Seria: MECHANIKA z. 77

Nr kol. 755

Eugeniusz KOWALSKI Zbigniew PIĄTKIEWICZ Demian HOMA

Instytut Odlewnictwa Politechniki Śląskiej

ANALIZA DOŚWIADCZALNA PARAMETRÓW PRACY INSTALACJI TRANSPORTU PNEUMATYCZNEGO WYSOKOCIŚNIENIOWEGO

> Streszczenie. W pracy przedstawiono analizę doświadczalnych parametrów pracy czterach instalacji transportu pneumatycznego wysokociśnieniowego o różnych długościach rurociągów, przemisszczejących 23 różne materiały. Obliczono parametry optymalne z punktu widzenie ekonomiki pracy instalacji ze szczególnym uwzględnianiem bilansu nośnika w urzędzeniu nadawczym.

1. Watep

Instalacja transportu pneumatycznego wysokociśnieniowego systemu "POL-KO" stosowane są do przemieszczania materiałów sypkich,różniących się dosyć znacznie takimi właściwościami fizycznymi, jak: granulacja, gęstość właściwa, gęstość usypowa itp. Wymienione cechy materiału sypkiego oraz długość i ukształtowanie instalacji decyduję o parametrach mieszaniny dwufazowej, przemieszczającej się w rurociągu transportowym. Parametry mieszaniny winny być utrzymane na określonym poziomie, zapewniającym ekonomiczną i stabilnę pracę instalacji. Niniejsze opracowanie zawiera analizę niektórych parametrów instalacji transportowych o różnych długościach rurocięgu ze szczególnym uwzględnieniem bilansu nośnika w urzędzeniu nadawczym.

2. Instalacie badawcze

Pomiary prowadzone były na czterech zbudowanych w skali technicznej instalacjach badawczych, których schemat przedstawiono na rys. 1. Posiadały one rurocięgi transportowe o równych średnicach wewnętrznych d = 0,1 m i długościach zastępczych L_z = 154,8 m, 190 m, 331 m oraz 595 m.Dwie pierwsze instalacje wyposażone były w pionowe odcinki rurocięgu o wysokości 6,3 m, trzecim i czwarta - 13,2 m. Kierunek biegu rurocięgów zmieniały łuki o promieniu gięcia R = 1 m i kęcie gięcia $\alpha = \pi/2$ rad, których pierwaza i druga instalacja posiadały po 5, trzecia - 6, a czwarta - 10.

Rys. 1. Schemat instalacji badawczej transportu pneumatycznago wysokociśnieniowego systemu "POLKO"

W każdej z instalacji urządzeniem wprowadzającym nosiwo do rurociegu transportowego byż wyeokociśnieniowy podajnik komorowy z dolnym rozładunkiem systemu "POLKO", posiadający objętość użyteczną V₁ = 1 m³ oraz całkowitę V = 1,2 m³. Podstawowe podzespoły tego urządzenia stanowią; komora wraz z przymocowanym do niej od góry zamknięciem dzwonowym, dysza główna, dysza przyspieszająca d, oraz zawór redukcyjny, regulujący wartość nadciśnienia w komorze. Do oddzielania materiału sypkiego na końcu rurocięgu stosowano cyklony odbiorcze, a do oczyszczanie powietrze transportującego - cykłony wstępnego i dokładnego oczyszczania oraz filtry tkaninowe.Do pomiaru parametrów pracy instalacji stosowano: kryzy ISA z pomiarem przytarczowym i pierścieniową komorą wyrównawczą, manometry metalowe z potancjometrycznymi przetwornikami ciśnienia, współpracujące z centralnym układem rejestracji danych oraz inne urządzenia dodatkowe, jak: sekundomierze, barometry, termometry i higrometry. Ze względu na zasadę działania podajnika systemu "POLKO" pomiary natężenia przepływu powietrza wykonywana były przy użyciu dwóch kryz ISA, zainstalowanych w rurociągach doprowadzających ten czynnik do dyszy głównej oraz komory.

3. Tok obliczeń

Badania transportu pneumatycznego dowolnego materiału zmierzają z reguły do określenia parametrów pracy instalacji, uznawanych za optymalne z punktu widzenia ekonomiki. Parametry takie ustalane sę na podstawie wyników azeregu pomiarów, przeprowadzanych dla każdego z materiałów. Odnoszę się one do pracy instalacji z maksymalnę wydajnościę, możliwę do uzyskania przy zachowaniu stabilnego przepływu mieszaniny dwufazowej w rurocięgu. W tych warunkach jednostkowe zużycie powietrza, a co za tym idzie energii, osięga wartość minimalnę.

W przedstawionych poniżej obliczeniach niektórych wielkości, charakteryzujących pracę instalacji, wykorzystano wyniki pomiarów optymalnych parametrów transportu pimsku kwarcowego. Optymalne parametry ustalono na podatawie analizy zależności między spadkiem ciśnienia, przypadającym na i metr bieżący rurociągu, a prędkościę gazu i masowym natężeniem przepływu materiału. Obrazam tej zależności jest wykres przedstawiony na rys. 2.

Rys. 2. Zależność między jednostkowym spadkiem ciśnienia a prędkością przepływu gazu i mesowym natężeniem przepływu suchego piasku kwarcowego

Makeymalną wartość masowego natężenia przepływu piasku 🕷 = = 12.747 kg.s⁻¹ uzyskano przy nadciśnieniu zasilania p_y=0,349 MPa przed dyszą przyspieszającą o średnicy wewnętrznej d₁ = = 24 mm oraz nadciśnieniu wkomorze pładajnika p_k = 0,293 MPa. Masowe natężenie przepływu powietrza zasilającego instalację poeiadalo wówczas wartość 0,464 kg.s⁻¹, a objętościowe na tężenie przepływu, zredukowane do warunków normalnych (p_N = = 101324,7 Pa, T_N = 273,15 K) wartość $V_N = 0,364 m^3.s^{-1}$.

Obliczenia dotyczące przepływów powietrza przez instalację transportową oparta zostały na założeniu, że zużycie te-

go czynnika przez układy pomocnicze (zawory, siłowniki itp.) jest znikomo małe. Teoretycznie jest ono mniejsze o co najmniej jeden rząd wielkości od błędu pomiarowego kryzy ISA dla zakresu dokonanych pomiarów natężeń przepływu.

Strumień powietrza zasilającago instalację transportową rozdzieleny byż przed podajnikiem komorowym na dwa strumienie składowe (rys. 1). Jeden z nich przepływał przez dyszę przyspieszającą, a następnie – dyszę główną podajnika, w której mieszał się z częstkami materiału stałego, unosząc je do rurociągu. Dysza przyspieszająca wykonana była jako dysza de Lavala, posiadająca najwęższy przekrój o średnicy d₁. Posługując się znanymi zależnościami, wyznaczono współczynnik strat przepływu dla tej dyszy. Należy uznać, że zawiera on w sobie także straty wynikłe z zaburzeń wywoływanych mieszaniam się powietrza z cząstkami materiału stałego.Drugi strumień przepływał do komory podajnika przez zawór redukcyjny R₁. W przypadku piasku kwarcowego podział atrumienia był następujący:

$$\dot{\mathbf{a}}_{2} = \dot{\mathbf{a}}_{1} + \dot{\mathbf{a}}_{2} = 0,336 + 0,128 = 0,464 \text{ kg.s}^{-1}.$$

W równaniu tym przez m²z oznaczono masowa natężenia przepływu powietrza zasilajęcego całość instalacji, a przez m¹i m² – masowa natężenia przepływu powietrza przez dyazę głównę podajnika oraz reduktor zasilajęcy komorę podajnika.

Zadaniem powietrza dostarczanego do komory jest utrzymanie w niej nadciśnienia p_k, regulowanego zaworem redukcyjnym R, przez czas trwania cyklu opróżniania podajnika. Niezbędnado osiągnięcia tego celu natężenie przepływu obliczono z zależności:

$$\dot{\mathbf{n}}_{k} = \frac{\mathbf{V} \cdot \mathbf{\theta}_{k}}{\tau_{k}} = \frac{1.2 \cdot 4.703}{49.5} = 0.114 \text{ kg.s}^{-1}.$$

w której V oznaczono wyrażonę w a³ objętość całkowitę podajnika, a przez ρ_k – gęstość powietrza pod ciśnianiem p_k, wyrażonę w kg.m⁻³.

Na skutek naturalnej przepuszczalności złoża materiału sypkiego znajdującego się w podajniku oraz różnicy ciśnień pewna, określona jako m_p , ilość powietrza przepływała z górnej części komory do dyszy głównej. Wyznaczono ję z zależności:

$$m_{1} = m_{2} - m_{1} = 0,128 - 0,114 \text{ kg.s}^{-1}.$$

Stąd masowe natężenie przepływu powietrza przemieszczającego się w rurociągu transportowym było równe:

$$n = n_1 + n_2 = 0,336 + 0,014 = 0,350 \text{ kg.s}^{-1}$$

Określona w ten sposób ilość powietrza, wymieszana z cząstkami matariału stałego, przemieszczała się w rurocięgu w postaci mieszaniny dwufazowej. Ruch ten odbywał się ze średnię prędkościę w, obliczonę wg wzoru

$$w = \frac{N_G}{A \cdot \Delta p} = \frac{41.733}{7.854.10^{-3} \cdot 0.251.10^{6}} = 21.19 \text{ m.s}^{-1}.$$

w którym przez A oznaczono wyrażonę w m² powierzchnię przekroju poprzecznego rurocięgu, a przez Δp – wyrażony w Pa spadek ciśnienia. Przez N_G oznaczono moc niezbędnę do sprężenia atrumienia m kg.s⁻¹ powietrza od ciśnienia panującego na końcu ruroczęgu do ciśnienia na jago poczętku. Powietrze traktowano jako czynnik poddany sprężaniu politropowaau, charakteryzujący się wykładnikiem politropy % = 1,4. Dle tak obliczonej prędkości średniej liczba Froude'a osiągnęła wielkość:

$$Fr = \frac{w^2}{9 \cdot d} = \frac{21,19^2}{9,80565 \cdot 0,1} = 457,87,$$

gdzie g jest wartością przyspieszenie grawitącyjnego.

Masowe koncentracja mieszaniny, umożliwiająca ilościową ocenę stopnia wykorzystania strumienia powiatrza transportującego, wyznaczona była z zależności:

$$\mu = \frac{n_c}{n} = \frac{12.747}{0.350} = 36.42.$$

Energię potrzebnę do przetreneportowania i Mg materiału obliczono według wzoru:

$$E = \frac{L}{m_e} \cdot 10^{-3} = \frac{3.626}{631} \cdot 10^{-3} = 5,747 \text{ MJ}.\text{Mg}^{-1},$$

w którym przez L oznaczono wyrażoną w [J] pracę sprężania całej objętości powietrza zużytego podczas transportu od ciśnienia otoczenia do ciśnienia zasilania p_z. Powietrza, tak jak poprzednio, traktowano jako gaz poddany sprężaniu politropowemu.

Odniesionę do warunków normalnych ilość powietrza, zużywanę na przetransportowania 1 Mg asteriału, wyznaczono z zależności:

$$\dot{V}_{T} = \frac{V_{N}}{m}$$
, $10^{3} = \frac{0.364}{12.747}$, $10^{3} = 28.55 \text{ m}^{3}.\text{Mg}^{-1}$.

Obliczono także współczynnik φ oporów przepływu w dyszy podajnika, uwzględniający zmniejszenie natężania przepływu powietrza przez to urzędzenie. Zmniejszenie natężenia przepływu powietrza wynikało z niedokładności wykonania dyszy oraz zakłóceń, spowodowanych dozowaniem częstek materimłu stałego. Według podanego toku postępowania wykonano obliczenia dla pozostałych 23 materiałów i zastawiono je w tablicach 1 i 2.

4. Podaumowanie

Przeprowadzona analiza wyników badań pozwoliża zoptymalizować parametry transportu pneumatycznego wysokociśnieniowego grupy asteriałów z punktu widzenia ekonomiki. Prowadziło to w efekcia do minimalizacji jednostTablica 1

-	aws a	đ	Pk	0 •	- 11 - 11	d 1	•=	N ۳	<u>ير</u> 11•	• 6	•	•> ^Z
1	meterieiu	MPa	MP.a	kg. =1	kg. = 1	:	kg. = 1	kg. s ⁻¹	kg. = 1	kg. = 1	kg.s ⁻¹	≣ 3, 8 1
		Ţ	2	2	Ą	ŝ	۵		80	б	10	11
-	M1krota1k	0,505	0,083	3,181	0,340	16	0,201	0,139	0,029	0,110	0,311	0,267
N	Starczan baru	0,486	0,116	4,117	0,385	20	0,306	0,079	0,030	0,049	0,355	0,302
м	Koke gezowy	262.0	D,273	14,186	0,547	22	0,321	0,226	0,130	960,0	0,417	0,428
4	.Cement "Górkel"	D, 342	0,353	12,456	0,556	22	0,278	0,278	0,113	0,165	0,443	0,435
b	Mass chromitowa	0,324	0,167	11,052	0,490	22	0,267	0,223	0,067	0,156	0,423	0,384
9	Męczka ziemnia- czene	0,260	0,196	9 , 195	0,552	22	0,223	0,329	0,047	0,282	0,505	0,431
~	Męczke anhydry- towa	0,481	0,245	8,000	0,501	22	0,378	0,123	0,053	0,070	0,448	0,392
0	Mędzke dolomito- we 0-0,32 mm	0,406	0,314	19,402	0,501	18	0,214	0,288	0,177	D,111	0,325	262 0
σ	Dolomit prazony	0,352	0,261	13,684	0,660	24	0,335	0,325	0,133	0,192	0,527	0,517
10	Wapno hydraty- zowane	0,448	0,120	9 ,269	0,321	18	0,233	0,088	0,062	0,026	0,259	0,251
11	Chlorek wapnie	0,281	0,130	14,864	0,383	18	0,166	0,217	260°0	0,122	0,288	0,301
12	Mlewo fosfory- towe	0,510	0,132	2,516	0,294	16	0,205	0,088	0,011	0,077	0,882	0,230

											cd, te	blicy 1
-	2	5	4	ŝ	و	~	60	6	10	11	12	13
13	Minis olowiowa	0,353	0,338	6,179	0,427	24	0,331	960*0	0,038	0,058	0,389	0,335
14	Blende preżone fluidyzecyjne	0,318	0,295	8,585	0,370	18	0,185	0,185	0,063	0,122	0,307	0,290
15	Blende preżone zewiesinowe	0,318	0,335	12,413	0,336	18	0,185	0,151	960 * 0	0,056	0,241	0,263
16	Pyž filtrowy 0+0,3 mm	0,412	0,155	8,030	0,358	18	0,222	0,136	0,058	0,078	0,300	0,280
17	Pył megnetytowy	0,324	0,294	14,492	0,532	22	0,273	0,259	0,086	0,173	D ,446	0,416
18	Pył segnetytowy	D, 324	0,294	12,500	0,460	22	0,274	0,186	0,074	0,112	0,386	0,360
19	Pyk wielkopie- cowy	0,362	0,274	9,863	0,490	22	0,291	0,199	G , 073	0,126	0,417	0,384
20	Pyky lotne	0,490	0,226	11,764	0,480	20	0,316	0,164	0,072	0,092	0,408	0,376
21	Popiół z elek- trofiltrów elektrowni	0,363	0,186	11,666	0,553	22	0,293	0,260	0,073	0,187	0,480	0,432
22	Popiół z elek- trofiltrów eglo- merowni	0,363	0,186	9 , 763	0,540	52	0,293	0,247	0,057	0,190	D ,483	0,423
53	Polietylen kab- lowy	0,490	0,131	3,669	0,333	16	0,200	0,132	0,031	0,102	0,302	0,261
24	Polistylen keb- lowy	0,534	2 60 ' 0	3,134	0, 305	16	0,215	060'0	0,021	690°0	0,284	0,239
25	Polwinit cponowy	0,386	0,262	5,000	0,816	22	0,303	0,513	0,046	0,467	0,770	0,637
26	Polwinit oponowy	612'0	0,276	4,273	0,815	22	0,282	0,533	0,038	0,495	0,777	0,636
27	Pissek kwarcowy	0,349	0,293	12,747	0,464	24	0,336	0,128	0,114	0,014	0,350	0,364

Analiza doświadczalne parametrów pracy...

33

34

Tablica 2

۲ ۲	-	9	331,0	331,0	154,8	154,8	154,8	154,8	154,8	154,8	154,8	154,8	154,8	331,0	154,8	154,8
ф	ı	6	0,7031	0,7074	0,7241	0,7115	0,7049	0,7845	0,7054	0, 7572	0,8688	0,7000	0,7005	0,7000	0,9922	0, 8929
ш	но.мg ⁻¹	m	21,367	18,043	6,243	7,013	6,627	8,047	11,186	4,471	7,832	6,241	3,293	22,740	10,199	5,735
ΰŢ	a ³ .Mg ^{−1}	7	83,83	73,27	30,17	34,91	34,72	46,90	49,04	20,24	37,75	27,10	20,23	91,48	54,18	33,75
r T	I	٩	414,03	521,20	570,49	947,78	911,58	1185,46	666,66	280,49	892,83	291,93	444,91	489 .47	284,46	242,40
8		5	20,150	22,608	23,653	30,487	29,899	34,096	25,569	16,585	29,590	16,920	20,888	21,909	16,702	15,418
Δp	MP	4	0,246	0,249	0,201	0,162	0,137	0,147	0,228	0,212	0,236	0,074	0,103	0,110	0,235	0,212
ਜ	1	5	10,25	11,61	34,05	28,11	26,12	18,22	17,85	59,81	25,98	35,80	51,67	8,91	15,88	27,99
		2	Mikrotelk	Starczan baru	Koke gezowy	Cement "Górkal"	Mass chromitows	Męczka ziemnieczene	Męczke enhydrytowa	Męczka dolomitowa D _i O,32 mm	Dolomit pretony	Wapno hydratyzowane	Chlorek wopnie	Mlewo fosforytows	Minia clowiowa	Blends prezone flui- dyzacyjne
		-	Ŧ	0	M)	4	Ń	Q	2	Ø	6	OI	11	12	13	14

2		
tablicy	10	
cd.	H	

Ţ	2	3	*	2	9	~	10	6	10
15	Blenda pražona za- viesinowa	51,38	0,236	12,272	153,57	21,20	3,605	0,9904	154,8
16	Pyè filtrowy 0-0,3 mm	26,77	0,108	21,178	457,35	34,92	7,364	0,7000	154,8
17	Pyž magnetytowy	32,46	0,235	23,207	549,18	28,72	5,221	0,9875	154,8
18	Pyž magnatytowy	32,37	0,235	20,142	413,70	28,79	5,242	0,9798	190,0
19	Pyż wielkopiecowy	23,67	0,210	22,817	530,88	38,93	8,012	0,7891	190,0
20	Pyły lotne	28,85	0,184	25,026	638,65	31,98	7,474	8669'0	154,8
21	Popiół z elektrofiltrów elektrowni	24,31	0,098	31,599	1018,18	37,06	7,554	0,7001	154,8
22	Popióż z elektrofiltrów aglomerowni	20,23	860'0	31,879	1036, 31	43,28	8,829	0,7000	190,0
23	Polietylen kablowy	12,18	0,117	21,495	471,14	71,16	17,049	0,7002	331,0
24	Polietylen keblowy	11,04	0,076	22,053	495,92	76,40	19,264	0,7001	331,0
25	Polwinit oponowy	6,49	0,274	40,705	1689,56	127,34	28,095	0,9202	595,0
26	Polwinit oponowy	5,50	0,290	40,250	1652,00	148,85	32,153	0,9939	595,0
27	Pissek kwarcowy	36,42	0,251	21,190	457,87	28,55	5,747	0,8614	154,8

Analiza doświadczalna parametrów pracy...

35

kowego zużycia powietrze \mathring{V}_{T} , a co za tym idzie – energii jednostkowej E. Obliczone wartości współczynnika oporów przepływu φ umożliwiły ocenę zakłóceń występujących w dyszy i spowodowanych obecnością materiału sypkiego. Stwierdzono ponadto, że zwiększony przepływ powietrza z komory do dyszy głównej występuje nie tylko przez materiały posiadające ziarna jednorodne, o dużych średnicach. Zjawisko to występuje także w przypadku materiałów, charakteryzujących się dużymi wartościami kąta naturalnego usypu, a więc wykazujących tendencje do zawieszania się na ściankach zbiornika i tworzenia kanałów dla przepływającego przez nie powietrza.

OZNACZENIA

A	-	pole przekroju poprzecznego rurociągu transportowego,
d	-	średnica wewnętrzna rurocięgu transportowego,
d ₁	-	średnica najwęższego przekroju dyszy przyspieszającej,
Е	•	energia zużywana na przetransportowania 1 Mg materiału, energia jed-
		nostkowa,
Fn	-	liczba Froude'a,
9	-	przyspieszenie ziemskie,
L	-	praca sprężania powietrza,
L	-	długość zastępcza rurocięgu transportowego,
•	-	masa porcji materiału sypkiego,
i,	-	masowe natężenie przepływu materiału sypkiego,
ň,	-	masowe natężenia przepływu powietrza, zużywanego na wypełnienie ko-
r.		mory podajnika,
m _D	•	masowe natężenie przepływu powietrza przepływającego przez materiał
-		sypki,
i,	-	masowa natężenie przepływu powietrza zasilającego całość instalacji
ň.	-	masowa natężenie przepływu powietrza przepływającego – przez dyszę
		przyspieszającą.
·2	-	masowe natężenie przepływu powietrza wpływającego do komory podajni-
		ka,
N _G	-	moc niezbędna do sprężenia powietrza,
Pk	٠	nadciśnienia w komorze podajnika,
Pz	-	nadciónienie zasilenia instalacji,
Δp	-	spadek ciśnienia w rurocięgu transportowym,
R	-	promień gięcia łuku,
t _t	-	czas transportu porcji materiału,
V	-	objętość całkowita komory podajnika,
V _u	-	objętość użyteczna komory podajnika,
V.N	-	objętościowe natężenie przepływu powietrze, sprowadzone do warunków
		normalnych,

36

Analiza doświadczalna parametrów pracy...

- V_T ilość powietrza, zużywana na przetransportowanie 1 Mg metariału,jednostkowa zużycie powietrza,
- w średnia prędkość przepływu powietrza w rurocięgu transportowym,
- α kąt wygięcia żuku,
- wapółczynnik oporów przepływu w dyszy podajnika,
 wapółczynnik oporów przepływu w dyszy podajnika,
- $ho_{
 m L}$ gęstość powietrza w kosorze podajnika przy nadciśnieniu p $_{
 m k}$.

I.ITERATURA

- [1] Sokołow J.J., Zinger N.M.: Strumienice, WNT, Warszawa 1965.
- [2] Ochęduszko S.: Termodynamika stosowana. WNT, Wagszawa 1967.
- [3] Goliński J.A., Troskolański A.T.: Strumienice. WNT, Warszawa 1968.
- [4] Kuratow T.: Pomiary przepływów cieczy par i gazów. Śląsk, Katowice 1967.
- [5] PN-65/M-53950: Pomiar natężenia przepływu płynów za pomocą zwężek.
- [6] Piątkiewicz Z., Kowalski E., Szlumczyk H.: Wyniki badań transportu pneumatycznego wysokociśnieniowego materiałów sypkich. Zeszyty Naukowe Politechniki Śląskiej, seria Mechanika, z. 66, Gliwice 1978.

ЭКСПЕРИМЕНТАЛЬНЫЙ АНАЛИЗ ПАРАМЕТРОВ РАБОТЫ ОВОРУДОВАНИЯ ПНЕВМОТРАНСПОРТА ВЫСОКОГО ДАВЛЕНИЯ

Резвие

В работе дан экспериментальный анализ параметров работы четырёх установок пневмотранспорта высокого давления с разными длинами трубопроводов, переправляющих 23 разных материалов. Расчитаны оптимальные параметры с точки зрения экономики работы установок с особым учётом баланса носителя в трансляционном устройстве.

EXPERIMENTAL ANALYSES OF OPERATION PARAMETERS IN HIGH PRESSURE PNEUMATIC CONVEYING INSTALLATION

Summary

Four instalations with different langhts of pipelines are analized exparimentally. Each of them transports 23 different materials. Optimal parameters from economic point of view are found. A balance of the carier in a transmitter is especially taken into account.