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CONTROLLABILITY OF DYNAM ICAL SYSTEMS W ITH DAM PING  
TERM AND CONSTRAINED CONTROLS

Summary. In the paper presented the methodology of investigation o f the 
controllability o f an infinite dimensional second order dynamical systems with 
damping term. Following this aim spectral theory for linear unbounded operators is 
involved. In the first part o f  the paper the problem is stated and the methodology of 
transforming the second order equation to the set o f the first order equations is 
reminded. Next the theorem on transforming considered infinite dimensional 
dynamical system to infinite series o f  finite dimensional systems is proved. Finally the 
theorem on necessary and sufficient conditions o f constrained approximate 
controllability o f considered system is formulated and proved.

STEROWALNOŚĆ UKŁADÓW DYNAMICZNYCH Z CZYNNIKIEM 
TŁUMIĄCYM I OGRANICZONYMI STEROWANIAMI

Streszczenie. W ramach pracy przedstawiono metodykę badania sterowalności 
nieskończenie wymiarowych układów dynamicznych rzędu drugiego z czynnikiem 
tłumiącym. Do tego celu wykorzystana została spektralna teoria liniowych operatorów 
nieograniczonych. W pierwszej części pracy został sformułowany problem i 
przypomniana została metodyka sprowadzenia rozpatrywanego układu drugiego rzędu 
do układu równań pierwszego rzędu. Następnie udowodniono twierdzenie o sprowa­
dzeniu wyjściowego układu nieskończenie wymiarowego do nieskończonego ciągu 
układów skończenie wymiarowych. Na koniec zostało sformułowane i udowodnione 
twierdzenie podające warunki konieczne i wystarczające aproksymacyjnej sterowal­
ności z ograniczeniami rozpatrywanego układu.

1. Basic concepts

Let us consider a dynamical system given by the following abstract differential

equation:

(1)
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where the operator’s A / ( A ) : X zd D(A) —> X  function is given hy:

*
f ( Ä ) x  = 2a 0Ax+'^ßj 2 a lA ß'x , x e D ( A ) (2)

where coefficients a,,/3, fulfils the following inequalities:

a 0 > 0, a, >0, — < ßi < \, I = 1,2 (3)

also are given initial conditions:

x(0) = x0 e D(A), x(0) = x , e X  

The operator B is defined as follows:

(4)

£«(/) = ¿ ô 'k , ( 0 ,  B e  L (R P,X ) (5)

where:

Let us moreover assume that A : X  r> D(A) —> X  is a linear, generally unbounded, 

selfadjoint and positive-definite operator with domain D(/i) dense in X and compact resolvent 

R{XyA) for all A in the resolvent set p(A).

The physical interpretation of the equation encompasses a broad class o f real systems 

in the form (1) and depends on a particular form on the A  operator and of the coefficients and 

exponents o f the damping term £{A) (2).

It is well known that the operator^ has the following spectral properties [8]:

- Operator A has only purely discrete point spectrum consisting entirely o f distinct real 

positive eigenvalues A\ each with finite multiplicity w, (;«. < oo) :

0 < A, <A2 <... < A, < Aux <..., lim = co (7)
/—»co

- The eigenfunctions o f  operator A {<$¡¡,1 = 1,2,3,...,y = 1 , 2 form complete orthonormal 

system in Hilbert space X. Hence for every x e  X  the following unique expansion holds true

(8)
i-i j - \

- Operator A  has the following spectral resolution:

(9)
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The fractional power of operator A is defined as follows [7]:

V A px  = X f  < x,<bu > „ <j>..
»cw'x«o,.) ' , r ‘J xY,i

D (A fl) = \ x e X  ■YuY JK />\< Xyfaj >x f  < «
/=i /=i

( ii )

(12)

• Operator A^ , 0<P<1 is also selfadjoint and positive-definite with domain D A )  dense in A.

2. Transformation o f  the given second order system (1) to the first order 
equation

The main aim o f this paragraph is to present how to transform the given second order 

equation (1) to the first order one. As is shown in [8] given system (1) can be rewritten in 

equivalent form o f the following system o f two first order equations:

d +

o

i

4-
'  8 (A )- 'B  ‘

dt A O . . 0 A~. A O .
i

_-g(A )-'B _
u(t)

where the operators A+ and A' are defined by the following formulas: 

*
A + = - a 0A - J ] a lA fil + g(A)

/-I

A '  = - a 0A - ] T a , A 1’' - g ( A )

A± : X  3  D{A) -> X ,D (A * )  = D(A) 

The operator g(A) is defined as follows [2]:

^ A A ) x = Z % g { X i ) < x ^ > x ^

«> mt 2

D (g(A)) = \ x e X  |< XA  >x\ < «
/- i  y .i

(13)

(14)

(15)

(16)

(17)

(18)
with domain D(g(/l))=D(/i) [6].

Appearing in the above formulas function g(X, ) : R C  is defined as follows:



138 J. Respondek

with additional assumption:

- A ,* 0 ,  ¿ = 1,2,3,... (20)

This condition (20) is necessary for the invertibility o f the operator's function g(A). In [8] is 

showed that for all i e  N  the following inverse of g(A) linear operator can be defined:

xeD(g-'M) f‘“ l > 1

/-i y-i
D(g~\A)) = ^ x e X : f ] Y Jg-2(X,)\<x,0iJ > ^ | _ < c o

Operator of the system (13):

«  ~A+ 0n  =
_ 0 /T

has the following spectral properties [4]:

- Operator Q  has purely discrete point spectrum a(H) o f the following form:

(21)

(22)

(23)

2a„

where s f  are distinct eigenvalues o f Q  given by the formula:

(24)

(25)s f  = - a 0Z , - ^ a , , l , p‘ ± g(X,), i = 1,2,3,...
M

- the set of eigenfunctions o f the operator

{ [ ^ .0 f , [ 0 ,^ ] r , i =  1,2,3,...y = 1,2,...,m,} (26)

is a complete orthonormal system in Hilbert space X  x X . Thus the following unique 

expansion holds true:

V x  =
xeXxX

"ST1 J a
= \ < x \ Ą  >x

- operator Q  has the following unique spectral resolution:

Q
i=i y»i

+ s; < mĄ  > x

(27)

(28)

In the rest o f this paper it will be assumed that all the previous assumptions are fulfilled.
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3. Theorem 1

The infinite dimensional dynamical system (13) can be rewritten in equivalent form of 

the following two infinite series o f finite dimensional dynamical systems:

? ; ( 0 = 4 V ( 0 + 4 V 0  ;i = 1,2,3,...
U; (0 = 4  g;(t) + B-u(t)

Where/I’j+, /I ’¡'and B'C, B ’f  are the following matrixes:

A*  = diag[s* dim A* = mt x m.

(29)

(30)

(31)

(32)

(33)

,p  (34)

(35)

(36)

where £y(0> //,-,• (0  denotes the ith coefficient o f the Fourier series o f spectral representation 

for the element x  in the state space X. The coefficients are explicit given by the inner product 

between element in the state space X  and the appropriate eigenfunction <jtj o f the operator A:

£ff(0  = < £ (0 ,#»■ >x> 0  =< A (0 ,<t>j >x> i = 1,2,3,... j  = 1,2,...,m, (37)

P ro o f

Let us remind the form o f considered infinite dimensional system (13):

u(t)

A',~ = diag[s7 ], dim A', = m, x m

'K  -  ¿a -  K '

b), -  K -  K

b' ■■■ bk • • • bf

Furthermore:

im, imt tm(

b\ =<b\<S>n >x i = 1,2,3,... j  = 1,2,..

The vectors g* (t), g j  (t) are given by:

?; ( 0  = f c , ( o ^ i2( 0 , - , ^ , ( o ] r

«7 (0  = k ,  (0 , A*n(0 . - .  ft*, (O f

d ' A + 0 ’ ' m
-i- '  g W ' B  '

dt a (0 . _ 0 A \ ,a (0 .
T

_-g(A )-‘i?_
(38)

To proof the thesis o f the theorem first of all let us take into account the fact that the operator 

Q  is complete and orthonormal and can be used use the spectral resolution o f  the operator Q. 

Using (5) and (27) we can rewrite (13) in form:
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t l i m = A+i l t j  m + s - '( A ) ± b tuk(o
M  jm l 1-1 y«l *-1

¡ml jm 1 | - l  y-1 *-1

,-1/

(39)

Considering that the operator g‘ (A) is linear and using formula (21) we can obtain the 

following equality:

g - ' ( A ) £ b*ut (0  = £ u t ( 0 Z £ g " W * f a  (40)
*-1 i- 1  i-1 J - 1

Next using the spectral resolution o f the operator Q  (28) and the last formula the set of 

equations (39) receives form:

00 tltf CO ffl/ p  oO W)

E S & C 'M r  = Z 2 X i * ( 0 4 ,

tit,«», -ifxam* -‘¿«M tirum
(41)

[ M  j - l  i - 1 Jm 1 t-1  1-1 > 1

Now let us calculate the inner product on both sides o f last set o f  equations. Taking into 

account the fact that the eigenfunctions\$Q,i = 1,2,3,.. . , j  = 1,2,...,m ,} form complete 

orthonormal system in Hilbert space X it gives:

t J {t) = s ; ^ { t )  + g - \ X l) f j uk{t)bl
Jfc-l

A /(0  = S j P j ( t ) -
k-1

Now let us rewrite above set of equations (42) for fixed i in the following form:

(42)

' g - ' W t i  • ■ g - ' w t i  ■■ g - ' w b i

Si o ' ind
~dt

= + g - 'W M  ■■ g - 'W b t  ■ • g - \ w

5 * , . 0 s>. '■

z - ' M K ,  ■ ■ g - ' u K  • ■ g - \ W L , _

'g - 'W b l ,  ' •• g - ' w r t  • ■ g - \ W '

j Mi i s i o ' Mn :
a
dt : = ‘ - g - ' W t i  ••• g - \ i i ) K  • • g - 'W b 5

_Mun,_ 0
s ‘ . Min,,

g - ' t t K g - 'V i K ,

«(/)

a(0

(43)
It can be easily seen that above set o f equations after substitutions (30) to (36) has form (29).

Q.E.D.
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4. Basic criteria o f controllability o f finite dimensional systems 
with constrained controls

It is given stationary finite dimensional system described by the following equations:

where A,B, C,D are constants matrices with dimensions respectively nxn, nxm, pxn, pxm. 

Definition 1

The dynamical system (44) is said to be [/-controllable to zero from given initial state 

in the state space, if  for any initial state x(to)=xo> there exist an admissible control 

u e L]oc([0,co),U) such that the corresponding trajectory x(t,x(to),u) of the dynamical system 

satisfies for some / e [ r0,oo) the condition:

Theorem 2 [3]

The dynamical system (44) is globally [/-controllable to zero if  and only if  the following 

conditions are satisfied simultaneously:

(1) There exists a w e U  such that Bw=0

(2) The convex hull CH(i/) has a nonempty interior in the space Rp.

(3) ra n k[B \A B \A 1B \...\A " - 'B \= n

(4) There is no real eigenvector v e  R" o f matrix AT satisfying vT Bw  < 0 for all w e U

(5) No eigenvalue o f matrix A has a positive real part

Basing on Theorem 2 it can be formulated the criteria o f controllability with constrained 

controls for the infinite dimensional system (1). It is the main outcome o f this article. In this 

theorem we will also, similarity like in the theorem 1, assume that all the previous 

assumptions holds true.

5. Theorem 3

The infinite dimensional system (1) is globally approximately [/-controllable to zero if  

and only if  the following conditions are satisfied simultaneously:

(1) There exists a w e U  such that B j+w=0 for every i=l,2,3,...

(2) The convex hull CH([/) has a nonempty interior in the space Rp.

(3) rank[5j"]=/Wi, for every i=l ,2,3,...

{
x(t) = Ax(t) + Bu{t), t > 0 
y{t) = Cx(t) + Du{t), t>  0

(44)

x(tn x(t0),u) = 0 (45)
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(4) There is no real eigenvector v( s  R"'1 o f matrices A ’¡+, A 't satisfying vjB 'A w <  0 for all 

w e U , for every i=l ,2,3,... 

where:

'K  -  K  ... b>'

b), -  -  bg (46)

b) b- b pintj imt int/

and matrices A ’¡+, A'\ are introduced in theorem 1.

Proof

The proof bases on applying theorem 2 to system (1) in form o f the two infinite series 

of finite dimensional systems (20).

- The condition 2 o f the Theorem 2 can be rewritten in the same form, because the control 

space of each subsystem remains the same set by assumption

- The conditions 1, 4 in the Theorem 3 follows immediately from applying the Theorem 2 for 

rvery of finite dimensional subsystems in the form (29) and matrixes A ’¡+, AY are diagonal 

and so symmetric.

- So that testify the condition (3) o f the Theorem 2 let us rewrite this condition after applying 

to the ith subsystem o f the first series o f (29):

rank[B'; | A'AB? \ ( A ; ) 2B ‘;  I... I (à ; )(m'-,)B'; ] = m, i = 1,2,3...... (47)

As proved in [5] equation (47) with diagonal matrix A *reduces to:

rank[B*] = ml i = 1,2,3,... (48)

By assumption (20) g(A;) *  0 , so also g _1 (A,.) *  0 and this does not affect on the rank of the

matrix B *, because B * = g~ '(A ^B  * and condition (47) reduces to condition 3 o f proved 

theorem.

Proof for the second series o f (29) goes similarly and yields the same equation.

- condition 5 o f the Theorem 2

The matrices A ’¡+, AY have diagonal form so their eigenvalues are equal to elements 

on the diagonals. At first let's check this condition for the matrix AY- Let us remind the 

formula (25) o f the eigenvalues sf:
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considering conditions (3) it can be easy seen that for every i=l,2,3,... inequality Re(sj")<0 is 

satisfied and condition 5 o f theorem 2 is fulfilled for the first series o f (29).

Now let’s check this condition for the matrix A *. To this purpose the following two cases 

will be distinguished:

Case A:

( a 0A , + | > , A / ' j  -A , > 0, f = 1,2,3,... (50)

To prove this case let’s take into account the fact that all the eigenvalues of the operator A are 

positive (7):

A,. > 0  (51)

Now let’s perform on both sides o f  above inequality multiplication by (-1) and add an element 

*
fta 0A,

\ /«I

/  *
«oA; + 2 > ; A /

/«I
-A, < a 0^i + a i^i (52)

The left side o f the last inequality is non-negative in this case by assumption, therefore the 

right side is positive. The square root in the R+ domain has different values for different 

arguments, so from the inequality (52) we can obtain:

k \ k
CC[A( — A{ < ctqAj + 'y ' cCj/1.

/«I

thus:

s t  = - a 0Af - ' £ la lX,* + J  a 0A, + £ a , A /  
1-1 vv m

\ 2

-A ,  <0

(53)

(54) 

Q.E.D.

Case B:

0A , .+ J a ,A / ' -  A,. < 0 , ; =  1,2,3,... (55)

The square root o f negative real number has only imaginary part, so we can write:
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Respect to inequalities (3) we can write:

- a 0Ai - ] T a ,A lA <0  (57)
i

Thus;

R es/ < 0 (58)

and condition 5 of the Theorem 2 is fulfilled.

Q.E.D.

6. Examples

6.1. Example 1: Two-dimensional system with single eigenvalues

Let us consider the following second order dynamical system with damping term:

+ (4 A + 6 A 7 + A 1 + Ax(t) = Bu(t)
d t2 dt

(59)

The state space A"is R . Let the operator A be given by the following matrix: 

A =
1 - 2  

- 2  5

Operator B  is as follows:

bu 6,

A : R 2 -> R 2

B =

The control vector:

2̂1 2̂2
B :R  R

u(t) =
w,(0 

.»2(0.

The controls are constrained as follows:

(60)

(61)

(62)

(63)»i (0  -  0) »2 (0  ~ o 
Problem Statem ent

The aim of this example is to verify the {/-controllability o f given dynamical system 

and rewriting him in the form o f the first order systems’ finite series.

Solve

The matrix’s operators are obviously linear. Additionally given operator A  (60) is 

symmetrical and thus self-adjoined. Moreover, their major minors are positive so is also
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positive-defined. It’s easy to see that equation (59) has form o f the dynamical system (1) after 

introduction of the following coefficients:

cc0 = 2, a , = 3, a. j = —, p 2 = — (64)

All these coefficients fits into their proper ranges given by the inequalities (3), so all 

the assumptions o f  the theorem 3 are fulfilled. Now let’s check in sequence conditions this 

theorem is consisted of.

- Condition 1

Lets substitute w = [0 O f. Then B \w =  0 a  B"2 w  = 0 and condition is fulfilled.

- Condition 2

Since w,(t) > 0, u2(t) > 0 the convex hull has a nonempty interior in R2 and condition 

true.

- Condition 3

The operator A has two single eigenvalues:

JL, = 3 - 2 7 2 ,  Tj = 3 + 2 7 2

And it’s eigenvectors has form:

i holds

(65)

1 + 72 1—7 2

A =
7 4  + 272 

1
7 4 - 2 7 2

1

7 4 + 2 7 2 _ 7 4 - 2 7 2  _

(66)

i finite «-dimensional state space X the scalar product /;* is given by the following sum:

(67)
p u l

i this example all the eigenvalues are single ( m ,= l), so according to (67) the matrices B \” 

nd B2” have form:

B[ = ]p\b2\=[<b\<j>{ >x < b \ j , >x \=[bnt i ' ) +b2lt f 1) M i ,) + M i (2)J =

{2 + 4 l ) b u + 4 lb n {2 + 4 l ) b u + 42b22 

2V2 + V2 2V2 + V2

B"i = N b \ \ - [<b\<t>2 >x <b\<f>2 > *] = \bn<j>̂  +b2Xf 2) b12&(I) +b22<p2 )\=

( 1 - 7 2 ) 6 , ,+ ^ ,  ( 1 - 7 2  )bn +b2,

7 4 - 2 ^ 2  7 4 - 2 7 2

(68)

(69)
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In this case the condition 3 has form:

ranklB'} =  1 a  rank[B2] = 1 

Using the equations (68), (69) the equation (70) receives form:

b2l *  -(1 + 4 l ) b u v  bn *  ■ & bn
2 + V2

b2l *  (-1 + 42 )b n v  bn *
V 2 - 1 .

(70)

(71)

- Condition 4

The eigenvalues are single, so the matrices A ’¡+, A ’f  are degenerated to scalar and such a 

problem has been investigated in the paper [5] and it yielded the following condition, after 

adaptation to current symbols:

b\b* < 0 A b \b \  < 0  (72)

which is equivalent to:

[(1 + + bn l(l + 4 lb n )+ bn  J < 0 a  [(1 -V 2 > „  + b„ J(l -  V 2>12 + bn  1 < 0 (73)

Combining conditions (71), (73) we can obtain:

4 lb r
b2l #  -(1 + y fl)b u v b n *  ■

2 + V2
b2l * ( - l  + 42)bn v ô 12

(74)

[ f + + bn I(l + 4 lb n )+ 622 ] < 0 a  [(l -  4 l \ n + b2t I(l -  V 2 > 12 + b22 j < 0

Now let’s see how the second order dynamical system (59) looks like in the form of the 

series of first order dynamical system. To do that at first let us obtain the form o f the function 

g(ki). The function g(X;) receives form:

3 1 , V

2A, + 3A,4 + -A ?  i 1, 2  • - A ,  =1 l - ^ A i  + 3  A,4 + 1 lA? +12A4 +4Afg ( V  =

Substituting into equation (75) eigenvalues of our operator A we can achieve:

(75)

263 93
g (A, ) = y\= ~  22V6 -  4V2 + (9 -  6 ^ 2 -  2V2)4 + 33V3 - 2V2 + (36 -  24V2X3 -  2 4 2 }  (76)

g (A 2) = J ^ ~ + -^ + 3 3 ^ :3 + 2V2 +3(3 + 2V2 )4 + 12^ + 2 4 2 ,}  +22V6 + 4V2 (77)

Now let us calculate the matrices A '* , A ’C. In our example the dynamical system (59) is a 

second order system, so, i= l,2  and considering that has single eigenvalues they are 

degenerated to scalar:

, 3

A'* = a f = - ^ 2 - 2 4 2  - 3 ( 2 - 2 4 2 }  -  2 (2 - 2 4 2 ) ±  g(A,) (78)
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A'* = a *  =  - - ^ 3  + 2V2 -  3(3 + -  2(3 + 2 & ) ±  g(A2) (79)

Existing in the above formulas (78), (79) the terms g(/1,), g ( / 2) are given explicitly by the 

equalities (76), (77). The terms appearing in the form (29) matrix Bj’+ and Bj’" are equal to 

matrix B ” with accuracy to the ± g “'(A() term. These term g''(2.i) and g''(X2) we can obtain 

from the equation:

g W  = ^ g - ' ( * , )  +  3g~~*(*l )  +  n g  2(A,) + 12g'<(A,) + 4g-2(A,.) i - 1,2 (80)

It is feasible to give the solutions o f both the above equations (80) explicitly, but they have 

very sophisticated form and will not be presented because it does not concerns the essence of 

presented example.

Summary of the Exam ple 1

- The dynamical system (59) with constrained controls (63) is (/-controllable if  and only if

726 ,
b2 l* - ( l  + j2 ) b u v b n * - ± - %

2 + 72
a  b,-,un < ®)A (^21̂ 22 < 0)(81)

- The dynamical system (59) can be represented in equivalent form o f four first order ordinary 

differential equations:

*5± P - = a ^ { t )  + b \u ,(t) + b lu 1(t)
at

rfg,~(0
dt

: a i s i  ( / ) -6 , '« ,( i ) -6 ,2w2(0

^ l = a; g; ( i)+ b iu l ( t ) +b i u ^ )
at

(82)

dç;<ï)
dt

= aW i  (0  -  b\Ut (0  -  62 w2 (0

where:

[b't b ? ] = g - 'W

k  bl] = g ' l ^ 2 )

(2 + 72)6,, + 7262, (2 + 72)6,2 + 7262

2V2 + V2 2^2  + 72

( 1 - 7 2 ) 6 , ,+ è 2, ( l - 7 2 ) 6 ,2 + 6 22 

-y /4-272 7 4 - 2 7 2

Where 3j+ and a;' ( i= l,2  ) are given by the equations (78)-(80).

(83)

(84)
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6.2. Example 2: Three-dimensional system with multiple eigenvalues

Now let us consider another dynamical system with damping term:

^ f t  + (2A + SA~s + 6A 1) ^ -  + Ax{t) = Bu{t) (85)
dt dt

Now the state space X is R3. In this case let us consider the following matrix as operator A:

23
5

5 . 
— / 

2

A =
5 .

---- 1
2

10

23 61

6V? 3V?

Operator B  is as follows:

b\\ 1̂2 bn
5  = b2l b22 b2i .

p i  1 3̂2 ¿33 _

The control vector:

a(0 = k ( 0 «2W

6V5 
61 ,

3V 5'
A : R 3 -> /? 3 (86)

B : R 3 -> R }

The controls are also non-negative:

(87)

(8 8 ) 

(89)« ,( 0 ^ 0 ,  u2(t)> 0 , « ,(0 2 :0  

Problem Statem ent

The problem statement remains the same like in the example 1, that is the verification 

o f the t/-controllability o f given dynamical system (85) and transforming him into the

form of the first order systems’ finite series.

Solve

It’s easy to check that the operator A is linear, self-adjoined and positive-definite. 

Moreover, after defining the following coefficients:

4 3
a 0 = l> = 4> « 2 = 3 .  ßi = - ’ = ~ (90)

the equation (85) receives form o f the dynamical system (1), and are fulfilled all the 

assumptions o f the theorem 3, like in the example 1. Now let’s check in sequence conditions 

o f the theorem 3.

- The conditions 1 and 2 remains similar to these in example 1 and obviously are also 

fulfilled.

- Condition 3
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The operator A has three eigenvalues:

= = 2, — 3

And now it’s eigenvectors has form:

A1 =

'  S ' 72(734740931-2925)
1 41503

£ i 
2 1 1̂2 =

734740931 -9 0  . 

592972

3(358710 + ^347409310
[7  V 2j 83006

<f>7 =

-1 6
4579

67

79158

27
9158

The martrices i?i ”  and ,82”  has form:

=
W  b 2n b i; < b ,<f>n > x < 6  ,<t>n > x <b\<j>n > , '
P n  b 22 bl2. _ < 6  ,^ 12 >* < b ,<j>n >x < b ,<j>l2 >x _

6 .ilC  + M n  ’ + M n ’ bn iu  + M ?  + M m  1 + bn <t™ + ¿»33̂ ,'i
6114 l) + bu <!>™ + A,2C  + bn </>™ + bn <t>l? bl3$ ?  + b2J ™  + b3}</>[2

ii(^u>^2i'^3i) ‘J i (b\2 > b22, b32) (6 |j , 6 23 ,¿ 3 3 )

^ 2 ibli,bl l ,bl i ) # 2 ( ^ 1 2  >¿*22 > 3̂ 2 ) 72 (̂ 13 >̂ 23 >̂ 3 3 ).

where the functions gi(x,y,z) and ^(x ,y ,z) are defined as follows:

. . - 2 x  + 3p5z y  .
,,<w > = -  7V_  ^

2(734740931 -  2925)* -  375 (358 + 73474093 l)z  7(734740931 -9 0 )y  
^  2 .v  > /— 1—

41503V2 4150372

5 2 = N  ¿7 ¿23H  < £ ' > & > *  < b \ f c > x <b\</>2 >x J =

=  [ M ?  +  M ?  +  M ?  M ?  + M ?  + M ?  M ?  + M ?  +  A ,3$ 3) j =
=  [ ^ 3  (^11  > ^ 2 1 » ^ 3 1 )  7 3  (^ 1 2  > ^22 > ^ 32)  ? 3  (^ 1 3  >^23 > ^33 ) ]

where:

. . - 3 2 x  + 21p5z  67y  .
7j (x ,y ,z ) = ------ p =  + - 7= 4 =!

79158 V9l58
In this case the condition 3 has form:

rank[Bx ] = 2 a  ranftt-Sj] = 1 

Fulfilling this condition depends on particular values o f the elements o f the operator B. 

- Condition 4

(91)

(92)

(93)

(94) 

i (95)

(96)

(97)

(98)
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Verification o f this condition to the 2nd eigenvalue, equal to 3, remains the same like in

the example 1 and yields the following condition:

3 b \b \ < 0
?,re(l,2 ,3}

q * r

(99)

where the numbers b\ , q =1,2,3 are the proper elements of the matrix B2 defined in the 

equation (96). Substituting them into equation (99) we can receive:

J  - 3 1 * j 2 7 V 5 ^  - 3 16lr)<  0 (100)
f,re{l,2 ,3} '  

V+r

*v«'

1I

II II

v(2) -12 _

5 >  = g '1(A1)

(102)

(103)

Considered condition 4 is more sophisticated to the double eigenvalue o f the operator A 
\  = 2 . In this case the eigenvector v2 has two elements and as v2 could be taken the 
following non-zero and linearly independent two vectors:

( 101)

They are said to be non-zero and linearly independent, so their elements have to fulfil the 

following inequalities:

kf ♦ k  ]' * ° ■* kf-kf « » a vsm? - «  » o
Let us calculate appearing in this condition 4 the matrix B\ +w :

buut + bnu1 + 

bn ll| +¿12^2 "*' Î2W3.

where the numbers b,1, , b'n i = 1,2,3 are the proper elements o f the matrix B\ defined in the 

equation (93). Already we can calculate the terms vu rB *w and vn TB*'w:

vi,r i >  = Î 1( y ( v ! W 1" i + vü1i’!> 2 + < ^ « 3  + vi f % ui +vl?bf2u2 +v™b,32u3) (104)

vn B '*w = g~' (*, )(vi% 'i!'i + vn buui + v,(» 3 + vn b 'n u\ + + v,(22)&12u3 ) (105)

Now let us perform the analysis under what circumstances is fulfilled the condition 4 of the

theorem 2. From the conditions (102) yields that every element o f both the vectors vn , v12 

can be chosen by arbitrary sign. This condition 4 is equivalent to the requirement so that for 

any admitable eigenvectors v„, v12 both the the equations (104), (105) receives values o f the 

opposite sign in the constrained control space U. Taking into account the fact that in 

considering example the controls are constrained to non-negative values, the change o f the 

sign o f the terms vn rB'*w and v]2r B[*w will occur if  and only if  in every of the formulas

(104), (105) exist two coefficients of the opposite sign in the terms in the controls’ linear 

combinations in that formulas:



Controllability o f Dynamical Systems With Damping Term and Constrained Controls 151

X
V|j>eO, vj2 Ô̂,v1,ï«ûfV|i1ae/'

Considering the particular form o f the controls’ linear combinations in the formulas (104),

(105) and mentioned earlier fact that every element of both the vectors v,,, v12 can be chosen

by arbitrary sign, the condition (106) receives form:

3 3 Re[6,p']Re[èfr’ ] < 0  (107)
red,2} " ‘

P \*P i

And considering the form o f the matrix B i ’+ the condition (107) can be expressed directly by 

the function of the elements o f considered dynamical system’s (87) operator B  as follows:

,.« 0.2.3} - 2^ r ) < 0 v ( j 1è3î - d & X d K  ~ d 2blr)<  0 (108)
q * r

where di and d2 are constant coefficients defined as follows:

d, = 2(734740931 -  2925) d 2 = 3^5 (358 + 734740931) (109)

At the end let’s transform considered in this example second order dynamical system 

(85) to the form form o f the series o f first order dynamical systems. In this example the 

function g(kj) receives form:

S(A,) = .
(  i  3 1

A,.+ 4  A? + 3  Af
x

2

-A,. =

- A,. + 9A? + 24A?° +16A? + 6A4 + 8Af + A; (110)

This function taken in the points equal to eigenvalues proper to the operator A considering in 

this example receives the following values:

g ( ^ i )  = g (* n ) = V2 + 18V2 + 4 8 - 2 20 + 32-21 + 1 2 - 2 4 + 1 6 - 2 5 (111)

I TT 3 I  T
g(A2) = V 6 + 27V3 + 72-320 + 4 8 - 3 5 +1 8-34 + 2 4 - 3 1 (112)

Now similarly like in the example 1 let us calculate the matrices A ’ *, A ’f. Following this aim 

the eigenvalues s f  i= l,2  (25) will be necessary:

s f  = - 2 - 3 - 2 4 - 4 - 2 ? ±g(A,)  =
_  _ _ _

^ 7  . A  O  /-» 7 0  . O '-»  O  5 . 1 - 1 4  . 1 / "  5

( l l  3)
1  i  I  11 3 3 T

= - 2 - 3 - 2 4 - 4 - 2 5 ±1/2 + 1872 + 4 8 - 2 20 + 3 2 -2 5 + 1 2 -2 4 + 1 6 -2 5

s f  = -3  -  3 •34 — 4• 35 ± g(A2) =
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3 4 I I T  3 I  T

= - 3 - 3 •  34 —4 - 3 5 ±\ 6  + 27V3 + 72■ 320 + 4 8 -3 ? +18-37 + 2 4 - 3 5 (U 4^

Involving above two equalities (113), (114) the matrices ,4’i+ and /T f can be expressed as

follows:

A'*= diag[sf j* ]  (115)

^ = k j  (H6)
The values g"'(3.[) and g '1̂ )  we can obtain from the following equation:

g W  = J - g " W  + 9g >(Z;) + 24g » (A , ) + 16g  5(A,) + 6g 4(2;) + 8g 5(A() + g -2(A,.) 
¿ = 1,2 (117)

Summary of the Exam ple 2

- The dynamical system (85) with constrained controls (89) is [/-controllable if  and only if  the 

following conditions are fulfilled simultaneously:

rank[B: ] = 2 a  rank[B2] = 1 (118)

?J 23) (27V5h3, -3 1 6 ,j2 7 V 5 6 Jr -  3 16lr) < 0 (119)
q+ r

3 t ó b , ,  -  2 |3V563r -  26,r )< 0 v  (¿,6Jf -  cf26„ )(<[,63r -  <f 26 „ ) < 0 (120)
*✓€{ 1,2,3} 

q*r

if, = 2(^34740931 -  2925) d 2 = 3^5(358 + V34740931) (121)

where matrices 2?i’’ and £ 2”  are given by the formulas (93), (96), by are the elements of the 

operator B (87).

- The dynamical system (85) can be represented in equivalent form o f four first order linear 

ordinary differential equations:

at

M 3 ^ - w  + n y t) 
dJ (122)

( t )  =  A ' ;  g ; ( t ) + B 2M ‘ )dt
A

= A2~ ę ;(0  + B2~u(t)d ę ;(t)
dt 

where:

-the matrices A ’¡+ and A'\ are given by the formulas (115), (116) 

-the matrices B \+ and B'Care as follows:
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* ; - s - w b ; 
b ;  = - b ;

6.3. Example 3: System with distributed parameters

In this point will be verified the {/-controllability with non-negative controls o f a 

dynamical system with distributed parameters given by the following linear partial differential 

state equation:

= 02 4 )
at oz at oz JTi

where:

z e  (0,1), t > 0 (125)

the number o f the control forces is greater than 1:

p > 2  (126)

with boundary conditions:

x(0 ,0  = 0, / > 0  ^ M  = ( U > 0  (127)
oz

Solve

In the analysis o f the controllability o f given dynamical system (124) will be necessary its 

representation by the form o f the abstract differential equation. Following this aim at first let 

us define linear unbounded differential operator "A" A : D(A) c  H  ->• H  in the following 

way:

M z )  = - ~ ~ - , x e D ( A )  (128)
OZ

Domain o f the operator A :

D{A) = j* (z ) e H \ 0,1): j x 2(z)dz<  oo, x(0) = 0, * ( 1 )  = o j  (129)

where I i  = L2 (0,1) is a Hilbert space o f functions integrated with square. Also it can be shown 

that respectively the eigenvalues \  and eigenfunctions fa (z) o f the operator A have form:

X, = I — + i n \  fa (z) = C cos
rt
 h IK  |Z
2

¡=1,2,3,... (130)
.2

Presented properties o f the operator A are sufficient for representation of the partial 

differential equation (124) in form o f the linear abstract ordinary differential equation in the 

Hilbert space H :
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^ ñ  + f { A ) ^ p .  + Ax{t) = Bh(t), t> 0  (131)
at at

where:

(132)

/ ( / ! ) » a ,A , a , - 2  (133)

the function g(A ¡): R —> C  (19) necessary in the used transformation of the equation (124) to 

abstract ordinary differential equation (1) in this example has form:

M )  = V4A? - * I  i = 1,2,3,... (134)

and the operator B  is defined as follows:

B = [b' b 2 ... b" ... b“\  bj e H ,  j  = \,2,...,p  (135)

and controls:

K t) = [ \ { t \ h 2(t),...,hp{t)]T e R “ (136)

where ht (t) k  =  1,2,...,p  denote scalar controls.

The operator^ is linear and has only real positive eigenvalues, so is self-adjoined and 

positive-defined. The dumping term {(A) fulfils the assumptions (3) so the equation (124) has 

form o f the dynamical system (1) and in the investigating of the [/-controllability can be used 

the theorem 3. Now let us verify the conditions o f the theorem 3. The controls are 

nonnegative so the conditions 1 and 2 are fulfilled like in previous examples.

- Condition 3

The operator A has only single eigenvalues, so the condition 3 o f the theorem 3, 

considering the number o f the control forces, receives in the example the following form:

rank[b)... bk... b ? \= \ i = 1,2,3,... (137)

As we can see the controllability matrix in this example is reduced to vector so the

controllability condition can be rewritten in more compact form:

V 3 bk *  0 (138)
/-1 .2,3,... 1 S k i p

Now let us calculate the controllability matrix’s elem ents*, considering the proper form of 

the scalar product in the Hilbert space H:

1 !
6Í =<bk,<t>, >x  = ¡bk(z)fr(z)dz  = C j6*(z)cos

7T .
— Yin z 
2

dz i = 1,2,3,... (139)



Controllability o f Dynamical Systems With Damping Term and Constrained Controls 155

- Condition 4

In this case at first we will calculate the B(+w  factor as well:

S;+w = g - , (Ti)[ô,'...h*... h2(t),...,hp(t)}T i = 1,2,3,... (140)

Considering that g " ‘(/l() =£ 0 and hi is non-negative the condition 4 o f the theorem 3 reduces 

to requirement so that in the vector [¿>,i... bk... b f \ i = 1,2,3,... exist elements of both signs:

V 3 M b '< 0 (141)
1-1,2,3,...

The condition (141) is valid for any control operator B. Now let us check how do they look 

like for given forces. Let us assume the control operator B  o f the following form:

bk(z) = Ct eb k  = l,2 ,...,p  Ck e R (142)

After integrating the elementbk (139) receives in this case form:

b‘ = 2° k + 1 = 1’2’3’-  (143) 4 k +\K + 2in)

For odd i coefficients the numerator o f the above formula (143), with the accuracy to constant 

factor, is equal:

~{ekn(\. + 2 i)+ 2k) i = 1,2,3,... (144)

and is obviously not equal 0. For even i coefficients the same term is equal:

ekn(\ + 2 i ) - 2 k  i - 1,2,3,... (145)

Let us construct the following estimation:

V e*7r(l + 2i)>3e* ¿ = 1,2,3,... (146)
/-1,2,3,...

Next let us expand the exponential function into the Taylor’s series:

3e* = 3 V —  > 3 k > 2 k  (147)
t i  »!

Combining the inequalities (146), (147) we can state that:

V e*^(l + 2 / ) - 2 k > 0 ( ^ 0 )  (148)

And so:

V 6* 0 o  Ct *  0 (149)
.'-1,2,3,... '  '

So the statement (149) formulates necessary and sufficient condition o f fulfilling condition 3 

of the theorem 3 for investigated dynamical system (124). Now let us verify the condition 4 of 

this theorem in case of the control forces given explicitly by the equality (142). Following this 

aim let us calculate the b-b- term:
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b 'b;  = 4 c  c ,  ^ O ' / 1 + ^  ? + ^  v 2r i= 1 >2’3>- (15°)4g  + ( ^  +  2 i> )  4 r  + { n  +  2 i7 t)

From the inequality (149) follows that the term:

1,2,3,... ( i s o
4 ^ 2 +(ar + 2!>) 4 r2 +{ir + 2 ix )

holds fixed sign for every ¡=1,2,3,... and every q ,r  e {1,2,..., p ) . So the condition (4) receives 

form:

3 C„Cr <0  (152)
? ,re{ l,2  p ) ,q * r

Received last condition (152) is stronger than (149) and so becomes the necessary and 

sufficient condition o f the [/-controllability of investigated dynamical system (124) with non­

negative controls.

Now let’s transform considered dynamical system with distributed parameters (120) to 

the form of the series o f first order equations. In this example the state space is infinite 

dimensional so the series will be infinite as well. Necessary in this representation the state 

matrices A '*  and requires the values g(A.;):

g(Xf) = | ; r ( l  + 2 i'y jx2(l + 2 i f  - I  i = 1,2,3,... (153)

Calculating further:

2 1
s f  = -2\ — + i n \  ± —7r(l + 2i)i/;r2 (l + 2i)2 -1  =

2

= - Y * (l + 2«)[*(1 + 2i) ? J k 2(1 + 2i f  -1  i = 1,2,3,.. (154)

Summary of the Exam ple 3

-The dynamical system (124) with non-negative controls is [/-controllable with control forces 

(142) if  and only if  there exist two forces o f the opposite sign, what is equivalent to:

3 C,Cr < 0 (155)
q .r e [ \ ,2  p ) ,q * r

- The dynamical system (124) can be represented in equivalent form o f the infinite series of 

first order linear ordinary differential equations:

d!  i = 1,2,3,... (156)

dt ‘ '  '
?» +where the matrix B'\ is defined by formula:
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J i = 1,2,3,... (157)

Summary

Presented in this paper methodology of the verification o f the [/-controllability of 

second order dynamical dynamical systems with damping term can be applied for a broad 

class of the physical systems that can be expressed in the form (1). For instance state 

equations of such a form have mechanical systems containing of elastic beams with internal 

friction.
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Streszczenie

W artykule przedstawiono metodykę badania sterowalności nieskończenie wymiaro­

wych układów dynamicznych rzędu drugiego z czynnikiem tłumiącym. Do tego celu wy­

korzystana została spektralna teoria liniowych operatorów nieograniczonych.

W pierwszej części pracy sformułowano problem i przypomniano niezbędne 

własności występujących w  problemie operatorów. Następnie przedstawiono znaną metodykę 

sprowadzenia rozpatrywanego układu drugiego rzędu do układu równań pierwszego rzędu, a 

także niezbędne w dalszej części pracy własności użytych do tego celu operatorów. W 

kolejnym punkcie sformułowano i udowodniono twierdzenie o sprowadzeniu wyjściowego 

układu nieskończenie wymiarowego do dwóch nieskończonych ciągów układów skończenie 

wymiarowych. Dodatkowo przypomniano twierdzenie dotyczące warunków sterowalności z 

ograniczeniami układów skończenie wymiarowych. Na jego podstawie (i z wykorzystaniem 

udowodnionego wcześniej twierdzenia o sprowadzeniu wyjściowego układu nieskończenie 

wymiarowego do dwóch nieskończonych ciągów układów skończenie wymiarowych) 

sformułowano i udowodniono twierdzenie podające warunki konieczne i wystarczające 

aproksymacyjnej sterowalności z ograniczeniami rozpatrywanego' układu drugiego rzędu z 

czynnikiem tłumiącym. Uzyskany rezultat, ze względu na własności użytych w pracy 

operatorów, redukuje się do nieskończonego ciągu, którego każdy wyraz składa się z 

czterech warunków.


