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NUMERICAL SOLUTION OF 2-D TRANSONIC FLOW THROUGH AN AXIAL TURBINE STAGE

Abstract. This paper presents the solution of the steady and un- steady two-dimensional transonic flow throuqh an axial turbine sta­
ge. The rotational, adiabatic, inviscid flow of the perfect gas is 
considered. The analysis of the problem has been based on the time dependent Euler equations. In order to solve the problem, the fini­
te volume method and a time-marching method have been applied. The results of numerical calculations for a chosen geometry of an axial 
turbine stage are presented.

INTRODUCTION

In modern heavy load stages of turbomachines, transonic and supersonic 
flows are often met. In recent years a great progress in computing transo­
nic flow is noticeable. Particularly methods based on the time dependent 
equations for the conservation of mass, energy, and momentum have been de­
veloped. This lets maintain the hiperbolic type of differential equations 
in the whole computational domain for the whole velocity range. The main 
attraction of the time dependent Euler equations is the ability to compute 
mixed subsonic-supersonic flows with automatic capturing of shock waves. 
These equations are solved by using a time-marching technique. One of the 
first applications of the explicit time marching methods were done by 
Godunov [l] and McDonald \ j f \ . These methods have found wide applications 
and are constantly being improved.

In the calculations of transonic flows, also the Denton method is suc­
cessfully applied. This method has been widely used for solutions of the 
Euler equations through blade rows e.g. for flow in the meridional plane 
by Spurr ^3], for unsteady flow by Mitchell [V], for wet steam flow by 
Bakhtar et al. [jf] and for three-dimensional flow by Sara thy [j5j. Another 
commonly used method is the MacCormack method. It is used for steady and 
unsteady (e.g. Ispas et al. [V]) flow calculations either in finite diffe­
rence form in a rectangular computational domain obtained after a coorina- 
te transformation or directly in finite volume formulation in the physical 
domain.
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The corrected viscosity scheme, applied in this paper, is derived from 
the original Lax scheme. Some modifications of the Lax scheme, wich were 
introduced by Couston fŝ j and recently by Van Hove Q)] and Arts QlcT], have 
caused that this method has become attractive to calculate two- and three- 
-dimensional problems. The corrected viscosity scheme is a one-step, first 
order accuracy in time, explicit scheme.

Particular attention should be given to the unsteady effects of blage 
row interactions. It is important to predict these effects, especially 
when the blade row of interest is a rotor since measurement difficulties 
in rotating frame of reference.

One of the first attemps at predicting unsteady effects with using a 
time-marching method was made by Mitchell [Vj, He considered a single bla­
de passage for which he used in calculations the Denton scheme with the 
assumed unsteady condition at the inlet.

Ispas et al. [7~] considered the similar problem and employed the MacCor- 
mack scheme for a single blade passage. They avoided the problem by solving 
the flow throughout the number of blade passages for which the flow repea­
ted. They applied the calculation scheme with the second order accuracy in 
time but assumed the isotropic flow, which is quite problematic.

Hodson [11], on the basis of the Denton scheme, did the calculations 
of the flow through the blade passage with the application of modified boun­
dary conditions, what lets consider a single blade passage. In comparision 
with the experiment, the applied method gives good results.

A similar problem was considered by Sokołowski et al. [jl2J. They took 
into account the two- and three-dimensional unsteady flow through a turbi­
ne stage using the Godunov scheme, and obtained interesting results.

It is worth noting that in the present considerations the models of in- 
viscid, unsteady flows are used. It results from difficulty in the unstea­
dy flow calculations which practically limited now the use of viscid mo­
dels. The conformity of the results obtained from the invisoid flow calcu­
lations with the experiment is often good [if], which proves that the vis­
cosity effects are not always dominant.

MATHEMATICAL FORMULATION OF THE PROBLEM

The problem is further considered with the following simplifications:
(a) flow is 2-D, plane,
(b) flow is inviscid and adiabatic,
(c) gas is perfect,
(d) no blade vibration.
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Flows through the blade passage are governed by mass, momentum and 
energy conservation principles. The system of the conservation equations 
for volume V can be written in the integral form for the considered flow 
model as follows:

at V V F dV - 0 (1)

where:

f ? _ ]U çw y
I ?Pej

F )̂w(wn) + np 
<ppej (<j>(e+p/p)wn J

Using the perfect gas law and the definition of total absolute or rela­
tive energy, (1) is completed by the following relations

u2e + (2)

The problem to be solved is an initial boundary value problem where an 
initial value distribution has to be know with all boundary conditions.

Rys. 1. Element bitrapezowy 
Fig. 1. Bitrapezoidal element
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DISCRETIZATION OF THE FLOW DOMAIN

The calculation domains of the stator and rotor are discretized by nu­
merical grid. The numerical grid is composed of quasl-streamwise lines and 
pitchwise lines. The qua3i-stream lines are equally spaced in the pitchwi- 
se direction. The pitchwise lines are variably spaced, they diminish from 
the inlet to the leading edge and increase from the trailing edge to the 
outlet. Within the blade passage the pitchwise lines are variably spaced, 
depenging on the required precision and the expected density gradients.
On the numerical grid a bitrapezoidal element is defined according to QlOJ. 
The element is formed by the same pitchwise lines and quasi-stream lines 
(Fig. 1). The numerical domain for the steady flow calculation is shown 
in fig. 2a, while fig. 2b shows the domain for the unsteady flow calcula­
tion.

NUMERICAL PROCEDURE

Let us consider a small volume V over which the system of equations (1) 
is integrated. By the use of the Gauss-Ostrogradzky divergence theorem and 
averaged quantities (1) can be written!

where:
M - number of surfaces which limit a volume V 
a  - averaged quantities.
Assuming the finite volume method to determine a subintegral funkction 

F and the corrected viscosity scheme to integrate in the time partition 
A t ,  equation (3) can be formulated as follows;

where:
i,k - spatial indices in the axial and pitchwise directions,

*n - index of time,
<A - numerical viscosity coefficient dependent on density gradient.

n
(3)

(4)
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The terms superscripted by an asterisk are updated every Nv iterations,
<* is numerical coefficient close to 1 , used to provide the effective correc­
tion. It is calculated as a function of the local density gradient in or­
der to ensure the necessary damping near the flow discontinuity.

Rys. 2. Obszar obliczeniowy dla zagadnienia przepływu stacjonarnego (a)i niestacjonarnego (b)
Fig. 2. Calculation domain for steady (a) and unsteady (b) flow problem

Corrected viscosity scheme (4) is stable for the Courant - Friedrichs- 
-Lewy condition, which limits the time step At.

The detailed description of this method can be found in Jjio]•

BOUNDARY CONDITIONS

In order to have a well-posed problem, (1) must be completed with a set 
of boundary conditions.

The missing calculation points outside the computational domain are re­
placed by the corresponding points at the other periodic boundary. Along a
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solid walls an impermeability condition must be fulfilled. As the solution 
procedure explicitely uses the transport terms, this condition is satis­
fied by setting to zero the mass and energy fluxes and by considering only 
the static pressure acting on the section and pressure side in the calcu­
lation of the momentum fluxes.

The conditions applied on the inlet and outlet plans of a stage are the 
same as in most other time marching methods (where the axial velocity is 
subsonic). On the upstream boundary, the absolute stagnation density and 
stagnation pressure are specified together with the absolute flow direc­
tion. On the downstream boundary the static pressure is specified and held 
constant (the so called non-reflecting condition can also be used).

In calculating the boundary conditions on the outlet from the stator 
domain and on the inlet to the rotor domain are not set. Depending whether 
the problem of a steady or unsteady flow is considered, parameters on the 
connection of the stator and rotor numerical grids are updated in a two 
different ways.
1. Steady flow

In the problem of the steady flow through a stage, the connection of 
the stator and rotor numerical grids is realized by assuming an averaged 
parameters in the pitchwise direction on the lines IA=*iX-1 of stator and 
IA=2 of rotor (Fig. 3a). The problem is considered in the two systems of 
reference, absolute for the stator and relative for the rotor. From the 
averaging parameters notated in the relative system of reference, values 
on line IA=MX of the stator (which overlaps with line IA=1 of the rotor) 
can be calculated using the one-dimensionsl corrected viscosity scheme.
By updating the values from the absolute system of reference to the rela­
tive one, static parameters are determined due to the following equations.

Hfl - cyu *= Hw - u2/2 = const 

T 2
■ 1 -  ig r- (2cy/u -  1) ( 5 )

oa “ a

T
T T ^

* OW =  /  Q W '  ,  -  QW /  T O W \

p o a  ^ o a  * p o a  ? o a

QW\ . yow _

C  a w  2 c  — W +  ux X ’  y  y

w h e r e :

H - enthalpy; subscripts: o - stagnation, a - absolute, 
w  - relative.
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Rys. 3. Połączenie siatki kierownicy i wirnika dla zagadnienia przepływu stacjonarnego (a) i niestacjonarnego (b)
Fig. 3. Stator and rotor grid connection for steady (a) and unsteady (b)flow problem

2. Unsteady flow
The numerical grids, that discretize the computational domain of the 

stator and rotor, have a common field (Fig. 3b). Line IA«MX-1 of the sta­
tor overlaps line IA=2 of the rotor.

The solution procedure is based on a repeated interaction between two 
blade row calculations. The flow parameters on line IA.tfX-1 of the stator 
are updated from the absolute system of reference into the relative one 
due to equations (5) at each node. It permits to determine parameters on 
line IA»1 of the rotor taking into account an Interaction of blade rows at 
a given moment ot time. In the same way the values from the nodes on line 
IA=2 of the rotor are updated into the values on the nodes on line IA®MX 
of the stator.

STEADY FLOW PREDICTION

Calculations are performed on the hub section of a last stage of the 
large output steam turbine. The blade passages of a turbine stage are dis­
cretized by the numerical grid with 21x67 grid points on the rotor and 
21x60 grid points on the stator (Fig. 2a). The described method lets per­
form calculations for any stage blade ratio.
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The rotor blade row moves, relatively to the stator blade row, at velo­
city u. The unterrow spacing /stator pitch ratio is equal 0,37.
Flow parameters are:

? o a  = °» 102 O«/®3]

^oa 0 , 0 1 4 4  [M Pa]

[°]

P2 = 0,005 [MPa]

axia l  d i s t an ce  [m]

Rys. 4. Rozkład ciśnienia statycznego dla zagadnienia przepływu stacjonar­nego
Fig. 4. Blade surface static pressure distribution for steady flow calcu­lations

The calculations are performed simultanceously for the stator and rotor. 
As the initial data, the stagnation parameters distribution in the whole 
computational domain of the stage is assumed. To eliminate numerical in­
stability, the selection of the suitable reduction of the outlet static 
pressure and increase of angular velocity of the rotor blade row has been
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made. During the first 800 iterations, the static pressure at the outlet 
from the stage is droped till demanded value p0 is reached. From 500th to 
about 1500th iteration the angular velocity of the rotor blade row is gra­
dually increased. The calculations are carried on until the steady-state 
is reached in the whole computational domain of the stage. Changes of the 
relative internal energy Ae/e was less then 2x10“'’ and fluctuations of 
the outlet angle JJ2 less then 0,02°. Using a IBM PC 386 computer the ne­
cessary CPU time per grid point and per time step was 2,85x10“ ŝ. 8000 ti­
me steps were performed.

The average in time parameters distribution in the stage domain is the 
result of the calculations. Fig. 4 shows the static pressure distribution 
on the stator and rotor blade surfaces. In the stator and rotor blade pas­
sages are supersonic areas. In the stator maximal isentropic Mach number 
is equal 1,6 and in the rotor it is 1,4, Chosen average flow parameters 
are:

* 1 = 68,1 [°]

p 1 - 50,5 [°]

Pi = 5484 [Pa]

2̂ " 5 1, 6 [°]

P srôw 8145 [Pa]

Where:
ct, |3 - flow angles (absolute, relative), subscripts: 1 - inlet of rotor, 

2 - outlet of stage.
In order to determine the variation range of the flow parameters in the 

stage, it is necessary to solve the problem of the unsteady flow through 
the stage.

UNSTEADY FLOW PREDICTION

Modelling unsteady effects in the blade passages of a stage is based 
on determining the interaction between the stator and rotor blade rows.
The unsteady effects are only due to the rotation.

Usually, the number of blades in the stator blade row will not be an 
integral multiple of the number of blades in the rotor blade row. If It
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is assumed that the pitch of the stator blades and pitch of the rotor bla­
des are, respectively t̂  , t2 , then the periodical calculation domain for 
the whole stage is defined by the following periods

T = K 1t1 = K2t2 (6)

where:
, K2 - prime numbers.

Equation (6) shows that the unsteady effects in the flow will be perio­
dic when in calculations K.̂ and K2 blade passages respectively of the sta­
tor and of the rotor is considered. Some computational difficulties arise 
when the stage blade rotio has relatively big natural numbers K1 , K2 .
This problem can be solved in two ways. Calculations can be done on the 
periodic domain of the whole stage (with period T) with a time-independent 
periodicity condition or on a single blade passage for the stator and rotor 
with using a time-dependent periodicity condition. The second method in­
volves an application of time-lagged periodic boundary conditions to the 
computational domain. If we consider complex geometries of a stage, both 
the methods are computer time consuming and required supercomputers. Nowa­
days it is very costly.

Due to our computer equipment it was necessary to simplify the stage 
geometry. The rotor blades pitch was corrected to the value which enabled 
the considerations of the stage blade rows with blade ratio 1:2 (Fig. 2b), 
instead of 25:47. Calculations could be considered now for a one stator 
blade passage and two rotor blade passages.

The computational domain of the stator is discretized by the numerical 
grid with 25x82 points, while the rotor domain, consisting of two passa­
ges, is discretized by the grid with 26x74 points. In the calculations of 
the unsteady flow through a stage, the initial condition is assumed from 
the solution of the steady flow for each of blade passages separately.
This kind of an initial condition does not require initaial calculations 
which are done in the steady flow case.

Using a IBM PC 386 computer, 15000 time steps were performed. The cal­
culations are carried on till the periodic changes of parameters in each 
grid point of the stator and rotor are achieved. The periodicity condition 
was controled by the calculation for each point the relative parameters 
fluctuation in each time step. The maximal periodicity error was 0,25?6.

Fig. 5a shows the example of the course of pressure fluctuations in one 
of the numerical grid points of the stator; fig. 5b shows the course of 
these fluctuations in one of the grid points of the rotor.Bacause of the 
blades ratio 1 :2, the period of the parameters changes in the stator do­
main is etwice longer than the period in the rotor domain.
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i t e r a t i o n s  ”'0

Rys. 5. Zbieżność rozwiązania do stanu okresowego w kierownicy (a) i wir­
niku (b)

Fig. 5. Convergence of the solution to a periodic state in stator (a) and
rotor (b)
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axia l  d i s ta n c e  [m ]

Rys. 6. Rozkład niestacjonarnego ciśnienia statycznego na powierzchni ło­patki kierowniczej
Fig. 6. Stator blade surfaces unsteady static pressure distrlbution
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axial  di s tance  [m]

Rys. 7. Rozkład niestacjonarnego ciśnienia statycznego na powierzchni ło­patki wirnikowej - łopatka nr 1
Fig. 7. Rotor blade surfaces unsteady static pressure distribution - bladeNo 1

Rys. 8. Rozkład

a x i a l  d i s t a n c e  [ m ]

niestacjonarnego ciśnienia statycznego na powierzchni patki wirnikowej - łopatka nr 2
ło-

Flg. 8. Rotor blade surfaces unsteady static pressure distribution - bla­
de Nr 2

Fig. 6 shows the static pressure distribution on the stator blade sur­
faces for example for three different positions of the blade rows. The 
first position corresponds to the possition shown in fig.2(3/3T). The se­
cond and third positions result from the displacement of the blade rows, 
respectivity of 1/3T and 2/3T (T is in this case a stator blades pitch). 
According to fig. 6, the pressure changes in the stator, except a small 
outlet region at the suction side, are not significant. With respect to
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the transonic flow in the stator, upstream propagation of the flow pertur­
bations, arised during the blade rows interaction, in the stator blade 
passage are not observed, At a given time in the rotor row, flows are di­
fferent in different blade-to blade passages. Fig. 7 shows the static pre­
ssure distribution on the surfaces of rotor blade No. 1, and fig. 8 on the 
surfaces of rotor blade No. 2.

Pressure changes on rotor blades are significant. Particularly big chan­
ges occur in the inlet part of the rotor blade passage. Chosen average flow 
parameters changed within the range:

ot1 = 66,1 - 69,2 [°]

P = 48,5 - 52,8 [°]

P1 = 5295 - 5670 [Pa]

P 2 = -51,9 - 52,5 [°]

pQV = 8100 - 8117 [Pa]

The obtained values approximately correspond to the values obtained 
from steady flow calculations.

On the ground of the static pressure fluctuations on the stator and 
rotor blade surfaces, the dynamic load fluctuations can be determined Fl3 .̂

CONCLUSIONS

The paper presents two methods to the model two-dimensional transonic 
flow through an axial turbine stage. These methods make possible a better 
knowledge of the two blade-row interaction. The steady-state can be obta­
ined by using the first method. It lets determine the averaging in time
parameters in the whole computational domain by the averaging procedure
in the interrow spacing. The second method allows to consider the flow per­
turbation during the stator and rotor interaction. Modelling instaticnary 
effects, occuring in the flow through a stage, is necessary bacause they 
considerably influence on the parameters distribution. The qualifications 
of the obtained results should be done, as all other numerical calcula­
tions, on the basis of measurements.
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NUMERYCZNE ROZWIĄZANIE DWUWYMIAROWEGO PRZEPŁYWU TRANSONICZNEGO 
PRZEZ STOPIEŃ TURBINY OSIOWEJ

S t r e s z c z e n i e

Artykuł przedstawia rozwiązanie stacjonarnego i niestacjonarnego dwuwy­
miarowego przepływu transonicznego przez stopień turbiny osiowej. Rozważany 
jest wirowy, adiabatyczny, nielepki przepływ gazu idealnego.

Analiza zagadnienia prowadzona jest na bazie zależnych od czasu równań 
Eulera.
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W celu rozwiązania problemu zastosowano metodę kroków czasowych i meto­
dę objętości skończonych. Przedstawiono rezultaty obliczeń numerycznych 
dla wybranej geometrii stopnia turbiny osiowej.

HyMSPHHECKOE PEuEHiiii H JIO C K O rO  TPAHC3ByK0rC TEHEHilH 
B CTyilEHH G C E B O ii TyPBHHU

P e 3 »  m e

n p eg c ias jteH O  peineHHe cT aaaoH apH oro a HecTauHOHapHoro ipaHC3ByK08oro r e -  
seHH a b peraeiK ax ciyneH H  oceB oa iyp6HHH. Pa3Bem H Baeibca HeBS3KHe, BHxpeBoe, 
a^HadaiHMecKHe ie>ieHiie r a 3 a .  ypaBHeHua SB aepa p e m a e ib c a  M eio^ou ycTaHOBJiH- 
BaHHa b cb h sh  c MeTOAOM k oh8vhhx  oóeMOB. lipaBe^eHU p e3 y A b ia iH  pemeHHa 3 a -  
ASHH.


