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Summary. A new concept (notion) of the practical stability of cone fractional 
discrete-time linear systems is introduced. Necessary and sufficient conditions 
for the practical stability of the cone fractional systems are established. It is 
shown that: 1) the cone fractional systems are practically stable if and only if the 
corresponding positive systems are practically stable, 2) the positive fractional 
systems are practically unstable if corresponding positive fractional systems are 
asymptotically unstable.

PRAKTYCZNA STABILNOŚĆ STOŻKOW YCH UŁAMKOWYCH 
UKŁADÓW LINIOW YCH DYSKRETNYCH

Streszczenie. Podano nową koncepcję praktycznej stabilności stożkowych 
liniowych ułamkowych układów dyskretnych. Sformułowano i udowodniono 
warunki konieczne i wystarczające dla praktycznej stabilności stożkowych 
układów ułamkowych. Wykazano, że: 1) stożkowe układy ułamkowe są 
praktycznie stabilne wtedy i tylko wtedy, gdy odpowiadające im układy dodatnie 
są praktycznie stabilne, 2) dodatnie układy ułamkowe są praktycznie niestabilne, 
jeżeli odpowiadające im standardowe dodatnie układy ułamkowe są 
asymptotycznie niestabilne.

1. Introduction

In positive systems inputs, state variables and outputs take only non-negative 
values. Examples of positive systems are industrial processes involving chemical 
reactors, heat exchangers and distillation columns, storage systems, compartmental 
systems, water and atmospheric pollution models. A variety of models having positive 
linear behavior can be found in engineering, management science, economics, social 
sciences, biology and medicine, etc.
Positive linear systems are defined on cones and not on linear spaces. Therefore, the 
theory of positive systems in more complicated and less advanced. An overview of 
state of the art in positive systems theory is given in the monographs [3, 5]. 
Mathematical fundamentals of fractional calculus are given in the monographs [16-18, 
22], The fractional positive linear continuous-time and discrete-time systems have 
been addressed in [6, 10, 19, 20, 24], Stability of positive ID and 2D systems has
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addressed in [8, 13, 14, 25, 26] and the stability of positive and fractional linear 
systems has been investigated in [1, 2], The reachability and controllability to zero of 
positive fractional linear systems have been considered in [6, 9, 15]. The fractional 
order controllers have been developed in [21]. A generalization o f the Kalman filter 
for fractional order systems has been proposed in [23]. Fractional polynomials and nD 
systems have been investigated in [4], The notion o f standard and positive 2D 
fractional linear systems has been introduced in [11, 12].
In this paper a new concept of the practical stability of cone fractional discrete-time 
linear systems will be introduced and necessary and sufficient conditions for the 
practical stability will be established.
The paper is organized as follows. In section 2 the basic definitions and necessary and 
sufficient conditions for the positivity and asymptotic stability of the linear discrete­
time systems are introduced. In section 3 the positive fractional linear discrete-time 
systems are introduced. The main results of the paper are given in sections 4 and 5 
where the concept of practical stability o f the cone fractional systems is proposed and 
necessary and sufficient conditions for the practical stability are established. 
Concluding remarks are given in section 6.
To the best author’s knowledge the practical stability of the cone fractional systems 
has not been considered yet.
The following notation will be used in the paper. The set o f real nx m matrices with 
nonnegative entries will be denoted by R™m and R" = R™'. A matrix A = [aÿ] e R"'m (a 
vector) will be called strictly positive and denoted by 4 > 0  if aÿ > 0 for i=l,...,n  
j  = \,...,m. The set of nonnegative integers will be denoted by Z+.

2. Positive ID systems

Consider the linear discrete-time system:

where, X j e R ", u, e Rm, y, e Rp are the state, input and output vectors and, Ae A™,
B e Rmm, C e  Rpxn, D e R pxm.

Definition 1. The system (1) is called (internally) positive if x, e R",y, e /?f, ieZ + for 
any x0 e R? and every u, e R ^ j e  Z+.

Theorem 1 [3, 5]. The system (1) is positive if and only if

xM = Axl + Buh i e Z+ 
Yi = Cxj + Dui

(la)

(lb)

(2)

(3)

(4)

satisfies the condition
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lim Xj = 0 for every x0 e R" (5)

Theorem 2 [3, 8]. For the positive system (4) the following statements are equivalent:
1) The system is asymptotically stable,
2) Eigenvalues zu z1,...,z„ of the matrix A have moduli less 1, i.e. |-z*|<l for 

k = 1
3) det[/„z- A] *0 for |z)>l,
4) p(A) < 1 where p(A) is the spectral radius defined by 

p(A) = m a x  ilzJ) o f the matrix A ,\£k£n' '
5) All coefficients a,, of the characteristic polynomial

p ^ ( z )  =  d c t [ / „ z - 4 ]  =

= zn + an_lzn~l +--- + a1z+ a0
(6)

of the matrix A= A -1 „ are positive,
6) All principal minors of the matrix

A = L - A =

a\\ a\2
a7\ ar

&n\

a \n

a 2n (7a)

are positive, i.e.,

a, >0, a\\ al2 
a 21 a 22

> 0, ...,det A > 0 (7b)

7) There exists a strictly positive vector x  > 0 such that

[ A -In]x< 0 (8)

Theorem 3 [5]. The positive system (4) is unstable if at least one diagonal entry of the 
matrix A is greater than 1.

3. Positive fractional systems

In this paper the following definition of the fractional difference

7=0
(9)

will be used, where a  e R is the order of the fractional difference, and

I for 7  =  0 

q(q-!)•••(<*- j  + l)
( 1 0 )

for 7  =  1,2 ,.



58 T. Kaczorek

Consider the fractional discrete linear system, described by the state-space equations

AaxM = Axk + Buk, keZ+ (H a)

yk = Cxk + Duk ( l i b)

where xk e at", uk e at™, yk ea?p are the state, input and output vectors and /tea?”*",
C e31^", DeWl”m.

Using the definition (9) we may write the equations (11) in the form

*+l-v*+i+ X (_1f  . U -,+1 = Axk + Buk, keZ+ (12a)

yk -  Cxk + Duk (12b)

Definition 2. The system (12) is called the (internally) positive fractional system if and
only if .Yjsat; and yk e aif, keZ+ for any initial conditions ^ e a C and all input
sequences uk e at”, keZw

Theorem 4. The solution of equation (12a) is given by
* - i

/=o
where is determined by the equation

®*+1 = d + /„«)<!>*+ t > l ) ,+,f " V /+1 (14)

with O0 = /„.
The proof is given in [6], 

Lemma 1 [6]. If

then

H ) /+l . >0 for 7 = 1,2,... (16)

Theorem 5 [6]. Let 0 < a < 1. Then the fractional system (12) is positive if  and only if

A+InaeX™ , Be atf", Ceatf*", De 9 ifro (17)

4. Practical stability

From (10) and (16) it follows that the coefficients

c, = c / a ) - ( - J=  1.2,... (18)

strongly decrease for increasing j  and they are positive for 0 < a < l .  In practical
problems it is assumed that j  is bounded by some natural number h.
In this case the equation (12a) takes the form
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•**+i = 4** + Z  ̂ - J  + Buk, keZt (19)
J =i

where
A a  = A + l n a  (20)

Note that the equations (19) and (12b) describe a linear discrete-time system with h 
delays in state.

Definition 3. The positive fractional system (12) is called practically stable if and only
if the system (19), (12b) is asymptotically stable.
Defining the new state vector

r 4

X l =
4 - 1

xk-h.
we may write the equations (19) and (12b) in the form

4+i = ~A~xk + Buk, k e Z + 
Yk = Cxk + Duk

where

(21)

(22a)

(22b)

4
K

q 4  
0 0

4- ! 4  
.. 0

Cjn'
0

o 
Co

0 4 0 .. 0 0 s3 tf4  B =

00 0 0 •• 4 0

e'Jt"

(22c)
C = [C 0 ... o jeatf", D=Dga tfm, n = (\ + h)n

To test the practical stability of the positive fractional system (12) the conditions of 
Theorem 2 can be applied to the system (22).

Theorem 6. The positive fractional system (12) is practically stable if  and only if one 
of the following condition is satisfied
1) Eigenvalues zk, k = 1 n of the matrix /I have moduli less 1, i.e.

\zk |<1 for k = \ n (23)

2) det[/Bz -  A] * 0 for |z| > 0,

3) p( / Î )<l  where p(A) is the spectral radius defined by p(A) = max{| zk |} of the 

matrix A,
4) All coefficients à,-, j = 0 , 1 , o f  the characteristic polynomial

p̂ (z) = det[/i (z+l)-4] =

= z" + âj,_\ z7'-1 +... + a, z+ 4

of the matrix [A-I-n] are positive,

(24)
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5) All principal minors of the matrix

a\ i a\2 • \̂n

1 h~A] = a2\ a2\ ■
(25a)

A i ah\ ■ ^ hh _

are positive, i.e.

|ä„ |> 0,
a 2\ a 22

6) There exist strictly positive vectors x, e 9t", 
i= 0,1,...,h satisfying

>  0 d e t[/Ä -  A] >  0

such that

Aj <x2,...,xh,] <xh

AaX0 + qXl +... + ChXh<X0

(25b)

(26a)

(26b)

4 CJn °iin • ch-\ in Chip ’V
K 0 0 . 0 0 -*i

A
0 in 0 . 0 0 *2 < *2

0 0 0 • in 0 1
3 .

3  .

Proof. The first five conditions l)-5) follow immediately from the corresponding 
conditions of Theorem 2. Using (8) for the matrix A we obtain

(27)

From (27) follow the conditions (26). □

Theorem 7. The positive fractional system (12) is practically stable if the sum o f 
entries of every row of the adjoint matrix A d j[I-n -  A] is strictly positive, i.e.

A d j[ / a - A ] - ' l B » o  (28)

where 1 B=[1 l ... i]r e'Ji” , Tdenotes the transpose.

Proof. It is well-known [12] that if the system (22) is asymptotically stable then

x = [/a-A]-,1ii» 0  (29)

is its strictly positive equilibrium point for £u = l a. Note that

det[/B — A] > 0 (30)

since all eigenvalues of the matrix [7a -  A] are positive. The conditions (29) and (30) 
imply (28). □

Example 1. Check the practical stability of the positive fractional system

Aaxk+l=0.\xk, k e Z + (31)

for a  = 0.5 and h = 2.



Practical stability of cone fractional 61

Using (18), (20) and (22c) we obtain

a ( a -1)c, =- -, c, = — , a  = 0.6 
! ^  16 “

and

q Cj 
1 0 0
0 1 0

0.6 I  i -
8 16

1 0 0
0 1 0

In this case the characteristic polynomial (24) has the form 

Pa(z) = de t[/s ( z + 1) -  4 ] =

=  z3 +  2.4Z2 +  1 .6 75z+ 0 .2 1 2 5

1 1
z + 0 .4

1 1
~ 8 ~ 7 6

- 1 z + 1 0 =

0 - 1 z + 1
.

(32)

All coefficients of the polynomial (32) are positive and by Theorem 6 the system is 
practically stable.
Using (28) we obtain

Adj[/j -  4]1s = Adj

0.4
l 1
8 16 

-1 1 0
0 -1 1

2.0625

0.6500

1.6125

Therefore, by Theorem 7 the system is also practically stable.

Theorem 8. The positive fractional system (12) is practically stable only if the positive 
system

**+i = 4 Æ  k s Z + (33)

is asymptotically stable.

Proof. From (26b) we have

( 4  -  /„)*> + q*i +-+chxh < 0 (34)

Note that the inequality (34) may be satisfied only if there exists a strictly positive
vector Xo e 9t" such that

( 4 - / „ ) ^ < o  (35)
since qÂj +...+ chxh >0.
By Theorem 2 the condition (35) implies the asymptotic stability of the positive 
system (33). □

From Theorem 8 we have the following important corollary.
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Corollary 1. The positive fractional system (12) is practically unstable for any finite h 
if the positive system (33) is asymptotically unstable.

Theorem 9. The positive fractional system (12) is practically unstable if at least one 
diagonal entry of the matrix 4  is greater than 1 .

Proof. The proof follows immediately from Theorems 8 and 3. □

Example 2. Consider the autonomous positive fractional system described by the 
equation

-0.5 1
2 0.5

xk, k e Z + (36)

for a  = 0.8 and any finite h. 
In this case n = 2 and

4  =A+Ina =
0.3 1
2 1.3 (37)

By Theorem 9 the positive fractional system is practically unstable for any finite h 
since the entry (2,2) of the matrix (37) is greater than 1.
The same result follows from the condition 5 of Theorem 2 since the characteristic 
polynomial of the matrix 4  -  /„

p3(z) = det[/B( z + l ) - 4 ]  = 

has one negative coefficient â0 = -2.21. 

5. Cone fractional systems

>i

z+0.7 -1
- 2  z-0.3

= z2 +0.4z-2.21

Pn.

be nonsingular and pk be the k-th (k  = \,...,n) itsDefinition 4 [7]. Let p=

row. The set

( P := |z 6 ^ :f ]p tz^0[

is called a linear cone generated by the matrix P.

In a similar way we may define for the inputs u the linear cone

Q.:=(ueF':fW i/>o}
<7,

%

(38)

generated by the nonsingular matrix q =

(39)

and for the outputs y , the linear

cone
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generated by the nonsingular matrix v _ e Rp‘p-

Definition 5. The fractional system (12) is called ( (P ,Q ,V )  cone fractional system if 
x, e CP and y , e V  , i e  Z+ for every x0 e <P , u, e Q,, i e .

The {<P, Q,, 'P') cone fractional system (12) will be shortly called the cone fractional 
system.
Note that if <P = R", Q, = R?, V  -  R", then the (P+\  R?, R?) cone system is equivalent 
to the classical positive system [3, 5],

Theorem 10. The fractional system (12) is (<P,Q,'P') cone fractional system if and 
only if

A = PAP' e R"'", B = PBQ~' e R?m, C = VCR' e ", D = VDCR' e R^m (41)

Proof. Let
x, = Px„ u, = Qu, and y, = Vy,, i e Z +. (42)

From definition 5 it follows that if x, e <P then x, 6 R", if u, e then u, e R? and if
y , e V  then y  e Rf. From (12) and (42) we have

J .I  \ J )  J- 1
plTT

Pxt_M  =  PAxk +  PBu„ ( 4 3 a )

=  PAP~'xk +  PBQ~'uk =  Axt +  Buk, k e Z t

and

yk = Vyk = VCx„ + VDuk = VCP-% + VDQ 'uk = Cxk + Duk, k e Z t (43b)

It is well-known [5] that the system (43) is the positive one if and only if the 
conditions (41) are satisfied. □

Theorem 11. The cone fractional system (12) is asymptotically stable if and only if 
the positive fractional system is asymptotically stable.

Proof. From (41) we have
dct[ I z -  A] = det[ I z -P A F ']  = det[F \I z -  A)P~']

=  d e t [ / z -  /4] det P d e t  P ~' =  det [ I z -  A]

since det Pdet P~' = 1. □

From Theorem 11 we have the following important corollary.

Corollary 2. The cone fractional system (12) is practically stable if and only if the 
positive fractional system is practically stable.

To test the practical stability of the cone fractional system the Theorem 5 and 6 can be 
used.



64 T. Kaczorek

6. Concluding rem arks

The new concept (notion) of the practical stability of the cone fractional discrete- 
time linear systems has been introduced. Necessary and sufficient conditions for the 
practical stability of the cone fractional systems have been established. It has been 
shown that: 1) the cone fractional systems are practically stable if and only if the 
corresponding positive systems are practically stable, 2) the cone fractional system 
(12) is practically unstable for any finite h if the standard positive system (33) is 
asymptotically unstable. The considerations have been illustrated by two numerical 
examples.
The considerations can be easily extended for two-dimensional cone fractional linear 
systems. An extension of these considerations for continuous-time cone fractional 
linear systems is an open problem.
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Omówienie

W pracy podano nową koncepcję praktycznej stabilności stożkowych liniowych 
ułamkowych układów dyskretnych. Sformułowano i udowodniono warunki konieczne 
i wystarczające dla praktycznej stabilności stożkowych układów ułamkowych. 
Wykazano, że: 1) stożkowe układy ułamkowe są praktycznie stabilne wtedy i tylko 
wtedy, gdy odpowiadające im układy dodatnie są praktycznie stabilne, 2) dodatnie 
układy ułamkowe są praktycznie niestabilne, jeżeli odpowiadające im standardowe 
dodatnie układy ułamkowe są asymptotycznie niestabilne.


