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AFTER SIX YEARS OF WAR

After an interval of six  years the Polish  Physical Society resum es 
its activities aim ing, as before the W ar, at the encouragem ent of 
physical research in this country. ACTA PHYSICA POLONICA, the 
Society’s official organ, are .called again to existence.

On the threshold of this new  period  w e should  realize w hat 
losses the sc ien ce o f physics had to suffer in Poland during the m ost 
terrible of all w ars in w hich  this country ever took part. In the first 
place w e should consider death’s h eavy  toll taken from  am ong  
scientific workers, all the m ore regrettable, _ as in m any cases they  
w ere victim s of furious brutality o>f the enem y, who. striving for the  
total destruction of the P olish  nation persecuted our m ost em inent 
m en w ith particular vehem ence.

H ere is the list o f  m em bers of the P olish  Physical Society and  
other P olish  physicists deceased  since the outbreak of the W ar.

Edw ard B e k i e r, professor of physical chem istry, Stephen Ba- 
thory U niversity, W ilno, died in W ilno, 1945.

M ieczysław C e n t m e r s z w e r ,  professor of physical chem istry, 
first in  Riga, later in W arsaw , a  prom inent representative o f that 
branch of science, author o f m any scientific w orks and  several h and 
books, active m em ber o f the P olish  A cadem y of Science and Letters; 
has been  assassinated in W arsaw  on July 27, 1944.

Jan C i c h o c k i ,  Ph. D., assistant at the university  of Poznań, 
lately at the Institute of E xperim ental P hysics o f the U niversity of 
W arsaw , had w orked  in  Paris w ith Prof. J. P e r r i n  and M. d e 
B r o g l  ie ;  in  the last years before the W ar he w orked  on  problem s 
of nuclear physics.

Bernard C z e m p l i k ,  Ph. D., lecturer in physics at the Polish  
M edical D epartm ent in Edinburgh, died in autum n 1944.

Ludw ik D ą b r o w s k i ,  M. Phys., assistant at the U niversity  
of W ilno , pupil and collaborator of the late Prof. J. P a t k o w s k i ,  
published papers on band spectra, for a tim e w orked at K atow ice in 
the Silesian D epartm ent o f the P olish  Bureau of Standards.

A leksander D m o c h o w s k i ,  an em inent teacher, director of 
the Physical L aboratory for Secondary Schools in W ilno, author of 
m any excellent text-books, editor of the quaterly review  «Physics 
and Chem istry at School».
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Stanisław  D o b i ń sik i, Ph. D., lecturer (docent) in experim ental 
physics at the Jagellonian U niversity in Cracow and the U niversity  
of Poznań, bad w orked  w ith Prof. Sir George T h o m s o n  in  L ondon, 
published papers on different topiics especially oin diffraction of 
electrons and structure of m etallic surfaces; as an officer o f the Army 
R eserve, he died of his w ounds received  in the first days o f the W ar  
in the defense of W arsaw .

D obiesław  D o b o r z y ń s k i ,  Ph. D., lecturer (docent) in  ex
perim ental physics at d ie Jagellonian U niversity in Cracow, w orked  
on the polarization  of dielectric m edia, later, after studies under Prof. 
W . H. K e e s o m  at L eyden, also specialized in low  tem peratures; 
took part in the W ar as an officer of the Army Reserve, was arrested  
first in  the fam ous man-trap arranged by the Germans against the 
Cracow professors in N ovem ber 1939; in 1942 he was arrested once  
m ore, condem ned to death, and executed.

Gustaw D o b o r z y ń s k i ,  Ph. D., teacher o f m athem atics and  
physics in  W arsaw .

Jadwiga F a l k o w s k  a, teacher of physics at the fam ous lyceum  
at K rzem ieniec, form erly assistant at the Physical Institute of the 
Stephen B athory U niversity, W ilno.

H enryk H e r s z f i n k i e 1, Pli. D., callaborator o f the late Prof. 
L. W e r  t e n s  t e i n  in  W arsaw , w orked  on radioactivity.

Lejb Daw id H e r s z m a n ,  M. Rhys., assistant to Prof. H. N i e 
w o d n i c z a ń s k i  at the Stephen Bathory U niversity at W ilno, com - 
m ited su icide in the German established  Ghetto in W ilno , 1941.

Józef H r y n k i e w  i c z, M. Phys., teacher of physics in the Sigis- 
m und August L yceum  in W ilno, form erly assistant at the Physical 
Institute of the Stephen B athory U niversity, W ilno , died 1944.

Stanisław  K a l a n d  y k, professor o f experim ental physics at the 
Faculty of M edicine of the Poznań U niversity, had w orked  in  the 
Cavendish Laboratory under J. J. T h o  m s o n; m ost of h is publication  
concern the properties of ions and electrons in  gases as w ell as divers 
phenom ena associated  w ith  explosions; has been  assasinated by the 
G ermans at Poznań in the first days o f the W ar.

A ntoni K a r p o w i c z ,  Ph. D., form erly assistant to Prof. S. 
K a l i n o w s k i  at the High T echnical School, W arsaw .

L eon  K i e c k i ,  teacher of physics at the french lyceum  in W ar
saw , a pupil of K u n d t ;  am ong other w orks he also w rote an essay  
on the late Prof. L. N ,a t a n s o  n.

Kamil K r a f  t, Ph. D., M. D., physicist and physician, published  
papers on  relativity and optics, his paper on an interference-colour  
scale is often  quoted. D ied in Cracow, 1945.
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Juda K r e i s l e r ,  Ph. D., assistant to Prot. W . R u b i n o w i c z  
at the John Casimir U niversity, L w ów .

Stefan K r e u t z ,  professor o f  m ineralogy at the Jagellonian  
U niversity, Cracow, active m em ber of the P olish  Academ y of Science  
and Letters, d ied  in 1941.

Tadeusz K u c z y ń s k i ,  professor o f physical chem istry at the 
High T echnical School, L w ów , m urdered by the Germ ans in  1941.

Hilary L a c h  s, professor of physical chem istry at the Free  
U niversity, W arsaw .

Andrzej Ł a s t o w i e c k i ,  Ph. D., assistant do Prof. S. L  o r i a 
at the John Casimir U niversity, Lwów.

M yron M a t h i s s o n ,  Ph. D., lecturer (docent) in natural p h ilo 
sophy at the U niversity of W arsaw , author of w orks on relativity and 
quantum m echanics, died in Cambridge, 1940.

Tadeusz M o d z e l e w s k i 1, electrical eng:"eer, assassinated by 
the Germans during the W arsaw  Insurection, 1944.

T adeusz N a y d e r ,  Ph. D., teacher o f physics at the School of 
Industry, Cracow, form erly  assistant at the P hysical Laboratory of 
the Jagellonian U niversity, Cracow, author o f som e experim ental 
works, died in Cracow, 1945.

Józef P a t k o w s k i ,  professor of experim ental physics at the 
Stephen B athory U niversity, W ilno , author o f w orks on  radioactivity  
as w ell as on band spectra (isotope effect); the latter w ere partly  
executed  at N ew castle in  collaboration  w ith Prof. W . E. C u r t i s s ;  
the last years before the W ar he filled  the post o f d irector o f the  
D epartm ent o f Science, Letters and Academ ic Schools in  the M inistry  
of Education; fell a victim  o f an air-bom bardm ent o f W arsaw , Sep
tem ber, 1943.

Stanisław  P i 1 a t, professor of technology of fluid fuels at the 
High Technical School, L w ów , m urdered by  the Germans in 1941.

M ieczysław P o ż a r y s k i ,  professor o f electrical technology at 
the High T echnical School, W arsaw .

Antoni P r z e b o r s k i ,  Ph. D., published som e experim ental 
works on m olecular spectra.

A ntoni R a a b e ,  M. Phys., collaborated  w ith  Prof. J. W e y s s e  n- 
h o  f f during the W ar. Captuired in a m an-hunt in the streets o f Cra
cow , d ied  in the concentration  cam p o f O święcim , 1942.

Irena R a m m, n é e  M a  n t  e u f f e 1, M. Phys., for a tim e assistant 
at the Institute of Experim ental, P hysics o f  the W arsaw  U niversity, 
w orked  on X-rays analysis in  W arsaw , later in  Paris under Mme 
C u r i e  on  radioactivity.
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Zofia R o t s z a j n, Ph. D., form erly teacher of physics in sec
ondary schools in W arsaw.

A leksander S i k o r a ,  M. Phys., pupil and assistant of Prof. S. 
P i e ń k o w s k i ,  U niversity o f  W arsaw , killed at Katyń.

Ireneusz Ś 1 u s a r c z y k, M. Phys., pupil and for a Lime assistant 
of Prof. S. P i e ń k o  w  s k i, U niversity of W arsaw , worked afterwards 
in  the State M eteorological Institute and published papers on m eteoro
logy; died in Lhe concentration cam p of Majdanek.

Zdzisław S p e c h t, Phil. D., assistant to Prof. S. L o r i a at the 
John Casimir U niversity, L w ów , died in 1943.

Oskar S t e 1 m  a n, assistant to Prof. M. G r o t o w s k i  at the  
Free U niversity, W arsaw .

L eon S t ę p i ń s k i ,  teacher of physics and chem istry in  second 
ary schools, W ilno.

Karol S z 1 e n k e r, Ph. D., pupil of W . R o e n t g e n ,  specialized  
in  optics, assassinated by the Germ ans during the W arsaw  Insurection, 
1944.

W itold  T r y  1 s k i ,  M. Phys., hanged by the Germans in W arsaw  
in 1943 as one o f fifty hostages.

Tadeusz T  u c h o 1 s k i, Ph. D., lecturer (docent) in chem istry  
of explosives at the High Technical School, W arsaw , pupil and col
laborator of the late Prof. S. K a l a n d y k ,  U niversity of Poznań; 
1934/35 w orked  with Prof. R i d e a 1 in the Departm ent o f Colloid  
Science in Cambridge o n  deuterium ; took part in  the cam paign of 
1939 as o fficer of. the Army Reserve, killed at Katyń.

L udw ik  W e r t e n s t e i n ,  professor o f physics alt the Free 
U niversity in W arsaw  and Łódź, d irector o f the R adiological L abo
ratory of the W arsaw  Scientific Society, pupil of Mrne C u r i e ,  
also w orked ‘ w ith Lord R u t h e r f o r d  in Cambridge, published  
m any scientific .works m ainly o.n natural and artificial radio
activity; a prom inent teacher, he was also a g if te d ' writer of 
popular books o n  scientific topics; having translated into Polish  Mine 
C u r i e ’s «Radioactivity» h e  supplem ented it w ith  a valuable appendix  
w ritten by him self. K illed on January 18, 1945 by a shell splinter in 
Budapest, w here he had taken refuge from German persecutions in 
Poland.

Bruno W i n a w e  r, Ph. D., pupil of P. L e n a r d ,  som etim e  
assistant to Prof. J. K o w a 1 s k i, U niversity o f W arsaw , distinguished  
Polish  com edian, w h o se  plays have been translated into  m any lan
guages, h e  w as also w ell know n as speaker by radio and w riter of 
popular articles on scientific topics.



M ojsiej Ż y w , Pli. D., collaborator of the late Prof. L. W e  r- 
t e n s t e i n. P ublished w orks on radioactivity; together w ith  Danysz

17
h e d iscovered  R adiofluorine ( g F ) ,  perished at the slaughter of the 

W arsaw  Ghetto, 1943.
*

*  *

The above brief m entions cannot give but an inadequate picture 
of the im portance of our losses. The works of m any m em bers of our 
Society w hose nam es appears on this list deserve fuller appreciation. 
T heir m erits w ill be better considered in com m em orative notes to 
appear later.

Besides personal losses also the damage to scientific equipm ent 
is enorm ous. Of all Polish  physical institutions w hich  w ere w orking  
before the W ar the follow ing are deem ed to exist, though as a matter 
of fact their existence in  m any cases is m ore nom inal than real. 
(1) W arsaw : The Institute of Experim ental Physics of the U niver
sity, the E xperim ental L aboratory under the supervision  o f the pro
fessor of natural philosophy, two physical institutes o f the High 
T echnical School, the R adiological Laboratory of the. W arsaw  Scien
tific Society, and the G eophysical Observatory at Świder. (2) Cracow: 
T he Physical Institute of the Jagellonian U niversity and the 
Physical Institute of the M ining Academ y. The Physical Institute 
of Ibe Jagellonian U niversity — founded at the end of the XVIII-tli 
century — is the m ost ancient physical institution in Poland and 
has been rendered fam ous in the past by m en like Zygmunt W  r ci
b l e  w  s k i, August W  i t k o  w  s k i and Marian S m o l u c h o w s k i .
(3) Poznan: Three physical institutes, of w hich two belong to the 
Faculty of. Science, the third to the Faculty of M edicine of the 
U niversity of Poznań.

T he best equipped of the above was the excellen tly  appointed  
Institute of E xperim ental Physics of the W arsaw  U niversity, from  
which a great num ber o f w orks — chiefly  concern ing m olecular  
optics — appeared during the twenty years preceding the W ar. In the 
field of pholo lum inescence the Institute enjoyed w orld-w ide renow n. 
N ow , it has practically ceased  to exist. Only the building rem ains, but 
it requires im portant renovation. All the precious apparatus and 
instrum ents have been  robbed by the Germans.

T he laboratory associated with the chair of natural philosophy  
has been  com pletely burnt down. Other W arsaw  laboratories as well 
as both institutions in Cracow have also  been badly devastated; 
nothing or scarcely anything of their pre-w ar belongings has rem ained.
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T he Institute of the Jagellonian U niversity in Cracow succeded in  
saving its valuable co llection  o f books.

It is clear that in th e present position all activities shall have  
to concentrate on teaching and organization, w hereas research w ork  
shall have for' a lim e to be restrained from  alm ost com pletely. One 
m ust also .reckon w ith the fact that not only purely scientific insti
tutions have been h eavily  damaged, but also the m anufacture of 
products indispensable for experim ental investigation has badly su f
fered. T he chem ical, optical, and electrical industries as w ell as 
ordinary m echanical w orkshops are in a state of utter devastation, 
and besides they cannot get supplies of the m ost im portant m aterials.

All those difficulties and hindrances shall not discourage us. W e  
shall spare no effort tow ards the restitution of conditions required  
for the norm al developm ent of physics in this contry. Science in  
P oland  had already passed through m any a difficult crisis and every  
tim e succeed ed  to em erge to a new  and m ore successful existence. 
W e firm ly believe that n ow  again w e shall m anage to  attain our goal, 
if w e only get due help (w hich  w as m any times prom ised) either in  
the form  of indem nities or in friendly loans or  gifts from  abroad. 
A certain quantity of books has been  already gladly received. W e hope  
that the present will contribute to the conviction  that the help w ill 
not be wasted.

Cracow, May 1945. K o n s t a n t y  Z a k r z e w s k i

W e regret <to announce the follow ing deaths of m em bers of the 
Polish  Physical Society since May 1945:

Mr. Leon Ć w i k l i ń s k i ,  M. Phys., assistant at the physical 
laboratory of the M ining Academ y, Cracow, on January 2, 1946.

Prof. Tadeusz P ę c z a 1 s k i, professor of natural ph ilosophy in  
the U niversity of Poznań, died in Paris on February 2, 1947.

P rof. Stanisław  K a l i n o w s k i ,  professor of physics at the High 
T echnical School, W arsaw , director of the G eophysical O bservatory 
at Świder, honorary m em ber of the W arsaw  Museum of Industry and 
Agriculture, on March 27, 1946.

Dr. Józef L u  b a ń s lei, assistant in the aerodynam ical laboratory  
of Prof. J. M. B u r g e r s  at Utrecht, on D ecem ber 11, 1946.

Mrs. Maria M ą c z y ń  s k a ,  n é e  M O r a c z e w s k a ,  M. Phys., 
som etim e assistant at the Institute of Experim ental Physics of the 
U niversity of-W arsaw , on  D ecem ber 24, 1946.
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RELATIVISTIC DYNAMICS OF SPIN-FLUIDS AND 
SPIN-PARTICLES *

By Jan W EYSSENH O FF and A. RAABE f ,  Institute of Theoretical 
Physics, Jagellonian U niversity, K raków **

1. F ollow ing up a train of thought inaugurated, by E i n s t e i n  
and G r o m e r ,  M a t h i s s o n  ( 1 ,  1937) and L u b a ń s k i  ( 2 ,  1 9 3 7 )  

deduced th e  equation of m otion  o f  a m aterial particle endow ed  w ith  
spin from  the general principles of the theory of relativity. E ven for 
a free particle in G alileian dom ains these equations do not coincide  
w ith the N ew tonian  laws of m otion; there rem ains an additional term  
depending on  the internal angular m om entum  or spin o f the particle, 
w hich  raises the order of these differential equations to three. 
M a t h i s s o n  did not n o tice  the fact that for th e above conditions 
his equations are equivalent to the equations w hich  w ere previously  
found by F r e n k e l  ( 3 ,  1 9 2 6 )  for a sp inning electron  (if-o n ly  their 
term s depending on the electrom agnetic field  are dropped). This is 
all the m ore excusable as F r e n k e l  considered  throughout the  
additional term  in his equations as an infin itely  sm all perturbation, 
and did not even  m ention  the fact that they disagree w ith  N ew ton’s 
First Law  for a free particle.

In the present paper w e give a third m ethod of obtaining  
the sam e equations by establishing first the laws of the dynam ics of 
an incoherent spin-fluid and passing then to the lim it. Strictly 
speaking, w e obtain different and m uch sim pler equations, w hich  
prove h ow ever to he equivalent to F r e n k e l ’s and M a t h i s s o n ’s. 
T he sim plification  is due to the explicit introduction of the 4-vector 
of linear m onum entum  and energy G“.

’ P resen ted  at a m eetin g  o f  the C racow  S ection  o f  the P olish  P h ysica l 
S o c ie ty  on F ebruary  28, 1945. T he main con ten ts o f  th is paper and the next 
one, as w ell as m ost o f  the resu lts o f  th e th ree fo llow in g , w ere  a subject o f  
a le c tu re  at a se cre t m eetin g  o f  p h y s ic is ts  at Prof. P i e i b k o w s k i ’s hom e in 
W arsaw , O ctober 1942.

** Mr. R a a b e  w a s a h igh ly  g ifted  you n g  p h y sic is t w ith  w h om  I outlined  
in all its m ain featu res the con ten ts o f  th is paper and the n ext on e in 1940/41 
in L w ów . W e tried  to p u rsu e ou r w ork  in  1942 in C racow , but unfortun ately  
in June 1942 Mr. R a a b e  fell v ic tim  o f  a m an-hunt in  the stree ts  o f  C racow ; he  
died  four m on ths la ter in th e  Germ an con cen tra tion  cam p o f  O św ięcim . (J. W .)
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In Sections 2 —4 w e develop the dynam ics of a  spin-fluid by  
a m ethod sim ilar to that usually applied in the reliativistic dynam ics 
of incoherent m atter (w ithout internal angular m om entum ), the main  
difference consisting dn the assum ed .asymmetry of the energy tensor  
T«15. In Section  5 w e obtain the Frenkel-M athisson equations by 
integrating the equations of m otion  of a  spin-fluid over an infinitely  
sm all c lem en t of volum e. In Section 6 w e show  that the m ost general 
m otion  o f  a free spin-partiele in G alileian dom ains, w here the special 
theory of relativity prevails, is a  relativistic superposition  of a trans
lation and a uniform  circular m otion . M a t h i s s o n  proved the sam e  
result for the non-relastivistic case only. F inally, in Section 7 we 
w rite down ithe equations o f  m otion of a spin-partiele w ith  an electric  
charge .and a m agnetic m om ent m oving in  an electrom agnetic field.

2. W e base the dynam ics of a spin-fluid  in the special theory of 
relativity on two fundam ental principles: the principle o f conservation  
of energy and linear m onum entum , and the principle o f conservation  
of angular m om entum . By spin-flu id  w e m ean a fluid each elem ent of 
w hich  possesses besides energy and linear m om entum  also a certain  
am ount of angular m om entum , proportional — just as the energy and  
the linear m om entum  — to the volum e of the elem ent.

W e represent the density o f angular m om entum  per unit rest- 
v o lu m e 1 by the four-dim ensional biveotor (antisym m etric tensor of 
rank tw o) s *̂ . Its three space com ponents form a three-dim ensional 
vector

s = { s 23, s31, s 12} (1)

equal in the coordinate system  in  w h ich  the fluid m om entary rests 
to the three-dim ensional density of angular m om entum . Its three 
space-tim e com ponents form  also a three-dim ensional vector, w hich  
w e shall denote by

q =  {s 14, s24, s34}. (1 ’)

W e shall assum e that this vecor vanishes in the rest-system  20 of the 
fluid. T he four-dim ensional tensor expression  of that condition  i s !

sa? up =  o, (2)

1 The element of rest-volume d V„ is defined as the element of the three- 
dimensional orthogonal cross-section of a world-tubc. Multiplied by (c and) the 
element of proper time along this world-tube, r, it yields the four-dimensional 
element of volume dQ =  dx 'd x 2dxsdx* =  d Vd x 4 =  cdV dt — cdV0 dr. Hence, 
u* — d t/d  tt — 1/Yl — p» =  dV0/dV, where |3 =  v/c.

2 With regard to the notations used, we observe what follows. Greek indices 
take the values 1 to 4, latin 1 to 3. Zero is never used, as a lensorial index, as
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as uk =  o in  20> and o f the fourfold  s,um there rem ains only the 
term  su u4, the vanish ing of w hich  yields s i‘1 =  qi =  o.

The vectors s and q transform  in the sam e m anner as the 
m agnetic and electric field  intensities, or the m agnetic and electric  
dipole m om ents. T he condition (2) for a m agneto-electric m om ent 
am ounts to the condition thait this m om ent should be «purely m a
gnetic», i. e., that its electric com ponent should  vanish in  the coordi- 
nate-system  in w hich  the elem ent of volum e is m om entary at rest.

W e m ay also w rite equation (2) in three-dim ensional vector  
form , as follow s:

q = i - v x s ,  (2')

the fourth equation q • v =  o being a consequence thereof.
W e express now  the law  of conservation  of energy and m o

m entum  in the fam iliar form

3pT«f5 =  o, (3)

w here T**3 is the m om entum -energy tensor. H ow ever, in contra
distinction to what has been  done hitherto, w e do not assum e the 
sym m etry of the tensor TaS, as this sym m etry — as w ill be presently  
show n — is equivalent to the vanish ing o f the intrinsic angular m o
m entum  s“*3. Instead of w riting T a*3 =  p0uau  ̂as usual for incoherent 
matter, w e  put m ore generally

T*P =  g4 uP, (4)

w here g a is the four-vector of the proper density of linear m om entum

it  is reserved lor special uses, e. g. for labelling quantities in the rest system
(or else for initial values, etc.). Letters with a circumflex accent are used to
denote three-dimensional vectors (the circumflex accent is less used than the
horizontal arrow, but it is more convenient in print as well as in writing; it
may be conceived as an arrow pointing upwards). da is short for 3/2xa. The 
signature of the M i n k o w s k i  space is taken to be-|—|—|— , i.e. gu =  g2> =  gs3 =  l, 
g4« =  — 1, gctp =  0 (a =¡3); consequently raising and lowering of the index 4 changes 
the sign. x * = ct, ds?=  — c2dT2, dt is the element of the proper time along the 
world-line of matter; u “ =  dx°/d ' is the four-dimensional velocity. As far as 
possible we follow the general rule that all the components of any four-dimen
sional tensor should have the same dimension, this dimension being also the same 
as that of the three-dimensional quantity after which the tensor has been called. 
Thus all the four-dimensional formulae become as similar as possible to the 
corresponding three-dimensional ones, and wherever c has been put equal to 1 
to make calculations easier, it is quite simple to restore it on dimensional homo
geneity grounds. See also reference (’).
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T°? = (5)

and energy . 3 Of course, w e  do not postulate a  p r i o r i  that g* is pa
rallel to u“.

Taking into account the 'relation betw een the com ponents of g“ 
and of the three-dim ensional density  of linear m om entum  g = { g1,g 2,g3}, 
w e m ay w rite

gi vk ; eg 

cp.v ;c2 p.

Inserting (5) in  (3), w e get the fam ilar equations expressing  
the conservation  of linear m om entum  and energy in the relativistic  
dynam ics o f continuous m edia.

It seem s w orth  m entioning that (a) w e assum e (3) but not 
oaT“'°J =  o, a relation w hich  is identical w ith (3) in  the case of a sy m 
m etric T af5, and (b), by interpreting v in  (5) as representing the velocity  
of the fluid, w e assum e that the energy does not flow  in the res't- 
system  o f the fluid.

3. B efore proceeding further, w e shall put the equations (3) and
( 4 ) ’ together into a n ew  form. In the non-relativistic dynam ics of 
continuous m edia two different differentiations w ith  respect to the 
tim e are used in addition to the «local d ifferentiation», a. e. th e dif
ferentiation  w ith respect to  the tim e at constant x, y, z, w h ich  w e shall 
denote by T hese two additional differentiations are defined  as 
follow s:

dtf =  c>tf — v k2uf, f =  f ( x ,y ,z ) ,  (6)

D l f =  d lf +  f c \v k =  3tf +  3k(fv k). (7)

T he first, w h ich  is in  moire com m on use, is the derivative at constant
Langrage coordinates; som etim es it is called «substantial derivative»
or tim e derivative «follow ing the particle». T he second  m ight be called  
«time derivative for densities»; it possesses the follow ing caracteristic  
property

d t (fdV ) =  (D tf)d V , (8)
that is

d , / f d V = / ( D , f ) d V .  (8')

3 The three-dimensional density of linear momentum g =  {TM}/cis defined 
as the momentum per unit volume in the coordinate system of interest, whereas
ga (=[j.0ua in spinless dynamics) is taken per unit of rest volume. Therefore 
ga =  Vl — ¡5* jg | w/c}, where w =  pc2 is the density of energy and ¡a the density 
of matter. As the four-dimensional velocity ua ={v | c}/V 1 — ¡3!, it follows that 
g'uk =  g'vk. The well known formula =  — P*)i which is an immediate con
sequence of the relation gaua =  inv., gives the relation between ^and the proper 
density of matter g,,.
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W e n o w  define two analogous operators in the M inkowski 
space M4:

dt f =  f =  uvPvf, f =  (x', x 2 x 3, x*), (9)

DTf =  d-f -|- fPvuv =  Pv(fuv). (10)

The first one reduces to tire usual derivative w ith  respect to the proper
tim e x if w e define a new  function f(x) taking the sam e values
as f(x a) on the w orld -line o f  the particle; w e shall denote it also by  
a dot over the letter. The derivative defined in (10) appears in the 
fo llow ing four-dim ensional formula,* analogous to the three-dim en
sional form ula (8):

d T (f d Q) =  (D .f) d Q, (11)

w here d Q is the four-dim ensoinal elem ent of volum e dx1 dx* dx3 dx*. 
By expressing dQ as a product of the elem ent of proper time dx and 
the elem ent of proper volum e dV0 w e get from (11) a new  form ula, 
w hich  w e shall need in section  5,

dT (f d V0) =  (D -f) d V0. (12)

It can be verified w ithout trouble that

D t9i== D .g'. (13)

W e are now  in position to w rite down the equations (3) in the 
n ew  form . As

5pT ^ = 3 ? (g*uP) =  D ^ ,  (14)

w e m ay write instead of (3)

(15)D -ga= o .

This form  is w ell suited to im m ediate integration (over a suffi
ciently sm all vo lum e of the spin-fluid).

4. In the relativistic dynam ics w ithout internal spin there exist 
besides the 4 fundam ental equations (3) 6 relations Ti ‘3 =  TI3b, w hich

4 In analogy with the three-dimensional case this formula may be deduced
c) x'̂ j X̂j X4)

by transforming the proper-time derivative of the Jacobian g ^

where S', 5*, S3 are the Lagrange coordinates characterizing the individual 
.world lines of matter, and I4 is an arbitrary parameter along those lines. The 
situation in the Minkowski four-dimensional space is analogous to the case 
of stationary flow in Euclidean space. To emphasize this analogy still further 
one has to write x® =  x® (?», S3, i3, 5* +  '), u® =  Px®/Pt (5s =  const), but the argu
ment may be also carried through with the notations xa =  x® (5‘, Ss, 53, r), 
u® =  Px®/ Pt (5k =  const).
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express the sym m etry of the energy tensor T “P. In the case of lack 
of that sym m etry other equations must appear to fix the antisym - 
m etrical com ponents of T a'i This role is taken over by the generalized  
law  of conservation  of angular m om entum , w hich  m ay be obviously  
staled as follow s:

Dt (x“g13 — x^g31) +  D -s®!3 =  0 / (16)

T he first term refers to the density of external angular m om entum ,
i. e. to the m om ent of linear m om entum  density; the second  to the 
density of internal angular m om entum  or spin. Now, applying the 
fo llow ing general rule (w hich is an im m ediate consequence of the 
equations of definition (9) and (10)):

D -( fg )  =  fD Tg +  g d .f  =  fd .g  +  g D J , (17)

and faking into account (15), w e m ay write instead o f (16)

D .s1!3 =  T ’P — TP* =  g a uP — g V . (18)

Thus, the existence of the internal angular m om entum  is con
nected with the asym m etry of the energy tensor. It is also connected  
w ith the existence of a transversal linear m om entum , i. e., of a com 
ponent of the 4-vector of linear m om entum  density g “ perpendicular  
(in M4) to the four-dim ensional velocity u a this last result being a con 
sequence o f what follows.- M ultiplying (18) by up, bearing in mind  
that noliP =  — c% and putting

p „ = — -^ u p |p, (19)

w e get the follow ing relation betw een the 4-vectors of linear m om entum  
and energy g “> velocity  u*, and acceleration ú“:

=  (jl0 u “  — U p D - s stP =  [ i o U a +  s a P ù p . (20)

T he second equality m ay be easily dem onstrated by taking into  
account the. result of applying the operator DT to equation (2) 
according to rule (17).

5. T he equations of m otion o f a m aterial particle w ith  spin may 
be now  obtained by integrating the equations (3), (15), (18) and (20) 
over a volum e so sm all that w e m ay consider in it u a and u“ as 
constants.
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and

w e get thus

G“ =  /g® dV0, (21)

S’? =  /  s®?dV0, (22)

m 0 = / | i 0d V 0, (23)

S’? up =  0 , (24)

G® =  0 , (25)

S“? =  G®u?—  G?u®, (26)

Ga = m 0ua +  ^ S a(3iip, (27)

mo =  upG?. (28)

w here

As before, equation (27) follow s from (26) by m ultiplying it by 
Up and lakiing into account (28) and the once differentiated relation  
(24).

Thanks to (27), we may elim inate G from  the two preceding  
equations, and w rite.

m0u ° - f  ^ S ” u0 =  o, (29)

S«P =  - 1  S«° iL uP— - 4  S ^ m u * . (30)

In (29) the term Sacru3 has been  dropped as it m ay be readily proved  
to vanish, hy m ultiplying (26) by lip and taking into account that 
iipu^ =  o and Gpii? =  o as a consequence of (27).

The equations (29) and (30) are M a t h i s s o n ’s equations 
referred to above in the introduction. They coincide also with F r e n 
k e l ’s equations of m otion of a sp inning electron (w ithout external 
electrom agnetic field ),5 w hen we bear in mind that his auxiliary vector

a* is equal to — - ^ 5 ii®, w here x  is the ratio of the m agneto-electric to

the m echanical m om ent. The sim plification  resulting from  the explicit 
introduction of G® is obvious.

D ifferentiating equation (28) w ith respect to the proper lim e T, 
and paying due regard to the equations (25) and (27), we get

4 J. F r e n k e 1, (2. 1926), equations (21) and (13a).

m0 =  o. (31)
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H ence, m 0 is a constant, and it m ay be rightly called «rest-mass of 
the spin-particle».

Equation (26) m ultiplied by Sao yields, ow ing to (24), SapS*'3 =  o, 
and h en ce

S*pS!IP =  S - S  — Q • Q =  S02 =  const. (32)

H ere S == | S23, S31, S 12} is the three-dim ensional vector o f internal an 
gular m om entum  of the particle and Q — { S u , S24, S34}. H ence, the 
m agnitude of the internal angular m om entum  in the restsystem  of the 
particle is constant.

B y (25), G* of a free particle is constant, and the sam e applies 
to Mc which w e introduce By the fo llow ing relation

Ga G“ =  — Mc- c 2. (33)

W h en  G® is a tim e-like vector, Mc is a real constant (w hich  w e  
may assum e to be positive).

6 . M a t h i s s o n  (4, 1 9 3 7 )  has suceeded in integrating th e equa
tions of m otion  of a free particle only in the «non-relativistic* case, 
when v  — but not a, the acceleration  — is treated as an infinitesim al 
quantity. W e are now going to sh ow  that the equations (24 )— (27) 
m ay be exactly integrated in the general case, the on ly  assum ption  
needed  being the tim e-like character of the four-vector G®. W e m ay  
then find an inertial fram e of reference, 2C, in w h ich  G vanishes; w e  
shall call it «proper system  of the circle». In that system  (for c =  1)

G =  {G ‘, G2, G3} =  o. G4 =  Mc, (34)

(26) and (32) yield
Sik =  o, S — const, (35)

and (28) yields
M

m 0 =  Mc u4 =  -«====.. (36)
y l — v-

It follow s that v, the scalar velocity  of the particle, and u \  the 
fourth com ponent o f its four-velocity, are constant in 2C, and hence

ii4 =  o. (37)

Thus not on ly  the three first com ponents o f u® are proportional 
to the com ponents o f v , but also the space com ponents o f the four- 
acceleration  u® are proportional Lo the com ponents of the three- 
dim ensional acceleration  a:

, dx i: uk . d2xk uk
V a i - ~ d t ^  =  W

( 3 8 )
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E quations (27), (32) and (35) y ield  n ow  

m 0uk-(-S klU| =  o.

T ransform ing the derivatives w ith  respect to the proper' time 
'in to  the derivatives w ith  respect to t, taking into account (36), and  
inserting c back again, w e  get finally

T hese linear differential equations can  be integrated Without 
trouble, but the result m ay also  directly be seen  from  (39'): the m otion

It is therefore a uniform  m otion  along a c irc le  w ith the angular 
velocity

H ere Sc denotes the consitant m agnitude o f the angular m om en 
tum in the rest-system  of the circle, an S0 the sam e quantity in  the 
rest-system  of the particle; v  is the scalar velocity  in  the rest-system  
of the circle. In the case now  considered, in w hich  v  and S are per
pendicu lar to one another, there exist a sim ple relation betw een S j  
and S0, fo llow ing from  (24) and (32).

McVi +  - l s ika k - o , (39)

or in vector form

(39')

takes p lace in a plane perpendicular to the constant S, the m agnitude 
of the acceleration (perpendicular to S) being constant and equal to

(40)

(41)

So
So (42)

The radius of the circle is g iven  by

S0v S0v
(43)M0c 2 m 0(c 2— v 2)’

Thus, in  the specially  chosen  fram e of reference l a the m otion  
of the free spin-particle is a uniform  cii'cular m otion; in  every other
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inertial system  the m otion  is a relativistic superposition of such a m o
tion with a uniform  translation.

7. To write dow n the equations of m otion  of the spin-particle  
in an electrom agnetic field w e m ust take into account the force acting  
on such a particle in an electrom agnetic field as w ell as the torque 
exerted by the field  on the particle, this last being the lim it of the 
m om ent of all the forces acting on a sm all m agnet w hen the size of the 
magnet tends to zero. W e assum e, of course, that the particle has an 
electric charge, e, and a «purely magnetic» m agnetoelectric m om ent, 
pa£, connected  with the three-dim ensional m agnetic m om ent p and 
electric m om ent jt, as follow s:

W e know  already that the m om ent is «purely magnetic» w hen

Let the electrom agnetic field be given in the usual w ay by the 
bivector (skew -sym m etrical tensor of rank two) F^., connected  w ith  
the m agnetic intensity H and the electric intensity E, as follow s:

It may be noticed that the c o n t r a v a r i a n t  com ponents of p“? correspond  
to the com ponents of ji and ft in the sam e m anner ais the c o v a r i a n t

in Lhe field can he then expressed  by the sim ple form ula (w ith the 
sam e sign before each of the two terms on the right-hand side)

w here x  is a constant (not necessary equal to s/m 00 c).
The equation  (25) expressing the law of conservation  of linear  

m om entum  has to be supplem ented on the x'ight-hand side by two 
additional term s, the first being the w ell know n expression  for the 
L orentz force

{ p-3, ¡JL31, p 12} =  p, { p u, p24, p 34) =  a . (44)

ar3JJL 1 U ß =  O. (45)

(46)

com ponents of F ag to H and E; the potential energy of a rigid dipole

(47)

W e shall also assum e that

(48)

c
(49)

and the secon

(50)
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representing the relativistic generalization of the force acting on  
a m agnetoelectric dipole in an electrom agnetic field. T he space com 
ponents of the 4-vector (50) form  a 3-vector

V ( |x - H ) +  V 0 i - E )  =  ([ !-V )H  +  (7t - V ) E 4 - i i x r o t H - f  u x r o t E ,  (51)

ji and ft are subject to differentiation. In a m agnetostatic field  only  
the first term on  the right-hand side rem ains; it represents then the 
usual expression  of the «Stern-Gerlach fo rce» .0 

Thus, from  (25), w e  obtain

In like m anner, equation (26) has to be supplem ented by the 
four-dim ensional expression of the torque exerted by the electro
m agnetic field on a m agnetoelectric dipole, nam ely 7

{N23, N31j N j2 } =  p  X H +  ft X E, { N14, N 24, N34} =  —  tt X  H +  ¡1 X  E. (54) 

W e get thus instead o f (26)

In Section 3 w e have deduced from  (26) the expression  (27) 
for the Linear m om entum , after having introduced the invariant mass 
m 0 by (28); this m ass rem ains constant a long the w orld-line of the

electrom agnetic field, m n is not constant in general, but rh0 m ay be 
expressed as the derivative w ith respect to the proper time x  of the 
expression — F f(J|j.fa/2 c 2; w e can therefore introduce a new  constant

w hich  reduces to m 0 in field-free space.
M ultiplying (55) by uf5 and taking into account (56), (45) and 

the equation resulting from  (24) on differentiation w ith respect

6 Cf., e. g., J. F r  e n k e 1, Lehrbnch der Elektrodynamik II (Berlin, 1926), p. 91.
7 We follow the very convenient rule that — if not otherwise indicated 

by dots — the lower, covariant, indices have always to be considered as pre
ceding the upper, contravariant, ones, for example F^ =  f J 3,

V . U phys i ca  Polonica 2

w h ere only the vectors II and E (as space-tim e functions) but not

(52)

(53)

=  G a u p —  G p u a +  p ^ F j 7 —  ppjF®. (55)

particle in  virtue of the equations of m otion  of a free particle. In an
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to x, w e get the follow ing expression for the linear m om entum  of the 
particle in an electrom agnetic field

The coefficien t o f ua is the sum  of the constant mas 8 m 00 (not 
depending on the field) and an additional m ass corresponding to the 
potential energy of the dipole in the electrom agnetic field.

T he equations (52), (55) and (56), together w ith the expression  
(57), w hich  is a consequence thereof, are equivalent to F r e n ke l ’s 
equations (21) and (13a).

Equation (57) m ay be also w ritten as

8 . M a t h i s s o n  has noticed allready that the frequency (41) 
becom es identical w ith  the frequency of S c h r o d i n g e r’s Z i t t e r -  

b e w e g u n g  of a D irac electron if w e put S0 =  h/2 and m 0 equal to the 
m ass of an electron. This agreem ent, how ever, is only valid  in the 
non-relativistic case.

Still another detail points to the fact that the spin-particle as 
considered  here, as w ell as by T h o m a s ,  F r e n k e l ,  M a t h i s s o n  
and others, cannot supply an adequate «classical» (non-quantum ) 
m odel of an electron; nam ely, the radius (43) of the circle on w hich  
such a free particle m oves can acquire arbitrary large, m acroscopical, 
values, a result w hich  is obviously contradicted by experim ent.

(1) M. Ma t h i s s o n ,  Acta Phys. Pol. VI, 163 (1937).
(2) J. L u b a  hski ,  Acta Phys. Pol. VI, 356 (1937).
(3) .1. F r e n k e l ,  Zeits f. Physik 37, 243 (1926).
(4) M. M a t h i s s o n ,  Acta Phys. Pol. VI, 218 (1937).

8 The proof of the constancy of m00 along tlie world line of the particle 
will be given in a subsequent paper. This proof will be based among other 
things on-the proportionality of to s*P given by (48).

(57')
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EELATIV1STIC DYNAMICS OF SPIN-PARTICLES MOVING 
WITH THE VELOCITY OF LIGHT*

B y Jan W EYSSENH O FF and A. RAABE f , ’ Institute of Theoretical 
P hysics, Jagellonian U niversity, Krakow.

1. In the preceding paper w e have deduced the equations of 
m otion of a spin-particle m oving with a velocity v sm aller than that 
of light, c. W e shall now  consider the equations of m otion of a spin- 
particle m oving w ith the velocity  of light. Though this last case m ay  
h e conceived  in a certain sense, w hich  will be specified  later, as 
a lim iting case of the form er, it presents m any d istinctive features 
and, in  any case, it is n ot sim ply the lim iting case of the form er w hen  
v lends to c at constant proper mass m0 and constant proper angular 
m om entum  1 s0. From  the point of view  of the theory o f relativity it 
constitutes by itself an interesting and hitherto not contem plated  
exam ple of a set of differential equations leading to a curvilinear  
m otion w ith the velocity  of light; how ever, the m ost interesting feature 
of such a m otion is apparently its close analogy with the behaviour, 
of D i r a c ’s quantum -m echanical electron.

2. H enceforth w e  shall refer to the m otion of a spin particle 
w ith a velocity  sm aller than that o f light as the f i r s t  c a s e ;  by s e c o n d  

c a s e  w e shall understand the m otion  of a spin particle with a velocity  
changing in direction but having invariably the sam e m agnitude c. 
To obtain  the equations of m o tio n  o f a particle in the second  case 
in a four-dim ensional form , w e must, first of all, change the param eter 
along the w orld-line of the particle from  x, the proper time, to an 
arbitrary new  param eter p, leaving the world-line of the particle un
changed, and only afterwards, as the second  step of the reasoning, 
we m ay d istort the w orld-line in such  a w ay as to m ake it everyw here  
tangent to the light-cone in the corresponding world-point. T he world- 
line w ill then represent a m otion of th e particle with the velocity of

* See the preceding paper (henceforth designated by I), references C) 
and (*’)•

1 From now on we shall denote the angular momentum of the particle by 
saP and s, rather than by S“P and S as in I where small letters where reserved 
for denoting physical properties of the spin-fluid.
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light. The proper lim e does not flow  any m ore on  such a line, and
w e w ere therefore com pelled  to change the param eter from  x to p.
The new  arbitrary param eter p is subject only to the restriction  that 
it should grow  in the d irection of grow ing t (in any allow ed coordinate- 
system ). It satisfies therefore the relation

x’ > o ,  (1)

the equality being valid on ly  on isotropic world-lines, i. e., in  our 
second case; prim es denote differentiation with respect to p.

In the first case x itself is a special case of p. W h en  passing from  
one param eter to another, i. e., changing the param etrizalion on  the 
w orld-line of the particle from  p to p, the condition

f > °  <2>
must be satisfied.

3. W e introduce now  the 4-vector

(3)
dp

as a generalization of the four-dim ensional velocity, which does not 
exist in the second  case, w “ is a «4-vector depending on the param e- 
trization»; its four com ponents transform  like com ponents of a 4-vector 
w hen the coordinates are transform ed w ithout change o f param elri- 
zation, but th ey  are all four m ultiplied by a com m on factor dp/dp 
w hen that parainetrization is changed. T he 4-vector w® m ay therefore 
play the role of an auxiliary m athem atical quantity, but it cannot 
have any direct physical m eaning.

In the first case,
w“ =  x'u“ (4)

and
w aw* =  ua u® x'2 =  — c 2x'2, (5)

w here u® is the four-dim ensional velocity  of the particle.
In the second  case, the world-line of the particle is isotropic , 2

x =  o, and the four-dim ensional velocity u“ does not exist any m ore,
as it com ponents are either infinite or indeterm inate. But w® retains 
obviously a definite m eaning and satisfies the relation

w ,w ‘ =  O. (6)

2 In the usual representation of the M i n k o w s k i  space (x l, x'-, x3, xJ =  ct) 
it is a curve which is everywhere inclined at an angle of 45" to the hyperplane
x> — 0.
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W e can thus characterize w® as an isotropic vector depending on the 
param etrization on the w orld-line of the particle but alw ays tangent 
to that line.

4. If w e ch a n g er  into p in the equations of m otion  I (24)— (26), 
take into account equation (4), and m ultiply all the equations by  t ,  
we get

(7)
(8) 

(9)
II 0 ,

S ajj — G.wp -  Gp w a,

=  o.

Because of the hom ogeneity  of the equations I (24)— (26) in 
the derivatives w ith  respect to x, x' has disappeared from  (7 )— (9), 
and equations (7 )— (9) are valid  not only, in the first case (as alter
native expressions of the sam e equations of m otion as I (24)— (26)), 
but also in  the second  case, w h en  x' =  o.

Som e interesting com plications arise only w hen  w e set out to 
transform  in the sam e m anner equation I (27). Taking into account
(4), (9) and I (28), w e get then

x' G® =  mw ® +  ^  s®gw'(

w h ere w e have put, in  analogy to I (28),

m _  w  G®.
c 2

(10)

(11)

in is «a scalar depending on  the param etrization» .3 Equation I (27) 
is no m ore hom ogeneous in the derivatives w ith  respect to x, and  
therefore the equation for the second  case, w h ich  w e get from  it by  
putting x =  o, differs in form  from  the original equation. W e find  
nam elv

mw® + c 2
(12)

3 It is different from zero when G* is a time-like vector. In the first case, 
when w* is also a time-like vector, this result is obvious. In the second case, 
when wa is isotropic, our assertion is a consequence of the following often 
useful theorem: Any 4-vector perpendicular to an isotropic 4-vector and not 
parallel to it is space-like (of course, only real 4-vectors are taken into conside
ration). If we require as well that for saP tending to zero all our equations 
should go over into the ordinary equations of spin-less dynamics, then m will 
be positive.
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Though Ga disappeared from (12), the equations o f m otion  of  
an unconstrained spin-particle m oving w ith the velocity  of light can  
be generally  solved, and give a result sim ilar to that obtained in  the 
first case.

As in I, equation (12) is a consequence of (8) and (9), together  
w ith equation (6) w hich  expresses the fact that the scalar velocity  o f  
the particle is c. This can be sh ow n  by m ultiplying (8) by w^, taking  
into account equation (6) and equation (9) once differentiated. V i c e  

v e r s a ,  from  (13) and (9) w e can deduce (6) by m ultiplying (12) by w*. 
Thus, if w e consider (7), (8), (9) and (12) as the equations ot m otion  
of a free spin-particle, they w ill im ply as a consequence that the v e
locity  of the particle is equal to the velocity of light. M oreover, this 
conclusion  is independent of equation (7), and it w ill therefore prove  
also correct for a spin-particle in an electrom agnetic field, for w hich  
equations (8), (9) and (12) remain, unchanged (see  Section  7 below ).

5. T h e  t i m e  a s  p a r a m e t e r .  W e m ay avail ourselves of the 
arbitrariness in  the choice of the param eter to give to the equations 
of m otion a new  interesting form . Let us agree to put p equal to 
t =  x 4/c in each allow ed coordinat e-system ; this am ounts to changing  
the param etrization at every change o f the system  of coordinates in 
such a w ay that p should rem ain always equal to t in th e coordinate  
system  of interest. Then 'v* becom es

As it is w ell know n, the four quantities v a do not form  a 4-vector, 
neither in the ordinary sense, nor as a «4-vector depending on the 
param etrization»; they form  instead a new  «geom etrical object» in  
M.t, w hich  w e shall call «pseudovector». T he com ponents of a pseudo
vector w ould  transform  like com ponents of a vector but for an addi
tional factor dt/dt =  dx*/dx4. The m agnitude of a pseudovector, for 
exam ple j/vava , or its scalar product by a vector, for exam ple v Ga 
are pseudoscalars: they are m ultiplied  by dx4/d x4 w h en  the coordinates 
are transform ed from  on e inertial fram e of reference to another.

The equations o f  m otion of a spin-particle m oving w ith the v e
locity of light take now  the form

(13)

s ,p  =  GaVß — Gßv a,

(14)

(15)

S*^Vg= o. (16)



Though v® is not a vector, its com ponents have sim ple physical 
m eanings. The equations (14)— (16) are interesting in so fair, as they  
give an invariant description of the m otion though they are not tensor  
equations.

Just as before, (15) m ultiplied  by  v  ̂ and (16) once differentiated  
w ith  respect to t yield

m*v° +  s“aa(J =  o, (17)

w here

a<J= - ^ - = { a | o }  (IB)

and

m* =  — ¿ G .V *  (19)

is a pseudoscalar; a is the three-dim ensional acceleration vector.
6 . G e n e r a l  S o l u t i o n  o f  t h e  E q u a t i o n s  o f  M o t i o n  o f  a  F r e e  S p i n -  

P a r t i c l e  M o v i n g  w i t h  t h e  ' V e l o c i t y  o f  L i g h t .  O bviously, a rest-system , 
that is, an inertial system  of reference in w hich  th e particle is m o
m entary at rest, does not exist for a  particle m oving w ith the velocity  
o f light, nevertheless certain inertial fram es of reference stand out 
from  am ong all others, those nam ely — w e shall denote them b y  2C —  
in  w hich  the space com ponents o f G® vanish, *

Gk =  o. (20)

Any tw o  2C -system s (referring to the sam e position  o f the  
particle on its w orld-line) differ on ly  by a space-rotation  w ithout 
change of the tim e-coordinate. W e shall call them  «rest-system s of 
the circle», as th e  particle m oves in each of them on  a stationary  
circle, a result w hich  w e are going now  to prove.

It w ill be found advantageous to use the form ulae of the pre
ceding section  (w ith  t as param eter). Then, a4 =  o, by (18), and w e 
may write (17) in three-dim ensional vector-form , as follow s:

iii‘ v - f ^ X s  =  o. (21)

In 2C, m* is a constant, as

m‘ =  —  G4 (22)
c
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* We have to assume, of course, that Ga is a time-like vector.
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by (19) and (20), and G1 is a constant for a free particle. W e can  
also put

m* =  Mc (23)

in 2C, if w e  define Mc, as in I, by the relation

Mc2 =  — G0 G3. (24)

Thus, w e can w rite (21) in the form

Mcv —|— a X s == o. (25)

As in I, the final result is d irectly evident from  (25) if w e  
rem ark that

s =  fsik}=§= const (26)

as a conseq u en ce o f (15) and (20). In the 2c-fram e of reference the  
particle revolves uniform ly cun a stationary circle w ith  the angular 
velocity

M c 2
= —T— » (27)

the linear velocity  beeing, of course, c. This form ula is identical with  
the first farm  of I (41); the two last form s given  in  I have no cou n ter
part here, as m 0 and s0 do not exist in  th e  present case.

The radius of the circle in 2C — w hich  w e m ay call, as in I, 
«proper radius of the circle» — is now  given by

cM c ‘ (28)

It coincides w ith  the first form  of I (43) for v  =  c.
7. Let us now  approach the question  of the m otion  of our spin- 

particle in  an electrom agnetic field. T he equations of m otion  I (52) 
and I (55) m ay be treated in  the m anner indicated  in  Section 2. It 
m ay be considered  as a lucky circum stance that th ese  equations get 
thereby greatly sim plified: the last term in I (5 2 )-and the two last in I 
(55) get in  the first step of the operation the factor r' (or, m ore pre
cisely, all the other term s the factor 1 /x') and vanish  therefore at 
the second  step. T here rem ains on ly  on e additional term  depending  
on the electrom agnetic field, w h ich  is analogous to the w ell know n  
four-dim ensional expression  of the L orentz force, the only d ifference  
being that w® superseded the four-dim ensional velocity  u“.



Finally, the equations of m otion  of a spin-particle m oving w ith  
th e velocity  of light in an electrom agnetic field given by the b ivector  
Faß a re

(29)

(30)
(31)

8 . M ultiplying (30) by s®ß and m aking use of (31) w e obtain

s'aß s®!3 =  o, (32)

hen ce sags®ß is a constant. But saps®? vanishes in a field-free space, 
as m ay be easily v e r if ie d 5 from  th e results of Section  6, and therefore, 
in  consequence of (32), it van ishes everyw here. Thus,

Saßs“" =  °- <33)
F urther particulars wrill be given  in a fo llow ing paper.

Relativistic Dynamics of Spin-Particles Moving with the Velocity of Light 25

G's =  “ F apWß

s '« ß = G aw ß— Gpwa,
s«ßWß =  o.

5 It is sufficient to remark that in the circular motion in £c> v and s are 
perpendicular, and therefore q2 =  s2, in consequence of the relation q = | v X s .  
v being equal to c. We get then Lsaj> saP =  s • s — q • q =  s* — q* =  o. Incidentally
it may be noticed that by following the same argument back again, we can infer 
from (33) that v is always perpendicular to s, not only for a free particle, but 
also for a particle in an electromagnetic field. It is not so in the first case.
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FURTHER CONTRIBUTIONS TO THE DYNAMICS OF SPIN- 
PARTICLES MOVING WITH A VELOCITY SMALLER THAN  

THAT OF LIGHT*

By Jan WEYSSENHOFF, Institute of Theoretical Physics, Jagellonian
University, Krakow.

1. In a preceding paper w ritten w ith t'he late Mr. A. R a a b e 
I w orked out the equations of m otion  of a particle endow ed w ith  
sp in , by considering at first the relativistic equations of m otion  of 
a spiin fluid, and passing then to the lim iting case of an in fin itely  sm all 
portion of such  a fluid w ith  infinitely large m ass-density and angular- 
m om entum  density. T hese equations are equivalent to special cases 
of equations previously  found by F r e n k e l  and by M a t h i s s o n, 
though the form  of our equations is m uch sim pler, due to the explicit 
introduction of th e4-veotor of linear m om entum  and energy Ga.H ere, 
I shall ou tlin e  still another m ethod of approach to the sam e equations, 
a m ethod  w hich  is, to be sure, not so correct in  principle as that of 
M a t h i s s o n ,  but it m ay  prove suggestive by its conciseness and its 
elem entary character.

2. L et us consider a  particle possessing a velocity  v and a linear  
m om entum  G, and let us assum e the validity of the laws o f con ser
vation  of linear m om entum  and o f angular m om entum , the on ly  
departure from classical treatm ent being that w e do not assum e  
a  p r i o r i  any relation betw een G and v. W e are therefore com pelled  
to introduce the law  of conservation  o f angular m om entum  (in a  ge
neralized  form  w ith outer and inner angular m om entum ) indepen
dently of the law  of consevation  o f linear m om entum .

T he law  of conservation  o f linear m om entum  for a free particle 
m ay be expressed  as follow s:

G' =  o, (1)

the prim e denoting d ifferentiation w ith respect to the tim e. If w e  
define in the usual m anner the m om ent o f m om entum  (external

* See I, reference (’). The two preceding papers will be designated hence
forth by I and II.



Further Contributions to the Dynamics of Spin-Parlicles. 27

angular m om entum ) as the vector-product of the radius-vector r by G 
and differentiate it w ith (respect to the tim e, w e get

(f  x  G) =  r x  G +  v x  G =  v x  G. (2)

Tim s, if G is not parallel to v, the m om ent o f m om entum  is 
not a constant of m otion, as m sp in less dynam ics, but w e can restore  
the validity of the law  o f conservation  of angular m om entum  by in 
troducing a spin, or internal, angular m om entum  s, in addition to the  
orbital, or external, angular m om entum  l = f  X G . To this end, w e put

s' — G x  v, (3)
and (20) goes over into

- ^ ( l  +  s) =  o, (4)

that is, into the generalized law  of conservation  o f angular m om entum .
3. N ow , to obtain the Frenkel-M athisson equations (in special 

relativity) w e need o n ly  translate the equations (1) and (3) into four
d im ensional tensor-form . Let Ga =  {G jW /c} be the m om entum -energy  
4-vector and s“1' the spin b ivector (antisym m etrical tensor of rank  
tw o). Of the two three-d im ensional vectors

s =  {s23, s31, s 12}, q =  {su , s24, s34}, (5)

the form er is the three-dim ensional spin-vector, and the latter m ay  
be considered  m erely  as an auxiliary m athem atical concept, as it can  
be alw ays elim inated by  m aking use of the fo llow ing relation

q =  ^ - v x s, (6)

w hich is the three-dim ensional expression  of the four-dim ensional 
relation

s*Pup =  o. (7)

This last equation — used also by F r e n k e 1 and b y M a t h i s s o n  — 
m ay be considered  as the condition  of non-existence of negative m ass, 
as in the corresponding electrom agnetic case

jiaPUp =  o (8)

is the condition  that the m agneto-electric dipole-m om ent p.““5 should  
be «purely m agnetic», that is, that the electric m om ent 7 t= {p 14, p24, p31}
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should  vanish  in  the coord inate system  in w hich  the particle m om en
tary rests (uk =  o, k  =  l ,  2, 3).

Incidentally , it m ay b e noticed  that

¡j.[“P u tl=  o (9)

is the con d ition  that p**3 should  b e «purely electric», i. e., that the  
m agnetic m om ent p =  ||i,23, p 31, p 12Jshould vanish  in the rest-system  of 
the particle.

O bviously, th e  four-dim ensional generalizations of (1) and (3) are
now

G“ =  o, (10)

s“? =  G“uP— GPu", (11)

w h ere the dot signifies d ifferentiation  w ith  resipeot to the proper  
tim e t.

As in I, (11) m ultiplied  by Up yields

Ga =  m0u’ + ^ s Mii„  (12)

w here

m 0 =  — ¿ G 0u*. (13)

M ultiplying (12) by u®, w e get

G®ua =  o, (14)

w hich  sh ow s that the m om entum -energy vector Ga, w h ich  ceased  to
be parallel to the four-dimensiona'l velocity  u®, rem ains four-dim en-
sionally  orthogonal to  the four-dim ensional acceleration u®, just as u3 

From  (11) and (14) w e get

s°'3u o = o .  (15)

4. T he sam e m ethod applies also to a spin-particle (w ith  charge
e and m agneto-electric m om ent p®!3) m oving in an electrom agnetic 
field F ar,, the on ly  d ifferen ce being that in the three-dim ensional ar
gum ent of S ection  2 w e must also take into account the force F  and 
the torque N exerted by the electrom agnetic field  on the particle. 
Equation (1) becom es

G '=  F, (16)

and the interm ediate equation (2) takes the form

4 ( r X G )  =  f x F + v X G .  (17)
dt
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To restore the validity of the law  of conservation  af angular m o
m entum , w e m ust put therefore, instead of (3),

s' =  G X v +  N, (18)

and equation (4) takes the form

¿ ( l  +  s) =  f X F  +  N. (19)

T he translation of these equations into tensor language and the  
four-dim ensional generalizations of F  and N w ere given in I, Sec
tion 7, w here eventually the fo llow ing equations have been  obtained:

Ga =  ; F aaU’ +  -* - |^ 2 aF p, ,  (20)

=  Ga'U — Gr-Ua -f- pMF 2 - | 1*,F3, (21)

Ga =  (m00 — |F 3F p,) uB +  ^  s „  u3 - f  \ i aGF '33 up, (22)

with

+  (23)

In (22) w e m ay also put together the second  and the fourth  
term s on the right-hand side, and w rite

Ga =  m 00ua -f- i  s „ i i3 -1- ^  p [a,u f]F?3. (24)

5. To prove the constancy of m 00 we m ay proceed  as follow s.
By differentiating equation (23) w ith  respect to the proper tim e x, w e  
get (c =  1)

rh00 =  — Gau° — G ,ii3 +  i  pi03F f!J +  ^ (25)

Equation (20) m illip lied  by ua yields

Ga u« =  ip P 3 Fp , (26)

as

F pI= u “ 5aF f0. (27)
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Thus the first and the last term s in (25) cancel one another. The
sam e happens w ith  the two rem aining terms if we assum e the pro
portionality  of to s®P, that is, the relation

|jl“P =  x (28)

with an arbitrary value of y. (not necessarily  equal to e/m00c). In fact, 
from (22) w e get

G« ha =  paa Fa? upu a, (29)

and m ultiplying (21) by ^ F ^ J and (22) by Up F ^ , w e get

i F * ?  sap =  Ga up F'P =  s „  Fop uf u“. (30)

The com parison of the tw o preceding equations leads to the result
stated above, and hen ce to

rh00 =  o, (31)

Q .  E .  D .

6. In the dynam ics of spin-particles the velocity v of a particle  
points in  general in another direction than its m om entum  G. H ow ever, 
we can form ally introduce a n ew  vector V connected  in the sam e w ay  
w ith G as the velocity  is connected  w ith the linear m om entum  in the  
old sp in less dynam ics. W e m ay call then v (as defined by the world- 
line of the particle) the «kinem atical velocity» and V (as defined by 
the m om entum  of the particle) the «dynam ic velocity» (though  
E d d i n g t o n  uses the sam e terms in another m eaning.

W e define V by the equation

M V ==G ==(G ', G2, G3) (32)
w here

M =  -̂ G4. (33)

A lternatively, v m ight be called  «velocity of the particle» and V «ve
locity of the circle»; sim ilarly M m ight be called «mass of the circle» 
and Mc introduced by the relation

— G3 Gct =  M0c 2 (34)

«rest-mass of the circle», as it is th e  value of M in the «rest-system
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of ithe the circle» (in  w hich  G =  o ) . 1 It is connected  w ith M by the 
fo llow ing relation, w hich  is a direct consequence of (33) and (34)

M
M ~  VI -  V 2/'c2

Talcing into account (32), (33) and (35) w e get from  (13) the 
fo llow in g  relation betw een  m 0 and Mc

_______ M._________ / v . V \
m° =  Yl — v2/c 2 V1 — V 2/c z \ 1 c *“")• 3̂6)

O bviously, all the form ulae of this section  are independent of 
the relation existing betw een  v and V as they are m erely the con se
quence of our initial assum ption of the validity of the energy-m o- 
m entum  principle.

7. This section  contains a list of the equations of the dynam ics 
of spin-particles in three-d im ensional vector form. To sim plify matters 
c has been  throughout put equal to  un ity . 2 T he num bers on  the left 
point to  the four-dim ensional tensor equations from  w hich  the cor
responding vector equations have been derived, y  stands for l / Y l — v 2.

(7) q =  v x  s, (37)

(8 ) ft =  v x  p., (38)

(20) G = e ( E + v x H )  +  V T ^ v ^ V  (pi • H) +  V  (ft • E)}, (39)

(20) W  =  M' =  s £  • v + (40)
3t 1 3tj’

(21) s =  G x  v -f- Vl — v 2{p x H +  j i x E}, (41)

(21) q =  6  — Mv +  Vl — v 2 {ft x  H — p X E}, (42)

(24) G =  m 0Oy v - |-Y 2a x s  — y ( v  • p )H  +  y ( p  +  v x ft) X E, (43)

(24) W  =  M =  m00y — y 2a - q — ~ p  ■ H — y ( v  ■ p )(v  ■ H), (44)

m 0 =  y  (M — G • v), (45)

(23) =  m0 +  p - H +  f t -E  =  const. (46)

1 These denominations are misleading in so far as G was assumed from 
the ohtset to he the momentum and cG* =  Me» the energy of the particle.

- Its restoration is quite easily accomplished if we bear in mind the 
following dimensional equations: W = G v = m c ! =  s’ =  q' =  [iH =  |i.E =  jtE =  
,-k It - as/c and e E =  H =  G’.
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F rom  (42) and (37) w e can draw still another relation betw een  
G and v, nam ely

G — Mv -f- a x  s -J- v x  s' — Vl — v 2{tc x  H — ft X E}. (47)

It is equivalent to the previously  found relation  (43) thanks to (41), 
(45) and (46).

Equation (45) is on ly  another form  of equation (36).
T he second  term  on the right-hand side of (44), w hich  m ay be 

w ritten in the form

[s v a] 
c 2—v 2 ’

has been called  by M a t h i s s o n  «acceleration energy» ( B e s c h l e u n i -  

g u n g s e n e r g i e ) .  F or a free particle in the rest-system  of the circle it is 
constant and negative.

8 . T he general so lution  of the equations of m otion  o f a free par
ticle is directly apparent from  (47), oir from  (43) together w ith  (45): 
in  a fram e of referen ce in w h ich  G vanishes

Mcv +  i  a x  s = o ,  (48)

just as in  I (39). The m otion  is then  a uniform  circular m otion  in  
a plane perpendicular to s (w h ich  is constant); the radius and the  
angular velocity  w ere given in I. T he sen se of the m otion  on  the circle 
is ■ such that th e  m om en t of the velocity  w ith  respect to the center  
o f the circle points in a d irection opposite to that of s.

In any other inertial system  of referen ce the path m ay be de
scribed as a distorted screw -m otion, if it does not happen to be plane. 
In the latter, case s, w h ich  rem ains perpendicular to the p lane of 
m otion , has a constant direction, but its m agnitude is variable accord
ing to the equation

s =  y i _  v2/c^’ (49)

fo llow in g  from  s2 — q2 =  s 02 and (6) w hen  v  and s are perpendicular. 
T he path rem inds of a contracted or elongated cycloid , according to 
w hether the velocity  of the center of the circle is sm aller or larger 
than v, the velocity  of the particle on the circle in the rest-system  of 
the latter.

W hen  the proper radius of the circle is infinitesim al, the m otion  
of the particle is the sam e as for a sp in less particle w ith  a super
im posed infinitesim al w ave-like m otion.
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9. It was already show n that m 00 is a constant of m otion, so  
is the m agnitude of s“*3, i. e. the square root of

i  saP sâ =  s2 — q2 =  s02 =  const. (50)

This becom es evident if w e m ultiply (21) by s®*3 and take into accounL 
(7). and (2 8 ) .3

W e m ay also infer from  (7) that

s laPstsl =  o, (51)

w hich  is the condition of flatness 4 o f the bivector s“P; in fact, the  
left-hand side expression  in (51) is the square root of the determ inant 
of the four hom ogeneous equations (7).

10. W e know  already that our equations of m otion are equivalent 
to the Frenkel-M athisson equation I (29), w hich  is a differential equa
tion of the third order for th e (x®)'s. 5 T herefore, to determ ine the 
m otion  o f  a sp in-particle n o t o n ly  its initial position  and velocity  
should b e  given, but also its in itial acceleration; this departs so m uch  
from  all on e m ay expect of the behaviour of a m aterial particle that 
w e are drawn to the con clu sion  that not the singularity o f the gravi
tational field itself, but only its m ean position  — or, in  our case, the 
w h ole circle on w hich  it m oves — has to be considered as representing  
the m aterial particle. This conception w ill be fo llow ed  m ore in detail 
in the two fo llow ing papers.

3 Notice that patJ saP Fp =  * sra sar =  xs ’ s®!3 Fp, =  o, as in the last ex
pression the antisymmetric tensor Fp5 is multiplied by a symmetrical one.

4 I propose to call a bivector flat (rather than simple, which is the ex
pression used by S c h o u t e n) if it can be represented as an alternating product 
of two vectors. A general bivector in a four-dimensional Minkowski space can 
be represented as a sum of two flat bivectors in two completely perpendicular 
planes.

5 P. A. M. D i r a c  has also considered an equation of the third order for 
the motion of an electron, but his equation (as well as the whole problem of 
the radiation of an electron which led to it) was entirely different. The addi
tional term of the third order in his equation may be characterized as longitu
dinal, whereas our additional term is transversal. To avoid ali sorts of physically 
meaningless motions D i r a c  was compelled to introduce a strange restriction 
concerning the acceleration for t tending to infinity; this cannot be done in 
our case.

A cta P h ysica  P o lon ica  -i
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FURTHER CONTRIBUTIONS TO THE DYNAMICS OF SP1N- 
PARTICLES MOVING WITH THE VELOCITY OF LIGHT*

B y Jan WEYSSENHOFF, Institute of Theoretical Physics, Jagellonian
University, Kraków.

1. In two previous papers written w ith  the late Mr. A. R a a b e 1 
w e deduced am ong other things the relativistic equations of m otion  of 
a spin-particle m oving w ith the velocity  of light. First, in  I, w e found  
the equations of m otion  of a spin-particle m oving w ith a  velocity  
sm aller than that of light by integrating the equations of m otion  of 
a spin-fluid over an infin itesim al volum e of that fluid. Secondly, in  II, 
w e changed the param eter along the w orld-line of the particle from  x ,  

the proper tim e of the particle, to  an arbitraity param eter p, leaving  
the w orld line of the particle unaltered, and distorted afterwards the 
w orld line in such a way as to m ake it everyw here tangent to the cor
responding light-cone.

T he sam e results m ay be also obtained in a sim pler way. Instead  
of p assing  through the dynam ics o f a spin-fluid, w e m ay w rite directly  
the relativ istic  equations of m otion  of a spin-particle by translating  
into four-dim ensional tensor language the three-dim ensional expres
sions of the law s of conservation  of linear and angular m om entum . 
This was done in III, Section 3. T he second  part o f the above reasoning  
rem ains unaltered as in II.

2. For a free spin-particle the equations referred to above are

G * =  o, (1)

s aP =  G:iwI3 — G^wx, (2)

together w ith the condition

s*^w p=  °  (3)

expressing the non-existence of negative m ass (see III, Section 3). The
notations used are the sam e as in II.

'  See I, reference ('). The three preceding papers will be designated hence
forth by 1, II and III.

> I and II.
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M ultiplying (2) by wp, and taking into consideration  that 
w 0w “ =  o, w e get

m w“ +  i s ‘i V r. =  o, (4)

w here

m =  — ~  G w*. (5)C2 a ' '

In the corresponding equation I (27) referring to the f i r s t  c a s e  \  the 
right-hand m em ber of (4) was equal to Ga, and I (27) gave the four- 
dim ensional expression  of the relation betw een G“ and ua. Here G* 
disappeared from  (4)3 and now  it does not seem  possib le to elim inate  
G* from  the equations (1 )— (4), and thus to get a differential equation  
of the third order for x a corresponding to M a t h i s s o n ’s equation I 
(29). H ow ever, the equations of m otion  of a free particle can be solved  
in  a sim ilar w ay, and the results are very much the sam e, as was 
show n in  II, Section 6.

3. As w e know  from  II, Section 7, the equations (2) and (3) 
rem ain  valid  for a particle in  an electrom agnetic field, and only the 
equation (1) is changed and goes over into

G 'a =  -^ F a p  w ^ . (6 )

This is an im portant sim plification  in com parison with the first 
case, in w hich  not only a rather com plicated term appears in the 
equation corresponding to  (6) but also equation (2) has a less sim ple  
form .

4. It was show n in I and III that in  the first case two different 
m asses m ay be introduced w hich  becom e identical w hen  the spin  
vanishes (as a consequence of the fact that the 4-vector of linear 
m om entum  and energy is then proportional to the four-dim ensional 
velocity). Here, in the s e c o n d  c a s e ,  only one of those m asses, nam ely

Mc =  j— “ 2 Ga G* (7)

m ay have a physical significance, as the second one, defined as 
— G;(w 5t/c 2is a «scalar depending on the param etrization» and Gau a 
is infinite.

1 Cf. II, Section 2.
3 But nevertheless there exist in the second case also a three-dimensional 

relation between G and <} (see eq. (16) below). In the first case there are two 
equivalent relations between the linear momentum and the velocity of the 
spin-particle, a four-dimensional one: 1(27), and a three-dimensional one: 111(43) 
or 111(47).

3-
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It as obvious that the relations betw een Ga, M, Mc and V referred  
to an III, Section  6 apply also in the present case, as they are on ly  
dependent upon the laws o f conservation  of m om entum  and energy  
on w hich  both our theories have b een  founded.

5. This Section  contains a list of the equations of the dynam ics 
of spin-pairticles m oving w ith the velocity  of light, in three-dim en
sional vector form . T hese equations are here given not in their m ost 
general form , but for p == t; the use of the time t as param eter was 
considered  in II, Section 5. w* a  «vector depending on the param e- 
trization» is then rep laced  by the «pseudovector» v*, and the three- 
dim ensional form ulae tak e a sim pler form , as v4 =  c and v ’4 =  o; m ore
over, the com ponents of the pseudovectorv® possess a direct physical 
m eaning. T he num bers in  parantheses w ritten on the left o f each o f  
the equations b elow  refer to the four-dim ensional equation from  w hich  
the corresponding three-d im ensional one has been  derived.

(1) G' =  e E + i v x H ,  (8)

(1) W'  =  eE- v ,  (9)

(2) s' =  G x  v, (10)

(2) q =  c (G  — M v) =  M c(V  — v), (11

w here M — G4/c as in III (33),

( 3 )  q  =  i v x s ,  ( 1 2 )

(4) n i v - ) - i a x s  =  o, (13)

(4) m =  i a - v x s = i  a • q, (14)

_  M| l - i v - v )
(5) m =  M ----- j G ' v  = ------ . ■. —=— . (15)
v c 2 y i  _  v 2/c 2

Inserting (12) in (11) w e obtain

G =  M v +  ^ X s  +  ^ v X s ' ,  (16)

w here a =  v' is th e three-dim ensional acceleration. M is given  by 
III (35) as

M — - Mc ■= ,  (17)
VI -  V 2/c 2

and V is defined by III (32) as equal to G/M.



Equation (16) expresses the aforesaid relation betw een the v e 
locity  and the m om entum , cf. reference (3).

C alculating  G X v  fro m  (16), a n d  co m p ar in g  the  resu lt  w ith  (10), 
w e  get

v • s =  o, (18)

a s r s '  =  o, because of (10), and â - v =  o, by differentiating the re
lation V • V =  c2.

Since v rem ains here alw ays perpendicular to s (not only in the 
rest-system  of the circle, as in  the first case) w e have from (12) q =  s, 
and therefore

\  s«p saP =  s 2 — q2 =  o, (19)

a result already obtained by a different m ethod in II, Section 8 . 
D ifferentiating (18) w ith  respect to t, w e have

â • s == o, (20)

as v s  = o  by (10). Thus the spin vector rem ains perpendicular not 
on ly to th e velocity  hut also to the acceleration.

From  (13) w e  can  n ow  obtain the form ula
m c h  v .  /n i .

a = “ i F V  (21)

Com paring this w ith  (12) w e  see tliat the vectors q and â are parallel 
and have the sam e direction (w hen m >  o).

W ith  the help of (18) and (20) w e can deduce the follow ing  
form ulae, supplem entary in  a certain sense to (12) and (21),

v =  ^ s X q  =  — , s X . i ,  (22)
s 2 1 m e2 '

s =  —- q X v =  ——  ̂â X v. (23)
c 1 m e4 ’

Finally, w e m ay n o tice  that in  the case of a free particle G • s' =  o, 
ow ing to  (10), and lienee, since G is a constant,

6 -§ — const. (24)

More generally, (24) holds good for every p lane m otion  since in that 
case

s ' X s  =  ( G - s ) v ,  (25)

as can be seen  from  (10) and (18), and since by (18) and (20) s has
than a constant direction perpendicular to the p lane of the m otion,
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the left-hand m em ber of (25) vanishes, and so does G .s  (as v  is dif
ferent from  zero).

6. In the proper system  o f the circle, 2C (w hich  has been defined  
as an inertial system  in w hich  G =  o), nt =  MC: by (15) and s =  const, 
by (10). Equation (13) becom es then identical w ith equation II (25), 
by m eans of w h ich  the general so lution  of the equations o f  m otion  
of a free sp im particle m ovin g  w ith  the velocity  o f light w ere found  
in  II. In Zc such a particle travels uniform ly along a stationary circle  
in  a p lane perpendicular to s, the sen se of the m otion  being such  that 
the m om ent of velocity  w ith  respect to the center o f the circle is 
antiparallel to  s. If w e  im agine instead  o f the point singularity an  
in fin ite ly  sm all rotating sphere producing by its rotation  the angular  
m om entum  s, the rotation  of th e sphere about its axis and its m otion  
along the c irc le  w ill take p lace in  opposite directions.

In M a t h i s s o  n ’s m eth od  (as in  every sim ilar m ethod  of 
deducing the equations of m otion  o f a point singularity from  the 
differential equations of th e  gravitational field) a w orld  tube is con 
structed cutting out a certain  neighbourhood of the w orld-line of the  
singularity, outside w hich  the field  is to  be at any rate regular. In our  
case a ll depends on w hether the transversal d im ensions o f that tube  
are sm all or large in  com parison  w ith  r0, the proper radius of the 
circle. In the first instance, w hich  should  correspond to  w hat 
M a t  h i s  s o n  has w orked  out, this tube in four-dim ensional space  
takes th e  form  of a  srew -line and does not tend to a geodetic line  
w hen its transverse d im ensions decrease indefin itely  and approach  
zero as a lim it. W hereas in  the second  instance the tube, contain ing  
now  the w h ole  circle, m a y  run in general m uch m ore sm ooth ly  and  
have approxim ately the shape o f a geodetic line.

7. As previously  n oticed , the transition from  the first case to the 
second  one cannot be perform ed by m erely  accelerating th e spin- 
particle up to the velocity  o f light, the rest-m ass m 0 and the rest-spin 
s0 rem aining constant. H ow ever, w e m ay consider that transition from  
a purely  m athem atical point o f v iew  as a transition from  v <  c to 
v =  c  in  such  a w ay that all the com ponents of Ga and of s l13 should  
rem ain finite; for exam ple, w e m ay se t in  an arbitrary ch osen  fram e  
of reference: G =  o , s =  const, and M = G ’/c =  const.

It seem s w orth  m ention ing that the rest-m ass m 0 of the spin- 
particle tends h ereby  to infinity, and not to zero, as is the case with  
photons. The rest-m ass of a photon  is alw ays taken to be zero, as the 
energy o f a particle w ith  fin ite rest-m ass (and w ithout sp in) m oving  
w ith  th e  velooity of light Would be infinite. H ere, how ever, the ex-
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pression  for the energy of a spin-particle m oving with a velocity  
v < c  consists of two terms (cf. I l l  (44)):

and sin ce  for v  tending to c  the second  term in parentheses 4 tends 
to +  oo so must the first one too in order that W  m ay rem ain finite. 
T his can  be seen  also from  the relation III (36) betw een Mc and m 0.

On the other hand, s 0 approaches zero as a lim it w h en  v  tends to c; 
in a special case  this m ay be inferred from  III (49), and generally  by 
com parison of III (50) w ith  (19) o f this paper.

8. N ow  w e shall approach the question of the constants o f m otion  
of our system  of equations. W e have to  distinguish betw een  two kinds 
of such  quantities; both are constant along the w orld line of the par
ticle in  virtue o f the equations of m otion, but w hile the quantities of 
the first k ind m ay acquire arbitrary constant values, those of the 
second  hind  are alw ays equal to zero (or to another fixed  num ber).

In the first case there are two constants of m otion  of the first 
kind, nam ely m 0 and s0. N either of these quantities exists'in  the second  
case, and m, w hich  superseded m 0, is a «scalar depending on the para- 
m etrization» and as such it could only be maid constant by a special 
choice of the param eter (see Section 10 b elow ), but this constancy  
could n o t have any direct physical m eaning.

In the n ext Section Mc sc w ill prove to be- constant. So far as 
I can see it is the o n ly  constant of th e first kind in the second  case. 
Mc and sc by them selves are only approxim ately constant under  
certain conditions w hich  will be d iscussed in the next paper.

T o the second  kind belongs

if w e take (1 )— (4) as the fundam ental equations of our dynam ics 
(and not (1 )— (3) together w ith (27) from  w hich  (4) has been derived  
in  Section  1). To establish this result we m ultiply (4) by w a and taking
(3) into account obtain  mwaw “ = o ;  since m is d ifferent from  zero 
(cf. II, reference (3)) (27) follow s.

T he b ivector s**5 satisfies the fo llow in g relations:

V
1

(26)

(27)

sap sa? =  o

(28.1) sl“M )  =  o

(28.3) st“̂ 8] =  o.

(28.2)

(28.4)

4 In the limit a and q tend to become parallel and different from zero,
as can be seen from (12) and (21).
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The first of th ese  w as assum ed at the very beginning as the con 
dition o f  n on-existen ce of negative m ass. T he fourth follow s im m e
diately therefrom , since the determ inant of the four hom ogeneous  
equations (28. 1), w h ich  obviously  m ust vanish , is equal to the square 
of the expression  on the left-hand side of (28. 4). Equation (28,2) may 
be deduced from (28. 4) and (4) as follows:

m s^3 wi'l =  — ^  si“!3 s?J° w(j =  o (29)

as it is easy to verify  that ow ing to  the antisym m etry of s “'3

SW= s T l ^ s ^ s H

Finally, the relation (28. 3), w h ich  has been proved already by 
other m ethods (cf. (19) and II (33)), is also an im m ediate consequence  
of (28. 1), (28. 2) and (3), as

s xr. s®“3 w'i =  sa|j (s®*3 wT s^T w a +  s?® wi3) - 3 sac wtl =  o. (30)

T he geom etrical interpretation in four-dim ensional M inkow- 
skian space of the relations (28) is as follow s. (28. 4) expresses the fact 
that s “P is a flat, or one-sheet, b ivector, i. e., that it m ay be w ritten  
as an ¡alternating product of two (perpendicular) 4-vectors. (28 .1 ) is 
the condition  that w® should  be perpendicular to the p lane o f s“!3, and  
(28. 2)  that it should  lie in  that p lane, both these conditions being  
obviously com patib le for an  isotrop ic vector on ly . F inally , (28. 3) ex 
presses the fact that s “  ̂ is isotropic, that is, that it lies in a tangent 
plane to. the absolute cone.

The physical significance of the first two relations (28) m ay be 
also worth m entioning. If the particle possess a m agneto-electric m o
m ent p®'5 proportional to s®*3, w e m ay w rite instead o f (2 8 .1 ) and (28. 2)

p2? wp =  o, pi®*3 w^ =  o. (31)

The sam e relations w ith  th e  four-dim ensional velocity  u® in place of 
w® w ere interpreted in III, Section  3 as giving the condition  that p®*3 
should  be respectively  «purely m agnetic» and «purely electric», that 
is, that in  the rest-system  of the particle the electric and the m agnetic  
m om ents respectively should  vanish; incidentally , that w ould  im ply  
the vanish ing of p“̂ . Here no rest-system  of the particle exists, as the 
particle travels w ith  th e velocity  o f light, and both  conditions (31) 
m ay be satisfied  sim ultaneously. M oreover, (27) is an im m ediate co n 
sequence of the relations (31), as can  be readily  seen  by m ultiplying  
the second  one by w® and a llow ing for the first one.
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9. In the first case, the rest m om ent s0 was a constant, as a result 
of being a non-vanish ing constant o f m otion. Here saßSaß is also  
a constant of .motion, w h ich  m ay be seen  from  (3) and the equation  
resulting from  (2) on  m ultiplication  by s aß, but m oreover this co n 
stant is izero, and hence the on ly  con clu sion  w e can  draw from  (19) 
is that q =  s in  every inertial fram e of reference.

H ow ever, there exists a certain invariant value of s, nam ely  
«s in  th e  inertial fram e o f referen ce in w hich  G vanishes», that is sc. 
The question  arises if sc is a con stan t of m otion. W e are n o w  going  
to p rove that

Mc s0 =  const. (32)

and thus th e  an sw er to the above question depends on  w hether M c 
is a  constant of m otion  or not. In the next paper Mc w ill be sh ow n  to 
be on ly  approxim ately constant.

First, w e shall prove that the m agnitude of the 4-vector saßGß is 
constant, i. e. that

|saß Gß| — const. (33)

In fact, half the derivative w ith  respect to p of the square of that
m agnitude is (for c =  1)

saß G? (s'*r Gr +  s“T G r) =  saß Gß{(G“ w? -  G?w*) Gy +  s s*r Fya w ’ =

=  s Fya saß w ’ s“r . Gß == o. (34)

T he second  equality fo llow s from  (3) and the antisym m etry of s“ß, 
the th ird  is a consequence of (28. 2) and (3) since

F p S ^ w 'V T  =  F yasaßwTs- =  ^ F r  sac(w ’ s“T +  w T O -

=  — \  F r>s«ßw “sY° =  °-

Thus (33) is established. To p rove (32) it is n ow  sufficient to remark  
that th e m agnitude o f the 4-vector saß G*3 is equal to Mcsc (since in  the  
proper system  of the c irc le 'G k =  o, saß Ĝ  reduces to one term  
sa4 G4 =  [qMc|oJ and q =  s by (19).

A lternatively , the theorem  (32) m ight be established by proving  
in a sim ilar w ay that

isW3 Gtlj =  const., (36)

the m agnitude of the above trivector being also equal to M„ s0.
10. T h e  p a r a m e t e r s .  The quantity m g iven  by (5) being a «scalar 

depending on the param etrization», its variability along the w orld-
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line of the particle also depends on that parametx'ization. By a suitable  
choice of the param eter, m m ay b e m ade constant, the value o f that 
constant being, of course, quite arbitrary; w e shall denote it by n. 
Thus, pu lling  c =  1, w e define the new  param eter 7t by the follow ing  
equation:

dxa
- G" ^ = n <37>

or
G5dx*

dK — ------------- . (38)
n v

O bviously 7t is thus defined to  w ith in  an arbitrary linear trans
form ation. A lternatively, w e can  w rite instead of (38)

P  - (39)dp n
and for p =  t

Ta
(40)

dl n x

F or a free particle in th e rest system  of the circle w e have 
Gk =  o, G4 =  Mc =  const., and h en ce d7x/dt =  Mc/n or

M
7t =  —  L (41)n 7

W e see, that the special param eter tz is intim ately related to the 
«proper tim e of th e  circle», that is the time coordinate t  in  the rest- 
system  of the cii'cle, but it cannot be identified w ith  that proper  
tim e. So long as no external forces act on the particle, both  these  
quantities axe proportional, and they could  even be m ade equal at 
the outset by a su itable ch oice of the constant n. But this equality  
w ould  hold  on ly  so long as the particle is not acted u pon  by an electro
m agnetic field. Let us im agine that the particle enters such  a field, 
and after rem aining there for a w hile , gets out o f it again into a field- 
free space; obviously , during the w h ole process n rem ains constant, 
as it  is  so by hypothesis, but M0 undergoes changes in  tire electro
m agnetic field, and, in general, after the passage o f the particle through  
the «potential barrier» Mc w ill have another value than before. Thus, 
even if in itia lly  t l  had been ch osen  equal to the proper tim e o f the 
circle, it w ould  retain that property only so long as M c m ight be looked  
upon as a constant. C onsequently, w e a re again led  to - th e  question  
of the approxim ate constancy of Mc, w hich  has been  already post
poned to the next paper.
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11. B ecause o f (28. 4) Ihe b iyector s i s  flat, and m ay be therefore  
put in  th e  form  of an alternating product of two orthogonal 4-vectors. 
Let us w rite therefore

saP =  aabP— a^b®, aab* =  o, (42)
w hence

| s ^ s “? =  aaaa.b i3bp, (43)

and as by (28. 3) the b ivector is isotropic the above expi'essions
vanish an d  one of the tw o vectors a a and b  ̂m ust be isotropic. Both
could not be, sin ce  they are orthogonal, and two orthogonal and iso 
tropic 4-vectors in Min lcows Id an space are easily  proved to be pa
rallel, w h ich  cannot be the case here as s “!3 w ould then  vanish. So 
let b* be the isotropic vector, then, thanks to (28. 1) and the theorem  
just stated, b is parallel to  w “, and w e m ay w rite instead o f (42) 
(a lter m ultiplication  of a“ by a suitable factor)

s«p _  a»wP — a^w'*. (44)

Thus all the four relations (28) are satisfied. Yet w e m ay go still
a step further and identify a“ with a m ultiple of w ’“. To this end, let
us differentiate (44) w ith  respect to p, and com pare the result w ith (2). 
W e have

X*w^ — X^w'“ =  aaw''̂  — a^w'“, (45)
w here

X* =  Ga — a'“,

and hence w a lies in the p lane of the 4-veclors a“ and w ’“. W e may 
w rite therefore

a“ =  2hv'*-f 53wa. (46)

Inserting in (44), w e get finally

S“P =  at (w'a wP — w'P w*). (47)

Here 2t is a «scalar depending on  th e  param etrization».
12. In this last Section w e shall find an expression  for 21 together 

with som e further interesting form ulae.
D ifferentiating (5) w ith  respect to p and bearing in m ind that, 

in  virtue o f (6),
G'aw a =  o, (48)

w e have

m =  — “ 2  Gaw a (49)
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1 ,n  , 2i , ,o 
  r S ’Pw c = —tW  owl5

H ence

m w  =    2 sapw  p = - w  pw'p. w*. (50)

*  =  ^ F r r  (51)
W  p W  p

M ultiplying (47) by Gp, w e have, thanks to (5) and (49),

s^G p  =  — 21 c 2 (m w '“ -f- m 'w a) (52)
an d  so

n 2 s“PG, 2 =  M0 2sc2 — 2i2c 2m2w'a w'a. (53)

Com bining (51) and (53) w e have

M 2s 2
2 t =  Y ;  (54)m e  v '

and
WT w'® --  ---------

M02s02^ ' • “ s r r r r  (55>

Substituting in (47) from  (54) w e get the interesting form ula
M 2c i

s“P — - (w ’awP — w'Pw“). (56)

Incidentally , it m ay be noticed  that thanks to (55) a third proof
of the constancy of M 0sc m ay be reached as follow s. M ultiplying (2)
by w'p, w e get, thanks to  (49),

s'“!3 w'p =  m' c 2w “. (57)

Bearing this in  m ind, and d ifferentiating (4) w ith  respect to p, w e  
obtain

2 m V  +  m w'® +  s°  ̂w"p =  o. (58)
Since

w "aw* =  — w'aw 'a (59)

as a conseequence of (27), and

2 w"aw '“ =  (w 'aw 'a)', (60)

equation (58) m ultiplied  by w "ago-es over in th e  fo llow ing differential 
equation  for w'aw  a

— 4 m'. w ',w '‘  +  m (w'aw “)' =  o. (61)



the solution  of w h ich  is

w' W/<X
—^ 4-  =  const. (62)

The com parison  of this result w ith  equation (55) proves once  
m ore the constancy of Mc sc.

All the above form ulae and calculations m ay be sim plified  by 
introducing the special param eter 71 defined in Section 10. In that case

m =  n =  c o n s t , m' == o (63)

and SK, 'the «scalar depending on the param etrization» becom es a con 
stant.
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ON TWO RELATIVISTIC MODELS OF DIRAC’S ELECTRON *

By Jan WEYSSENHOFF, Institute of Theoretical Physics, Jagellonian
University, Krakow.

1. T he v iew  has been often expressed that som e at least of the  
difficulties of the present quantum  theory of fields arise from  the  
inadequatness of the underlying «classical m odel», rather than from  
the inadequatness of the m ethods of quantization. P ossib ly  the sam e  
m ay be true of D i r a c’s theory of the sp inning electron. T he d iffi
culties there encountered  are probably m ore a m atter of interpretation  
than of the equation used being defective. Perhaps som e progress 
m ight be m ade by  substituting a spin-particle obeying the laws o f re- 
laitivistic dynam ics to a sp in less particle, used as starting point by  
D i r a  c. Of course, the quantization w ou ld  then have to  be perform ed  
in  an oth er w ay, as (a), the equations of m otion  are reducible to 
a differential equation of the third order (o r  at least intunately con 
nected  w ith  such an equation), and cannot be brought to the cano
nical H am iltonian  form  (at any rate if no  auxiliary variables are in 
troduced), and (b), the spin of the particle has been  introduced  
beforehand, previously  to the quantization, and does not appear only  
as an eventual byproduct of that quantization.

W e shall see presently that there exist at least two different 
relativistic m odels of a m aterial particle w ith  spin, corresponding to 
the first and second  cases dealt w ith  in m y previous papers. The 
s e c o n d  m o d e l  seem s to be by far the m ore interesting, but, as the f i r s t  

present also som e advantages o f its ow n, both m odels w ill be discussed  
here. H ow ever, before entering upon the subject proper it m ay be 
w ell to insert som e rem arks concern ing the radiation of a m oving  
point-charge carrying a m agnetic m om ent.

2. A ccording to classical electrodynam ics an electric point- 
charge e, w h ere e is the charge o f  an. electron, travelling w ith  th e  
enorm ous frequency o f S c h r o d i  n g e r’s Z i t t e r b e w e g u n g  along  
a circ le  th e  diam eter o f w h ich  w ould  be o f the ord er of h/m 0c w ould  
radiate w ith  a very  high intensity. It is true that a classical m odel 
cannot he expected to g ive a  fair account o f the radiation em itted

* See I, reference (*)• The four preceding papers will he designated hence
forth by I, II, III and IV.



Two Relativistic Models of Dirac’s Electron 4 7

by an electron, but such  large radiation w ithout counterpart in nature 
w ould  render any correspondence betw een classical and quantum  
theoretical b ehaviour o f  an electron  im possib le. I rem arked as long  
ago as 1938 ( 1 )  that the situation changes radically if one takes into 
account not on ly  the charge o f an electron  but also its m agnetic m o
m ent. It can than happen that, under suitable conditions, the radiation  
due to  .the revolving m agnetic dipole cancels, approxim ately at least, 
the radiation em itted by the revolving point-charge. T he argum ent 
p resented  in 1938 w as carried  through in non-relastivistic approxi
m ation only, but it can be applied also  in  the general case, if w e inter
pret all the quantities in v o lv ed  as referring to the «rest-system of the  
circle». This im provem ent is n ecessary  to draw the conclusions aimed  
at in the present Section.

F or the con ven ien ce of the reader I repeat here the argument 
of 1938 w ith  only slight m odifications. W e know  that a m agnetic dipole 
w ith  a m om ent pi m oving w ith  the velocity  v produces an electric  
m om ent

Suppose such  a m agnetic dipole carrying an electric  charge e to be 
in  uniform  m otion around a circular orbit of radius r, the angular 
velocity  being to and the dipole axis rem aining perpendicular to the 
plane o f the circle, the electric m om ent (1) w ill then be directed along 
the radius vector of the particle. If w e put

and assum e that the sen se of m otion  is such as to produce a m agnetic 
m om ent op posite  to ¡1 (and hence an electric m om ent pointing inwards 
for e > o  and outwards in  the opposite case), the action o f  the resulting  
electric m om ent w ill be equivalent, at sufficiently distant points, to 
that of a charge + e  in the centre of the circle and a charge —e on  
the particle. T he action o f the m oving electric charge w ill be thus 
com pensated, and there w ill rem ain on ly  a charge + e  at rest in  the 
centre o f the circle. H ence, at large distances, there w ill rem ain only  
an electrostatic field  and the radiation w ill disappear. Putting v =  wr

Mc 2
a n d u > = ——  w e get, from  (1) and (2), for the ratio of the m agnetic 

m om ent to the angular m om entum  of the particle

( 1 )

n  —  sr (2)

p __  E

s Me (3)
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H itherto all the form ulae w ere valid  for both cases alike, as 
w ==M c2/s in  both cases if  a ll sym bols are understood to represent 
quantities in  the rest-system  o f the circle. From  n ow  on w e must 
discern the two possib ilities.

In the first case

M -  (4)
yl — v 2/c 2

m 0 is a constant representing .the rest-m ass o f  the electron, and  as 
for an electron x  =  e/m 0-c w e see  that the condition  o f van ish ing ra
diation is on ly  satisfied for infinitesim al velocities (on  the circle in  
its rest-system ), that is, for an infin itesim al proper radius r0.

In  the second  case, as w e shall see  presently, M itself has to- be 
put equal to the m ass of an electron  and (3) is always satisfied.

3. The first m odel m entioned  above is very  m uch the sam e as 
the one considered  as far back as 1926 by T h o m a s and F r e n k e l .  
Our results in I and III together w ith  the contents of the preceding  
Section suggest h ow ever a slightly  different interpretation of its 
behaviour. The equations1 of 'motion considered  hitherto did n ot take 
■into account the reaction  force of the radiation; according to them  
the m otion  of the particle consisted , broadly speaking, of a  m otion  
along a geodetic line together w ith  a superim posed circular m otion  
of proper radius rc. As these equations are equivalent to a diffe
rential equation of the third order, the general so lution  is far m ore  
com plicated  -than in the ca se  -of a- particle  w ithout spin. But, the reac
tion -of th e  radiation, instead o f still further com plicating th e m otion, 
sim p lifies it m aterially, as if does not a llow  the circular m o tio n  to 
develop, an the spin-particle is again m oving along a geodetic line 
or, at least, in fin ite ly  n ear  to it. W e can also- express -this fact by 
saying  th at th e proper -radius o f the c irc le  is in fin itely  sm all.

T he ch ief advantage o f th is first m odel over the secon d  one  
consists in  the fact that — as w as show n in detail by F r e n k e l  — 
-.it gives -a fair account of th e  behaviour o f a- sp inning electron in 
a m agnetic field  (in  so fair ais w e rea lly  k now  h o w  such  an electron  
should  behave c lassica lly).

B esides th at one superiority  the first m odel does n ot possess  
any oth er o v er  the second  -one; in  particular, it does n o t sh o w  so  m any  
striking analogies w ith  the behaviour of D i r a c ’s electron. B efore  
passing bo the consideration  o f th e latter, o n e  m ore rem ark  m ay be  
added. T here exists a c lo se  analogy betw een  both  m odels; though in 
the second  case the proper radius of th e circle has a fin ite value  
h/2Mcc, it is obvious that this radius m ust b e considered  as «unobser
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vable», or, in other w ords, that the consequence drawn from the 
second  m odel have a physical m eaning only in so  far as this radius 
m ay be considered  as infinitely sm all.

4. The second m odel consists of a point singularity m oving with  
the velocity  o f light according to the laws exposed in II and IV. The 
essential point h o w ev er  is that it is not the singulariy itself, but rather 
its m ean position — or the sm all circle on w hich  it m oves in an 
appropriately chosen  fram e of reference — w hich  has to be considered  
ais representing the electron.

W e say  «electron» as w e shall discuss here especially the ana
logies of our m odel w ith  D i r a c ’s theory of the electron, but it seem s 
probable that all elem entary particles endow ed w ith s p in 1 m ust have  
the sam e classical m odel and it is only by the process of quantization  
that the ind ividuality  of d ifferent sorts o f  particles is brought in.

5. W e shall now  enum erate and discuss som e analogies and som e  
prom ising d ifferences betw een our relativistic m odel of an electron  
and its quantum -m echanical counterpart.

(a) T he m om entum  G ceases to be parallel to v just as in  the 
theory of D i ' r a c  w here the m om entum  and the velocity have  
different operators.

(b) T he m agnitude o f the «kinem atical velocity» v is always c; 
the values of its com ponents in any d irection  range betw een —c and 
+ e . In D i r a c ’s theory the eigenvalues of the operators of the velocity  
com ponents ca x, cx y, caz are ±  c. The correspondence betw een  the 
classical and the quantum  theoretical behaviour is just the sam e as 
w ith  the sp in  vector 'and its com ponents.

N otice that w e w ere led, in  IV, to introduce also another concept 
of velocity , called «dynam ical velocity». S c h r ö d i n g e r  ( 2 ,  1 9 3 0 )  

has done alm ost the sam e in the theory of the D irac electron; he 
calls that n ew  velocity  «m acrovelocity», in contradistinction to v, the 
«m ioroveloeity».

(c) In both theories the m om ents of the linear m om entum  are 
not constants of m otion  by them selves but they m ay be supplem ented  
in  such  a w ay as to  acquire that property ; th e additional term s involve  
the vector of angular m om entum , or  its operator, w hich  are thus 
introduced in a very sim ilar m anner.

1 If the singularities representing them do not contain in addition to gra
vitational unipoles and dipoles also gravitational quadrupoles, octupoles, etc. 
It will be shown in a subsequent paper that the mean position of a quadrupole 
singularity moves also along a geodetic line.

A cta Phyaica Poloniea  4
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It could rightly be 'Objected that the above analogies are not 
convincing, as our .model was expressly constructed to bring them  
about. This is not altogether true, as it seem s already interesting  
enough that this oould  have been  done in so natural a w ay. At any 
rate the fo llo w in g  analogies are free from  those objections, as they  
fo llow  autom atically  from  the initial assum ptions.

6. (d) Jf w e put Mc equal to  the mass of an electron and s0 equal 
to h/2, as it is the case  w ith  an electron, then the frequency of the 
rotation around the c irc le  (in  the rest-system  of the circle) w ill be 
just equal to the frequency of S c h r ö d i n g e r s  Z i t t e r b e w e g u n g .

(e) U nder the above conditions the proper diam eter of the circle

becom es equal to the w ell-know n «wave-length of the Com pton shift». 
It is the w ave length w hich  w ould  be produced if the energy of an 
electron w ere transform ed entirely in to  a photon; m oreover, it is the 
m axim um  accuracy w ith w hich  the position  of a particle of m ass Mc 
m ay be ascertained. This last result fits n icely into our theory as 
w e are bound to  adm it that the m otion  o f the singularity  around the 
circle is unobservable and ‘that it is on ly  th e  circle as a w h ole w hich  
plays the role o f  an electron. T he am plitude of the Z i t t e r b e w e g u n g  

has the sam e order o f  m agnitude as the radius of the c irc le  in our 
case.

(f) T w o isotropic tensors, w*, for w hich  w aw* =  o, and sa|i, for 
w h ich  s^-s^ = o ,  play a dom inant role in our theory. It m ay be in 
teresting to rem ark that isotropic four-vectors as w ell as isotropic  
four-dim ensional b ivectors are c lo se ly  connected  w ith  spinors.

7. (g) T he m otion  of the spin-singularity in  an electrom agnetic  
field is far m ore com plicated  than in a field-free space, but as a first 
approxim ation, if the intensity of the field is sm all enough, w e m ay go 
on speaking of a m otion  on a circle even in an electro-m agnetic field, 
the circle being subject to a sm all acceleration  as a w h ole  and to slight 
deform ations. O bviously, the inequality to be fulfilled  by the intensity  
of the field  m ay be obtained by expressing the fact that in the rest- 
system  o f the circle the d isplacem ent o f the center of the circle during 
the tim e of o n e  revolution
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should  be vanish ingly sm all in  com parison with the proper radius of 
th e  circle

(7)

It is easy to  prove that the acceleration of the center of the 
circle in not too strong electrom agnetic fields is the sam e as for an 
electric point-charge w ithout spin. H ence, w e can write

T a T ,= T K T ’ « 2 i b  <8>

or, om itting the irrelevant factor tz '2,

e

Mcc
; E h « M ce. (9)

Curiously enough it is just the sam e inequality w hich  presents 
itself in  D i r  a c ’s theory o f the electron as the condition  of no  jum ps 
from positive to negative energy states. It is found there by expressing  
the fact that the change of the potential energy of an electron over
distances of the order of m agnitude h/M0c should be very sm all in
com parison  w ith Mec 2, i. e.

s E ~ « M cc 2. (10)
Mcc

This inequality is equivalent to (9).2
It m ay be also w ritten in  an invariant form, as follow s:

s“?FoS« M cc 2. (11)
Mcc 2 “i3

8. (h) V a r i a b i l i t y  o f  m a s s  a n d  p a i r  p r o d u c t i o n .  Strictly speaking  
all w hat has been  said  ¡hitherto lacks real foundation so long as w e  
h a v e n o t yet proved that Mc is a constant of m otion  and that it may 
therefore be put equal to th e  m ass of an electron.

In IV it w as o n ly  proved that

Mesc == const., (12)

2 Cf. L. d e  B r o g l i e ,  L'électron magnétique, Paris 1934, p. 289. De B r o g 
l i e  writes: «Ce résultat conduit â penser que s’il on pouvait s’interdire de con
sidérer des distances spatiales inférieures à h/m0c, on parviendrait peut-être 
à éliminer les ondes à énergie négatives».
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and it cam be easily  sh ow n  that Mc and sc separately are not constant. 
At first sight this state o f  affairs co>uld seem  a serious draw back  of 
the present theory, but at c lo ser  inspection  it turns out to b e  on e of 
its m o st attractive features, as w e sh all p rove im m ediately  that M„ is 
approxim ately  constant if the field  through w hich  the electron  passes  
do mot ch an ge to abruptly, and that the variab ility  o f m ass is intim a
te ly  con n ected  w ith  the production  o f  pairs.

L et us put th e  question  in  th e  fo llow in g w ay. At th e outset, let 
the electron  m ove in a field-free space; it is than represented  by  
a circle  o f  constant proper radius rc, constant m ass M0, and, thanks 
to (12), constant m agnitude of angular m om entum  s0 — all these quan
tities m easured  in th e rest-system  of the circle. T hey are linked  
together by  the equation

s,
r ‘ =  M7c <13>

N ow , let the electron  en ter  an electrom agnetic fie ld  and . after 
rem aining th ere for a w h ile  get out of it in to  a field-free space again. 
T here, it becom es on ce m ore a! regular c irc le  (the rest-system  o f w hich  
is in  general d ifferen t from  w hat it has been  before the passage through  
the field ). But do M0 and h ence re and sc return to their previous  
values? Strictly  speaking th e  an sw er to th is question  m ust be in the 
n egative, but w e sh a ll prove n o w  that M0 is ap proxim ately  constant 
w h en  th e  field  satisfies th e fo llow in g cond ition

2 M  c
( i4 )

in  w h ich  s0 has been  put equal to  h/2. T he p roof runs as fo llow s. 
T aking into account equation  IV (6) w e can  w rite

^  GaGa =  2 G“G'a =  2 Î  GaFasw 0 =  i  F aa(G“w° -  G»w“) =  I  F ^ s “  =

=  £  A /T T   — sa0 F'
c d p ^  “  ' c acr

and h en ce, as — GaGa/c 2 == Mc2,

^  (m .> +  a .  S"P F.p) =  =  i  S-? WT ̂  (15)

T he secon d  term in parentheses is sm all in com parison to the first 
o n e, in  v irtue of (11). T o  w rite dow n the condition, for neglecting  
th e right-hand m em ber o f  (15), w e m ust express the fact that this 
terrh m ultip lied  by  the change o f p during one revolution  around the 
circle  is van ish ingly  sm all in  com parison  w ith s s ^ F ^ /c 3. As the
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equation does not depend  on  the choice o f  the arbitrary param eter p 
we m ay put p =  I, and hence w r =  vh To be sure that the sum  on the 
right hand sid e  of (15) is sm all enough, w e m ust require that all its 
m em bers should  be sm all enough. Thus, rem em bering (6), w e obtain  
the inequality (14).

This con d ition  has ja sim ple m eaning in the theory of D i r a c ,  
at least w h en  the external electrom agnetic field is a plane m ono-

2E  /chrom atic w ave of .frequency v. T hen —  /E  =  v/c and a special case  

of (15) reads
h v « M cc 2. (16)

Thus, w e see  that th e  condition  of constancy of m ass (14) is equi
valent to th e condition  of non-production  o f pairs. This is again a very  
sen sib le  result. So long as w e are very far from  the possibilities of 
pair production  the m ass o f th e  electron is constant. Of course, w e get 
no sharp lim it, as classica l theories n ev er  give sharp ones.

9. It is n o t at all clear h o w  the quantization of our relativistic 
m odel has to be perform ed. In any case, it w ill have to be done in  
a very different m anner from  the present one, as S c h r ö d i n g e r ’s 
Z i t t e r b e w e g u n g  is a consequence o f  the superposition  o f slates of po
sitive and states of negative energies, and to day w e do im agine that 
a particle is either in a  state of p ositive or in a state of negative energy, 
w hereas our circular m odel o f an  electron , being a  m odel of the 
Z i t t e r b e w e g u n g ,  m ust correspond  sim ultaneously  to  states o f positive  
and states of negative energies.
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For the m easurem ents of the w eak effects of cosm ic rays, e. g. 
penetrating sh ow ers or the com ponent of great depth, w e m ust use 
G-M counters of large d im ensions. T hey m ust stand long use, because  
the investigations last several m onths or m ore. W e describe here the 
construction  of counters of large d im ensions, w h ich  can be m ade in 
any laboratory fairly sim ply, w h ich  are distinguished by m echanical 
solidity w ithout being sea led  in glass, and w hich  have all the pro
perties of good counters w ith respect to plateau, efficiency, stability  
during w ork, etc.

The mechanical construction of the counters.

T he counter show n in  fig. 1 is  set up in a brass tube AA, which  
w ith  the lid  B and the collar C form s a  cylindrical brass cham ber  
used as a cathode. T he central w ire D, the anode, is fixed  in a glass 
insulator E stretched from  a sm all spring F  through the centre of 
a glass tube G sealed  into  the co llar C. Both these glass tubes enter 
the counter in order to prevent a discharge betw een the w ire  and  
the n ear  w alls of the cham ber. On the end o f the glass tube G outside  
the cham ber is a brass cap H in the centre of w hich  the w ire is fixed. 
After setting up the com plete counter, w e seal a glass lube to the 
brass cap in order to jo in  the counter with the vacuum - and filling- 
apparatus. This glass tube is sealed  off afterwards.

To m ake the counter vacuum -tight all joints, brass-brass and 
brass-glass, are sealed  w ith tin  (25 p. c. Pb). T he glass tubes prepared  
for sealing w ith brass w ere ch em ically  deposited  w ith a thin film  of 
platin (from  H2PtC l0) 1 then electrolitically  coppered and sealed  
w ith tin.

1 E. A n g e r e r ,  Technische Kunstgriffe bei physikalischen Untersuchungen, 
Sammlung Vieweg.
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Before setting up the counter, all its brass parts w ere cleaned  
first w ith slacked lim e, then w ith technical niitric acid, and then rinsed  
with water. This procedure was used because o f the very bad state of 
the brass lubes. It has been  ascertained that sm all deform ations of 
tubes, such as their im perfect circularity or not quite coaxial position

Fig. 1. Large counter for the measurements of cosmic rays.

of the w ire, do not in fluence visibly the behaviour of the counter. 
T he counters w ere thoroughly evacuated before filling. As anode w e  
have used a resistance w ire (diam eter 0,1 m m ). T he dim ensions of one  
of th e counters are indicated in fig. 1.

Filling of the counters.

It is w ell know n that on e  distinguishes counters filled with a gas 
or a .mixture of gases and those filled  with a gas m ixed with an organic 
vapour. In  th e first type the discharge is quenched by applying a high 
resistance (10°Q o:r m ore) or a radio tube in a circuit of the Neher- 
Harper type ( i ) .  In the other type, called  «self-quenching», the reco
very o f  the counter takes place In consequence o f the discharge itself, 
w ithout thé essential in flu en ce of the high resistance ( 2 ,  3 ) .  This se
cond type of counters is m ostly used now  in consequence of its 
advantages ov er  the first, and m ost frequently a m ixture o f argon and  
alcohol vapour is used.

W e have investigated counters filled with pure vapour o f aceton  
or alcohol to a pressure of 10 mm Hg. The counters with a.ceton vapour  
exhibited very good properties at first after filling. T he threshold  
voltage o f a counter of th e d im ensions show n in fig. 1 is about 1370 V, 
the length o f  plateau 400—600V, the efficiency >  98,5%. If how ever  
they have been  in action for a longer lim e they ceased  to work  
satisfactorily. W ith  the resistance of 10s Q  they w orked w ell ior about
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a m onth, counting in this time about 107 pulses. T herefore they cannot 
be adopted for m easurem ents over a longer period of time.

T he m ixture m ostly used in  self-quenching counters is one of 
argon w ith  alcohol-vapour. W e have used this m ixtures because now  
it m ay be considered  as a norm al m ixture do counter-filling. -

T he counter reproduced in fig. 1 filled  w ith a lcoh ol vapour  
(absolute a lcohol) under a pressure of 10 mm  Hg and argon under  
a pressure of 90 mm Hg sh ow s the follow ing properties:

T he threshold  voltage (indicated w ith an oscillograph) 1100 V.
T he low est voltage of correct counting 1130 V.
T he length of plateau for resistance 10® Q about 400 V.

 ......................... ” 107Q ” 350 V.
I qgq -  250 V.

T he plateau is m eant as the voltage 'region in w hich  the recorder gives
constant counl-rates and the pulses are singular. T he n um ber o f counts 
without any radioactive substance is about 700/min. T he above data 
refer to 10 counters filled  sim ultaneously . T he d ifferences in  the 
threshold  voltages w ere not greater than 20 V. T he length o f the p la
teaus for all the ten counters was identical w ith in  our possib ilities  
of estim ation. As the counters filled  w ith pure aceton vapour got 
spoiled  after a certain time, w e put the argon-alcohol counter under the 
in fluence o f a sm all rad ioactive source giving in  each  counter about 
2.104 pulses/m in. during 485 hours at 200 V above the threshold  voltage  
w ith a resistance of 10s Q. After the rem oval o f the radioactive sub
stance the threshold  voltage of the irradiated counter got about 70 V 
higher and the length of the plateau shrinked  to about 200 V. T he  
counter was still good enough to be used.

Coincident circuits.

T he resolving tim e for accidental co in cid en ces of a conventional 
R ossi-circuit depends firsl of all on the fo llow ing factors, (a) The 
grid resistance of the Rossi tube, (b) The grid voltage of this tube,
(c) T he voltage of the counter, (d) The grid voltage of the tube record
ing the coin cid en ces (thyratron). T his is the con seq u en ce of the fo l
low ing circum stances: (a) The form  of the pulse on  the com m on  
anode depends on  the tim e constant of the system  connected  w ith  the 
grid of th e  Rossi tube. If the capacity of this system  rem ains un
changed, this tim e-constant w ill depend only on  the grid resistance.

* We are greatly indebted to Prot. H. N i e w o d n i c z a ń s k i  and ProT. 
J. W e y s s e n h o f f  for supply of argon.
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(b) The increase of the positive voltage w ithin  certain lim its does 
not change the size of the p u lse (in  volts) on the anode, but narrows 
it in the upper part, according to the w ork-characteristic of the 
tube, (c) As the reso lv in g  tim e depends on the size of the pulse 
(in  volts) the counter voltage influences it. (d) The pulses deriving  
from  the accidental coincidences are not alwavs equal, since- their size

Fig. 2.
Data for simple Rossi coincident circuit with resolving time 8.10'6 sec. Counter 
connected to point A’: R, =  107 Q, 1^ =  20 k£2, R0 =  R,0 =  250k£2, R„ =  l MS, 
C3 =  50 pF, C, =  500 pF, V, =  +  1300 V, V8 =  +  4 V, V9 =  +115 V, V10 =  +  230 V

VIa =  -  23 V, V13 =  - f  150 V.
Data for high-resolving power coincident circuit with a resolving time 1.10- '  sec. 
Counter connected to point A: R, =  107 Q, R2 =  R< =  R5 =  R, =  50 kQ, 
R3 =  R„ =  R„ =  RI0 =  250 k£2, R8 =  10 kQ, R„ =  1 MQ, C, =  C* =  C3 =  50 pF, 
C4 =  500 pF, V, =  +1300 V, V3 =  + 5  V, V, =  - 7 V ,  V8 =  + 5  V, Vn =  - 2 7  V,

V, =  V3 =  V8 =  +115 V, V, =  V, =  Vj0  1-230 V, V„ =  +  150 V,
Tj =  T, =  R. T. =  AF 7, Th =  AC50, Rec. Recorder.

depends on  the tim e interval betw een  the pulses com ing from  both  
counters. T hese pulses are therefore generally sm aller than the pulses 
of th e rea l co in cid en ces. In consequence w e can bias the grid  of the  
thyratron w ith negative voltage so  that w e m ay om it the sm aller pulses. 
In relation to (c) w e m ust still rem ark that the plateau of a single  
counter in a given circuit begins w ith a som ew hat low er voltage than  
the plateau obtained for coincidences. The w orking voltage for  
counters, therefore, m ust not be too high but w ithin the lim its of the
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plateau of the real co incidences. Taking these circum stances into 
account, w e can, using the com m on Rossi circuit, attain the resolving  
tim e of I.IO-3 sec. w ithout great difficulties. T he right p a r t.o f fig. 2 
separated  from  the rest by a dotted line show s such a sim ple circuit. 
It can  'be used as it is on ly  w hen the pulses arriving to the grids of 
the R ossi tubes are equal, as for single counters connected  w ith the 
grids; thus, if w e want to  use this circuit for sets of counters, w e must 
equalize the pulses before they reach the grids.

A further d im inish ing of the resolving time is possib le by a further  
reduction of the grid resistance. As the reduction of the grid resistance, 
how ever, causes a dim inishing in size of the pulse, this procedure is 
on ly ¡possible w ith  sim ultaneous am plification of the pulses. W e ob
tain then w ith a strong reduction of the duration of the pulse a suf
ficient size for recording lit. In general one stage of am plification  with  
a penthode is enough in  order to attain the resolving tim e of the  
range o f  1.10-6 sec. W e must then  take positive pulses from  the cathode  
of the counter. B ecause of greater convem iency, how ever, in w orking  
w ith an earthed cathode, w e added still another tube. This circuit with  
all its electric values is show n in fig. 2 3. The reso lv in g  tim e of this 
circuit is 1.10-6 sec. Its great advantage is that the pulses com ing to the 
grids of the Rossi tubes are equalised by the two first stages of am pli
fication.

W e are greatly indebted to the Rector o f the M ining Academ y  
of Cracow D r W . G o e t e l  for his interest during the execution  of 
this w ork and for financial assistance, and to P rofessor M. J e ż e w 
s k i  for generous p rov ision  o.f the necessary facilities w hich  enabled  
the w ork  to be perform ed. Our thanks are also due to Mr. S. W  o j- 
t ó w, a sk illed  m echanician  o f the M ining Academ y, for his valuable  
help.
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SIMPLE QUENCHING-CIRCUIT FOR G. M. COUNTERS

By J. W ESO ŁO W SK I and B. MAKIEJ, Physical Institute 
of the Jagellonian U niversity, Kraków  

(Received April 22, 1947)

E. W . Y e 11 e r ( 1 )  proposed  a quenching circuit containing one 
vacuum  tube con n ected  in  series w ith the cylinder of the counter. As 
the author adm its, the ch ief disadvantages of that circuit are: 
(a) varying potential of the cylinder, requiring sh ielding and insu
lation if two or m oce counters are used, and (b) the low  size of the 
negative output pulse. In addition a negative bias m ust be applied  
to the con trol grid of the quenching tube.

W ith the circuit sh ow n  in Fig. 1 the cylinder of the counter is 
on a constant potential.

If a sufficiently insulated filam ent transform er is available, each 
of the tw o  high voltage supply term inals m ay be grounded. T he prin
cip le  o f the operation of the circuit w ill be evident from  the figure. 
A current resulting from the passage o f an ionizing particle through  
the G.-M. counter causes a drop of potential across the vacuum  tube 
and the resistor R. S ince the potential at A, and therefore at the 
control grid, is then negative w ith respect to the cathode, the tube 
becom es non-conducting and the discharge stops.

ó n .v. ę
Fig. 1. Quenching Circuit Diagram.



60 J. W e s o ło w sk i  a n d  B. M akie j

Owing to the low  va lu e-o f 'the resistor R the difference of p o 
tentials betw een  th e  cathode and the grid vanishes quickly causing  
com plete recovery of the circuit. As sh ow n  b y  the cathode-ray o sc il
lograph th e recovery tim e of the system  is of the order of 3 X 1CM sec.

T he advantages of the described  circuit are: (1) T he cylinder of 
the counter is on a con stan t potential (zero if required). (2) Sim ilarly  
to the Y e t t e r s  circuit, high potential is not applied across the vacuum  
tube and there is no constant current-drain from  th e high voltage  
supply. (3) No additional lo w  voltage sources are needed. (4) The 
negative output pulses are of su fficien tly  high size.

T he authors w ish  to express th eir  grateful appreciation to P ro
fessor K. Z a k r z e w s k i  for the facilities given  in the course of their  
experim ents.
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AN ELECTRONIC VOLTAGE STABILIZER

J. W ESO ŁO W SK I, P h ysica l Institute of the Jagellon ian  U niversity,
K raków.

(Received April 22, 1947)

Several m ethods have been proposed  for the stabilization of 
the output voltage operating G.-M. counters. A great sim plicity  and  
high constancy offers the N eher-P ickerung ( i )  circuit in w hich , 
h ow ever, bias batteries m ust be used.

T he circuit described in this paper requires no batteries and  
m aintains practically  constant usual output voltage, even  w h en  the 
change of the input exceeds 50%. The circuit contains one penthode  
and two glow  discharge tubes serving as bias batteries substitutes. By

Fig. 1. R, =  R2 =  3 X lO3, Rs =  2 X 10s, R< =  105, P =  108 ohms; F =  0.5nF; 
T =  type A.F.7; Gu Gs =  glow discharge, Philips 4357.

m eans o f  the variable resistor R4 and the potentiom eter P the cathode  
of the tube is brought to a p ositive potential w ith  respect to the point 
C and th e con tro l grid — to a slightly negative potential w ith respect 
to the cathode.

As is seen  from  Fig. 1, the action of the penthode consists in  
taking upon itself the fluctuation of the input voltage. If, for instance, 
the input voltage increases, the potential of the cathode also increases  
relatively to the point C and, therefore, the difference of potentials
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b etw een  the cathode and the grid increases too. T he tube b ecom es less 
conductive, and this in turn produces an increase of the d ifference of 
potentials betw een  B and C. T he output voltage, taken from  the 
points A and B, rem ains practically  constant.

In conclusion  the author w ishes to acknow ledge his indebtedness 
to Prof. K. Z a k r z e w s k i  for his continued encouragem ent and to 
thank Mr. J. J a n i k for his technical assistance.
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