
ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 
Seria: MECHANIKA z. 86 Nr kol. 1012

1987

XI OGÓLNOPOLSKA KONFERENCJA TEORII MASZYN 
I MECHANIZMÓW

11th POLISH CONFERENCE ON THE THEORY OF MACHINES 
AND MECHANISMS

27—30. 04. 1987 ZAKOPANE

R. KRUSE
Institut für Informatik, TU Braunschweig,
Bültenweg 74/75, D-3300 Braunschweig, West Germany
K.D. MEYER
Institut für Mathematische Stochastik, TU Braunschweig, 
Pockelsstr. 14, D-3300 Braunschweig, West Germany

FUZZY MARKOV CHAINS AND THEIR APPLICATIONS 
10 PROCESSOR POWER CONSIDERATIONS

Summary. Markov chains are used in queuing theory and in many 
other computer science applications. In this paper we propose fuzzy 
Markov chains as the first approach to fuzzy queuing theory. We prove 
a fuzzy ergodic theorem and estimate the limit probabilities. With 
help of this we calculate the effective processor power for a compu
ter system consisting of N independent processors and M independent 
memory module, where the requests for memory moduls are not distribu
ted equally likely.

Fuzzy numbers and fuzzy probabilities

Def. 1.1. A fuzzy number of the real line R is characterized by its 
membership function Ji : R —  [0,1] . It is assumed that »for all JJ- there is
an x e R such that ju (x) = 1 . The set of all fuzzy numbers will be deno
ted by F(R); we will identify a fuzzy number with its membership function. 
An important tool for handling fuzzy numbers are the level sets and - more 
generally - the set representations.

Def. 1.2. Let U £ F(R). {a^ | ot e (0,1)} is called a set representation
for )x , if

(i) 0 t oc < ft < 1 A ̂  A^ C R



176 R. Kruse, K.D. Meyer

where 1 denotes the indicator function of A-. Let F( [0,1] ) denote the 
oc

set of all fuzzy numbers of [o,l] .
The strong oc-cutAg, of A is the nonfuzzy set defined by

A^ = jx 6 [o, 1] | ^(x) > *} ' 0 < oc < 1.

A fuzzy set may be decomposed into its level sets by

uv(x) = sup min(ix, (x) ) , where 1 denotes the indicator
r A  <xe [0,1] A«

function of B.
If A and Sf are fuzzy numbers, then

d(A,B) := sup d (A ,8-), where 
oc>0 H *

d„(V,W) := maxlsup inf|v-w|, sup inf |w-v|),
veV weW wcW veV

is called the generalized Hausdorff distance between A and B. d is a 
metric.
Let Cl = | ,... ,tt’n j, n e N .
A map P : Q — - F([o,-l] ) is called a fuzzy probability if and only if
there exists (u^,...,un) e [ o , l ] n such that u^ + ... + un = 1 and
Ptc^) (u^ « 1 for i = 1, —  ,n.
The fuzzy probability of a set A c £1 is the fuzzy number of [°/1] defi
ned by

P(A) (z) := sup min P(o>i)(ui)
(U1 ' • • • ,un’ e [°'1] i = 1,... ,n

n
2 ui = . 2  u = zí _, 1:cu.eAi-1 Xi“ie A

if A ¿ » ,  and P ( A)  (z) := (z) , if A = P .

The fuzzy expectation E(V) of a function V : £2— • R is defined by

EV(z) = sup min P(toi) (u,) .
<U1 V  6 [0»l]n : i = 1,... ,n
n n
2  ui = 1' 2  = z
i*1 i=1

Sftv) is an interactive sum ( F4l > .
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Be assume that a fuzzy probability P is a fuzzy perception of a usual 
probability 6 , which is called the original of ?. The original is unknown. 
By fuzzy logic we are able to evalqate the acceptability that 6 is an ori
ginal of P. The statement "¿is an original of ? “ or equivalently "For 
all A Q Q the fuzzy-probability P(A) assumes the value ¿(A)" has the 
truth value

min ■[ P (A) (6 (A))} .
AC 0 J

Of course we have t

min (A) (Gt (A) )} < min i P <u>,) (6 (ut))
ACQ " i = 1 , . . .,ml 1 1

On the other hand we have for every AC fl , A  ̂ip

P (A) (6(A)) > min- <P(a>.) (6(m,)) .
" i = 1 , ... ,n

So the truth value of the statement "6 is an original of P" is

min {p(u).) (6(a-,))} . 
i ■ 1 n1 1 1 J

2. Fuzzy Markov chains

Consider a sequence of experiments, where a finite number of results
is possible. We call , ... ,a>n the states of the experiment, 

he use the symbol to express that the state u.'̂ was realized in the
k-th experiment.
bet furthermore denote p | j * the fuzzy probability that if the system is 
in the state ut in the (k-1)th experiment, then it is in the state UK 
in the k-th experiment. We assume that the probability <5° not de~
Pend on k. We say that the sequence of experiments is a homogenous fuzzy 
Markov chain.
Ahonogenous fuzzy Markov chain is characterized by the square matrix 

PH   ?ln

P , Pnl nn

where the p̂ _. are the one-step transition probabilities. We assume that, 
bbe maD

p± :il —  F([o,l]), W-  * ?ij,
is a fuzzy probability for all i = 1,...,n.
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A fuzzy Markov chain is a perception of a usual Markov chain, which i s ù 
racterized by a stochastic matrix

(eij) i = 1 » •. • ,n 
j = 1,... ,n

This unknown Markov chain is called original of the fuzzy Markov chain.'J 
m-step transition probabilities can be computed using the Chapman Kolmoç-1 
rov equations, we have

*ijt2)* 2  ^ k ^ j  
k=1

n
6ij <m’ = 2  6ik <t:’ ̂ k j *m-t) ' Where 1 < t < m.

k=1

We assume that the original of the fuzzy Markov chain is unknown but that
the original is located in a set TUI of Markov chains. The statement " (Sj,
is an original of (P^j) " is fuzzy, by fuzzy logic we know that it has the
truth value mini?, , {.$, .)} . L. Zadeh's extension principle gives a proper 

i,j 13 13 1
definition for the m-step transition probabilities in the fuzzy case. We 
have

P..(m)(z) = sup min ip, .(6, .))
13 I*,,) c Tit i = 1.....n <• 13 i3ij'n

^ 1 = 1,... ,n,
3 = 1

SjL j (m) = z

for all z £ [o.l] and all m = 1,2,3,...
We can formulate the following fuzzy ergodic theorem:
Theorem Let (P^ j) ̂  ̂j_ i n be the transition probabilities of a harcgene
fuzzy Markov chain with the property (*) :

(*) There exists a real number 6 > o and an integer t > 0 such
that: If R = is a stochastic matrix and if

inf > 0, then in at least one column of thei=1,...,n 3 13
j=1,...,n
matrix R~ all numbers are bigger than 6 .

-hen := lim P,.(m) exists for j = 1,...,n indeoendent of i,
~ . <»= JP : ,. .. ,a’n s — - F ( (0,1_ I , a>_. — - is a fuzzy probability, -e con
vergence is within the generalized Hausdorff-metric.
?ro°- Fcr proof of the theorem we refer to Yl .
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3. On the calculation of the effective processor power

I Consider a computer system consisting of N independent processors (CPU's)
•and M independent memory modules, which are synchronized. A similary 

example would be a Local Area Network (LAN) consisting of Personal Compu
ters and File Servers or a Distributed Database-Machine-System ( [2] , [9] ) .
Vie assume (compare [l] , [3] , [8] ) that each processor has always a memory 
request ready for a memory module to accept as soon as possible, and it is 
assumed that a processor can access each memory module. tDuring one cycle 
every memory module can satisfy only one request, so at the beginning of 
each memory cycle each of the processors whose request from the previous 
cycle was satisfied makes a new request. A processor whose memory request 
iron the last cycle was not honored must wait at least one more cycle be
fore it is allowed to make another memory request. In our systems it may 
be that several requests are made to the same memory module during one me- 
sory cycle. While each memory module will service one request per cycle,
the remaining ones are queued for future memory cycles.
Moreover we make the simplifying assumption that the N processors simult
aneously make their memory requests and all those which are successful on
the last cycle receive their data at the same time. The logical design of
this computer model is shown in Fig. 1.

Processors 

Interface 

Memory-module

Fig. 1

The state of the system can be represented as an M-tuple K = (k.,... jk^) , 
t'bere k^ is the number of access requests queued for memory module i.

have k. <-...+ k = N, and there are (M7,N71) different states,
tthe end of a memory cycle the state of the system is represented by

r • • • ,hM) , where Ik  := k^-1 , if k^ > 0, and h^ := 0, otherwise.
A state G = (g^,...,q ) is reachable in one step from K = (k^-.-.k^)
if and only if 9i > * for all i.
tn contrast to Allen's [1] model we consider the case when each memory
*.odule is not equally likely chosen. We suppose that the module i is chosen
*ith probability 6., so we have 6, * ... ♦ £> „ = 1. If a state
G - 1191,...,gM) is reachable from K = (k.j ,... ,kM) ’ in one step, then the 
probability of transition from state K to G is given (with resp. to 

(S1 SH>> by

m
i

[n]

CD 0
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Pg tX,G) = — ^ ---  f i ((5idi))'

T T  ,dil) 1=1
i=1

M
where cL = g± - h^  and x = 2 di‘

i=1

The formula for Ps (K,G) can be simply pointed out, -since we have a modi 
of a multinomial experience.
Clearly the system can reach any state from any other state in a finite 
number of steps with a probability larger than zero.
Now we assume that the values of the probability that the module j is 
chosen are not numerical, as usually is the case but linguistic. This is 
reasonable since experts are often not able to express their meanings in 
terms of numbers but in terms of linguistic expressions. For example jn 
may represent the value "often", "rarely", "with high probability" etc. 
Pj is the linguistic value of a linguistic variable [6,7] S = (T, [o,1i 
G, M), where T is a term set, G is a set of syntactical rules that 
generate T from a set of primitive terms, and M is a set of semantic
rules that assign to each value x of S (x e T) its meaning Mix) whii
is a fuzzy number (in the sense of D. Dubois [4]).
We assume that P : |w.| , ... ,u>H j — *- F( [0,1] ) is a fuzzy probability.
Then we can describe the system by a.homogenous fuzzy Markov chain with 
J := l^^i1) states, denoted by G = 1,...,J and the fuzzy transition 
probabilities

P(K,G) (z) = sup P (<j )r -1 m inin j j6=(S1f...,SM) e [o,l] : j = 1,...,M
M
2  6j = 1, Pjj <K,G) = z 
j = 1

where the set TTC of all possible originals of P(K,G) is

m  {(P6 (K,G)k=1 J  I 5= I®-] S > fc K f l  M ' V - - - +£!m = 1}
G=1,...,J

If Pj(0) = PltOj) (0) = 0, then the assumptions of the Ergodic Theorem sw 
satisfied, therefore the limiting probabilities

T g = lim PK Ĝ (m)
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exist, they are independent of the original starting-state K. We can use 
the stationary fuzzy probabilities i?G for calculating the effective pro
cessor power EP(M,N). The formula is

EP(M,N)(z) = sup min
e [0,1]J : i=1,...,J

J J
2  6i = 1' T T  si p 100!1* = 2
i-1 i = 1

where proc(i) is the number of processors that are in operation just after 
a memory cycle in which the system was in state i. Thus proc(i) is the 
number of memory requests serviced during a memory cycle in which the sys
tem was in state i.
We illustrate our results by two examples. These examples were carried out
computer-aided by using a program-system written in PASCAL on an IBM 4341-
machine under CMS.
In our example we consider a little computer system consisting of two pro
cessors (N = 2) and two memory modules (M=2).
This is the standard example proposed by Baskett and Smith [3] and Mills
[8] , see also Allen [1] . A more complex example is not considered in this 
paper for space limitations: If M = N = 4, then we have 35 different sta
tes. But the basic ideas are already shown by this example.
Note that the assumptions of the Ergodic Theorem in this case are satisfied 
for arbitrary fuzzy probabilities.

ij .Mi?-

Fig. 2

In Fig. 2 example A is characterized by the solid lines, example B is 
described by the dotted lines.
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E ff» cU » «  ? r o c » » o r  M w r

Fig. 3

In example A we assume that the memory module 1 is chosen "very often" 
and that module 2 is chosen "rarely", while in example B we assume that 
both modules are chosen with probability "approximately 0.5". It's suprisine 
(Fig. 3) that in example B the resulting fuzzy number EP(2,2) is rather 
sharp although the starting values P.. are "fuzzy". On the other hand we 
obviously have a maximum at 1.5, because this is the resulting value in the 
stationary stochastic case for EP(2,2) ( [l] ) .

REFERENCES

[1] A.O. ALLEN: Probability, Statistics and Queuing Theory with Computer 
Science Applications. (Academic Press, New York; 1978).

[2] H. AUER et al., RDBM: A relational data base machine Information Systems 
6 (1981) 91-100.

[3] F. BASKETT, A.J. SMITH: Inference in multiprocessor computer systems 
with interleaved memory, CACM 19 (1976) 372-334.

[4] D. DUBOIS, H. PRADE: Fuzzy Sets and Systems. Theory’ and Applications. 
(Academic Press, New York^ 1980).

[5] R. KRUSE, R. BUCK-EMDEN, R. CORDES: Processor-power considerations - at
application for fuzzy Markov chains. Fuzzy sets and systems, 1987, to
appear.

[6] R. KRUSE: The strong law of large numbers for fuzzy random variables,
Information Sciences 28, (1982) 233-241.

[7] R. KRUSE: Statistical estimation with linguistic data, Information 
Sciences 33 (1984).

[8l P.M. MILLS: A simple model for cost considerations in a batch multiprc 
cessor environment. Performance Evaluation 5 (1976) 19-27.

[9] M. MISSIKOFF, M. TERRANOVA: The architecture of a relational database 
computer known as DBMAC, in: D.K. Hsiao, (Ed.) Advanced database machi&e 
architecture (Prentice Hall, New York 1982) 87-107.



Fuzzy Markov chains. 183

ROZMYTE ŁAŃCUCHY MARKOVA I ICH ZASTOSOWANIE DO OKREŚLANIA MOCY PROCESORÓW

S t r e s z c z e n i e

Łańcuchy Markova używane są w teorii porządkowania zadań i w różnych za
stosowaniach komputerów.

W tej pracy proponujemy "rozmyte" łańcuchy Markova jako propozycją opisu 
rozmytych kolejek.

Dowodzimy rozmyte twierdzenie ergodyczne i oceniamy prawdopodobieństwa 
graniczne. Przy ich pomocy obliczamy skuteczną moc procesorów układu kompu
terowego składającego się z N niezależnych procesorów i M niezależnych 
modułów pamięci, gdzie żądania dostępu do pamięci nie są rozłożone równo
miernie.

PA31dHTŁffi UEIIH IAAPKOBA H HX HPHMEHEHHE 
fiJIH OUPEAEJIEHKH MOUtHOCTH ITPOIIECCOPOB

P e 3 d u e

U em i M apKO Ba y n oT p eÓ JiH io T C Ji b  l e o p a a  c a c ie u a T H a a ip iH  3 a n a a  h b  p a a H o o 6 p a 3 -  

k h x  n p au eH eH H ax  K o u n b D ie p o B .

B STofl paóOTe npejuiaraBTca pa3uurue (i>a33H) ąenH ISapKOBa xax n p a w o x e -  
Hae o n H c a m a  pa3MUThix ogepe^efi.

^O K a sH B a e u  b  H a c i o a n e S  p a ó o i e  3 p r o n a v n o e  y i B e p a m e a a e  h o u e a a s a e M  K p a .il-  

HHe B03HOXHOCTH.

C h z  noMOUbio p a c c v H T U B a e u  otJxfceK TaBH y» u o a H o c i i  n p o u e c c o p o B  K o u n b n T e p a o it  

o a c i e u u  c o c T o a n e i i  H3 H a e s a B H C a u ic c  n p o a e c c o p o B  h  U a e s a B H C H u a x  a o A y je i t  

n a jia tH , r ^ e  T p eó o sa H H H  A o c T y n a o c iH  k  n a u n i a  p a B a o M e p a o  a e  p a c i t n a n B B a » T c s .
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