Zygmunt Wusatowski

Porównanie metod radzieckich obliczania nacisku przy walcowaniu na gorąco stali *

Trzy dotychczas znane metody Celikowa obliczania nacisku walców. Nowe nieznane dotychczas metody obliczania: a) S. Gubkina, b) Gołowina-Tjagunowa, c) Gołowina-Szwejkina i d) Samarina. Wybór danych pomiarowych z walcowni blach grubych i cienkich, zgniatacza oraz walcowni dużych i małych jako sprawdzianu dla tych wzorów. Wykonanie przeliczeń porównawczych i wnioski z nich wynikające.

1. Wstęp

Dobór właściwych metod obliczania nacisku walców ma zasadnicze znaczenie przy konstruowaniu walcarek, przy projektowaniu nowych metod technologicznych oraz w ruchu tych urządzeń.

Stale rosnąca ilość nowych metod dowodzi, że zagadnienie to nie zostało doprowadzone do końca, że ciągle jeszcze można w pewien odmienny sposób próbować nowych dróg dla otrzymania możliwie najlepszego rozwiązania.

Szereg znanych metod i wzorów był już analizowany w poprzedniej pracy [1] wraz ze znanymi wówczas wzorami pierwszej metody Celikowa [2].

Opublikowanie odmiennych w ogólnej postaci wzorów Celikowa [3] narzucało również konieczność krytycznego ich przeanalizowania.

To samo dotyczy szeregu nowych, zupełnie u nas dotychczas nie znanych metod S. Gubkina, Gołowina-Tjagunowa, Gołowina-Szwejkina oraz A. Samarina.

2. Metody Celikowa obliczania nacisku walców

Znany dotychczas wzór Celikowa (I metoda) dla obliczania nacisku walców przy walcowaniu na gorąco ma następującą postać:

$$P = F_d \cdot K \frac{2h_2}{\Delta h(\delta - 1)} \left(\frac{h_\beta}{h_2}\right) \left[\left(\frac{h_\beta}{h_2}\right)^3 - 1 \right], \text{kG}$$
(1)

* Praca wykonana zespołowo przez Koło Naukowe Studentów przy Katedrze Walcownictwa i Kuźnictwa.

2*

gdzie:

$$\begin{split} F_d &= b_i \cdot l_d \quad - \text{rzut powierzchni styku w mm}^2, \\ b_s &= \frac{b_1 + b_2}{2} - \text{średnia szerokość w mm}, \\ l_d &\cong \sqrt{R \cdot \Delta h} - \text{rzut luku styku w mm}, \\ \delta &= f \frac{2l_d}{\Delta h} = f \sqrt{\frac{2D}{\Delta h}}, \\ h_1 - h_2 &= \Delta h - \text{gniot bezwzględny w mm}, \\ D - \text{czynna średnica walców w mm}, \\ f &= \text{wysokość przed przepustem}, \\ h_1 - \text{wysokość po przepuście}, \\ h_d - \text{wysokość w plaszczyźnie podziałowej}. \end{split}$$

Wytrzymałość plastyczną odczytuje się z wykresu podanego przez Celikowa na rysunku 1 lub też można ją dobrać z tablicy 1, w zależności od temperatury dla ióżnych stali węglowych. Wielkość K równa się 1,155 K_f , gdzie K_f – wytrzymalość plastyczna.

Rys. 1. Wytrzymałość plastyczna stali węglowych w zależności od temperatury wg Wrackiego i Francewicza [2]

W przypadku walcowania na gorąco obliczono następująco współczynnik tarcia *f* z wzoru Ekelunda [1]:

f=1,05-0,0005 t dla walców żeliwnych i stalowych szorstkich, (2) f=0,8 (1,05-0,0005 t) dla walców utwardzonych i stalowych gładkich, f=0,55 (1,05-0,0005 t) dla walców stalowych szlifowanych.

We wzorach tych t oznacza temperaturę walcowanego metalu w °C.

Tablica 1

	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1				A	
			Ga	atunek i s	kład stali		
	St 3	St 5	St 6	St 7	E 3	E 10	chromowo- molibdenowa
10.01	0,15 C	0,30 C	0,45 C	0,55 C	0,1 C	0,34 C	0,26 C
t°C			1.1.1.		0,3 Si	0,24 Si	0,2 Si
	1111-11				0,2 Mn	0,2 Mn	0,3 Mn
					0,9 Cr	1,65 Cr	0,7 Cr
					3,15 Ni	3,3 Ni	0,12 Mo
20	44,0	55,4	74,0	78,3	62,0	100	55,0
600	20,8	24,2	29,1	33,5	25,0	27,0	34,0
700	11,2	14,1	16,8	17,7	15,0	19,0	19,0
750	_				14,0	16,0	12,0
800	7,5	9,6	9,8	11,0	12,0	13,0	12,0
850	_				10,0	11,0	10,6
900	7,1	7,1	7,6	7,0	8,8	9,2	9,0
950	-		_		7,2		
1000	5,2	5,2	5,6	5,0	6,3	6,0	5,7
1100	3,6	3,6	3,7	3,7	4,5	4,1	3,7
1150	-				3,7		3,2
1200	2,6	2,6	2,6	2,6	3,0	2,8	2,5

Wytrzymałość plastyczna stali w zależności od temperatury walcowania w kG kg/mm² wg prób Wrackiego i Francewicza

Rys. 2. Zależność średniego oporu plastycznego od zwiększonej wytrzymałości plastycznej wg pierwszej metody Celikowa (dla wzoru 1) [1 i 2]

Dla rozwiązania zależności $h\beta/h_2$ wyprowadził Celikow następujący wzór:

$$\frac{h_{\beta}}{h_2} = \left[\frac{\sqrt{1 + (\delta^2 - 1)\left(\frac{h_1}{h_2}\right)}}{\delta + 1}\right]^{1/\delta}.$$
(3)

Ponieważ obliczanie wzorami (1) i (3) jest bardzo żmudne, dlatego Celikow podał wykres (rys. 2), który służy do rozwiązania równania (1) przez określenie stosunku $\frac{K_{ws}}{K}$ w zależności od δ przy różnych wartościach gniotu względnego $\varepsilon = \frac{\Delta h}{h_1}$.

Dla rozwiązania wzoru (1) wystarcza więc w tym przypadku obliczanie gniotu ε i współczynnika δ , dla otrzymania z nich K_{wsr} przy znanych wartościach K.

2.1. Nowe metody Celikowa

Korzystanie z początkowych metod Celikowa było dość uciążliwe, z wyjątkiem metody graficznej, dlatego Celikow przekształcił [3] wzory (1) do (3) następująco:

$$P = F_{d} \frac{2K}{\varepsilon \delta} \left[\left(\frac{1}{1-\varepsilon} \right)^{\frac{\delta-1}{2}} - \left(1 - \frac{\varepsilon}{2} \right) \right], \, \mathrm{kG}, \tag{4}$$

gdzie

 ε — gniot względny,

 δ – wskaźnik obliczony jak dla wzoru (1).

Dla ułatwienia rozwiązania równania (4) podał Celikow wykres (rys. 3), który umożliwia odczytanie bezpośrednio zależności $\frac{K_{wir}}{K}$ od gniotu względnego i współczynnika δ . W dalszym ciągu tej pracy ten sposób nazywamy drugą metodą Celikowa.

W dalszej kolejności Celikow uprościł wzór (4) do postaci następującej:

$$P = F_{d} \frac{K(2-\varepsilon)}{\varepsilon \delta} \left[\left(\frac{1}{1-\varepsilon} \right)^{\frac{2}{2}} - 1 \right], \text{ kG.}$$
(5)

Wszystkie oznaczenia w tym wzorze są takie same jak w (4). Nazywać go będziemy trzecią metodą Celikowa.

Wartość K oraz f we wzorach (4) i (5) oblicza się czy też przyjmuje się w taki sam sposób jak dla wzoru (1).

3. Dalsze metody radzieckie obliczania nacisku walców

Nowe sposoby obliczania nacisku walców polegają na odmiennych założeniach początkowych niż dotychczas stosowane [8].

Średni opór odkształcenia oblicza się w tych metodach z następującej ogólnej zależności:

$$K_{ws} = p_0 \cdot K_r, \, \mathrm{kG/mm^2}, \tag{6}$$

gdzie

 p_0 – czynny nacisk jednostkowy,

Kr - współczynnik oporów dodatkowych tarcia.

3.1. Metoda S. Gubkina [8]

Dla obliczania nacisku walców przy walcowaniu na gorąco S. Gubkin korzysta z następujących wzorów:

$$p_0 = K_v [1 + \beta (0.95 t_{p_i} - t) + \frac{\beta^2 (0.95 t_{p_i} - t)^2}{2} K_t, \qquad (7)$$

gdzie

- K_t wytrzymałość plastyczna przy równoważnej temperaturze 0,95 t_p oraz szybkościach odkształcenia 40–50 mm/min.; wtedy przy temperaturze walcowania K_t =0,4 do 0,6 kG/mm²,
- t_p, temperatura topnienia metalu °C,
- t temperatura walcowania metalu °C,
- β współczynnik temperaturowy przyjmowany w granicach 0,008– 0,012. Górna wartość odnosi się do twardych stopów o dużej gęstości,
- K_v współczynnik szybkości zależy od szybkości odkształcenia, przyjmuje się go wg następujących zależności:
 - $v = 10 25 \text{ cm/sek}, K_v = 1, 2 1, 6,$

$$v = 25 - 75 \text{ cm/sek}, K_v = 1, 6 - 2, 0$$

$$v > 100 \text{ cm/sek}.$$
 $K_v = 2,5.$

Jeśli dla stali przyjmiemy

$$egin{aligned} & K_v \!=\! 2,\!5, \ & eta \!=\! 0,\!008, \ & K_t \!=\! 0,\!5 \; \mathrm{kG/mm^2}, \end{aligned}$$

to wtedy p_0 przedstawia rysunek 4 w zależności od temperatury dla t_p 1300, 1400 i 1500°C. Rysunek 4 pozwala obliczyć p_0 stali metodą Gubkina.

W przypadku przyjęcia innych wartości K_v i K_t poszukiwane p'_0 można obliczyć z zależności:

$$p_0' = \frac{K_v \cdot K_t}{2, 5 \cdot 0, 5} p_0. \tag{8}$$

Porównanie metod radzieckich obliczania nacisku

Wielkość zewnętrznych oporów (oporów płynięcia) przedstawia Gubkin wyrażeniem:

$$K_r = K_\sigma \left(1 + 1.3 f \frac{R}{h_1} \right), \qquad (9)$$

gdzie

- K_{σ} współczynnik uwzględniający nierówność rozkładu naprężeń przy odkształceniu plastycznym, wg Gubkina K_{σ} =1,0 do 1,3,
- f współczynnik tarcia,
- R czynny promień walców.

Według Gubkina f zmienia się w zależności od szybkości walcowania stali następująco:

v < 1	m/sek,	f = 0,40 - 0,45,
v > 1	m/sek.	f = 0,38 - 0,40.

Rysunek 5 przedstawia wykres wartości K_r z wzoru Gubkina (9) przy przyjęciu f=0,4 i $K_{\sigma}=1,3$. Korzystając z wykresów 4 i 5 możemy otrzymać pełny opór odkształcenia przy walcowaniu z wzoru (6):

$$K_{ws} = K_r \cdot p_0$$

$$K_{ws} = \frac{K_v}{2.5} \cdot \frac{K_\sigma}{1.3} \cdot \frac{K_t}{0.5} K_r \cdot p_0 = 0.6 K_v \cdot K_\sigma \cdot K_t \cdot K_r \cdot p_0, \, \text{kG/mm}^2, \quad (10)$$

przy czym

 p_0 i K_r odczytuje się z rysunku 4 i 5.

3.2. Metoda Gołowina — Tjagunowa

W tej metodzie czynny nacisk jednostkowy otrzymuje się z wzoru, gdzie:

$$p_0 = K_t \cdot R_{pl}, \, \mathrm{kG/mm^2}; \tag{11}$$

nostkowego po dla metody S. Gubkina [8]

Rys. 5. Wartości współczynnika K_r dla metody S. Gubkina [8]

dla temperatur walcowania wyższych od $(t_{pt}-575^{\circ})$ obliczamy:

$$K_t = \frac{t_{pt} - 75 - t^\circ}{1500};$$
 (12a)

dla zakresu temperatur niższych od $(t_{pt}-575^{\circ})$:

$$K_t = \left(\frac{t_{pt} - t^\circ}{1000}\right)^2,$$
 (12b)

gdzie

- K_t współczynnik wytrzymałości plastycznej zależny od temperatury,
- t temperatura walcowa-nia °C,
- t_m temperatura topnienia walcowanej stali °C,
- R_{pl} granica plastyczności przy 20°C.

Przejście od wzoru (12a) do (12b) na wyznaczenie K_t ma miejsce w przedziale temperatur $(t_{pt} - 575^{\circ}) = (700 \text{ do } 900^{\circ})$. Granicę stosowalności

każdego z wzorów stanowi punkt zrównania się wyników każdego z obu równań. Na przykład w przypadku stali o $t_{pt} = 1300^{\circ}$ granicę stosowalności wyrażeń stanowi temperatura walcowania $1300 - 575 = 725^{\circ}$ C, a w przypadku stali o $t_{pt} = 1500^{\circ}$ temperatura walcowania $1500 - 575 = 925^{\circ}$ C.

W praktyce dobiera się zawsze wartość dającą większe K_t . Rysunek 6 podaje wartość p_0 dla niektórych stali węglowych, rysunek 7 zaś wartości współczynników K_t . Metoda ta dozwala na uwzględnienie stali stopowych i twardych. Metody Gołowina-Tjagunowa dają największą wartość czynnego nacisku jednostkowego. Uwzględnienie ze-

Rys. 6. Wartości czynnego nacisku jednostkowego dla metody Gołowina — Tjagunowa 1) stal węglowa o $0,1^{\circ}/_{\circ}$ C, 2) stal węglowa o $0,5^{\circ}/_{\circ}$ C, 3) stal węglowa o $0,9^{\circ}/_{\circ}$ C, [8]

Rys. 7. Wykres do wyznaczania wielkości współczynnika K_t dla metody Gołowina—Tjagunowa, Gołowina—Szwejkina i Samarina [8]

wnętrznego oporu tarcia w tej metodzie opiera się na uproszczonych wzorach A. Gołowina

$$K_{r} = 1 + f\left(\frac{l_{i}}{h_{i}} - 1\right) = 1 + f\left(\frac{2\sqrt{\Delta h \cdot R}}{h_{0} + h_{1}} - 1\right),$$
(13)

gdzie f — wg Gołowina współczynnik tarcia wynosi $\frac{1}{3}$, dla $\frac{l_s}{h_s} < 1$ przyjmuje się $K_r = 1$.

Rys. 8. Wykres granicy plastyczności i temperatur topnienia dla stali węglowych [8]

W ten sposób metoda Gołowina—Tjagunowa dla pewnego oporu odkształcenia przedstawia wzór:

$$K_{ws} = \left[1 + f\left(\frac{l_s}{h_s} - 1\right)\right] K_t \cdot R_{pl}, \, \mathrm{kG/mm^2}, \tag{14}$$

gdzie K_{wi} – średni opór odkształcenia.

Dla otrzymania wartości t_{pt} i R_{pl} różnych stali węglowych można korzystać z wykresu na rysunku 8.

27

3.3. Metoda Gołowina - Szwejkina *

W tej metodzie czynny nacisk jednostkowy obliczamy z wzoru:

$$p_0 = K_t \cdot K_f, \text{ kG/mm}^2. \tag{15}$$

Współczynnik temperatury obliczamy z zależności:

$$K_t = 1644 \cdot 10^{12} \cdot t^{-4,73} - 2203 \ e^{-0,0143t}. \tag{16}$$

Uwzględnia on wpływ temperatury walcowania na opór odkształcenia. Rodzaj zaś metalu (stali) ujmuje wartość wytrzymałości plastycznej K_f obliczona z zależności:

przy

$$t = 700 \text{ do } 1200^{\circ}\text{C} \qquad K_f = 80 C + 71 \qquad (17a)$$

$$t = 15 \text{ do } 700^{\circ}\text{C} \qquad K_f = 71,5 C + 64. \qquad (17b)$$

C w tych wzorach podaje procent węgla w stali. Zależności te otrzymano z prób ściskania pod prasą stali węglowych o zawartości 0,14 do 0,5% $_{0}C$.

Rys. 9. Wartości współczynnika K, do metody Gołowina—Szwejkina[8]

Wpływ tarcia powierzchniowego ujmuje dodatkowo wzór Gołowina:

$$K_{r} = \frac{K_{ws}}{p_{0}} = \frac{1}{2} \left(1 + \frac{1}{2} \frac{R_{s}}{h_{s}} - \frac{1}{2f} \right) + \sqrt{\frac{1}{4} \left(1 + \frac{1}{2} \frac{R_{s}}{h_{s}} - \frac{1}{2f} \right)^{2} + \frac{1}{2f}}, \, \mathrm{kG/mm^{2}}, \quad (18)$$

gdzie $\frac{R_s}{h_s}$ – stosunek średniego promienia styku do średniej wysokości

^{*} Podane w oryginalnej pracy przy rysunku 7 objaśnienie, że dla metody Szwejkina należy przyjąć wartość 0,01 K_t , otrzymuje się wartości 100 razy za małe, z tego powodu w tej pracy przyjęto jako K_t .

Porównanie metod radzieckich obliczania nacisku

obliczamy z zależności:

$$\frac{R_{i}}{h_{j}} = \frac{2l_{i} \cdot b_{j}}{(l_{j} + b_{j})(h_{0} + h_{1})}.$$
(19)

Jeśli wykorzystamy podane na rysunku 7 krzywe K_t oraz na rysunku 9 – krzywe K_t , to wzór końcowy przybierze postać:

$$K_{ws} = K_r \cdot p_0 = K_r \cdot K_t \cdot K_f, \, \mathrm{kG/mm^2}.$$
⁽²⁰⁾

3.4. Metoda A. Samarina

Wzór A. Samarina powstał przez analizę rzeczywistych nacisków mierzonych czujnikiem pomiarowym w walcowni grubej blachy i ma następującą postać:

$$K_{ws} = K_t R_{pl} = (30 - 0.023 t) 0.055 R_{pl}, \text{ kG/mm}^2, \qquad (21)$$

gdzie

 R_{pl} – wytrzymałość plastyczna stali przy 20° w kG/mm²,

t – temperatura walcowania stali w °C.

Wzór Samarina nie uwzględnia wpływu tarcia powierzchniowego i staje się uproszczonym wzorem Tjagunowa dla określonej temperatury topnienia 1375°C, niezależnie od rodzaju stali, przy czym dla stali o t_p 1375°C otrzymuje się 2 razy większą wartość K_{ws} niż p_0 we wzorze Tjagunowa. Ten współczynnik 2 w pewnym sensie uwzględnia wpływ tarcia powierzchniowego.

Dla stali o mniejszych lub większych t_{pt} wzór Samarina daje przeciętne wartości w stosunku do otrzymanych przez pomnożenie 2 wielkości p_0 z wzoru Tjagunowa.

Z rysunku 7 można odczytać wartości K_t dla metody Samarina, wartości R_{pl} zaś odczytujemy podobnie z rysunku 8.

4. Sposoby sprawdzenia prawidłowości wzorów

Celem sprawdzenia prawidłowości otrzymanych nacisków przy walcowaniu na gorąco podanymi wzorami wybrano szereg pomiarów nacisku opublikowanych w literaturze, a pochodzących z następujących walcowni: grubej blachy, cienkiej blachy, zgniatacza, bruzdowej dużej i dwu bruzdowych małych.

Dane charakterystyczne walcowni oraz pomiarów omówiono w tej samej kolejności.

Tablica 2

					1100/000					
Lp.	1	2	3	4	5	6	7	8	9	10
Wyszczególnienie	Przepust	Szerokość po przepuście	Wysokość po przepuście	Dhugość po przepuście	Obroty przed przepustem	()broty po przepuście	Średnia prędkość obwodowa	Czas przepustu	Temperatura walcowania	Nacisk zmierzony
Ozna- czenie		<i>b</i> ₂	h_2	l_2	n_1	n ₂	r	t_s	t	Р
Wy- miar		mm	mm	mm	obr/min.	obr/min.	m/sek.	sek.	С	t
-	0	600	220	850		-		_		
	1	620	212	850	70	69,5	2,37	0,36	1150	125
	2	625	196	880	69,5	67,3	2,33	0,38	1148	162
	3	630	181	950	68,5	66,5	2,30	0,42	1146	190
	4	635	167	1025	68	66	2,28	0,45	1144	181
	5	640	157		68	66	2,28	0,28	1142	392
	6	735	137		67,5	65,5	2,26	0,33	1141	321
	7	825	122		67,5	63,5	2,26	0,37	1140	419
	8	925	109	— ·	67,5	65	2,25	0,41	1137	402
	9	1070	94	-	67	65,5	2,25	0,49	1133	390
	10	1240	81	-	67	64,5	2,23	0,56	1130	498
1.00	11	1390	72	-	68	65	2,26	0,62	1125	395
	12	1500	62	1100	67	64	2,23	0,68	1120	470
	13	1500	54,5	1250	67	64	2,23	0,56	1115	481
	14	1500	48,5	1400*	67	64	2,23	0,63	1110	462
	15	1500	41,0	1660	68	64,5	2,25	0,74	1100	462
	16	1500	35,5	1950	67	64	2,23	0,86	1090	422
1.1.1	17	1500	30,0	2265	67,5	62,5	2,21	1,03	1080	478
1.0	18	1500	25,0	2720	67	61,5	2,19	1,24	1063	423
	19	1500	21,0	3230	66	61	2,16	1,50	1043	436
-	20	1500	19,0	3570	70	67,5	2,34	1,53	1020	327
	21	1500	16,0	3960	68	62	2,21	1,80	1006	381
	22	1500	13,5	4820	67	61	2,18	2,21	987	370
	23	1500	11,5	5860	67,5	58,5	2,14	2,74	950	481
	24	1500	9,5	7100	69,5	69	2,18	3,26	903	515
1	25	1500	8,0	8480	70	58,5	2,19	3,84	850	542
	26	1500	7.0	9600	70	59	2.19	4.40	790	526

Dane pomiarowe z walcowania blachy grubej $7 \times 1400 \times 9600 \text{ mm}$

4.1. Walcownie blach grubych (trio Lautha)

Pomiary nacisku walców w walcowni blach grubych oraz dane geometryczne zebrano w tablic**y** 2. Dane te zaczerpnięto z publikacji

ŝ

radzieckich Tjagunowa [4]. Walcowano blachę grubą $7 \times 1400 \times 9600$ mm z wlewka o wymiarach $220 \times 600 \times 850$ mm i ciężarze 800 kG. Pomiary wykonano na walcarce trio Lautha o średnicach walców 650 mm i 450 mm, długości beczki 1870 mm, średnicach czopów walca dolnego 435 mm, walca środkowego 300 mm, długości czopa 390 mm, lożyskach tekstolitowych. Walcowanie odbywało się w 26 przepustach. Skład stali C – 0,08%, Mn – 0,45%.

Tablica 3

Lp.	1	2	3	4	õ	6	7
Wyszczególnienie	Szerokość przed przepustem	Wysokość po przepuście	Dhugość po przepuście	Czas przepustu	Temperatura walcowania	Nacisk zmierzony	Przepust
Oznaczenie	<i>b</i> ₁	h ₂	l_2	t_s	t	Р	
Wymiar	mm	mm	mm	sek.	C	t	
	750	15.0	165				0
	750	11,5	216	4	860	520	1
	750	8,8	283	4	850	524	2
	750	6,7	371	4	837	522	3
	750	5,1	486	4	821	495	4
	750	3,9	637	4,5	800	483	5
	750	2,9	835	4,5	774	483	6
	750	2,2	1100	5	748	471	7
	750	4,0	1125	5	703	274	8
	750	3,6	1385	5	654	272	9
100	750	3,2	1525	5	634	280	10
	750	2,8	1700	5	611	290	11
	750	4,7	1010	5	820	370	12
	750	3,9	1800	5	792	385	13
	750	3,2	1430	5	761	400	14
	750	2,7	1700	5	726	380	15
S	750	4,6	1000	5	800	332	16
1	750	3,9	1180	5	773	370	17
	750	3,2	1390	5	743	380	18
1570	750	2,8	1640	5	711	354	19

Dane pomiarowe z walcowania blachy cienkiej 0,35×750×1640 mm Przykład I

4.2. Walcowanie blach cienkich

Dane z pomiarów [4] dla przykładu I zebrane są w tablicy 3. Walcowano blachę cienką $0.35 \times 750 \times 1640$ z blachówki o wymiarach $15 \times \times 165 \times 730$ mm. Pomiary były wykonane na zespole pięciu walcarek duo, o średnicy walców 700 mm. Obroty walców wynosiły 36 obr/min. Walcowanie odbywało się w 19 przepustach, przy czym 7 początkowych przepustów pojedynczo, 4 następne w pakietach po dwie blachy. W tym miejscu nagrzano je powtórnie, dalsze cztery przepusty walcowano w pakietach po 4 blachy, następnie nagrzano po raz trzeci i ostatnie cztery przepusty walcowano w paczkach po 8 blach.

Tablica 4

Tm	1	a	9	4	5	6	7
пр.	1	4	3	4 .	3	0	
Wyszczegółnienie	Szerokość przed przepustem	Wysokość po przepuście	Dlugość po przepuście	Czas przepustu	Temperatura walcowania	Nacisk zmierzony	Przepust
Oznaczenie	<i>b</i> ₁	b_2	12	t _a	t	P	
Wymiar	mm	mm	mm	sek.	C	t	
	685 685 685 685 685 685 685 685 685 685	$18,1 \\ 14,1 \\ 11,0 \\ 8,6 \\ 6,7 \\ 5,3 \\ 4,1 \\ 3,2 \\ 2,8 \\ 2,4 \\ 4,2 \\ 100000000000000000000000000000000000$	165 212 272 349 448 575 737 945 1075 1225 1400	4 4 4 4 4 4 6 6 6 4	850 841 830 815 796 772 741 850 790 720	465 520 452 612 562 470 300 319 177 337	0 1 2 3 4 5 6 7 8 9 9 10

Dane pomiarowe z walcowania blachy cienkiej 2×685×1400 mm Przykład II

Dane z pomiarów [4] dla przykładu II zebrane są w tablicy 4. Walcowano blachę cienką $2 \times 685 \times 1400$ mm, z blachówki o wymiarach $18,1 \times 165 \times 670$ mm. Pomiary były wykonane na zespole pięciu walcarek duo o średnicy walców 700 mm. Obroty walców wynosiły 36 obr/min.

Blacha ta walcowana była w 10 przepustach, w 7 pierwszych pojedynczo, po czym nagrzano powtórnie i dwa następne przepusty walcowano dalej pojedynczo. W ostatnim przepuście walcowano w paczkach po dwie blachy.

4.3. Walcowanie bruzdowe

a. Zgniatacz.

b. Walcownia duża.

Dla tych typów walcowni skorzystano z danych opublikowanych przez Puppego [5] i zestawiono je w tablicach 5 i 6. Pomiar nacisków został wy-

	Dane pon	niarowe dia	zgmatacza			
Zoniatacz	Wymiar		Р :	rzepu	s t	1
251100002	,,,,	1	2	3	4	5
Wys. przed przepustem	mm	378	338	298	289	220
Wys. po przepuście	mm	338	298	260	220	172
Szer. przed przepustem	mm	277	281	285	260	264
Szer. po przepuście	mm	281	285	289	264	268
Średnie obroty walców	obr/min.	14,03	19,60	22,87	13,84	22,02
Temp. walcowania	°C	1107	1144	1144	1144	1151
Promień czynny walca	mm	425	425	425	470	470
Pow. przekroju przed przepustem	mm²	104706	94978	84930	75140	58080
Pow. przekroju po przepuście	mm²	94978	84930	75140	58080	46096
Zmierzony nacisk walców	t	220	277	302	321	326
Wykrój	1.1.1		Prost	okąt		

Dane pomiarowe dla zgniatacza

Tablica 6

Walcownia duża	Wymiar	P	rzepus	t
	Wy miai	. 1	2	3
Wys. przed przepustem	mm	180	153	179
Wys. po przepuście	mm	153	131	135
Szer. przed przepustem	mm	171	175	131
Szer. po przepuście	mm	175	179	135
Średnie obroty walców	obr/min.	22,03	22,0	21,86
Temp. walcowania	°C	1125	1119	1100
Promień czynny walca	mm	488	488	505
Pow. przekroju przed przepustem	mm²	30780	26775	23449
Pow. przekroju po przepuście	mm^2	26775	23449	18225
Zmierzony nacisk walców	t	196	148	205
Wykrój		Prost	okąt	

Dane pomiarowe dla walcowni dużej

konany na zgniataczu duo o średnicy walców 1100 mm i długości beczki 2700 mm. Ze względu na nierównomierny przekrój na długości wlewka do obliczeń w wypadku a) wybrano 5 środkowych przepustów, tzn. od 9-13. Walcowano wlewek o przekroju 500×500 mm u dołu, u góry zaś 400×400 mm, długość wlewka 1595 mm, ciężar 2550 kG. Stal nisko-Mechanika zesz. 3 3

Tablica 5

węglowa: $C = 0.075^{\circ}/_{0}$, $P = 0.064^{\circ}/_{0}$. Omawiane przepusty (9, 10, 11, 12) zostały przewalcowane w drugim wykroju, trzynasty zaś przepust w trzecim wykroju. Po dwunastym przepuście wlewek przekantowano.

Dla walcowni dużej [5] przeliczono trzy końcowe przepusty (16, 17, 18). Wlewek był obracany w 16 i 18 przepuście.

Walcowanie odbywało się w czwartym wykroju. Dane pomiarowe zawiera tablica 6.

c. Walcownia mała, przykład I.

Pomiary nacisków dla tej walcowni zaczerpnięto z publikacji Siebla [6]. Próby wykonano na walcarce o średnicy walców 180 mm. Walcowano pręty 1 m długości z miękkiej stali węglowej, przy różnych wielkościach ubytku przekroju i przy temperaturze od 700–1200°C, na płaskownik 10×30 mm. Pręty ogrzewano w piecach muflowych opalanych gazem. Wyniki prób podaje tablica 7.

Tablica 7

Walcownia mala,	Wymiar			Prze	pust		
przykład I	TT y Minut	1	2	3	4	5	6
Wys. przed przepustem	mm	20,0	15,0	20,0	16,0	20,0	16,1
Wys. po prze- puście	mm	10,3	10,3	10,2	10,1	9,9	9,8
Szer. przed przepustem	mm	30	30	30	30	30	30
Szer. po prze- puście	mm	-	-	_	_	-	-
Średnie obroty walców	obr/min.	36	36	36	36	36	36
Temperatura walcowania	°C	900	900	1000	1000	1100	1100
Promień czyn- ny walca	mm	89	89	89	89	89	89
Pow. przekroju przed prze- pustem	mm²	600	474	600	480	600	483
Pow. przekroju po prze- puście	mm²	309	309	306	300	297	294
Zmierzony na- cisk walców	t	21,0	13,8	15,0	11,6	11,9	8,4
Wykrój			Gład	ka be	czka		

Dane pomiarowe dla walcowni małej Przykład I

d. Walcownia mala, przykład II.

Naciski pomierzono na zakładzie SKF [7] w Hoforsie podczas walcowania drutu o średnicy 5 mm, ze stali miękkiej o zawartości $0,1^{0}/_{0}$ C, $0,30^{0}/_{0}$ Mn. Wyniki pomiarów oraz dane geometryczne podano w tablicy 8

34

Tablica 8

Walcownia mała,	Wymiar		Рт	'rzepust					
przykład II	,,, jilliai	1	2	3	4	5			
Wys. przed przepustem	mm	16,0	8,6	12,5	7,1	11,8			
Wys. po przepuście	mm	11,1	5,7	9,0	4,0	7,2			
Szer. przed przepustem	mm	6,6	9,1	5,7	7,1	4,0			
Szer. po przepuście	mm	10,1	12,5	7,5	11,8	7,6			
Średnie obroty walców	obr/min.	480	480	480	480	480			
Temperatura walcowania	°C	1025	850	900	925	900			
Promień czynny walca	mm	110,4	111,0	109,4	111,5	109,5			
Pow. przekroju przed przepustem	mm^2	92,6	77,9	57,0	49,1	38,4			
Pow. przekroju po przepuście	mm ²	77,9	57,0	49,1	38,4	33,5			
Zmierzony nacisk walców	t	3,84	4,7	4,33	4,8	2,85			
Wykrój		z owalu kwadrat	owal	kwadrat	owal	kwadrat			

Dane pomiarowe dla walcowni małej Przykład II

Walcowanie wykonano w wykrojach szybko – wydłużających kwadrat – owal.

5. Wyniki obliczania oraz krytyka poszczególnych metod

Wyniki obliczeń nacisku walców, otrzymanych poszczególnymi metodami przy walcowaniu blachy grubej przedstawiają tablica 9 i rysunek 10. W każdym przypadku obliczono również błąd otrzymany w każdej metodzie za pomocą omówionych już wzorów, przy czym współczynnik tarcia obliczono wzorem Ekelunda jak dla walców utwardzonych gładkich (wzór 2). Wyniki obliczeń nacisku walców przy walcowaniu blachy cienkiej $0.35 \times 750 \times 1640$ przedstawiają tablica 10 i rysunek 11. Przeglądając w tablicy 10 kolumnę wysokości po przepuście należy uświadomić sobie, że blachy są wielokrotnie składane w ten sposób, że końcowa grubość 2,8 mm = 8×0.35 mm. Współczynniki tarcia obliczono tutaj także wzorem Ekelunda dla walców utwardzonych gładkich (wzór 2).

Rysunek 12 – wykresy (na podstawie tabl. 11) przedstawiają przebieg krzywych obliczonych nacisków dla tych samych metod, przy walcowaniu blachy cienkiej o wymiarach końcowych $2 \times 685 \times 1400$ mm. Współczynnik tarcia obliczono wzorem Ekelunda (2). Tutaj także końcowa grubość 4,2 mm odpowiada dwom blachom złożonym razem o grubości 2,1 mm.

Wyniki obliczeń dla walcowni bruzdowych zestawiono w rysunku 13, na podstawie tablicy 12.

Rys. 10. Wykres nacisków walców dla blachy grubej 7×1400×9600 mm. Porównanie wartości mierzonych z obliczonymi

5.1. Omówienie metod Celikowa

Rozpatrując otrzymane wyniki i porównując z wartościami pomierzonymi stwierdzamy, że metody Celikowa dają wyniki z reguły niższe od wartości mierzonych. W przepustach 1 do 4 na rysunku 10 wartości obliczone zbliżają się do wartości pomierzonych, błąd waha się tu w granicach -13.6 do -30.5%. Natomiast w przepustach dalszych 5 do 20 błąd wzrasta i osiąga wartość do -65.6% (w 5 przepuście).

W ostatnich przepustach, tzn. 21 do 25, błąd znacznie maleje do granic od +4,8 do -10,0%. W ostatnim przepuście 26 osiąga wartość -25,1%. Pierwsza metoda Celikowa daje więc tu wszędzie wyniki za niskie w porównaniu z wartościami pomierzonymi.

											N	u m e	r pr	zep	ust	u										
Nacisk obliczony	1	2	3	. 4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
wg metody										N a c	i s k	z m	i e r z	zon	y w	t o n	a c h									
	125	162	190	181	392	321	419	402	390	498	395	470	481	462	462	422	478	423	436	327	381	370	481	515	542	526
Celikow I - tony	94	140	130	134	135,3	150	179	189	237	228	249	297	312	993,6	343	303	333	359	347	254	364	388	433,1	488	495	394
Błąd %		-13,6	-30,5	25,9	65,6			52,9		-54,2		36,8	-35,1		25,7	-28,2		15,1		-22,3			—10,0	5,24		25,1
Celikow — wykr. I	94	140	138	135	146	150	178	190	234	255	245	287	302	273	326	300	327	352	348	268	367	379	384	499	514	401
Błąd %	24,8	-13,6		25,4	62,7					48,8			-37,2	-41,1	29,4	-28,9	31,6		-20,9	-21,7		2,4	-20,1	-3,1		-23,8
Celikow II - tony	93,5	139,7	135,9	134,0	146,2	153,3	173,1	181,7	238,4	260,3	259	296,5	310,5	268,3	341,8	278,3	330,6	356,3	351,9	253,4	363,8	365,7	455,9	470,9	490,4	388.9
Błąd %	-25,2	-13,8	28,4	25,9	62,7	52,1	58,6	55,4		-47,7		36,9	35,4		26,0			-15,8	-19,3	-22,5	-4,5	1,1	-5,2		9,4	26,1
Celikow III — tony	93,6	139,7	136,8	135,5	146,7	155,3	182,5	183,4	239,0	264,4	259,5	300,0	313,0	281,5	345.7	281,2	330,6	360,1	351,3	254,2	366,8	368,4	467,3	474,2	494,5	390,2
Błąd %	25,1	13,8		-25,2	52,6	-51,6		54,4	38,7	-46,9	-34,3	-36,2		30,1	-25,2	33,4		14,9			-3,7	0,4	-2,8	7,1		-25,8
Gubkin — tony	260,0	304	314	317	395	443	586	645	896,0	987	962	1148,5	1070	1353	1150	1390	1450	1550	1450	1172	1563	1686	1767	2138	2193	2122
Błąd %	+108,0	-90,2	-65,3	+75,1	+1,8	+38		69,5		+98		+-248	+122				+205		-+209	+258	310	+355	+265	+315	+305	+303
Golowin-Tjagunow — t	131,7	201,4	199,7	197,2	210,3	231,5	272,4	276,1	369,2	418,1	407	495,1	452	448	516	467	502	533	489	349	517	531	546	662	652	573
Błąd %	+5,3	24,2	5,1		-46,5	27,7	-35,3	31,2	5,35		3,0		6,0	3,0	+11,6	-]-10,6	5,0	26	+12,2	+6,7	35,6	+43,5	+13,5	-28,5	-20.3	
Gołowin-Szwejkin — t	106	161	158	189	171	189	219	232	340	341	339	397	373	325	377	256	396	479	451	351	466	472	493	671	757	752
Błąd %		_1,0		-12,2			-47,8	42,3	-12,8	-31,5	-14,0	-15,5	-22,4	-29,6		-15,6	—17,1	+13.3		-7,3	-22,3		+2,5		-39.7	+42,8
Samarin tony	186,8	273,0	269,9	266,1	280,2	294,8	348,2	368,4	471	509	503	587,5	547	477,5	565	511	535	555	532	407	541	528	529	593	585	526
Blad %		-68,5	-41,1	-47,1	-28,4		16,9			+2,2	27,6		+13,7	+3,3	+22,3	+21,0	-11,9	+3,1	+22		-48,5	-42,7	-10		+7,9	

Zestawienie nacisków walców obliczonych omówionymi metodami przy walcowaniu blachy grubej $7 \times 1400 \times 9000$ mm

Mechanika zesz. 3

10

Tablica 9

Zestawienie nacisków obliczonych przy walcowaniu blachy cienkiej Przykład I

				-				Nun	n e r	p r z	e p u	s t u		1					
Nacisk obliczony	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
wg metody						N	a c i	s k z	m i e	r z o	ny.	wto	n a c	h					
	520	524	522	495	483	483	471	274	272	280	290	270	385	400	380	332	370	380	354
Celikow I — tony	472	558	497	515	546	636	637	257	354	463	648	318	354	424	435	292	312	468	370
Błąd %	9,2	+6,5	4,8	-4,0	+13,0		+82,1	-6,2		96,8	+173,1	14,0		6,0	+14,5			+23,1	-4.5
Celikow — wykr. I	460	563	507	517	547	636	637	251	323	463	648	321	363	424	411	291	299	461	347
Błąd %		+7,0	-2,9		+13,2	-31,7	+35,2			-65,3	-123,4		-5,7	6,0	+8,1		-19,2	+21,3	1.9
Celikow II — tony	370,8	418,2	352,5	340,2	340,2	389,8	405,5	221,5	255,9	365,7	490,0	226,3	235,6	200,1	269,1	215,5	211,3	222,3	238,3
Błąd %	-28,7	-20,2	-32,4	31,3		-19,2					69,0	38,8		-60,1	-29,2	-35,2	-42,9		
Celikow III — tony	444,9	425,3	357,2	331,3	336,1	404,4	402,0	192,8	255,4	368,7	490,6	228,3	236,8	261,7	270,4	209,1	212,6	290.5	238.7
Błąd %	14,3		-31,4			16,3	-14,6	-29,6	-60	+24	69				-28,6			29,4	
Gubkin — tony	2507	2841	2500	2448	2585	2110	1862	1250	1321	1379	1770	950	1145	1760	1820	1390	1595	1850	1700
Błąd %		-443			-435		+282	-351	+385	390		+157	-198	340	+380	+319	-330		
Gołowin-Tjagunow — t	525	576	512	495	595	460	520	296	279	296	328	335	352	387	330	329	344	410	300
Błąd %		+9,0		1,0	+23,0		+10,4	+8,0	+0,3	-5,7		-10,5	9,4		-13,4	0,9	7,0	+7,9	
Gołowin-Szwejkin — t	715	840	686	707	741	1230	1124	484	850	860	675	415	520	745	735	830	640	785	770
Bląd %	+38,5	60,4	+31,4	-42,8	-53,5		+240	+175			-132	12,1	+35,0	-86,5	94,0			+107	+117
Samarin — tony	498,7	501,2	400,5	354,9	328,9	304,5	291,5	238	244,7	256,3	268	270	268	272	244	268	268	280	229
Błąd %	-4,1	4,2	-23,8		-31,9	17,9	-16,3	13,1		9,28	7,6	-27		-32,0	35,9		-27,6	26,4	-35,3

Mechanika zesz. 3

Tablica 10

Rys. 11. Wykres nacisków walców dla blachy cienkiej 0,35 × 750 × 1640 mm. Porównanie wartości mierzonych z obliczonymi

Rys. 12. Wykres nacisków walców dla blachy cienkiej $2 \times 685 \times 1400$ mm. Porównanie wartości mierzonych z obliczonymi

Tablica 11

Zestawienie nacisków obliczonych przy walcowaniu blachy cienkiej Przykład II

					Numer J	orzepustu				
Nacisk obliczony	1	2	60	4	ð	9	2	20	6	10
wg metody				Naci	sk zmierz	ony w to	uach			
	465	520	452	612	562	470	300	319	177	337
Celikow I-tony	431	447	410	416	397	480	577	227	290	292
Błąd %	-7,3	-14,0		-32,0	-29,0		-92,0	28,8	+-63,8	
Celikow wykr. I	434	430	416	417	408	484	580	206	262	280
Blad %	-6,7	-17,3	7,9	31,9	-27,4	2,9		35,4	-48	
Celikow II - tony	430,5	447,6	411,2	419,1	392,4	473,7	573,0	216,5	286,9	293,6
Błąd %	-7,5		9,16	-31,9	30,0	+1,9		-31,4	+59,4	12,2
Celikow III - tony	433,2	453, 5	417,9	419.7	398,0	487,3	582,6	222,2	290,1	290,8
Blad %	-7,5	14,7	9,1	47,0	-29,0	-4,5	-48,0	-42.0	61	-15,5
Gublan - tony	2456	2280	2224	1530	2544	2582	2690	1375	1780	2300
Bląd %	+428	+338	-392	+312	+353	+449	-757	343	-905	+583
Golowin Tjagunow - tony	345	306	275	252	222	206	194	109	120	167
Blad %	-25,8	41,2	39,2	-58.8	65,0	-55,7	-35,3	65,8	32,2	50.4
Golowin Szwejkin - tony	683	752	727	743	721	863	1020	316	456	820
Blad %	46,8	- 44,6	+60,8	+21.4	28,3		-240	-0,9	-153,5	+143
Santarin	487	444	405	374	330	320	294	154	179	250
Blad %		14,6	-10.4		41,8	-31,9	_2	-51,7	1,1	25,8

ŝ

Tablica 12

A

Zestawienie obliczonych nacisków dla walcowni bruzdowych (Część 1)

183,5 +40,547,0 43,6 111,4 -45,6 101,2 -50,0 +107,5-10,7 173,4 -15,6 396 116 288 108 205 ~ Walcownia duża -52,8 45,0 77,9 -47,2 341,5 124,8-16,9 81,3 2,7 42.7 144,1 -131 309 +109148 25 92 67 81,6 58,2 -28,5 148,8 60,0 80,8 60,4 326,4-66,4 140,1243,1 -24,5 61,1 -24 78 196 76 -42,8 -50.0 42,0 186.2 193,1 40,7 -29.1 203.0 -37,8 248,0 23,9 Nacisk zmierzony w tonach 186 678 +168231 163 326 Numer przepustu 10 -30.2-26,4 244,3 -23,9 867,5 -11,5 230,0 28.4 280,0 -12,8 236.4 -36,1+183284 224 205 321 Zgniatacz 174,0 -40,6 --41,6 627,5 -107,6 -37,4 172,042,8 217,0 -28.2 176,1 -50,1 189 302 150 159 47 ~ 175,0 174,0 -37,2 176,2 -36,3 -32,7 -36,8219,3 -21,2 45,3 45,3 186,4 520 152 152 277 67 183,8 24,2 -16,4185,5 -2,7 185,0 -15.9288,0 +30,9-25,4 -15,7 497 126 164 214 220 167 -Celikow III - tony Nacisk obliczony Celikow - wykr. I. Celikow II - tony Gelowin-Tjagunow Golowin-Szwejkin Celikow I - tony wg metody Gubkin - tony Błąd %. Błąd % Błąd % Samarin Błąd % Błąd % Błąd % Blad % Błąd %

.

Tablica 12 c.d.

Zcstawienie obliczonych nacisków dla walcowni bruzdowych (Część II)

1

	-	Walc	ownia ma	la, przykła	I P			Walcownia	a mała, pi	rzykład II	
					Nut	ner przepi	ıstıı				
Nacisk obliczony we metody	1	2	3	4	ũ	6	T	2	3	4	ũ
Contraction of the second seco					Nacisk zn	nierzony w	r tonach				
	21,0	13,8	15,0	11,6	11,9	8,4	3,84	4,7	4,33	4,8	2,85
Celikow I-tony	13,2	9,1	9,3	7,0	6,2	4,5	3,8	2,7	1,8	4,4	2,8
Blad %	37	-34	-38	39	47	-47	-0,6	41,8	-57,9	0,7	-1,8
Celikow - wykr. I	13,3	9,2	10,0	7,0	6,6	4,9	3,8	2,7	1,8	4,4	2,8
Blad %	-36,6	-33,3	-33,3	-39	-44,5	-41,6	1,1	-41,5	-57,9	7,0	-1,8
Celikow II - tony	13,2	8,8	9,3	7,3	6,2	4.5	3,13	2,33	1.62	3,64	2,05
Blad %	-37,2	35,8	-37,8	-37,3	48,2	46,4		-50.4	-62,3	-24,2	-28,0
Oelikow III - tony	14,5	9,1	10,2	7,2	7,7	5,6	3,19	2,40	1,67	3,84	2,14
Blad %	-31,0	-34,4	-30,9	-37,4	-35,2	-33,2	-16.8	48.8	-61,5	-20,2	-24,9
Gubkin - tony	39,8	32,7	28,8	24,2	18,4	15,5	9,15	6,22	4,64	8,80	5,43
Blad %	+84,7	+137,1	+92,0	+109,0	+54,2	+73,7	+164.5	+32,4	+7,1	+83.4	+90.5
Golowin-Tjagunow	17,6	11,5	14,0	10,9	10,8	7,56	6,84	5,18	3,50	7,42	4,56
Blad %	-16,1	-17,7	6,7	+5,77	9,3	-10,0	+78.2	+10.4	-19,2	+54,5	-37,5
Gołowin-Szwejkin	63,4	44,5	31,5	27,1	21,8	16,1	4,47	2,06	2,05	3,42	2,27
Blad %	202	+223	+110	+134	-87	16+	+16,4	-56,2	-52,7	-28,8	-20,3
Samarin	15,4	11,6	11,7	9,15	8,0	6,33	4,45	2,82	2,33	3,31	2,49
Blad %	-26,5	-15,9	-22,0	-21,1	-32,8	-24,7	15,9	-40,0	-46,2	-31,1	-12,5

+

ę

Wyniki z graficznej metody Celikowa są takie same jak z obliczeniowej. W zupełności więc można tu pominąć żmudną metodę obliczeniową i stosować krótszą, szybką i dogodniejszą metodę wykreślną.

Wartości nacisków, obliczone metodą drugą czy też trzecią, przebiegają w sposób podobny jak przy metodzie pierwszej, z tą różnicą, że przebieg ten jest równomierniejszy, a więc wielkość błędu (odskoków) uległa pewnemu zmiejszeniu. Przemawiałoby to za korzystaniem z metody drugiej lub też trzeciej raczej niż z metody pierwszej. Nie można natomiast stwierdzić żadnych widocznych różnic pomiędzy metodami drugą i trzecią, z wyjątkiem łatwości obliczeń.

Wartości nacisków otrzymane na rysunku 11 z pierwszej metody Celikowa w kilku przypadkach są nieco wyższe od zmierzonych. Zbyt wysokie wartości w przepuście 7 i 11 są spowodowane dużym współczynnikiem tarcia oraz gwaltownym wzrostem wyrażenia δ .

Błąd w tych przepustach osiąga wartość 82,1% i 173,1%. Poza tymi dwoma nieregularnościami pierwsza metoda Celikowa daje na ogół dobre wyniki. Ponieważ przy danych pomiarowych nie był podany rodzaj walców wstępnych, z tego powodu dla I metody Celikowa przyjęto szorstkie walce stalowe w początkowych przepustach, w dalszych zaś walce utwardzone. W metodach II i III przyjęto we wszystkich przepustach walce utwardzone szlifowane, co spowodowało znaczne obniżenie wielkości nacisków w porównaniu z metodą I. Takie więc przyjęcie należałoby uważać za prawidłowe.

Z przebiegu krzywych na rysunku 12 stwierdzamy, że metody Celikowa są zbliżone do siebie. Przebiegają one poniżej krzywych pomiarowych aż do przepustu 6, w dalszych zaś przepustach powyżej lub poniżej krzywej pomiarowej. Błąd obliczony dla pierwszej metody Celikowa mieści się w granicach od -13,3% do +92%. Dalsze zaś metody Celikowa pokrywają się z tymi wynikami prawie w zupełności.

Z rysunku 13 wynika, że dla zgniataczy przy przeliczaniu pełną metodą Celikowa, błąd waha się w granicach od -24,2% do -50,4%.

Naciski obliczane drugą albo też trzecią metodą Celikowa otrzymano w tym przypadku nieco wyższe niż przy metodzie pierwszej, a więc lepsze. Niestety jednak wszystkie wartości przebiegają dość znacznie poniżej wartości pomiarowych.

Dla walcowni dużej otrzymane wyniki leżą stosunkowo znacznie poniżej wartości pomiarowych. Metoda druga i trzecia nie przynosi tu widocznej poprawy. Widać stąd, że nie uwzględniono tu dodatkowego czynnika, jaki stanowi niewątpliwie powiększone tarcie o ściany wykroju. Wprowadzenie takiego czynnika niewątpliwie polepszyłoby otrzymane wyniki. Dla walcowni małych przykład I i II (rys. 13) wyniki obliczania metodą pierwszą Celikowa przebiegają w znacznej odległości od wartości pomiarowych i są od nich niższe.

Natomiast metoda druga ani trzecia nie przynosi tu żadnej poprawy na lepsze.

Podobnie zupełnie przedstawiają się wyniki przeliczeń w przykładzie II.

Odnosi się wrażenie, że brak tu także czynnika, który uwzględniałby dodatkowe tarcie w wykroju.

5.2. Omówienie metody Gubkina

Metodą Gubkina nie będę się szczegółowo zajmował, gdyż byłoby to bezcelowe.

Przeglądając wyniki zebrane w tablicach od 9 do 12 oraz rysunkach 10 do 13, stwierdzamy, że ta metoda daje z reguły bardzo duże wartości, znacznie odbiegające od danych pomiarowych. Z tych więc powodów metodę tę należy zdyskwalifikować, jako nieprzydatną do praktycznych obliczeń walcowniczych.

Przypuszczalnie w metodzie tej powstają tak znaczne różnice z tego powodu, że wyprowadzona ona była dla kucia swobodnego, a w szczególności dla kucia matrycowego. W tych procesach kucia występuje niezwykle duża intensywność gniotu, która przekracza znacznie wartości osiągane w walcowniach.

Opory wywołane tarciem, przy wymuszonym płynięciu metalu w matrycy, są również znacznie wyższe niż przy walcowaniu.

Obie te przyczyny powodują otrzymanie tak wysokich wartości, że przekraczają one nieraz kilkakrotnie zwykłe warunki walcowania.

5.3. Omówienie metody Gołowina - Tjagunowa

Metoda Gołowina-Tjagunowa daje stosunkowo dobre wyniki przy obliczaniu nacisków przy walcowaniu blachy grubej. Błąd w tablicy 9 waha się w przypadkach skrajnych od -46,5 do +43,3%. Przeciętnie jednak odchylenia są znacznie mniejsze, od + kilkunastu do - kilkunastu procent. Znacznie lepsze wyniki otrzymuje się przy walcowaniu blach cienkich o dolnym zakresie grubości (tabl. 10). Błąd w tym przypadku wynosi dla granicznych wartości +23 do -15%, przeciętnie jednak waha się on około $\pm 10\%$. Taki wynik można uważać za zupełnie zadowalający. Jeżeli idzie jednak o blachy z górnego zakresu grubości, to ta metoda także nieco zawodzi (tabl. 11), dając błąd przeciętnie ujemny w granicach -25 do -65%.

Przy walcowniach dużych, bruzdowych otrzymuje się podobnie wartości za małe jak z metody Celikowa (tabl. 12). Błąd jest tu mniejszy, sięga jednak do -37% przy zgniataczu, a -28,5% przy walcowni dużej. Są to wyniki znacznie lepsze niż z metody Celikowa. Podobnie w walcowni małej I, błąd ujemny osiąga wartość -17,7%.

Przy walcowaniu drutu różnice wzrastają i otrzymuje się wartości za małe, od -19% lub za duże, do +78%, przy czym są to przeważnie wielkości zbyt duże.

5.4. Omówienie metody Gołowina - Szwejkina

Przy walcowaniu grubej blachy w początkowych przepustach otrzymane wyniki są za małe, przy czym błąd sięga do -56,8%. W końcowych zaś przepustach wyniki są za duże, do +42,8%. Jak wynika z rysunku 7, krzywa wartości K_t dla tej metody posiada dwa załamania i z tego powodu gwałtownie wzrasta w zakresie niskich temperatur. Tym tłumaczyć można otrzymanie za dużych wartości właśnie przy niskich temperaturach walcowania.

Podany w oryginale współczynnik 0,01 dla wartości K_t pominięto, ponieważ otrzymywano wartości 100 razy za małe.

Przy walcowaniu blach cienkich, do czynnika temperatury dochodzi jeszcze wpływ stosunku $\frac{R_s}{h_s}$. Przy dużych wartościach tego współczynnika otrzymuje się duże wartości K_r , a to z kolei powoduje znaczny wzrost obliczonych nacisków. Przy cienkich blachach (w tablicy 11) wpływ stosunku K_r był mniejszy, a jedynie główną rolę odgrywał współczynnik K_t . Z tego powodu wielkości błędów zmalały.

Przy walcowaniach bruzdowych (tabl. 12) przy zgniataczu błąd ujemny dochodzi do wartości -42.8%, natomiast przy walcowni dużej otrzymane wartości są za duże, do 109\%. Podobnie bardzo duże odchyłki otrzymuje się na walcowni I małej.

Zadziwiające jest to, że przy walcowni drutu otrzymuje się wartości za male, do -52.7%. Spowodowane to jest bardzo niskimi wartościami stosunku $\frac{R_s}{h_s}$ w zakresie, gdzie nie ma gwaltownego przyrostu K_t spowodowanego niskimi temperaturami.

5.5. Omówienie metody Samarina

Ponieważ metoda ta powstała przez analizę pomiarów z walcowni grubej blachy, zdawałoby się, że właśnie tutaj otrzymane wyniki powinny być najlepsze. Jak wynika z tablicy 9, otrzymane wyniki są przeważnie za duże, do granicy +68,8%.

Lepiej jest przy walcowaniu blach cienkich (tabl. 10); obliczane wartości są za małe i w pierwszym przypadku błąd sięga do -32%, w drugim zaś przypadku (tabl. 11) do -51,7%. Przy walcowniach bruzdowych (tabl. 12) metoda ta daje wartości za małe, na zgniataczu do -28,2%, w walcowni dużej do -24,5, a w walcowni I malej do -32,8%. Są to więc wyniki możliwe do przyjęcia. Natomiast przy walcowaniu drutu błąd sięga do -46,2%.

Ponieważ metoda Samarina daje we wszystkich przypadkach wyniki możliwe, nadaje się ona szczególnie jako metoda kontrolna, ponieważ obliczanie nie jest bardzo żmudne, szczególnie jeśli stosuje się wykresy.

6. Wnioski

Z podanych tu porównań można stwierdzić, że metody Celikowa dają stosunkowo dobre wyniki przy obliczaniu nacisku walców w walcowniach blachy, przy czym nowe metody dają tam lepsze wyniki, chociaż otrzymane wyniki są przeważnie za male.

Natomiast przy obliczaniu nacisku walców w walcowniach bruzdowych otrzymano z reguly wyniki za niskie, przypuszczalnie wskutek pominięcia dodatkowego tarcia o ścianki wykroju.

Dopiero uwzględnienie tego czynnika, na przykład w sposób proponowany przez Siebla, przyniosłoby niewątpliwie dużą poprawę i większą prawidłowość otrzymywanych wyników.

Metoda Gubkina nie nadaje się do żadnego praktycznego użytku.

Przy walcowaniu blachy grubej otrzymano następującą kolejność poszczególnych metod: Samarina, Golowina-Tjagunowa i Gołowina-Szwejkina.

Przy blachach bardzo cienkich można konkretnie mówić tylko o metodach Gołowina-Tjagunowa, Samarina i Celikowa.

Na podstawie wyniku na rysunku 12 na pierwszym miejscu postawiłbym metodę Celikowa, Samarina, przed Gołowina-Tjagunowa.

Przy dużych walcowniach bruzdowych kolejność metod byłaby następująca: Samarina, Gołowina-Tjagunowa i Gołowina-Szwejkina.

Przy małych walcowniach natomiast kolejność byłaby nieco inna: Gołowina-Tjagunowa i Samarina.

BIBLIOGRAFIA

[1] Z. Wusatowski i St. Bala, Porównanie metod obliczania nacisku walców przy walcowaniu na gorąco. Prace IMH, t. 6, 1954, str. 120-132.

[2] A. J. Celikow, Projektowanie i budowa walcowni, Katowice 1951.

[3] А. Королев, Новые исследования деформации металла при прокатке, Москва 1953.

- [4] А. В. Тягунов, Рациональная калибровка листовых станов, Москва 1944.
- [5] J. Puppe. "Stahl u. Eisen", t. 30, 1910, str. 1823-35.

[6] E. Siebel, Die Formgebung im bildsamen Zustande der Metalle, Düsseldorf 1932.

[7] М. Швайцер, Роликове подшипинки в прокатных станах, Москва 1932.

[8] А. В. Тягунов, Анализ методов расчёта удельных давлений при прокатке, "Расчёт и конструирование заводского оборудования", nr 48, Москва 1953.