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CONTROLLABILITY OF DYNAMICAL SYSTEMS WITH DAMPING
TERM AND CONSTRAINED CONTROLS

Summary. In the paper presented the methodology of investigation of the
controllability of an infinite dimensional second order dynamical systems with
damping term. Following this aim spectral theory for linear unbounded operators is
involved. In the first part of the paper the problem is stated and the methodology of
transforming the second order equation to the set of the first order equations is
reminded. Next the theorem on transforming considered infinite dimensional
dynamical system to infinite series of finite dimensional systems is proved. Finally the
theorem on necessary and sufficient conditions of constrained approximate
controllability of considered system is formulated and proved.

STEROWALNOSC UKLADOW DYNAMICZNYCH Z CZYNNIKIEM
TLEUMIACYM | OGRANICZONYMI STEROWANIAMI

Streszczenie. W ramach pracy przedstawiono metodyke badania sterowalnosci
nieskonczenie wymiarowych uktadéw dynamicznych rzedu drugiego z czynnikiem
thumigcym. Do tego celu wykorzystana zostata spektralna teoria liniowych operatorow
nieograniczonych. W pierwszej czesci pracy zostat sformutowany problem i
przypomniana zostata metodyka sprowadzenia rozpatrywanego ukfadu drugiego rzedu
do uktadu réwnan pierwszego rzedu. Nastepnie udowodniono twierdzenie o sprowa-
dzeniu wyjsciowego uktadu nieskonczenie wymiarowego do nieskoficzonego ciggu
uktadoéw skonczenie wymiarowych. Na koniec zostato sformutowane i udowodnione
twierdzenie podajgce warunki konieczne i wystarczajgce aproksymacyjnej sterowal-
nosci z ograniczeniami rozpatrywanego uktadu.

1. Basic concepts

Let us consider a dynamical system given by the following abstract differential

equation:

(€]
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where the operator’sA /(A ):X zd D(A) —X function is given hy:

*

f(A)x =2a0Ax+""Bj2alARx, xeD (A) @)

where coefficients a,,/3, fulfils the following inequalities:

a0>0, a, >0, —<Bi <\, 1 =12 ©)]
also are given initial conditions:

x(0) =x0e D(A), x(0) =x,e X 0]

The operator B is defined as follows:

£«(/)=¢0'k,(0, Be L(RP,X) ®

where:

Let us moreover assume that A :X r>D(A) —X is a linear, generally unbounded,
selfadjoint and positive-definite operator with domain D(/i) dense in X and compact resolvent

R{XyA) for all A in the resolvent set p(A).

The physical interpretation of the equation encompasses a broad class of real systems
in the form (1) and depends on a particular form on the A operator and of the coefficients and
exponents of the damping term £{A) (2).

It is well known that the operator” has the following spectral properties [8]:

- Operator A has only purely discrete point spectrum consisting entirely of distinct real

positive eigenvalues A\ each with finite multiplicity w, (;«. <oo):
0< A <A2<..<A <Aux <..., !im:co ©)
- The eigenfunctions of operator A {<$j1=1,23,..y=1 , 2 formcomplete orthonormal

system in Hilbert space X. Hence for every xe X the following unique expansion holds true

(8)

i-i -\
- Operator A has the following spectral resolution:

©)
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The fractional power of operator A is defined as follows [7]:

»CW'§(/«0,.)ApX = X, f <",<Pj >)’(Yﬁ (ii)

D(Afl) =\xe X mYuYJK B<Xyfaj >xf <« (12)
/5 [=i

*Operator A* , 0<P<1 is also selfadjoint and positive-definite with domain DA ) dense in A.

2. Transformation of the given second order system (1) to the first order
equation

The main aim of this paragraph is to present how to transform the given second order
equation (1) to the first order one. As is shown in [8] given system (1) can be rewritten in

equivalent form ofthe following system of two first order equations:

d o L. 8(A)B -
dtaAo. o A~ AO. _-9(A)-B_

where the operators A+and A' are defined by the following formulas:

u(t) (13)

*

A+=-a0A -J]alAfl +g(A) (14)
J

A' =-a0A-]Ta,AT -g(A) (15)

A%:X 3 D{A) -> X,D(A*) = D(A) (16)

The operator g(A) is defined as follows [2]:

ACA A)XEZ % giXi)<xA >xA (0
& m )

D(g(A)) =\xe X [< XA >x\ <«
i y.i 18)

with domain D(g(/1))=D (/i) [6].

Appearing in the above formulas function g(X,):R  C is defined as follows:
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with additional assumption:

-AL*0, (=123, (20)

This condition (20) is necessary for the invertibility of the operator's function g(A). In [8] is

showed that for all ie N the following inverse of g(A) linear operator can be defined:

' (21)
xeD(g-M) o>l
D(g~\A)) ="xe X : f]Y Jg-2(X,)\<x,0i0> | _ <co (22)
i y-i
Operator of the system (13):
f="A+ 0 (23)
_0 T
has the following spectral properties [4]:
- Operator Q has purely discrete point spectrum a(H) of the following form:
(24)
2a,
where sf are distinct eigenvalues of Q given by the formula:
sf =-a0Z,-"a,,l,p+g(X,), i=123,.. (25)
M
- the set of eigenfunctions of the operator
{[~.0f,[0,~]r, i=123,.y =1.2,.,m} (26)

is a complete orthonormal system in Hilbert space X xX . Thus the following unique

expansion holds true:

= snoJ a 27
xeXxX = \ < X\ A >X ( )
- operator Q has the following unique spectral resolution:

Q +s; <mA >X (28)

=i y»i

In the rest of this paper it will be assumed that all the previous assumptions are fulfilled.
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3. Theorem 1

The infinite dimensional dynamical system (13) can be rewritten in equivalent form of

the following two infinite series of finite dimensional dynamical systems:

U; (0=4 g;(t) +B-u(t)

Where/lI’j+, /1’j'and B'C, B’f are the following matrixes:

i=123,. (29)

A* = diag[s* dimA* =mtxm. (30)
A~ =diag[s7 ], dimA, =m, xm (31)
'K - a - KU
b - K - K (32)
by, mm bk e bf
(33)
Furthermore:
b\ =<b\<S>n > i=123,.. j =12,. P (34)
The vectors g* (t),gj (t) are given by:
2:(0 =fc,(0™i2(0,-,~,(o]r (35)
«7(0 =k, (0,A*n(0.-. ft*, (Of (36)

where £y(0> /(0 denotes the ith coefficient of the Fourier series of spectral representation

for the element x in the state space X. The coefficients are explicit given by the inner product

between element in the state space X and the appropriate eigenfunction < of the operator A:

£ff(0 =<£(0 pm >x> 0 =<<A0tg>>i1=123,..j =1,2,...m, (37)
Proof

Let us remind the form of considered infinite dimensional system (13):

d A+ 0-'m : 'B .
F OW B (38)
dt a(0. -0 A\ ,a(0. _-g(A)-‘i2_
To proofthe thesis of the theorem first of all let us take into account the fact that the operator
Q is complete and orthonormal and can be used use the spectral resolution of the operator Q.

Using (5) and (27) we can rewrite (13) in form:
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tlim =Atiltjm +s-'(A)xbtuk(o
M jml 1y 1 (39)
im jm1 -1 y-1 *-1

Considering that the operator g‘]{A) is linear and using formula (21) we can obtain the

following equality:

g-"(A)Eb*ut(0=£ut(0ZEg"W=*fa (40)
*1 i-1

i-1 J-1
Next using the spectral resolution of the operator Q (28) and the last formula the set of

equations (39) receives form:

00 titf ® i p © W

ES&C'Mr =z22Xi*(04,
[Mtij;,«», -ifxam* -¢ «M tl rum

Now let us calculate the inner product on both sides of last set of equations. Taking into

(41)

account the fact that the eigenfunctions\$Q,i=123,..,j =1,2,...m,} form complete

orthonormal system in Hilbert space X it gives:

t3{t) =s;7{t) +g-\X 1) fjuk{t)bl
ol

(42)
A/(0 =SjPj(t)- 1
Now let us rewrite above set of equations (42) for fixed i in the following form:
'g-'Wti eem g-'wti mm g-'whi
d Si 0" in
o = + g-'WM =mm g-'Wht me g-\w «()
5*,. 0 s>, "
z-'M K, mmg-'ukK em g-\WL,_
'g-'Wbl, ‘e g-‘wrt = g-\W
i Mii si 0" wn :
q - ‘ - g-'Wti ee g-lii)K e+ g-'Wb5 a(0
_Mun,_ 0 sc . Min,,
g-'ttK g-'ViK,
(43)

It can be easily seen that above set of equations after substitutions (30) to (36) has form (29).

QE.D.
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4. Basic criteria of controllability of finite dimensional systems
with constrained controls

It is given stationary finite dimensional system described by the following equations:

x(t) = Ax(t) + Bu{t), t>0 (44)
{y{t) = Cx(t) +Du{t), t> 0
where A,B, C,D are constants matrices with dimensions respectively nxn, nxm, pxn, pxm.
Definition 1
The dynamical system (44) is said to be [/-controllable to zero from given initial state
in the state space, if for any initial state x(to)=xo> there exist an admissible control

u e LJoc([0,c0),U) such that the corresponding trajectory x(t,x(to),u) of the dynamical system

satisfies for some / e[r0,00) the condition:

x(tnx(t0),u) =0 (45)
Theorem 2 [3]
The dynamical system (44) is globally [/-controllable to zero if and only if the following
conditions are satisfied simultaneously:
(1) There exists a weU such that Bw=0
(2) The convex hull CH(i/) has a nonempty interior in the space Rp.

(3) rank[B\AB\A1B\..\A"-'B\=n

(4) There is no real eigenvector ve R" of matrix AT satisfying vIBw < 0 forall weU

(5) No eigenvalue of matrix A has a positive real part

Basing on Theorem 2 it can be formulated the criteria of controllability with constrained
controls for the infinite dimensional system (1). It is the main outcome of this article. In this
theorem we will also, similarity like in the theorem 1, assume that all the previous

assumptions holds true.

5. Theorem 3

The infinite dimensional system (1) is globally approximately [/-controllable to zero if
and only if the following conditions are satisfied simultaneously:
(1) There exists a weU such that Bj+w=0 for every i=1,2,3,...
(2) The convex hull CH([/) has a nonempty interior in the space Rp.
(3) rank[5j"]=/Wi, for every i=I,2,3,...
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(4) There is no real eigenvector v(s R™1of matrices A’ A't satisfying vjB'Aw< 0 for all

we U, foreveryi=I,23,..

where:
'K - K b>'
b), - - by (46)
Dy Bint biy

and matrices A’j+ A'\ are introduced in theorem 1.
Proof

The proofbases on applying theorem 2 to system (1) in form of the two infinite series
of finite dimensional systems (20).
- The condition 2 of the Theorem 2 can be rewritten in the same form, because the control
space of each subsystem remains the same set by assumption
- The conditions 1, 4 in the Theorem 3 follows immediately from applying the Theorem 2 for
rvery of finite dimensional subsystems in the form (29) and matrixes A’i+, AY are diagonal
and so symmetric.
- So that testify the condition (3) of the Theorem 2 let us rewrite this condition after applying

to the ithsubsystem of the first series of (29):

rank[B'; | A'AB? \(A;)2B* 1..1(a; )(-,)B;]1=m, i=123.... @)

As proved in [5] equation (47) with diagonal matrix A *reduces to:

rank[B*] =ml i=123,.. (48)

By assumption (20) g(A;) * 0, so also g _1(A.) * 0 and this does not affect on the rank of the

matrix B *, because * =g~"'(A"B *and condition (47) reduces to condition 3 of proved

theorem.

Proof for the second series of (29) goes similarly and yields the same equation.
- condition 5 of the Theorem 2

The matrices A’i+, AY have diagonal form so their eigenvalues are equal to elements
on the diagonals. At first let's check this condition for the matrix AY- Let us remind the

formula (25) of the eigenvalues sf:
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considering conditions (3) it can be easy seen that for every i=1,2,3,... inequality Re(sj")<0 is

satisfied and condition 5 of theorem 2 is fulfilled for the first series of (29).
Now let’s check this condition for the matrix A *. To this purpose the following two cases

will be distinguished:

Case A:

(a0A ,+[>,A/'j -A,>0,f=123,.. (50)

To prove this case let’s take into account the fact that all the eigenvalues of the operator A are
positive (7):
A >0 (51)

Now let’s perform on both sides of above inequality multiplication by (-1) and add an element

*

a0A ft
\ d
/ *
«A; +2> A/ -A, < a0ni + aini (52)
/d

The left side of the last inequality is non-negative in this case by assumption, therefore the
right side is positive. The square root in the R+ domain has different values for different

arguments, so from the inequality (52) we can obtain:

k \ k
S ALty e (53)
d
thus:
\2
st =-aO0Af-"£lalX,*+] aOA +£a,A/ -A, <0 (54)
1 w m
Q.E.D.
Case B:
0A,.+Ja,A/l' - A <0,;=123,.. (55)

The square root ofnegative real number has only imaginary part, so we can write:
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Respect to inequalities (3) we can write:

-a0Ai-]Ta,AlA <0 (57)
i

Thus;
Res/ <0 (58)
and condition 5 ofthe Theorem 2 is fulfilled.

Q.ED.

6. Examples

6.1. Example 1: Two-dimensional system with single eigenvalues

Let us consider the following second order dynamical system with damping term:

+(4A +6A7 + Al + Ax(t) = Bu(t 59
4t ( dt (t) (t) (59)

The state space A"is R . Let the operator A be given by the following matrix:
1 -2
A= A:R2->R2 (60)
-2 5

Operator B is as follows:

bu 6
B = B :R R (61)
M "2

The control vector:

w, (0
u(t) = ( (62)
»2(0.
The controls are constrained as follows:
»(0-0)»2(0~o0 (63)

Problem Statement

The aim of this example is to verify the {/-controllability of given dynamical system
and rewriting him in the form of the first order systems’ finite series.
Solve

The matrix’s operators are obviously linear. Additionally given operator A (60) is

symmetrical and thus self-adjoined. Moreover, their major minors are positive so is also
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positive-defined. It’s easy to see that equation (59) has form of the dynamical system (1) after

introduction of the following coefficients:

o0=2 a, =3, aj =— p2=— (64)
All these coefficients fits into their proper ranges given by the inequalities (3), so all
the assumptions of the theorem 3 are fulfilled. Now let’s check in sequence conditions this
theorem is consisted of.
- Condition 1
Lets substitute w=[0 Of. Then B\w= 0 a s2w = 0 and condition is fulfilled.
- Condition 2
Since w,(t) >0, u2(t) > 0 the convex hull has a nonempty interior in R2 and conditionj holds
true.
- Condition 3
The operator A has two single eigenvalues:
1,=3-272, Tj =3+272 (65)

And it’s eigenvectors has form:

1472 172
74 +272 74-272

A= T 1 (66)
74+272. 74-272

i finite «<-dimensional state space X the scalar product /;* is given by the following sum:

(67)

pul

i this example all the eigenvalues are single ( m,=1), so according to (67) the matrices B\”

nd B2” have form:
B[ =]Ip\b2\=[<b\<j>{>x < b\]j, >x\=[bnti") +b2tf) M i,)+ M i(2J=

{2+41)bu +4Ilbn {2+41)bu +42b2

(68)
2V2 +V2 2V2+ V2
BT=nN b\\-[<b<t>2>x <b\<f>2>=1=\ong"+b2f 2 bixqa +bh2q@)\=
1-72)6,,+", 1-72)bn +b
( ) ( )bn +b2 (69)

74-2"2 74-272
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In this case the condition 3 has form:

ranklB'} = 1a rank[B2] =1 (70)
Using the equations (68), (69) the equation (70) receives form:
bZ*-(1+4I)buvbn*l&bn b2 * (-1+42)bnv bn * (71)
2+V2 V2-1.
- Condition 4
The eigenvalues are single, so the matrices A’i, A’f are degenerated to scalar and such a
problem has been investigated in the paper [5] and it yielded the following condition, after

adaptation to current symbols:

b\b* <0Ab\b\ <0 (72)

which is equivalent to:

[+ +bni(l+4lbn)+bni<0a [1-V2>, +Db,,301- V2>R2+bn1<0 (73)

Combining conditions (71), (73) we can obtain:

41br
b2 # -(1 +yfl)buvbn * m b2 * (-1 +42)bnvo R
2+V2 (74)
[f+ +bnig+4lbn)y+62]1<o0a [a- 4 I\n+bZX1(- v2>2+b2j<o0

Now let’s see how the second order dynamical system (59) looks like in the form of the
series of first order dynamical system. To do that at first let us obtain the form of the function

g(ki). The function g(X;) receives form:

3 1 Y
g(Vv = 2Ai+3A‘f'+'zA?o -A, =11-"Ai +3A4+ 11A? +12A4 +4Af (75)

Substituting into equation (75) eigenvalues of our operator A we can achieve:

g(A) =y\%6§ % 22V6- 4V2 +(9- 6 " 2 - 2V2)4+33V3- 2V2 + (36- 24V2X3- 242} (76)

g(A2) =N ~+-~+337:3+2V2 +3(3+2V2)4+ 12~ +242,} +22V6 +4V2 (77)

Now let us calculate the matrices A'*, A’C In our example the dynamical system (59) is a
second order system, so, i=l,2 and considering that has single eigenvalues they are
degenerated to scalar:

3

Ax=af = -A2-242 -3(2-242} - 2(-242)% g(A) (78)
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A* = a% = --A3 +2V2 - 33+ - 2(3+2&)+ g(A2) (79)

Existing in the above formulas (78), (79) the terms g(/1,), g (/2) are given explicitly by the
equalities (76), (77). The terms appearing in the form (29) matrix Bj’+and Bj™ are equal to

matrix B ” with accuracy to the + g “(A() term. These term g"(2.i) and g"(X2) we can obtain

from the equation:

gWw =nrg-'(*,) +3g~~**1)+ng 2(A)+129'<(A)) +4g-2(A.) i- 12 (80)

It is feasible to give the solutions of both the above equations (80) explicitly, but they have
very sophisticated form and will not be presented because it does not concerns the essence of
presented example.

Summary of the Example 1

- The dynamical system (59) with constrained controls (63) is (/-controllable if and only if

. 726
b21*-(1 +j2)buvbn * -+ -% a fy

A < ®)A ("2 < 0)(81)

- The dynamical system (59) can be represented in equivalent form of four first order ordinary

differential equations:
*5J_3[P-:a A{t) +b\u,(t) +blul(t)
a

rf%:(o aisi (/)-6,'«,(i)-6,202(0

(82)
Al = ajg;(i)+biul(t)+biun)
dg;<i) .
dt =aWi (0 - b\Ut(0 - 62n2(0
where:
2+72 +72 2+72)6,2+7262
Bt b?]=g-'W ( )6, 62 ( )6, 6 (83)
2V2+V?2 272 +72
(1-72)6,,+€2 (1-72)6,2+62
k bl]=g'1"2) (84)
-yl4-272 74-272

Where 3j+and a;' (i=1,2 ) are given by the equations (78)-(80).
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6.2. Example 2: Three-dimensional system with multiple eigenvalues

Now let us consider another dynamical system with damping term:

A df t +(2A +SAs +6A1) "d- + Ax{t) =Bu{t) (85)
t t

Now the state space X is R3. In this case let us consider the following matrix as operator A:

5 _5/ 23
2 6V5
5. 61
A= —1 10 ' A:R3->/?3 (86)
2 3V5'
23 61
6V? 3Vv?
Operator B is as follows:
b\ M2 pn
5= b2 b2 b2 .B:R3->R} (87)
pil "R B_
The control vector:
a0 =k (0 «2wW (s8)
The controls are also non-negative:
«,(070, u2(t)>0, «,(02:0 (89)

Problem Statement

The problem statement remains the same like in the example 1, that is the verification
ofthe t/-controllability of given dynamical system (85) and transforming him into the
form of the first order systems’ finite series.
Solve

It’s easy to check that the operator A is linear, self-adjoined and positive-definite.

Moreover, after defining the following coefficients:

[
w

a0=1> =4>«2=3. Bi=-" =~ (90)
the equation (85) receives form of the dynamical system (1), and are fulfilled all the
assumptions of the theorem 3, like in the example 1. Now let’s check in sequence conditions
of the theorem 3.

- The conditions 1 and 2 remains similar to these in example 1 and obviously are also
fulfilled.

- Condition 3
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The operator A has three eigenvalues:

= =2, -3

And now it’s eigenvectors has form:

S 72(734740931-2925) 16
1 41503 4579
Ale E i A 734740931 -90 . - 67
21 - 592972 ~ 79158

3(358710 + 7347409310 ”7
[7 V2] 83006 9158

The martrices i?1” and 82” has form:

W b bi; <b #M>x <6 4n>x <b\<j>n>
" Pn b2 b2 _<g AR>* <b gA>x <b FR>x_

6.iIC+Mn’+Mn’ bniu +M ?2 +Mm1 +bn <™ + 3N
614 I) + budV+ A2C +bn<SM+bn<tl? bI3F? +b2d™ +b3P
ii(Mu>72in3i)  Ji(b\2p22,b32) (6]j.623 ,¢33)

A 2ibli,blLbli)  #a(ri2 52 >%2) 72 (M3>23>/%3).

where the functions gi(x,y,z) and ~(x,y,z) are defined as follows:

. -2X +3p5z
1 <W > = - 7V_p A

2(734740931 - 2925)* - 375 (358 + 73474093 1)z 7(734740931 -90)y _
_ .
41503V2 4150372

n2 V>

52=N (7 (3H <£'>&>* <b\fc>x <b\</>2>x]=

SM24M 2 M2 M2 +M2+M2 M2 40?2 +A33:

= [A3 (M1 >A21»731) 73 (M12>/22>732) 2?3 (A13 >723 >733)]
where:
o, . -32x +21p5z 672( .
7j(Xy,z) = - ;) = +-F 4=l
9158 V9Il58

In this case the condition 3 has form:

rank[Bx] = 2 a ranftt-Sj] =1
Fulfilling this condition depends on particular values of the elements of the operator B.

- Condition 4

149

(91)

(92)

(93)

(94)

(95)

(96)

(97)

(98)
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Verification of this condition to the 2nd eigenvalue, equal to 3, remains the same like in

the example 1 and yields the following condition:

3 b\b\ <0 (99)

?,re(l,2,3}
q*r

where the numbers b\, g =1,2,3 are the proper elements of the matrix B2 defined in the

equation (96). Substituting them into equation (99) we can receive:

-31*j27V 57 -3 16Ir)< 0 (100)

J
fre{l,2,3}"

VA

Considered condition 4 is more sophisticated to the double eigenvalue of the operator A
\ =2. In this case the eigenvector v2 has two elements and as v2 could be taken the
following non-zero and linearly independent two vectors:

*v«'

= = (101)

They are said to be non-zero and linearly independent, so their elements have to fulfil the

following inequalities:

KT ok T ok kT «wavem?—« »0 (102)

Let us calculate appearing in this condition 4 the matrix B\ +w:

buut+ bnul+
5> =g 1Al (103)
bnll| +£12/2 "*N2\B.

where the numbers b1,bn i=123 are the proper elements of the matrix B\ defined in the

equation (93). Already we can calculate the terms vurB *w and vnTB*'w:

viri> =T Wy (vIW I'i+ vilit>2+ <A« 3 +vif% ui +vI?bfu2 +v™b,2u3) (104)

vn B"*w=g~"(*)(vi%e'i'i + vn buui +v»  3+vnb'nu\ + +v(&13) (105)
Now let us perform the analysis under what circumstances is fulfilled the condition 4 of the
theorem 2. From the conditions (102) yields that every element of both the vectors wvn, vR2
can be chosen by arbitrary sign. This condition 4 is equivalent to the requirement so that for
any admitable eigenvectors v,,, v2 both the the equations (104), (105) receives values of the
opposite sign in the constrained control space U. Taking into account the fact that in
considering example the controls are constrained to non-negative values, the change of the
sign of the terms vnrB™*w and v]2r B[*w will occur if and only if in every of the formulas

(104), (105) exist two coefficients of the opposite sign in the terms in the controls’ linear

combinations in that formulas:
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X
\peQvi2 OMLidiVilae/
Considering the particular form of the controls’ linear combinations in the formulas (104),

(105) and mentioned earlier fact that every element of both the vectors v,,,vian be chosen

by arbitrary sign, the condition (106) receives form:

\ A t <
reaa 3 Re[6,p]Re[éfr]<0 (107)
P\*Pi
And considering the form of the matrix Bi’+the condition (107) can be expressed directly by

the function of the elements of considered dynamical system’s (87) operator B as follows:
,.«023 -2°1)<0v(jB3-d& XdK ~d2birn< 0 (108)
q*r
where di and d2are constant coefficients defined as follows:
d, =2(734740931 - 2925) d2=3"5(358 +734740931) (109)
At the end let’s transform considered in this example second order dynamical system
(85) to the form form of the series of first order dynamical systems. In this example the

function g(kj) receives form:

( i 312
S(A) =. A +4 A +3Af A. =
X
A + 9A? + 24A7° +16A? + 6A4 + BAf + A; (110)

This function taken in the points equal to eigenvalues proper to the operator A considering in

this example receives the following values:

g(Mi) =g(*n) =V2+18V2 +48-2D+32-21+12-24+16-25 (111)
| m 3 | T
g(A2) =V6 +27V3 + 72-30+48-35+18-34+24-31 (112)

Now similarly like in the example 1 let us calculate the matrices A’ *, A’f. Following this aim

the eigenvalues sf i=1,2 (25) will be necessary:

sf=-2-3-24-4-27+g(A) =

1 i I 1 37 3 T
=-2-3-24-4-25+1/2+1872 +48-20D+832-25+12-24+16-25 (113)

sf =-3- 3434—4+35+ g(A2) =
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3 4 1 IT 3 | T

=-3-3¢34—4-35%+\6 +27V3 +72m3D +48-37+18-37+24-35 uan

Involving above two equalities (113), (114) thematrices ,4’i+ and /Tf canbe expressed as

follows:
A*=diag[sf j*] (115)

N=Kkj (H6)
The values g™(3.[) and g'?* ) we can obtain from the following equation:

gW =J-g"W +9g >(Z;) +24g »(A,)+16g 5(A,)+6g 4(2;)+8g 5(A) +g-2A)
(=12 (117)
Summary of the Example 2

- The dynamical system (85) with constrained controls (89) is [/-controllable if and only if the

following conditions are fulfilled simultaneously:

rank[B:]1=2a rank[B2]=1 (118)

N 2B) (27Vv5h3 -316,j27V56Jr - 316lr)< 0 (119)
q+r

. €{3123}“’) b,, -2 |3V56%- 26,r)<0v (63 - cf®,, )(<[63- 6,,)<0 (120)
wr

if, = 2("34740931 - 2925) d2=375(358 + V34740931) (121)

where matrices 271"’ and £2” are given by the formulas (93), (96), by are the elements of the

operator B (87).

- The dynamical system (85) can be represented in equivalent form of four first order linear

ordinary differential equations:

at

M 3" - w+nyt)
d (122)
dt(l):A“g‘(t)+BZM ©)

d@(;t(f)\ =A2%e¢;(0 +B2u(t)

where:
-the matrices A’i+and A"\ are given by the formulas (115), (116)

-the matrices B \+and B'Care as follows:
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6.3. Example 3: System with distributedparameters

In this point will be verified the {/-controllability with non-negative controls of a
dynamical system with distributed parameters given by the following linear partial differential

state equation:

= 024
at oz at 0z JTi )

where:

ze (0,1), t>0 (125)
the number of the control forces is greater than 1:

p>2 (126)
with boundary conditions:

x(0,0 =0, />0 AM o =(U>0 (127)

0z

Solve

In the analysis of the controllability of given dynamical system (124) will be necessary its
representation by the form of the abstract differential equation. Following this aim at first let
us define linear unbounded differential operator "A" A :D(A)c H ->H in the following

way:
Mz)=-~~-,xeD (A) (128)
oz
Domain of the operator A :

D{A) =j*(z) e H \0,1): jx2(z)dz< oo, x(0) =0, *(1) = 0] (129)
where 1i = L2(0,1) is a Hilbert space of functions integrated with square. Also it can be shown
that respectively the eigenvalues\ and eigenfunctions fa(z) of the operator A have form:

. rt
X, = I2—+ in\ fa(z) = Ccos 2 hiK |z i=1,2,3,... (130)

Presented properties of the operator A are sufficient for representation of the partial
differential equation (124) in form of the linear abstract ordinary differential equation in the

Hilbert space H:
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AR +f{A)N p . +Ax{t) =Bh(t), t>0 (131)
at at
where:
(132)
/(/")»a,A, a,6-2 (133)

the function g(Aj):R —C (19) necessary in the used transformation of the equation (124) to

abstract ordinary differential equation (1) in this example has form:

M ) =V4A?-*] i=123,. (134)
and the operator B is defined as follows:
B=[ b2 .. b" .. b“\ bjeH,j =\2,....p (135)

and controls:

Kt) = [\{t\h 2(t),....hp{OIT eR * (136)
where ht (t) k = 1,2,...,p denote scalar controls.

The operator” is linear and has only real positive eigenvalues, so is self-adjoined and
positive-defined. The dumping term {(A) fulfils the assumptions (3) so the equation (124) has
form of the dynamical system (1) and in the investigating of the [/-controllability can be used
the theorem 3. Now let us verify the conditions of the theorem 3. The controls are
nonnegative so the conditions 1 and 2 are fulfilled like in previous examples.

- Condition 3
The operator A has only single eigenvalues, so the condition 3 of the theorem 3,

considering the number of the control forces, receives in the example the following form:

rank[b)... bk... b?\=\ i=123,.. (137)
As we can see the controllability matrix in thisexample is reduced to vector so the

controllability condition can be rewritten in more compact form:

V. 3 bk*0 (138)

/-1.2,3,... 1Skip

Now let us calculate the controllability matrix’s elements*, considering the proper form of

the scalar product in the Hilbert space H:

1 !
61 =<bks<z >x = jbk(z)fr(z)dz = Cj6*(z)cos g—Yin z dz i=123,. (139)
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- Condition 4

In this case at first we will calculate the B(+w factor as well:

Si+w = g-, (Ti)[0,"..h*... h2(t),...hp(O}T i =1,23,.. (140)

Considering that g"“(/1() =£0 and hi is non-negative the condition 4 of the theorem 3 reduces

to requirement so that in the vector [>i... bk... bf\ i=123,... exist elements of both signs:

v 3 M b'<0 (141)
1-123,.

The condition (141) is valid for any control operator B. Now let us check how do they look

like for given forces. Let us assume the control operator B of the following form:

bk(z) =Cteb k =1,2,....p CkeR (142)

After integrating the elementbk (139) receives in this case form:

b* =2°k 4k +\K #2in) 1=1273- (143)
For odd i coefficients the numerator of the above formula (143), with the accuracy to constant
factor, is equal:

~{ekn(\. +2i)+2k) i=1,23,.. (144)
and is obviously not equal 0. For even i coefficients the same term is equal:

ekn(\ +2i)-2k i-123,.. (145)

Let us construct the following estimation:

LY, T+ 20)>3er (=123, (146)

Next let us expand the exponential function into the Taylor’s series:

3e* =3V — >3k>2k (147)
ti »l

Combining the inequalities (146), (147) we can state that:

V e*M1+2/)-2k>0("0) (148)
And so:
V 6 0o Ct*0 (149)
123,

So the statement (149) formulates necessary and sufficient condition of fulfilling condition 3
of the theorem 3 for investigated dynamical system (124). Now let us verify the condition 4 of
this theorem in case of the control forces given explicitly by the equality (142). Following this

aim let us calculate the b-b- term:
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b'b; =4c c, » O n

N H- b1 _ o
3 +/('\1+2i>45 + v2r i=12°3> (15°)

?
4r +{n + 2i7t)
From the inequality (149) follows that the term:
123,.. (iso
4N72+(ar + 21>) 4r2+{ir +2ix)
holds fixed sign for every j=1,2,3,... and every q,r e {1,2,..,p) . So the condition (4) receives

form:

C,.Cr <0 (152)

2.re{l,2 p)ag*r

Received last condition (152) is stronger than (149) and so becomes the necessary and
sufficient condition of the [/-controllability of investigated dynamical system (124) with non-
negative controls.

Now let’s transform considered dynamical system with distributed parameters (120) to
the form of the series of first order equations. In this example the state space is infinite
dimensional so the series will be infinite as well. Necessary in this representation the state

matrices A'* and requires the values g(A;):

g(Xf)y =|;r(l +2i'yjx2(1+2if -1 1=123,.. (153)

Calculating further:
0201 A .
sf =-2\ —+in\ J_r?7r(l+2|)|/;r2(l+2|)2-l =

=-Y*(+ 21+ 2)) 2 I k2(L+2if -1 i=123,. (154)
Summary of the Example 3
-The dynamical system (124) with non-negative controls is [/-controllable with control forces

(142) ifand only if there exist two forces of the opposite sign, what is equivalent to:

3 C,Cr<o (155)

q.re[\,2  p).g*r

- The dynamical system (124) can be represented in equivalent form of the infinite series of

first order linear ordinary differential equations:

d i=123,. (156)
dt ‘ ' '
where the matrix B\ Tis defined by formula:
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Ji=123,. (157)

Summary

Presented in this paper methodology of the verification of the [/-controllability of
second order dynamical dynamical systems with damping term can be applied for a broad
class of the physical systems that can be expressed in the form (1). For instance state
equations of such a form have mechanical systems containing of elastic beams with internal

friction.
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Streszczenie

W artykule przedstawiono metodyke badania sterowalnosci nieskoriczenie wymiaro-
wych ukiadéw dynamicznych rzedu drugiego z czynnikiem ttumiacym. Do tego celu wy-
korzystana zostata spektralna teoria liniowych operatoréw nieograniczonych.

W pierwszej czesci pracy sformutowano problem i przypomniano niezbedne
wiasnosci wystepujacych w problemie operatoréw. Nastepnie przedstawiono znang metodyke
sprowadzenia rozpatrywanego uktadu drugiego rzedu do uktadu réwnan pierwszego rzedu, a
takze niezbedne w dalszej czeéci pracy wiasnosci uzytych do tego celu operatoréow. W
kolejnym punkcie sformutowano i udowodniono twierdzenie o sprowadzeniu wyjsciowego
uktadu nieskonczenie wymiarowego do dwoch nieskonczonych ciggéw uktadéw skonczenie
wymiarowych. Dodatkowo przypomniano twierdzenie dotyczace warunkéw sterowalnosci z
ograniczeniami uktadéw skonczenie wymiarowych. Na jego podstawie (i z wykorzystaniem
udowodnionego wczesniej twierdzenia o sprowadzeniu wyjsciowego uktadu nieskonczenie
wymiarowego do dwoéch nieskonczonych ciggéw uktadoéw skonczenie wymiarowych)
sformutowano i udowodniono twierdzenie podajgce warunki konieczne i wystarczajace
aproksymacyjnej sterowalnosci z ograniczeniami rozpatrywanego' uktadu drugiego rzedu z
czynnikiem tlumigcym. Uzyskany rezultat, ze wzgledu na wiasnosci uzytych w pracy
operatoréw, redukuje sie do nieskonczonego ciggu, ktérego kazdy wyraz skiada sie z

czterech warunkéw.



