Seria: ENERGETYKA z. 92

Nr kol. 876

Edward KOSTOWSKI

Instytut Techniki Cieplnej Politechniki Śląskiej w Gliwicach

APROKSYMACJA WYKRESÓW OKREŚLAJĄCYCH EMISYJNOŚĆ CO_2 1 H₂O ZA POMOCĄ FUNKCJI ANALITYCZNYCH^{×)}

<u>Streszczenie</u>. Przedstawiono funkcje analityczne opisujące emisyjność pary wodnej i dwutlenku węgla. Zbadano zakres parametrów występujących w praktycznych obliczeniach pieców grzewczych. Dla tego zakresu podano zależności aproksymujące stosowane wykresy, co jest bardzo dogodne, szczególnie w obliczeniach komputerowych przepływu ciepła w piecach grzewczych.

1. WPROWADZENIE

Zasadniczą rolę w przepływie ciepła w piecach grzewczych odgrywa promieniowanie cieplne. Jego intensywność jest determinowana głównie przez emisyjność spalin, w których składnikami promieniuącymi są CO_2 i H_2O , w mniejszym zaś zwykle stopniu płomień i inne składniki (np. CO_1 , SO_2). Ze względu na selektywny charakter tego promieniowania gęstość emieji gszów nie spełnia prawa Stefana-Boltzmanna, to znaczy nie jest ona proporcjonalna do czwartej potęgi temperatury bezwzględnej. Początkowo określano ją doświadczalnie i przedstawiano za pomocą wykresów lub bardzo złożonych funkcji [16], [2], [19], później A. Schack [17] wprowadził zależność typu;

$$\delta_{gi} = f_i(p,L) \cdot T_g^n, \tag{1}$$

w której czynnik f_i ujmuje wpływ ciśnienia p i grubości L warstwy promieniującego gazu, niekiedy wprost ich iloczynu (pL) – zwanego gęstością optyczną, zaś wykładnik n, mniejszy od 4, jest (np. dla H₂O) dość złożoną funkcją (pL) i temperatury gazu [17]. Nowsze podręczniki [8],[20] zamieszczają uproszczone wzory typu (1).

^{*})Pracę wykonano w ramach Problemu MR.I.10 pt.: "Optymalizacja" procesów termodynamicznych i przepływowych" koordynowanego przez Instytut Techniki Cieplnej i Silników Spalinowych Politechniki Poznańskiej.

Ułatwienie obliczeń radiacyjnej wymiany ciepła stało się możliwe po wprowadzeniu przez Hottela [5] jednolitej z ciałami stałymi zależności gęstości emisji gazu od T⁴

$$\mathbf{e}_{gi} = \mathcal{E}_{gi} \mathbf{GT}_{g}^{4}, \tag{2}$$

gdzie ⁶ oznacza stałą promieniowania ciała doskonale czarnego – ${}^{6}_{C} = 5,67 . 10^{-8} \text{ W/m}^2 \text{.K}^4$. Występujące w tym wzorze emisyjności ${}^{6}_{gi}$ ga-zu zależą od temperatury i od (pL)

 $\varepsilon_{qi} = \varepsilon_{qi}(p_i L, T_q), \qquad (2a)$

odpowiednie wykresy emisyjność CO_2 i H_2O (rys. 1) zostały opracowane przez Hottela i Egberta [6]. Dodać należy, że na rys. 1 przedstawiono wykresy wtórne za [20] [21], na których parametry podano w [at.cm] lub [kPa.m] i [°C], podczas gdy na wykresie oryginalnym [5] użyto innych jednostek – odpowiednio [atm.stopa] i stopni Rankina (1°R = 5/9 K).

Rys. 1. Emisyjność CO₂ i H₂O Fig. 1. Carbon dioxide and water vapour emissivity

Emisyjność spalin, w których składnikami promieniującymi są CO₂ i H₂O, określa się z zależności:

$$\varepsilon_{g} = c_{C} \varepsilon_{C_{D_{2}}} + c_{H} \varepsilon_{H_{2}O} - \Delta \varepsilon_{g}, \qquad (3)$$

gdzie czynniki C_i uwzględniają ciśnienie gazów – odpowiednie wykresy można znaleźć w literaturze [5, 9, 11, 26], a poprawka $\Delta \mathcal{E}_g$ uwzględnia wzajemne przesłanianie się pasm emisji CO₂ i H₂O. Ciśnienie spalin zwykle ma wartość zbliżoną do ciśnienia atmosferycznego, tj. ok. 100 kPa. Wówczas C_C = 1, a zamiast C_H stosuje się poprawkę β (rys. 2), [15], [20]. Ponadto można przyjąć:

Taki sposób określania emisyjności spalin jest szeroko stosowany w obliczeniach technicznych. Jednakże wyznaczanie składowych wzoru (3) z wykresów, wystarczające przy tradycyjnych obliczeniach wykonywanych za pomocą suwaka lub kalkulatora, nie jest dogodne w powszechnych obecnie obliczeniach komputerowych. W najlepszym przypadku sposób ten wymaga wczytywania obszernych ta-

Rys. 2. Poprawka β do emisyjności pary wodnej Fig. 2. Correction factor β for H₂O emissivity

blic i stosowania podwójnej interpolacji, co znacznie rozbudowuje programy obliczeniowe.

2. FUNKCJE ANALITYCZNE OKREŚLAJĄCE EMISYJNOŚĆ GAZU

Wymienioną niedogodność można ominąć, jeżeli zastosuje się funkcje analityczne określające emisyjności promieniujących składników spalin. Funkcje te mogą np. wynikać z odpowiedniego przekształcenia wzorów A. Schacka (1) do postaci (2). Jeżeli wykorzysta się wzory podane w [17], to np. dla emisyjności CO₂ otrzymuje się zależność:

$$\mathcal{E}_{CO_2} = 11,46 \frac{(pL)^{0,4}}{T^{0,8}},$$

którą można stosować w zakresie parametrów:

Podobny, choć zależnie od przyjętego pierwowzoru bardziej rozbudowany wzór, można ustalić dla H₂O. Wzory typu (5) są jednak stosunkowo mało dokładne[18]. Wynika to głównie stąd, że za pomocę jednej zależności starają się objąć cały zakres parametrów podanych na wykresach.

W literaturze znane są głównie trzy zestawy wzorów aproksymujących wykresy emisyjności CO₂ i H₂O. Pierwszy z nich, stosowany powszechnie w obliczeniach kotłów parowych [22], a opracowany przede wszystkim dla spalin powstałych z węgla kamiennego, został podany przez Gurwicza i Mitora [4]. Emisyjność spalin wyznacza się z zależności:

33

(4)

(5)

(6)

$$\mathcal{E}_{n} = 1 - \exp(-k_{n} \sqrt{pL}),$$

gdzie współczynnik k_ wynosi:

$$k_{g} = (0,78 + 1,6 r_{H_{2}0} - 0,1 \sqrt{pL})(1 - 0,37 T/1000)$$
 (7)

Do wzorów (6) i (7) należy podstawiać pL w 10⁵ Pa.m (w oryginalnej wersji podano at.m, ale różnica jest nieistotna), temperaturę T w kelwinach; r_{H_2}0 oznacza udział (ułamek) H₂0 w spalinach, gęstość optyczna (pL) dotyczy obu składników promieniujących

$$pL = p_{\Sigma}L, \quad p_{\Sigma} = p_{CO_2} + p_{H_2O}$$
 (7a)

Podana zależność może według [1] być stosowana w następującym zakresie parametrów:

$$P_{CO_2}/P_{H_2O} = 0.2 - 2$$
 T = 700 - 1800 K

Wzór (6) można łatwo uzupełnić o człony uwzględniające promieniowania cząstek stałych (popiołu i sadzy) zawartych w spalinach, jednak jego budowa uniemożliwia zróżnicowanie emisyjności i absorpcyjności spalin.

Drugi sposób analitycznego określania emisyjności CO₂ i H₂O podał K. Schack [18]. Podany przez niego algorytm jest dość złożony i niejednolity, to znaczy funkcje dla emisyjności pary wodnej są innego typu niż dla emisyjności dwutlenku węgla. Metodę K. Schacka, zalecanę między innymi przez VOI [23], przedstawiają Mańka i Bandrowski [14], którzy przy okazji proponuję własny, trzeba przyznać nie najprostszy, sposób określania emisyjności gazu i w dalezej konsekwencji radiacyjnego współczynnika wnikania ciepła.

Inne wzory aproksymujące dane Hottela podaje Leckner [13]. Sposób ten przedstawiają Wandrasz i Łuckoś [25]. Ze względu na swoję złożoność i małą przejrzystość jest on stosunkowo słabo rozpowszechniony.

Dla promieniowania pochodzącego od ciała stałego (ścianki) o temperaturza T_w, istotnie różniącej się od temperatury gazu T_g, absorpcyjność A_g zgodnie ze wzorami podanymi przez Hottela [5], [7] może znacznie odbiegać od emisyjności. Jak wiadomo, stosuje się wówczas zależność:

$$A_{a}(pL, T_{a}, T_{w}) = \mathcal{E}_{a}(pL, T_{w}/T_{a}, T_{w}) \cdot (T_{a}/T_{w})^{n},$$
 (8)

gdzie n = 0,65 dla CO₂ oraz 0,45 dla H₂O.

Wzór (6) nawiązuje w swojej strukturze do postaci:

$$\mathcal{E}_{g} = 1 - \exp\left[-k(t) \cdot (pL)\right], \qquad (9)$$

przy czym, jak pokazuję [7] i [3], ze względu na selektywność promieniowania emisyjność gazu jest ograniczona (tj. mniejsza od 1) nawet dla nieskończenie grubej warstwy gazu. Z tego powodu dla szerokiego przedziału wartości (pL) lepsze wyniki daje aproksymacja za pomocę sumy takich funkcji

$$\mathcal{E}_{g} = \sum_{i=1}^{n} a_{i} \left[1 - \exp(-k_{i} \cdot pL) \right], \qquad (10)$$

przy czym

$$a_0 + 2 a_i = 1; \quad a_0, a_i > 0,$$
 (10a)

wielkość zaś $(1 - a_0)$ jest emisyjnością nieskończenie grubej warstwy gazu. W praktyce wystarczy suma dwóch lub najwyżej trzech wyrazów we wzorze (10), aby otrzymać zadowalająco dobrą przybliżenie. Jeżeli jednak aproksymacja dotyczy małego zakresu wartości (pL) i temperatury, to wystarczający może być jeden wyraz, pod warunkiem skorygowania wpływu (pL). Takie właśnie rozwiązanie przyjęto w niniejszej pracy, mianowicie założono funkcję o postaci:

$$\hat{\boldsymbol{\varepsilon}}_{gi} = 1 - \exp\left[-\boldsymbol{k}_{i}(t) \cdot (\boldsymbol{p}_{L})^{n}\right], \qquad (11)$$

która w swej formie stanowi kompromis pomiędzy równaniami (6) i (9).

3. ZAKRES PARAMETRÓW (pL) I TEMPERATURY WYSTEPUJĄCY W OBLICZENIACH PIECÓW GRZEWCZYCH

Cytowane wykresy [5], [21] podaję emisyjności CO_2 i H₂O w bardzo szerokim zakresie parametrów. Wynosi on dla gęstości optycznej (pL) od ók. 0,03 do 200 kPa.m (dla CO_2) względnie od ok. 0,15 do 150, a nawet 600 kPa.m (dla H₂O), dla temperatury zaś od ok. 300 K (lub O^OC) do ok. 2800 K (lub 2500^OC). Sama emisyjność gazu mieści się w przedziale 0,003 - ok. 0,25 (dla CO_2) oraz 0,007 - ok. 0,7 dla H₂O.

W obliczeniach pieców grzewczych tak duża zmienność parametrów nie występuje. Z reguły można przyjąć ciśnienie spalin na poziomie ciśnienia atmosferycznego, tj. ok. 100 kPa. Zawartość składników promieniujących (CO₂ i H₂O) zależy od rodzaju spalanego paliwa. Przyjmując nadmiar powietrza spalania λ = 1,1, otrzymuje się następujące udziały CO₂ i H₂O w spalinach wilgotnych (tabl. 1):

Tablica 1

Rodzaj gazu	Udziały głównych składników w gazie						Udziały	
	CH4	H ₂	СО	°02	N2	inne	w spalinach ^{CO} 2 ^H 2 ^O	
koksowniczy	22,3	51,8	12,2	4,8	5,9	3,0	8,6	20,9
ziemny	98,4	-	-	0,2	1,2	0,2	8,7	18,2
wielkopiecowy	0,3	2,0	28,5	11,0	58,0	0,2	23,4	3,3
mieszankowy (30% koks + 70% wkp)	6,9	16,9	23,6	9,1	42,4	1,1	14,9	13,5

Udziały CO₂ i H₂O w spalinach wilgotnych dla różnych paliw gazowych przy nadmiarze powietrza λ = 1,1. (udziały w %)

Przyjęto zawilżenie molowe powietrza średnio 1% oraz zawilżenie gazów wielkopiecowego i mieszankowego 2%.

Z wyjątkiem czystego gazu wielkopiecowego, spalanego bez wzbogacania wyjątkowo rzadko, udziały te wahają się w przedziałe 10 – 20%. Tyle równnież liczbowo, tj. 10 – 20 kPa, wynosi ciśnienie składnikowe tych gazów w spalinach. Jedynie dla spalin czystego gazu wielkopiecowego udział H_2O spada do ok. 3,5% co w decydującym stopniu wpływa na osłabienie ich emisyjności i zmniejszenie radiacyjnej wymiany ciepła. Najczęściej jednak spalane są różne mieszanki i wówczas udziały CO_2 i H_2O mieszczą się w przedziałe 10 do 16%.

Drugim czynnikiem jest średnia grubość warstwy promieniujących spalin. W obliczeniach technicznych wyznacza się ją w sposób przybliżony [5]

 $L = 3,6 \frac{V}{F}, \tag{12}$

gdzie V oznacza objętość spalin w komorze pieca, zaś F łączną powierzchnię ścian i wsadu zawartego w tej komorze. Jeżeli przyjmuje się stosunkowo dużę komorę pieca wgłębnego o rozmiarach 10x4x3 m, to dla pustej komory daje to objętość V₁ = 120 m³ i powierzchnię ścian F₁=164 m²; ze wzoru (12) otrzymuje się L₁ \cong 2,63 m. Umieszczenie w tej komorze 10 wlewków o rozmiarach 0,8 x 0,8 x 2 m zmienia objętość do V₁' = 107,2 m³ i powierzchnię do F₁' = 228 m², co daje L₁' = 1,69 m.

Podobny szacunek dla innych komór pieców, głównie wgłębnych i przepychowych, pokazuje, że średnia grubość promieniującej warstwy spalin mieści się najczęściej w granicach 1 – 3 m. Nader rzadko jest większa (do ok. 4 m) i jedynie w bardzo małych piecach jest mniejsza od 1 m (w granicach do 0,5 m). Tak więc jako typową dla większości pieców można przyjąć grubość warstwy spalin w granicach L = 1 – 3 m. Ta wartość daje gęstość optyczną w przedziałe (pL) = 10 – 60 kPa.m, z małym prawdopodobieństem przekroczenia tych wartości do ok. 5 względnie 70 – 80 kPa.m; skrajne wartości mogą dotyczyć głównie pary wodnej. W wyniku powyższej analizy

36

Aproksymacja wykresów określających...

przyjęto, że istotne jest aproksymowanie wykresów w zakresie:

(pL) = (5) - 10 - 80 kPa.m

dla obu rozpatrywanych gazów. Dla większej przydatności zdecydowano się rozszerzyć ten zakres i wykorzystać podane na wykresach wartości (pL) w granicach 1 – 200 kPa.m.

Zakres temperatury spalin w piecach grzewczych wynika z samej ich natury. Praktycznie temperatura spalin mieści się najczęściej w przedziale 1000 – 1300°C, rzadko osiąga wartość wyższę (do ok. 1400°C) i jedynie podczas nagrzewania wsadu zimnego jest ona w początkowym okresie niższa. Niższa temperatura spalin (rzędu 800°C) występuje również w konwekcyjnych strefach pieców przepychowych i pokrocznych. Z tego powodu do aproksymacji przyjęto zakres temperatury spalin:

 $t = 800 - 1400^{\circ}C$ (1073 - 1673 K)

O przyjęciu dolnej granicy (tj. 800⁰C) zadecydował również fakt, że poniżej tej temperatury emisyjność CO₂ dla dużych wartości (pL) maleje i zmienia się w sposób nieregularny (patrz rys. 1). Przedstawiona analiza pozwoliła określić aproksymowany obszar wykresów z rys. 1, został on na nim zaznaczony.

4. SPOSÓB APROKSYMACJI WYKRESÓW

Z odpowiednio powiększonych wykresów (wziętych z [21] i częściowo z [5]) odczytano dla podanego zakresu parametrów emisyjność CO_2 i H_2O dla temperatur $800 \div 1400^{\circ}C$ (co sto stopni) oraz podanych na wykresach gęstości optycznych (pL = 1, 2, ... 4, 5 ... 10, 15, 20, 30 ... 100, 150 i 200 kPa.m).

Następnie z przekształconej zależności (11) wyznaczano najpierw współczynnik k(t)

$$k(t) = \frac{\ln[1/(1-\varepsilon)]}{(pL)^n}$$
(13)

dla danych wartości &(pL, t) i przyjętego wykładnika n. Wstępna analiza [12] pokazała, że dla CO₂ współczynnik ten dla n = 1/3 mało zależy od wartości (pL). Podobny wynik dla H₂O dał wykładnik n = 0,5; w każdym z tych przypadków występowała wyraźna zależność k od temperatury. Zależność ta jest prawie liniowa, zdecydowano się więc na przybliżenie współczynnika k(t) funkcją:

$$\mathbf{k}(\mathbf{t}) = \mathbf{k}\mathbf{a} + \mathbf{k}\mathbf{b}' \cdot \mathbf{t} \tag{14}$$

37

Jako końcowe rozwiązanie przyjęto zależności dla takiego wykładnika n, dla którego suma kwadratów odchyleń wartości obliczonych za pomocę wzoru (11) i odczytanych z wykresów (wprowadzonych do obliczeń) jest najmniejsza.

Pełna aproksymacja wymagała również analitycznego przybliżenia czynnika β z rys. 2. Dla ciśnienia składnikowego p_{H2}0 w zakresie od 20 – 25 kPa jest to w przybliżeniu pęk prostych o zmiennym nachyleniu, wychodzących z punktu o wartości β (0) = 1. Przyjęto więc funkcję:

$$\beta = 1 + a(pL) \cdot p_{H_2O}$$
 (15)

przy czym współczynnik nachylenia a(pL) można ująć następująco:

$$a(pL) = a_1 - a_2 \sqrt{P_{H_2} O^L}$$
 (a)

Ostatecznie przyjęto zależność [10] :

$$\beta = 1 + (0,76 - 0,0328 \sqrt{p_{H_20} L}) \cdot p_{H_20} / 100,$$
 (15a)

która może być stosowana w zakresie:

Do wzoru (15) podstawia się ciśnienie p_i oraz gęstość optyczną p_i.L w wymienionych jednostkach, tj. kPa oraz kPa.m. Zdecydowano się na to ze względów praktycznych: jednostki te dominują obecnie na wykresach, ponadto dla ciśnienia spalin 100 kPa udział pary wodnej (względnie CO_2) w spalinach wyrażony w % jest liczbowo równy ciśnieniu składnikowemu wyrażonemu w kPa. Te same jednostki dla (pL), tj. kPa.m, są również używane we wzorach na emisyjność CO_2 i H_2O_2 .

5. REZULTATY - ZALEŻNOŚCI APROKSYMUJĄCE EMISYJNOŚĆ DWUTLENKU WĘGLA I PARY WODNEJ

Obliczenia wykonano zgodnie z podanym schematem. Ze względu na dużą zmienność parametrów i samej emisyjności zdecydowano się wyznaczyć poszukiwane funkcje w zawężonych, niekiedy zachodzących na siebie przedziałach wartości (pL), dzięki czemu dokładność przybliżenia jest większa. Wykładnik n, dla którego średnie odchylenie kwadratowe jest najmniejsze, potraktowano jako rozwiązanie. Wyniki obliczeń zestawiono w tablicy 2. Wszystkie wartości obcwiązują w zakresie t = 800 - 1400⁰C.

Tablica 2

Zakres (pL)	n	Współczynnik:	wzoru (14)	Średnia względ-
kPa.m	-	ka	kb	%
		a) dwutlenek we	gla - CO ₂	
70 - 200	0,310	0,07350	- 0,02081	1,7
10 - 80	0,314	0,07791	- 0,02573	2,1
4 - 10	0,374	0,07613	- 0,03039	1,3
0,93 - 5	0,391	0,07814	- 0,03321	1,5
0,1 - 1	0,614	0,08697	- 0,04108	3,6
		b) para w	odna	
70 - 200	0,395	0,09700	✓ 0,03809	1,1
10 - 80	0,530	0,05729	- 0,02375	2,5
4 - 10	0,692	0,04210	- 0,01979	2,5
1 - 5	0,805	0,03944	- 0,02048	3,8
4 - 100	0,554	0,05274	- 0,02289	4,8

Współczynniki funkcji aproksymacyjnej (11) i (14) dla zakresu temperatury 800 – 1400°C

Do wzorów

$$\xi = 1 - \exp \left[-k(t) \cdot (pL)^{n} \right],$$

gdzie

k(t) = ka + kb . (t/1000), (14)

należy podstawiać temperaturę t w ^OC ora**»** (pL) w kPa.m, aby wyznaczyć emisyjność gazu. Podane w tablicy 2 wartości różnią się liozbowo nieznacznie od wyznaczonych wcześniej [10]. Różnice wynikają ze skorygowania kilku odczytów i ujednolicenia zakresów aproksymacji.

Dokładność otrzymanych formuł można uznać za dobrą. Średnie odchyłki pomiędzy wielkościami odczytanymi z wykresów (rys. 1) i wprowadzonymi do programu obliczeniowego jako dane oraz obliczonymi za pomocą wzorów (11), (14) nie przekraczają 2 – 2,5%. Największe lokalne odchyłki występują dla CO_2 w pobliżu temperatury 800°C dla pL \ge 100 kPa.m. Dochodzą one do $\Delta \xi = 0.01$, co stanowi około 4% emisyjności mającej tu wartość rzędu 0,24.

Dla oceny dokładności proponowanej aproksymacji wykonano dodatkowo obliczenia emisyjności spalin, scharakteryzowanych w tablicy 3. Obliczono emisyjności dla temperatur: 800, 1100 i 1400⁰C

1) na podstawie bezpośrednich odczytów z wykresów i wzorów (3), (4),

2) na podstawie proponowanej aproksymacji i wzorów (3), (4),

3) według wzoru Gurwicza (6), (7).

(11)

Dla 15 w ten sposób analizowanych punktów średnia odchyłka w stosunku do wartości wynikających z bezpośredniego odczytu (sposób 1) wynosi: w sposobie 2 – 0,0029, zaś w sposobie 3 – 0,0173, co stanowi odpowiednio ok. 1 i 6% przeciętnej emisyjności. Odchyłki emisyjności składników (CO₂ i H₂O) są nieco większe i wynoszą przeciętnie ok. 1,7%; widać, że przy obliczaniu emisyjności spalin błędy częściowo się znoszą (ta uwaga dotyczy tylko sposobu 2). Wzór Gurwicza daje przeważnie wartości zawyżone. Sę one zbliżone do wartości wynikających ze wzoru (3) dla $\Delta \xi_n = 0$.

Tablica 3

Spaliny	a	Ь	с	d	e	
PCO, L	10	40	5	5	80	kPa.m
PH_O L	15	40	8	8	200	kPa.m
PH_O	20	20	10	20	20	kPa
²⁰				1		

Charakterystyczne parametry analizowanych spalin

<u>Uwaga</u>: Założono $p_{sp} = 100 \text{ kPa}$, czyli $r_{H_00} = p_{H_00}/100$.

6. UWAGI KOŃCOWE

Proponowana aproksymacja umożliwia analityczne wyznaczanie emisyjności spalin z dokładnością zadowalającą w obliczeniach technicznych (przeciętna odchyłka ok. 1% w zakresie temperatury 800 – 1400°C, maksymalna odchyłka ok. 4%). Dokładność ta jest wyraźnie lepsza niż osiągana za pomocą wzoru Gurwicza, ponadto umożliwia wyznaczanie emisyjności każdego z promieniujących składników. Wszystko to jednak dotyczy modelu gazu szarego lub co najwyżej tzw. "szarego – nieszarego" (dla $\mathcal{E}_g \neq A_g$), który stosuje się dla bardzo zróżnicowanego pola temperatury. Jeżeli model gazu szarego jest niewystarczający, to emisyjność gazu wyznacza się za pomocę modelu pasmowego (np. [24]). Jest to jednak podejście wymagające znacznie obszerniejszej procedury obliczeniowej.

LITERATURA

- Błoch A.G.: Tiepłoobmien w topkach parowych kotłów, Energoatomizdat, Leningrad 1984.
- [2] Eckert E.: Messung der Gesamtstrahlung von Wasserdampf und Kohlensäure in Mischung mit nichtstrahlenden Gasen bei Temperaturen bis zu 1300°C. VDI-Vorschungsheft 387, 1937.
- [3] Gray W.A., Müller R.: Engineering Calculations in Radiative Heat Transfer, Pergamon Press, Oxford 1974.

Aproksymacja wykresów określających....

- [4] Gurwicz A.M., Mitor W.W.: Izłuczenije dymownych gazow, Tiepłoenergetika, 1955, nr 12, s. 28.
- [5] Hottel H.C.: Radiant-Heat Transmission, in Mc. Adams W.: Heat Transmission Mc Graw-Hill New York 1954.
- [6] Hottel H.C., Egbert R.B.: The Radiation of Furnace Gases Trans. ASME, 1941, s. 297.
- [7] Hottel H.C., Sarofim A.F.: Radiative Transfer, Mc-Graw-Hill, New York 1967.
- [8] Isaczenko W.P., Osipowa W.A., Sukomieł A.S.: Heat Transfer. Mir Publishers, Moskwa 1977.
- [9] Jakob M.: Heat Transfer, vol. 2, J. Wiley, New York 1956.
- [10] Kostowski E., Fic A., Stefanik J.: Określenie modelu matematycznego nagrzewania wsadu w piecach wgłębnych. Praca NB-427/RME-3/74/75, ITC Pol. Śl. 1975 (niepublikowana).
- [11] Kostowski E.: Przepływ ciepła. Skrypt Pol. Śl., Cliwice 1986.
- [12] Kuś J. (1971); Goncerz A., Hamerlak H. (1973): Aproksymacja emisyjności CO₂ i H₂O za pomocą funkcji analitycznych – prace przejściowe wykonane pod kierunkiem autora (niepublikowane).
- [13] Leckner B.: Spectral and total emissivity of water vapour and carbon dioxide, Combustion and Flame v. 19, 1972.
- [14] Mańka H., Bandrowski J.: Zastępczy współczynnik wnikania ciepła gazów promieniujących, Inż. i Aparatura Chem., 1973, Nr 3, s. 6.
- [15] Michiejew M.A.: Zasady wymiany ciepła. PWN, Warszawa 1953
- [16] Schack A.: Über die Strahlung der Feuergase und ihre praktische Berechnung, Z. techn. Phys., 1924, s. 267.
- [17] Schack A.: Der Industrielle Wärmeübergang, Stahleisen, Düsseldorf 1957.
- [18] Schack K.: Berechnung der Strahlung von Wasserdampf und Kohlendioxid, Chemie-Ing.-Technik, Bd. 42, 1970 Nr 2, s. 53.
- [19] Schmidt E.: Messung der Gesamtstrahlung des Wasserdampfes bei Temperaturen bis 1000°C, Forsch. Gebiete Ingenieurwes., 1932, s. 57.
- 20 Staniszewski B.: Wymiana ciepła. PWN, Warszawa 1979.
- [21] Tiepłotechniczeskij sprawocznik t. II. Energia, Moskwa 1976.
- [22] Tiepłowyj rasczet kotielnych agregatow normatiwnyj metod. Energia, Moskwa 1973.
- [23] VDI Warmeatlas, Berechnungsblatter für den Wärmeübergang, VDI-Verlag, Düsseldorf 1984.
- [24] Wandrasz J.: Pasmowy model matematyczny przepływu energii przez promieniowanie w piecu komorowym, ZN Pol. Śl., s. Energetyka z. 58, Gliwice 1976.
- [25] Wandrasz J., Łuckoś A.: Wpływ poprawki uwzględniającej nakładanie się pasm emisji na obliczenia wymiany energii promieniowaniem. ZN Pol.Śl., s. Energetyka z. 82, Gliwice 1983, s. 5.
- 26 Wiśniewski S.: Wymiana ciepła. PWN, Warszawa 1979.

Recenzent: Doc. dr inż. Antoni Guzik

Wpłynęło do redakcji w kwietniu 1985 r.

АППРОКСИМАЦИН ДИАГРАНМОВ ОПРЕДЕЛЯЮЩИХ СТЕПЕНЪ ЧЕРНОТН СО2 И Н20 ПРИ ПОМОЩИ АНАЛИТИЧЕСКИХ ФУНКЦИЙ

Резюме

Представлены аталитические функции, которыми описывается степень черноты CO₂₉ H₂O и дымовых газов. Анализирован предел параметров выступающих в практических расчётах нагревательных печей. Предложена функция формулы 11 и 14, которой можно аппроксимировать степень черноты этих газов и в таблице 2 для предела температуры 800 до 1400 °C даны её коэффициенты. Предлагаемые формулы удобны для компьютерных тепловых расчётов нагревательных печей.

ANALYTICAL APPROXIMATION OF THE CO_2 AND H_2O EMISSIVITY DIAGRAMS

Summary

The analytical functions describing the emissivity of CO_2 , H_2O and furnace gases are discussed. The range of parameter values occuring in the thermal calculations of the heating furnaces is analysed. For approximation of the emissivity diagrams a function (formulae 11 and 14) is proposed with coefficients (given in table 2) valid in the temperature range of 800 to $1400^{\circ}C$. The proposed approximation is useful in the heat transfer computer calculations of heating furnaces.