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Summary; This paper is intended to be a reference on the basic 
formulation of various physical and mathematical models of sus­
pension flow systems. A discussion on the formulation of the con­
servation laws of mass, momentum and energy is presented. Special 
emphasis has been on the local instant formulation and on the 
time and space averaged statistical models. These can be used to 
solve various practical problems by analytical means or to set up 
experimental facilities, to clarify the purposes of experiments 
and to establish the methods of measurements.

1. Introduction

As long as the particles of a particulate two - phase flow are small 
enough, they are following the fluid motion and the whole flow can be 
treated as a homogeneous flow with appropriate changed physical proper­
ties. This kind of particulate two - phase flow, which can be considered 
basically as a single phase flow, will not be analysed in this paper. It 
is evident that in this case the standard method of continuum mechanics 
are followed. In this paper it is presumed that the particles are large 
enough so that there exists a slip velocity between the two phases.

Most of the available experimental work on particulate flow is dealing, 
on the one hand, with the flow of and around single particles in gas or 
liquid and on the other hand, with the flow of suspensions, where only 
integral parameters are to characterize the flow properties. Through de­
tailed experimental studies, it is also possible to see whether informa­
tion on the flow around single particles can be transfered to particulate 
flow systems. In addition to this, numerical models of two - phase flow 
can only be developed if there exists reliable local experimental data, 
which can be compared with theoretical results.

It was the aim of some publications [2] [9] "the particulate two - phase 
flow theoretically and / or numerically dealt in two different ways and 
there are two different approaches to describe the transport equations 
for the particulate phase. The lagranglan approach treats the fluid phase 
as a continuum and predicts the trajectory of a single particle in the 
fluid flow as result of various forces acting on the particle. Assuming
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different starting positions of the particles and following their trajec­
tories, a solid - fluid flow can be simulated. As the locations of the 
particles are known, the mass-, momentum- and energy transfer of the so­
lid to the fluid phase and vice versa can be calculated. The main problem 
here is that the equation for the conservation of the general variable 
contains the additional source term representing the n*t efflux of the 
general variable into the fluid phase due to the particle - fluid inte­
raction. This source term is usually calculated [2] by solving the La- 
grangian equation for the corresponding particle variable. This is the 
essence of the so-called PSI - cell (particle - source in cell) approach, 
which was used by Sharma [6] and others [1] [ 7 ]. The calculation of the 
particle trajectories by solving the equations of motion of the particles, 
as well as the calculation of the particle source terms is performed in 
the same iteration loop after solution of the fluid flow equations, in 
order to handle the interaction between the fluid and the particles.

Treating also the particle phase as a continuum and solving the appro­
priate for the fluid and the particle phase makes up the basic feature of 
the eulerian approach. The volume concentration of each phase has to be 
introduced and the continuity equation for both phases solved. The back - 
influence of the solid particles to the fluid has then to be proportional 
to the void fraction of the solid phase. The influence of fluid turbu­
lence on the particles or vice versa the influence of the particles on 
fluid flow turbulence are neglected. It is assumed that there are no par­
ticle - particle interactions and that the interaction of the particles 
on the wall can be neglected. This model has been completed by J. 0.
Hinze [ 5].

It was shown in [5] that for phenomenological modeling of two - phase 
flow by means of two - fluids model formulation, the same type of mo­
mentum equation for particulate phase can be obtained whether derived on 
the basis of a single particle motion or under the condition on continu­
ous mechanics. Differences has been mentioned only by expressing of indi­
vidual formulation the general force exerted by the fluid on a particu­
late phase and by various methods of variables averaging [6].

2. Purpose of averaging

It is well established in continuum mechanics that the conceptual mo­
dels for single phase flow are formulated in terms of field equations 
which describe the conservation laws of mass, momentum, energy, charge, 
etc. These field equations are then completed by appropriate constitutive 
equations such as the constitutive equations of state, stress, chemical 
reactions etc., which specify the thermodynamic, transport and chemical 
properties of a given constituent material, i.e., of a speoified solid 
or liquid.

In order to appreciate the difficulties in deriving balance equations 
for structured media, it should be recalled that in continuum mechanics 
the field theories are constructed on integral balances of mass, momentum
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and energy. Thus, if the variables in the region of integration are con­
tinuously differentiable and the Jacobian transformation between material 
and special coordinates exists, then the Euler type differential balance 
can be obtained by using the Leibnitz’s rule or more specifioally the 
Eeynolds transport theorem which allow to interchange differential and 
integral operations.

Depending on the basic physical concept used to formulate thermo-mecha­
nical problems, averaging procedures can be classified into three main 
groups, namely the Eulerian averaging, the Lagrangian averaging and the 
Boltzmann statistical averaging. They can be further divided into sub­
groups based on a variable with which a mathematical operator of averag­
ing is defined. The above classifications and the definitions of various 
averaging are given in Table 1, where | = §(<,*) * %  means the phase ve­
locity, i.e. the velocity of individual particles, and is the proba­
bility or particle density function of Ic**1 - phase containing n particles.

Table 1
Function Euler Lagrange Boltzmann

Time mean 
value i f / M « ¿/.r< 1.0"
Spatial mean 
value y j M m
Statistical mean 
value H  w ) 0
Molecular densit; 
function

r

Transport
properties

/£»
The most important and widely used group of averaging continuum mecha­

nics is the Eulerian averaging, because it is closely related to human 
observations and classical instrumentations. The basic concept of Lagran­
gian averaging is directly related to the Lagrangian description of mecha­
nics. As the particle coordinate £ displaces the spatial variable X of 
the Eulerian description, this averaging is naturally fitted to a study of 
the dynamics of a particle. Thus if our interest is on the behaviour of an 
individual particle rather than the collective mechanics of a group of 
particles, the Lagrangian average is important and useful for analyses. In 
opposite to them, the Boltzmann statistical averaging is important when 
the collective mechanics of large number of particles are in question.
As the number of particles and their interactions between them increase, 
the behaviour of any single particle becomes so complicated and diversi­
fied, it is not practical to solve for each particle. In such a case the 
behaviour of a group of many particles increasingly exhibits some peculiar 
characteristics which are different from a single particle as the collec­
tive particle mechanics becomes a governing factor.
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3 . Balance equation and model formulation

The obvious method is to average the balance Ians in time and space 
and the results applied to the conservation laws of mass, momentum and 
energy of each phase. We consider the general balance equation of an 
arbitrary quantity y/ in the following form [6]

of ty , respectively. Since it is multiplied by the density y  , the quan­
tity y  is expressed as the amount per unit mass. Thus the above equation 
itself is a mathematical statement of the balance of the quantity in an 
unit volume of the medium. This is an important point to be remembered 
when we compare it to the surface balance equation in the course of the 
time averaging.

Using for example the Eulerian time and phase average the balance 
equation (1) for k*h -phase becomes

The time averaged phase density function o(, - the local time fraction - 
has been defined as

where is the state density function defined for two phase flow as

The function o(K which appears only after the integral operation is a 
fundamental parameter in studying the time averaged field equations.

expresses the geometrical importance of that phase. Apart from the time 
fraction \ the concentration based on mass can be defined. In analogy 
with the theory of diffusion, the mass concentration is given by

In developing a general model based on the mixture properties, it is ne­
cessary to express an average convective flux by various mean values. 
Assuming the turbulence fluctuating components of every physical quanti­
ties, it shows that the average convective flux can be split into two 
parts according to the different transport mechanisms. The turbulent flux

(1)

Here T  and <f> represent the generalized tensor efflux and the source

+ v.[ < * , < & ) +  7.[«i,((r̂ + <££?>)] - *,<£> i  - l K - D (2 )

(3)

Physically of, represents a probability of finding the kih -phase, thus it

(5)

where the notation ( ) means the phase average, so that

(6)
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is included into the third term of (2) and the last term I* represents 
the interfacial for kth -phase.

So the fundamental purpose of averaging has been accomplished. Thus 
the original two phases which are alternatively occupying a point have 
been transformed into two coexisting continue.

Now we shall present balance equations for the two - fluid model and 
for the diffusion model separately.

In order to obtain mass balance equations for two - fluid model, we set

f v 1 , r«-°. 4k-.°, l « - r« w

and by substituting (7) into i2) we get

+ *• (■<»<$>* ) - p« <«>
s

where = 0. Equation (8) is the continuity equatibn for each phase
with the interfacial mass source appearing on the right hand side due 
to phase changes.

Analogously the macroscopic momentum balance can be obtained from (2) 
by setting

V i  “  * » - 9 «  ( 9 )

where X* is the stress tensor of the phase k « p means the pressure and 
S the unit tensor.

The macroscopic balance equation which have been derived from the time 
and phase averaging and applied to the conservation laws of mass, momentum 
and energy for both models, have been shown in Tab. 2 with following de­
finitions:

Table 2
Balance Two - Fluid Model Diffusion Model

liass - 0

Momentum

- * I, ’ 0

+ * * V Pm "

Energy

+ V.(fv^) - En>0
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I

I

CIO)

1«4

and where term’s expressing the heat transfer has been neglected.
It should be mentioned, that the basic concept of the diffusion model 

is to consider the mixture as a whole, rather than two phases separately. 
It is evident that the diffusion model formulation will be simpler than 
the two - fluid model, however it requires some drastic constitutive 
assumption and with them some of the important characteristics of two - 
phase flow will be lost.

It is evident, that equations of both models have the same form but 
the physical quantities have another meaning. It would be possible to 
apply through the same way the Lagrangian or Boltzmann averaging and be­
come another form of balance equations with more complicated terms and 
another definitions of physical quantities.

In summarizing this paper it can be said that the usually used models, 
describing the motion of suspended solid particles in a liquid stream can 
be formulated on the basic of general balance equation by means of vari­
ous method of averaging.

Notation

C - mass concentration 
E - energy source from interfaces 
9 - acceleration due to gravity
I - interfacial source term 
M - state density function 
f> - pressure 
t - time
U - internal energy 
v  - velocity 
x - spatial coordinate 
<< - local time fraction 
P - mass generation 
4 - unit tensor
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v - Laplace operator 
| - particle coordinate 
T  - atreas tensor 

- density 
r - tensor efflux 
if» - arbitrary quantity

Subscript 
It - Ic* -phase 
m - mixture 
p - particle
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MODELOWANIE MIESZANIN WOOA - CIAŁO STAŁE 
NA PODSTAWIE STATYSTYCZNYCH WARTOŚCI ŚREDNICH

S t r e s z c z e n i e

W artykule opisano możliwości podstawowego fizycznego i matematycznego 
formułowania modelowania ruchu przepływu dwóch wielofazowych ośrodków w 
stosunku do przepływu mieszaniny dwufazowej składajęcej się z unoszęcej 
cieczy z dyspergowanymi w niej stałymi częstkami.

Podstawę wszystkich proponowanych modeli jest idea mechaniki kontynium.
W proponowanych modelach opisujęcych potoki z zawiesinami uwzględnia 

się uśredniony względny ruch komponentów potoku i hydrodynamiczne oddzia­
ływanie fragmentów zawiesin z unoszonę cieczę.

Na podstawie znanych metod uśrednienia wielkości fizycznych według 
Eulera, Lagrange'a i Boltzmanna pokazana jest możliwość ułoZenia podsta­
wowego równania bilansu dowolnej wielkości.

Przypuszcza się. Ze w przypadku dwufazowego potoku ruch osobno wzię­
tych częstek z kaZdego składnika jego Jego komponentu Jest chaotyczny, 
dlatego w dowolnie obranym punkcie w obszarze potoku w dowolnym momencie 
czasu może znajdować się przypadkowo jakakolwiek stała częstka lub uno- 
szęca się ciecz.

Z punktu widzenia tego prawdopodobieństwa pokazano uśrednienie według 
Jednakowych faz i czasu, jako przykład określone prawa zachowania masy, 
pędu i energii dla dwóch róZnych modeli.

Model stały rozpatruje przepływ dyskretnej struktury zawiesiny Jako 
przepływ dwucieczowy, model drugi opisuje zawiesinę Jako Jednocieczowy 
kontynium. Porównujęc otrzymane równania moZna wskazać na poszczególne 
zasady rozwięzania z uwzględnieniem określenia podstawowych charaktery­
styk.

MOAEJIHPOBAHHE CiłECH BOJU - TBfiPflOE TEJIO HA OCHOBE 
CTAIHCTHHECKHX CPEAHHX 3HAHEHHH

P e 3 ¡o u e
i

B CTatiH onzcaHH BO8W0SBOCTM ocHOBHofi $>opHyjnipoBKK $H8ifłecKoro m MareMa- 
Tnqecicoro MoaezMpoBaHKs TeqeHna «Byx MHoro$asHnx cpen c oTHomeHueii k re- 
ReHKB AByx(fa8HHX cueceJS, cocToamJtx «8 HecymeB j c h a k o c t h  c  AzcneprHpoBaBHH- 
mk b Hek TBepAHuz RacTHuauK, b ocHOBe Bcex npeA*oxeHHHx uoAezeft x e x n r  

JiAea MexaHKKx KOHTMHyyua. B npe,sjio*eHHiix uojjeji«x, ontcuBanmii BSBeceHe- 
cymxe noTOK« yqxTHB8eTca ocpejmeHoe OTHOCHTezbHoe ĄBUMeune KomnoHeHTOB 
noroKB h rHflpoflHHaMMRecKoe B8axH0neficTB«e szeMeBTOB B8B6CH c HecymeB 
ZMAKOCTŁB.



Modelling of water.. 61

Ha ocHOBe xaBecTR H x tieT o x  o cp ex a ea H ft $ x a x n e c x x x  se jtx n x a  n o  SjTJtepy, 
J la r p a a x y  it E oxbT auaaH y noK asaR a BoauoxHOCTb o$opujieH sin  ochobhoto  y p a B x e -  

Hiis C ax a a n a  jtrOoR BejixaxH H . IIpexnoJiaraeT C H , rto  b c x y a a e  xB yxtfaeH oro  n o -  

T o x a , A B xxeH xe OTxejtbHO B aairax a a c T x n  x a x A o r o  xa  c o c T a B x a m x x  e r o  x o u rio -  

HeHTOB HBjtaeTCx xaoTxaecK X M , n o a T o x y  b xuOoR <J>xxcxpoBaHHofl T o a x e  b 0 6 -  

jibctx  n o to x B  b xoO ofl uohbht  B p eu ea x  x o x e T  HaxoAXTbca CAyaafiHuu o S p a a o u  

x x x  x a x a a -H x C y x b T se p x a a  a a c T x u a  x x x  n e c y n a a  x x A x o c r b . C torxx apeR xa btoR 
BepoaTBOCTx n o x a a a n o  ocp ex H eH x e no OAXHaxoBHii $ a a a u  x  B p eu ea x  x x a x  n p x -  

u ep  o n p ex ex eB B B  aaxoHU c o x p a a e a x a  u a c c u ,  x a jtx a ecT B a  x B x x e a x a  x a a e p r x x  

x x a  XByx paaRUx M o x ejiea . T B ep xaa  lio x e x b  p accM arp xB aeT  T eaeH xe A xcxp eT H oi 

CTpyxT ypx BBBecx x c x  T e a e a x e  A B yxxxA xocT H oe, B T opaa r o a b x v  o n x ca B a e T  

B aB ec TOJtbxo oahoxxaxocthhm KoaTXHyyuoM. C p aB H eaxex  x a x c x a a a u x  ypaBaeH xR  

a o x a o  n o x a a a T b  oT A exbR ue npxH uxnu p em eaxa  c  y a e T o u  onpexexeR X B  ochobhhx 
x a p a x T e p x c r x x .


