Borislav GRUBOR
Slobodan SIKMANOVIC
Boris Kidric Institute of Nuclear Sciences - Vinca
Beograd - Yugoslavia

DESIGN OF VERTICAL PNEUMATIC CONVEYOR
WITH A FLUIDIZED BED AS MIXING ZONE

Abstract

Summary. Design of pneumatic conveying aystems are generally based on "rules of thumb" and on actual experience with similar sygtems. There are recently certain cevelopments of quantitative design procedures but with varying results.

On the basis of experimental reaulta and presented analyais, a deaign procedure is given for vertical pneumatic conveyor with fluidized bed as mixing zone with particular attention on the height of material in the reservoir, transport capacity and pressure drop.

1. Introduction

Syotem of vertical pneumatic conveyor with fluidized bed as mixing zone is considered among the simplest systems of pneumatic transport aince it has no moving parts and works with relatively low pressures. Apart from that, this eystem is convenient because of its continuous work, high reliability and it also can be used for other purposes as mixing various bulk materials or powders. These advantages can more than compensate the disadvantages of this system which are: somewhat lower efficiency and a need for air cleaning devices which is the case in all systems with low concentrations (phase densities). Capacity (solid flow rate) of these types of conveyors mainly depend on air flow and fluidized bed heights.

Vertical pneumatic conveyor having capacity of $10 \mathrm{t} / \mathrm{h}$, transporting stone dust ($\bar{d}=23 \mu \mathrm{~m}, \mathrm{p}_{\mathrm{s}}=2620 \mathrm{~kg} / \mathrm{m}^{3}, p_{\varepsilon}=460 \mathrm{~kg} / \mathrm{m}^{3}$) with a wertical distance of 16 m was designed. Design and construction was based on analysis of such conveyors and on experimental investigations. Apart from desired capacity and transport height, maximum working pressure was limited to be less than 0,3 bar.

Two basic concepts were analysed. In the first system (figure 1a) solid is fed to the riser via a bell-shaped chamber connected to the riser and in the second (figure $1 b$) solid is fed by a nozzle. Uoing results and relations given by F. Decamps et al. [1] and L.S. Leung [2] all the parameters of such a conveyor were calculated. Experimental verification was
done on a model with a nozzle and itg influence of the transport characteristics was investigated.

2. Desion of the gratem

In order to deaign this kind of a syatem, one has to take into account the following:
a) If the pressures above the fluidized bed and at the end of the tranaport pipe are the same, the pressure drop in the pipe is $L_{\text {. }} f_{f}$, in systeme with bell-shaped chamber where L is the height of the bed above the beginning of pipe and γ_{ε} is the mean apecific weight of the bed. If the gystem has a nozzle the pressure drop can be somewhat larger.
b) Total air flow through the pipe, q_{v}, is the sum of the air flow for pneumatic transport and part of air flow used for fluidization which is entrained in the bell-ahaped chamber or by the nozzle.
c) It is logical to expect that the anticipated flow of the mixture in the pipe can be obtained since it can be regulated by air flow parameters, and if confident correlatfons for pressure drop exist, relationships between pressure drop and
air velocity can be calculated for required capacity and various pipe diameters.
d) Using same correlations it is possible to calculate relationg air flow-solid flow for various heights of bed (or pressure drops) and verious pipe diameters,

By analysing these relations, optimal combination of parametera can be chosen to give required performance.

Calculations are made for two cases of transport: for the model, $G_{g}=$ $=4 \mathrm{t} / \mathrm{h}, \mathrm{H}=8 \mathrm{~m}$ and for the prototype $\mathrm{G}_{\mathrm{s}}=10 \pm / \mathrm{h}, \mathrm{H}=16 \mathrm{~m}$ for various pipe diameters and bed heights. "Bed density was assumed to be $p_{8}=$ $=1000 \mathrm{~kg} / \mathrm{m}^{3}$. In order to calculate pressure drops many correlations were
analysed and three were choaen alnce they gave relatively aimilar resulta. Values that are obtained with these correlations for the pressure drop for the model and prototype are shown in figure $2 a$ and $2 b$ for constant solid flow, transport height H and air velocity $\overline{\mathrm{v}}_{\mathrm{g}}$, and various pipe diameters. For complete calculations, correlation by Leung [3] was used.

Using the method described above under a), b), c) and d) and the chosen correlation for pressure drop, relationshyps shown in figures 3, 4, 5 and 6 were obtained.

Pigures 3 and 4 show that there exist an infinite number of combinations of bed height, pipe diameter and air flow which will yield required capacity. Minimal transport air velocity(based on whole crossection of pipe) are also marked. That velocity is determined as $v_{\text {gmin }}=$ $=1,5 \mathrm{v}_{\mathrm{gc}}$ where v_{gc} denotes critical minimal air velocity at which the character of flow is changed (initiation of plug flow or blockade). In figure 3 that velocity is related to pipe diameter 50 mm and capacity $4 \mathrm{t} / \mathrm{h}$ and in figure 4 to pipe diameter 100 mm and capacity 10 t / h but in both cases terminal velocity of $0,3 \mathrm{~m} / \mathrm{s}$ was used. Criterions and correlations used for the calculations were those given by Yang [4,5] and Yousfi and Gau [6]. Also determined are the correaponding critical values for voidage and concentration (for $\phi 50$ and $G_{g}=4 \mathrm{t} / \mathrm{h}, \varepsilon_{c}=0,954$ and $C_{k c}=79,58$, and for $\$ 100$ and $G_{g}=10 \mathrm{t} / \mathrm{h}, \varepsilon_{\mathrm{c}}=0,9728$ and $C_{\mathrm{kc}}=$ - 47,35). For other pipe diameters other values for ε_{c} and $C_{k c}$ would be obtained. From figures 3 and 4 it can be seen that the air transport velocity in both the model and prototype should be around 11-13 m/s. Satisfactory capacities would be obtained, according to these calaulations for hoth the model and prototype with aimilar pressure drops (for the model $\geq 0,2$ bar and prototype $\geqslant 0,15 \mathrm{bar})$. From these figures it is also evi-

JO
Pigure 3. Relationship between pressure drop
mixture flow and air velocity in pipe (model)
(relation III [3])
dent that in order to keep the required capacities while increasing velocity, one must incresse bed (or transport pipe) pressure drop.

If the bed pressure drop is kept constant, which hapens in real conditions, increase in air velocity would lead to decrease in capacity as shown by figures 5 and 6. Pluidized bed height, that is the bed presure drop, is a parameter in these figures. It can be seen that capacity G_{g} has a maximum value for a certain air velocity \bar{v}_{g} and bed height h. Tork ing conditions of the conveyor should be chosen according to these diam grams so that air velocity, for reliability reasone, should be about 10% greater than that which gives maximu capacity.

Pigure 5. Solid flow (capacity) versus air velocity in pipe (nodel)

Pigure 6. Solid flow (capacity) veraus air velocity in pipe (prototype)

Curves in figures 5 and 6 represent the performance characteristics of the conveyor and their experimental deteraination or verification is the principal aim of experimental investigation. Influence of the nozzle should
be taken into consideration during calculatione which was not done in this case.

3. Experiment

3.1. Experimental apparatus

Experimental inveatigations were done in a apparatus (model) shown in figure 7. Vertical transport pipe, 50 mm in diameter and 9 in height, was bell-shaped at the beginning for easier entrance of material. Reservoir in which the material was fluidized enabled bed heights up to 2 m .

Pigure 7. Experimental model of vertical pneumatic conveyor
1 - main rezervoir, 2-openning for filling of material, 3 - pipe for entying bed material, 4 -porous didiatributor, 5 - bed material, 6 - air for fluidization, 7 - transport pipe, 8 - transporting air, 9 nozzle, 10 - beginning of pipe, 11 - separater, 12 return pipe, 13 - solid flow measuring rezervoir, 14 - solid back-flow ewitch, 15 - weighing device, 16 venting pipe, 17 - cyclone, 18 - fabric filter, 19-rezervoir of compressed air for bag cleaning, 20 = fan, 21 - axial adjustment of nozzle, 22-air chamber for fluidization, 23 - air flow measuremente, 24 - regulation valves, 25 - air chamber, x - nozzle-pipe distance, $\mathrm{H}_{\text {bed }}-\underset{\text { beight }}{\text { bed }}$ material

The reaervoir and the air cleaning devices were connected by the transport pipe, retura pipe and venting pipe which ensured that the preseures above the fluidized bed and at the end of the transport pipe are equal. Fan was mounted after the air cleaning devices in order to keep this pressure at required level (atmospheric).

While designing the apparatus special care was dedicated to the design of the nozzle since the requirement was that the apparatus must work with pressures lower than 0,3 bar. Four nozzles with various diameters were constructed and teated. Their characteristics are shown in figure 8. On the ordinate marked are the oozzle air flow and the corresponding air velocity in the transport pipe. On the basis of this diagram nozzle $\phi 12,8$ (13 mm) was chosen which for 0,3 bar gave transport air velocity of about $16 \mathrm{~m} / \mathrm{s}$. While working with the material thin velooity will decrease with the increase in capacity, that is with increase in pressure at the beginaing of transport pipe.

Figure 8. Nozzle flow characteriatice; experiment

3.2. Experimental results

Experimental measurements were done with three active bed heights ($1558 \mathrm{~mm}, 958 \mathrm{~mm}$ and 378 mm), with transport air velocities from $4 \mathrm{~m} / \mathrm{s}$ to $20 \mathrm{~m} / \mathrm{s}$, nozzle preasure from 0,04 bar to 0,55 bar and fluidization velo-
cities up to $11, j \mathrm{~cm} / \mathrm{s}$. Por this range of parameters, concentraticn varied from 3 to 30 and capacity varied from $0,03 \mathrm{~kg} / \mathrm{s}$ to $0,7 \mathrm{~kg} / \mathrm{s} \quad(\sim 2,5$ $t / h)$.

Main reason for the lower measured than calculated capacities for the model is because of different material ($p_{c, a l c}=1000 \mathrm{~kg} / \mathrm{m}^{3}, p_{E \exp }=460$ $\mathrm{kg} / \mathrm{m}^{3}$).

As shown in figure 9, choice of the nozzle was statis-

Pigure 9. Air velocity in pipe versu: air presaure in nozzle factory eince in ensured required air velocities for conveying and traneport capacities for pressure drops of 0,3 bar. Curve that showe the change of traneport air velocity as a function of nozzle pressure when there is solid flow, represents a mean value, that is it corresponde to some mean solid flow rate. Experimental data that fall nearer to the cirve, which represente air velocity when there was no solid flow, were for the case of lower conceatration and capacity transport whereas data that fall farther from that curve having lower velocities, were in case of higher concentration and capacity transpert. This is clearly the effect of presaure change in the nozzle (or at the beginning of pipe). It can be seen that, in case of solid flow, air velocities can be for $3 \mathrm{~m} / \mathrm{s}$ lower than in case of air flow only, and this fact has to be kept in mind when deaigning these conveyors.

Measurements of pressure drops in the transport pipe have shown that the correlation [3], which was used for pressure drop calculations, gives aignificantly higher pressure drope than the measured ones. Thie 1s anow in figure 10, uaing few experimental valuea for clearity. For each experimental point correspond three values calculated by pressure drop correlations $[3,7,8]$, using measured values for air and solid flow rate. Experimental values mostly fall between correlations [7] and [8], which give higher and lower values than the eeasured ones. Since the exparimenta were done with only one material, it is not suggented to use a correlation which could be obtained from these measured values but ingtead to use correlation [7] for the gake of reliability.

On the basis of the above analysis, Calculations of the relationship betwes capacity G_{g} and air velocity \bar{v}_{g} were done again, usiag correlat-

Pigure 10. Pressure drop versus air velocity in the pipe

Figure 11, Comparison between experimental and calculated relatione $G_{g}=f\left(V_{g}\right)$ for the model
ion [7] and the measured value for $p_{8}=460 \mathrm{~kg} / \mathrm{m}^{3}$ was used. These relationships should be in good agreement with the experimentaly obtained ones. Any diesagrement in this particular case would be a result of the influence of the nozzle. As can be seen from figure 11, where a comparison between calculated and measured values of capacity is given, influence of the nozzle is diffarent for various bed preseure drops, or bed heighte. As the bed height is increased the influence of the nozzle decreases. For the bed pressure drop of about $1000 \mathrm{~N} / \mathrm{m}^{2}$, this influence is great (increases capacity about five times), but it is negligible for bed presure drop about $8000 \mathrm{~N} / \mathrm{m}^{2}$, in region of recomended transport air velocities. This influence of the nozzle, if verified in further investigations, could be useful in tabilising the funning of the conveyor since it can enable constant capacity regardiese on certain changes in bed height due to any instability of material inflow into the main reservoir.

For the prototype of the vertical pneumatic conveyor, $G g=10 t / h$ and $H=16$ m, the ame analysis was used in choaing the nozzle diameter,trane port plpe dianeter and bed height while the marimum presaure requirenent of 0,3 bar was the same. Correlation [7] was used for pressure drop calculations. Initial measarmente on the prototype showed good performance characteristics of the conveyor and good agrement with the previous caloulations.

4. Conclusion

The outlined deaign procedure of the vertical pneumatic conveyor, in which the solid flow rate depends on a number of parameters, and experimental verification of the calculations, shows that the outlined quantitative procedure can be used with great reliability. Using the nozzle in these conveyor neceseltates one more equation in the procedure.

Since the experimental investigations were carried out with only one material, more experimental data is needed using other materiala in apparatuses of similar size. This would enable formation of a general deaign procedure for these conveyors which would be reliable and simple to иве.

5. LITPRATURA

[1] F. Decampa, G. Dumont and F. Goodssens: "Vertical Pneumatic Conveyer with fluidized bed as mixing zone". Powder Technology, 2, pp. 299-306 (1972).
[2] L.S. Leung and B.F. Towler: "Design of vertical pneumatic conveyor with fluidized bed as mixing zone ${ }^{\text {, }}$, Powder Technology, ${ }^{\text {S }}$, pp. 27-32 (1973).
[3] L.S. Leung, R.J. Wiles: "Design of vertical pneumatic conveying systems" Proc. of Pneumotrangport 3, Paper C4, BHRA Fluid Eagineering, Cranfield (April 1976).
[4] W.C. Yang: "A criterion for "fast fluidization", Proc. of Pneumotranaport 2, Paper E5, BHRA Fluid Engineering, Cranfield (April 1976).
[5] Yang W.C.: "A mathematical definition of choking phenomena and a mathematical model for predicting choking velocity and choking voidage" A.I.C.H.E. Journal, 21. pp-1013-1015 (1973).
[6] Y. Yousfi, G. Gan: "Aerodynamics of the vertical flow of concentrated gas-solid suspensions - II; pressure drop and relative gas-solids velocity". Chem. Eng. Sci., 29, pp. 1947-1953, (1974).
[7] P.C. Richards, S. Wierma: Presaure drop in vertical pneumatic conveying" Proc. of Pneumotransport 2, Paper A1, BHRA Fluid Engineering, Granfield (September 1973).
[8] I. Vuskovic: "Conveying by pipes", University of Belgrade, Department of Mechanical Engineering, (1965).

KOASTRUKCJA PIONOWEGO TRANSPORTU PNEUMATYCZNEGO
Z WYKORZYSTANIEM WARSTWY FLUIDYZACY JNEJ

Streszczenie
W konstrukcji pionowego transportu wykorzystano wakazowki praktyczne oraz aktualne doświadczenie z podobnym układem. Stwierdzono pewne osiagniecia w konstruowaniu przy jednoczeanych zmiennych wyaikach.

Na podatawie badań doswiadczalnych 1 przedatawionej analizy zaproponowano metode projektowania dla pionowego transportu pneumatycznego, ze szczególnym uwzględifeniem wysokości warstwy materiału w zbiorniku, wydajnosci transportu i spadkiem ciśnienis.

КОНСТРУКЦИЯ УСТРОИСТВА ВЕРТИКАЛЬНОГО ПНЕДДО TPAHCПOPTA
С ИСІОЛЬЗОВАНИЕМ ФЛУ ИДИЗАЦИОННОГО СЛОЯ

Резиме

В конструкции устройства пертиканьного транспорта использовано практическе указания, а такхе актуадьны оиыт с аналогичнни устроиствами. Отме-
 зультатах. На основе окспериментальвьх исследований и данного анадиза предлоген метод проектирования вертикального пневмотранспорта, в котором учтеды высота слоя матершала в резервуаре, кдд транспорта и понихение давдения.

