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AN APPROACH TO  STUDY OF IM PA C T IN MULTIBODY SYSTEMS

Summary: Study of mechanical systems in which impacts occur is associ­
ated with forming two systems of equations: d ifferential and algebraic. 
The firs t system of equations is used to  describe the motion until an 
impact occurs, while the second one describes the 
impact itself.

This paper presents a method, the so-called Reduction Method, 
which enables analysis of these systems without forming the algebraic 
equations. They are substituted by a new set of differential equations 
which is easily derived from the equations of motion using reduction. 
Compared to the other methods, based on the classical theory o f impact, 
the method mentioned above makes the computation of velocities a fte r 
the impact easier, as well as the plastic impact studies, regardless of 
the number of degrees of freedom.

1. Introduction

The unilateral constraints in mechanical systems represent the environment 
for an impact occurance. They have local character and act in-link elements 
such as joints, guides etc . Every disturbance of these constraints results in an 
impact.

Let us observe, as illustration, motion of a ball in vertical plane connect­
ed to a fixed point by a massless non-elastic string, fig. la . The ball motion is 
free until the string is not tigh t, i.e. until the unilateral constraint acts. String 
tightening corresponds to an impact and causes the change of the ball velocity. 
The system described can be represented in another way, by replacing the string 
by two massless rods.

By applying this way of modelling approach to mechanical systems with 
unilateral constraints equations of motion with semidefinite massmatrix are 
obtained. Singular massmatrix corresponds to  the points of impact. Without restric­
tion on the method used, numerical integration is interrupted in singular points.

The equations of motion for singular double pendulum are:
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Fig. 1: a) Ball on the string -  Replacing the string 
with two massless rods 

b) Singular double pendulum

2(1 + cosy) 1 + cosy a -sinY(2aY + Y*) 9 sina + sin(a + y)

1 + cosy 1 Y sinYOl’ I sin(a + y)

where I is the length of the rods, and g Earth acceleration. As generalized co­
ordinates are used a and y , fig.1b. The interruption point is y=0.

2. Equations of motion

Equations of motion of a mechanical system with f degrees of freedom in 
m atrix form are:

M (y,t)y + k(y,y,t) = q (y,y,t) (2.1)

where y is fx1 position vector comprising all generalized coordinates (¿=1(1)0. 
and M(y,t) is a fxf mass m atrix. Vector q(y,y,t), fx l ,  comprises all centrifugal 
and Coriolis forces, while all generalized forces are in vector q(y,y,t), fx l .

The mass matrix of real mechanical systems subjected to bilateral con­
straints effects is always symmetric and positive definite. In case of unilateral 
constraints, using the way of modelling mentioned above, mass m atrix is semi- 
definite. Points of impact in this case correspond to singular values of general­
ized coordinates.

Equations (2.1)can be transformed into a form suitable for numerical 
integration

x = 4>(x,t)

where x is 2fx1 vector x=[yT ,yT] T , and 4>(x,t) is 2fx1 vector function

(2.2)
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3. Reduction Method

Numerical integration of equations (2.2) cannot be performed in case of a 
semidefinite mass m atrix . In singular points the determinant of the mass m atrix  
M is zero and the elements of M '1 cannot be determined.

In the neighbourhood of singular points equations (2.2) can be observed as 
a differential equations with a small parameter a t derivatives. In this case the  
mass m atrix determinante value is very small and can be treated as a small pa­
rameter.

When the small parameters converge to zero and applying the Tichonow's 
theory a degenerative system of d ifferentia l equations (22) can be obtained [3 ] ,
[4 ] , [ 5 ] , [ 7 ] .  This system can be used in the neighbourhood of the s ing u lar  
point and corresponds to system of algebraic equations. The velocities a fte r the  
impact can be determined by the numerical integration of the degenerative system.

By eliminating respective columns and rows which correspond to singular 
coordinates, in equations (2.1), degenerative system is obtained in the other way. 
The form of the new system of equations is

M 'i * k = q . (3.1)

Matrix M is regular hier and reduced vector y comprises all nonsingular general­
ized coordinates.

Reduction of equations (2.1) represents a d irect application of Tichonow's 
theory to the second order d ifferentia l equations.

In our case of singular double pendulum the new reduced system is

2(1 + cosy)a- siny(2áy + y1) = -  g l l  (sina + sin(a + y)). (3.2)

4. Numerical Integration

Numerical integration of equation (2 . 1) with the semidefinite mass matrix  
requires a few explanations:

1° When does the interruption of numerical integration occur ?
2° How large is the neighbourhood of the singular point in which the 

numerical integration cannot be performed ?
3° How are the new initial conditions for the integration defined after  

interruption ?

The answers are as follows:

1" Critérium  for the interruption of integration can be derived from the 
determinant of the mass m atrix . The usual dependency of the mass m atrix deter­
minant on tim e is shown on fig . 2.

F ig . 2: Interruption  
of integration using 
small parameter d
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The points of integration interruption are m(t)=detM=0. These points must
be excluded by the condition: m(t) a d (d z 0). This condition must be examined
after each integration step.

2* The feature of conservative systems with respect to the volume integral 
in phase space (Liouville's theorem [2 ]) is used to determine the neighbourhood
of the singular point. According to  this theorem a product of singular coordinate,
for instance y 1= y, and its velocity in the neighbourhood of the singular point is 
constant, [ l ] , [ 6 ] .

y • y = const. (4.1)

The other, nonsingular coordinates have no e ffect. Starting with relation (4.1) we 
get for the interval At

I y*l
At = —  (4.2)I y*l

where (* )  denotes values of variables at the interruption point. Here is made the 
assumption that the singularity is at the middle of At interval.

3° When defining new initia l conditions two cases must be distinguished: a 
case of singular and a case of nonsingular coordinates. As singular coordinates are  
linear functions of tim e in tim e interval At (it follows from Tichonow's theory), 
a mean velocity j

j  « 2y*/A t = 2 y *y * /y *  *  2y* (4.3)

Fig. 3: Meaning of the mean velocity

In the other case the values of nonsingular coordinates and velocities at the end 
of interval At are obtained by integration of degenerative system (3 .1 ). Singular 
coordinates, which appear as parameters in equation (3 .1) are assumed to be l i ­
near functions.

5. Plastic impacts analysis

The Reduction method in the neighbourhood of the singular point is related  
to conservative systems, where impacts are elastic; impact coefficient k=1. In case 
of plastic impacts k falls in interval [0,1), [8], following questions arise:

1° How can be the impact coefficient introduced in the computation ?
2“ How can numerical integration be performed ?

The answers are the following:
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1® Impact coefficient k (k = |V " /V '|)  refers to the projection of the velocity 
on the impact line, where (') and (") denote the values of variables before and 
after the impact. This coefficient and the generalized velocities that appear by 
numerical integration should be related in some way. It can be performed when 
multiplying generalized velocities by impact coefficient

y = k y" ,

where y denotes a new initial value for the next integration and ÿ" denotes the 
value a t the end of the tim e interval A t. This relation can easily be prooved, see 
fig. 1b.

As we are interested in impact line direction only, Ç, it follows that

t = -¿ÿJsin(Y/2).

By introducing the impact coefficient k, relation Ç=k£" is obtained. Here is as­
sumed that coordinates values are constant.

2° In case when the impact coefficient is in interval [0,1) numerical inte­
gration slightly differs from the case when k=1. Critérium  d î m(t) used for mass 
matrix determinant examination must be sharpend after every pass through a singu­
lar point. This is the consequence of the fact that the numerical value of the de­
terminant decreases fast when passing through singular points. If this critérium  
were constant the numerical value of the determinant would be inside the critérium  
very fast. Factor used for critérium  sharpening should be choosen in such away 
that tangent of the singular coordinate in the interruption point makes an angle 
of 89°-90° or 90°-91° degrees.

The results of numerical Integration using reduction method and classical 
impact theory are compared on fig . 4 for the impact coefficient values k=0, k=0.5, 
k I and a = 30°, y = 90°, d=0.0001 and t=5.

6. Conclusion

This paper is a contribution to the study of mechanical systems with impact. 
In such systems the mass matrix is semidefinite as a result of special way of 
modelling. Numerical integration of equations of motion requires a special tre a t­
ment, because an interrupt occur in singular points. Independently of the method 
used, according to the classical impact theory , transition through each of the 
singular points demands an algebraic equations system. The proposed Reduction 
Method suggests so-called reduced system instead. This system can be easily ob­
tained by elimination rows and columns which correspond to singular coordinates 
from the equations of motion.

Reduction Method extended to  plastic impacts enables their analysis in var­
ious points of a mechanical system and can be combined with common integration 
methods.



Fig. 4: Comparative results of integration using classical impact theory and the Reduction Method 
for the impact coefficient values k*l, k*0.5 and k=0

a) determinant of the mass matrix 
B) trajectories

Drenovac
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nOAXOA K HCCJIEflOBAHHflM yj(APA B MH0r03BEHHHX CHCTEMAX 

P e 3 » u e
HccJieflOBaHMa MexaHHHecKHx CHCieM, b Koiopnz BuciynaeT y.ąap» 

cBHaaHH c o6pa30BaHHeM ĄByx CHCTeM ypaBHeHHft: AH$(iiepeHHHajibHoro 
h ajtreópajmecicoro. IlepBaa cacieMa ypaBHeHHft npHMeaaeTca .hjih. oiih- 
caHHa ^BHaeHHa no MoiieBia noHBJieHHa ynapa, npa rSm upyrya ozihch- 
Baei caM ynap,

CiaTba npenciaBJiaeT iaic Ha3biBaeMHfi penyKTHBHH3 Meion, KOTopua 
nosBoJiflei aHaJiH3npoBaTb stu chct s m h  6e3 o6pa30BaHaa ajire Spanie c k h x 
ypaBHBHHH# Oh h 3aMemaioTca h o b o B CHCTeMoił nniptpepeHujiaJibHmc ypaBHe- 
hhh c npHMe He hm ew penyKujiH. IIo cpaBHeHH» b npyraMH MeronaMH, onapa- 
joniHMHca. Ha KJiaccH^ecKyx3 Teopmo ynapa, HacToanHfi Meion oOaeraaei 
BHHHCJieHae CKopocTH nocjte ynapa, a Taiose HccJienoBaHHe naacinnecKoro 
ynapa He3aBHCHMo ot KOJianecTBa cieneHefi CBoOonu.

PODEJŚCIE DO BADAŃ UDARU W UKŁADACH WIELOCZŁONOWYCH

S t r e s z c z e n i e
Badania układów mechanicznych^ których występuje udar,są powią­

zane z utworzeniem dwóch układów równah: różniczkowego i algebraicz­
nego. Pierwszy układ równah stosuje się do opisania ruchu do momentu 
wystąpienia udaru,natomiast drugi opisuje sam udar.

Artykuł przedstawia tzw. metodę redukcyjną,która pozwala na ana­
lizę tych układów bez tworzenia równah algebraicznych. Podstawia się 
do nich nowy układ równah różniczkowych, wychodząc od równah , sto­
sując redukcję. W porównaniu z innymi metodami opartymi na klasycz­
nej teorii udaru powyższa metoda ułatwia obliczenie prędkości po uda­
rze oraz badanie plastycznego udaru niezależnie od ilości stopni swo­
body.
płynęło do Redakcji 3.1.1989 r. Recenzent: prof. dr hab. inż. Ji łfcjnarowski


