ZESZYTY NAUKOWE POLITECHNIKI SLASKIEJ 2008
Seria: AUTOMATYKA z. 150 Nr kol. 1796

Marek SZCZEPANSKI
Politechnika Slaska

FASTDIGITAL PATHS APPROACH SPATIO-TEMPORAL FILTER

Summary. A new efficient spatio-temporal filtering technique for off-line video
enhancement was presented in this paper. The new approach is based on digital
paths concepts [16, 17] in three dimensional space. The digital paths can ex-
plore image structures in spatial as well as temporal coordinates from subsequent
frames.

Presented technique copes with different video artifacts such as Gaussian, impul-
sive and grain noise and still preserves and even enhances edges.

CZASOWO-PRZESTRZENNY FILTR FDPA

Streszczenie. Artykut przedstawia nowag, efektywng metode filtracji bar-
wnych sekwencji wideo. Zaproponowany algorytm wykorzystuje idee $ciezek
cyfrowych w trojwymiarowej przestrzeni. Sciezki cyfrowe eksplorujg struktury
obrazu zaré6wno w czasie, jak i w przestrzeni, co zapewnia doskonate zachowanie
detali obrazu oraz zapobiega powstawaniu artefaktow zwigzanych z usrednia-
niem ruchomych obiektow pomiedzy kolejnymi klatkami. Zaprezentowana tech-
nika skutecznie usuwa szum gaussowski, impulsowy oraz artefakty kompresiji,
zachowujgc, a nawet poprawiajagc krawedzie w obrazie.

1. Introduction

From several years we can observe increasing interestin video processing. Video
noise reduction without structure degradation is perhaps the most challenging video en-
hancements task.

There are several sources of video noise such us:

¢ sensor noise - especially visible in cheap cameras and in low light vision tasks,
« digital compression artifacts - blocking, ringing
e transmission artifacts

« film artifact - dust, scratches, fingerprints and grain noise - those artifacts are really
important in old movies restoration.

Several techniques have been proposed over the years. Among them are standard
noise reduction techniques, the so-called spatial filters, applied to subsequent frames of
the video stream.
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Fig. 1 Paths in the test image LENA

However, standard image processing techniques cannot utilize all available infor-
mation i.e. similarities in neighboring frames.
Modern video denoising algorithms can be divided into three basic groups:

» spatial - standard noise reduction techniques, all frames are processed separately
e temporal - only temporal information is used,
» spatio-temporal - combination of spatial and temporal denoising.

In this paper we propose a different approach. We propose to exploit possible
connections between successive image pixels using the concept ofdigital paths in spatial
domain which can be extended to temporal domain and understood as trajectories or
object displacements in subsequent frames.

After analyzing some natural images one could find that pixels form some kind
of "paths", especially in textures and on the fine image details. Examples of such "paths"
in famous test image LENA are presented in Fig. 1.

According to the proposed here methodology, image pixels are grouped together
forming paths that reveal the underlying structural dynamics of the image.

The path displacements evaluated over all possible digital paths, are used to de-
rive fuzzy membership functions that quantify similarity between vectorial inputs. The
proposed filtering structure is then using the function outputs to appropriately weight
input contributions in order to determine the filtered result.

The proposed filtering technique can successfully eliminate Gaussian and impul-
sive noise as well as digital compression artifacts. However, thanks to the introduction
of the digital paths in its supporting element, the new filters not only preserve the edges
and the other fine details in the image, but it is possible to enhance them acting as an
image sharpening operators.

Some temporal filters can introduce strong ghosting artifacts from moving objects
[2], however tracking capabilities of digital paths reduce to minimum.

The paper is organized as follows. In Section 2 2. the general concept of the
digital paths applied to the spatial filters is introduced. Section 3 3. introduces concept
ofour spatio-temporal filter, while Section 4 presents simulation results. Finally, Section
5 summarizes our paper.
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2. Spatial Fast Digital Paths Approach Filter (FDPA)

2.1. General filter framework

In this work general fuzzy filtering structure proposed in [7, 8, 10] will be used.
The general form of the fuzzy adaptive filters proposed in this work is defined as
weighted average of input vectors inside the processing window W.

k-1
fc-i e m
FQ= Y JNiFi= ~ : @
i=0 £ M
i=0
where Fj and Fqgdenotes filter inputs and output respectively.

The relationship between the pixel under consideration (window center) and each
pixel in the window should be reflected in the decision how to define the filter weights.
In our case weights will be calculated using similarity functions calculated over digital
paths included in the processing window W.

In order to simplify implementation of algorithms and make them faster the path
length will be fixed to the certain value n. In such case algorithms will consider only
paths of length n.

Using the connection cost function concept it is possible to define different
classes of similarity functions. Choosing a specific form of similarity function yields
different filter classes, with different properties which can be applied for various low
level vision tasks.

2.2. Connection Cost Defined over Digital Paths
In order to perform operations based on the distances we first need to define the
notion of atopological distance.

Let Qbe any nonempty set. We can measure distances between points in Q, which
amounts to defining areal valued function on the Cartesian product Qx Qof Qwith itself.
Let the function p : Q x Q —R be called adistance if it is positive definite,

p(Fi, Fj) > 0,with p(Fi, Fj) = Owhen Fi = Fj, (2)
and symmetric
p(Fit Fj) = p(Fj, Fi), for all Ft,Fj e Q. 3)
A distance is called a metric if additionally it satisfies the triangle inequality [5]
p(Fi, Fk) < p(F, Fj) + p{Fj, Fk), for all Fj, Fj, Fk 6 Q. (4)

In digital image processing three basic distance functions are usually applied.
If Fi= (F/, Ff) and Fj = (Fj,F~) denote two image points (Fj, Fj e Z2) then we define
the

» city-block distance

p4(Fj, Fj) = |F/ —Fj\ + |F? —Fj\, (5)
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Fig. 2. a) Continuous path 11 leadingfrom the Fi to Fj, and b) increasing polygonal line on the
path 11

* chessboard distance

p8(Fi, Fj) = max {\F> - F}|,|Ff- F]\}, (6)
» Euclidean distance

pE{FUFj) = [(FI - Fj)2+ (F2- F2)2]*, (7)

Using the city-block and chessboard distances we are able to define the two basic
types of neighborhoods, 4-neighborhood A/4 and 8-neighborhood A/s

Ar, (Fi) = {Fj, P4 (Fi, Fj) = 1}, A/s(Fi) = {Fj,p8(Fh Fj) = 1}. (8)

Lettj e {4,8}. Two points Fi, Fj 6 Z2 are said to be in w-neighborhood relation
or to be A/*-adjacent if Ft e Afu(Fj) or equivalently Fj e Jfu(Fi). This A/*-adjacency
relation defines a graph structure on the image domain, called w-adjacency graph. On
the graph, a finite A/L,-path can be defined as a sequence of points (po,Pi, mme >Pn) such
that for i € {1,2,... ,n} the point pi-\ is Afw adjacent to pi. A path is called simple if
i f j implies that pi f pj. This is a very important property of a path, as it means that a
path does not intersect itself [6].

Let us now introduce the concept of a geodesic distance.

Let us assume, that K2 is the Euclidean space, S is a subset of R2 and x, y are
points belonging to set S. A path from X to y is a continuous mapping IT: [a, 6] —»S,
such that n(a) = x and 11(6) = y (Fig. 2a). The point X is considered as starting point
while y is the ending point on the path Il [3].

An increasing polygonal line P on the path n is any polygonal line such that
P —{lI(At)}"=0,a= A0O< ... < An = 6. The length of the polygonal line P is considered
to be the total sum of its constitutive line segments L(P) = £)"=Lp(II(At_i), lI(A]j)) where
p(x,y) is the distance between the points x and y, when a specific metric is adopted. A
path Il from X to y is called rectifiable, if and only if L(P), where P is an increasing
polygonal line, is bounded. Its upper bound is called the length of the path Il (Fig. 2b).

The geodesic distance ps(X,y) between points x and y is the lower bound of the
length of all paths leading from X to y which are totally included in S. If such paths do
not exist, then the value ofthe geodesic distance is setto 00. In general ps (X, y) > p(X, Y).
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However, if the set S is convex, meaning that there are no points on the line between x
and y that are not members of S, the geodesic distance satisfies ps{x, y) = p(Xx,y).

The notion of the path can be applied to a lattice, which is a set of discrete points
in the plane, in our case the spatial locations of the image pixels. Let a digital lattice
H = (F, Af) be defined by F, which is the setof all points of the plane (pixels of a color
image) and a neighborhood relation Af between the lattice points [13]. In the case of
the ranked-type non-linear filters the processing window W forms a lattice where Af is
defined through the window size.

A digital path P = {p;}"=0 defined on the lattice H is a sequence of neigh-
boring points G Af. The length L(P) of the digital path P{pi}"=0 is simply
]JCE=i Pn (Pi-i>Pi)» where pn denotes the distance between two neighboring points of the
lattice H

Constraining the paths to be totally included in apredefined set W e F yields the
digital geodesic distance pw .

An .A-neighborhood system (w = 4 or g —8) is considered in this work with a
topological distance of 1 assigned between two neighboring points (Fig. 3).

Let us adopt the following notation, which will help us define the distance func-
tions defined over digital paths.

The starting point of a path will be denoted as po = (xo>po). Its neighbors will be
denoted as p\ = {xUl,yVl), which means that the neighbors are the second points of all
digital paths originating at po- Then the third point of a digital path starting at po will be
P2= (x,2,yV2) and so on, till the path reaches in n steps the ending point pn — (xUn,y ).

The set of all possible digital paths contained in W joining two points X,y e W
w ill be denoted as $1v (x,p).

Two pixels x and y will be called connected (hereafter denoted as X <> y), if there
exists adigital path Pw (X,y) contained in the set W starting from x and ending aty.

If two pixels po and pn are connected by a geodesic path Pw'n {po, pi,... ,p,} of
length n then let Alt'n{po,pi, ... ,p,} be afunction which measures the connection cost
defined over the digital path linking the starting point po and ending point pn.

Aw'n {po,pi,P2, ...,Pn} = f {F (po),F (pi),F (p2),..., F (pn)} =
! {F (x0,yo0),F {xUl,yVI),F (xW2yVl),...,F {xUnyVWn)} ®)

where / is a nonnegative scalar function of n vector variables.

The connection cost over the digital path Aw'n will be defined as a measure of
dissimilarity between color image pixels po, pi,..., pn forming aspecific path linking po
and pn [4, 18].

If apath joining two distinct points X, y, such that F(x) = F(y) consists of lattice
points of the same values, then the connection cost should be zero, otherwise Aw’'n > 0.

Let us define a generalized connection cost function, based on the Distance Trans-
form on the Curved Space [12, 18] introduced by Toivanen for the gray scale images.

For two given points p* = {xUi,yM) and pi-\ = (v ,,”*.,), i=1,2,...,n, which
are in neighborhood relation, let the generalized distance between the two points will be
called connection cost

All,1{pi-i,Pi} = ||F(pi) - F{pi-i)\\ + pw (piipi-i) (10)

The connection of a whole digital path pO,pi,..., p, will be
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Fig. 3. Geodesic paths of length: a) length of 2; b) length of 3, connecting two neighboring
points within a predefined window W ofsize 3 x3, when the 8-neighborhood system is
applied

n
Al (pQiplieme)Pn} = [IF (Pl) _ Ffe-NIl +PW(Pi,Pi-l) 1)
5
Similarly to the gray-scale case, we will call the minimal connection cost
r*/,n(2!?) of a path of length n linking two points x,y S W, the rc-geodesic between
x and if.

Tw'n(x,y) = min {A(7),7 6 $vi/n} (12

In this way the n-geodesic is defined as the path of length n, which gives the
minimal connection cost between two points linked by a digital path. If we take the
minimum of the connection cost generated by all possible paths joining two points X
andy € W, then we get the generalized multichannel geodesic distance between these
points

ril'(x,?/) = min{rHn(x,y)} = min|a {p),p€ PWn(x,y),n€ wj . (13)

r” (a,y) defines the multidimensional distance transform, which is a generaliza-
tion of the Distance Transform on Curved Space introduced by Toivanen for the gray-
scale images.

In general, two distinct pixel’s locations on the image lattice could be connected
by many paths. Moreover the number of possible geodesic paths of certain length n
connecting two distinct points depends on their locations, length of the path and the
neighborhood system used (Figs. 3 and 4).

2.3. Similarity function

Let us now define asimilarity function, analogous to amembership function used
in fuzzy systems, between the starting point X = po and point y —pi crossed by the
digital path connecting pixel p0, its neighbor p\ with all possible points pn which can be
reached in n steps from po-
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Fig. 4. There are sixpaths oflength 4 connecting point x andy when the 4-neigliborhood system
is used (W ofsize 3x3)

The aim of taking into account the points p2, ..-,pn when calculating the similar-
ity between po and p\ is to explore not only the direct neighborhood of pg but also to use
the information on the local image structure.

This can be done by acquiring the information on the local image features investi-
gating the connection costs of digital paths originating at po, passing p\ and then visiting
successive points, till the path reaches length n. In this case the similarity function takes
the form:

pw'n{x,y) = pw'n (po.Pi) = 9 {P0,Pi.P2> ¢se>Pn}) (14)

P{PO,PIP 2<-P'n)

where P{po,Pi,P2>mmm>Pn] denotes the set of all paths originating at Xx — po crossing
y = pi and ending in pnwhich are totally included in W, Aw'n {m} is a dissimilarity value
along a specific path and <) is a smooth function of Au'n.

The smooth function g : (0; 00] —R should satisfy following conditions:

1. gis adecreasing in (0; 00],
2. gis convex in (0; 00],

3. 5(0) = 1,

4. g(A) = 0, when A —00.

Several functions satisfying the above conditions have been proposed in the liter-

ature [9, 11, 14, 15J:
gi(x) =e-**, A6(0;00), (15)

R2)=vy 1 02£ (0;00), (16)

ga(x) = (1 , 036 (0;00), (17)
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Fig. 5. Digital paths of length n — 2 connecting points x and y, where d\, d\, d\ and d\ are

connection costs: d} = |[Fq —F2, df — ||[F2—F31, d\ = |[Fo —F4| and d\ —
IIF4- F3|

HA(x) —1 arctan(/?4x) , 04 G (0;00), (18)

95(x) = - + efx 05 € (0;00), (19)

9%e(x) = T3g: fte(0:0), (20)

97 o ifif T o7e (000). (21)

In this work the exponential function of (15) is assumed so our similarity function
takes the form:

pw'n(x,y) = pwn{po,Pi)= Y2 exP  0-Awn{po,Pi,P*2,---yn} (22)
P{PO,PI,Pi,-,Pn}
where 0 is the filter design parameter.
Forn = land asquare (3 x 3) window W the similarity function p is defined as

pwx(x,y) = exp{-/3[|F(a:) - F(Y)II} . (23)
and then if F(x) —F(y), Aw'n(x,y) —0, p{x,y) = 1, and for ||[F(2) - F(y)\\ —00 then
p -» 0 [8].

Figure 5 illustrates the calculation of the similarity function between two points
connected by two paths of length 11 —2. In this case

Al''2{x,y) = di + d\, 2(x,y) = d\+d\, (24)

with d\, d\ distances between neighboring points on the path P\ defined according to
(11), while d\, do are similarly defined on P2 The total similarity value can be expressed
as follows:
o _ - ¥V.,2\
pw2= exp 0°<AjL2j + exp (-0 mA (25)

A nonnalized form of the similarity function can be defined as follows:

é2 exp [-0 -Aw™n (po, Pi, P2, *me £«}]
/wl‘71| \ _ 1w ‘Tl( 2\ _ _"{PZiP3)",)Pn} 26
v - (po.pi) = X] exp [-0 «Aiy’n {po,p¥ p2,... ,p*}] (26)
P{PO,Pi 1P2L" iPn}
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where P{po,Pi, mmm,pn) denotes paths joining X = p0 and pn crossing y —plt whereas
{po,pl,Pi,mm,Pn} do not necessarily cross y = p\ when joining po and pn.

Assuming that the pixel x = po is the pixel under consideration, with F(y) repre-
senting the pixel y = p\ the filter output F(X) is given as follows:

F(x)= £ YyWn (x>y).F(y)=53" w**POIpl).F (p 1), (27)
y~Als(x) Pi

and combining with (26):

2 exp [-B mAWnN {po,PI,P2, m pn}]
p / N P{PO,PI,P2---,Pn}

Po Api exp[-B- Aw'n{pa,p\,p*2,...,p*n}

F(pi) (28)

P{PO ,PI,PI,-,P'n}

3. Spatio-Temporal Fast Digital Paths Approach Filter (FDPA-3D)

Our Spatio-temporal approach extends idea of digital paths in the image lattice
into three dimensional space. Paths in time can be interpreted as object trajectories
through subsequent frames.

In general spatio-temporal algorithm extension introduces only one difference
shape of the processing window W. Figure 6 shows 3D masks used for video processing
using 4 and 8-neighborhood. In this work simple mask of 3 x 3 x 3 with 8-neighborhood
will be used.

a) b)

Fig. 6. Examples of spatio-temporal masks W for a)4-neighborhood and b) 8-neighborhood
systems

4. Simulation Results

Our new filter efficiency was tested on numerous video sequences. Subjective
results were obtained from original noisy video sequences, however some synthetic tests
with artificial noise were also performed.

Objective quality measures such as the Root Mean Squared Error (RMSE), the
Signal to Noise Ratio (SNR), the Peak Signal to Noise Ratio (PSNR), the Normalized
Mean Square Error (NMSE) and the Normalized Color Difference (NCD) [11] were
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used for the analysis. All those objective quality measures were calculated for the se-
quence of the filtered images. The following formulas define each measure for each
video frame separately:

1 2
RMSEz\ NML (29)
¢=0 j—0 1=1

NMSE = NAIM-T L (30)
i=0 j=0 1=1
N-IM-1 L
£0 |20 &1

SNR = 10log =0 1=0¢ (31)

(32)

where M, N are the image dimensions, and FI(i,j) and FI(i,j) denote the 1th compo-
nent of the original image vector and its estimation at pixel (i.j), respectively.

The NCD perceptual measure is evaluated over the uniform L*u*v* color space.
The difference measure is given as follows:

(33)

where AElus = [(AL*)2+ (An*)2+ (An*)2] 2 is the perceptual color error and Eluv =

[(L*)2+ (a*)2+ (u*)2]2 is the norm or magnitude of the uncorrupted original image
pixel vector in the L*u*v* space.
The performance of the following filters was evaluated:

 Temporal Arithmetic Mean Filter - TAMF (with time window of size 3),
» Spatial Vector Median Filter [1] (with window 3 x3 and L\ norm),
« Spatial Fast Digital Paths Approach FDPA (with paths of size 2 and p = 15),

e Spatio-temporal Vector Median Filter - VMF3D (with window 3 x 3 x 3 and L\
norm),

e Spatio-temporal Fast Digital Paths Approach FDPA3D (with paths of size 2 and
0=15)

Figure 7 and 8 show filtering results of single frame from noisy video sequences
The Car and The Jongleur. Both sequences contain the small moving objects and rela-
tively big static areas. Temporal filters are capable of perfect smoothing of static areas,
however they produce ghosting artifacts. On the other hand spatial filters are 'to weak’
to remove all artifacts. The proposed algorithm smooths static areas, preserves edges
and reduces ghosting artifacts to negligible level (unnoticeable in moving sequence).
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e) f)

Fig. 7. Comparison ofthe efficiency ofthe testedfilters applied to the noisy sequence The Car
(Frame no. 96): a) cropfrom the original noisyframe, b) spatial VMF, c) spatial FDPA
filter, d) Temporal meanfilter (TAMF), e)spatio-temporal vector median (VMF3D) and
f) spatio-temporal FDPA (FDPA3D)

Figure 9 presents comparison of the efficiency of the tested filters applied to the
sequence Rabbit corrupted with mixed Gaussian (a — 15) and impulsive noise (5%)
while objective quality measures are colected in Tab. 1. It is clear that presented tech-
niqgue outperforms compared filters especially when applied to videos corrupted with

heavy and mixed noise.
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Fig. 8. Comparison ofthe efficiency ofthe testedfilters applied to the noisy sequence '‘Jongluer
(Frame no. 52): a) cropfrom the original noisyframe, h) spatial VMF, c) spatial FDPA
filter, d) Temporal meanfilter (TAMF), e)spatio-temporal vector median (VMF3D) and
f) spatio-temporal FDPA (FDPA3D)

After closer inspection it can be noticed that Spatio-Temporal FDPA filter also
eliminates some compression artifacts (Fig. 10).
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e) 1)

Fig. 9. Comparison of the efficiency of the testedfilters applied to the sequence Rabbit cor-
rupted with mixed Gaussian (a = 15j and impulsive noise (5%) - Frame no. 36: a)
cropfrom the corruptedframe, b) spatial VMF, c) spatial FDPAfilter, d) Temporal mean
filter (TAMF), e(spatio-temporal vector median (VMF3D) andf) spatio-temporal FDPA

(FDPA3D)

5. Conclusions

This paper has introduced a new efficient filter for color video denoising. Pre-
sented technique utilizes fuzzy membership functions over vectorial inputs connected
via digital paths in spatio-temporal domain.
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Table 1
Comparison of the new algorithm with the standard some techniques using the rabbit
sequence corrupted with mixed Gaussian (a = 15) and impulsive noise (5%) (Fig. 9)

METHOD NMSE [10-3] RMSE SNR [dB] PSNR [dB] NCD [10-4]

NONE 581.840 27.288 12.352 19.411 120.540

TAMFET 284.700 19.089 15.456 22.515 109.580

FDPA 114.510 12.106 19.411 26.471 66.349

FDPA3D 90.704 10.774 20.424 27.483 62.235

VMF 158.450 14.241 18.001 25.060 74.535

VMF3D 171.770 14.827 17.651 24.710 77.650
a) b)

Fig. 10. a) Cropfrom the original rabbit sequence Frame no. 36, and b) after application of

FDPA3D

The proposed filtering technique can successfully eliminate Gaussian and impul-

sive noise as well as digital compression artifacts and its outperforms compared filters.

The new approach is computationally demanding, so without further optimization

it can be used for off-line processing. However implementation with GPU can increase
processing speed significantly.
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Omoéwienie

W niniejszej pracy przedstawiono nowg, efektywna metode filtracji barwnych
sekwencji wideo - czasowo-przestrzenny filtr FDPA (FDPA3D). Grupy pikseli obrazu
formuja $ciezki cyfrowe odzwierciedlajace struktury przestrzenne wystepujgce w
obrazie, podczas gdy obiekty wystepujace w kolejnych klatkach tworza trajektorie.
Zaproponowany algorytm wykorzystuje idee $ciezek cyfrowych w tréojwymiarowej
przestrzeni.

Sciezki cyfrowe eksploruja struktury obrazu zaréwno w czasie, jak i przestrzeni,
co zapewnia doskonate zachowanie detali obrazu oraz zapobiega powstawaniu artefak-
tow zwigzanym z usrednianiem ruchomych obiektow pomiedzy kolejnymi klatkami.

Skuteczno$¢ prezentowanego algorytmu przetestowano zaréwno z wykorzys-
taniem naturalnie zaszumionych sekwencji wideo, jak i materiatu z zaktéceniem syn-
tetycznym. W testowanych sekwencjach wystepowaly sceny statyczne oraz szybko
poruszajgce sie obiekty.

Otrzymane rezultaty pokazujg, ze zaprezentowana technika skutecznie usuwa
szum Gaussowski, impulsowy, efekt ziarna oraz artefakty kompresji cyfrowej. Opra-
cowany filtr FDPA3D doskonale zachowuje, a nawet poprawia krawedzie w poszczegél-
nych klatkach, nie powodujgc réwnoczes$nie rozmycia ruchomych obiektéw.



