ACTA PHYSICA POLONICA

VOL. IX, FASC. 1

Pierwszy zeszyt powojenny, ostatni w r. 1939 by} Vol. VIII, Fasc. 1
First issue after the War, the last in 1939 was Vol. VIII, Fasc. 1
Premier fascicule d’aprés-guerre, le dernier en 1939 était le Vol. VIII, Fasc. 1

KRAKOW 1947
WYDANE Z ZASIEKU WYDZIALU NAUKI MINISTERSTWA OSWIATY



Orders and inquires concerning
Acta Physica Polonica

— complete sets, volumes and single fascicules
as well as other

Polish scientific periodicals

published
before and after the war,
regularly and irregularly,
are to be sent to:

Export and Import Enterprise ,RUCH”

Warszawa 1, P.O. Box 154, Poland
Ask for cataloques, folders and sample copies

First reprint by PWN — Polish Scientific Publishers t%9



ACTA PHYSICA POLONICA

Vol. IX —Fase. 1

Pierwszy zeszyt powojenny, ostatni w r. 1939 byi Vol. VIII, Fasc. 1
First issue after the War, the last in 1939 was Vol. VI, Fasc. 1
Premier fascicule d’aprés-guerre, le dernier en 1939 était le Vol. VIII, Fasc. 1

KRAKOW 1947
WYDANE Z ZASIEKU WYDZIALU NAUKI MINISTERSTWA OSWIATY



POLSKIE TOWARZYSTWO FIZYCZNE
THE POLISH PHYSICAL SOCIETY
SOCIETE POLONAISE DE PHYSIQUE

Zarzad — Officers — Conseil

Przewodniczgcy — Président — Président
Prof. Stefan PIENKOWSKI
Wiceprzewodniczacy — Vice-Président — Vice-Président
Prof. Czestaw BIALOBRZESKI
Sekretarz — Secretary — Secrétaire
Dr. Ludwik NATANSON

Skarbnik — Treasurer — Trésorier

Prof. Wiadystaw KAPUSCINSKI
Redaktor — Editor — Rédacteur

Prof. Jan WEYSSENHOFF

Cztonkowie — Members — Membres
Prof. Andrzej SOLTAN

Przewodniczacy Oddziatbw Towarzystwa — Présidents o[ the local
Sections — Présidents des Séctions Locales

Gdansk: Prof. Arkadiusz PIEKARA

Krakow: Prof. Jan WEYSSENHOFF

Lublin: Prof. Stanistaw ZIEMECKI

L 6dz: Prof. Feliks Joachim WISNIEWSKI

Poznan: Prof. Szczepan SZCZENIOWSKI

Warszawa: Prof. Wojciech RUBINOWICZ

Wroctaw: Prof. Stanistaw LORIA

KOMITET REDAKCYJNY - BOARD OF EDITORS - COMITE DE REDACTION

Redaktor — Editor — Rédacteur Jan WEYSSENHOFF, Krakow
Cztonkowie — Members — Membres  Jan BLATON, Krakow
Mieczystaw JEZEWSKI, Krakow
Marian MIESOWICZ, Krakow
Henryk NIEWODNICZANSKI, Krakéw
Konstanty ZAKRZEWSKI, Krakdéw



Vol. IX (1947) Acta Physica Polonica Fase. 1

AFTER SIX YEARS OF WAR

After an interval of six years the Polish Physical Society resumes
its activities aiming, as before the War, at the encouragement of
physical research in this country. ACTA PHYSICA POLONICA, the
Society’s official organ, are .called again to existence.

On the threshold of this new period we should realize what
losses the science of physics had to suffer in Poland during the most
terrible of all wars in which this country ever took part. In the first
place we should consider death’s heavy toll taken from among
scientific workers, all the more regrettable,_as in many cases they
were victims of furious brutality o>f the enemy, who. striving for the
total destruction of the Polish nation persecuted our most eminent
men with particular vehemence.

Here is the list of members of the Polish Physical Society and
other Polish physicists deceased since the outbreak of the War.

Edward Bekier, professor of physical chemistry, Stephen Ba-
thory University, Wilno, died in Wilno, 1945.

Mieczystaw Centmerszwer, professor of physical chemistry,
first in Riga, later in Warsaw, a prominent representative of that
branch of science, author of many scientific works and several hand-
books, active member of the Polish Academy of Science and Letters;
has been assassinated in Warsaw on July 27, 1944.

Jan Cichocki, Ph. D, assistant at the university of Poznah,
lately at the Institute of Experimental Physics of the University of
Warsaw, had worked in Paris with Prof. J. Perrin and M. de
B roglie; in the last years before the War he worked on problems
of nuclear physics.

Bernard Czemplik, Ph. D., lecturer in physics at the Polish
Medical Department in Edinburgh, died in autumn 1944,

Ludwik Dgbrowski, M. Phys., assistant at the University
of Wilno, pupil and collaborator of the late Prof. J. Patkowski,
published papers on band spectra, for a time worked at Katowice in
the Silesian Department of the Polish Bureau of Standards.

Aleksander Dmochowski, an eminent teacher, director of
the Physical Laboratory for Secondary Schools in Wilno, author of
many excellent text-books, editor of the quaterly review «Physics
and Chemistry at School».



Stanistaw D o b insik i, Ph. D., lecturer (docent) in experimental
physics at the Jagellonian University in Cracow and the University
of Poznan, bad worked with Prof. Sir George Thomson in London,
published papers on different topiics especially oin diffraction of
electrons and structure of metallic surfaces; as an officer of the Army
Reserve, he died of his wounds received in the first days of the War
in the defense of Warsaw.

Dobiestaw Doborzynski, Ph. D. lecturer (docent) in ex-
perimental physics at die Jagellonian University in Cracow, worked
on the polarization of dielectric media, later, after studies under Prof.
W. H. Keesom at Leyden, also specialized in low temperatures;
took part in the War as an officer of the Army Reserve, was arrested
first in the famous man-trap arranged by the Germans against the
Cracow professors in November 1939; in 1942 he was arrested once
more, condemned to death, and executed.

Gustaw Doborzynski, Ph. D. teacher of mathematics and
physics in Warsaw.

Jadwiga Falk ow s k a, teacher of physics at the famous lyceum
at Krzemieniec, formerly assistant at the Physical Institute of the
Stephen Bathory University, Wilno.

Henryk Herszfinkiel Pli. D, callaborator of the late Prof.
L. Wer tens tein in Warsaw, worked on radioactivity.

Lejb Dawid Herszman, M. Rhys., assistant to Prof. H. Nie-
wodniczanski at the Stephen Bathory University at Wilno, com-
mited suicide in the German established Ghetto in Wilno, 1941.

Jozef Hrynkiewicz M. Phys., teacher of physics in the Sigis-
mund August Lyceum in Wilno, formerly assistant at the Physical
Institute of the Stephen Bathory University, Wilno, died 1944,

Stanistaw Kaland y k, professor of experimental physics at the
Faculty of Medicine of the Poznan University, had worked in the
Cavendish Laboratory under J. J. Tho m s o n; most of his publication
concern the properties of ions and electrons in gases as well as divers
phenomena associated with explosions; has been assasinated by the
Germans at Poznan in the first days of the War.

Antoni Karpowicz, Ph. D. formerly assistant to Prof. S.
Kalinowski at the High Technical School, Warsaw.

Leon Kiecki, teacher of physics at the french lyceum in War-
saw, a pupil of Kundt; among other works he also wrote an essay
on the late Prof. L. N,atanso n.

Kamil Kraf t, Ph. D., M. D., physicist and physician, published
papers on relativity and optics, his paper on an interference-colour
scale is often quoted. Died in Cracow, 1945,



Juda Kreisler, Ph. D., assistant to Prot. W. Rubinowicz
at the John Casimir University, Lwow.

Stefan Kreutz, professor of mineralogy at the Jagellonian
University, Cracow, active member of the Polish Academy of Science
and Letters, died in 1941.

Tadeusz Kuczynski, professor of physical chemistry at the
High Technical School, Lwéw, murdered by the Germans in 1941.

Hilary Lach s, professor of physical chemistry at the Free
University, Warsaw.

Andrzej L astowiecki, Ph. D., assistant do Prof. S. Loria
at the John Casimir University, Lwow.

Myron Mathisson, Ph. D., lecturer (docent) in natural philo-
sophy at the University of Warsaw, author of works on relativity and
guantum mechanics, died in Cambridge, 1940.

Tadeusz Modzelewskil electrical eng:"eer, assassinated by
the Germans during the Warsaw Insurection, 1944,

Tadeusz N ayder, Ph. D., teacher of physics at the School of
Industry, Cracow, formerly assistant at the Physical Laboratory of
the Jagellonian University, Cracow, author of some experimental
works, died in Cracow, 1945.

Jozef Patkowski, professor of experimental physics at the
Stephen Bathory University, Wilno, author of works on radioactivity
as well as on band spectra (isotope effect); the latter were partly
executed at Newcastle in collaboration with Prof. W. E. Curtiss;
the last years before the War he filled the post of director of the
Department of Science, Letters and Academic Schools in the Ministry
of Education; fell a victim of an air-bombardment of Warsaw, Sep-
tember, 1943.

Stanistaw P ilat, professor of technology of fluid fuels at the
High Technical School, Lwoéw, murdered by the Germans in 1941.

Mieczystaw Pozaryski, professor of electrical technology at
the High Technical School, Warsaw.

Antoni Przeborski, Ph. D. published some experimental
works on molecular spectra.

Antoni Raabe, M. Phys., collaborated with Prof. J. We y sse n-
ho ff during the War. Captuired in a man-hunt in the streets of Cra-
cow, died in the concentration camp of OS$wiecim, 1942,

Irena Ramm, née Manteuffel M. Phys., for a time assistant
at the Institute of Experimental, Physics of the Warsaw University,
worked on X-rays analysis in Warsaw, later in Paris under Mme
Curie on radioactivity.



Zofia Rotszajn, Ph. D.,, formerly teacher of physics in sec-
ondary schools in Warsaw.

Aleksander Sikora, M. Phys., pupil and assistant of Prof. S.
Pienkowski, University of Warsaw, killed at Katyn.

Ireneusz Slusarczyk, M. Phys., pupil and for a Lime assistant
of Prof. S.Pienkowski, University of Warsaw, worked afterwards
in the State Meteorological Institute and published papers on meteoro-
logy; died in Lhe concentration camp of Majdanek.

Zdzistaw Specht Phil. D, assistant to Prof. S. Loria at the
John Casimir University, Lwow, died in 1943.

Oskar Ste 1lm an, assistant to Prof. M. Grotowski at the
Free University, Warsaw.

Leon Stepinski, teacher of physics and chemistry in second-
ary schools, Wilno.

Karol Szlenker, Ph. D, pupil of W. Roentgen, specialized
in optics, assassinated by the Germans during the Warsaw Insurection,
1944,

Wi itold Try 1s ki, M. Phys., hanged by the Germans in Warsaw
in 1943 as one of fifty hostages.

Tadeusz Tucholski, Ph. D. lecturer (docent) in chemistry
of explosives at the High Technical School, Warsaw, pupil and col-
laborator of the late Prof. S. Kalandyk, University of Poznah;
1934/35 worked with Prof. Ridealin the Department of Colloid
Science in Cambridge on deuterium; took part in the campaign of
1939 as officer of. the Army Reserve, killed at Katyn.

Ludwik Wertenstein, professor of physics at the Free
University in Warsaw and t6dz, director of the Radiological Labo-
ratory of the Warsaw Scientific Society, pupil of Mrne Curie,
also worked ‘with Lord Rutherford in Cambridge, published
many scientific .works mainly o.n natural and artificial radio-
activity; a prominent teacher, he was also a gifted'writer of
popular books on scientific topics; having translated into Polish Mine
Curie’s «Radioactivity» he supplemented it with a valuable appendix
written by himself. Killed on January 18, 1945 by a shell splinter in
Budapest, where he had taken refuge from German persecutions in
Poland.

Bruno Winawe r, Ph. D., pupil of P. Lenard, sometime
assistant to Prof. J. Ko w a 1s ki, University of Warsaw, distinguished
Polish comedian, whose plays have been translated into many lan-
guages, he was also well known as speaker by radio and writer of
popular articles on scientific topics.



Mojsiej Zy w, Pli. D., collaborator of the late Prof. L. We r-
tenstein. Published works on radioactivity; together with Danysz

he discovered Radiofluorine (%F), perished at the slaughter of the

W arsaw Ghetto, 1943.

The above brief mentions cannot give but an inadequate picture
of the importance of our losses. The works of many members of our
Society whose names appears on this list deserve fuller appreciation.
Their merits will be better considered in commemorative notes to
appear later.

Besides personal losses also the damage to scientific equipment
is enormous. Of all Polish physical institutions which were working
before the War the following are deemed to exist, though as a matter
of fact their existence in many cases is more nominal than real.
(1) Warsaw: The Institute of Experimental Physics of the Univer-
sity, the Experimental Laboratory under the supervision of the pro-
fessor of natural philosophy, two physical institutes of the High
Technical School, the Radiological Laboratory of the. Warsaw Scien-
tific Society, and the Geophysical Observatory at Swider. (2) Cracow:
The Physical Institute of the Jagellonian University and the
Physical Institute of the Mining Academy. The Physical Institute
of Ibe Jagellonian University — founded at the end of the XVIII-tli
century — is the most ancient physical institution in Poland and
has been rendered famous in the past by men like Zygmunt W r ci-
ble wski, August W itkowski and Marian SmoluchowsKki.
(3) Poznan: Three physical institutes, of which two belong to the
Faculty of. Science, the third to the Faculty of Medicine of the
University of Poznah.

The best equipped of the above was the excellently appointed
Institute of Experimental Physics of the Warsaw University, from
which a great number of works — chiefly concerning molecular
optics — appeared during the twenty years preceding the War. In the
field of phololuminescence the Institute enjoyed world-wide renown.
Now, it has practically ceased to exist. Only the building remains, but
it requires important renovation. All the precious apparatus and
instruments have been robbed by the Germans.

The laboratory associated with the chair of natural philosophy
has been completely burnt down. Other Warsaw laboratories as well
as both institutions in Cracow have also been badly devastated;
nothing or scarcely anything of their pre-war belongings has remained.



The Institute of the Jagellonian University in Cracow succeded in
saving its valuable collection of books.

It is clear that in the present position all activities shall have
to concentrate on teaching and organization, whereas research work
shall have for' a lime to be restrained from almost completely. One
must also .reckon with the fact that not only purely scientific insti-
tutions have been heavily damaged, but also the manufacture of
products indispensable for experimental investigation has badly suf-
fered. The chemical, optical, and electrical industries as well as
ordinary mechanical workshops are in a state of utter devastation,
and besides they cannot get supplies of the most important materials.

All those difficulties and hindrances shall not discourage us. We
shall spare no effort towards the restitution of conditions required
for the normal development of physics in this contry. Science in
Poland had already passed through many a difficult crisis and every
time succeeded to emerge to a new and more successful existence.
We firmly believe that now again we shall manage to attain our goal,
if we only get due help (which was many times promised) either in
the form of indemnities or in friendly loans or gifts from abroad.
A certain quantity of books has been already gladly received. We hope
that the present will contribute to the conviction that the help will
not be wasted.

Cracow, May 1945, Konstanty Zakrzewski

We regret to announce the following deaths of members of the
Polish Physical Society since May 1945:

Mr. Leon Cwiklinski, M. Phys. assistant at the physical
laboratory of the Mining Academy, Cracow, on January 2, 1946.

Prof. Tadeusz Peczalski, professor of natural philosophy in
the University of Poznah, died in Paris on February 2, 1947.

Prof. Stanistaw Kalinowski, professor of physics at the High
Technical School, Warsaw, director of the Geophysical Observatory
at Swider, honorary member of the Warsaw Museum of Industry and
Agriculture, on March 27, 1946.

Dr. J6zef Lu b an s lei, assistant in the aerodynamical laboratory
of Prof. J. M. Burgers at Utrecht, on December 11, 1946.

Mrs. Maria Mg czyn ska, néee MOraczewska, M. Phys,,
sometime assistant at the Institute of Experimental Physics of the
University of-Warsaw, on December 24, 1946.
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RELATIVISTIC DYNAMICS OF SPIN-FLUIDS AND
SPIN-PARTICLES *

By Jan WEYSSENHOFF and A. RAABE f, Institute of Theoretical
Physics, Jagellonian University, Krakéw **

1. Following up a train of thought inaugurated, by Einstein
and Gromer, Mathisson (1, 1937) and Lubanski (2, 1937)
deduced the equation of motion of a material particle endowed with
spin from the general principles of the theory of relativity. Even for
a free particle in Galileian domains these equations do not coincide
with the Newtonian laws of motion; there remains an additional term
depending on the internal angular momentum or spin of the particle,
which raises the order of these differential equations to three.
Mathisson did not notice the fact that for the above conditions
his equations are equivalent to the equations which were previously
found by Frenkel (3, 1926) for a spinning electron (if-only their
terms depending on the electromagnetic field are dropped). This is
all the more excusable as Frenkel considered throughout the
additional term in his equations as an infinitely small perturbation,
and did not even mention the fact that they disagree with Newton’s
First Law for a free particle.

In the present paper we give a third method of obtaining
the same equations by establishing first the laws of the dynamics of
an incoherent spin-fluid and passing then to the Ilimit. Strictly
speaking, we obtain different and much simpler equations, which
prove however to he equivalent to Frenkel’s and Mathisson’s.
The simplification is due to the explicit introduction of the 4-vector
of linear monumentum and energy G*

* Presented at a meeting of the Cracow Section of the Polish Physical
Society on February 28, 1945. The main contents of this paper and the next
one, as well as most of the results of the three following, were a subject of
a lecture at a secret meeting of physicists at Prof. Pieibkowski’s home in
Warsaw, October 1942.

** Mr. Raabe was a highly gifted young physicist with whom 1| outlined
in all its main features the contents of this paper and the next one in 1940/41
in Lwéw. We tried to pursue our work in 1942 in Cracow, but unfortunately
in June 1942 Mr. Raabe fell victim of a man-hunt in the streets of Cracow; he
died four months later in the German concentration camp of Oswiecim. (J. W.)
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In Sections 2—4 we develop the dynamics of a spin-fluid by
a method similar to that usually applied in the reliativistic dynamics
of incoherent matter (without internal angular momentum), the main
difference consisting dn the assumed .asymmetry of the energy tensor
T« In Section 5 we obtain the Frenkel-Mathisson equations by
integrating the equations of motion of a spin-fluid over an infinitely
small clement of volume. In Section 6 we show that the most general
motion of a free spin-partiele in Galileian domains, where the special
theory of relativity prevails, is a relativistic superposition of a trans-
lation and a uniform circular motion. Mathisson proved the same
result for the non-relastivistic case only. Finally, in Section 7 we
write down ithe equations of motion of a spin-partiele with an electric
charge .and a magnetic moment moving in an electromagnetic field.

2. We base the dynamics of a spin-fluid in the special theory of
relativity on two fundamental principles: the principle of conservation
of energy and linear monumentum, and the principle of conservation
of angular momentum. By spin-fluid we mean a fluid each element of
which possesses besides energy and linear momentum also a certain
amount of angular momentum, proportional — just as the energy and
the linear momentum — to the volume of the element.

We represent the density of angular momentum per unit rest-
volumel by the four-dimensional biveotor (antisymmetric tensor of
rank two) s*\ Its three space components form a three-dimensional
vector

s={sX s3 s12} (1)

equal in the coordinate system in which the fluid momentary rests
to the three-dimensional density of angular momentum. Its three
space-time components form also a three-dimensional vector, which
we shall denote by

g= {sl4 s24 s34} ()

W e shall assume that this vecor vanishes in the rest-system 20of the
fluid. The four-dimensional tensor expression of that condition is!

sa?up= o, (2)

1 The element of rest-volume dV, is defined as the element of the three-
dimensional orthogonal cross-section of a world-tubc. Multiplied by (c and) the
element of proper time along this world-tube, r, it yields the four-dimensional
element of volume dQ = dx'dxaAxsdx* = dVdx4= cdVdt—cdV0dr. Hence,
u*—dt/d #— VYl —p»= dV0dV, where [3= v/c.

2With regard to the notations used, we observe what follows. Greek indices
take the values 1 to 4, latin 1 to 3. Zero is never used, as a lensorial index, as
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as uk= o in 20> and of the fourfold sum there remains only the
term suu4, the vanishing of which yields sil= qi= o.

The vectors s and q transform in the same manner as the
magnetic and electric field intensities, or the magnetic and electric
dipole moments. The condition (2) for a magneto-electric moment
amounts to the condition thait this moment should be «purely ma-
gnetic», i. e., that its electric component should vanish in the coordi-
nate-system in which the element of volume is momentary at rest.

We may also write equation (2) in three-dimensional vector
form, as follows:

g=i-vxs, (29

the fourth equation ge<v = o0 being a consequence thereof.
We express now the law of conservation of energy and mo-
mentum in the familiar form

3pT«f5= o, (3)

where T*3is the momentum-energy tensor. However, in contra-
distinction to what has been done hitherto, we do not assume the
symmetry of the tensor TaS, as this symmetry — as will be presently
shown — is equivalent to the vanishing of the intrinsic angular mo-
mentum s“8 Instead of writing Ta8% pOuau™as usual for incoherent
matter, we put more generally

TP = g4 uP, (4)

where ga is the four-vector of the proper density of linear momentum

it is reserved lor special uses, e. g for labelling quantities in the rest system
(or else for initial values, etc.). Letters with a circumflex accent are used to
denote three-dimensional vectors (the circumflex accent is less used than the
horizontal arrow, but it is more convenient in print as well as in writing; it
may be conceived as an arrow pointing upwards). dais short for 3/2xa. The
signature of the Minkowski space istaken to be-|——— ,i.e. gu= g2= gss= |,
gk= —1, gdp= 0 (a=i3); consequently raising and lowering of the index 4 changes
the sign. x*=ct, ds?= —caT2 dt is the element of the proper time along the
world-line of matter; u“= dx°/d' is the four-dimensional velocity. As far as
possible we follow the general rule that all the components of any four-dimen-
sional tensor should have the same dimension, this dimension being also the same
as that of the three-dimensional quantity after which the tensor has been called.
Thus all the four-dimensional formulae become as similar as possible to the
corresponding three-dimensional ones, and wherever ¢ has been put equal to 1
to make calculations easier, it is quite simple to restore it on dimensional homo-
geneity grounds. See also reference ().
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and energy.3 Of course, we do not postulate a priori that g* is pa-
rallel to u“

Taking into account the 'relation between the components of g*
and of the three-dimensional density of linear momentum g={glg293,
we may write

gi vk ; eg
T°? =
cp.v ;c2p (5)

Inserting (5) in (3), we get the familar equations expressing
the conservation of linear momentum and energy in the relativistic
dynamics of continuous media.

It seems worth mentioning that (a) we assume (3) but not
0aT“J= o, a relation which is identical with (3) in the case of a sym-
metric Tafg and (b), by interpreting v in (5) as representing the velocity
of the fluid, we assume that the energy does not flow in the res't-
system of the fluid.

3. Before proceeding further, we shall put the equations (3) and
(4)’together into a new form. In the non-relativistic dynamics of
continuous media two different differentiations with respect to the
time are used in addition to the «local differentiation», a. e. the dif-
ferentiation with respect to the time at constant x, y, z, which we shall

denote by These two additional differentiations are defined as
follows:
dtf = ctf — vk2uf, f= f(x,y,z), (6)
DIf= dIf + fc\vk= 3tf+ 3k(fvk). (7)

The first, whichis in moire common use, is the derivative at constant
Langrage coordinates; sometimes it is called «substantialderivative»
or time derivative «following the particle». The second might be called
«time derivative for densities»; it possesses the following caracteristic
property

dt (fdv) = (Dtf)dV, (8)
that is

d,/fdv =/(D,f)dV. (89

3 The three-dimensional density of linear momentum g= {TM/cis defined
as the momentum per unit volume in the coordinate system of interest, whereas
ga (=[j.Oua in spinless dynamics) is taken per unit of rest volume. Therefore
ga= M —§& jg | wic}, where w = pc2 is the density of energy and @the density
of matter. As the four-dimensional velocity ua={v | cfV1—i3, it follows that
g'uk= g'vk The well known formula = —P®i which is an immediate con-
sequence of the relation gaua= inv., givesthe relation between ~and the proper
density of matter g,
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We now define two analogous operators in the Minkowski
space M4:

dtf= f= uvhPvf, f= (X', x2x3 x*), 9)
DTf= d-f-|- fPvuv= Pv(fuv). (10)

The first one reducesto tire usual derivative with respect to the proper
time xif we define a new function f(x) taking thesame values
as f(xa) on the world-line of the particle; we shall denote it also by
a dot over the letter. The derivative defined in (10) appears in the
following four-dimensional formula,* analogous to the three-dimen-
sional formula (8):

dT(fdQ)= (D.f)dQ (11)

where dQis the four-dimensoinal element of volume dx1ldx* dx3dx*.
By expressing dQ as a product of the element of proper time dx and
the element of proper volume dVOwe get from (11) a new formula,
which we shall need in section 5,

dT(fdVvV0)= (D-f)dVo. (12)
It can be verified without trouble that
Dt9i==D.g". (13)
We are now in position to write down the equations (3) in the
new form. As
5pT ~=3?(g*uP)= D ", (14)
we may write instead of (3)

D-ga=o. (15)

This form is well suited to immediate integration (over a suffi-
ciently small volume of the spin-fluid).

4, In the relativistic dynamics without internal spin there
besides the 4 fundamental equations (3) 6 relations Ti3= TId which

4 In analogy with the three-dimensional case this formula may be deduced
: . I 9 XXX
by transforming the proper-time derivative of the Jacobian @ A
where S, 55 S8 are the Lagrange coordinates characterizing the individual
.world lines of matter, and l4is an arbitrary parameter along those lines. The
situation in the Minkowski four-dimensional space is analogous to the case
of stationary flow in Euclidean space. To emphasize this analogy still further
one has to write x®= X®(®, [ i3 5+ '), uB= Px®/Pt (5s = const), but the argu-
ment may be also carried through with the notations xa= x® (5) &, R 1),
uR= Px® Pt (5k= const).

exist
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express the symmetry of the energy tensor T“P. In the case of lack
of that symmetry other equations must appear to fix the antisym-
metrical components of Ta'i This role is taken over by the generalized
law of conservation of angular momentum, which may be obviously
staled as follows:

Dt (x“gB— x"g3)+ D-s@= 0/ (16)

The first term refers to the density of external angular momentum,
i. e. to the moment of linear momentum density; the second to the
density of internal angular momentum or spin. Now, applying the
following general rule (which is an immediate consequence of the
equations of definition (9) and (10)):

D-(fg)= fDTg+ gd.f= fd.g + gDJ, 17)

and faking into account (15), we may write instead of (16)

D.slB= T'P— TP*= gauP—gV . (18)

Thus, the existence of the internal angular momentum is con-
nected with the asymmetry of the energy tensor. It is also connected
with the existence of a transversal linear momentum, i. e.,, of a com-
ponent of the 4-vector of linear momentum density g“ perpendicular
(in M4) to the four-dimensional velocity ua this last result being a con-
sequence of what follows.- Multiplying (18) by up, bearing in mind
that noliP= — ¢% and putting

p.,=—-"up|p (19)

we get the following relation between the 4-vectors of linear momentum
and energy g‘“>velocity u*, and acceleration 0“:

= ({Ou“ — UpD-sstP= [ioUa+ saPup. (20)

The second equality may be easily demonstrated by taking into
account the. result of applying the operator DT to equation (2)
according to rule (17).

5. The equations of motion of a material particle with spin may
be now obtained by integrating the equations (3), (15), (18) and (20)
over a volume so small that we may consider in it ua and u“ as
constants.
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Putting
G“= /g®dV0, (21)
S’? = [ s®?dV0, (22)
and
m0=/]i0dV0, (23)
we get thus
S’?up = 0, (24)
G®= 0, (25)
S“? = GRU?— G?u®, (26)
Ga=m Oua+ ~ S a3ip, (27)
where
mo= upG?. (28)

As before, equation (27) follows from (26) by multiplying it by
W and lakiing into account (28) and the once differentiated relation
(24).

Thanks to (27), we may eliminate G from the two preceding
equations, and write.

mQOu°-f~ S ” ul0= o, (29)

SP= -1 S<CiLuP— -4 SAmu*. (30)

In (29) the term Saru3 has been dropped as it may be readily proved
to vanish, hy multiplying (26) by lip and taking into account that
iipur= o0 and Gpii?= 0 as a consequence of (27).

The equations (29) and (30) are Mathisson’ equations
referred to above in the introduction. They coincide also with Fren -
kel’ equations of motion of a spinning electron (without external
electromagnetic field),5when we bear in mind that his auxiliary vector

a* is equal to —-~ 5ii® where x is the ratio of the magneto-electric to

the mechanical moment. The simplification resulting from the explicit
introduction of G® is obvious.
Differentiating equation (28) with respect to the proper lime T,
and paying due regard to the equations (25) and (27), we get
m0= o. (31)

4J). Frenkel (2. 1926), equations (21) and (13a).
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Hence, mO is a constant, and it may be rightly called «rest-mass of
the spin-particle».

Equation (26) multiplied by Saoyields, owing to (24), SapS*3= o,
and hence

S*pSIP= S-S — Q +Q = S02= const. (32)

Here S==|S23 S31, S12}is the three-dimensional vector of internal an-
gular momentum of the particle and Q —{Su, S2, S34} Hence, the
magnitude of the internal angular momentum in the restsystem of the
particle is constant.

By (25), G* of a free particle is constant, and the same applies
to Mc which we introduce By the following relation

GaG“= — Mc-c2 (33)

When G® is a time-like vector, Mcis a real constant (which we
may assume to be positive).

6. Mathisson (4, 1937) has suceeded in integrating the
tions of motion of a free particle only in the «non-relativistic* case,
when v — but not a, the acceleration — is treated as an infinitesimal

guantity. We are now going to show that the equations (24)—(27)
may be exactly integrated in the general case, the only assumption
needed being the time-like character of the four-vector G® We may
then find an inertial frame of reference, 2G in which G vanishes; we
shall call it «proper system of the circle». In that system (for c = 1)

G= {G*G2G3}= 0. G4= M, (34)
(26) and (32) yield
Sik= 0, S— const, (35)
and (28) yields
M
mO0= Mcud= -«====, (36)
yl—v-

It follows that v, the scalar velocity of the particle, and u\ the
fourth component of its four-velocity, are constant in 2C and hence

ii4= o. (37)
Thus not only the three first components of u® are proportional
to the components of v, but also the space components of the four-

acceleration u® are proportional Lo the components of the three-
dimensional acceleration a:

, dxi: uk . d2xk uk

v ai-~dth = W (38)

equa
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Equations (27), (32) and (35) yield now
mOuk-(-SklU = o.

Transforming the derivatives with respect to the proper' time
'into the derivatives with respect to t, taking into account (36), and
inserting ¢ back again, we get finally

McVi+ - 1Isikak-o0 , (39)
or in vector form

(39

These linear differential equations can be integrated Without
trouble, but the result may also directly be seen from (39'): the motion
takes place in a plane perpendicular to the constant S, the magnitude
of the acceleration (perpendicular to S) being constant and equal to

(40)

It is therefore a uniform motion along a circle with the angular
velocity

(41)

Here Sc denotes the consitant magnitude of the angular momen-
tum in the rest-system of the circle, an SO the same quantity in the
rest-system of the particle; v is the scalar velocity in the rest-system
of the circle. In the case now considered, in which v and S are per-
pendicular to one another, there exist a simple relation between Sj
and SO, following from (24) and (32).

So S0 (42)

The radius of the circle is given by

SOv SOv

MOc2 mO0O(c2— v2d’ (43)

Thus, in the specially chosen frame of reference 1a the motion
of the free spin-particle is a uniform cii‘cular motion; in every other
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inertial system the motion is a relativistic superposition of such a mo-
tion with a uniform translation.

7. To write down the equations of motion of the spin-particle

in an electromagnetic field we must take into account the force acting
on such a particle in an electromagnetic field as well as the torque
exerted by the field on the particle, this last being the limit of the
moment of all the forces acting on a small magnet when the size of the
magnet tends to zero. We assume, of course, that the particle has an
electric charge, e, and a «purely magnetic» magnetoelectric moment,
paE, connected with the three-dimensional magnetic moment p and
electric moment jt as follows:

{p-3 13, p12= p, {pu,pAp3h)= a. (44)
We know already that the moment is «purely magnetic» when
1?8us= o (45)

Let the electromagnetic field be given in the usual way by the
bivector (skew-symmetrical tensor of rank two) F~., connected with
the magnetic intensity H and the electric intensity E, as follows:

(46)

It may be noticed that the contravariant components of p“? correspond
to the components of ji and ft in the same manner ais the covariant
components of Fag to H and E; the potential energy of a rigid dipole
in Lhe field can he then expressed by the simple formula (with the
same sign before each of the two terms on the right-hand side)

(47)

We shall also assume that

(48)

where x is a constant (not necessary equal to s/m@c).

The equation (25) expressing the law of conservation of linear
momentum has to be supplemented on the x'ight-hand side by two
additional terms, the first being the well known expression for the
Lorentz force

(49)
and the secon

(50)
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representing the relativistic generalization of the force acting on
a magnetoelectric dipole in an electromagnetic field. The space com-
ponents of the 4-vector (50) form a 3-vector

V(|x-H)+ V0i-E) = (['-V)H + (*-V)E4-iixrotH-fuxrotE, (51)

where only the vectors Il and E (as space-time functions) but not
ji and ft are subject to differentiation. In a magnetostatic field only
the first term on the right-hand side remains; it represents then the
usual expression of the «Stern-Gerlach force».0

Thus, from (25), we obtain

(52)
In like manner, equation (26) has to be supplemented by the

four-dimensional expression of the torque exerted by the electro-
magnetic field on a magnetoelectric dipole, namely 7

(53)

{N23 N3Nj2}= p X H+ ft X E, {N14,N24, N34}= —tt X H+ 1X E. (54)
W e get thus instead of (26)

= Gaup— Gpua+ p~ Fj7— ppjF®. (55)

In Section 3 we have deduced from (26) the expression (27)
for the Linear momentum, after having introduced the invariant mass
mO0 by (28); this mass remains constant along the world-line of the
particle in virtue of the equations of motion of a free particle. In an
electromagnetic field, mn is not constant in general, but rh0 may be
expressed as the derivative with respect to the proper time x of the
expression —Ff(Jjjfa/2c2; we can therefore introduce a new constant

which reduces to mO in field-free space.
Multiplying (55) by uf5 and taking into account (56), (45) and
the equation resulting from (24) on differentiation with respect

6 Cf,e.g,J. Frenkel Lehrbnch der Elektrodynamik Il (Berlin, 1926), p. 91.
7 We follow the very convenient rule that — if not otherwise indicated
by dots — the lower, covariant, indices have always to be considered as pre-

ceding the upper, contravariant, ones, for example F*= £J3,

U physica Polonica 2
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to x, we get the following expression for the linear momentum of the
particle in an electromagnetic field

The coefficient of ua is the sum of the constant mas 8 m0 (not
depending on the field) and an additional mass corresponding to the
potential energy of the dipole in the electromagnetic field.

The equations (52), (55) and (56), together with the expression
(57), which is a consequence thereof, are equivalent to Fren ke l’s
equations (21) and (13a).

Equation (57) may be also written as

(577

8. Mathisson has noticed allready that the frequency (41)
becomes identical with the frequency of Schrodinger’ zitter-
bewegung of a Dirac electron if we put SO = h/2 and mO equal to the
mass of an electron. This agreement, however, is only valid in the
non-relativistic case.

Still another detail points to the fact that the spin-particle as
considered here, as well as by Thomas, Frenkel, Mathisson
and others, cannot supply an adequate «classical» (non-quantum)
model of an electron; namely, the radius (43) of the circle on which
such a free particle moves can acquire arbitrary large, macroscopical,
values, a result which is obviously contradicted by experiment.
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EELATIVISTIC DYNAMICS OF SPIN-PARTICLES MOVING
WITH THE VELOCITY OF LIGHT*

By Jan WEYSSENHOFF and A. RAABE f,’ Institute of Theoretical
Physics, Jagellonian University, Krakow.

1. In the preceding paper we have deduced the equations of
motion of a spin-particle moving with a velocity v smaller than that
of light, c. We shall now consider the equations of motion of a spin-
particle moving with the velocity of light. Though this last case may
he conceived in a certain sense, which will be specified later, as
a limiting case of the former, it presents many distinctive features
and, in any case, it is not simply the limiting case of the former when
v lends to c at constant proper mass mO and constant proper angular
momentum 1s0. From the point of view of the theory of relativity it
constitutes by itself an interesting and hitherto not contemplated
example of a set of differential equations leading to a curvilinear
motion with the velocity of light; however, the most interesting feature
of such a motion is apparently its close analogy with the behaviour,
of Dirac’s quantum-mechanical electron.

2. Henceforth we shall refer to the motion of a spin particle
with a velocity smaller than that of light as the first case; by second
case we shall understand the motion of a spin particle with a velocity
changing in direction but having invariably the same magnitude c.
To obtain the equations of motion of a particle in the second case
in a four-dimensional form, we must, first of all, change the parameter
along the world-line of the particle from x, the proper time, to an
arbitrary new parameter p, leaving the world-line of the particle un-
changed, and only afterwards, as the second step of the reasoning,
we may distort the world-line in such a way as to make it everywhere
tangent to the light-cone in the corresponding world-point. The world-
line will then represent a motion of the particle with the velocity of

* See the preceding paper (henceforth designated by 1), references C)
and (*")

1 From now on we shall denote the angular momentum of the particle by
saP and s, rather than by S“Pand S as in | where small letters where reserved
for denoting physical properties of the spin-fluid.
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light. The properlime doesnot flow any more onsuch aline, and
we werethereforecompelled to change theparameter from xto p.
The new arbitrary parameter p is subject only to the restriction that
it should grow in the direction of growing t (in any allowed coordinate-
system). It satisfies therefore the relation

1

X'>0, €D

the equality being valid only on isotropic world-lines, i. e., in our
second case; primes denote differentiation with respect to p.

In the first case x itself is a special case of p. When passing from
one parameter to another, i. e.,, changing the parametrizalion on the
world-line of the particle from p to p, the condition

f>° 2>
must be satisfied.
3. We introduce now the 4-vector

dp (3)

as a generalization of the four-dimensional velocity, which does not
exist in the second case, w“is a «4-vector depending on the parame-
trization»; its four components transform like components of a 4-vector
when the coordinates are transformed without change of paramelri-
zation, but they are all four multiplied by a common factor dp/dp
when that parainetrization is changed. The 4-vector w® may therefore
play the role of an auxiliary mathematical quantity, but it cannot
have any direct physical meaning.
In the first case,

w“= x'u 4)

and

waw* = uau®x'2= — c2x'2 (5)

where u® is the four-dimensional velocity of the particle.

In thesecond case, the world-line ofthe particle isisotropic, 2
X = 0, andthefour-dimensional velocity u“ does notexist any more,
as it components are either infinite or indeterminate. But w® retains
obviously a definite meaning and satisfies the relation

w,w'= Q (6)
2 In the usual representation of the Minkowski space (xl, X-,x3 xJ= ct)

it is a curve which is everywhere inclined at an angle of 45" to the hyperplane
x>—0.
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We can thus characterize w® as an isotropic vector depending on the
parametrization on the world-line of the particle but always tangent
to that line.

4, If we changer into p in the equations of motion | (24)—(26),
take into account equation (4), and multiply all the equations by t,
we get

=0, ()

Sgj— G.wp - Gpwa, (8)
= o ©

Because of the homogeneity of the equations | (24)—(26) in
the derivatives with respect to x, X has disappeared from (7)—(9),
and equations (7)—(9) are valid not only, in the first case (as alter-
native expressions of the same equations of motion as | (24)—(26)),
but also in the second case, when x'= o.

Some interesting complications arise only when we set out to
transform in the same manner equation | (27). Taking into account
(4), (9) and | (28), we get then

X'G®= mw®+ " sRgw'( (10)
where we have put, in analogy to | (28),

m w GR 11
- e (11)

inis «a scalar depending on the parametrization».3 Equation | (27)
is no more homogeneous in the derivatives with respect to x, and
therefore the equation for the second case, which we get from it by
putting x = o, differs in form from the original equation. We find
namelv

e + - (12)

3 It is different from zero when G*is a time-like vector. In the first case,
when w* is also a time-like vector, this result is obvious. In the second case,
when wa is isotropic, our assertion is a consequence of the following often
useful theorem: Any 4-vector perpendicular to an isotropic 4-vector and not
parallel to it is space-like (of course, only real 4-vectors are taken into conside-
ration). If we require as well that for saP tending to zero all our equations
should go over into the ordinary equations of spin-less dynamics, then m will
be positive.
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Though Ga disappeared from (12), the equations of motion of
an unconstrained spin-particle moving with the velocity of light can
be generally solved, and give a result similar to that obtained in the
first case.

As in |, equation (12) is a consequence of (8) and (9), together
with equation (6) which expresses the fact that the scalar velocity of
the particle is c. This can be shown by multiplying (8) by w”, taking
into account equation (6) and equation (9) once differentiated. vice
versa, from (13) and (9) we can deduce (6) by multiplying (12) by w*.
Thus, if we consider (7), (8), (9) and (12) as the equations ot motion
of a free spin-particle, they will imply as a consequence that the ve-
locity of the particle is equal to the velocity of light. Moreover, this
conclusion is independent of equation (7), and it will therefore prove
also correct for a spin-particle in an electromagnetic field, for which
equations (8), (9) and (12) remain, unchanged (see Section 7 below).

5. The time as parameter. We may avail ourselves of the
arbitrariness in the choice of the parameter to give to the equations
of motion a new interesting form. Let us agree to put p equal to
t= x4c in each allowed coordinate-system; this amounts to changing
the parametrization at every change of the system of coordinates in
such a way that p should remain always equal to t in the coordinate
system of interest. Then 'v* becomes

(13)

As it is well known, the four quantities va do not form a 4-vector,
neither in the ordinary sense, nor as a «4-vector depending on the
parametrization»; they form instead a new «geometrical object» in
M.t, which we shall call «pseudovector». The components of a pseudo-
vector would transform like components of a vector but for an addi-
tional factor dt/dt = dx*/dx4 The magnitude of a pseudovector, for

example j/vava, or its scalar product by a vector, for example v Ga
are pseudoscalars: they are multiplied by dx4dx4when the coordinates
are transformed from one inertial frame of reference to another.

The equations of motion of a spin-particle moving with the ve-
locity of light take now the form

(14)
s,p = GaWi— GRva, (15)

S*AVg= o. (16)
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Though v® is not a vector, its components have simple physical
meanings. The equations (14)—(16) are interesting in so fair, as they
give an invariant description of the motion though they are not tensor
equations.

Just as before, (15) multiplied by v* and (16) once differentiated
with respect to t yield

m*ve + s“aa(= o, (17)
where
a<k-~-={alo} (1B)
and
m*= — ;G.V* (19)

is a pseudoscalar; a is the three-dimensional acceleration vector.

6. General Solution of the Equations of Motion of a Free
Particle Moving with the 'Velocity of Light. Obviously, a rest-system,
that is, an inertial system of reference in which the particle is mo-
mentary at rest, does not exist for a particle moving with the velocity
of light, nevertheless certain inertial frames of reference stand out
from among all others, those namely — we shall denote them by 2C—
in which the space components of G® vanish, *

Gk= o. (20)

Any two 2C-systems (referring to the same position of the
particle on its world-line) differ only by a space-rotation without
change of the time-coordinate. We shall call them «rest-systems of
the circle», as the particle moves in each of them on a stationary
circle, a result which we are going now to prove.

It will be found advantageous to use the formulae of the pre-
ceding section (with t as parameter). Then, a4= o, by (18), and we
may write (17) in three-dimensional vector-form, as follows:

iii‘'v -f~ X s = o. (21)

In 2C m*is a constant, as

m= — G4 (22)

*We have to assume, of course, that Ga is a time-like vector.

Spin-
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by (19) and (20), and Glis a constant for a free particle. We can
also put

m*= Moc (23)
in 2C if we define Mc, as in I, by the relation
M= — GOG3 (24)
Thus, we can write (21) in the form
Mcv +— a Xs==o. (25)

As in |, the final result is directly evident from (25) if we
remark that

s = fsik}=8=const (26)

as a consequence of (15) and (20). In the 2cframe of reference the
particle revolves uniformly cun a stationary circle with the angular
velocity

M c2
= —T—» (27)

the linear velocity beeing, of course, ¢. This formula is identical with
the first farm of | (41); the two last forms given in | have no counter-
part here, as m0 and s0 do not exist in the present case.

The radius of the circle in 2C— which we may call, as in I,
«proper radius of the circle» — is now given by

cMc (28)

It coincides with the first form of | (43) for v = c.
7. Let us now approach the question of the motion of our spin-

particle in an electromagnetic field. The equations of motion | (52)

and | (55) may be treated in the manner indicated in Section 2. It

may be considered as a lucky circumstance that these equations get

thereby greatly simplified: the last term in I (52)-and the two last in I

(55) get in the first step of the operation the factor r' (or, more pre-

cisely, all the other terms the factor 1/x') and vanish therefore at

the second step. There remains only one additional term depending

on the electromagnetic field, which is analogous to the well known

four-dimensional expression of the Lorentz force, the only difference

being that w® superseded the four-dimensional velocity u“
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Finally, the equations of motion of a spin-particle moving with
the velocity of light in an electromagnetic field given by the bivector

FaR are

G's= “ FapWi (29)
s'«R=GawR— Gpwa, (30)
s<BWB = 0. (31)

8. Multiplying (30) by $®8 and making use of (31) we obtain
S'a3 SRIB3= o0, (32)

hence sags®B is a constant. But sgs®? vanishes in a field-free space,
as may be easily verified5from the results of Section 6, and therefore,
in consequence of (32), it vanishes everywhere. Thus,

Sals“"'= °- }33)
Further particulars will be given in a following paper.

51t is sufficient to remark that in the circular motion in £c>v and s are
perpendicular, and therefore gq2= s2 in consequence of the relation g=|v Xs.
v being equal to c. We get then LsapsaP= s es—q *q= s*—qg*= o. Incidentally

it may be noticed that by following the same argument back again, we can infer
from (33) that v is always perpendicular to s, not only for a free particle, but
also for a particle in an electromagnetic field. It is not so in the first case.
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FURTHER CONTRIBUTIONS TO THE DYNAMICS OF SPIN-
PARTICLES MOVING WITH A VELOCITY SMALLER THAN
THAT OF LIGHT*

By Jan WEYSSENHOFF, Institute of Theoretical Physics, Jagellonian
University, Krakow.

1. In a preceding paper written with t'he late Mr. A. Raabe
I worked out the equations of motion of a particle endowed with
spin, by considering at first the relativistic equations of motion of
a spiin fluid, and passing then to the limiting case of an infinitely small
portion of such a fluid with infinitely large mass-density and angular-
momentum density. These equations are equivalent to special cases
of equations previously found by Frenkel and by Mathisson,
though the form of our equations is much simpler, due to the explicit
introduction of the4-veotor of linear momentum and energy Ga.Here,
I shall outline still another method of approach to the same equations,
a method which is, to be sure, not so correct in principle as that of
Mathisson, but it may prove suggestive by its conciseness and its
elementary character.

2. Let us consider a particle possessing a velocity v and a linear
momentum G, and let us assume the validity of the laws of conser-
vation of linear momentum and of angular momentum, the only
departure from classical treatment being that we do not assume
a priori any relation between G and v. We are therefore compelled
to introduce the law of conservation of angular momentum (in a ge-
neralized form with outer and inner angular momentum) indepen-
dently of the law of consevation of linear momentum.

The law of conservation of linear momentum for a free particle
may be expressed as follows:

G'= o, (1)
the prime denoting differentiation with respect to the time. If we

define in the usual manner the moment of momentum (external

* See |, reference (°). The two preceding papers will be designated hence-
forth by I and II.
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angular momentum) as the vector-product of the radius-vector r by G
and differentiate it with (respect to the time, we get

fXG)=rxG+ vx G=vx G (2)

Tims, if G is not parallel to v, the moment of momentum is
not a constant of motion, as m spinless dynamics, but we can restore
the validity of the law of conservation of angular momentum by in-
troducing a spin, or internal, angular momentum s, in addition to the
orbital, or external, angular momentum I=f XG. To this end, we put

s— Gx v, (3)
and (20) goes over into

=N+ s)= o, (4)

that is, into the generalized law of conservation of angular momentum.

3. Now, to obtain the Frenkel-Mathisson equations (in special
relativity) we need only translate the equations (1) and (3) into four-
dimensional tensor-form. Let Ga= {GjW/c} be the momentum-energy
4-vector and s“l the spin bivector (antisymmetrical tensor of rank
two). Of the two three-dimensional vectors

s= {sB s3l, s, g= {su, s s34, (5)

the former is the three-dimensional spin-vector, and the latter may
be considered merely as an auxiliary mathematical concept, as it can
be always eliminated by making use of the following relation

g= ™-VX S, (6)

which is the three-dimensional expression of the four-dimensional
relation

s*Pup= o. (7)

This last equation — used also by FrenkelandbyMathisson —
may be considered as the condition of non-existence of negative mass,
as in the corresponding electromagnetic case

jiaPUp= o (8)

is the condition that the magneto-electric dipole-moment p“%should
be «purely magnetic», that is, that the electric moment 7t={p4 p2 p3}



28 Jan Weyssenhoff

should vanish in the coordinate system in which the particle momen-
tary rests (uk= o, k=1, 2, 3).
Incidentally, it may be noticed that

i[Putl=o0 9)
is the condition that p*3 should be «purely electric», i. e., that the
magnetic momentp= |i,Z3 p3L pIshould vanish in the rest-system of
the particle.

Obviously, the four-dimensional generalizations of (1) and (3) are
now

G“= o, (10)
s*?= G“uP— GPu", (11)
where the dot signifies differentiation with resipeot to the proper

time t.
As in I, (11) multiplied by U yields

Ga= mOu’ + ~ s Mii,, (12)
where
m0= — ¢ G Ou*. (13)
Multiplying (12) by u® we get
G®ua= o, (14)

which shows thatthe momentum-energy vector Gawhichceased to

be parallel to the four-dimensiona'l velocity u®remainsfour-dimen-

sionally orthogonal to the four-dimensional acceleration u®, just as u3
From (11) and (14) we get

s3uo=o0. (15)

4. The same method applies also to a spin-particle(with charge
e and magneto-electric moment pRI3) moving in an electromagnetic
field Far, the only difference being that in the three-dimensional ar-
gument of Section 2 we must also take into account the force F and
the torque N exerted by the electromagnetic field on the particle.
Equation (1) becomes

G'= F, (16)

and the intermediate equation (2) takes the form

é(ljt(rXG):fo+vXG. 17)
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To restore the validity of the law of conservation af angular mo-
mentum, we must put therefore, instead of (3),

s'= GXv+ N, (18)

and equation (4) takes the form

¢ (1 + s8)= fXF + N. (19)

The translation of these equations into tensor language and the
four-dimensional generalizations of F and N were given in |, Sec-
tion 7, where eventually the following equations have been obtained:

Ga= ;F aU + -*-|*2aFp, (20)
= Ga'uU— Gr-Ua-f- pMF2 -|1*F3, (21)
Ga= (m0—  |F3Fp,) uB+ ~ s, u3-fiiacFBup, (22)
with
" (23)

In (22) we may also put together the second and the fourth
terms on the right-hand side, and write

Ga= mOQQua-f-i s,,ii3-1-" plauf]F?3. (24)

5. To prove the constancy of m00 we mayproceed as follows.
By differentiating equation (23) with respect to the proper time x, we
get (c = 1)

rh= — Gau®— G,ii3+ i pD3FAI+ ~ (25)

Equation (20) milliplied by ua yields

Gau«= ipP3Fp, (26)

as
Fpl= u “5aF fo. (27)
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Thus the first and the last terms in (25) cancel one another. The
same happens with the tworemaining terms if we assume the pro-
portionality of to $BP, that is, the relation

iFP= x (28)

with an arbitrary value of y. (not necessarily equal to e/m00c). In fact,
from (22) we get

G« ha= paaFa?upua, (29)

and multiplying (21) by ~r~3 and (22) by WF”", we get

i F*?sap= GaupF'P= s, Fopufu*“ (30)

The comparison of the two preceding equations leadsto the result
stated above, and hence to

rh@= o, (31)

Q. E. D.
6. In the dynamics of spin-particles the velocity v of a particle
points in general in another direction than its momentum G. However,
we can formally introduce a new vector V connected in the same way
with G as the velocity is connected with the linear momentum in the
old spinless dynamics. We may call then v (as defined by the world-
line of the particle) the «kinematical velocity» and V (as defined by
the momentum of the particle) the «dynamic velocity» (though
Eddington uses the same terms in another meaning.
We define V by the equation

V==G==(G"'", G2 GJ (32)
where

M= ~Ga4 (33)

Alternatively, v might be called «velocity of the particle» and V «ve-
locity of the circle»; similarly M might be called «mass of the circle»
and Mc introduced by the relation

— G3Gd= MOc2 (34)

«rest-mass of the circle», as it is the value of M in the «rest-system
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of ithe the circle» (in which G=0).1 It is connected with M by the
following relation, which is a direct consequence of (33) and (34)

M
M~ VI - V2'c2

Talcing into account (32), (33) and (35) we get from (13) the
following relation between m0 and Mc

M. / v.V\
m°= Yl —v2c2V1—V2cz\1 C* "o 736)

Obviously, all the formulae of this section are independent of
the relation existing between v and V as they are merely the conse-
guence of our initial assumption of the validity of the energy-mo-
mentum principle.

7. This section contains a list of the equations of the dynamics
of spin-particles in three-dimensional vector form. To simplify matters
¢ has been throughout put equal to unity.2 The numbers on the left
point to the four-dimensional tensor equations from which the cor-
responding vector equations have been derived, y stands for I/Y |—v2

(7) g= VXS, (37)
(8) ft= v x p, (38)
(20) G=e(E+vxH)+ VTAv™V (picH)+ V (ft<E)}, (39)
(20) W = M= s£ ev+ 3t 1 3tj° (40)
(21) s= Gxv-f-VI—vpx H+ jixE} (41)
(21) g= 6 —Mv+ VI—v2{ftx H—p X E}, (42)

(24) G= mOyv-|-Y2a XS —y(v *p)H + y(p + v X ft) XE, (43)

(24) W= M= mOOy —y2a-q—~p sH —y(v mp)(v mH), (44)
mo0= y (M — G +v), (45)
(23) = mO0+ p-H+ ft-E = const. (46)

1 These denominations are misleading in so far as G was assumed from
the ohtset to he the momentum and cG*= Me» the energy of the particle.

- Its restoration is quite easily accomplished if we bear in mind the
following dimensional equations: W=Gv=mc!=5s’= q'= [iH= |i.E= jtE=
kIt - as/c and eE= H= G
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From (42) and (37) we can draw still another relation between
G and v, namely

G—Myv-f-axs-J-vxs —VI—v2{ttx H— ft XE}. 47
It is equivalent to the previously found relation (43) thanks to (41),
(45) and (46).
Equation (45) is only another form of equation (36).
The second term on the right-hand side of (44), which may be
written in the form

[sva]
c2—v2’

has been called by Mathisson «acceleration energy» (Beschleuni-
gungsenergie). For a free particle in the rest-system of the circle it is
constant and negative.

8. The general solution of the equations of motion of a free par-
ticle is directly apparent from (47), oir from (43) together with (45):
in a frame of reference in which G vanishes

Mo + i ax s=o, (48)

just as in I (39). The motion is then a uniform circular motion in
a plane perpendicular to s (which is constant); the radius and the
angular velocity were given in I. The sense of the motion on the circle
ismsuch that the moment of the velocity with respect to the center
of the circle points in a direction opposite to that of s.

In any other inertial system of reference the path may be de-
scribed as a distorted screw-motion, if it does not happen to be plane.
In the latter, case s, which remains perpendicular to the plane of
motion, has a constant direction, but its magnitude is variable accord-
ing to the equation

s= yi _ v2c™v (49)

following from s2— q2= s02and (6) when v and s are perpendicular.
The path reminds of a contracted or elongated cycloid, according to
whether the velocity of the center of the circle is smaller or larger
than v, the velocity of the particle on the circle in the rest-system of
the latter.

When the proper radius of the circle is infinitesimal, the motion
of the particle is the same as for a spinless particle with a super-
imposed infinitesimal wave-like motion.
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9. It was already shown that mQ is a constant of motion, so
is the magnitude of s*8 i. e. the square root of

i saPsa®= s2— 2= s02= const. (50)

This becomes evident if we multiply (21) by s& and take into accounL
(7). and (28).3
We may also infer from (7) that

slaPstsl = o, (51)

which is the condition of flatness 4 of the bivector s“P, in fact, the
left-hand side expression in (51) is the square root of the determinant
of the four homogeneous equations (7).

10. We know already that our equations of motion are equivalent
to the Frenkel-Mathisson equation I (29), which is a differential equa-
tion of the third order for the (x®)'s.5 Therefore, to determine the
motion of a spin-particle not only its initial position and velocity
should be given, but also its initial acceleration; this departs so much
from all one may expect of the behaviour of a material particle that
we are drawn to the conclusion that not the singularity of the gravi-
tational field itself, but only its mean position — or, in our case, the
whole circle on which it moves — has to be considered as representing
the material particle. This conception will be followed more in detail
in the two following papers.

3 Notice that palsaPFp = *sra sar = xs’ $®3Fp, = 0, as in the last ex-

pression the antisymmetric tensor Fp5is multiplied by a symmetrical one.

41 propose to call a bivector flat (rather than simple, which is the ex-
pression used by Schouten) ifitcan be represented as an alternating product
of two vectors. A general bivector in a four-dimensional Minkowski space can
be represented as a sum of two flat bivectors in two completely perpendicular

lanes.

P 5P. A M Dirac has also considered an equation of the third order for
the motion of an electron, but his equation (as well as the whole problem of
the radiation of an electron which led to it) was entirely different. The addi-
tional term of the third order in his equation may be characterized as longitu-
dinal, whereas our additional term is transversal. To avoid ali sorts of physically
meaningless motions Dirac was compelled to introduce a strange restriction
concerning the acceleration for t tending to infinity; this cannot be done in
our case.

Acta Physica Polonica -i
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FURTHER CONTRIBUTIONS TO THE DYNAMICS OF SP1N-
PARTICLES MOVING WITH THE VELOCITY OF LIGHT*

By Jan WEYSSENHOFF, Institute of Theoretical Physics, Jagellonian
University, Krakow.

1. In two previous papers written with the late Mr. A. Raabel
we deduced among other things the relativistic equations of motion of
a spin-particle moving with the velocity of light. First, in I, we found
the equations of motion of a spin-particle moving with a velocity
smaller than that of light by integrating the equations of motion of
a spin-fluid over an infinitesimal volume of that fluid. Secondly, in II,
we changed the parameter along the world-line of the particle from x,
the proper time of the particle, to an arbitraity parameter p, leaving
the world line of the particle unaltered, and distorted afterwards the
world line in such a way as to make it everywhere tangent to the cor-
responding light-cone.

The same results may be also obtained in a simpler way. Instead
of passing through the dynamics of a spin-fluid, we may write directly
the relativistic equations of motion of a spin-particle by translating
into four-dimensional tensor language the three-dimensional expres-
sions of the laws of conservation of linear and angular momentum.
This was done in Ill, Section 3. The second part of the above reasoning
remains unaltered as in II.

2. For a free spin-particle the equationsreferred to above are

G*= o, 1)
saP= G:iwl3— G*wx, (2)
together with the condition
s*wp= ° (3)
expressing the non-existence of negative mass(see Ill,Section 3). The

notations used are the same as in Il.

' See I, reference ('). The three preceding papers will be designated hence-
forth by 1, Il and Il
>| and 1L
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Multiplying (2) by wp, and taking into consideration that
wOw“= o0, we get

mw“+ is iV r= o, 4)
where

m= — 5, Gw*. (5)

In the corresponding equation | (27) referring to the first case \ the
right-hand member of (4) was equal to Ga, and | (27) gave the four-
dimensional expression of the relation between G*“ and ua Here G*
disappeared from (4)3and now it does not seem possible to eliminate
G* from the equations (1)—(4), and thus to get a differential equation
of the third order for xa corresponding to Mathisson’ equation |
(29). However, the equations of motion of a free particle can be solved
in a similar way, and the results are very much the same, as was
shown in Il, Section 6.

3. As we know from Il, Section 7, the equations (2) and (3)
remain valid for a particle in an electromagnetic field, and only the
equation (1) is changed and goes over into

G'a= -"Fap w”. (6)

This is an important simplification in comparison with the first
case, in which not only a rather complicated term appears in the
equation corresponding to (6) but also equation (2) has a less simple
form.

4. 1t was shown in | and Ill that in the first case two different
masses may be introduced which become identical when the spin
vanishes (as a consequence of the fact that the 4-vector of linear
momentum and energy is then proportional to the four-dimensional
velocity). Here, in the second case, only one of those masses, namely

Mc= J_.‘ . GaG* (7

may have a physical significance, as the second one, defined as
— G;(w%c2is a «scalar depending on the parametrization» and Gaua
is infinite.

1 Cf. Il, Section 2.

3 But nevertheless there exist in the second case also a three-dimensional
relation between G and < (see eq. (16) below). In the first case there are two
equivalent relations between the linear momentum and the velocity of the
spin-particle, a four-dimensional one: 1(27), and a three-dimensional one: 11143)
or 111(47).
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It as obvious that the relations between Ga M, Mc and V referred
to an Ill, Section 6 apply also in the present case, as they are only
dependent upon the laws of conservation of momentum and energy
on which both our theories have been founded.

5. This Section contains a list of the equations of the dynamic:
of spin-pairticles moving with the velocity of light, in three-dimen-
sional vector form. These equations are here given not in their most
general form, but for p =t; the use of the time t as parameter was
considered in Il, Section 5. w* a «vector depending on the parame-
trization» is then replaced by the «pseudovector» v*, and the three-
dimensional formulae take a simpler form, as vd= ¢ and v’4= 0; more-
over, the components of the pseudovectorv® possess a direct physical
meaning. The numbers in parantheses written on the left of each of
the equations below refer to the four-dimensional equation from which
the corresponding three-dimensional one has been derived.

(1) G'=eE+ivxH, (8)
(@) W' = eE-v, 9)
(2) s'= GX v, (10)
(2) g= ¢c(G—Mv)= Mc(V—vV), (11

where M— Gd4/c as in 11l (33),

(3) = ivxs, (12)

(4) niv-)-iaxs = o, (13)

(4) m=ia-vxs=i aeq, (14)
- M I-iv-v)

SS) m= I\/I-————Csz'v = LR (15)

Inserting (12) in (11) we obtain
G= Mv+ ~ X s + "vXs', (16)
where a= V' is the three-dimensional acceleration. M is given by

Il (35) as

M—- M =, (17)
VI- V2c2

and V is defined by Ill (32) as equal to G/M.
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Equation (16) expresses the aforesaid relation between the ve-
locity and the momentum, cf. reference (3.
Calculating G Xv from (16), and comparing the result with (10),
we get
Ves= 0, (18)

asrs' = o, because of (10), and a-v= o, by differentiating the re-
lation vev= c2

Since v remains here always perpendicular to s (not only in the
rest-system of the circle, as in the first case) we have from (12) q = s,
and therefore

\ s«qpsaP= s2—q2= o, (19)
a result already obtained by a different method in Il, Section 8.
Differentiating (18) with respect to t, we have
des==o0, (20)

as vs =0 by (10). Thus the spin vector remains perpendicular not
only to the velocity hut also to the acceleration.
From (13) wecan now obtain the formula
mch v . /ni.
a="“iFV (21)
Comparing this with (12) we see tliat the vectors q and & are parallel
and have the same direction (when m> o).
With the help of (18) and (20) we can deduce the following
formulae, supplementary in a certain sense to (12) and (21),

= AsXqg,= — ,sX.i, 22
v s2 7 917 me? ™! (22)
= — = _—Nj
S c 01Xv rne4aXv. (23)

Finally, we may notice that in the case of a free particle G+s'= o,
owing to (10), and lienee, since G is a constant,

6 -§ — const. (24)

More generally, (24) holds good for every plane motion since in that

case
s'Xs = (G-s)v, (25)

as can be seenfrom (10) and (18), and since by (18) and(20) s has
than aconstantdirection perpendicular to theplane ofthemotion,
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the left-hand member of (25) vanishes, and so does G.s (as v is dif-
ferent from zero).

6. In the proper system of the circle, 2C (which has been defined
as an inertial system in which G = 0), nt= MCby (15) and s= const,
by (10). Equation (13) becomes then identical with equation Il (25),
by means of which the general solution of the equations of motion
of a free spimparticle moving with the velocity of light were found
in Il. In Zc such a particle travels uniformly along a stationary circle
in a plane perpendicular to s, the sense of the motion being such that
the moment of velocity with respect to the center of the circle is
antiparallel to s. If we imagine instead of the point singularity an
infinitely small rotating sphere producing by its rotation the angular
momentum s, the rotation of the sphere about its axis and its motion
along the circle will take place in opposite directions.

In Mathisso n’s method (as in every similar method of
deducing the equations of motion of a point singularity from the
differential equations of the gravitational field) a world tube is con-
structed cutting out a certain neighbourhood of the world-line of the
singularity, outside which the field is to be at any rate regular. In our
case all depends on whether the transversal dimensions of that tube
are small or large in comparison with r0, the proper radius of the
circle. In the first instance, which should correspond to what
M at his son has worked out, this tube in four-dimensional space
takes the form of a srew-line and does not tend to a geodetic line
when its transverse dimensions decrease indefinitely and approach
zero as a limit. Whereas in the second instance the tube, containing
now the whole circle, may run in general much more smoothly and
have approximately the shape of a geodetic line.

7. As previously noticed, the transition from the first case to the
second one cannot be performed by merely accelerating the spin-
particle up to the velocity of light, the rest-mass mO0 and the rest-spin
sOremaining constant. However, we may consider that transition from
a purely mathematical point of view as a transition from v < ¢ to
v = ¢ in such a way that all the components of Ga and of slB3should
remain finite; for example, we may set in an arbitrary chosen frame
of reference: G = 0,s = const, and M =G ’/Jc = const.

It seems worth mentioning that the rest-mass mO of the spin-
particle tends hereby to infinity, and not to zero, as is the case with
photons. The rest-mass of a photon is always taken to be zero, as the
energy of a particle with finite rest-mass (and without spin) moving
with the velooity of light Would be infinite. Here, however, the ex-
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pression for the energy of a spin-particle moving with a velocity
v < c consists of two terms (cf. 11l (44)):

Y (26)

and since for v tending to ¢ the second term in parentheses 4 tends
to + 00 so must the first one too in order that W may remain finite.

This can be seen also from the relation 11l (36) between Mc and mQO.
On the other hand, sOapproaches zero as alimitwhen v tends to c;
in a special case this may be inferred from Il (49), and generally by

comparison of Il (50) with (19) of this paper.

8. Now we shall approach the question of the constants of motion
of our system of equations. We have to distinguish between two kinds
of such quantities; both are constant along the world line of the par-
ticle in virtue of the equations of motion, but while the quantities of
the first kind may acquire arbitrary constant values, those of the
second hind are always equal to zero (or to another fixed number).

In the first case there are two constants of motion of the first
kind, namely mO and s0. Neither of these quantities exists'in the second
case, and m, which superseded mQ0, is a «scalar depending on the para-
metrization» and as such it could only be maid constant by a special
choice of the parameter (see Section 10 below), but this constancy
could not have any direct physical meaning.

In the next Section Mcsc will prove to be- constant. So far as
I can see it is the only constant of the first kind in the second case.
Mc and sc by themselves are only approximately constant under
certain conditions which will be discussed in the next paper.

To the second kind belongs

(27)

if we take (1)—(4) as the fundamental equations of our dynamics
(and not (1)—(3) together with (27) from which (4) has been derived
in Section 1). To establish this result we multiply (4) by wa and taking
(3) into account obtain mwaw“=0; since m is different from zero
(cf. I, reference (3) (27) follows.

The bivector s*5satisfies the following relations:

(28.1) sI'M ) = o (28.2)
sapsa?= o (28.3) st“r 8]= o. (28.4)

4 In the limit a and g tend to become parallel and different from zero,
as can be seen from (12) and (21).
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The first of these was assumed at the very beginning as the con-
dition of non-existence of negative mass. The fourth follows imme-
diately therefrom, since the determinant of the four homogeneous
equations (28. 1), which obviously must vanish, is equal to the square
of the expression on the left-hand side of (28. 4). Equation (28,2) may
be deduced from (28. 4) and (4) as follows:

ms”A3ml = —" si“Bs2°w(= o (29)

as it is easy to verify that owing to the antisymmetry of s*“3
SWEST I"s”~sH

Finally, the relation (28. 3), which has been proved already by
other methods (cf. (19) and Il (33)), is also an immediate consequence
of (28. 1), (28. 2) and (3), as

sxr. S@W'i= saj(s®wWT s "Twa+ s®wid - 3sac wtl = o. (30)

The geometrical interpretation in four-dimensional Minkow-
skian space of the relations (28) is as follows. (28. 4) expresses the fact
that s“Pis a flat, or one-sheet, bivector, i. e., that it may be written
as an jalternating product of two (perpendicular) 4-vectors. (28.1) is
the condition that w® should be perpendicular to the plane of s“B and
(28. 2) that it should lie in that plane, both these conditions being
obviously compatible for an isotropic vector only. Finally, (28. 3) ex-
presses the fact that s““is isotropic, that is, that it lies in a tangent
plane to.the absolute cone.

The physical significance of the first two relations (28) may be
also worth mentioning. If the particle possess a magneto-electric mo-
ment p&proportional to 3 we may write instead of (28.1) and (28. 2)

p2wp= 0, [EE3W = o. (31)
The same relations with the four-dimensional velocity u® in place of
w® were interpreted in Ill, Section 3 as giving the condition that p®8

should be respectively «purely magnetic» and «purely electric», that
is, that in the rest-system of the particle the electric and the magnetic
moments respectively should vanish; incidentally, that would imply
the vanishing of p“*. Here no rest-system of the particle exists, as the
particle travels with the velocity of light, and both conditions (31)
may be satisfied simultaneously. Moreover, (27) is an immediate con-
sequence of the relations (31), as can be readily seen by multiplying
the second one by w® and allowing for the first one.
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9. In the first case, the rest moment sO was a constant, as a result
of being a non-vanishing constant of motion. Here saSal is also
a constant of .motion, which may be seen from (3) and the equation
resulting from (2) on multiplication by saB, but moreover this con-
stant is izero, and hence the only conclusion we can draw from (19)
is that g = s in every inertial frame of reference.

However, there exists a certain invariant value of s, namely
«s in the inertial frame of reference in which G vanishes», that is sc
The question arises if sc is a constant of motion. We are now going
to prove that

McsO= const. (32)

and thus the answer to the above question depends on whether Mc
is a constant of motion or not. In the next paper Mc will be shown to
be only approximately constant.

First, we shall prove that the magnitude of the 4-vector sal3GR is
constant, i. e. that

[saR GI§l — const. (33)

In fact, halfthe derivative with respect to pof thesquare of that
magnitude is (for c = 1)

SA3G? (s™*r Gr+ s“TGr) = saBGR{(G“w?- G?wW*) Gy+ ss*rFyaw’ =
= s Fyasalw’s“r. GR==o0. (34)

The second equality follows from (3) and the antisymmetry of s“f
the third is a consequence of (28.2) and (3) since

FpSA"wW'VT = FyasalwTs- = ~Fr sac(w’s“T+ w T O -

= —\ Fr>s«Bw“sY® = °-

Thus (33) is established. To prove (32) it is now sufficient to remark
that the magnitude of the 4-vector sa3G3Bis equal to Mcsc (since in the
proper system of the circle'Gk= o0, salG" reduces to one term
sad G4= [gMclod and g= s by (19).

Alternatively, the theorem (32) might be established by proving
in a similar way that

isW3Gtlj = const., (36)

the magnitude of the above trivector beingalsoequal to M,,;s0.

10. The parameters. The quantity m given by (5) being a «scalar
depending on the parametrization», its variability along the world-
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line of the particle also depends on that parametx‘ization. By a suitable
choice of the parameter, m may be made constant, the value of that
constant being, of course, quite arbitrary; we shall denote it by n.
Thus, pulling ¢ = 1, we define the new parameter & by the following
equation:

dxa

- G" ~ = n }7>
or

0K — oremmronmeee . (38)

Obviously #is thus defined to within anarbitrary linear trans-
formation. Alternatively, we can write instead of (38)

Elp " n (39)
and forp =t
B

dl n &40)

For a free particle in the rest system of the circle we have
Gk= 0, G4= Mc= const., and hence d&/dt= Mc/n or

M

t= —
n

L (41,

We see, that the special parameter wis intimately related to the
«proper time of the circle», that is the time coordinate t in the rest-
system of the cii'cle, but it cannot be identified with that proper
time. So long as no external forces act on the particle, both these
guantities axe proportional, and they could even be made equal at
the outset by a suitable choice of the constant n. But this equality
would hold only so long as the particle is not acted upon by an electro-
magnetic field. Let us imagine that the particle enters such a field,
and after remaining there for a while, gets out of it again into a field-
free space; obviously, during the whole process n remains constant,
as it is so by hypothesis, but MO undergoes changes in tire electro-
magnetic field, and, in general, after the passage of the particle through
the «potential barrier» Mc will have another value than before. Thus,
even if initially t1 had been chosen equal to the proper time of the
circle, it would retain that property only so long as Mc might be looked
upon as a constant. Consequently, we are again led to-the question
of the approximate constancy of Mc, which has been already post-
poned to the next paper.
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11. Because of (28. 4) lhe biyector s i s flat, and may be therefore
put in the form of an alternating product of two orthogonal 4-vectors.
Let us write therefore

saP= aabP— a™b®, aab* = o, (42)
whence
|s ™ s “?= aaaa.bBbp, (43)
and as by (28. 3)the bivector is isotropic the aboveexpi'essions

vanishand one of the two vectors aa and b*must beisotropic. Both
could not be, since they are orthogonal, and two orthogonal and iso-
tropic 4-vectors in Minlcowsldan space are easily proved to be pa-
rallel, which cannot be the case here as s“B would then vanish. So
let b* be the isotropic vector, then, thanks to (28. 1) and the theorem
just stated, b is parallel to w*“ and we may write instead of (42)
(alter multiplication of a“ by a suitable factor)

S«qp_ a»wP— a’™w'™, (44)

Thus allthe four relations (28) are satisfied. Yetwe may go still
a step further and identify a*“ with a multiple of w’*“To this end, let
us differentiate (44) with respect to p, and compare the result with (2).
We have

X*wA — XMW = aaw™ — atw', (45)
where
X*= Ga— a'“,
and hence wa lies in the plane of the 4-veclors a“ and w’*“. We may
write therefore
a“= 2hv'*-f 53wa. (46)
Inserting in (44), we get finally
SP= a(wawP — wPw*). (47)

Here 2t is a «scalar depending on the parametrization».
12. In this last Section we shall find an expression for 21 together
with some further interesting formulae.
Differentiating (5) with respect to p and bearing in mind that,
in virtue of (6),
G'awa= o, (48)
we have

m= —- ,Gaw a (49
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Multiplying (47) by w’P and inserting in (4) we have

mw = 1!2&ébw'p= ﬂwv'pwfﬁi.w*. (50)
Hence

* —

= \’N\ plfNrg (51)
Multiplying (47) by Gp, we have, thanks to (5) and (49),

s"Gp = — 2c2(mw' -f-m'wa) (52)
and so

n2 S“PG, 2= MO02sc2— 2i2c2m2w’aw’a. (53)

Combining (51) and (53) we have

M 2s
2t= rnYe; (/54)
and

W W® = e

° MoRd02 (55>
Substituting in (47) from (54) we get the interesting formula
M 2c i

S‘P— - (w’awP — w'Pw*). (56)

Incidentally, it may be noticed that thanks to(55) a third proof

of the constancy of MGsc may be reached as follows.Multiplying (2)
by w'p, we get, thanks to (49),

s"“Bw'p = m'c2w* (57)

Bearing this in mind, and differentiating (4) with respect to p, we
obtain

2mV + mw® + s w'p = o. (58)
Since

w"aw* = — w'aw'a (59)
as a conseequence of (27), and
2w"aw'“ = (w'aw'a)", (60)

equation (58) multiplied by w™ago-es over in the following differential
equation for w'aw a

—4m.w',w'" + m(w'aw “)' = o. (61)
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the solution of which is

w' WA
—”"™4 = const. (62)

The comparison of this result with equation (55) proves once
more the constancy of Mcsc.

All the above formulae and calculations may be simplified by
introducing the special parameter 7L defined in Section 10. In that case

m= n= const, m=o0 (63)

and &, 'the«scalar depending on the parametrization»becomes a con-
stant.
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ON TWO RELATIVISTIC MODELS OF DIRAC’S ELECTRON *

By Jan WEYSSENHOFF, Institute of Theoretical Physics, Jagellonian
University, Krakow.

1. The view has been often expressed that some at least of the
difficulties of the present quantum theory of fields arise from the
inadequatness of the underlying «classical model», rather than from
the inadequatness of the methods of quantization. Possibly the same
may be true of Dirac’ theory of the spinning electron. The diffi-
culties there encountered are probably more a matter of interpretation
than of the equation used being defective. Perhaps some progress
might be made by substituting a spin-particle obeying the laws of re-
laitivistic dynamics to a spinless particle, used as starting point by
D ira c. Of course, the quantization would then have to be performed
in another way, as (a), the equations of motion are reducible to
a differential equation of the third order (or at least intunately con-
nected with such an equation), and cannot be brought to the cano-
nical Hamiltonian form (at any rate if no auxiliary variables are in-
troduced), and (b), the spin of the particle has been introduced
beforehand, previously to the quantization, and does not appear only
as an eventual byproduct of that quantization.

We shall see presently that there exist at least two different
relativistic models of a material particle with spin, corresponding to
the first and second cases dealt with in my previous papers. The
second model Sseems to be by far the more interesting, but, as the first
present also some advantages of its own, both models will be discussed
here. However, before entering upon the subject proper it may be
well to insert some remarks concerning the radiation of a moving
point-charge carrying a magnetic moment.

2. According to classical electrodynamics an electric point-
charge e, where e is the charge of an. electron, travelling with the
enormous frequency of Schrodingers zitterbewegung along
a circle the diameter of which would be of the order of h/mOc would
radiate with a very high intensity. It is true that a classical model
cannot he expected to give a fair account of the radiation emitted

* See |, reference (*)* The four preceding papers will he designated hence-
forth by I, II, Il and IV.
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by an electron, but such large radiation without counterpart in nature
would render any correspondence between classical and quantum
theoretical behaviour of an electron impossible. I remarked as long
ago as 1938 (1) that the situation changes radically if one takes into
account not only the charge of an electron but also its magnetic mo-
ment. It can than happen that, under suitable conditions, the radiation
due to .the revolving magnetic dipole cancels, approximately at least,
the radiation emitted by the revolving point-charge. The argument
presented in 1938 was carried through in non-relastivistic approxi-
mation only, but it can be applied also in the general case, if we inter-
pret all the quantities involved as referring to the «rest-system of the
circle». This improvement is necessary to draw the conclusions aimed
at in the present Section.

For the convenience of the reader | repeat here the argument
of 1938 with only slight modifications. We know that a magnetic dipole
with a moment pp moving with the velocity v produces an electric
moment

(1)

Suppose such a magnetic dipole carrying an electric charge e to be
in uniform motion around a circular orbit of radius r, the angular
velocity being to and the dipole axis remaining perpendicular to the
plane of the circle, the electric moment (1) will then be directed along
the radius vector of the particle. If we put

n — sr (2)

and assume that the sense of motion is such as to produce a magnetic
moment opposite to i1 (and hence an electric moment pointing inwards
for e> 0 and outwards in the opposite case), the action of the resulting
electric moment will be equivalent, at sufficiently distant points, to
that of a charge +e in the centre of the circle and a charge —e on
the particle. The action of the moving electric charge will be thus
compensated, and there will remain only a charge +e at rest in the
centre of the circle. Hence, at large distances, there will remain only

an electrostatic field and the radiation will disappear. Putting v = wr
Mc?2
andu>=—— we get, from (1) and (2), for the ratio of the magnetic

moment to the angular momentum of the particle

p__ E
S Me ©)
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Hitherto all the formulae were valid for both cases alike, as
==Mc2s in both cases if all symbols are understood to represent
guantities in the rest-system of the circle. From now on we must
discern the two possibilities.
In the first case

- 4
yl—v2c2 “)

mO0 is a constant representing .the rest-mass of the electron, and as
for an electron x = e/m0c we see that the condition of vanishing ra-
diation is only satisfied for infinitesimal velocities (on the circle in
its rest-system), that is, for an infinitesimal proper radius rQ

In the second case, as we shall see presently, M itself has to- be
put equal to the mass of an electron and (3) is always satisfied.

3. The first model mentioned above is very much the same as
the one considered as far back as 1926 by Thomas and Frenkel.
Our results in I and 11l together with the contents of the preceding

Section suggest however a slightly different interpretation of its
behaviour. The equationslof 'motion considered hitherto did not take
minto account the reaction force of the radiation; according to them
the motion of the particle consisted, broadly speaking, of a motion
along a geodetic line together with a superimposed circular motion
of proper radius rc. As these equations are equivalent to a diffe-
rential equation of the third order, the general solution is far more
complicated -than in the case -of a particle without spin. But, the reac-
tion -of the radiation, instead of still further complicating the motion,
simplifies it materially, as if does not allow the circular motion to
develop, an the spin-particle is again moving along a geodetic line
or, at least, infinitely near to it. We can also- express -this fact by
saying that the proper -radius of the circle is infinitely small.

The chief advantage of this first model over the second one
consists in the fact that — as was shown in detail by Frenkel —
-it gives -a fair account of the behaviour of a spinning electron in
a magnetic field (in so fair ais we really know how such an electron
should behave classically).

Besides that one superiority the first model does not possess
any other over the second -one; in particular, it does not show so many
striking analogies with the behaviour of Dirac’ electron. Before
passing bo the consideration of the latter, one more remark may be
added. There exists a close analogy between both models; though in
the second case the proper radius of the circle has a finite value
h/2Mcc, it is obvious that this radius must be considered as «unobser-
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vable», or, in other words, that the consequence drawn from the
second model have a physical meaning only in so far as this radius
may be considered as infinitely small.

4. The second model consists of a point singularity moving with
the velocity of light according to the laws exposed in Il and IV. The
essential point however is that it is not the singulariy itself, but rather
its mean position — or the small circle on which it moves in an
appropriately chosen frame of reference — which has to be considered
ais representing the electron.

We say «electron» as we shall discuss here especially the ana-
logies of our model with D irac’ theory of the electron, but it seems
probable that all elementary particles endowed with spinlmust have
the same classical model and it is only by the process of quantization
that the individuality of different sorts of particles is brought in.

5. We shall now enumerate and discuss some analogies and some
promising differences between our relativistic model of an electron
and its quantum-mechanical counterpart.

(a) The momentum G ceases to be parallel to v just as in the
theory of Di'rac where the momentum and the velocity have
different operators.

(b) The magnitude of the «kinematical velocity» v is always c;
the values of its components in any direction range between —c and
+e. In Dirac’s theory the eigenvalues of the operators of the velocity
components cax, cxy, caz are = c¢. The correspondence between the
classical and the quantum theoretical behaviour is just the same as
with the spin vector 'and its components.

Notice that we were led, in IV, to introduce also another concept
of velocity, called «dynamical velocity». Schrédinger (2, 1930)
has done almost the same in the theory of the Dirac electron; he
calls that new velocity «macrovelocity», in contradistinction to v, the
«mioroveloeity».

(c) In both theories the moments of the linear momentum are
not constants of motion by themselves but they may be supplemented
in such a way as to acquire that property ;the additional terms involve
the vector of angular momentum, or its operator, which are thus
introduced in a very similar manner.

1 1If the singularities representing them do not contain in addition to gra-
vitational unipoles and dipoles also gravitational quadrupoles, octupoles, etc.
It will be shown in a subsequent paper that the mean position of a quadrupole
singularity moves also along a geodetic line.

Acta Phyaica Poloniea 4
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It could rightly be 'Objected that the above analogies are not
convincing, as our .model was expressly constructed to bring them
about. This is not altogether true, as it seems already interesting
enough that this oould have been done in so natural a way. At any
rate the following analogies are free from those objections, as they
follow automatically from the initial assumptions.

6. (d) Jf we put Mcequal to the mass of an electron and sOequal
to h/2, as it is the case with an electron, then the frequency of the
rotation around the circle (in the rest-system of the circle) will be
just equal to the frequency of Schrdédingers zitterbewegung.

(e) Under the above conditions the proper diameter of the circle

becomes equal to the well-known «wave-length of the Compton shift».
It is the wave length which would be produced if the energy of an
electron were transformed entirely into a photon; moreover, it is the
maximum accuracy with which the position of a particle of mass Mc
may be ascertained. This last result fits nicely into our theory as
we are bound to admit that the motion of the singularity around the
circle is unobservable and that it is only the circle as a whole which
plays the role of an electron. The amplitude of the zitterbewegung
has the same order of magnitude as the radius of the circle in our
case.

() Two isotropic tensors, w*, for which waw* = o, and sdji, for
which s™-s™ =0, play a dominant role in our theory. It may be in-
teresting to remark that isotropic four-vectors as well as isotropic
four-dimensional bivectors are closely connected with spinors.

7. () The motion of the spin-singularity in an electromagnetic
field is far more complicated than in a field-free space, but as a first
approximation, if the intensity of the field is small enough, we may go
on speaking of a motion on a circle even in an electro-magnetic field,
the circle being subject to a small acceleration as a whole and to slight
deformations. Obviously, the inequality to be fulfilled by the intensity
of the field may be obtained by expressing the fact that in the rest-
system of the circle the displacement of the center of the circle during
the time of one revolution
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should be vanishingly small in comparison with the proper radius of
the circle

(7)

It is easy to prove that the acceleration of the center of the
circle in not too strong electromagnetic fields is the same as for an
electric point-charge without spin. Hence, we can write

T aT,=T K T'«2ib 8>

or, omitting the irrelevant factor 2

¢ ;Eh«M ce. 9)
Mcc

Curiously enough it is just the same inequality which presents
itself in D ir ac’s theory of the electron as the condition of no jumps
from positive to negative energy states. It is found there by expressing
the factthat the changeof the potential energy of anelectron over
distances of the order of magnitude h/MGshould be verysmall in
comparison with Mec2 i. e.

E ~ M 2 1
SE o cc (10)

This inequality is equivalent to (9).2
It may be also written in an invariant form, as follows:

“
I\/ICCZS 7 Fp%« M cc2 (11)

8. (h) variability of mass and pair production. Strictly speaking
all what has been said jhitherto lacks real foundation so long as we
have not yet proved that Mc is a constant of motion and that it may
therefore be put equal to the mass of an electron.

In 1V it was only proved that

Mesc==const., (12)

2 Cf. L. de Broglie, L'électron magnétique, Paris 1934, p. 289. De Brog-
lie writes: «Ce résultat conduit & penser que s’il on pouvait s’interdire de con-
sidérer des distances spatiales inférieures a h/mC, on parviendrait peut-étre
a éliminer les ondes a énergie négatives».
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and it cam be easily shown that Mc and sc separately are not constant.
At first sight this state of affairs co>uld seem a serious drawback of
the present theory, but at closer inspection it turns out to be one of
its most attractive features, as we shall prove immediately that M, is
approximately constant if the field through which the electron passes
do mot change to abruptly, and that the variability of mass is intima-
tely connected with the production of pairs.

Let us put the question in the following way. At the outset, let
the electron move in a field-free space; it is than represented by
a circle of constant proper radius rc, constant mass MO, and, thanks
to (12), constant magnitude of angular momentum s0 — all these quan-
tities measured in the rest-system of the circle. They are linked

together by the equation
S
r= Mrvc <13>

Now, let the electron enter an electromagnetic field and .after
remaining there for a while get out of it into a field-free space again.
There, it becomes once more alregularcircle (the rest-system of which
is in general different from what it has been before the passage through
the field). But do MO and hence re and sc return to their previous
values? Strictly speaking the answer to this question must be in the
negative, but we shall prove now that MO is approximately constant
when the field satisfies the following condition

2M ¢
(i4)

in which sO0 has been put equal to h/2. The proof runs as follows.
Taking into account equation IV (6) we can write

A GaGa= 2G“G'a= 21 GaFasw0= i Faa(G“w°- G»w“)= | FAs* =

= £AITT —sa0F'
cdpn “ 'cC ar
and hence, as — GaGa/c2==Mc2
AN (m>+ a. SPF.p) = =i SWwWr (15)

The second term in parentheses is small in comparison to the first
one, in virtue of (11). To write down the condition, for neglecting
the right-hand member of (15), we must express the fact that this
terrh multiplied by the change of p during one revolution around the
circle is vanishingly small in comparison with ss*F~/c3 As the
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equation does not depend on the choice of the arbitrary parameter p
we may put p = I, and hence wr= vh To be sure that the sum on the
right hand side of (15) is small enough, we must require that all its
members should be small enough. Thus, remembering (6), we obtain
the inequality (14).

This condition has jasimple meaning in the theory of Dirac,
at least when the external electromagnetic field is a plane mono-

. 2E i
chromatic wave of .frequency v. Then — /E = v/c and a special case

of (15) reads
hv«M cc2 (16)

Thus, we see that the condition of constancy of mass (14) is equi-
valent to the condition of non-production of pairs. This is again a very
sensible result. So long as we are very far from the possibilities of
pair production the mass of the electron is constant. Of course, we get
no sharp limit, as classical theories never give sharp ones.

9. It is not at all clear how the quantization of our relativistic

model has to be performed. In any case, it will have to be done in
a very different manner from the present one, as Schrédinger’s
Zitterbewegung iS a consequence of the superposition of slates of po-
sitive and states of negative energies, and to day we do imagine that
a particle is either in a state of positive or in a state of negative energy,
whereas our circular model of an electron, being a model of the
Zitterbewegung, must correspond simultaneously to states of positive
and states of negative energies.
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A COUNTER APPARATUS FOR THE MEASUREMENTS OF
COSMIC RAYS

By Marian MIESOWICZ and Leopold JURKIEWICZ,
Physical Laboratory of the Mining Academy, Krakodw.
(Received April 19, 1947)

For the measurements of the weak effects of cosmic rays, e g.
penetrating showers or the component of great depth, we must use
G-M counters of large dimensions. They must stand long use, because
the investigations last several months or more. We describe here the
construction of counters of large dimensions, which can be made in
any laboratory fairly simply, which are distinguished by mechanical
solidity without being sealed in glass, and which have all the pro-
perties of good counters with respect to plateau, efficiency, stability
during work, etc.

The mechanical construction of the counters.

The counter shown in fig. 1is set up in a brass tube AA, which
with the lid B and the collar C forms a cylindrical brass chamber
used as a cathode. The central wire D, the anode, is fixed in a glass
insulator E stretched from a small spring F through the centre of
a glass tube G sealed into the collar C. Both these glass tubes enter
the counter in order to prevent a discharge between the wire and
the near walls of the chamber. On the end of the glass tube G outside
the chamber is a brass cap H in the centre of which the wire is fixed.
After setting up the complete counter, we seal a glass lube to the
brass cap in order to join the counter with the vacuum- and filling-
apparatus. This glass tube is sealed off afterwards.

To make the counter vacuum-tight all joints, brass-brass and
brass-glass, are sealed with tin (25 p. c. Pb). The glass tubes prepared
for sealing with brass were chemically deposited with a thin film of
platin (from H2PtCIO) 1 then electrolitically coppered and sealed
with tin.

1E. Angerer, Technische Kunstgriffe bei physikalischen Untersuchungen,
Sammlung Vieweg.
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Before setting up the counter, all its brass parts were cleaned
first with slacked lime, then with technical niitric acid, and then rinsed
with water. This procedure was used because of the very bad state of
the brass lubes. It has been ascertained that small deformations of
tubes, such as their imperfect circularity or not quite coaxial position

Fig. 1 Large counter for the measurements of cosmic rays.

of the wire, do not influence visibly the behaviour of the counter.
The counters were thoroughly evacuated before filling. As anode we
have used a resistance wire (diameter 0,1 mm). The dimensions of one
of the counters are indicated in fig. 1.

Filling of the counters.

It is well known that one distinguishes counters filled with a gas
or a.mixture of gases and those filled with a gas mixed with an organic
vapour. In the first type the discharge is quenched by applying a high
resistance (10°Qo:r more) or a radio tube in a circuit of the Neher-
Harper type (i). In the other type, called «self-quenching», the reco-
very of the counter takes place In consequence of the discharge itself,
without thé essential influence of the high resistance (2, 3). This se-
cond type of counters is mostly used now in consequence of its
advantages over the first, and most frequently a mixture of argon and
alcohol vapour is used.

W e have investigated counters filled with pure vapour of aceton
or alcohol to a pressure of 10 mm Hg. The counters with a.ceton vapour
exhibited very good properties at first after filling. The threshold
voltage of a counter of the dimensions shown in fig. 1 is about 1370 V,
the length of plateau 400—600V, the efficiency > 98,5%. If however
they have been in action for a longer lime they ceased to work
satisfactorily. With the resistance of 10sqQ they worked well ior about
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a month, counting in this time about 107 pulses. Therefore they cannot
be adopted for measurements over a longer period of time.

The mixture mostly used in self-quenching counters is one of
argon with alcohol-vapour. We have used this mixtures because now
it may be considered as a normal mixture do counter-filling. -

The counter reproduced in fig. 1 filled with alcohol vapour
(absolute alcohol) under a pressure of 10 mm Hg and argon under
a pressure of 90 mm Hg shows the following properties:

The threshold voltage (indicated with an oscillograph) 1100 V.

The lowest voltage of correct counting 1130 V.
The length ofplateau forresistance 10®Q about 400 V.
......................... ” 107Q 350 V.
lggg - 250 V.

The plateau ismeant as the voltage ‘'region in whichthe recorder gives
constant counl-rates and the pulses are singular. The number of counts
without any radioactive substance is about 700/min. The above data
refer to 10 counters filled simultaneously. The differences in the
threshold voltages were not greater than 20 V. The length of the pla-
teaus for all the ten counters was identical within our possibilities
of estimation. As the counters filled with pure aceton vapour got
spoiled after a certain time, we put the argon-alcohol counter under the
influence of a small radioactive source giving in each counter about
2.104pulses/min. during 485 hours at 200 V above the threshold voltage
with a resistance of 10sQ After the removal of the radioactive sub-
stance the threshold voltage of the irradiated counter got about 70 V

higher and the length of the plateau shrinked to about 200 V. The
counter was still good enough to be used.

Coincident circuits.

The resolving time for accidental coincidences of a conventional
Rossi-circuit depends firsl of all on the following factors, (a) The
grid resistance of the Rossi tube, (b) The grid voltage of this tube,
(c) The voltage of the counter, (d) The grid voltage of the tube record-
ing the coincidences (thyratron). This is the consequence of the fol-
lowing circumstances: (a) The form of the pulse on the common
anode depends on the time constant of the system connected with the
grid of the Rossi tube. If the capacity of this system remains un-
changed, this time-constant will depend only on the grid resistance.

* We are greatly indebted to Prot. H Niewodniczanski and ProT.
J. Weyssenhoff for supply of argon.
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(b) The increase of the positive voltage within certain limits does
not change the size of the pulse (in volts) on the anode, but narrows
it in the upper part, according to the work-characteristic of the
tube, (c) As the resolving time depends on the size of the pulse
(in volts) the counter voltage influences it. (d) The pulses deriving
from the accidental coincidences are not alwavs equal, since- their size

Fig. 2
Data for simple Rossi coincident circuit with resolving time 8.10'6sec. Counter
connected to point A R, = 107Q 1= 20 kf2, RO= R,0= 250k£2, R,, = | MS,

C3= 50 pF, C, = 500 pF, V,= + 1300 V, V8= + 4 V, W= +115 V, VD= + 230 V
Via= - 23V, vB= -f 150 V.
Data for high-resolving power coincident circuit with a resolving
Counter connected to point A: R, = 107Q R2= R<= R5 R, = 50 kQ,
R3= R,= R,= RI0O= 250 k2, R8= 10kQ, R, = 1 MQ C,= C*= C3= 50 pF,
C4= 500 pF, V,= +1300 V, V3= +5 V, V,= -7V, V8= +5 V, Wn= -27 YV,
V,= V3= V8= +115 V, V,=V,= V|0 1-230 V, V,, = + 150V,
Tj=T,= RT.= AF7, Th = AC50, Rec. Recorder.

time 1.10-' sec.

depends on the time interval between the pulses coming from both
counters. These pulses are therefore generally smaller than the pulses
of the real coincidences. In consequence we can bias the grid of the
thyratron with negative voltage so that we may omit the smaller pulses.
In relation to (c¢) we must still remark that the plateau of a single
counter in a given circuit begins with a somewhat lower voltage than
the plateau obtained for coincidences. The working voltage for
counters, therefore, must not be too high but within the limits of the
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plateau of the real coincidences. Taking these circumstances into
account, we can, using the common Rossi circuit, attain the resolving
time of 1.10-3 sec. without great difficulties. The right part.of fig. 2
separated from the rest by a dotted line shows such a simple circuit.
It can 'be used as it is only when the pulses arriving to the grids of
the Rossi tubes are equal, as for single counters connected with the
grids; thus, if we want to use this circuit for sets of counters, we must
equalize the pulses before they reach the grids.

A further diminishing of the resolving time is possible by a further
reduction of the grid resistance. As the reduction of the grid resistance,
however, causes a diminishing in size of the pulse, this procedure is
only jpossible with simultaneous amplification of the pulses. We ob-
tain then with a strong reduction of the duration of the pulse a suf-
ficient size for recording lit. In general one stage of amplification with
a penthode is enough in order to attain the resolving time of the
range of 1.10-6sec. We must then take positive pulses from the cathode
of the counter. Because of greater convemiency, however, in working
with an earthed cathode, we added still another tube. This circuit with
all its electric values is shown in fig. 23 The resolving time of this
circuit is 1.10-6 sec. Its great advantage is that the pulses coming to the
grids of the Rossi tubes are equalised by the two first stages of ampli-
fication.

We are greatly indebted to the Rector of the Mining Academy
of Cracow Dr W. Goetel for his interest during the execution of
this work and for financial assistance, and to Professor M. Jezew -
ski for generous provision of the necessary facilities which enabled
the work to be performed. Our thanks are also due to Mr. S. W o j-
té w, a skilled mechanician of the Mining Academy, for his valuable

help.
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SIMPLE QUENCHING-CIRCUIT FOR G. M. COUNTERS

By J. WESOLOWSKI and B. MAKIEJ, Physical Institute
of the Jagellonian University, Krakow
(Received April 22, 1947)

E. W. Yeller (1) proposed a quenching circuit containing one
vacuum tube connected in series with the cylinder of the counter. As
the author admits, the chief disadvantages of that circuit are:
(a) varying potential of the cylinder, requiring shielding and insu-
lation if two or moce counters are used, and (b) the low size of the
negative output pulse. In addition a negative bias must be applied
to the control grid of the quenching tube.

With the circuit shown in Fig. 1 the cylinder of the counter is
on a constant potential.

7

O nv. e
Fig. L Quenching Circuit Diagram.

If a sufficiently insulated filament transformer is available, each
of the two high voltage supply terminals may be grounded. The prin-
ciple of the operation of the circuit will be evident from the figure.
A current resulting from the passage of an ionizing particle through
the G.-M. counter causes a drop of potential across the vacuum tube
and the resistor R. Since the potential at A, and therefore at the
control grid, is then negative with respect to the cathode, the tube
becomes non-conducting and the discharge stops.
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Owing to the low value-of 'the resistor R the difference of po-
tentials between the cathode and the grid vanishes quickly causing
complete recovery of the circuit. As shown by the cathode-ray oscil-
lograph the recovery time of the system is of the order of 3 X 1CM sec.

The advantages of the described circuit are: (1) The cylinder of
the counter is on a constant potential (zero if required). (2) Similarly
to the Yetters circuit, high potential is not applied across the vacuum
tube and there is no constant current-drain from the high voltage
supply. (3) No additional low voltage sources are needed. (4) The
negative output pulses are of sufficiently high size.

The authors wish to express their grateful appreciation to Pro-
fessor K. Zakrzewski for the facilities given in the course of their
experiments.
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(1) E. W. Yetter, Phys. Rev. 53, 612 (1938).
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AN ELECTRONIC VOLTAGE STABILIZER
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Several methods have been proposed for the stabilization of
the output voltage operating G.-M. counters. A great simplicity and
high constancy offers the Neher-Pickerung (i) circuit in which,
however, bias batteries must be used.

The circuit described in this paper requires no batteries and
maintains practically constant usual output voltage, even when the
change of the input exceeds 50%. The circuit contains one penthode
and two glow discharge tubes serving as bias batteries substitutes. By

Fig. 1. R =R2=3XI03 Rs= 2X 10s, Rc= 105 P = 108 ohms; F = 0.5nF;

T = type A.F.7; Gu Gs= glow discharge, Philips 4357.

means of the variable resistor R4 and the potentiometer P the cathode
of the tube is brought to a positive potential with respect to the point
C and the control grid — to a slightly negative potential with respect
to the cathode.

As is seen from Fig. 1, the action of the penthode consists in
taking upon itself the fluctuation of the input voltage. If, for instance,
the input voltage increases, the potential of the cathode also increases
relatively to the point C and, therefore, the difference of potentials
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between the cathode and the grid increases too. The tube becomes less
conductive, and this in turn produces an increase of the difference of
potentials between B and C. The output voltage, taken from the
points A and B, remains practically constant.

In conclusion the author wishes to acknowledge his indebtedness
to Prof. K. Zakrzewski for his continued encouragement and to
thank Mr. J. Janik for his technical assistance.

Reference

(1) H. V. Neher and W. H. Pickering, Rev. Sci. Inst. 10, 53 (1939).
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