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Summary. The application of a time marching method to determine 
the parameters of a transonic flow through blade cascades is pre­
sented. Thi unsteady Euler equations of motion are approximated by 
the discrete and conservative differential system using the Godunov 
scheme. An equipotential grid is used which has been obtained from 
the solution of the Laplace equation for geometry and boundary con­
ditions under consideration. On the basis of detailed calculations 
of the flow in a turbine channel, the influence of some parameters 
on the analytical process and its results are discussed.

Notation 
A - surface
a - speed of sound
c - absolute velocity
e - internal energy
h - static enthalpy
Ma - Mach number
n - normal vector

p - pressure
T — temperature
V - volume
p - density

t - time

Subscripts and superscripts

n - normal component
t - tangent component
0 - initial, total conditions
1 - inlet
2 - outlet
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1. Introduction

The characteristic feature of steam turbines, gas turbines and compres­
sors built nowadays is the constant increase of load on their particular 
stages. This is the consequence of aiming at a compact construction and 
the result of economizing on materials and energy in the process of pro­
ducing these machines. In highly loaded stages of turbomachines, a gas 
velocity will usually exceed a speed of sound changing within the wide 
bounds its value in one channel.

The description of processes of energy conversion in this type of bla- 
de-to-blade channels is made up by equations of continuity, momentum (the 
Navier - Stokes equations), energy equations and relations describing the 
physical properties of mediums along with adequate initial and boundary 
conditions. Despite considerable development in numerical methods of fluid 
mechanics, their full solution is yet hardly probable for the geometry of 
turbomachines. Hence, there arises the necessity to assume physical sim­
plifications which consequently result in simple mathematical descriptions, 
in the study of transonic flows in blade rows, main simplifications lead 
to omitting viscous elements ~in the equations of momentum and energy. The 
solution of equations simplified in such a way is now possible without ad­
ditional simplifications in the geometry of flow systems.

Further on we shall consider the plane flow of a blade cascade, assu­
ming for its determination, the time marching method using the GODUNOV 
scheme [3, 6, 8] .

2. Presentation of the problem

As it has already been stated, in the blade-to-blade channels of turbo­
machines, a gas velocity may in a general case change its value from sub­
sonic to supersonic. For the steady flow, it means that within the range 
of one channel we deal with the transition from eliptical to hyperbolic 
boundary problem (or vice versa). The difficulty in solving such a mixed 
problem causes frequent formulations of an auxiliary initial-bouDdary 
problem which within the range of the whole channel, disregarding the 
value of speed, is of hyperbolic type.

An auxiliary initial-boundary problem is established by the system of 
unsteady equations of mass, momentum and energy conservation, equation 
of state, an adequate initial condition, and boundary conditions in con­
formity with the steady state. The equation of conservation for an in- 
viscid an non-conducting heat fluid can be expressed by

S§-lffF dV +I f  G dS = 0 (2 . 1)
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«here:

P P (cn)

F = pc G * p (cn) c + pn

p(e + £ cc) p(h + cc) (cn)

This way of notating equations is advantageous mainly because of its in­
dependence from the coordinate system. It considerably simplifies the no­
tation of differential analogues of the system (2.1).
Equations (2.1) along with the equation of state

P * p(P,T) (2.2)
enable the calculation p = p(i<)t c 
an arbitrary element whose volume is 
e which have been determined for ~ 
volume V. In the two-dimensional flow:

: c(S), E = e + 2 cc = E(£) inside
V on the basis of the values p,p ,

Z = on the surface S that bounds o
dV = Ah  dA, dS = A h  dl (Ah

.* -  uA
that bounds dS, Pig. 1). The equation system referring to this case is 
expressed by

0
F T J P dA ♦ J G dl = 0 (2.3)

The system of equations (2.2) and (2.3) has been further on adopted in 
order to analyse the transonic flow through blade cascades in turbines 
(Pig. 1). A final closing of the initial - boundary problem requires the 
determination of initial and boundary conditions. In the particular case 
of the flow region shown in Pig. 1, the boundary velues on the segments 
AB, CD, EF, GH, HA as well as along the BC and PG contours of profiles 
should be determined.

For the homogenous flow conditions along HA and DE, the analysis of 
the one-dimensional unsteady flow results in the following coefficients 
of angular characteristics h  * ^  [8]

^1 = Cn’ *̂2 = Cn “ a ' ^ 3 = CR + a, ^  = Cn (2.4)

Equations of movement along the particular characteristics are expressed 
as
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D1 0 0 0 c
0 D2 0 0 s
0 0 *3 0 J
0 0 0 *4 p-a2

where
Dj_ ^  ̂ n]~ differential operators along i of these character

ristice.

E 

D
?ig. 1 .

a) blade cascade used for calculations, b) coaputational grid
Rys. 1

a) palisada ^przyjęta do obliczeń, b) siatka obliczeniowa
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Pig. 2. Characteristics in the (n,C) planes 
Rys. 2. Charakterystyki w płaszczyźnie (n,£)
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We infer from (2.4) that for eD > a in HA section, coefficients & i are 
positire. It means that disturbances occuring in the examined flow re­
gion cannot change the values of paramétrés on the HA border. Therefore, 
in this case the values C D-]» cti» P-pPp stated on this border do not
undergo any change with the change of time Z . For cn < a (a case fre­
quently occuring for transonic cascade flows), < 0 and the HA inlet 
section is reached in the time ZQ + a Z by disturbances generated in the
computational range (n > n^) in the time Z = Z 0 (Fig. 2) along the
Characteristic corresponding to
Then, in the description of boundary conditions, it is necessary to take 
into account the second of the equations (2.5), that means

J * (J_)jja = conBt (2.6)

Moreover, stating a total pressure pp or density p o, stagnation en­
thalpy h0 and a linear combination of components of a velocity vector
in the HA section are calculated on the HA edge the needed values of
p^, p 1t cb1, ct1, considering (2.6) as well as the following dependences:

k P.
ITT T~ * ? ce * bc * const» ft * Ct1 = Cn1 tg/*l

In the HE section, the following two characteristic cases can be speci­
fied:
a. cn > a. All %, coefficients of charakteristics are positive what 

means that kinematic and thermodynamic paramétrés on the BE edge in 
the time + ac are connected with the adequate values from the 
flow region which are determined in the time Z . As a result, bounds- 
ry conditions on the DE border should be calculated with respect to 
all relations (2.5)•

b. cn < a. The coefficient is negative, the remaining ones are po­
sitive. When formulating boundary conditions, it is necessary in this 
case to make use of first, third and fourth relletions from the system 
(2.5) and the value of one or the needed quantities. In the detailed 
calculations presented in this article, static pressure has been sta­
ted in the BE section.

Along the segments AB, CD, EF, and GH boundary conditions are determined 
owing to the fact of the flow periodicity through the infinite blade cas­
cade. On the BC and FG contours, the normal of components velocity equals 
zero.

An arbitrary system of kinematic and thermodynamic paramétrés in the 
examined flow region can be assumed as an initial condition for the con­
sidered method. In order to shorten the computational time, the results
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obtained from the application of the water analogy have been assumed in 
this paper as the initial state.

3. Differential scheme 

Approximation of equations

values of streams flowing ghrough the segments A l ^ M  is the number of 
elements bounding the cell of A  a  surface.

From the general scheme (3.1), we get some actual differential schemes 
which depend on the construction of a computational grid and the assumed 
way to determine the function

The utilized differential scheme is based on the algorithm of GODUNOV and 
his collaborators [3, 6, 8] . In this case, when calculating the integral 
on the right we assume that the function %  (F,E) is constant in the A t  
interval, so instead of (3.1) »we write for j - cell

After the integration of the system (2.3) in the interval a£= 1  

- Z ^  we get [3, 6, S]

?(k+1)

A rXk)L

Proceeding to the discrete scheme, we find

(3.1)

A  î  AHere, F is average values in the cell of A A surface; G is average

M
%(ê,c) = 2  a 1a )oc

œ=i

M
p ( k + 1 )  _  £ ( k )  _  2  (G A 1  ' (3.3)

0C =  1

A
Por particular components of F from (3.3) , we obtain (leaving out the
j subscript) :
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Jf JrAveraged on the boundaries of the field A , the values of density RA,Jf If If ^velocity C , pressure and internal energy which determine the
particular components of G are established for the assumed algorithm 
on the basis of the solution of the Riemann problem for the inviscid gas 
[6 , 8].

Initial condition
In the investigations of the steady transonic flows by means of the 

time marching methods, it is possible to start calculations at hypothe­
tical initial states. In the described algorithm, in order to render the 
time of calculations possibly the shortest, the results of measurements 
obtained from the application of the water analogy have been assumed as 
an initial state.

Boundary conditions

The numerical realization of boundary conditions presented in point 2 
does not give rise to more serious troubles. It mainly concerns the con­
ditions of symetry and the inlet into the blade-to blade channel.
The conditions at the trailing edge have been expressed with the use of 
the acoustic approximation of the Riemann problem with the stated value 
of static pressure in the section behind the cascade. The boundary condi­
tion on the surface of the profile (cQ = 0) has been realized with the 
assumption that the surface of tangent discontinuity is for good ascribed 
to the profile line which is at the same time a local axis of symmetry of 
the flow [6] . For such assumptions, the Riemann*s solution has been ap­
plied to the points in the vicinity of the blade.
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4. Results of calculations

Presented scheme of calculations of steady transonic flows can be ap­
plied to any geometry of a blade cascade, both for turbine and compressor 
stages. Por the carried out calculations, a plane turbine blade cascade 
built form VKI profiles [2] has been engaged. For channels formed by the­
se profiles, experimental researches [2] and results of numerical calcu­
lations [5] in the wide range of Mach number are available. In -the calcu­
lations, as e boundary condition at the trailing edge: M , = 121(p, =

P 2— ~  = 0,41) has been assumed. When testing the algorithm, the influence 
of some characteristic parametres on the results of calculations has been 
investigated. After analysing many applicable computational grids, deci­
dedly the best results, with respect to time and calculations precision, 
have been achieved by engaging the equipotential grid drawn on the basis 
of the solution of the Laplace equation for velocity potencial. The glo­
bal allowable step has been settled by examining local time steps (for 
each elementary region), which have been determined conforming to the 
conditions of stability in the GODUNOV scheme [l] . As a condition to 
achieve the steady state, the following has been assumed

,(k+1) _,(k)| ,
VTVT-- < 10 <*-’>

This has been determined after the examination of many actual geometries 
for the different number] of iterations. In the investigation of the in­
fluence of the way to set initial conditions on the speed of calculations 
process, no major difference in attaining the solution from "top" or 
"bottom" has been found (Pig. 3). The linear distribution of the parame­
tres between the trailing and loading edges assumed as an initial state 
was leading to a longer time of calculations than in the case of utili­
zing the data obtained from the method of water analogy. An important 
purpose of the research was to determine the influence of the manner of 
forming the grid within the trailing edge on the results of calculations. 
Some results of this research is contained in Figure 4. The modification 
of the trailing edge resulting form the various discrete means of the 
approximation of a profile shape has a crucial influence on velocity di­
stributions not only in the region of the trailing edge but in the whole 
channel as well, particularly along the convex surface of the profile.
The extension of the profile (Fig. 4, case 4) changes the value of a mi­
nimal section of the channel and shifts its position in relation to the 
real object. As a consequence, it intensifies the shock wave. In this 
case, the greatest departure from the experiment s results occured.
For the other cases of correction, the distribution lines of Mach number 
go up to greater values.
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a

Fig. 3. The courae of iteration process
a) for *a2(.=0)> 1, b) for Ma2(i;=0)< 1
Rys- 1» Przebieg procesu iteracyjnego 
aj dla Ma2ff=0) > 1, b) dla Ma2(g =0) < 1
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*ig. 4« Calculation results (5 - result of the testings in the air tunnel) 
Rys. 4. Rezultaty obliczeń (5 — rezultaty pomiarów w tunelu powietrznym)

In Figure 4, the course of Mach number for 350 and 650 cells of divi­
sion has been shown. The solution for 650 cells refers to the first ver­
sion of the correction of the trailing edge. Slightly different value of 
the angle of the outlet stream in CF section corresponds with each con­
sidered geometrical shape of the trailing edge. These differences do not 
exceed 30ł- 1°. The angle j&2 computed for the version is closest to 
the experimental value and amounts to = 62° (experimental value 
jb2e v 63°).

The algorithm and calculation programme have been organized and opti­
mized in such a way to achieve an effective solution for the number of 
the cells j = 350 by the use of the microcomputer MERA 60.
The time of performing one iteration was 29s, and the number of itera­
tions necessary to fulfill the condition (4.1) amounted to 895. For j=35C 
the calculations were done on the digital computer ODRA 1305. In thic ca­
se, the time of performing one iteration was 8 s and the number of neces­
sary steps was 1490.
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5. Conclusion

A direct method of successive unsteady states based on the GODUNOV 
scheme has been described and applied to the examination of cascade flows. 
In the course of testing an calculation algorithm, main attention has been 
paid to the explanation of the influence of a shape of the trailing edge 
on calculation results. Some consideration was given to the auxiliary so­
lution of the initial hyperbolic problem which was formulated for the un­
steady Euler motion equations.

It has been determined that the assumption of results obtained from 
the water method to be initial data reduces the computational time.

Despite its deversification in particular channel regions, the confor­
mity of numerical calculations with experimental data is not on the whole 
worse than the accuracies reached by means of other conventional methods 
of examining transonic flows in blade-to-blade channels [4, 53« The algo­
rithm and calculation programme worked out here can in a relatively sim­
ple way be expanded so as to cover the analysis of axis-symetric and three- 
dimensional flows through the blade cascade.
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NUMERYCZNE ROZWIĄZANIE ZADANIA ANALIZY 
TRANSONICZNEGO PRZEPŁYWU PRZEZ PALISADĘ ŁOPATKOWĄ

S t r e s z c z e n i e
Opisano zastosowanie metody kolejnych stanów ustalonych do określenia 

parametrów przepływu transonicznego przez palisady łopatkowe. Zostało 
sformułowane pomocnicze zadanie początkowo-brzegowe, które w obszarze ca­
łego kanału, bez względu na wartość prędkości jest typu hiperbolicznego. 
Pomocnicze zadanie początkowo-brzegowe utworzono na podstawie układu nie­
ustalonych równań zachowania masy pędu i energii, równanie stanu, odpo­
wiedni warunek początkowy oraz odpowiadające stanowi ustalonemu warunki 
brzegowe.

Zostały przedyskutowane warunki brzegowe w przekroju wlotowym i wylo­
towym.

Schemat różnicowy utworzono wykorzystując algorytm Godunowa i jego 
współpracowników. W ramach obliczeń numerycznych badano wpływ sposobu 
kształtowania siatki w obrębie krawędzi wylotowej na rezultaty obliczeń. 
Przedstawiono wyniki obliczeń otrzymanych dla profilu VKI 1 o różnym 
-stopniu wydłużenia krawędzi opływu.

HHCJIEHHOE EEHEHHE 3A j l A R H  AHAjIKSA IPAHC3BYKOBOrC 
TÊ iEHilfl. B PEHETKAX

P e 3  jo m e
3  p a ó o ie  npeAJiOHceH BHCAeHBHfl MeioA pacueTa iu o ck h x  T p a a c 3 B y K 0 B u x  H e B S 3 -  

khx TeneHHfi b  pemeiKax T y p ó ouamHK. PemeHHe 3aAaqn noJiyueHO mstoacm ycTaH o- 
BJieaHB. c npaueHeHHeM h b h o S  cxeuti nepBoro nopflAKa t o b h o c t h  na paBKCMepKux 
c e iK a x  (cxe»ia C .K . ToAyHOBa) . B c i a i t e  npHBeAeHU p e3y ab ia iH  p a c a e ia  A 2 y x -  
isepaoro  TetieBHB npa pa3jmuahoc $opnax KpoiioaHofi u a c m  n p o J n i J i e ? . ,


