ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ

Seria: MECHANIKA z. 63

Nr kol. 537

Andrzej KLIMPEL, Marek GRONEK, Marian KACZMARZYK

ZAGADNIENIE REGENERACJI POWIERZCHNI ROBOCZEJ DYSKÓW ROZWŁÓKNIARKI LAWY BAZALTOWEJ

> Streszczenie. Opracowano technologię napawania regeneracyjnego dysków rozwiókniarki lawy bazaltowej. Zbadano krajowe stopiwa austenityczne układane metodą MIG elektrodą wahliwą. Określono własności mechaniczne i zmiany strukturalne złącza napoina-podłoże.

1. Wprowadzenie

Produkcja waty żużlowej stanowiącej podstawowy materiał izolacyjny w przemyśle budowlanym odbywa się przez rozwłóknianie ciekłej lawy bazaltowej. Proces ten prowadzony jest między innymi na rozwłókniarkach RX - 2, których podstawowymi organami roboczymi są dyski o średnicach 250 i 360 mm wirujące z prędkością 6000 obr/min.

Ciekła lawa o temperaturze około 1300⁰C ścieka na odpowiednio ustawione dyski i pod wpływem sił odśrodkowych ulega rozwłóknieniu na watę żużlową. W wyniku działania erozyjnego i dynamicznego obciążenia cieplnego powoduje ona, że powierzchnie robocze dysków ulegają szybkiemu zużyciu. Czas pracy dysków wynosi średnio 100-300 godz. przy zużyciu powierzchni roboczej ne głębokość około 5 mm. Dyski regenerowane są metodę napawania łukiem krytym lub w osłonie CO₂ z układaniem stopiwa niskowęglowego, e średni czas regeneracji jednego dysku waha się w granicach od 4-8 godz.

Warunki ekonomiczne nakazują prowadzenie procesu regeneracji dysku z najwyższą wydajnością i jak najniższymi kosztami, przy równoczesnym zapewnieniu możliwie najlepszych własności eksploatacyjnych nałożonych napoin.

Na podstawie analizy stosowanych obecnie metod napawania regeneracyjnego i materiałów dodatkowych, do badań wybrano proces napawania łukowego w osłonie gazowej z wahliwym ruchem elektrody, szczególnie przydatny do napawania powierzchni cylindrycznych oraz stopiwa austenityczne [1, 2, 3].

2. Przebieg badań

Badania nad opracowaniem technologii regeneracji dysków rozwłókniarki ze stali St35 i średnicy części roboczej 250 mm prowadzono na specjalnie do tego celu zbudowanym stanowisku badawczym (rys. 1). Z uwegi na brak oryginalnych dysków jak i koszt badań próby napawanie prowadzono na ru-

Rys. 1. Schemat stanowiska do napawania dysków w osłonie gazów ochronnych 1 – manipulator spawalniczy, 2 – uchwyt samocentrujący, 3 – dysk rozwłókniarki, 4 – pistolet, 5 – układ wahliwy elektrody, 6 – kolumna, 7 – zasilacz układu wahliwego, 4, 8, 9, 10, 11 – półautomat do spawania w osłonie gazów ochronnych BS1-500

rach ze stali St3S o średnicy 250 mm i grubości ścienki 12 mm zachowując podobne warunki chłodzenia poszczególnych ściegów napoiny jek przy napawaniu dysków. Jako materiał dodatkowy dobrano dostępne krejowe druty austenityczne SP10, SP13 i SP15 o średnicach 1,2, 1,6 i 2,0 mm (norma PN-70/M-69420).

Dla podwyższenia ekonomiczności napawania w miejsce zalecanej normalnie dla spoiw austenitycznych osłony Ar stosowano również jako osłonę łuku CO₂ [4].

Przy napawaniu stosowano technikę równoległego obwodowego układania poszczególnych ściegów, jeden obok drugiego. Parametry napawania ustalono według kryterium mechanicznego – całkowita spójność metalurgiczna napawanej warstwy z podłożem i brak pęknięć w napoinie i SWC oraz kryterium kształtu – równa, gładka napoina o możliwie największej wysokości i szerokości układana w jak najkrótezym czasie. Wstępne badania ujawniły, że nawet przy dużych energisch liniowych łuku nie tworzę się w stopiwie pęknięcia goręce.

Równocześnie dla zapewnienia wymaganego kształtu napoiny konieczne jest zachowanie odpowiedniego układu geometrycznego głowica spawalnicza – dysk (rys. 2).

Rys. 2. Schemat układu geometrycznego elektroda-dyek

Rys. 3. Wpływ gęstości prądu na grubość napawanej warstwy i stabilność jarzenia się łuku

Wy iki badań procesu napawania rur przy użyciu drutów o średnicy 1,2, 1,6 i 2,0 mm przedstawiono na r.a. 3, 4 i 5, a optymalne warunki napawania zestawiono w tablicy 1.

Dla określenia wytrzymałości połączenia napoina-podłoże z rur napawanych przy parametrach optymalnych drutem Ø 2 mm wycięto specjalne próbki o wymiarach 30 x 30 mm, do których obustronnie przygrzano tarciowo kołki, odpowiednio ze stali austenitycznej 18-8 i niskowęglowej St3S (rys. 6).

Parametry zgrzewania tarciowego dobrano w ten sposób aby uzyskać połęczenie o możliwie najwyższych wżasnościach mechanicznych a równocześnie

Tablica 1

Srednica drutu (mm)	Natężenie prądu I (A)	Napięcie łuku (V)	Amplituda wahnięć (A) (am)	Częstotliwość wahnięć W 1/min.	Długość wylotu elektrody (mm)	Wyprzedzenie (mm)	Ilość warstw	Wysokość warstwy hn (mm)	Szerokość wargtwy b (mm)	Grubość warstwy (mm)	Obroty dysku n obr/min.	Czes napawania 1 warstwy (min.)	Całkowity czas napawania dysku d 1 250 mm 150 mm (min.)
1,2	170 190	20- 22	15	40-60	20	20	8	3,8	21	ok. 5	6,6	9,09	88,7
1,6	210 220	21-23	20	40-60	20	20	7	4	25	ok.5,5	6,8	8,82	75,7
2,0	300 320	23-25	30	40-60	20	20	5	6,5	40	ok. 8	7,0	8,33	54,1

Optymalne parametry napawania w osłonie argonu i CO₂

Uwaga: Natężenie przepływu Ar lub CO₂ Q = 15 l/min.

A. Klimpel, M. Gronek, M. Kaczmarzyk

Rys. 6. Sposób wykonania złącza próbnego (a) i próbka do statycznej próby rozciągania (b)

by ciepło zgrzewania nie oddziaływało na złęcze napoiny z podłożem. Po obróbce wiórowej otrzymane złącza próbne poddano statycznej próbie rozcięgania, której wyniki zestawiono w tablicy 2.

Dla otrzymania pełnego obrazu własności mechanicznych napawanego złącza oraz zmian strukturalnych w obszarze napoiny, strefy przejściowej i SWC, na zgładach pobranych z rur napawanych drutami Ø 2 mm w osłonie CO₂ przeprowadzono pomiary twardości HV/30 oraz obserwacje makro i mikroskopowe (rys. 7 i 8 i 9).

A. Klimpel, M. Gronek, M. Kaczmarzyk

 α

b)

c)

Tablica 2

Wyniki statycznej próby rozciągania złącza próbnego napoin (rys. 6)

Nr prób- kí	ø (mm)	Fm (mm ²)	Pm (dN)	R _m (dN/mm ²)	Miejsce zerwania	Uwagi
1	14,8	171,9	7600	44,2	w materiale rodzi- mym	spawanie w CO ₂
2	14,2	158,3	6600	41,7		
3	14,8	171,9	6000	34,9		
4	14,7	169,6	5900	34,8	w zgrzeinie	
5	14,9	174,3	7000	40,2	w materiale rodzi- mym	
6	14,3	160,5	7500	46,7		spawanie w Ar
7	15,0	176,6	7200	40,8		

	* 380 * 375 * 360 * 396
*124 *120 126	135 130 128
*130 *124	126

21	1426	#422 #411 #402
1	136 136	196 :132
	*128	130

Rys. 7. Wyniki pomiarów twardości HV/30 złączy napawanych w warunkach optymalnych drutem elektrodowym Spi0 (a), Spi3 (b), Spi5 (c) o średnicy ø 2 mm w osłonie CO₂

18

Rys. 8. Makrostruktura waretwy napawanej wykonenej drutes Spi5 \$ 2,0 mm w osłonie CO₂ przy parametrach optymalnych

Pow. 1x

Traw, Adler

Rys. 9. Mikrostruktura obszaru stopienia napoiny z podłożem, z lewej strony napoina

Pow. 250x

Traw, FeCl,

3. Analiza wyników badań

Wstępna próby napawania żukowego elektrodą wahliwą prowadzone przy użyciu różnych drutów elektrodowych SP10, SP13 i SP15 wykazaży, że zmiana ekładu chemicznego w zakresie użytych drutów nie wywiera żadnego wpływu na przebieg procesu napawania i keztażt napoiny.

Daleze badania wykonywano przy użyciu drutu oszczędnego SP15 stosując jeko gaz ochronny CO₂ i porównawczo Ar. Zmiana osłony łuku z Ar na CO₂ powodowała spadek stabilności jarzenia sią łuku, wzrost głębokości wtopienia i ilości rozprysków, nie wpływając jednak w istotny sposób na gładkość napoiny. Powierzchnia napawanej warstwy w osłonie Ar pokryta była cienką, ściśle przylegającą warstwą zanieczyszczeń, natomiast w osłonie

A. Klimpel, M. Gronek, M. Kaczmarzyk

CO2 powłoką kruchego żużle, powstałego w wyniku wypalania się pierwiastków stopowych stopiwa.

Dla określenia wpływu rodzaju osłony gazowej na zmiany składu chemicznego stopiwa, na zgładach pobranych z napoin wykonanych drutem SP15 # 2 mm w osłonie CO₂ i Ar (tablica 1), przeprowadzono mikroanalizę rentgenowską rozkładu C, Cr, Mn, Ni i Si (rys. 10).

Wykazała ona, że przy napawaniu w osłonie CO₂ następuje wyraźne nawęglenie stopiwa, szczególnie w obezarze przypowierzchniowym, malające w kierunku do materiału podłoża. Równocześnie wypalają się podstawowe pierwiastki stopowe, zwłaszcza Mn i Si, jednakże ich zawartość nie spada poniżej dolnej zawartości granicznej ustalonej w normie PN-70/M-69420. Dla możliwie najlepszego zabezpieczenia jeziorka kąpieli metalowej przed dostępem tlenu i azotu z powietrza podwyższono natężenie przepływu CO₂ do górnej granicy zalecanego zakresu Q = 15 l/min.

Daleze badania prowadzono przy napawaniu w osłonie CO₂. Brak pęknięć gorących w układanych napoinach, mimo stosunkowo dużych gęstości prędu (rys. 3), wynika z korzystnego rozkładu naprężeń skurczowych w stopiwie układanym przy wahliwym ruchu elektrody topliwej oraz z dużej zawartości Mn w drucie SP15 ograniczającego skłonność do tego typu pęknięć [5,6]

Analiza wpływu podstawowych parametrów napawania na stabilność przebiegu procesu i wymiary napoiny wskazuje, że decydujący wpływ ma gęstość prędu, napięcie łuku oraz amplituda i częstotliwość wahnięć elektrody (pośrednio – energia liniowa łuku) (rys. 3, 4, 5).

Zakres stabilności każdego z parametrów zawęża się przy wzroście średnicy drutu elektrodowego. Najwyższą wydajność uzyskano przy napawaniu drutem o średnicy 2 mm.

Złożony charakter formowania napoiny na cylindrycznej powierzchni dysku wymaga ścisłego doboru każdego z parametrów. Przekroczenie granicy stabilności powoduje nierówne jarzenie się Łuku, nadmierne wtopienie lub brak wtopienia, ściekanie stopiwa itd. obrazujące się w spadku wydajności napawania lub nieprawidłowym kształcie i jakości napoiny. Optymalny zakres każdego z parametrów napawania zestawiono w tablicy 1, ostateczne warunki napawania dysków rozwłókniarki skorygowane jednak muszą być na stanowisku produkcyjnym. Dzięki opracowanej technologii napawania, czas regeneracji 1 dysku rozwłókniarki skróci się z kilka godzin do poniżej 60 min. przy napawaniu drutem ø 2 mm. Równocześnie badania mechaniczne wykazały doskonałą spójność napawanej warstwy z podłożem, korzystny wzrost twardości napoin w wyniku nawęglenia zwiększający się ze wzrostem zawartości pierwiastków stopowych w stopiwie i brak obszaru utwardzonego w SWC (rys. 7, tablica 2).

Obserwacje metalograficzne nie ujawniły obecności pęknięć makro czy mikroskopowych w napoinie i SWC, węską etrefę etopienia i brak kruchych etruktur w całym obszerze złącza napoina-podłoże (rys. 8 i 9). Od etrony napoiny widoczna jest drobnoziarnista etruktura austenityczno-ferrytyczna

Rys. 10. Wyniki mikroanalizy C, Cr, Mn, Ni i Si na zgładach nepoin wykonanych drutem Sp15 ø 2 mm przy parametrach optymalnych w osłonie CO₂ (a) 1 Ar (b)

1 - obszar pod licem, 2 - środkowy obszar napoiny, 3 - obszar w pobliżu strefy przejściowej ze znacznę ilościę wydzieleń węglikowych a od strony podłoża ferryt +
perlit.

4. Wnioski

Na podstawie przeprowadzonych badań stwiardzono:

 Technologia napawania żukowego elektrodę wahliwą SP15 ≠ 2 mm w osłonia CO₂ umożliwia regenerację dysku o średnicy 250 mm i długości powierzchni roboczej 150 mm warstwę o g ≅ 8 mm w czasie poniżej 60 min.

2. Osłona CO₂ żuku powoduje korzystny, z punktu widzenie żaroodporności i erozyjnego, działanie lawy żużlowej, wzrost zawartości C oraz wypelenie podstawowych pierwiastków stopowych w stopniu mie powodujęcym przekroczenie granic ustalonych w normie PN-70/M-69420.

 Napawane warstwy charakteryzują się doskonażą spójnością z podżożem i wolne sę od jakichkolwiek pęknięć lub struktur kruchych.

4. Opracowana technologia może znaleźć zastosowanie do wielokrotnego przywracania zdolności eksploatacyjnej dysków rozwłókniarek. Wdrożenie prowedzone jest w Zjednoczeniu ZEMAK Warezawa.

LITERATURA

- Industry looks hard at hardsurfacing. Weld. Design and Fabr. 1975, t. 48, nr 8 s. 39-46.
- [2] Hardfacing AWRA Technical Note 4. Weld. Res. Abroad, 1975, t. 21, nr 2, s. 19-26.
- [3] Offergeld E.: Belle and hoppers for blast furnaces. Weld. a. Met. Febr. 1975, t. 43, nr 8, e. 589-594.
- [4] Zaruba I.I., Kasatkin B.C.: Swarka w ugliekisłom gazie. GIIL Kijów 1960, s. 145-178.
- [5] Linnert G.E.: Welding metallurgy, t. 2, 1967, e. 434-438.
- [6] Honeycomb J., Geock T.G.: Microcracking in fully austenitic stainless steel weld metal. Weld. Res. Abroad. 1973, t. 21, nr 6, s. 18-20.

ВОПРОС РЕГЕНИРОВАНИЯ РАБОЧЕЙ ПОВЕРХНОСТИ ДИСКОВ РАЗРИХЛИТЕЛЯ БАЗАЛЬТОВОЙ ЛАВН

Реарке

Била разработана технология регенерационной напкавки дисков разрыхителя базальтезей кави. Были копытани отечественные ауотенитные присадочные материали. Укладка валиков велась исталлическим электродом в среде аргона при виполнении элекродом колебательных движений. Были спределены механические свойства и структурные изменения соединения направленный материал - осисеной металя. THE PROBLEM OF REGENERATING THE WORKING SURFACE ON THE DISCS OF A BASALT LAVA SEPARATOR

Summary

The technology of regenerative aurfacing the diace of a basalt lava separator has been worked out. The desestic sustenitic deposited metals laid by means of a MIG asthod using a oscillation electrode. The mechanical properties and structural changes in the heat affected zone have been determined.