particular solutions,” has been developed
for the solution of problems of this kind [2].f The idea of this method is to determine
at first a “complete” set of particular solutions of (1.1), i.e., a set offunctions each of
which satisfies (1.1); this set [denoted by p,.(X, y), {v—\, 2, <+ m)], is chosen in such
manner as to possess the property that every solution U can be approximated in any sim-
ply connected domain by a conveniently chosen finite combination

N

23 a,p.,.(a, y) (1.2)
sl

of the above particular solutions. In the case of the Laplace equation {d-U/dx-)
+ (d2t//3y2 =0, such a set can be obtained by taking the real and imaginary parts
of the powers (s+iy)tl, (v=1,2, mmm); ie., pi=I, pi=x, pa=y, p4d=*2—y2 ps=2xy,
etc. In the following, a procedure will be described for finding analogous solutions
for any equation of the form (1.1). The second step of the method consists in indicat-
ing a rule for determining the a,, so that (1.2) assumes on the boundary of D values
which approximate the prescribed values of U. In order to apply the method of par-
ticular solutions to an actual problem and obtain numerical results of interest to an
engineer or physicist, it is frequently necessary to carry out lengthy computations.
These computations can as a rule be performed most efficiently by the use of special
computing devices, such as punch card machines. Before the computations can be
carried out on such machines, however, it is necessary to organize the computations
so that they can be given to the operators of the machines. This organization is often
a problem in itself, as in the case of the example given below.

In the present paper there is described a working procedure for computing the
above set of particular solutions, and for carrying out the associated numerical com-
putations by the use of punch card machines.

* Received Oct. 11, 1945.
” Now at Harvard University.
t Numbers in brackets refer to references at the end of this paper.
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2. Notation. In the following, it is convenient to use the complex variables z and
z instead of x and y. We have z=x+iy, z=x —\y, where x and y are cartesian coordi-
nates in the plane. We then have

du 1 (iU duU\ du 1/duU ~du)
u, = = — i ), Uz = -z — + o0 ),
2 \dx dy) dz 2 \dx dy]

1 1 /d2u  d-U\

Uzz = — AU = — e + -

4 4 \ dx- dx-)

In terms of s and z Eq. (1.1) then assumes the form
Ut+ AUz+ BUZ+ CcU = 0, (2.1)

where 2A =a + id. 25 =a —id, C=y.

Remark. In the above case, B = .4. However, in the following we derive formulas
without making this assumption and we note that in general (2.1) is equivalent to a
system of two equations, one corresponding to the real part and one to the imaginary
part.

3. Some previous results on particular solutions. The method to be described in
the following is based on the following theorem, proved in [2] p. 542.

Theorem. For every partial differential equation (2.1) there exists a function
E(z, z, t) = exp j"- J Crlsj [\ + X) tivzvQuiz, Z)J (3.1)
such that the functions*

p2+i(2. s) = Re j*z1J* E(z, z, 0(1 —/2’-1/2rf/],
v =012 ee°), (3.2)

poR(z, 2) Imrz'yg E(z, z 01 - id™=Vvari],

form the required complete set of particular solutions,** i.e., a set possessing the properties
mentioned in 81. The Q(p) aref given by the recurrence formula

* As has been proved in [I], the series (3.1) converges for \x| < », |y| < », |/| gl and therefore
the functions p,, are entire functions. We note that they are independent of the domain for which the
boundary value problem is considered.

In the N.A.C.A. Technical Notes Nos. 972, 973, 1018 and 1096 the functions Qw (z, z) have been com-
puted for the compressibility equations.

** If E(z, z,/) is real, then p-.(z, s) vanishes identically and we have to change the numeration of the
p..(s, s) accordingly. The proof that (7.1) where/ is an arbitrary function of a complex variable is a solu-
tion of (1.1) isgiven in [I] 81. Substituting (lip/instead of into (1.16) of [I] p. 1174 and integrat-
ing with respect to s we obtain (3.3). (Note that there are some misprints in [I ] which are indicated in
the Trans, of the Amer. Math. Soc. vol. 57, p. 311, Footnote 15.)

t Unless otherwise indicated the arguments of the functions Qip), F, A, etc., are (z, z).



1946] CONSTRUCTION OF A COMPLETE SET OF SOLUTIONS 235

2 f e

(3.3)
L _ 0 + . + FQ(p-")dz\
21- 1L Jo J
(/m= 2 3 4, oo9).
QP(S 0) = 0O, =1 2 3, ume),
where
D yIns + 72, A nm- A2+ C. (3.4)
If the coefficients A, B, C of (2.1) are polynomials
Vv A A A AT A
A = 23 23 &m,nzZmznj A== 23 23 C = 23 23 A*n.»2WSn» (3.5)
m=0 n=0 m=*0 n=0 =0 =0
then for the coefficients dW» and / m,, of the developments
V. M -U
fIZEZ dm,nZmZn, f:EE u,nZmzn, (36)
m=0 2%i=0 m®0 n=0
we obtain the relations
(?« + 1)am+i,, i
dotn ~ hotn, (7Tm. "4 bjn,ny (3-7)
[ im n “
/- @in “r AN I nr* (3.8)
=0 j-0 J
4, Determination of the <Xp). Since the .4, 5, C (see (2.1)) are assumed to be

polynomials, D and F are also polynomials in z, z, as is indicated in (3.6). (Both F
and D are assumed to be of the same degree; this is always permissible, since some
f’s ord's can be assumed to equal zero.) We now write*

Q" =1 1N i T22, qitd ) =g (4.1)

and proceed to the representation of gt n in terms of the g% °. Formal computations
yield

Up-1 v1 Q'— v'/[. "J
WD Vil 273 b4 s d
* The relations —0 follow from the equation Q(,_1)(z. 0) =0. See (3.3). Note that if one of the

subscripts m, it of dm,, becomes negative or larger than M, it is necessary to substitute 0 for the corre-
sponding dmn. The same holds for
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Fo Xs@ra+ P PR+ )] Xz@IS+ s + -++)

E . E/r: /I\ %’ij\ét_if;n—;,n—jc(gpﬁo \/JZ Zi (4.2)
(p-1) - ..

DQ. [,) I[S'V ot XiS+ SQijz + eee)
_ A R .
=X%(%%0+D ~ A )V

o | vI:]‘+1r~v i (p=1)\ m_n
Z 2;[, \ |2(') JZ_-iljdm—l.n-J+IQi.i /Is i
P po, XS X {1011+ [rfmioe2 + (rfe-ll + im0 9112]

i-0

+ [3rfm.i,09i.3 + (2<Em—1+/m~-i,0)9i,2 + (¢(¢m-i,2+ /m-i,1)9il]s + e}

L X X (jdm-i.n-i+l+ /m-i.n-)2."+ (« + )X *m-i,00in+1J 2 S. (4.3)

in n L i-0r

Therefore
i 2
o (4.4)
2 P-i
q<(<§),)i — 2 _ltl)_g dtn-i.oQi.l  'T" (W I)9m(+l.)l , (= 2,3, 000),
- 2 ~1 mn4 f
-- X m—i,n—| ‘ ,m—i‘n—— i,
Qi 2p 1LnX|-o i-i (kd C her (4.5)

+ X (fm-i,000% Y + t»+ pou"

(W: 01 11 2].-0,]1: 2l 3’ 4’ooo,p = 2’ 3l ooo).,

5. Evaluation of the gin. If we assume that the dm,nand are determined, the
evaluation of the g$,, represents a considerable computational task. Merely writ-
ing down the various pairs which have to be multiplied together and adding the re-
sulting products is quite laborious. Therefore, it is convenient to organize the
determination of the g$n in such manner that one can sec automatically what
quantities have to be multiplied and added. After such a procedure has been de-
veloped it can be conveniently employed for performing the computation on punch
card machines.

We shall describe such a procedure, assuming for the sake of simplicity that M
in (4.1) is a given number, namely M =3. The changes that have to be made when M
assumes other values are in many instances clear. If however this is not the case,
then we shall write these formulae out explicitly for the general case, i.e., retaining M.
The expressions q™n (£E>>!) to be evaluated are given in (4.5) in the form of sums of
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products of two sets of numbers; the first set are the coefficients of gyT1* ancl the
second set are gE~1). This suggests the construction of a set of cards and stencils.
The coefficients of gift- ZLare entered on the cards. The stencils arc cards with holes cut
in them, and the quantities git-1> are entered on the stencils in such a way that when
a stencil is placed over a card properly, quantities on the cards appear in the holes
in the stencil beside the giit-1) by which they are to be multiplied.

A card is constructed for each value of n; these cards are called the [S, n] cards.
A stencil is constructed for each value of p\ these stencils are called the [Q, P\
stencils. In order to compute g®, and hence construct the [Q, p] stencil, we require
the [Q, p —I] stencil and the [S, n] cards corresponding to* « = 1,2, e+ p(M + 1).

Each [S, «] card contains a matrix {s®} of M+2 rows and M +1 columns;
r indicates the row and k the column. Also when il1=3,

sr.l; = ——I—I— [(» + T — 5)i/l4_J..6_r + fi-kA-r]-
<
SF.rl]): /13.3/\W Sf),)): 35,3/ Jl.‘? /f.3/\{V 5(),) — /’0,3/\4V
$2.1= $2.2= [(H—3)i/2.34-/2.2]/** $2.3— A2,4= [(w~“3)il0.3"h/0.2]A*
ABi>= [(w—2)"3.2-f/3.i)/«  sl,z= [(n— 533= [(n—2)di,2-{-fi,i\/n 534= [(«—2)rfo.2+/0.i]/«
54.1=* [(~  1)¢¢3.1'Hfsto\/H s{,2= [(» —1)</j,1+/2.0]/w 54,3= [(W*““I)<il.IH"/l.o]/w 54.4= [(W"” I)rfo,l+/0,0Vw

5@: «30 ,\4’@. “2,0 g]]%‘— “1,0 5@— “00

Fig. 1. A [S, n] card** in the case M = 3.

Forn®M + 1 (i.e., in our case for 4), the elements of the first M +2—n lines
are to be set equal to zero, i.e., in our case 4”)=0 for kS —n.

A [Q, p] stencil consists of (p+ I)(ih/+1) —p columns and (p-\-1)(M-\-I) rows.
The ¢g®, in the last M columns and M -\-1 last lines are equal to zero. In the case
M = 3, typical stencils are as shown in Figs. 2 and 3 (toe interiors of the rectangles
should be cut out).

The number of remaining columns in any stencil will be three greater and the
number of rows four greater than in the stencil for the preceding value of p. The
[Q, I] stencil has 7 columns, 7 “deleted” columns, and 8 rows; hence the [Q, 2]
stencil will have 10 columns, 10 “deleted” columns, and 12 rows; etc. (The [Q, I]
stencil has 7 columns (+ 7 “deleted” columns) and 8 rows and the S cards have
4 columns and 5 rows.) See Fig. 2.

Each member gjfj, on the [Q, p} stencils is specified by three numbers, one super-
script and two subscripts. The superscript remains constant for each Q stencil, i.e.,
all numbers computed for the [Q, 2] stencil will have the form g®,, for the [Q, 3]
stencil g®,, etc. The subscripts give the position of the number on the paper, indicat-
ing column and row respectively; gi|ll means that the number is on the [Q, I] stencil
in the fourth column and third row; gffj that the number is on the [Q, 2] stencil in
the fifth column and second row; etc.

*We note that in increasing p to p+ 1 the number of [S, n\ cards increases to (p+1)(M +1);
however p (M + 1) of these cards are exactly the same cards used at the jHh stage, so that it is necessary
to prepare only M + 1new [S, n] cards.

** The numbers on the S stencil are the coefficients of q ,qi, "in (4.5).
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e 9y 2,1
P I o NP
%3 1,3 2,3
%Y 9fg Wl
0,0 1,5 or
0.6 1,6 2,6
9 1.7 2,7
T '
Fio-2 il [Q, 1],

Using (4.4), we determine g*v, (m=0, |2 3, /=1, 2 3, 4); &v (m=4, 5 6 or
p =5, 6, 7, 8) we set equal to zero. Thus 1 ¢ stencil [Q, I] has the appearance incli-
catecl in Fig. 2. The stencil [Q, 2] consists of 10 columns and 12 rows (besides the
deleted columns, i.e. the holes in the stencils), See Fig. 3. We now proceed to the com-
putation of the [Q, 2] stencil. To compute g2 we proceed as follows: the second sub-
script (m, n) indicates the g”,, on which w<: must fix our attention. Since there are
four more rows and three more columns on the [Q, 2] stencil than on the [Q, I]
stencil, there will be no corresponding for these last columns and rows—we fill
in these last 3 columns and last four rows an the [Q, 2] stencil with zeros. To con-
struct the remainder of the [Q, 2] stencil, jve place the [Q, I] stencil on top of the
[S, w] card so that the number 4r+2,M+i on the [S, »] card occupies the space to the
left of g"n> There are then 20 numbers on the S card adjacent (on the left) to 20
numbers on the [Q, 1] stencil, which indica tes the products (20 in all) which have to
be obtained; once the products are computcd they are to be summed,

In this manner we may tentatively fill in the whole [Q, 2] stencil. Now we com-
pute the product of (m+ I)gi~lin and add tlhs to each of the “tentative If this
number is multiplied by —2/3 [in the case §f an arbitrary/) by —2/(2p —1)], we ob-
tain the “final g&n” of the stencil [Q, 2],

Having completed_ the [Q, 2] stencil we inay repeat the above operations but with
[Q, 2] and g®, replacing [Q, I] and g”"n, respectively, to compute the [Q, 3] stencil,
Similarly, we can compute as many Q stenc ijls as desired.

* "“here [Q, I] stencil covers the [S, 4] card, and the arrangement for the computa-
tion of is indicated.
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AS AS) AS J5
A9) ) A9 %)
(5 (5 J5
SF] ) l'(22) 323 ¢BZ4
(®) (S) J5) J5)
31 w3 33 ¢34
i 2 B @
.(8) AS) J5) J5)
w5l m52 ‘53 54

Fig. 4. [S, 5) card.

6. Example. In this section, we shall illustrate our general descritpion by a spe-
cific example. We shall indicate the operations to be performed on punch card ma-
chines only. The arrangements and the methods of how the computation is to be per-
formed on these machines can be found in books on punch card methods e.g. in[3],
More specifically we refer for operations concerning complex numbers to [4], and for
computations used in the present paper to [5].

sii) ‘001 o1z 1.1 81(:) 951 81(5) EE! k4(|? 95y Y61
82) 02 22 "1 32(2) 1202 32(j) 3% e P ‘6.2
g<s> (D ss5) gD s, gD sy q(D (1) a (D q(l)
31 0,3 32 1,3 33 2,3 34 3,3 4,3 5,3 6,3
S92esd s @sdal> @) al) g
e§3>qé’,‘{—, 5;25) S bs:?) 925 3;45) s 9 qcv,vs 9
o) T & B OB Y
W . WMy
ch!gl 1,8 2,8 3.8 4.8 q5<<; q6(,(8

T'IG 5. V hen stencil [Q, 1] is placed on the [S, 5] card in order to compute g™, the appear
as indicated above. £« £ ¢ * £+ I*¥2 I gives the “tentative $£.”

As an illustration of the above method, we now give am,, bmn, cmn the specific
values,

2mn + i(»t" — n)
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(< + n) + i{m — it)
ClLU 1» Cpt n (»* + ]1')

In Table 1 the values of dm,, and /«,» which have been determined according to
(3.7) and (3.8) are tabulated for »j=0, 1, 2, 3,4, n=0, 1, 2, 3, 4

Table 1. The values of d,,,,, and

m n Re(d,...»,) Ini Re Im
0 0 1.0000 0.0000 0.0000 -1 .0000
1 1.0000 0.0000 -1.0000 0.0000
2 0.2500 0.0000 -0.5500 2.1000
3 0.1111 0.0000 -0.3778 2.7167
1 0 1.0000 0.0000 0.0000 -2.0000
1 0.0000 -2.0000 -2.1000 -1.2000
2 -0.8000 -0.6000 -3.4000 1.6500
3 —0.6667 0.0000 -3.1962 3.5581
2 0 1.0000 0.0000 0.2500 -4.5000
1 0.0000 -3.2000 -3.2000 -4.0550
2 -0.9000 -1.2000 -5.4942 -1 .1538
3 -0.9231 -0.3846 -6.0154 1.6216
3 0 1.0000 0.0000 0.2222 -5.9157
1 0.0000 -4.0000 -3.2324 -6.3183
2 -0.9412 -1.7647 -6.2154 -4.0216
3 -1.0667 -0.8000 -7.6534 -1.1200
To determine by.use of punch cards we proceed as follows: for each number

on an S card, we make one punch-card, and separate into groups. Thus, in order to
compute the [Q, 2] stencil which has 8 rows we would need 8 groups of S cards. See
Table 2. In the group [S, |I] there would be four cards, in [S, 2] eight cards, in [S, 3]
twelve cards, in [S, 4] sixteen cards, in [S, 5] and in all succeeding groups twenty
cards.

We arrange the numbers in the first line of the [Q, I] stencil (sec Table 3) as
follows:

@l 0 0 0
frw 881 0 0
ol & M 0
231 g4 91,1 Qoi
r 0>

1 sil) 92,1 s
9{5?1 « a g:”ll ‘520,
e . a4y &

For each of these we punch one card and separate into groups as indicated. We do
the same for each row of the [Q, 1] stencil, so that we will have seven such groups in
total. (There are then four "oii, 2m. « « * cards and a total of six zero cards.)
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Taule 2. The values of si'", for « =1, 2, 3, 4, S.*

b Re(#)

1.0000
1.0000
1.0000
1.0000

[S2 NG e, I3, ]
=N W A

1.0000
0.5000
1.0000
0.0000
1.0000
0.1250
1.0000
0.1111

N I N - NS
B NN W WS N

1.0000
0.6667
-0.2500
1.0000
0.0000
-0.9667
1.0000
0.0833
-1.3667
1.0000
0.0741
-1.3912

WA OWDOWSO WSO
B R R RO WWWADN

1.0000
0.7500
-0.1250
-0.1097

N Wb O,
R A

=~

Retei'")

0.0000
1.0000
0.3666
0.1889

AW N e

0.0000
2.1000
2.2667
1.5981

B WN e

*The s”’s for n=6, 7, 8 have to be computed in a similar manner.

Im A~ D) n i

0.0000 4
0.0000
0.0000
0.0000

0.0000
-0.5000
0.0000
-2.0000
0.0000 "
-3.7500
0.0000
—4.9583"

N WhraoaNnmwdoaNwmwbo

0.0000
—0.3333"
0.0000
0.0000 J]
—2.0000
-0.6000
0.0000
-3.5000
-1.75004
0.0000*1"
-4.6389
-2.69431"L

0.0000
-0.2500
0.0000
0.5250

B NW R AORNWEORNWDDO RsNDWSOG

Tabte 3. The values of g”*

2.0000 2
0.0000

-1.4000

-1.3583

4.0000 3
1.2000

-1.1000

-1.7791

B w NN -

1
2
3
4

—

PR R RN O WWW W

P P R R R RNNDNDNNNDWWWWWRDSDNSD

Re(4;)

1.0000
0.0000
-0.9250
-1.0167
1.0000
0.0625
-1.2500
-1.6043
1.0000
0.0555
-1.2787
-1.8205

1.0000
0.8000
-0.0500
-0.0655
-0.0755
1.0000
0.0000
-0.9000
-0.9467
-0.6392
1.0000
0.5000
-1.1800
-1.4681
-1.2031
1.0000
0.0444
-1.2112
-1.6697
-1.5307

*Refsl™)

-0.5000
3.2000
3.6628

m 3.0077

-0.4444
3.2324
4.1436
3.8267
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(Im(4;>)

0.0000
-2.0000
-0.6000

0.4125

0.0000
-3.3750
-1.6125
-0.3846

0.0000
-4.4792
-2.4619
-1.2054

0.0000
-0.2000
0.0000
0.4200
0.5433
0.0000
-2.0000
-0.6000
0.3300
0.7116
0.0000
-3.3000
-1.5300
-0.3846
0.3243
0.0000
-4.3833
-2.3225
-1.1243
-0.2240

Ini(si™)

9.0000
4.0500
0.7692
-0.8108

11.8333
6.3183
2.6810
0.5600
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Starting'with the group of cards for line one, we take the “dot” product for each
sub-group with the [S, I] cards.* Let the numbers in the first row of the [S, I] card
be denoted by s, 4-i. »53. »5®21we then have to compute the following products:

$»21+0 4S +0 4l+0 :,0
il + 454 +o 4* +o0 -
* M..cocovvvnnnnnn. a4 + <ip4J+%li'diM+ 0 4"
w1 B 1 Bl B%5sdY 5 oo Asd
£0)-49 - of) 40 1 ofD-50) 4 50

The actual procedure is to form the products AU4li> A0'4b> sili'4>
0-413/ Soli-»11 9u «4!;” and enter these together with appropriate signs etc. on the
corresponding cards. These cards are then assorted in sub-groups as indicated and the
products summed to yield the desired “dot-product.”

To compute the numbers'which are to appear in the second line of the [Q, 2]
stencil, the numbers in the second line of the [Q, I] stencil are arranged as follows:

Y . - o 0 0
(VX 3612 0 0
ctt Ql 0
$ b4 98 SoM
%((72) 952 94,2 9%

numbers one card is punched and separated
cards as indicated below, using the cards previously punched for the first line of the
[Q, 1] stencil:

o2 o6 0 0 0 0 0 0
ofd off 92 & 0 0 0 0
o) @1 9,2 ofd B aft 0 0

(e oy ) o 4% i I o

The dot product of each of these groups in the [S, 2] cards are then taken. T hus:

Ql.dﬁé_ggpm+ 0 !g%+ 0 ’%+ 0 -4S + 0 g + 0 54+ 0 0
$ @41- o1 ) + %9@ 4 Iiii@w Ofi-»S + 1« M+ 92m42 + %o*5@

The actual products are again taken as indicated before, and then reassorted and
summed.

This process is repeated for each line of the [Q, 1] stencil until each group has
twenty cards in it, after which the first line is discarded when a new line is added so
that there are never more than twenty cards. In this way the “tentative [Q, 2] sten-

* Note that, in general, both and 4» are complex, and in cnler to compute glIR, 1l on punch
card machines we have to use rules for the evaluation of complex numbers.
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cil” is computed and it is necessary only to add (w+ l)gm+i,n and multiply the result
by —2/3 to obtain the actual values of the elements of the stencil [Q, 2]. This pro-
cedure may then be repeated to obtain the values of the elements of the stencils
[Q, 3], (i.e. the quantities g”,) [Q, 4] etc.

In Tables 2 and 3 the values of the elements of the cards [S, n\ and those of the
stencil [Q, I] are given.

7. Conclusion. Application of the differential analyzer to the construction of par-

ticular solutions. As soon as a sufficient number of [Q, p] stencils (i.e. g*,,) have
been prepared we can, by (3.1) and (3.2) and standard methods of evaluation of
polynomials on punch card machines, determine the values of p2_i and p2 for a suffi-
ciently dense lattice of points.

The second step, the determination of the coefficients a, in the expression (1.2) in
order to obtain a solution of (1.1) which assumes the prescribed boundary values,
will be discussed in a subsequent paper. The basic idea of the procedure to be em-
ployed has already been indicated in [2]; we shall however discuss this in more detail
from the point of view of numerical analysis.

Sometimes we need solutions of (1.1) in connection with questions other than the
boundary value problem, and it is convenient to apply the method of particular solu-
tions in the following slightly modified form.

As was proved in [I], 81,

U@z, 2) =3 “E(z, 5 0/[(*/2)(1 - nldt/(1- r-y>\ (7.1)

where/ is an arbitrary analytic function of a complex variable, which is regular at the
origin, is a solution of (1.1).

There are instances in which a large number of solutions of the same equation
are required, and the corresponding functions/are known. (See (7.1).) (This situation
occurs, for example, if an “atlas” of solutions has been prepared.) In these cases it is
then very convenient to employ graphical methods. In the following we shall indicate
two graphical methods for the evaluation of (7.1). Both can be performed con-
viently by use of a differential analyzer.

l. One prepares once and for all for a given equation (1.1) diagrams in which
curves
Y = EXZ,s.t) = Re [E(z,,z, t)j, — 19 tg1l (s, z,) fixed,
Y = EZz, z,,t) = Em [E(S, 2., )], — 1 i d 1 (z, z,) fixed,
for a number of points (X, ¥) = (X, ¥,,), V=1, 2, 3, » meare drawn. Further onehas to

prepare tables for the values <2,(1—/£), for fM —1, —1+a, —I+2o0r,»--, 1, where
a is a sufficiently small positive constant. z,—x,+iy, denote the coordinates of points
mentioned above. If now the function f(z) = u(z, s)-Ht>(s, 2) is given, say in the form
of two diagrams for curves m(z, z)=const. and i»(z, z) = const., we draw (using the
tables mentioned above) the curves

Y o= «[z,(1 - 12, ¢(1 - 1], V=v[z(l- 1), z,(0- M, -1ilil. (7.3)

Using these diagrams and those mentioned above and employing a differential ana-
lyzer (or simply an integrator) we compute the real part of (7.1),

the
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[ .<i
[ENz, 2zZy, Huljjzy{1l — t'), 1- /)]
i—1
— E 2z, 2y, N»[iZ,(1 — t1), isi.(1 — t2\\dt, (7.4)

and analogously its imaginary part.

1. Sometimes it is not sufficient to determine the values of (7.1) at a set of points
(wty,) which arc prescribed in advance. Then one can apply the following procedure
which was suggested to the author by Mr. Hans Kraft.

One prepares (once and for all) diagrams

Ei{z,z,h) = const.,, E{z,z,ty = const.,/, const. t7-5)

for a set of values ly——1, —1+a, —1+2a, *-- 1

Using these diagrams and the tables (described in method |, for every required
value of 2 we can easily determine the curve (7.3) and evaluate the real and imaginary
part of (7.1).

Remark. The procedure | can be performed by the use of punch card machines.
In this case instead of diagrams (7.2) it is necessary to prepare master cards.

The author should like to thank Professor George E. Hay for his exceedingly help-
ful advice and friendly criticism.
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THE LIFT OF A DELTA WING AT SUPERSONIC SPEEDS*

H. J. STEWART
California Institute of Technology

1. Introduction. The use of the two dimensional linearized theory of supersonic
flows in the solution of airfoil problems as introduced by Ackeretlhas been extremely
successful in solving these problems and the results have generally been completely
satisfactory for engineering purposes. The generalization of these results to the three
dimensional finite span problems has, however, progressed rather slowly due to math-
ematical complications. The flow near the tip of a rectangular wing was given (in-
correctly) by Schlichting.2The drag of a “delta” wing (a wing having an isosceles
triangle for its planform with the symmetric vertex pointing into the oncoming flow
as in Fig. 1) has been determined by Puckett.3These two flow patterns and many
other technically interesting finite span flow problems are particular cases of conical
flows. A conical flow is one for which the fluid properties (pressure, velocity, etc.)
are constant along each radial line emanat-

MACH CONE AT THE ing from the given origin. The concept of
a conical flow was given by Busemann* who
developed certain general techniques for
treating these flows and who applied the
method to several problems including
Schlichting’s problem.

The methods of analysis used by Buse-
mann have, however, proved to be rather
obscure, and it has been found difficult to
follow these methods in the solution of
additional conical flow problems, in par-
ticular the currently very interesting prob-
lem of the lift of a delta wing. A new

Fig. 1. Delta wing in a supersonic flow. method of treating these conical flow air-

foil problems which uses the well known
theory of conformal transformation has been devised. It is the purpose of the pres-
ent paper to discuss this method and to apply this method to the problem of the
lift of a delta wing. In this application it is only necessary to consider the case for
which the leading edges of the delta wing are within the Mach cone from the vertex.
The other case for which the leading edges are outside the Mach cone has already
been solved by Puckett.

In the present method no essential mathematical difference is found in the solution
of the two cases.

* Received May 21, 1946.

1J. Ackeret, Z.F.M., 16, 72 (1925).

5H. Schlichting, Luftfahrtforschung, 13, 320 (1936).

3A. J. Puckett, Aero. Sei. (To be published shortly).

4A. Busemann, Schriften der Deutschen Akademie fur Luftfahrtforschung, 7B, 105 (1943). Also
Luftfahrtforschung, 12, 210 (1935).
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2. General theory of conical flows. It is well known that the linearized theory of

steady supersonic flows is based on the Prandtl-Glauert equation,
a M2 dx d-P  d 0

— R — + — = , 1

dx2 2 ds2 1)

.where the undisturbed flow of Mach number M is taken to be parallel to the x axis.

Here, P may denote a velocity or acceleration potential, or one of the velocity compo-

nents u, v, w in rectangular Cartesian coordinates xty, z, or a property of the state

of this fluid such as pressure or enthalpy. It can be seen that the coordinate trans-

formation

) 172 R cos to
[m2- 1 2 52 WM -
y2+ z -1/2 2
1- (M-- 1 = [1- (A/2- 1) tan2w]- 12 (2)
mC X*

6 = tan-1 (y/z),

where R = (x2+y 2+ 3)1/2and w==tan 1[(y2hzi)*/i/*], transforms the Prandtl-G lauert
equation, Eqg. (1), into

al oo dp + dF + op 0 3
d> dr S | d- ®)
The surfaces on which 8 is constant are the meridional planes through the x axis;
the surfaces on which jxis constant are cones about the x axis; and the surfaces on
which r is constant are hyperboloids. It may also be noted that r=0 and m= @ on
the Mach cone through the origin. Both p and r are real within the Mach cone and
complex outside it. The harmonic solutions of Eq. (3) may be written in the form
Pov o (r 1 (P. @
It 71 k@ &) s \sin (md))
by the well known theory of the Laplace equation. Here, P ™and <» denote Legendre
functions of the first and second kind, respectively. By introducing the normal spheri-
cal coordinates as given in Eq. (2), Eq. (4) is seen to give the harmonic solutions of
the Prandtl-Glauert equation in spherical coordinates.

Busemann’s conical flows are included in the general solution of Eq. (4) as a special
case. For example, if P is a velocity potential, then n—1. On the other hand, if P
is one of the Cartesian velocity components (m, v, w), a property of the state of the
fluid such as the pressure or enthalpy, or the acceleration potential, then «=0. It
is the latter case which is of particular interest here, for P is then independent of r,
and Eq. (3) becomes

ap
(m2- 1) H aa%— 0. (5)

dn

It is apparent that this may be reduced to the Laplace equation in two dimen-
sions;* in fact, if

This result was first communicated to the author by Mr. W. D. Hayes.
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Eq. (5) becomes
d( dP\ dx
s—1Is ) -t = 0. (6)
ds\ ds) dd2

This is the normal form of the Laplace equation in two dimensional polar coordinates.
It is seen that s is a function only of n and is thus constant on any one of the cones for
which o is constant. The relations between 5and marc as follows:

\IM2—1tan ©

5= ... N T A e .
1+ \/l - (M2- 1) tan2w0
25
\QIMZ— l1tan @ = --—-mmmmmme )
1+ 52

It may further be noted that 5= 1 on the Mach cone through the origin.

Since the reduction to Eqg. (6) is possible, any of the quantities which P may
represent can be written as the real (or imaginary) part of an analytic function of
the complex variable f where

r = se'e- 9)

Furthermore, all the methods of treatment of such functions, in particular the method
of conformal transformation, may be used in the analysis of these quantities. If P is
the harmonic conjugate of P and

P + iP = P(f), (10)

the Cauchy-Riemann equations for these conjugate functions may be written

dpP P
S = emmee = ; — 1) -=--- >
ds da - ¢ )dy
P dp dp (12)
=s " = m2_ -
de ds dn

In the direct airfoil problem, the airfoil geometry is given, and if the 2 axis is
taken normal to the airfoil plane, the boundary conditions for determining the flow
are thus given in terms of the disturbance velocity component w. It is desired in this
case to compute the pressure distribution which may be easily expressed in terms of
the axial disturbance velocity component u. In the inverse airfoil problem, a pressure
distribution is defined, and it is desired that the airfoil shape be computed. In either
case the boundary condition is given in terms of one velocity component and another
velocity component gives the desired result. For a conical flow there are simple rela-
tions between the complex functions representing the various Cartesian velocity com-
ponents. The use of these relations is the essence of the present method of treatment
of conical flows. These relations between the complex functions corresponding to the
Cartesian disturbance velocity components u, v, w which will be written
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it+ in = U(f), -+ v = V(<) w + iiv - W (f), (12)

are essentially the vorticity relations.
The fundamental linearized relations governing the steady flow of a fluid at super-
sonic speeds are the vorticity relations

dv _ dw 13) dil _ dw 14) dII_ dv (1s)
dz  dy ds  dx dy dx’

and the linearized equation of continuity

dv  dw (M2 1dII "
— 4 - = - —n
dy dz ()1x (16)

If these are solvedsimultaneously, it iseasilyseen thateach of the velocitycompo-
nentsobeys thePrandtl-Glauertequation, Eqg. (1).For anyconical floweach of the
velocity components must be a function only of the coordinates n and 9. By means of
this fact, Eqgs. (13) to (16), respectively, may be written as follows:

, / dv o dw) ( dw ) dv\
— 1) lcos 0 sin 0 ------) = | cos 6 - |- sin d —)), 17)
\ d)i dii) \ dd dd
(li2—1)31- dw du ) du
= ii(ii- —1) cos 9 — sin 0— > (18)
VM- - 1 du dii dd
(ii- — 13/~ dv . dil du
— = ,u(ii2 — 1) sin0 -------j- cos 0 —t (19)
\IMZz- 1 di dii do
’ dil ( . av dww \
- \IM2- 1{i2- 1)32 sin 0 —m+ cos 0 I
au dii dii)
- é 6 dv - dw\ 20
cos sin 6 m—- ).
\ dd ddf
If Egs. (18) and (19) are combined, it is seen that
du on2- 1) s/2/ dv dw\
— = —..—.. ; lcosd ----—---- sin d ------- ). (21)
do \IM2- 1 V di d/i)
dii (n2—nlr2 1. dv dw\
— = — (sind ------- f aosd -—). (22)
dii \IM2—1 \ dii dri/
Furthermore, Egs. (20) and (22) show that
lit— 1/ dv dw) ( dv ) dw\
§5|n d X cosd )) = —(C(s9 sin 9 ----- ; (23)
du dii \ dd dd

If the derivatives with respect to ju are eliminated from Eqs. (17) and (23) by
means of the Cauchy-Riemann equations [cf. Eq. (11)] for v, w, vand w, these equa-
tions may be written as follows:
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dv 3w dv 3w
+ (si e hcosd— cos 0 sin 0 ) = 0, (24)
M \ 30 36 30 36
dv dv dv ) div\
i(- h cos 0 —sin 0 I - (25)
M 30 30 30)
If Eq. (25) is multiplied by i and added to Eq. (24), it is seen that
</ 3w 3V . 3W\
— §9in 0 b cos 6 — cos 0 — sin 6 ----- (26)
M d6 30 36,
Since V and W arc functions of the complex variable f, this may further be written
dw dW in sin 6 — cos 0
. (27)
~df= rff sin 0+ incos6
and, by the definition of s and Eq. (9),
dv .1 _Tdw
(28)

~da ~ 41+ r2 di
A similar treatment of Eqs. (21) and (22), V being eliminated by Eqgs. (17) and (27),

shows that
</U

~d|:~ ~

RIC

Fig. 2. Boundary conditions in the f plane.

w=0 on

w =

@+n Vin -

2f dw

(29)
I ~df"’

These two relations, Eqgs. (28) and (29), arc
the fundamental relations for the present
treatment of conical supersonic flow prob-
lems.

3. Exam
general techniques developed in the previous
section will now be used to compute the lift
of a delta wing at a small angle of attack
for the case in which the leading edges are
inside of the Mach cone (see Fig. 1). The z
axis is taken normal to the airfoil. The con-
ditions in the f plane are shown in Fig. 2.
Note that the airfoil cuts the f plane on the
imaginary axis. The boundary conditions for
determining the vertical velocity w are then

s = 1,
(30)

Wb = — Ua on the airfoil,

where U is the velocity of the mean flow and a is the angle of attack of the airfoil.
This boundary value problem can be solved by conformai transformation. First,

apply the transformation

(81)
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This maps the interior of the unit circle in the f plane into the entire fi plane with
the region Ref>0 corresponding to the region JmJi>0. This transformed plane is

imE,

JATW>)0 «iC,

Fig. 3. Boundary conditions in the plane.

shown in Fig. 3. The points at the wing tips, f = £ iso, are transformed into the points

di= = 1/k where
2sq

k = = \iM- — 1 tan 0. (32)
1+
Second, apply the transformation
- - (33)
va - ri)y(i -m
i.e.,
ii —sn(Ei), (34)

where the elliptic function has the modulus k. Then the region Iw fi>0 is mapped
into the rectangle having its corners at fa—*K, iK’£K where K and K' are the
complete elliptic integrals of the first kind having a modulus of k and k' where

le=vi - k2= (35)

By integrating around the slit from —1to 1in the plane, it is seen that the region
maps into the rectangle having corners at £«~2K+K, 2K£K-\-iK".

Now, the transformation given by Eq. (31) is double valued, i.e., two points in
the f plane correspond to each point in the fi plane. The fi plane must thus be con-
sidered as a two sheeted Riemann surface with one sheet corresponding to the interior
of the unit circle in the if plane and the other sheet corresponding to the exterior of
the unit circle in the f plane. Furthermore, the value of the downwash velocity w
must be equal and opposite at inverse points in the f plane. This permits the analytic
continuation of w throughout the entire f plane; in particular it is seen that w ——wo
on the exterior points corresponding to the airfoil. The two sheets in the fi plane
are connected through the slit from —1 to +1. A contour cutting this line passes
from the upper to the lower sheet or vice-versa. The sheet which corresponds to the
exterior region of the f plane is thus seen to be mapped into the rectangle having
corners at £2=K+2K, K+2K —iK'. The entire plane is mapped into a basic rec-
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tangle in the if2plane as shown in Fig. 4. As  has periods of 4K, 2iK" [see Eq. (34)]"
in j'o this pattern is repeated throughout the ifs plane.

The function d~W/d"2 (but not W itself) must be doubly periodic in the plane
with periods 4A and 2iK', the first corresponding to a loop around the points fi= + 1
and the second corresponding to a loop around the points fi=1, \/k or —1, —I/k.
The only singularities of W or dW/dfs must be at the points corresponding to the air-
foil leading edges, i.e., at the points conjugate to iK'tK. Finally dW/dfa must be
pure imaginary on the lines Im{t=nK' and Re£2=K+2nK (n being any integer).
All of these conditions are satisfied by the Jacobian elliptic function

dW—'def 36
S © 1Dedzn (36)

where n is any positive integer and D is a real constant. If this is integrated it is seen
that for «>0, W has a pole of order 2n—1 at the wing tips. The cases for w>Ican
then be discarded as the singularity at the wing tips is seen to correspond to a source-
sink complex which has an infinite total lift. Furthermore, the case for n =0 may be
discarded as [see Eq. (29)] it requires that U(f) have a logarithmic singularity on the
Mach cone. The appropriate solution is thus

W
= iDcd”2. 37)

The constant D may be evaluated from the fact that

YiK dW
"o (38)

If this integration is carried out, it is seen that

k-wo
E (kO

(39)

where E(k') is the complete elliptic integral of the second kind having a modulus k'
as given by Eq. (35).

If the variable is eliminated from Eq. (37) by means of Eq. (31) and (33), it is
seen that
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dW 2vd (i +n-
) (40)
~dF KE(K’)
Thus, from Eq. (29),
dd 4\Wb +
m + N 41)
Since U=10 at f =1, the integral of Eq.. (41) is
kvio f 1
U = (42)
1/2
(r2+
On the top side of the airfoil f =hj where —\o< I’'<."Q so
fewo 1+ V
n—— (43)

E(k')\/An - 1 [M (1_ 11/2

This result may be considerably simplified if we introduce [from Eq. (8) and (30)]
k=\/M 2— 1tan wO

(44)
W = — Ua
and
tan w
tan wo
Equation (43) then becomes
4t
an wo (45)
E(k)V/IT - t-

The slope of the lift curve dCi./da is given by the mean value of A/a(u/U) over
the surface of the wing; thus

dCi. == 4_ 1 “° sec2wWw

- (46)
da B(K)JO VI - I-
and, by Eq. (44),
dc;j. 2¢ tan wo
(47)
da E{V)

In the limit for which wOor 50—0, k'—>\; so E{k")*>\. For this case which was given
by Jones5

*R. T. Jones, N.A.C.A., Technical Note 1032 (1945).
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ke \Im2- 1 lan co.

Fig. 5. Lift of a delta wing.

Fig. 6. dCiJda. vs. M for a delta wing with oi =10°.

dCL
da = 2n tan oo (48)
On the other limit for which k'—0; so E(k’)*nr'/2. For this case
dcCi.
da T uMi- 1 o

lhis limit, the same as the two dimensional solution, had previously been obtained
by Puckett.

It may further be noted that the quantity \\/AP —1 dCi/da is a function only
of the parameter k=\/AP —1 tan w0 This result is shown graphically in Fig. 5, and

the slope of the lift curve for a particular case, wo=10° is shown as a function of
Mach number in Fig. 6.
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LINEARIZED SUPERSONIC FLOWS WITH AXIAL SYMMETRY™*

BY

WALLACE D. HAYES**
California Institute of Technology

1. Introduction. The study of spatial linearized supersonic flow may he aided by
the study of some simple fundamental flows with axial symmetry. Through the prin-
ciple of superposition, these flows may be combined to give more general flows about
various objects and about lifting systems. It is the purpose of this paper to express the
equations of linearized supersonic flow in a system of conical coordinates, to develop
a theory for fundamental flows with axial symmetry, and to describe examples of
such flows and of their combination by superposition.

Various examples of the fundamental equations and solutions here described will
be given in later papers, together with the development of some concepts useful in
this field.

2. The velocity potential. Steady-state compressible irrotational flow can be de-
scribed by a velocity potential pwhose gradient is the velocity vector. Under the as-
sumption that the velocity deviations from a uniform supersonic flow of the Mach
number M are small, the differential equation for this potential takes the linear
form1'2

o — 4>r—H-————é<1>M— {Mz— =0 (1)

in cylindrical coordinates.

The fundamental uniform flow is given by the potential <0=Vz where V is the
velocity corresponding to the Mach number M. Equation (1) will be considered as
yielding velocity deviations which must be added to the velocity of the fundamental
flow to describe the net flow.

A new coordinate is introduced to replace the coordinate r:

t = (r/z) (2

This quantity is the ratio of the tangents of the polar angle and of the Mach angle.
Equation (1) with reliminated and t introduced becomes

1 —t2<FitH 1— <-)----/—24>6E + 295z — Z<plz = 0. 3)
t
By separation of variables a solution of the form

* Received March 25, 1946.

** This paper was prepared while the writer was employed by the Lockheed Aircraft Corporation.

1R. Sauer, Theoretische Einfiihrung in die Gasdynamik, Springer, Berlin, 1943. Reprinted by Ed-
wards Bros., Ann Arbor, 1945.

5G. I|. Taylor, and J. W. Maccoll, The mechanics of compressible fluids, in Durand, Aerodynamic
theory, vol. 3, Berlin, 1935.
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€= zn<H(f, 6) (4a)
or

4= 7"sin (md + 0)T(I) (4b)

is found. The function  satisfies the equation
1 1
Q- 4+ =@+ 2(n- DT, - n(n - b+ — 6B=0 (5)

and may be called the velocity potential for generalized conical flow. Ifw= 1, the
function <>describes conical flow. The function T satisfies the equation

1 1
T- r)Tlt+ - (1L+ 2(- Dr-)Tt- = (m*+ n{n - Dt-)T = 0. (6)

Superposition of solutions of the type of (4a), (4b) will give a general solution.
The velocity components are

V&P- 1
U = mmmmmmmmmmeeen £ (73)
in the radial direction,
\IM2- 1
I 45 (7b)
in the azimuthal direction, and
i
w= 4 = (7¢)

in the axial direction. The pressure in linearized supersonic flow is given in terms of
the velocity components by

P=- pU7« H-—- — ) (8a)

CP= -2 (—+ —momeemm ). (80)

The part of Egs. (8), (8) in u and v is not necessary if w is of the same magnitude
as « and a. In many important cases, however, w2 a2is of the same magnitude as Vw
and Egs. (8a), (80) must be used in its complete form. In these cases the validity of
the solution should be checked.

The singularity of (5) or (6) at /= +1 corresponds to the two Mach cones ex-
tending from the origin in the three dimensional flow. Various ranges of t correspond
to various regions of flow, as shown in the following table.
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Raille of t Region of Flow
0£/<1 inside downstream cone
-1 </go inside upstream cone
1</ < )
outside both cones
- W</< -]
3. Solutions of the differential equation (6). The parameter n is restricted to in-
tegers and the parameter m to non-negative integers. The differential equation for T,
Eq. (6), has regular singularities of exponents (+tn, —in) at /=0, (0, n+\) at

t==x1, and (—n, 1—n) at t= ». The solutions about the origin are

—it+ m n+ in+ 1
T = /=n 1+ ni; - (9a)
/"'(l /) iit - M+ 1 il m+ 2 1+ 9b
= —/- . = e ; m
2 A
m n in+ 1
T=t-"R ;o 1—in; t- (10a)

i—in+1 it—in+ 2 .
( - ; i 1- in; t- (10b)

where F denotes the hypergcometric function. The solution of negative exponent,
Egs. (10a), (10b) is not well defined.

It is of considerably more value to express the solutions about t- =1, since then
both solutions are well defined and two distinct types of solution may be distin-
guished. One type of solution, designated as type 1, is the solution of zero exponent
at t2= 1and is real throughout the range of /. The resulting solution for O has no singu-
larity on the Mach cones. The other type of solution, designated as type II, is the
solution of exponent h+ | at t-= 1and is real only for t-< 1 or only for t-> 1. The re-
sulting solution for <pis defined only within the Mach cones or only outside the Mach
cones. These solutions may be expressed as follows:

it + in n+m+ 1
) T=1"F Coon+ - 1- - (11a)

[} in+ 1 .
=r nF «+ i 1- i1 (lib)

in+ in+ 1 it-m+ 2

,n+|;1-t0 (12a)
2 2

-in+1 n—in+ 2
i'"ii - t'y'"HI ;]l+ A; 1 - A (12b)

H) T=/"1- t-'r+F
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Three special cases are distinguished according to the relative values of n and m:

case A: —a&<n5—m-—1,
case B: —mgn~ m—1,
case C: mEn<w»

The distribution of these cases for small values of m and n is shown in the table:

-3 -2 -1 0 1 2
m
0 A A A C C C
1 A A B B Cc C
2 A B B B B C
3 n n B B B B

From a consideration of Eqgs. (9) to (12) the forms of the two types of solutions
in the various cases may be found. For all solutions except solutions I-A (i.e., solutions
of type I in case A) and solutions I1-C, the form is explicit in terms of a polynomial
in t2or in (1—/2. Solutions I-A and II-C have logarithmic singularities at (=0 and
arc discussed later. The polynomial forms are expressed as follows:

. Order of P(t'-) Equation for
Solutions Form whichever is integral of Calculation
I-A logarithmic
11-A /"1 -1 I»+iP (i3 ) (—n —m —1) or J(— —m —2) (9b) or (12a)
1-B I~mP (%) 1(«+ ;«) or 1(«+ w—1) (10a) or (lib)
11-B r» (i -p)»+Sp(id {(—+rn—1) or %—n+ nt—2) (10b) or (12b)
I-C }(n—m) or I(n —m —1) (9a) or (1la)
11-C logarithmic

There is a connection between the solutions of Eq. (6) and the Legendre functions
with the same values of n and mi except that —n —1is used when n is negative. How-
ever, since Legendre functions are customarily defined only for ms n or tnf£n —1,
respectively, they are of assistance here only in cases A and C. The polynomial solu-
tions are

I-C) T
11-A)

- Q"a>:[ - r)_1, (13a)
L - 9ni2p,i[(l - F)“*]e (13b)

These solutions are most easily obtained by transforming Eq. (1) into Laplace’s equa-
tion by introducing the variable iz/y/AP—1.

The polynomial solutions may be obtained in another form from an expression
given by A. R. Forsyth,3and the law for differentiating the hypergeometric functions.
When n is not positive, these solutions are

3A. R. Forsyth, A treatise on differential equations, 6th ed., Macmillan, Lontlon, 1933, p. 235.
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d~" _ I
1) T="-"e ——  [@+ \/1 - 2)-"+"+ (1- \/l - 2-" *], (14)
d~n
1) T=2"—— - 10+ \/l - 2—Tm- (1 - \/l - 2Z-"+"j, (15)
rf(2)
and when «+ 1is not negative,
2%
1) T - 2+ni(l - 22)-°+) [(L + v/l - I')»'+i+ s _ (i _ VT _ I*)«+*>»], (16)
«@)"
(fe+ 1
mnm T=2"( - 22)"+![§1 + \/l - 2)Mtlim + @- /- 2"+, 17)
(22) "+1
4. Logarithmic solutions. The logarithmic solutions I-A and I11-C are most easily
expressed in terms of the Legendre functions, as in Eqs. (13a), (13b). They are
I-A) T= (1-2Qn " _1[(I-2)-}, (18a)
11-C) T=@Q- t2nnQm[Q1 - (18b)

Since the validity ofEqgs.(14) to (17) does not depend upon m being an integer,
and since an appropriatesolution of the form of these equations vanishes as a log-
arithmic solution is approached, the logarithmic solutions may also be obtained by

differentiating such solutions with respectto m. The logarithmic solutions in this form
are

i-a) t = tHm [(i+Vv r=1o04g (+ %rnr7)
ti(t-) ”
+ (1- VT - 22-"T"log (1 - \/l - 2], (19)
I-c)y T = 2+"(1 - @+I(Z2:1 [(L+ v 1- 2™ ITmlog (1 + \/l - 2
+ (i - \ITAr79n+i:Fmlog (I - VT~=n?)J. (20
5. Generating equations. The fundamental equation, Eq. (1), expressed in Car-

tesian coordinates is invariant under differentiation with respect to any of these co-
ordinates. Solutions of thetype of Eq. (4b) expressed in Cartesian coordinates and
differentiated withrespect to these coordinates are still solutions of Egs. (1) and (3).
This fact permits a given solution of parameters n and m to yield solutions of parame-
ters n—1and m, m+1, or m—1:

d

(21a)
m d

T(h- Lm+ )= —T- Tt= - (21b)
m d

T(h- L,m- 1) = N T+ T, =+ a (t+mT). (21c)

The procedures yielding these new solutions can be considered procedures of super-
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position; for example, one solution superposed on its negative an infinitesimal dis-
tance downstream yields the new solution given by Eq. (21a)

These equations are not to be considered recurrence relations, as no system has
been established for specifying solutions with respect to the multiplicative arbitrary
constant.

In a similar manner solutions with the parameter n increased by 1 may be ob-
tained by reversing Egs. (21a), (21b), and (21c) with suitable integrations.

6. Integral relation. An integral relation connecting two solutions whose parame-
ters differ in value may be obtained either from the corresponding relation for the
Legendre functions or directly from Eq. (6). If T\ denotes a solution corresponding
to «i and tiii and T2a solution corresponding to n2and m2 the relation is

b
I-1(L - [2~H"i+» 271771

+ l- wl+ no+ 1) T o0 - 12-He+ n29riT idi

Ja
a , ) /7 dTi ny d72\)
- * "oy " i
(\ dt dt)
+ (»1 - HAFAl - /9-iVI+n+D)rir2l (22)

Setting tii —Hi or AN = ;»2 we obtain simpler equations as special cases which may be
used to obtain orthogonality' relations between solutions.

7. Two-dimensional cross-flow. The solutions of type | for which >w=|m| are
given byr T =/". The corresponding solutions for €in cylindrical coordinates are

&— 1" sin (|ii| 6 0).

These solutions give two-dimensional cross-flow because of the fact that 2 does not
appear. This cross-flow, as a result of the linearizing assumptions, appears as an in-
compressible flow.

8. Conical flow. The solutions of either ty'pe for which n= 1 give solutions of
conical flow, of which only those of ty'pe Il are here treated. Since the exponent of
these solutions at /2= 1is 3/2, both the potential and the velocity vanish on the Mach
cone. The first few solutions are:

w =0) V | —t-—tanh-1-y/j —t2,

tn —1) /~N/i—t2—t tanh-1-y/l —
in=2) [-21-1232

m = 3) /-31-1232

The flowr about an infinitesimal circular cone at zero incidence is given by the first
solution (I, 1, 0), the solution of type Il with «=1and m =0. The flowr about the
same cone at a small angle of attack is obtained by superposing solutions (II, 1, 1)
and (I, 1, 1) with appropriate constants on the (Il, 1, 0) solution. A standard treat-
ment of this case wall be found on pp. 46 to 49 of Sauer’s book.1

9. Infinitesimal horseshoe vortices. An infinitesimal horseshoe vortex can be
represented by' a semi-infinite line dipole in the same manner as a planar vortex
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system can be represented by a planar dipole system. Thus a lifting element and other
lifting systems can be represented by solutions of type Il with m—1, as shown in the
following table.

Solution Semi-Infinite Line Designation in Terms of
Dipole of Strength Lifting Properties
(I, -1, 1): r>(i-¢H~5 Constant “Lifting element”
(11,0,1): re(l-p)+=* Proportional to s “Lifting line”
(i, 1, 1): r ‘(1—*)+l—tanh-* (1-12+i Proportional to 3J “Lifting infinitesimal triangle”
The “lifting element” solution, since the potential has exponent —| and the veloci-

ties —@mat /2= 1, has a troublesome singularity on the Mach cones. A simpler sin-
gularity has the “lifting line” solution, whose potential vanishes and whose velocities
have exponent at t2=1. When these solutions are superposed to give lifting sys-
tems of finite dimension, the singularity in the velocities usually disappears. The third
solution is the same as the one which gives the lift on an inclined circular cone. Ex-
amples of the superposition of such solutions to form a lifting system will be given in
a later paper.

10. The acceleration potential. Since the axial velocity component w is a deriva-
tive of the velocity potential in Cartesian coordinates, it satisfies the same equations,
Eqgs. (1) to (6), as does the velocity potential. The acceleration potential, whose fun-
damental theory will be found in a paper by L. Prandtl,4equals —p/p for linearized
flow, and also equals Vw-\-|(m3+ v2) from Eq. (8a). Hence the approximate accelera-
tion potential defined by i*"= Vw satisfies Eqs. (1) to (6). The relation of this quantity
to the velocity potential for a given fundamental flows is of the type which leads to
Eq. (21a), and hence the corresponding acceleration potential is given by a solution
with n decreased by 1. It is important to note that this does not give the true linear-
ized acceleration potential where id-fl-t:2is not of smaller magnitude than Vw. Thus
the two-dimensional cross-flow described above has no approximate acceleration po-
tential, and the acceleration, potential is given incorrectly in the vicinity of the axis
for other flows. However, the true acceleration potential may not itself be superposed,
and often the difference between the approximate and true linearized acceleration po-
tential disappears under superposition.

The “lifting element,” “lifting line,” and * lifting infinitesimal triangle” have ap-
proximate acceleration potential solutions (I, —2, 1), (1l, —1, 1), and (II, 0, 1),
respectively. With conical flow, the approximate acceleration potential is a function
only of t and 9 and can be shown to satisfy Laplace’s equation in two dimensions.

*L. Prandtl, Théorie des Flugseuglragfliigels in zusammendriickbarem Medium, Luftfahrtforschung,
13, 313 (1936).



262

THE OPENING OF A GRIFFITH CRACK UNDER
INTERNAL PRESSURE*

BY
I. N. SNEDDON (University of Glasgow) and H. A. ELLIOTT (University of Bristol)

1. The determination of the distribution of stress in the neighbourhood of a
crack in an elastic body is of importance in the discussion of certain properties of the
solid state. The theory of cracks in a two-dimensional elastic medium was first de-
veloped by Griffithlwho succeeded in solving the equations of elastic equilibrium in
two dimensions for a space bounded by two concentric coaxial ellipses; by considering
the inner ellipse to be of zero eccentricity and by assuming that the major axis of the
outer ellipse was very large Griffith then derived the solution corresponding to a very
thin crack in the interor of an infinite elastic solid. Because of the nature of the co-
ordinate system employed by Griffith the expressions he derives for the components
of stress in the vicinity of the crack do not lend themselves easily to computation.
An alternative method of determining the distribution of stress in the neighbourhood
of a Griffith crack was given recently by one of us2making use of a complex stress-
function stated by W estergaard.3This method suffers from the disadvantage that the
W estergaard stress-function refers only to the case in which the Griffith crack is
opened under the action of a uniform internal pressure; the stress-function correspond-
ing to a variable internal pressure does not appear to be known.

In the present note we discuss the distribution of stress in the neighbourhood of a
Griffith crack which is subject to an internal pressure, which may vary along the
length of the crack, by considering the corresponding boundary value problem for a
semi-infinite two-dimensional medium. The analysis is the exact analogue of that for
the three-dimensional “circular” cracks developed in the previous paper2except that
now we employ a Fourier cosine transform method in place of the Hankel transform
method used there. A method is given for determining the shape of the crack resulting
from the application of a variable internal pressure to a very thin crevice in the in-
terior of an elastic solid, and for determining the distribution of stress throughout the
solid. The converse problem of determining the distribution of pressure necessary to
open a crevice to a crack of prescribed shape is also considered. As an example of the
use of the method the expressions for the components of stress, due to the opening
of a crack under a uniform pressure, are derived and are found to be in agreement
with those found in the earlier paper.2

2. We consider the distribution of stress in the interior of an infinite two-dimen-
sional elastic medium when a very thin internal crack —c$y$c, x = 0is opened un-
der the action of a pressure which may be considered to vary in magnitude along the
length of the crack. For simplicity we shall consider the symmetrical case in which the
applied pressure is a function of |y| but the analysis may easily be extended to the

* Received March 12, 1946.

1A. A. Griffith, Phil. Trans. (A) 221, 163 (1921).

2 1. N. Sneddon, Proc. Roy. Soc. (A) (in the press).
3H. M. Westergaard, J. Appl. Mech. 6, A49 (1939).
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more general case in which there is no such symmetry. The stress in such a medium
may be described by three components of stress ax, tv and rxv\ the corresponding
components of the displacement vector will be denoted by uxand uy. The differential
equations determining the stress-components are4

derx drzv drzy d<rv

-+~ =0 ¢ = (2

0X ay 0X oy
The boundary conditions to be satisfied are that all the components of stress and of
the displacement vector must tend to zero as .r2+y 2tends to infinity, and that

TX,, = O, K= — p(y)r (3)
when x=0and —c”*y”"c.

It is obvious from the symmetry about the axis.v =0 that the problem of determin-
ing the distribution of stress in the neighbourhood of the crevice is equivalent to that
of determining the stress in the semi-infinite elastic medium *S:0 when the boundary
x =0 is subjected to the following conditions:

() Txy—0, for all values ofy,

(i) .= -p(y), W\ gc,

uz=0 \y\rc-

From the symmetry about the second axis y= 0 we may take as solutions of the

elastic equations (1) and (2) the expressions5

2 r@ i q

x=— | <?(p)(1+ px)e c0S , 4
il TP+ p ) pydp 4)
2

<, = — | <2p)(1 — px)e~bxcos pydp, (5)
x Jo
2X ”

tzv = — | p4>(p)e-rz sin pydp. (6)
xJ0

These expressions satisfy the equations of equilibrium and theboundarycondition (i)
above; the function <?(p) is determined from the set of conditions (ii). The compo-
nents of the displacement vector are similarly found to be

21 + r” i cos
17 = - (_ al I <t{pepl{2(1 —o) + px) Py dp, (7
tE Jo P
= 2l + <A|r 4>(p)e 'wa{(l — 2«) - px}> sin py dp. (8)
tE Jo P
When .r=0, equations (4) and (7) reduce to
2r
— 1 _$(p) COS pydp, (9)
Xj O
41 —a) g~ cos py
UK = oo - 7 i) l<lp. (10)
Tt

0 P
4A. F. H. Love, The mathematical theory of elasticity, 4th ed., Cambridge, 1934, p. 208.
51. N. Sneddon, Proc. Cambridge Phil. Soc. 40, 229 (1944).
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If we insert the boundary conditions (ii) into Eqgs. (9) and (10) and make the substitu-
tions

P = s/f, 3= v, g(v) = - ~ o P(ve), = (1m
we obtain a pair of “dual” integral equations

df CFfaJ-inifad¢ = g(v), x <1
0
(12)

f  FE)o-irdnde = o, g>1

JO
for the determination of the function F(£). Once F(%) has been found, <p>p) can be
written down and the components of stress calculated by means of Eqs. (4), (5)
and (6).

3. The dual integral equations (12) are a special case of a pair of equations con-

sidered by Busbridge;6the solution may be obtained by substituting a =1, v——1/2
in the general solution given in the paper.6In this we obtain

R = M t)fy'Iv - yiu'g(y)dy

+ $f n>(1l—u-)ll-du f g(yii)y:/-Ji("y)d} (13)
do do

Thus if the pressure p(y) is given by a Taylor series of the form

P(y) = p022 a"(_) ’ (14)
n-0 \c/
convergent for then the corresponding expression for i(p) is readily found
to be
A r(ic + 1. )
$(p) JpocV'VE -— trrrb a,,<J0(cp) + @l y"+-Ji{cpy)dy=> . (15)
<ir(ie T 2) » )
Substituting for <p(p) from Eq. (15) into Eq. (10) and making use of the results7
1
I .Jo(cp) cos pydp = O0< v<ec
40 (cp) pyap o —y-
c
= O<y<c

G

/ p./,(rp) cos pydp
«

we find that the normal component of the displacement along the crack is given by w,
where

2<i - ¢ ow £ w t . +om - [ S (R (16)

PP s*+2) we:- . W 5 («Dm/

I. W. Busbridge, Proc. London Math. Soc. (2) 44, 115 (1938).
G. N. Watson, The theory of Bessel functions, 2nd ed., Cambridge, 1944, p. 405.
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For the case of a uniform pressure pu we take au= I, «,= (), n}z\ and find

2(1 - <)p0
YV

-y 17
E y~ 17

If we write
b —2(1 — <r-)pac/E,

Eqg. (17) reduces to the form

y- w

s

which shows that the effect of the uniform pressure is to widen the crevice into an
elliptic crack.

4. It is also of interest to determine what distribution of pressure will produce a
crack of prescribed shape. In this case we assume that the value of the normal dis-
placement uzis known all along the y-axis; we have

0,
0.

iw(y), yE\lc\, x
uz= <

) y~lcl a

Inverting Eq. (10) by the Fourier cosine rule and substituting this value for ux we
have
E rec

W :
20 —a) Jo

w(y) cos pydy. (18)

W ith this value of $(p) in Egs. (4), (5) and (6) we obtain expressions for the compo-
nents of stress in the interior of the elastic solid.
For example if we take

(i-f).
then, from Eq. (18) Et .
sin ¢p
_ cos ¢ (19)
aa 1 —a-)ep\ op p)l

Substituting from (19) into Eq. (9) ave obtain for the normal component of the stress
along x = 0,

. . u
SIn U sIn Y

2Et * C
1w [ 7 S du (20)
v — <) cJo «
Now
COS gX — COS pPX P-
dx = log

/.

so that Eq. (20) reduces to



266 I. N. SNEDDON AND II. A. ELLIOTT (Vol. 1V, No. 3

giving thenormal component of stress along the crack. This stress is negative when
y =0but becomes positive for a value of y between Oand ¢, so that if a crack of this
shape is to be maintained the applied stress must be tensile (and very large) near the
edges y= *c of the crack.

S. Expressions for the potential functions m(z), il(z) of Stevenson corresponding
to this problem can easily be deduced from the analysis of Section 3. It was shown by
Stevenson,8that if we write

0 = €+ a\ $ = ax — v+ 2tVxV D —Ux+ iuv

then the components of the stress and the displacement can be expressed in terms of
two “potential” functions w(z), 2(z) by means of the equations

IT & i . = 3
D = e £{(3- 4<ni2@z) - z0'(z) - «'(*)}
(22)
20 = Q'(z) +TI'(2)

- 2> = 720"(2) + «"(2)

in the absence of body forces.
It follows from Eqgs. (4) to (8) that the stresses and the components of the dis-
placement vector may be derived from the potential functions

(23)
where $(p) is given by Eq. (15) in the case where the applied internal pressure is
given by Eq. (14).

6. We now consider the distribution of stress in the solid when the crevice
~c™y”™c, v=0is opened up by the action of a uniform pressure po. Taking aO=1,

a, =0, n>0, in Eq. (15) we obtain for $(p) the expression

. 1 cop
$(p) = —inPoC'p\Jo(cp) H I " z-J\{z)dz

0

and, by a well-known recurrence relation,

(24)

Substituting from Eq. (24) into (4), (5) and (6) we obtain the equations

(25)
0

*A. C. Stevenson, Phil. Mag., (7).34, 766 (1943).
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‘t(or —Ox) = pocxdj pc pz cos pyJi(cp)dp, (26)
0

« T2v - — .poCXdI pat»r Sin pyji(cp)dp 27)
0
for the determination of the components of stress.
N°w,

J pc~E3\{cp)dp = c(c2 _|§2)“32,
0

so that writing
Z= X+ iy —re' ic = rici6i Z+ ic- rkie (28)

we obtain the formula

1 Ji(cp)pe~I=(cos — i sin dp = . g—i3/2 (01+2) t (29)
o (cp)pe~I(cos py py)dp (1123

In a similar way we can establish that
/ li(cp)e_'ll(cos py — isinpv)dp = — i 1 ---coommeee- ei(e J . (30)
[o} cl

Equating real and imaginary parts in Eqgs. (29) and (30) and substituting into (25),
(26), and (27) we obtain the expressions

T = cos (O —-0 —-i) — 1>,
{<Tx+ av) = pa (rr3p3 ( i62
rcos0/ c\3 3 ) (1)
(,(Cy - ) - PO“"C-"“(\-/-i-r-_:i} Ccos -2(0| + O))),

r cos 0/ cZ\J32_ 3

SIN - (0i + o0s)
r\r-J 2

tXxy — — pa—

\
for the components of stress. Equations (31) are agreement with those derived in the
previous paper;2in making the comparison it should be noted that the angles O, O, @
of this note are the complements of the angles denoted by these symbols in the paper

quoted.
It follows from Eqs. (23) that these equations are a consequence of the Stevenson

equations (22) if we write

1c) = 2paWc- + s2 w'(s) = - 2/>3c2+ 22-K
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ANALYSIS OF SHEAR LAG IN BOX BEAMS BY THE
PRINCIPLE OF MINIMUM POTENTIAL ENERGY™*

BY

ERIC REISSNER.
Massachusetts Institute of Technology

1. Introduction. Let us consider a thin-walled box beam of web height 2h and
cover sheet width 2w which is bent in such a way that one of the cover sheets is in
tension while the opposite cover sheet is in compression (Fig. 1). In elementary beam
theory the assumption is made that the normal stress in the cover sheets docs not

IICI’V

\- h—h-h -]

M+ iM . dx

V+ 4 d x
d

N
X
Fig. 1. Sketch of spanwisc element of box beam with doubly symmetric cross section.

vary in the direction across the sheet. Because of the shear deformability of the cover
sheets this assumption of elementary beam theory is often seriously in error for wide
beams. In aeronautical engineering this effect is known under the name of shear lag.

In recent papers,12 shear lag in box beams has been analyzed by an application

* Received Feb. 22, 1946.

1E. Reissner, Least work solutions of shear lag problems. Journal of the Aeronautical Sciences, 8, 284-
291 (1941).
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of the theorem of least work which is the basic minimum principle for the stresses.
The present paper contains an application to the problem of shear lag of the theorem
of minimum potential energy, which is the basic minimum principle for the strains.3
It is shown that application of the theorem of minimum potential energy to the pres-
ent problem leads to simpler and more general results than the application of the
theorem of least work. While the least-work method furnishes the stresses in box
beams with no cut-outs, application of the minimum-potential-encrgy method fur-
nishes, in a simpler manner, the stresses in beams without or with cut-outs. It also
furnishes beam deflections, and is equally convenient for beams supported in stati-
cally determinate or in statically indeterminate manner.

Application, in the manner described below, of the minimum-potcntial-energy
principle to the problem of bending of thin-walled box beams leads to a differential
equation for the beam deflection which is a generalization of the relation 2' = —M/E|;
this differential equation contains an additional term proportional to the fourth de-
rivative of 2 which takes into account the shear deformability of the cover sheets.
As the order of ;he differential equation in this theory is higher than the order of the
differential equation of elementary beam theory, boundary conditions appear in addi-
tion to those of elementary beam theory. These additional boundary conditions arc
different for beams with cut outs and for beams without cut outs.

The manner of application of the results obtained in the present paper is shown by
solving explicitly the following four examples.

1. Simply supported beam. Load distributed according to a cosine law.

2. Cantilever beam with uniform load distribution. Cover sheets fixed at the sup-

port.
3. Cantilever beam with uniform load distribution. Cover sheets not fixed at the
support.

4. Beam with both ends built in. Uniform load distribution.

For the sake of simplicity, it is assumed in what follows that the cross sections
of the beams arc rectangular and doubly symmetrical. It also is assumed that there
is no continuous variation of cross-sectional properties.

The author believes that the way in which the principle of minimum potential
energy is here applied to the problem of shear lag will prove useful in other problems
of structural mechanics. As an example of such future application, the theory for
combined torsion and bending of beams with open or closed cross sections is men-
tioned.

2. Formulation and solution of problem. In the following, we analyze a box beam
of doubly symmetrical rectangular cross section, composed of cover sheets, sidewebs
and flanges. A given distribution of loads is applied to the sidewebs, acting normal
to the plane of the cover sheets (Fig. 1). To this load distribution there corresponds a
distribution of bending moments M(x). The spanwise coordinate being x, lety be the
coordinate in the plane of the cover sheets perpendicular to the x direction, and z(x)
the deflection of the neutral axis of the beam.

5F. B. Hildebrand and E. Reissner, Least work analysis of the problem of shear lag in box beams,
N.A.C.A. Technical Note No. 893 (1943).

3For a formulation of these theorems see for instance 1 S. Sokolnikoff and R. I). Specht, Mathe-
matical theory of elasticity, McGraw-Hill Book Co., Inc., New York, 1946, pp. 275-287.
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The potential energy of the bent beam may be considered as composed of three
parts. The first part is the potential energy of the load system. This may be written
in the form

dx
n / MOXS—  dx, 1)
dx-

the integral being extended over the entire length of the beam.4 The second part is
the strain energy of sidewebs and flanges! This may be written in the form

—_—1 T /d"zy
= e (i) ax @
the quantity denoting the principal moment of inertia of the two sidewebs and
flanges.
The third part is the strain energy of the two cover sheets. If it is assumed that
the normal strains in the chordwise direction in the sheets may be neglected, as dis-

cussed in the reference given in Footnote 1, then the strain energy of the two sheets
is given by the integral

H. =y f\J 2t[Eex + Gy'Jdxdy, (3)

where the quantity t denotes the cover sheet thickness, and where E and G are the
effective moduli of elasticity and rigidity. Spanwise normal strain exand shear strain
7 are then expressed in terms of the spanwise sheet displacement u as follows
du du
«* = — 7= —nm 4)

dx’ dy
The theorem of minimum potential energy states that the total potential energy
ir=n,+ nw+ n, (5)

becomes a minimum for the correct displacement functions u and z, if only such dis-
placement functions are compared which satisfy all conditions of support and con-
tinuity imposed on the displacements.

Direct application of this condition by means of the calculus of variations leads
to a partial differential equation for u and to a complete system of boundary condi-
tions. In what follows, an ordinary differential equation for the beam deflection z
and boundary conditions for it are obtained instead. This isdone by making a suitable
approximation for the sheet displacements u and by applying the rules of the calcula-
of variations to the resultant approximate expression for the potential energy func-
tion.

A reasonable assumption for the spanwise sheet displacements is

«* v = ia[gq.(g_ 5)%&75 . ©)

*Eq. (1) implies that the beam is supported in such a manner that the end forces and moments can
do no work. This restriction shortens the developments slightly.
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The second term on the right of Eq. (6) represents the correction due to shear lag.
Instead of the vanishing chordwise variation of the sheet displacements of elementary
beam theory, we now assume a parabolic variation. The relative magnitude of the
function U is a measure for the magnitude of the shear lag effect. The form of the
correction is such that continuity of the displacements along the flanges, that is along
y = =-w, is preserved.

Denoting differentiation with respect to £ by primes, we obtain the following ex-
pressions for the strains in the sheets from Eqgs. (6) and (4):

[EEN

= + i *"'\ ﬁl\/l )

2h y
7=+ —— U (8)
w w
On the basis of Eqgs. (7) and (8) the following expression for the strain energy of the

sheets is obtained:

- - ©)
- e+ ( M +c[~ 7
In Eq. (9) the integration with respect to y is carried out. Setting
I, = 4wtll2, I = Is+ In; (10)
we have
I f f 8 4 G 4 )
s = - EIA(z'y-+r_(Ur+-z"U’"+ T — 1/4dx. (11)
2] \ la 3 jh3w- )

Substituting Eqgs. (11), (]2) and (1) into Eq. (5), we obtain the following expression
for the potential energy of the system

1= jy £+ AVt

f 1 _ . (8 4 G 4 )
+j - EI' {W +- Z"u"+ - ~ ujdx. (12)

Differential equations and boundary conditions for s and U are obtained by

making
511 = 0. (13)

Thus, with Xi and x« denoting the ends of the interval of integration,
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As 5s" and 5U are arbitrary in the interior of the interval (xi, xi) the terms multiply-
ing them must vanish. This gives the following two differential equations

2 1, M
"+ U + —= 0, (15)
5 1 El
5 G U 5
EIS . =0 (16)
2 E wi+ 4

The integrated portion of Eq. (14) defines the boundary and transition conditions
for the function U. At a section where the sheet is fixed,bU —O and

u=>~0. a7
At a section where the sheet is not fixed and consequently bU is arbitrary,
EI,[U' + |s"] = O. (18)
Transitions conditions for adjacent bays with different stiffness are:
V  and EI,\U' + fs"] continuous. (19)

The above boundary and transition conditions are in addition to those imposed on s
and M in elementary beam theory, as may be verified by repeated integration by
parts of the term containing 5s" in the integral of Eq. (14).

3. The modified beam equation and its boundary conditions. By eliminating the

quantity U from Eqgs. (15) to (19), we obtain a system of relations containing the
beam deflection z only.
The differential equation for s is derived by differentiating Eq. (16) and substitut-
ing U' from Eq. (15). There follows
M E T2/ ° M\" l. ;
2 (s H-—--- ) — 2 = 0. (20)
EIG L5\ EIl) 37
When the shear deformability of the sheets is neglected, that is when it is assumed
that G= «, Eq. (20) reduces to the well known result of elementary beam theory.
Equation (20) may be written in the alternate form

2 E / 5 1,\ slv M 2 E M"

1 ) + (ah
5 G\ 6 77 wl El 5 G w*El

W ith the help of Egs. (15) and (16), the boundary condition (17), which holds
when the sheet is attached to the support, is transformed into

/ 5 7\ M’
v ------------ yz', + = 0. (22)
6 7/ El

Similarly, the boundary condition (18), which holds when the sheet is not attached
to the support, becomes
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The continuity conditions (19) may be transformed in an analogous manner.
The values of the sheet stresses may be obtained from Egs. (9) and(10). From
Eq. (9) it follows that the flange stress is given by

o/ — + Ehz". (24)

For the application ofthe results it may be noted that thedifferentialequation
(21) can first be solved for the value of
z" which, according to (24), gives di-
rectly the approximate value of the
flange stress oy. The magnitude of the
deflection z can then be found from the
value of z" as in elementary beam the-
ory.
For the evaluation of the solution
we define the following two parameters

1
i = 25
51,/61 (25)
51 G
2 E (2)

W ith (25) and (26) the differential equa-
tion (21) becomes

TriTTT1Tn_
1 M u M"
— zZv = - (27)
k- EI + k2 EI
the boundary condition at an end sec-
tion where the sheet is attached to the
support becomes 3
VE
0 -n ; 28
El (28)
and the boundary condition at an end
section where the sheet is not attached
to the support becomes
i 5
El (29) oW L 0{]
\
4. Examples of applications (Fig. | - W - - - —

2). 1. Simply supported beam. Load dis-
tributed according to a cosine law. Desig- il 11111 1 ITTTT iitiiiitrr
nating the span length of the beam by I
and assuming the origin of the coordi-

nate system at the center of the beam, pICi 2. Diagrammatic sketches of beams analyzed
we consider the moment distribution as examples of application of the theory.
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M = Mocos 7|'-I (30)
A particular solution of Eq. (27) is

iy-Mo 1+ n(ir/kl)- 31)
: COS T —
*~ k) e 1+ (mmy 7

As Eq. (31) satisfies the boundary condition (29) and the condition of vanishing de-
flection at the ends of the beam, it is the complete expression for the deflection func-
tion. When /& =0, Eq. (31) reduces to the expression for z in the case where shear

lag is not taken into account. The factor
1+ n{ir/kiy- 1+ (2t2E/5G)(w/1)2 32)
1+ {r/kiy ~ 1+ (2aE/5G)(w/l)-(l - 51,/61)

expresses the effect of shear lag on deflection and flange stresses.

2. Cantilever beam with uniform load distribution. Cover sheets fixed at support. As-
suming that, contrary to what is indicated in Fig. 2, the free end of the beam has
the coordinate v= Oand the fixed end of the beam the coordinate x =1, we. may write
the moment distribution in the form

M (33)

The differential equation (27) then becomes

Mo 2n
(34)
k2 EI . .
Solving for z", we find
Mo ( .
7" = —--<C, sinh kx + Cocosh kx ] ] (35)
EI I Vi) ( kiy )

Satisfying the boundary condition (29) when a= 0and (28) when x=1, we obtain

2{n - 1) sinh kI — ki
z = + (cosh kx — 1) minh kx (36)
(kiy L cosh ki 1o
According to Eq. (24), the flange stress at the fixed end of the beam becomes
Moh 2(» - 1) 1 1
ay(/y — + tanh k|l A — 37
y() 1+ KKl cosh kI 37)

We take for a numerical example

l, 1 G 3 |

(38)
| 2" E~ s 2w

so that according to Eqgs. (25) and (26)
n =.1.714, kl —6.34, (39)
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and we find

=+ Mol 901, (40)

By application of the least work method1'2a factor 1.186 is obtained instead of the
factor 1.190 in Eq. (40).

The deflection of the beam is obtained from Eq. (36) by integrating twice and
making z(I) =z'(l) =0. In the present case, the correction due to shear lag for the
maximum deflection is about ten percent.

3. Cantilever beam with uniform load distribution. Cover sheets not fixed at support.
Moment distribution and differential equation are given by Eqgs. (33) and (34). The
constants of integration in (36) are determined by satisfying Eq. (29) for v=10 and
for x =1. There follows

2« - 1)
(ki (cosh kx — 1)
— | -
y cosh kIl — 1 —\{kl)~
sinh kx (a1)
sinh kI
Taking again I,/1 = .5, we should have, for the flange stress at the supported end, a

value twice as large as the stress according to elementary beam theory for a beam
with sheet attached to the support. In the present solution the factor 2 is replaced by
«=1.714. This indicates that with the assumed parabolic chordwise variation of sheet
displacement the condition that at the support of the beam the sheet is free of stress
is only approximately satisfied. The same difficulty arises in methods which incorpor-
rate the ability of the sheet to carry normal stresses as effective width contributions
to the strength of stiffners.5This difficulty is not serious when the main purpose of
such “cut-out” calculations is the determination of the distance over which the cut-
out is effective and its effect on the over all beam stiffness.6

The localization of the effect of the cut-out may be seen by writing (41) in the form

- m

This equation indicates that the influence of the cut-out is small as soon as the dis-
tance |—x satisfies the inequality

- log (« - D)

Thus, the wider the sheet and the smaller the value of the shear modulus G, the far-
ther away does the effect of the cut-out extend in the spanwise direction.
The magnitude of the beam deflection is obtained from (41) in the form

5P. Kuhn and P. Chiarito, Shear lag in box beams—methods of analysis and experimental investigations,
N.A.C.A. Technical Report No. 739 (1943).

6 Exact solutions of problems of this kind have been obtained by F. B. Hildebrand, The exact solu-
tion of shear-lag problems in flat panels and box beams assumed rigid in the transverse direction, N.A.C.A.,
Technical Note No. 894 (1943).
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() = (44)

which determines the constants of integration such that z(l)=z'(l) =0. For the de-
flection at the free end of the beam, we have

MO2(1 A Drpd Ly L

s(0) = .
ElI 14 kl Lv2 (khZ ki (k)2sinh kljj

For a beam with dimensions as in (38) and (39), Eq. (45) becomes

Mol2
30 = = (25 +.083). (46)

This indicates that for a beam with dimensions as given shear lag due to lack of sheet
restraint at the supported end of the beam is responsible for a thirty percent increase

of the maximum beam deflection as compared with the result of elementary beam
theory for a beam fully restrained at the supported end. This increase of deflection

of thirty percent compares with one of hundred per cent which is obtained if the con-
tribution of the cover sheets is neglected.

4. Beam with both ends built-in. Uniform load distribution. The distribution of

bending moments may be written as

M = + Mu (47)

The value of Mo is determined by the load intensity, the value of Mi in this statically
indeterminate problem has to be determined from the displacement boundary condi-
tions. The boundary conditions are

2(xy) =0 (48) z'(xy) =0, (49)

e M'(+ 1/2)
e ) - El (50)

For theseboundary conditions the moment distribution isnot affected byshear lag,
provided the momentdistribution issymmetrical aboutthemid-span section of the
beam. Indeed, the differential equation (27) may be integrated to give

s rx M » M’
— 1 P ? (51)
k2 Jo EI k2 El \VAR

the limits of integration being so chosen that Eq. (51) satisfies the conditions of zero
slope and zero vertical shear at the mid-span section. In view of (49) and (50),
Eq. (51) implies
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regardless of whether or not shear lag is taken into account. A considerably less simple
proof of the same fact by means of the least work method has been given in the refer-
ence quoted in Footnote 2. For the moment distribution of Eq. (47) there follows,
from (52),

+ e =0, (53)

and hence
M = Mi (54)

W ith this value of M and the requirement that z" be an even function of x, Eq. (27)
is solved in the form
1 2(» - 1)
+ C2cosh k (55)
12 *1)2

The constant Ci is determined from Eq. (50). There follows,

2 = jﬂr%@_-]ﬁ'l' E:;hklr/xz KI/2 (56)

Taking a beam five times as long as wide, that is I/2w =5, and assuming the re-
maining parameters as in (38) and (39), we obtain the following expressions for the
flange stresses at the built-in section and at the center section of the beam

||(4 —_— Em _; (1 + -283), (57)
*7(0) = + — —1(1 + .106). (58)

These results agree to within a fraction of a percent with the corresponding results
obtained by the least work method.2lt is worthy of note that, for this beam with both
ends built-in, shear lag is considerably larger than for a cantilever beam with the
same load, same width and half the span of the beam with both ends built-in. If both
beams had the same span, the discrepancy would be even larger.

The deflection s of the beam is obtained from (56) and (48) in the form

Mol- 2 1
El f 192

n- gl ;= cosh (kl1/2) cosh kx
(59)
(khy* I kl sinh kl/2
Corresponding to the stresses of Eqs. (57) and (58) we find for the deflection at mid-
span
1 Mol2

2(0) = 1 + .145). 60
© 192 EI( ) (60)
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Shear lag in this beam is thus responsible for an almost fifteen percent increase in
deflection. This percentage increase of deflection, while appreciable, is considerably
smaller than the percentage increase of maximum flange stress.

Acknowledgment. The results of this paper were obtained in 1944 as part of work
done for the structures department of the Research Laboratory of the Curtiss-Wright
Corporation (now Cornell Aeronautical Laboratory). For permission to publish this
paper the author is indebted to A. F. Donovan, Chief of the structures department
of the Laboratory.
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THE ANALOGY BETWEEN MULTIPLY-CONNECTED
SLICES AND SLABS*

BY

RAYMOND D. MINDUN
Department of Civil Engineering, Columbia University

1. Introduction. The analogy between the two-dimensional field of stress and the
transverse flexure of a thin plate was first applied by K. Wieghardtlto the solution
of a problem involving boundary loading of a simply-connected body. As is well
known, the analogy establishes the proportionality of the curvatures of the surface
of the plate to the components of stress in the two-dimensional field of stress. H. M.
W estergaard2introduced the useful terminology of slab and slice, free slice and con-
strained slice, and gave the boundary conditions for the slab when the slice is multi-
ply-connected and is stressed by boundary loads having no resultant force on an
internal boundary. Westergaard also proposed the use of the analogy in the investiga-
tion of the stresses in the Boulder Canyon Dam,3a problem involving gravity and
boundary loading of a simply connected body. An improvement in experimental
technique was contributed by H. Cranz4in introducing an optical spherometer5for
measuring the components of surface curvature. Cranz’s application was to boundary
load problems in simply connected bodies.

It is the purpose of this paper to give the general boundary conditions for the
slab when the slice is multiply-connected and is stressed by any combination of
boundary loading, body forces, dislocations and thermal dilatations. The analogy has,
in fact, its most useful applications in the last three cases as they are either difficult
to reproduce, or the resulting stresses are difficult to measure, in an experimental
model of the slice itself, while the analogous conditions for the slab, developed below,
are easy to handle.

In order to proceed, it is necessary, first, to set down the general boundary value
problem for the slice. It is convenient to do this along the lines established by
Michell,6with the additional consideration of dislocations and thermal dilatations.

2. Airy’s stress function and its differential equations. In a state of plane strain
defined by setting

* Received April 9, 1946.

1K. Wieghardt, Uber ein neues Verfahren, verwickelte Spannungsverteilungen in elastischen Kérpern
auf experimentellem Wege zu finden, Mitteilungen Uber Forschungsarbeiten a. d. Gebiete d. Ingenieur-
wesens, 49, 1S-30 (1908).

2H. M. Westergaard, Graphoslatics of stress functions, Transactions, Amer. Soc. Mech. Eng., 56,
141-150 (1934).

3 United States Department of the Interior, Bureau of Reclamation, Boulder Canyon Project, Final
Reports (1938), Part V, Technical Investigations: Bulletin 2, Slab analogy experiments’, Bulletin 4, Stress
studiesfor Boulder Dam.

4H. Cranz, Die experimentelle Bestimmung der Airysclien Spannungsfunktion mit Hilfe des Platten-
gleichnisses, Ingenieur-Archiv, 10, 159-166 (1939).

3E. Einsporn, Ebenheit, Zeitschrift fur Instrumentenkunde, 57, 265-285 (1937).

6J. H. Michell, On the direct determination of stress in an elastic solid, with application to the theory of
plates, Proc. London Math. Soc., 31, 100-124 (1899).
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Tyz = 7zx =tz = 0

and restricting the displacements u and v to be functions of X and y only, the relations
between strain, displacement, stress and temperature in an isotropic elastic body are

dll 1 2

tz = —=—[1 —t)<x—ri(l + vYv]+ (1 + vi)ayT, (2. 1a)
dx Li
dv 1, 2 .

e, = — = — [(1 — B)<v— vi(1l + vi)<rx]+ (1 + v{)aiT, (2.1b)
dy Ei
dvdu  2(1 F i)

NV~ a')'@" :dy ~ EITXyI (21C)

These are the relations for a constrained slice. The notations for stress, strain and dis-
placement arc the usualones and Eh vxarc Young’s Modulus and Poisson’s ratio
for the material of the slice, cti is the coefficient of linear thermal expansion, and T is
the temperature in excess of a uniform initial temperature.

When the stresses are expressed in terms of Airy’s stress function (§ and a body
force potential (F) by

<ax = -+ v, <y — — —+ vV, tZV = e 1 (2.2)

4> d~(p d'4>
dy dx dxdy

the equations of equilibrium are satisfied and the strain relation

de & d7a
dy- T Tax2~ “dxdy (2-9)
yields the differential equation governing <t

1 — 2vi 1 - vi
\YAY; V2F aivar. (2.4)
1—M 1—M

In a state of plane stress, defined by
0z Tyz ~ Tzx ~ O,

the strain-displacement-stress-temperaturc relations become

du 1

[ G —— (OX — \[i<rV) + OtiT, (253)
dx Ei
dv 1 . .

&, = = — (cr, — vie*) + aiT, (2.5b)
dy Ei
dw vi .

t2= - = —(crx-f <) -f aiT, (2. 5¢)
dz E
dv dll 2(1 + Vi)

7 xy h ~ Txy (2.5

dx dy Ei

These are the relations for a free slice. If the components of stress are again ex-
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pressed in terms of an Airy function and a body force potential by(2.2), the equilib-
rium equations are identically satisfied and the strain relationsreduce to

Vty= - (1- n)V2F - (1 + Wav-T (2.6)

if terms associated with the coordinate z are neglected.

In what follows, the case of plane strain (constrained slice) will be treated, but
the results are directly applicable to plane stress (neglecting z-dependent terms) if
Young’s modulus Ei, Poisson’s ratio vtand the linear thermal expansion coefficient oa
arc replaced by E{, v[ and a[ where

) Ei(l + 2vi) . Vi . oti(l + wvt)
bi = - > vi = — ai = «(2.1)
1 T Vi)2 1+ M 1+ 2vi

3. Conditions on gat a point on a boundary of the slice. Michell6gave the condi-
tions to be satisfied, at each point of each boundary, by pand its derivative normal
to the boundary:

= f (Bl - Am)ds + ax + (3y + 7, (3.1)
JO

dip

— = Al + Bvt + al + /3w, (3.2)

du

where a, i3 7 are constants, in general different for each boundary, ds is an element
of arc of a boundary, dn an element of normal to that boundary, and

dy — dx
I = —, m = , (3.3)
ds ds
| »a /i « /»a b i
Yds + | Vmds, B =1 Xds - 1 VIds, (3.4)
0 N0 JO JO
X = a,1+TxI/m, Y :thI + <M. (35)

In a simplyconnected body, a, {37 may be assigned arbitrary(including zero)
values as the addition of a linear function of x and y to §>does not affect the stresses.
In a multiply-connected body, three additional conditions on @ are required for de-
termining a, /3, 7, on each additional boundary. Equations (3.1) to (3.5) are not al-
tered by introducing thermal dilatations and dislocations of the type considered here.

4. Conditions on < for each boundary of the slice. The additional conditions on %
are obtained by assuming the strains (and hence the stresses) to be continuous and
requiring the rotations and displacements (a) to be single-valued or (b) to have pre-
scribed discontinuities (dislocations). Michell6gave the conditions for case (a). The
conditions for case (b), including, also, thermal dilatations, are derived by following
Michell’s procedure with modifications along the lines indicated by Volterra.7

(i) Rotation condition. Considering the rotation

1/dv du\

“@’ YV TXX¥4,1)
7 Love, Theory of elasticity, 4th eel., Cambridge Univ. Press, Cambridge, 1927, pp. 221-228.
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we require that the line integral of its differential have a value, say c, after one com-
plete circuit around (and along) a boundary. Thus,

c=1J) <o (4.2)
Now,

duz duz
----- dx + ---dv
dx dy
/1 XV de / de, 1 dy*A

R U S )y 4.3
\' 2 dx dy) \d x 2 dy

Replacing the strain components by their expressions in terms of (j), V and T, we find

E\C r/d( al( \ f /1 dv dv \
------- = @1- i) ® Kmd - —(wvm=* 1~ 2 dy ———7~d
R IR (&Sy gy VM) G Em g Gy iy 4
dT dT \
+ BOGO ( dv -
. dx dy /
Then
rd Eic 1—2vk r dV Exak r dT
® 06785 ds= ® d S ---mmmmmmenee- ® ds. (4.4)
J dn 1 —w2 1—viJ dn 1—vxJ dn

This is the first of Michell’s three conditions on $for each boundary of the slice. It
may be observed that, if the circuit of the line integral in (4.3) were reducible, the
integral would vanish because, by Green’s theorem,

it 1l aixv deA /dev 1 dyxA
J\ 2 dx dy) X \dx 2 dy) "
dxv da x d2y xi\
+ (4'5)

m

and the surface integral vanishes by virtue of (2.3).
(i) Displacement conditions. We admit a translational dislocation a parallel to x
and set

/ r dn dn r( | \ r
dn= ® — dxH dy — ® Itxdx A yxvdy ) — ® <ady.

J dx dy J \ 2 ) J
Now

() widy = yoJ) duz— <) ydwz =y — () y duz,
where yQis the y-coordinate of the starting point of integration. Also

frelt N

r /1 dyxy 3f,\ £ / dev 1 dyxh
woy( -yl ) a
J \2  dx dy J J \d x 2 dy)

y.
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Hence

dy. (4.6)

We now note that

| 0 1 0 r ( dex 1 dyXV
/exdx+ — yxydy = LAxjo H |37xV|o—Q>(x— dx + —Y dy

dy

the terms outside the integrals vanishing because of the assumption of continuous
strains. Equation (4.6) then becomes

> Ve e ')) -« ‘*+<fy( (yé)y:) @)

When the strain components in (4.7) are replaced by their expressions in terms
of 45 V and T, we find

Ei{a + y)

=(1- WM V&Sf>) VV)rf*
L, e {E >dyd< )
(dv dv
Wi dy~iy dv
N L
,,V u)
r r 9 dv 3ri
— ® x (1 — ri) — + (1 —2ri) - b Eiai - L rfx
J L dx dx dxj
f d=  \
f ® (T ﬁﬁ?dx + Y e dy 1. (4.8)
J V dx3 dxdy2 "J
No
r/ Ii?abl ¢ ¢ 'y <> d¢zj° r 1& d-4>
[ (W)™, 9‘Ps +sd [/ TCi.+n
T F alaT

the term outside the integral vanishing because the stresses are continuous. But,
from (2.2), (3.3) and (3.5),

d /o4t
ds\dx)
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Hence (4.8) may be written:

f( ¢(VV) d(V™M\ 1UW + y@) 1-2Mr [ dV dv\
® A = —X- —)dST s ® [y - Vemeam )i
J Vv dii ds 1—vyj \ —WJ dn ds)
(o, v of?>
1—v\J \ dn ds)
- (7 - Vm)ds. (4.9)

This is Michell’s second condition on &for each boundary of the slice.
Similarly, admitting a translational dislocation b in the y-component of displace-
ment, we set

b= () dv
and we find
r/ o) , vaf@ad) ds _  BMbb- ae)  i- kfr ( dv [ dV\)ds
-l-r------
J Vv ds dn J 1—vs 1—Wj \y ds dn)
Eyai C( dT dT\
+ @ ds
1—vih \ ds dn
/ (X - Vds, (4.10)

which is the last of Michell’s three conditions.

Corresponding to (4.5), a similar application of Green’s theorem to (4.6) reveals
that the right hand side of the latter vanishes for reducible circuits and the same
result is found for the corresponding step in the development of Michcll’s third con-
dition.

The differential equation (2.6), the boundary conditions (3.1) and (3.2), and the
three conditions (4.4), (4.9) and (4.10) constitute a statement of the boundary value
problem of plane elasticity for stresses induced by boundary loading, body forces,
dislocations, and thermal dilatations. The general formulation of the problem reveals
the analogies, discovered by M. A. Biot,8between gravity loading and boundary
pressures, and between thermal loading and boundary pressures and dislocations.

5. The slab equations. In the approximate theory of the bending of thin plates9
(slabs), the deflection (ic) is governed by the differential equation

Dv4™m—z7, (5.1

where D is the flexural rigidity of the plate and Z is the surface load, normal to the
middle plane.
The components of curvature in the y, z and X, z planes are given by

8 M. A. Biot, Distributed gravity and temperature loading in two-dimensional elasticity replaced by
boundary pressures and dislocations, J. App!. Mech., 2, A 41-A 95 (1935).
8 Love, loc. cit,, p. 487.
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daw d~w

5.2
dy2 dx2 (5:2)

On a boundary of the slab, the shearing force (N) normal to the middle plane, the
flexural couple (G), and the torsional couple (H) (all per unit of arc length s) arc

N=-D—(Vap, (5.3a)
dil
rd'-w /d 2w |
6= -p\ Ve . L (5.3b)
La»2 \ds2 P
d /dw\
(5.3¢)

(1" n)D~ (ir)t

where P' is the radius of curvature of the boundary of the unflexed slab and r2is
Poisson’s ratio for the slab material.

The resultant force and the components, parallel to the .vand y axes, of the re-
sultant couple on a complete boundary arelD

dH\

" '/ 7 17) as (5-42)
ME/K'v- 1) +5>
7’(1' * (5.4¢)

Substituting (5.3) in (5.4) we find

d d \—1d (5.52)
Ft= - D £ \ d s, 5a
Un a oy VtoW
d /dw\ [.
.- L tW 'I~V>
dx radw /d 2w awA—-n
f — V> Q- — (ds, (5. 5b)

ds La»2 Wsds" p dn))A)

{“t“’B”HW#fo)

a a/dWX|t
; + (-, - _}fc (5. 5¢)

6. The analogy for singly-connected bodies. Noting the similarity between the

differential equations (2.6) and (5.1) for d&>and w, we set
w = k> (6.1)

1 Love, lot. cit., p. 460.
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where AT is a conversion constant having the dimensions of length/force.
Then, from (6.1) and (2.6),
1 — 2ri 1+

vi
VAit, = —moemmmemoeees KV-V KotiWwT (62)
1= W 1 — Vi

becomes the differential equation for the deflection of the analogous slab. Hence

1 — 2vi 1-f vi
Z = KDV2V e KD @V 2T (6.3)
1—M 1 —rri

is the normal surface loading to be applied to the face of the slab. In the case of a
steady state temperature distribution,

V2T =0. (6.4)

If, in addition, the body force potential is harmonic, the slab is subjected to edge load-
ing only. If either V or T is not harmonic, transverse loading is required on the sur-
face of the slab, and the load may vary slowly with time.

The edge conditions (i.e., the elevation and slope at each point of a boundary) of
the slab are specified by substituting w =K<p in (3.1) and (3.2). Thus

g
(Bl —Am)ds + ax -f fly + 7, (6.5)

1 dw
— = Al -f Bin -fa/-f Aw. (6-6)
K dn

The normal components of stress in the slice are obtained by combining (2.2),
(5.2) and (6.1), with the result

ax="+ v, = -f V. (6.7)

The principal stresses and their directions may be calculated from two sets of curva-
ture measurements at each point.4I1f the boundary of the slab is a scale model of the
boundary of the slice, e.g., if the ratio of a linear dimension of the slab to the corre-
sponding linear dimension of the slice is k, the stress components in the slice are given
by

k'K: K-Kn

ax = Vv, ay - SV (6.8)
A A

For a singly-connected body, (6.1) to (6.8) completely specify the analogy, since
the unknown constants a, j3, 7 may be given arbitrary values.

7. Additional conditions on the slab for multiply-connected bodies. For a multi-

ply-connected body, a, fl, 7 must be prescribed for each boundary. Now, it will be
observed, from (6.5) and (6.6), that a, (3 7 specify a rigid body translation and rota-
tion of each complete boundary of the slab. Such rigid body movements may be
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effected by applying, on each boundary, a resultant force, normal to the middle plane
of the slab, and a couple about an axis properly oriented in the plane of the slab. The
magnitudes of the force and the x and y components of the couple on each boundary
are determined by expressing FA M X M v (see (5.5)) in terms of the specified boundary
loadings, body forces, dislocations, and temperature distribution of the slice.

i. Resultantforce on a boundary of the slab. Replacing w by K{>in (5.5a), we have

rro a d /<t
ds.

/ UN *- (7-1)

Rz = KD

Now

3 ds dil \c)sj

because of the assumption of continuity of the components of stress in the slice. Hence

d
= KD 7.2
Pz / ” (7.2)
Therefore, from (4.4),

1~ viF, = _ EIC / dv o dT

ds -\- Fiici ® ds, (7.3)
KD ~ 1+ M
dn J dn

whereby Fz is expressed in terms of known quantities.
ii. x-component of couple on a boundary of the slab. Substituting kf>for w in (5.5b):

dx rdap fV 1 ~ -k
i |

+ (7.4)
ds Ldn2 \3s2 p' dn/})

Eliminating
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. _ /
®r [.v ---- ) h (1 —v|)y---r] ----- (— i = w0 - Y 4 Ci
n

ds ds dn \ds)J
dy d /g
s (1 —vi) @5] s (16)

The terms outside the integral vanish on account of the assumption of continuity of
the stress components. Therefore the first integral on the right hand side of (7.5) be-
comes

dy d /dﬂ)>\ dx T a2 i< 1d<£\"|)
/ 1 - (—) (V7. Vil — + e }ds. (7.7)
ds dn \ds ) ds _ dn- \ds- pdn) )

On a boundary
Vap = hoe—-— % i (7.8)

so that (7.7) becomes

o (7.9)
J Lifi dll \ds) ds \<3i2 p' dll/J
However, along a boundary,
d /d<p\ d<p 1 dip
i (7. 10) v, (7.11)
ds~ p di
d dx
A GEY) (7.12)
ds ds
Hence, (7.9) becomes
. _ dx\ d
-V V+ V—)ds
( a/( ds)
Substituting back in (7.5), we have, finally,
1 —vi)Mx E/a + y@) dav dv\
b@- 2ry/(3 v ) ds
KD 1T vL ' dn ds)
dT aT’
+ £ k! n las
dn ds ,
—[@ —r2( vy + 1,/ (F - Vm)ds. (7.13)

This gives Mxin terms of known quantities.
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in. y-component of couple on a boundary of the slab. Substituting K<p for w in (5.5c),

dy rd2> ld-<P 1 d<p\~
M, = - KD <fi
J  (tfs Ldn" \as2 p' dn).
a(Va) d d /dtp 14
4 o g (719
Eliminating
/* O/-<p)ds
dn
between (7.14) and (4.10), we have
Myv d d d_ /dgA
KD /{ Y g5 (V29 — Q—vidx g 4 \gsj
dy rd2p /d2p
ds
* s dde Fowet b adhl
E\(b — X 1—2n r ( dv dV\
1- 1—vi f v 1
Eiai r / dT dT\d 1 r Nd
P +F e § e X - Vl)ds. 7.15
VIV AR L N e L i (119)
Now,
y ¢(VV)
/[ ds
'/[fW'U (7.16)

The terms outside the integrals in (7.16) vanish on account of the assumption of con-
tinuity of stresses. Therefore the first integral on the right hand side of (7.15) becomes

a2 {a"> 1 . X a /dg>\)
/ _ b v2 J (7.17)
it a»2 Vas2 4 7 “@Q_"2Ilsjjw J ds

Then, using (7.8), (7.10) and (7.11) and noting that

dx dy _
Tin  “hOn . Kj (7.18)
ds ds
(7.17) may be written in the form
1 —v2 <) (X - Vihds. (7.19)

Substituting back in (7.15), we have
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@l— n)Mv Efb-xoc)
KD 1+ vi ¢
; adT .
+ o[- v~ M)
8. Recapitulation. The stresses,

MINDI-IN

f( dv
2VI);l(]> \(/ ds T dn
dT\

A(X Vs,

in a multiply-connected slice,

dav'

ds

(7.20)

boundary loadings X, Y, a body force potential V, dislocations a, b, ¢ and tempera-
tures T, arc related to the curvatures of a slab according to

ox —

+ V,

A

if the following conditions are satisfied on the slab:

(i) The surface loading on the slab is

(i) The boundaries of the slab are geometrically identical with
with elevations and normal slopes given by

!

K

at each point of each boundary,

c’ 1
= | (HI —Atn)ds -motx 4- Py + 7,
Jo K

Ku
0,=— 4-V
A
14 f .
KDaiV'-T;
1 —vi

dw

= 4/ 4- Bm 4- od 4*

(6.3)

those of the slice,

(6.5)

(iii) There are a resultant force (F2) and resultant couples (Mx) and (MV), on each

boundary, with magnitudesgiven by
- Vi)F, E . dv . fodT
1(1 EI/QL = - o + (i _ 2vi) <B ds+ Eiai <0 — ds, (7.2)
KD 14-vi J dn J dn
1-vi)Mx Ei(a + y«) i-(|£_2$/x)ftlllv————x _d V)\ds [
KD 1 4-W J \ dn ds /
f( dT dT\
+'me"mt v ¢ n
- 1@ - v — Vo) -
K D 14- vi
r( dT dT\
— Eicti d) (y — 4- *» — ) ds
ds dn)
4- [(1 - vi){1 | vi) - 17 (x - (1)ds. (7.20

resulting from

J]
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ON AN EXTENSION OF THE VON KARMAN-TSIEN METHOD
TO TWO-DIMENSIONAL SUBSONIC FLOWS WITH
CIRCULATION AROUND CLOSED PROFILES*

Ny
C. C. LIN
Brown University

1. Introduction. The method for treating compressible flows, as developed by
Chaplygin,lvon Karman?2and Tsien3leads to a successful solution of the flow pattern
past solid bodies when the flow has no circulation. When the flow has a finite circula-
tion, as in the case of airfoils, the profile shapes furnished by this theory are not closed.
It is doubtless desirable to develop the theory so as to remove this difficulty.

Recently, Bers4succeeded in obtaining flows with circulation around closed pro-
files. As is usual in the case of a first success, the new method has a few disadvantages.
In the first place, the mapping between the actual compressible flow and the asso-
ciated incompressible flow is not regular at the stagnation points. Thus, if the profile
in the associated incompressible flow is regular everywhere, angular points would
appear in the profile in the compressible case; and vice versa. The application of the
method is further complicated by the fact that the angle thus generated depends on
the free-stream Mach number. For the engineer, the treatment has the additional
inconvenience of involving the concepts of Riemannian geometry (which are avoided
in the present treatment).

In the present article we shall describe a method which is free from the disad-
vantages mentioned above. The derivatioh'is very simple, and no reference is made to
Riemannian geometry. Yet the result includes all the previous ones as special cases.
Indeed, the treatment seems to be now in the most natural and the most general
form which is obtainable from the line of study of Chaplygin, von Karméan and Tsien.
It also has great flexibility. Given one incompressible flow, there is still an analytic
function at our disposal for constructing compressible flows. This freedom of choice
enables us to avoid much unnecessary numerical labor in constructing flows of certain
general types. A large number of compressible flows can be derived from a given in-
compressible flow by the present method without numerical integration.

Apart from giving a useful method for constructing compressible flow patterns,
the present development has the following significance. First, the freedom of dispos-
ing of one analytic function leads to the solution of the direct problem,—namely to

* Received May 18, 1946.

1S. A. Chaplygin, On gasjets. Scientific Memoirs, Moscow Univ., Math. Phys. Sec. 21, 1-121 (1902).
(English translation published by Brown University, 1944. Also NACA TM No. 1063, 1944.)

3Th. von KArmdn, Compressibility effects in aerodynamics. Jour. Aero. Sci. 8, 337-356 (1941).

3 Hsue-Shen Tsien, Two-dimensional subsonic flow of compressible fluids. Jour. Aero. Sci. 6, 339-407
(1939).

4 L. Bers, On a method of constructing two-dimensional subsonic compressible flows around closed pro-
files, NACA TN No. 969 (1945); On the circulatory subsonic flow of a compressible fluid past a circular
cylinder, NACA TN No. 970 (1945). See also S. Bergman, On two-dimensional flows of compressible fluids,

NACA TN No. 972 (1945).



292 C. C. LIN [Vol. 1V, No. 3

calculate the compressible flow past a given profile. Indeed, the solution of problems of
compressible flow, either direct or inverse,—namely, the construction of flows around
profiles either given beforehand or not— is now an a parallelfooting with the incompres-
sible case. In either case, the direct problem requires a method of successive approxi-
mations.5Secondly, the application of the pressure coefficient formula of von Karman
and Tsien to flows with circulation is justified on the same basis as in the circulation-
free case. Experimentally, the formula has been found to be successful even when
there is circulation, although the theory has so far been incomplete. The original de-
velopment of von Karméan and Tsien leaves the body not closed, while the profiles
given by the method of Bers do not have the same analytic nature in the incom-
pressible and the compressible cases. The present method removes these difficulties.

Further investigations of the significance of the present method are being carried
out. The present article contains only the essential result and its proof. It is hoped that
a complete discussion of further developments may be published very soon.

2. Method of constructing two-dimensional subsonic flows with circulation
around profiles. Let p, p, u, v be the pressure, density and components of velocity of
a steady two-dimensional irrotational flow in the x, y plane. Let p be a function of the
density p only (given either by the isentropic relation or any other approximate rela-
tion). Then there exist the velocity potential §=and the stream function ip defined by
the following differential relations:

g5>= udx + vdy, (2.1)
dp = — pvdx -j- pudy. (2.2

The velocity components u, v and the density p are further connected by Bernoulli’s
equation

— b f—= const., (92= u- + v2. (2.3)
2 J p
It is convenient to refer the density of the gas to that at the stagnation point and to
refer all the velocities to the velocity of sound at stagnation. The coordinates X, y
may be regarded as referred to the size of the body, and the pressure as referred to
the product of stagnation density and the square of the velocity of sound at stagna-
tion. Throughout this article, this process shall be implied, and all the quantities
under discussion are dimcnsionless.
As is well-known, the problem simplifies greatly if the pressure-density relation is
approximated by

p—A——m (2.4)
p

This is the basis of the method of Chaplygin, von K&arméan and Tsien. A discussion

of its physical interpretation may be found in the papers of these authors. Equation
(2.3) leads to

5For the incompressible case, see T. Theodorsen, Theory of wing sections of arbitrary shapes, NACA
Rep. No. 411 (1931).

T. Theodorsen and I. E. Garrick, General potential theory of arbitrary wing sections, NACA Rep. No.
452 (1933).
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c= l:Vl-fq\ (2.5)
=]
where cis the local velocity of sound. Indeed, B must be equal to unity if the reference
stagnation quantities are calculated from (2.3) by the use of (2.4)

Under the approximation (2.4), the following method may be used for construct-
ing two-dimensional subsonic flows with circulation around closed profiles.

Given an incompressible flow past a profile Po in the f-plane (f={+«7 described
by thecomplexstream junction Fifl) and the complex velocity wo(f), choose ajunction
¢(F) ¥egular in the regionexterior to P« and including the point atinfinity,having no
root in Rq and such that R0

litto(f) 1 < 1¢(f) 1 < W on Po, (2.6
and that
I r V()
Hi) = <2' 7>

where the integration is performed along any contour enclosing Po. Then

T 1 r ~u(f)
+ iy = J C(f)# - -4 J K(f) (2-8)
2(_3] ________________ we(f) (2.9)
1+ VI + 722 ()
4+ ty=F(f) (2.10)

gives the parametric representation oj a compressible flow past a profile P in the x, y plane
with f as parameter, where P has the same general analytic nature (e.g. same number
oj corners, etc.) as the original profile Po- In theseformulae, §%j ore the velocity potential
and stream junction defined by (2.1) and g, 6 denote the magnitude and direction oj the
velocity oj the compressible flow.

3. Proof. The proof consists of two parts. First, it is necessary to show that, after
the auxiliary variable f is eliminated from (2.8)-(2.10), we obtain proper functional
relations between d>p, g, 6 and x, y. Secondly, we must show that the profile F is a
closed curve and is mapped into POby a regular mapping such that the regions R, ex-
terior to P, and Ro, exterior to Po, are mapped into each other in a one-to-one manner.

(a) The first part of the proof is simple. It is well known*ithat under the approxi-
mation (2.4), the relations

dF 1
= e w*dF, F —F(w*) (3.1)
w
with z, F, w* defined by
Z =X+ iy,
F = £+ if,
(3.2)
2?
1+ Vi+ 22

6 Cf., for example, Eqgs. (23), (26) of Tsien’s paper quoted in Footnote 3.
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would give a solution of the differential equations of compressible flow. Instead of
trying to establish a relation between F and w* directly, we introduce an auxiliary
variable f such that Fif) and w*(f) are analytic functoins. It is well known that great
simplification is obtained by taking F(f) to be the complex potential of an incom-
pressible flow similar to the compressible flow we desire. However, the extent of
arbitariness in the choice of w*(f) has not been carefully examined. It is clear that
any choice of w*(f) will be sufficient so far as satisfying the differential equations is
concerned.
In the present case we dispose of the arbitrary function by writing

w*(f) = wo(f)/fe(f). (3.3)

The only requirements on ¢(f) are the general conditions of regularity and the rela-
tions (2.6) and (2.7), which will be discussed immediately.

(b) The second part of the proof is also very simple. In the first place, the profile
P is closed by virtue of (2.7).6 The regularity of the mapping is established if the
Jacobian of the transformation maintains the same sign and does not vanish or be-
come infinite in the region Ro, including the boundary Poand the point at infinity.
It can be easily verified that the Jacobian is

WO

Tl (3.4)

From this expression, it is clear that the requirement is satisfied when k satisfies the
restrictions specified in the last section.*

4, Discussion, (a) The function ¢(f). To make use of the freedom in choosing
function ¢(f) is the essential improvement made in the present paper. Von Karmén
and Tsien gave an interpretation of w*(f) by identifying it with the complex velocity
w(f) in the associated incompressible flow. This means that they put

c(f)y-a 1. (4.1)

They were therefore unable to meet the requirement (2.7) for closing the profile, for
flows with circulation. Bers overcame this difficulty by virtually taking

¢ (f) = const. {wo (f)j" (4.2)

where is the free-stream Mach number. However, at the stagnation pointsof the
incompressible flow

I e(f) i = 0, (4.3)

and the mapping between the profiles P and P Qis not regular there. In applying his
method to the calculation of compressible flow past a circle, Bers had to start with
the rather complicated problem of finding the incompressible flow past two intersect-
ing circular arcs with the stagnation points at the points of intersection and with the

* Note added in proof: Professor K. O. Friedricks pointed out to the author that, in the compressi-
ble as well as the incompressible case, a mapping with non-vanishing Jacobian does not always lead to
a useful result: the region obtained may be simply-connected but multiply covered. This difficulty has
not been experienced so far in some numerical examples which have been worked out.

the
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angles properly adjusted in relation to the free-stream Mach number. Indeed, it seems
that after reaching the relation
(IF 1

dz — -=eemmeemnene- w*dF,
w* 4

the most natural development of the Karman-Tsien method is to leave i£>*([D quite
free, as we have done here, instead of connecting it definitely with wo, as was done by
previous authors. The present method of leaving k(f) free seems to be the most gen-
eral scheme.

If we deliberately want to introduce some singular points in P by starting from a
profile P Owithout a singular point, | | should be allowed to take the lim iting val-
ues specified in (2.6); e.g., k(£) =0 where w>o(f)=0.

Although &(D cannot be taken to be unity when the flow has a circulation, it
should not depart from unity very much if the profiles P and P Oare not to differ
much from each other. This is easily seen from a comparison of terms in (cf. (2.8))

2 = Kdt ol (4.4)

They have the ratio (cf. (2.9) and (2.5))
M2
M+ VA + jw L+ VI - MT-
where M is the local Machnumber g/c. This value is much smaller thanunity,except
for values of M close tounity.7Hence, (4.4) is approximately the identity transforma-
tion if k is very close to unity. This approximately preserves the shape of the profile
during the transformation.

(b) Conformal mapping of compressible flows. If we make a conformal transforma-
tion of the f-plane into the f-plane by the analytic relation

(4.5)

r= Mr), (4-6)

we arc merely making a change of the auxiliary variable in (2.8)—2.10)- Indeed, we
have

«+ iy = ' ka'¢G - -l rws() df: (4.7)

J 41 Mr)
X wo( (4.8)

i+ Vi + Mr)
&+ if = P(r); (4.9)

where

Hf) =m , (4.10)
wn-n = FE) =nr) % (4.11)

«r

Cf., Fig. 3 of Tsien’s paper quoted in Footnote 3.
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and
Kf) = ¢(f)i (4.12)
"

We note that the equations (4.7)-(4.9) are of the same nature as (2.8)-(2.10). How-
ever, the profile Po, into which the profiles P and Poare mapped, may bear no re-
semblance at all to the original profiles. Indeed, there is no loss in generality in taking
Po to be a circle. The relations (4.7)-(4.9) thus serve to transform the incompressible
flow past a circle into a compressible flow past a profile of a quite arbitrary shape. Re-
ferring to (4.6) and (4.12) and to the fact that ;(f) should be taken not far from
unity, we see that ¢ (f) should be chosen so that it is not very much different from the
derivative of the function mapping P into a circle.

(c) Formulation of the direct problem. If we disregard the intermediate step of the
f-plane and drop the tilde, we have a mapping of the nature described in Section 2,
but with ¢ (f) so chosen that a circle will be mapped into some profile P. The function
¢ (f) must satisfy the requirements established there, but it should not be very much
different from the function ¢o(f) which maps the circle into P Oby the relation

S:f co(fdf.

Thus for each profile P, the determination of the compressible flow past it is
equivalent to the determination of a proper ;(f) mapping it into a circle by (2.8),
where Wo(f) is the flow past the circle. There is no question about the existence of
such a mapping function. It is clear that to each purely subsonic flow, where the ap-
proximation (2.4) is accurate enough and therefore F=F(w*), we may find a certain
¢i(f) mapping the compressible flow into some incompressible flow. By considering
successive conformai transformations, we can therefore always map the flow into a
circle. The actual method of finding ¢ (f) is all that remains to be done in the direct
problem.

The theory of subsonic compressible flows (so long as the approximation (2.4) is
valid) is now put on an equal footing with the incompressible flows. The inverse
problem is complete, the direct problem of finding a mapping function for a given
profile can only be solved (practically) by successive approximations, even in the in-
compressible case.s To develop a method of successive approximations for the direct
problem in the compressible case seems to be a natural next step.*

5. Application of von Mises’ method of generating airfoils. In the incompressible
case, von Mises transforms a circle in the f-plane into an airfoil of a quite general
shape by the transformation

H - tX-1) 0-7)

8 Cf., e.g. the papers quoted in Footnote 5.

* Note added in proof: The essential difference of the two cases lies in the existence problem. While
the existence of the incompressible flow follows from well-known results concerning the Laplace equation,
very little seems to be known about the existence problem for compressible flows.
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where Xi, ¢+, X, are points inside the circle, and XQOis a point on the boundary (which
transforms into the trailing edge of the airfoil). A similar method can be used here.
In (2.8)-(2.10), we put

-(-X-t) ("t) )

with the same general restrictions on the points X The condition that the points X
are inside the circle is exactly the condition required of k(£) as stated in Section 2.

The condition (2.7) for the closure of the body has also its equivalence in the case
considered by von Mises. There il isa

y km=o

Here, it differs by the presence of another term. The condition that

I Ht) | > I hwott) |

on the circle is the only additional restriction in the present case. As it is a mere
inequality, there is no great difficulty in ensuring it to be satisfied.

The integration required in establishing the relation between z and f can be readily
performed, as it involves only rational functions. This ease of calculation, together
with the flexibility of the choice of the points X in controlling the shape of the airfoil,
are the advantages of the method of von Mises which are still preserved in the present
application.

The author is greatly indebted to Dr. J. B. Diaz for very helpful discussions in
the course of the investigation and to Professors W. Prager and K. O. Friedrichs for
their interest and discussions.*

s Cf. W. F. Durand, Aerodynamic theory, vol. 2, J. Springer, Berlin, 1933, p. 78, Eq. (20.4).

* Note added in proof: After the paper was completed and presented in a colloquium at Brown
University, Professor E. Reissner informed the author that Professor A. Gelbart had recently presented
a somewhat similar approach in a lecture at M.1.T.



-NOTES-

ON THE ELASTIC DISTORTION OF A CYLINDRICAL HOLE
BY A LOCALISED HYDROSTATIC PRESSURE™*

By C.J. TRANTER (Military College of Science, Shrivenham, England)

When a hydrostatic pressure is applied over only a small part of the length of a
cylindrical hole extending through an infinite elastic solid, the stresses and displace-
ments differ considerably from those caused by the application of this pressure over
the entire length of the hole. This problem has been discussed by H. M. W estergaardl
using an approximate method but it is not easy to assess the accuracy of his numerical
results. It is the purpose of the present note to give an exact solution and to compare
numerical results with those given by Westergaard.

The analysis used here is a simple adaptation of that given by A. W. Rankin2
for the similar problem of a band of uniform pressure applied to a long cylindrical
shaft. The numerical calculations are not so formidable as would appear at first sight
and a method given by L. N. G. Filon3for evaluating trigonometric integrals has
proved very valuable in this connection. The results for the maximum radial dis-
placement show that the approximation used by W estergaard is rather crude.

1. The analytical solution. We use cylindrical coordinates and consider the pres-
sure loading as being given by ar——p, \z\ <c, «r=0, |z| >c on the surface of the
cylindrical hole r=a. With the usual notation4we therefore require to find a stress

function ) satisfying
W) oo <2< @ 1)

where V2denotes d2dr2+ (1/r)(3/dr)-1-d2ds2and the boundary conditions

3 ( 32) ii
"T F M<e' r=a, (2
=0 Isl > ¢
d ( a2)
dr i'.(l_V)V- d22)><j>= 0, — x <2< c¢co, r = a, 3)

v being Poisson's ratio for the material of the clastic solid.
Once phas been found, the stresses oy, rrzare given by the expressions shown in
(2) and (3) and the remaining stresses and the radial displacement are given by

d 1 31 d d2 1+ r d
( ( ) r )

E being the modulus of elasticity.

* Received May 8, 1946.

1H. M. Westergaard, Kdrnidn Anniversary Volume, 1941, p. 154.

I A. W. Rankin, Shrink-fit stresses and deformations, Journ. Appl. Mcch. 11, A77 (1944).

3L. N. G. Filon, On a quadrature formula for trigonometric integrals, Proc. Roy. Soc. Edin. 49, 38
(1928-29).

*S. Timoshenko, Theory of elasticity, McGraw-Hill Book Co., New York, 1934, p. 309.
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Following Rankin, we take

$ = | RDbsin cXsin 2X/X (5)

7 0o
where R is a function of r only and &is a function of X To satisfy (1) we must have
/ d- 1d \-
(—+ e X2) A = 0,
\dr2 r dr J
and the solution, finite as r—*o0, of this equation is
R = AKdp) + BpKi(p), (6)

where Ko(p), Ki(p) are Bessel functions of imaginary argument, A and B are constants
to be found and

P= Xr (7)

Using the well known relations
AT'(p) = - AT(p). ®)

PAT'(p) + Ki(p) = - pKdp),
we find
V= —2 f BKOQp)b\2sin cXsin zXi/X. 9)
*70
W ith

a — X (10)

substitution from (9) into (3) yields

(r,)rra =(*m[—BaKo(a) + {2/1(1 - Vv) - A }Ai(a)]&X3sin cX sin zXi/X,
7 0
so that, to satisfy (3)
A/B = 2(1 —v) —aA'o(a)/A'i(a). (11)
We also find

(unr=, = —J* Al + (2r — D./I} Ao(@) + ~ h BaJ Ai(a)J b\3sin cX cos zXi/X,

and since the boundary condition (2) can be represented by
2p C* sin cXcos sX

(@r_, = | iX,
o A

we have

i-2. {1+ @ —D/N}Ao@ + ~ h Bal K\{a) (12)

7rX4
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Equations (11) and (12) yield

W'D(a)bA = 2/.[2(1 - v)aKi(a) - aaQa)], ! .
rm\A{a)bB = 2paKi(a), (13)

where
D(a) = {a + 21 —r)}Ai(a) —a K0a). (14)

bA, bB having now been found, the expressions for the stresses and radial displace-
ment are found to be given by

2pa . .
. Afm [apAQa)AQp) + aKo(a)Ki(p) —pAQp)Ai(a)
. C 2-
SIh — a CoS — a
—\p2+ 2(1 —V)jAi(a)Ai(p)] da
aD{a)
c z
M sin — a sin — a
= — f [«A0(@@AI(p) - pAQp)ALa)] wrfc
vio D(a)
re= 2P [ "aaro@Ai(p) + (2r — HpAQP)Ai(a)
7 N
m"o e ,
SIn — a C0S — a
(15)
- 2(1 - NATAT(p)] # a da
aD(a)
g, = - &) rW[aAC(a)Ao(p) + 2AQp)Ax(a)
mJo
o cC z
SIn — a cos — a
- pAx(a)Ax(p)] *D{a)- *  da
Eu 2pa
[aKo(a)K1p) - pAQp)AT(a)
1+ v mJo
. cC z
SIn — a cos — a
- 2(1 - OAXWAXO»)] </a
aZl(a:)
2. Numerical results for the maximum radial displacement at r=a. When r=a,

p=a and the greatest displacement occurs when s= 0, so that we have

-E(«max)r=a  4pa(l —v) t“ Ai(d) _ ¢
I sin — ada.
1+ v ir Joo aD{a) a
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If the pressure p acts over the entire length of the hole, the displacement («")r-« is
given by

E{u")r=a

1+ p

pa,
so that

« =<. —V * KN . 6]
(magrs. 4@ =) £ K@) o0 (16)
(7f)r_a * J o ald(a) a

The numerical work was performed with r=0.3 and, above a = 12, it was found
that the first three terms of the asymptotic expansion of K\(a)/aD(a), viz.,

Ai(a) 1 0.4 0.965
aD(a) a2 a3 a4

gave an adequate representation. Integration by parts then leads to

2
AR G ada = | 08176 + 01340 % sin 1 01778— %05
J 12 aD(a) a L al a a a
+21[ T -si(v)]-[1+'16083T ] 7 cl(Vv)-

where

m' sina; ree a8V

/ dx, Cix) = — I dx.
0 X J X X

The evaluation of the integral in equation (16) from a = Oto a = 12 was performed as
follows. The function K\(a)/aD(a) was computed at intervals of a=0.2 from a=20
to a =2 and at intervals of a = 0.5 from a =2 to a =12. The integral was then evalu-
ated by a method due to Filon5in which Simpson’s rule is replaced by the formula

f F(x) sin kxdx — /;[a{A(d) cos KA —F{B) cos kB\ + pSi, +
Ma

where the range of integration is divided into intervals of length h, S2, is the sum of
all the even ordinates of the curve y = F(x) sin kx between A and B inclusive less half
the first and last ordinates, .S2_i is the sum of all the odd ordinates, and a, {3 y are
given in terms of \p=hk by

1 sin\pcosp 2sin2\p A 1+ cos2p 2sinpecospi
\p p3 [ r rJy

sin p cosp
7 =4

s Filon, loc. cit.
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This formula holds even when Kk is large, provided that the function F(x) can be
fitted with reasonable accuracy over the range 2h by parabolic arcs.

To avoid an infinity at the origin, the integral actually evaluated was

T=rer i _ KT ¢
Jo Ll4a aD(a)_ a

and when this had been found, the required integral was given by

14 7Va)

As acheck that the substitution of the asymptotic series did not lead to unaccepta-
ble errors, the range of integration was also divided into Oto 10, 10 to infinity and the
infinite integral was similarly computed on this basis. Little extra work was involved
and excellentagreement was obtained.

The results are shown below, together with those given by the approximate analy-
sis by Westergaard. It is seen that even his second approximation is quite crude.

Yalucs of (nnex)r—e/(n ),=«

Westergaard
a Present Method
First Approximation Second Approximation
0.25 0.557 0.537 0.450
0.50 0.806 0.770 0.633

ON THE REPEATED INTEGRALS OF BESSEL FUNCTIONS*
By J. C. JAEGER (University of Tasmania)

It is well known that

(1
and
(¢2+ Y)YU/t_ piln

L\jnit)1 = — —
(I>=+ IR

, it > 0, 2

* Received Jan. 25, 1946.
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where L\f(t)} is written for the Laplace transform of/(/), that is,

At)] JfO 3)

These results have important applications in the theory of the semi-infinite dis-
sipationless artificial transmission line with simple terminations, and thus in the ex-
pression of the solutions of corresponding problems on finite lines in terms of multiply
reflected waves.

In an important class of similar problems in which the line is terminated by a
matching resistance, the Laplace transforms of the solutions contain powers of
[1+ (> + 1)22] or [p+1+ (p2+ |)12] in the denominator, and the functions which
have such Laplace transforms do not seem to have been given. The object of this note
is to show that they can be expressed in terms of repeated integrals of Bessel functions
and that numerical values of these can readily be obtained.

We use the notation

(D, r’ r “Jn{t)dt
Jin (0 ~ I (//mee | - | >0
J0 Jo f
4)
JinAO = dt- mm f JAOdt, Il 2; o,
Jo Jo

for the r-plc integrals of Jn(t)/t and /,,(/) respectively.
It is convenient to use both these types of integral though there are many relations
between them, the simplest being

Jin-1AO + Jin+iAO = 2.Jtn\0 )

and

Ji,,-1AO ~ Jin+lAO = 2Jins1(0, (6)

which follow' immediately from the recurrence formulae for Jn(0- JioAO is tabulatedl
and JifA (/) = (L1/-«) + Jin(0 v'here Jin(0 is the ordinary Bessel integral function. For
all values of n and r repeated application of the result

C - o
Jn(odt — 2 23 Jn+2m+l(0
0 * RO

gives the formulae

JinAO ~ 2 ) [ n2m+r(0 )
mso \ m !
) 2- x (_ + - F ) y'+7'+r_7(1)' (8)
w0 (m o+ 1 - 1)\ m /

For integral values of I, which arc in fact close enough for many practical purposes,
(7) and (8) may be evaluated rapidly from the Tables in Gray and Mathews.2

1Lowan and Abramowitz, J. Math, and Phys., 22, 2 (1943).
2Gray and Mathews, Treatise on Bessel functions, 2nd ed., 1922, Table I1.
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The Laplace transforms referred to above may now be written down. Firstly we
have immediately from (1) and (2)

L{nJi:\t)} - r-K* +1)-*]" ©
L{Jinr(t) = ~ + » . (10)
prw + 1)]/2
Then, since
1 / 1\ 1 1

i+ P2+ )V2 V pvipi+ )13  p*
it follows that

L{Jo(t) + JioM) - t) = . (n)

In the same way if n>0

_ _ _ Kig+ 1)12- p]*
L{j.(t) + Jinsg - ndin (0} = - -yypoyyrz— (12 Y

Similarly

+ 3Jin*() + 2Jin.i(l) - 2nJult) - 2nJult)\
2+ DHuze2+ D2~ yl»

[L+ (y2+ (13)

if n>0, and if n =0 the term nJij? (/) is to be replaced by tF¥(r —1) !. Again with this
convention we have

<X **+*)

['{’21l5'|<nD/(|A) 2m+ D/in+ II) /')A} [i i+ (p2+ 1])1/2 (14)

L{jm2(t) —2/n+l(/) + /,(/) + Jin+l,i(t) — 2Jin+l,i(t) + /in,20}
4(i2+ 1)yi2[(y2+ 1)yy2 - pl"
[p+ | + (p*-+ 1)I/2)2

These expressions may be transformed in many ways using (5) and (6) and gen-
eral results for higher powers in the denominators3may be obtained in the same way.

As an example of the way in which the above functions arise, we consider a semi-
infinite artificial transmission line with mid-series termination, in which the series
elements are inductances L and the shunt elements are condensers of capacity C
Suppose that all condensers are charged to unit potential, and that at time t—O0 the
line is discharged through the matching resistance \/{L/C)- Then if 10is the current
in the resistance, /,, that in the wth inductance L, and Cvnis the charge on the wth
condenser, applying the Laplace transformation method in the usual way we find that

(15)

IT\(”\ _ «C[(1 + PA Q12- t/O]'E .

; r=20,1 mee (16)
2501 + (1 + i2A 212

3The extension of (15) is trivial; for that of (13) the results needed are given in Chrystal, Textbook
oj algebra, 2nd ed., 1906, vol. 2, pp. 204-205.
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[+ ¢7012- Pla]™-’

L\vr\ = . r=12---, (17)
P p[l + L+ f/a2"2
where a = 2(Z,C)~12
It follows from (12) that

=1 Jitr— 3 h r ki@ T (2 — 1)/ & i) (18)
Ir = {C/LY'"i\ji,r,r{at) + JhrAat) - 2rJil\at)} (19)
h = (C/L)U2{Jio.i(at) + JioAat) - ~-1-} (20)

= -KC/i),/2{@1 + aH*)Ji0.i(at) - azA1+ /,(«/))+ al/Qaf)}, (21)

where (21) follows from (20) by integration by parts.
If the line is discharged into inductance \L and resistance \/(L/C) in series, the
solution follows from (14) in place of (12).

ON CERTAIN INTEGRALS IN THE THEORY OF
HEAT CONDUCTION*

By STEWART PATERSON (1.C.J. (Explosives) Limited, Stevenston, Scotland)

In a recent notelW. Horenstein evaluates the integrals

H=7" x~32exp N —--mr bAx'jdx, (D

P=J3" x~12exp N ---- —  bXjdx, (2

in terms of the tabulated exponential and error functions. The evaluation of the more

general integral, viz.
t
exp (— s2— iiZsdds

from which f>and are easily derived, was given by Riemann.2

Integrals of the above type arise in the solution by classical methods of various
heat conduction problems. It is the purpose of this note to point out that treatment
of many such problems by the Heaviside “operational” or equivalent Laplace trans-
form method leads directly and naturally to the required solution in tabulated func-
tions.

Thus, to take a simple case, the classical solution of

do_i d2
d 4 da2

e-"0o, /->0, €->1, a—>0+, ()

* Received Nov. 24, 1945,
1W. Horenstein, Quart. Appl. Math. 3, 183-134 (1945).
2B. Riemann, Partielle Differeniialgleichiin**C)i, 2nd ed., 1376, p. 173.
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(where 6 is a function of a and t) will be
6 = arr-l12¢
If, however,

6(a, p) = Jlo e~p'8(a, t)dt,

equations (3) transform into

s-e i
= 4(p + b-)6; 8§ —>—1 a—0 + 4)

da- p
which lead at once to
8 = p~lexp [—2a\/(p + £2]. ()
The inversion theorem for the Laplace transform then gives
1 n yH=
6 = | X1 exp X —2<iV(X + ¢2)]</X (6)
2IMJ yiq

along the usual contour.
By a series of obvious and natural steps,3it is easy to show that this is equal to

o Xt1exp [\t - 2(@a+ bt)\/\]Jd\H 7 X 1exp [\t - 2{a- bi)y/%\d\,
1J y'—ioo &TTi J yN—iec

2>} - erfivi+ivir)]+V [“merf(if ~ bs/i)

and it can be verified that this satisfies (3).

NOTE ON A FORMULA FOR THE SOLUTION OF AN
ARBITRARY ANALYTIC EQUATION*

By HERBERT E. SALZER (Mathematical Tables Project, New York City)

In a recent note D. R. Blaskett and IT. Schwerdtfegerlgive a fairly well known

expansion for a root a of the equation /(z) =0, as a power series in /(z0), where z0is
near a, namely,

VoL aw 3. @

where w denotes /(z).
Of use in connection with (1) is a paper by Van Orstrand, “Reversion of Power
Series,” Phil. Mag., (6) 19, 366-376 (1910). Van Orstrand’s article deals with the re-

3H. Jeffreys, Operational methods in mathematical physics, Cambridge, 1931, p. 70.
* Received January 26, 1946.

1This Quarterly 3, 266-268 (1945).
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version of the special type of power series y = aox+Gif£:+a2Xi+ me e+ to obtain g as
an integral power series in z=y/ao, whose coefficients are given as polynomials in
bi= —ai/ao, as far as the term involving zn. Now the explicit expansion for (1) in
terms of the derivatives off(z) at zOcan be written down immediately, as far as v= 13,
from Van Orstrand’s expansion on pp. 369-370, merely by

(A) replacing bt in his formula by — (<+1)(zo)/(i+1)!/*(z0),

(B) replacing his z by —#(z0)//'(z0), and

(C) adding the constant term z0.

The truth of the last statement is obvious from the fact that when (1) is applied
at the origin it yields Van Orstrand’s expansion and from the uniqueness of Van
Orstrand’s expansion.

A NOTE ON THE CORRECTION OF GEIGER
MULLER COUNTER DATA*

By H. B. MANN (Ohio State University)

The correction of Geiger Miller Counter data has been considered in a previous
paper by J. D. Kurbatov and the author.1l According to the model described there
the following result was proved: If the density of radiation is a constant a and if r
denotes the resolving time, B{T) the number of discharges during the time T; then

B{T) = + v, 0)
1+ 0T
where tj is given by
= —af f(t)dt 2
JO
and i(0 satisfies the conditions
t{t) = —a f e(x)dx for t~ «,
J ot—T (3)
ar
e(t) = 1—e-“1 for 0g I~
1+ ar

It was further shown that for ar<I.

{arY
[1- (ar)*+1],
1—(ar)2
where s is the largest integer not larger than - ;..  In this paper an upper bound for
| 71 will be derived without the restriction ar<I|. We shall prove the following in-

equality:

* Received May 29, 1946.
1J. D. Kurbatov and H. B. Mann, A correction for Geiger Muller counter data, Phys. Rev. 68, 40-43

(1945).
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Let [tf] denote the largest integer not larger than .v; then

I I or
lv(T) I g (2eal—1) +
1+ Qt

fi2 i\
' rET . rLLr'Jr) (1 - e--)Imer @

1+

Proof of the inequality (4). From (3) we sec that t(t) is a continuous function of t.
Applying the mean value theorem to (3) we have

t(t) = - are(l*), - r5t~g [

Hence «(/) changes its sign at least once in every open interval of length r and will
therefore be 0 at least once in every such interval. Hence we have

Proposition 1. In every open interval of length t there is at least one point for which
e(/)=0.

Differentiating (3) with respect to t we obtain
t'(/) = at(t —t) — ae(t). ©)

In the interval 7gigH -r Eq. (5) may be considered as a differential equation for
e(t) with the initial condition that its solution be equal to tit) at the point t. Solving
(5) with this initial condition we have, for tgigi+r,

(6)

Let M(l) be the maximum of the absolute value of e(/) in the interval [/.—r, /], then
&) o + e~alM(i)(e™ —e®) —M@) for lg /g /+r (7)
From (7) it follows that |e(/)] g M for t~L Hence we have
Proposition 2. If |«(/)| gilffor I—r g/ ¢7, then |e(/)] g M fort™~t —r.
If e(J)= 0 then we obtain from (6)
le()] g9 g M(N(1- eT for ®)
From (8) and Proposition 2 follows

Proposition 3. If 6(7)=0 and |e(0| = 3/ for 7—7g/gf, then |e(/)| g Af(l —~Q)
for t~ |

According to proposition (1) we have in the interval ar”~/i(a+1)T at least one
point ta for which e(/a) =0.
Consider the points I\, t3 mmm, tiH+. If M is the maximum of |e(/)] in Og/gr
we must have, according to Propositions 1, 2, and 3,
l«(N1& M for 0g /g tu
le) | g M(Q - c~an for [/, g /g /3

leM)\g M{\ —e ak for ‘'tu-1" tg /[*+!
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Hence
rT «rime
vi = —a | e(x)dx T. e(ar) —a | t(x)dx
Jo a-1 s [ty
N AF+ 2AF(1 - eor) + 21/(1 - e-")2+ eeo+ fI/NT’- N (1 - e~al(r/2rl
All(2et - 1)+ T 1 —e "niri2rl

From (3) it can be seen that M =ar/ (1+ «+) and (4) follows.

The inequality (4) is very satisfactory and shows that even for large values of ar
the quantity t will be very small compared to 0.7Y(l+<zt) even if T is only a few
minutes.

CORRECTIONS TO OUR PAPER

STABILITY OF COLUMNS AND STRINGS UNDER
PERIODICALLY VARYING FORCES*

Quarterly of Applied Mathematics, 3, 215-236 (1943)
By S. LUBKIN anda J. J. STOKER (New York University)

The following errors were found in the tables printed on pp. 232-235.

\aC) for read ‘a(C ) for read
0 0
1.6 -0.77898 -0.77897 3.6 -2.32402 -2.32401
1.8 -0.92281 -0.92282
7.6 -5.71537 -5.71538
9.2 -7.11974 -7.11975
\ a(sd
0\ for read 0 for read
0.8 0.55906 0.55406 3.8 -0.00468 -0.00464
1.4 0.63015 0.63016 6.8 -1.60383 -1.60379
4.4 -0.29781 -0.29780 8.4 -2.58478 -2.58477
7.6 -2.08644 -2.08648
11.0 -4.29436 -4.29437
\e(Co for read Ve (G) for read
0 \ 0 \
0.6 1.12806 1.12810 0.6 2.26622 2.26621
3.4 2.01478 2.01477 1.0 2.28515 2.28516
20.0 -5.05198 -5.05199 2.2 2.31495 2.31493
2.8 2.29660 2.29661
5.6 1.85589 1.85591

* Received Aug. 16, 1946.
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\ « (A )

A for read 2 for read
1.6 2.51308 2.51309 1.6 4.07660 4.07659
2.0 2.66777 2.66776 1.8 4.09433 4.09432
3.8 3.46578 3.46579 2.4 4.15212 4.15211
4.4 3.69216 3.69215 2.6 4.17199 4.17200
5.6 4.01149 4.01150 12.0 3.38817 3.38820

\a (G )

2 for read A\ for read
1.6 4.09776 4.09777 16.0 6.52721 6.52709
2.4 4.24889 4.24891
2.8 4.35867 4.35865
4.8 5.18127 5.18128
6.0 5.74803 5.74303

Column headings for a (5s) and a(Ss) are interchanged on p. 234.

«(Se)

" for read 8 \ for read
0.4 6.25333 6.25334 3.8 9.20714 9.20713
2.2 6.35487 6.35488 5.2 9.38281 9.38279
3.2 6.48591 6.48590 16.0 10.59848 10.59849
4.8 6.86185 6.86180 20.0 10.35813 10.35825
5.2 6.99394 6.99396
5.6 7.14093 7.14116

20.0 10.33749 10.33744

BOOK REVIEWS

Theory of Structures. By S. Timoshenko and D. H. Young. McGraw-Hill Book Com-
pany, Inc., New York and London, 1945. xiv+488 pp. §5.00.

This valuable addition to text-book literature is based on the senior author’s earlier volume, pub-
lished in Russia in 1926 (S. Timoshenko, Theory of Structures, Leningrad). The book is intended for engi-
neering students with some background in mechanics. The keynote of this book is that familiarity with
the general principles of mechanics is indispensable to a thorough understanding of the analysis of stresses
in trusses and frames. For this reason two of the nine chapters are devoted to a comprehensive recapitula-
tion of the rudiments of plane statics and of such general theorems on elastic systems as the Principle of
Least Work, Castigliano’s Theorem, Maxwell’s Reciprocal Theorem, etc.

As one would expect from the authors, the book is very clearly written. It abounds in carefully con-
structed figures and diagrams, and contains a wealth of well-graded problems.

The chapter headings are as follows: Elements of Plane Statics, Statically Determinate Plane Trusses,
Influence Lines, Statically Determinate Space Structures, General Theorems Relating to Elastic Sys-
tems, Deflection of Pin-jointed Trusses, Statically Indeterminate Pin-jointed Trusses, Beamsand Frames,
Arches.

This book will be of considerable interest to structural engineers and will be welcomed by the teachers

of mechanics and theory' of structures.
I. S. SOKOLNIKOFF
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Table of arc sin x. Prepared by the Mathematical Tables Project conducted under
the sponsorship of the National Bureau of Standards. Official Sponsor: Lyman J.
Briggs. Project Director: Arnold N. Lowan. Columbia University Press, New
York, 1945. xix+121 pp. $3.50.

The main tables give the values of arc sin x to twelve decimal places, the intervals of the argument
being .0001 in the range between 0 and .9890, and .00001 in the range between .98900 and unity. To
facilitate interpolation the second (and, wherever necessary, the fourth) differences are tabulated, and
auxiliary tables are given for the coefficients in the interpolation formulas of Newton-Gregory and
Everett. For values of x exceeding 0.99950, interpolation by means of differences becomes unsatisfactory'.
For such values of x the use of the formula arc sin(l —v) =ir/2—(v)\/2v is recommended, and f(v)
= 14-i;/12+3t>2160+5i/3896+ <« « is tabulated (with first and second differences) to thirteen decimal
places at intervals of .00001 in the range from 0 to 0.00050.

W. Prager

Network Analysis and Feedback Amplifier Design. By Hendrick W. Bode. D. Van
Nostrand Company, Inc., New York, 1945, xii+ 551 pp. $7.50.

This book is concerned with a complete exposition of electrical circuit theory, the properties and de-
sign of feedback amplifiers, non-feedback amplifiers, and the discussion of certain problems of wide band
transmission. A great deal of the material presented in this book has not appeared before in text book
form.

The book is divided into nineteen chapters. The first two chapters are devoted to the presentation
of the fundamental principles of linear, passive, electrical circuits and to a formulation of the fundamental
equations of these circuits from the mesh and nodal standpoints. The response of linear circuits to driving
functions of the exponential type is considered and the very useful concept of the complex frequency plane
in the study of the properties of linear circuits is introduced.

In the next four chapters, the basic principles and theorems of feedback are considered in detail. A
thorough discussion of stability, physical realizability, contour integration, Nyquist’s criterion for stabil-
ity, and the physical representation of driving point impedance functions, occupies a central position in
the book. The remaining chapters are devoted to the design of impedance functions, equalizers, inter-
stage networks, single loop amplifiers, single loop feedback amplifiers, and a discussion of the relations
between the real and imaginary components of network functions.

From a mathematical standpoint, the material presented in this book is a beautiful example of the
power and utility of the application of the fundamental theorems of the complex variable to a most im-
portant physical problem. Since the subject of network analysis and synthesis is of such great importance
not only' in itself but also because it serves as a model for the analysis of mechanical and acoustical sys-
tems, the excellent original analysis of the problem presented by' Dr. Bode in this book is a great contribu-

tion to the field of applied mathematics.
Lotus A. Pipes
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