XI OGOLNOPOLSKA KONFERENCJA TEORII HIASZYN I MECHANIZMOW
 11th POLISH CONFERENCE ON THE THEORY OF MACHINES AND MECHANISNS

27-30. 04. 1987 ZAKOPANE

K. WOHLHART

Institut für Mechanik,
Technische Universität Graz, Österreich

THE SECOND BASIC 7R MECHANISM

Abstract. There are two kinds of homogenous, orthogonal, single-of-freedom inkages with seven binary links, connected by seven turning pairs, which rightly can be designated as "basic" spatial 7R mechanisms. The first, characterized by the system parameter structure: $a_{1}=1, s_{1}=0, \alpha_{1}=90^{\circ} \ldots \ldots 1=1(1) 7$, has been investigated in two previous papers $[4,5]$, and the second basic $7 R$ mechanism, with the parameter structure: $a_{1}=0, s_{1}=1, \alpha_{1}=90^{\circ}$ $i=1(1) 7$, is the subject of the present. For this second 7 R mechanism - in some sense dual to the first - an algebraic displacement analysis is carried out, leading to input-output equations of degrec 16 in the tan - half - angle of the input - and the output angular displacements. Extraneous roots in the algebraic input-output cguations only could not be avoided in the case where the input angular displacements 6_{1} are related to the output angular displacements 6_{i+3} (or σ_{i+4}). This simply because in this case we were not able to expand the corresponding determinant land then to split off the unwanted factor) with the devices at our diposition.

Therefore in this case the input-output equation has been given in the form of a 16×16 determinant equated to zero, leading to an algebraic equation of degree 24 (instead of 16).

Introduction

The input-output equation for the general single loop, single-degree-offreedom, spatial 7R mechanism has been given by J. Duffy and C. Crane in 1980 [1]. It relates the input angular displacements σ_{1} to the output angular displacement 6_{7} and is presented in the form of a 16×16 determinant equated to zero, actually yielding an algebraic equation of degree 32 in $\tan \left(0^{\circ} / 2\right)$ and in $\tan \left(0_{7} / 2\right)$.

The present paper should be understood primarily as a contribution to the exploration of the limits of the long sought - for general solution of Duffy and crane.

This exploration seems to be necessary because, though the solution is general, problems arise for special systom parameters of the 7 R mechanism. As the rank of the matrix, corresponding to the 16×16 determinant depends on the system parameters, it might happen that for special sets of parameters the determinant vanishes identically, making it impossible to determine the output angular displacements corresponding to a chosen input angular displacement by a numerical roots-finding procedure. Exactly this now occurs if one tries to analyse one of the two "basic" 7R mechanisms which can be characterized by their parameter structures: $a_{i}=1, s_{i}=0$, $\alpha_{i}=90^{\circ}$ and $a_{i}=0, s_{i}=1, \alpha_{i}=90^{\circ}$, respectively a_{i} stands for the normal distance, s_{i} for the offset and α_{i} for the twistangle of the revolute axes on the link with the index 1-1), on the basis of the general solution. Therefore in these cases an other set of initial equations has to be found, leading to a workable Euler-Sylvester-determinant. For the first basic $7 R$ mechanism in [4] a solution (based on six initial equations instead of four) has been presented in the form of a 12×12 determinant equated to zero and leading to an algebraic equation of degree 16 , and finally in [5] the algebraic input-output equation with the minimum degree (four) could be established for this mechanism. In 1979 J . Duffy and S. Derby łublished a paper [2] In which they treated the generalized lob-ster-arm, a $7 R$ mechanism which has consecutive joint axes intersecting (with the exception of the first and the last). The second basic 7 R mecharism which we are going to treat here is a special lobster-arm mechanism. The reason for taking up once again the same problem even in a specific form is twofold. First, we intend to find all possible input-output equations whatever angular displacement will be chosen as input - or as output angular displacement, and then we wish to show that a "modified fourth Duffy-equation" can be found and used to determine all possible inputoutput equations by equating corresponding 16×16 determinants to zero. mine regular "fourth Duffy-equation" (equation 14 in [1]) yields $0=0$ for the special set of system parameters of the second basic 7 R mechanism.

The starting position

The second basic $7 R$ mechanism is a homogeneous, orthogonal space mechanism with consecutive joint axes intersecting. The parameter structure of this mecharism is given by:

$$
\begin{equation*}
a_{i}=0, \quad s_{1}=1, \quad a_{i}=90^{\circ} \quad 1=1(1) 7 \tag{1}
\end{equation*}
$$

Fig. 2

He have to distinguish between two types of this mechanism. In Fig. 1 and Iig. 2 these two types are shown in the starting position $G_{1}=0$. To change from one type to the other is only possible by dismounting the mechanism and reassembling it anew. The input-output relations we are going to derive do not differentiate between these types but the graphs of these relations show two closed loops corresponding to them.

The unity vectors in the joint axes of the second basic 7R mechanism in the starting position have in the cartesian coordinate system $(0, x y z)$ the following decompositions:

The sign above is valid for type 1 and the sign underneath for type 2 of the mechanism. With these vectors the angular displacements 6_{1} at the starting position $\left(\sigma_{1}=0\right)$ can be determined by the formulas:

$$
\begin{equation*}
-\underline{n}_{1} \cdot \underline{n}_{1+2}=\cos \sigma_{i+1} \cdot\left(\underline{n}_{i} \times \underline{n}_{i+1}\right) \cdot n_{i+2}=\sin \sigma_{i+9} \tag{2}
\end{equation*}
$$

$i=1(1) 7$ cyclic. Their evaluation leads (for type 1 and 2$)$ to the follow ing results:
$\sigma_{1}=0, \quad \sigma_{2}=101,05^{\circ}, \quad \sigma_{3}=-133,72^{\circ}, \quad \sigma_{4}=72,97^{\circ}, \quad \sigma_{5}=-72,97^{\circ}$,
$\sigma_{6}=133,72^{\circ}, \sigma_{7}=-101,95^{\circ}$,
$\sigma_{1}=0, \quad \sigma_{2}=101,95^{\circ}, \quad \sigma_{3}=-46,28^{\circ}, \quad \sigma_{4}=-72,97^{\circ}, \quad \sigma_{5}=72,97^{\circ}$, $G_{6}=46,28^{\circ}, \sigma_{7}=-101,95^{\circ}$.

With these starting positions, on the basis of a numerical procedure to every input angular displacement σ_{1} the corresponding output angular displacements could be determined by simultaneously solving a set of nonIInear equations. This way we would get the graphs of all input-output relations but not the input-output equations itselves, and therefore no information about the degree the corresponding algebraic equations in the tan - half - angles.

Three "fit-in" ecuations for $\sigma_{12} \sigma_{2}, \sigma_{6}, \sigma_{7}$

If the link L_{7}, carrying the two revolute joints R_{7} and R_{1}, is fixed in the cocrdinare system $(0, x y z)$, the unity vectors $\underline{n}_{2}, \underline{n}_{3}$ and $\underline{n}_{5}, \underline{n}_{6}$ can be given as finctions of the angles G_{1}, σ_{2} and σ_{6}, σ_{7} respectively.

From Fig. 3 and Fig. 4 we inmediately read off the representations of the unity vectors $n_{1} \underline{n}_{2} \underline{n}_{3}, \underline{n}_{5} \underline{n}_{6} \underline{n}_{7}$ in the coordinate system ($0, x y z$):

Fig. 3

The difference of the position - vectors $x_{I I}=-\left(\underline{n}_{5}+\underline{n}_{6}+\underline{n}_{7}\right)$ and $\underline{x}_{I}=\underline{n}_{1}+\underline{n}_{2}+\underline{n}_{3}$ namely:

$$
\begin{align*}
\underline{x}_{I I, I} & =\underline{x}_{I I}-x_{I}=-\left[\underline{n}_{1}+\underline{n}_{2}\left(\sigma_{1}\right)+\underline{n}_{3}\left(\sigma_{1}, \sigma_{2}\right)+\right. \\
& \left.+\underline{n}_{5}\left(\sigma_{6}, \sigma_{7}\right)+\underline{n}_{6}\left(\sigma_{7}\right)+\underline{n}_{7}\right]=\underline{n}_{4} \tag{3}
\end{align*}
$$

is a function of the four displacement angles $\sigma_{1} \quad \sigma_{2} \quad \sigma_{6}$ and σ_{7} and has to comply with three geometrical conditions: Its length must be equal to 1 and it must be orthogonal to the unity vectors \underline{n}_{3} and \underline{n}_{5}. These conditions lead to the following three "fit-in" - equations:

$$
\begin{align*}
& \frac{1}{2}\left(\left|\underline{x}_{I I, I}\right|-1\right)=F_{1}\left(\sigma_{1} \sigma_{2} \sigma_{6} \sigma_{7}\right)=0 \tag{11}\\
& \underline{x}_{I I, I} \cdot \underline{n}_{3}=F_{2}\left(\sigma_{1} \sigma_{2} \sigma_{6} \sigma_{7}\right)=0 \tag{5}\\
& \underline{x}_{I I, I} \cdot \underline{n}_{5}=F_{3}\left(\sigma_{1} \sigma_{2} \sigma_{6} \sigma_{7}\right)=0 \tag{6}
\end{align*}
$$

These equations are linear in the sines and in the cosines of all the angular displacements $\sigma_{1} \sigma_{2} \sigma_{6}$ and σ_{7}. The elimination of σ_{2} and σ_{6} in this set of equations would result in the first input-output equation $f\left(\sigma_{1}, \sigma_{7}\right)=0$. The elimination process however is much facilitated by using other, equivalent set of equations, namely:

$$
\begin{align*}
& \frac{1}{2}\left(\left|\underline{x}_{I I, I}\right|-1\right)+\underline{x}_{I I, I} \cdot \underline{n}_{3}=G_{1}\left(\sigma_{1} \sigma_{2} \sigma_{7}\right)=0 \tag{7}\\
& \frac{1}{2}\left(\left|\underline{x}_{I I, I}\right|-1\right)+\underline{x}_{I I, I} \cdot \underline{n}_{5}=G_{2}\left(\sigma_{1} \sigma_{6} \sigma_{7}\right)=0 \tag{8}
\end{align*}
$$

$\frac{1}{2}\left(\left|\underline{x}_{I I, I}\right|-1\right)+\underline{x}_{I I, I} \cdot\left(\underline{n}_{3}+\underline{n}_{5}\right)=G_{3}\left(\sigma_{1} \sigma_{2} \sigma_{6} \sigma_{7}\right)=0$
In the equation (7) the angular displacement σ_{6} does not enter, and in equation (8) on the other hand σ_{2} is not present. The equations $(7,8,9)$ written in full length read:

$$
\begin{aligned}
G_{1}: & =\left(\frac{3}{2}-\cos \sigma_{1}-\cos \sigma_{7}+\sin \sigma_{1} \sin \sigma_{7}\right)+ \\
& +\sin \sigma_{2}\left(\sin \sigma_{1}+\cos \sigma_{1} \sin \sigma_{7}\right)+\cos \sigma_{2}\left(\cos \sigma_{7}-1\right)=0, \\
G_{2}: & =\left(\frac{3}{2}-\cos \sigma_{7}-\cos \sigma_{1}+\sin \sigma_{7} \sin \sigma_{1}\right)+ \\
& +\sin \sigma_{6}\left(\sin \sigma_{7}+\cos \sigma_{7} \sin \sigma_{1}\right)+\cos \sigma_{6}\left(\cos \sigma_{1}-1\right)=0, \\
G_{3}: & =\left(\frac{1}{2}-\cos \sigma_{1}-\cos \sigma_{7}+\sin \sigma_{1} \sin \sigma_{7}\right)+ \\
& +\sin \sigma_{2}\left(\sin \sigma_{1} \cos \sigma_{6}-\cos \sigma_{1} \cos \sigma_{7} \sin \sigma_{6}\right)+\cos \sigma_{2} \sin \sigma_{6} \sin \sigma_{7}=0 .
\end{aligned}
$$

The elimination of the angular displacements σ_{2} and σ_{6} from this set of equations gives not only the relation between the angular displacements σ_{1} and σ_{7} but, by cyclic exchangements also the equations relating any two neighbouring angular displacements $\left(\sigma_{i}\right.$ and $\left.\sigma_{i+1} ; 1=1(1) 7\right)$. This is a consequence of the fact that we are analysing a closed, homogeneous kinematical chain.

Introducing now new wariables $\mathrm{z}_{\text {co }}$ connected with the angular displacements σ_{α} by

$$
\begin{equation*}
x_{\alpha}=\tan \left(\sigma_{\alpha} / 2\right) \tag{10}
\end{equation*}
$$

1.e. setting for

$$
\sin \sigma_{\alpha}=2 x_{\alpha} /\left(1+x_{\alpha}^{2}\right)
$$

and for

$$
\cos 6_{\alpha}=\left(1-x_{\alpha}^{2}\right) /\left(1+x_{\alpha}^{2}\right) \quad \alpha=1,2,5,6
$$

converts the equations $(7,8,9)$ into algebraic equations. This way we get then the following new set of equations:

$$
\begin{equation*}
H_{1}=a_{2} x_{2}^{2}+a_{1} x_{2}+a_{0}=0 \tag{111}
\end{equation*}
$$

with

$$
\begin{aligned}
& a_{2}=11 x_{1}^{2} x_{7}^{2}+3 x_{1}^{2}+8 x_{1} x_{7}+7 x_{7}^{2}-1 \\
& a_{1}=8\left(-x_{1}^{2} x_{7}+x_{7}^{2} x_{1}+x_{1}+x_{7}\right) \\
& a_{0}=3 x_{1}^{2} x_{7}^{2}+3 x_{1}^{2}+8 x_{1} x_{7}-2:_{7}^{2}-1
\end{aligned}
$$

and

$$
\begin{equation*}
H_{2}=b_{2} x_{6}^{2}+b_{1} x_{6}+b_{0}=0 \tag{12}
\end{equation*}
$$

wigh

$$
\begin{aligned}
& b_{2}=11 x_{1}^{2} x_{7}^{2}+7 x_{1}^{2}+8 x_{1} x_{7}+3 x_{7}^{2}-1 \\
& b_{1}=8\left(x_{1}^{2} x_{7}-x_{1} x_{7}^{2}+x_{1}+x_{7}\right) \\
& b_{0}=3 x_{1}^{2} x_{7}^{2}-x_{1}^{2}+8 x_{1} x_{7}+3 x_{7}^{2}-1
\end{aligned}
$$

and finally

$$
\begin{equation*}
H_{3}=c_{2} x_{2}^{2}+c_{1} x_{2}+c_{0}=0 \tag{13}
\end{equation*}
$$

with

$$
c_{2}=c_{22} x_{6}^{2}+c_{21} x_{6}+c_{20}
$$

where

$$
\begin{aligned}
& c_{22}=5 x_{1}^{2} x_{7}^{2}+x_{1}^{2}+8 x_{1} x_{7}+x_{7}^{2}-3 \\
& c_{21}=-8 x_{7}\left(1+x_{1}^{2}\right) \\
& c_{20}=5 x_{1}^{2} x_{7}^{2}+x_{1}^{2}+8 x_{1} x_{7}+x_{7}^{2}-3=c_{22} \\
& c_{1}=c_{12} x_{6}^{2}+c_{11} x_{6}+c_{10} \\
& c_{12}=8 x_{1}\left(1+x_{7}^{2}\right) \\
& c_{11}=8\left(-x_{1}^{2} x_{7}^{2}+x_{1}^{2}+x_{7}^{2}-1\right) \\
& c_{10}=8 x_{1}\left(1+x_{7}^{2}\right)=c_{12} \\
& c_{0}=c_{02} x_{6}^{2}+c_{01} x_{6}+c_{\infty} \\
& c_{02}=5 x_{1}^{2} x_{7}^{2}+x_{1}^{2}+8 x_{1} x_{7}+x_{7}^{2}-3=c_{22}=c_{20} \\
& c_{01}=8 x_{7}\left(1+x_{1}^{2}\right)=-c_{21} \\
& c_{00}=5 x_{1}^{2} x_{7}^{2}+x_{1}^{2}+8 x_{1} x_{7}+x_{7}^{2}-3=c_{22}=c_{02}=c_{20}
\end{aligned}
$$

The input-output equations

The mechanism we are investigating is a homogeneous one, i.e., identical links are connected by identical joint and thus forming a single loop. For such a mechanism there exist only three essentially different (algebraic) input-output equations, namely:

$$
\begin{aligned}
& f_{I}\left(x_{1}, x_{1+1}\right)=0 \\
& f_{I I}\left(1, x_{1+2}\right)=0^{\circ} \\
& E_{\text {III }}\left(x_{1}, x_{1+3}\right)=Q \quad i=1(1) 7 \text { cyclic }
\end{aligned}
$$

In addition, these equations are symmetric in their variables; the direction of the cyclic exchangement of the index 1 does not effect the result (Fig. 5) :

Fig. 5

$$
\begin{aligned}
& f_{I}\left(x_{i}, x_{i+1}\right)=0=f_{I}\left(x_{i+1}, x_{1}\right) \\
& f_{I I}\left(x_{i}, x_{i+1}\right)=0=f_{I I}\left(x_{1+2}, x_{1}\right) \\
& f_{I I I}\left(x_{1}, x_{i+3}\right)=0^{-}=f_{I I I}\left(x_{1+3}, x_{1}\right)
\end{aligned}
$$

The first input-output equation $\left.f_{I} \mathcal{X}_{1}, x_{i+1}\right)=0$

To find the first input-output equation we eliminate (in two steps) from the equations $(11,12,13)$ the variables σ_{2} and 6_{6} with the EulerSylvester resultant method [3].

Adding eq. (11). ($-c_{2}$) to eq. (13) $\cdot\left(a_{2}\right)$ and then adding eq. (11) $-\left(c_{2} x_{2}+c_{1}\right)$ to eq. (13). $\left(a_{2} x_{2}+a_{1}\right)$ gives two equations, linear in x_{2}. The elimination of x_{2} from these equations results in an algebraic equation of degree 4 in x_{6}. In formulas:

$$
\begin{aligned}
& \begin{array}{l:l:l}
H_{1}=a_{2} x_{2}^{2}+a_{1} x_{2}+a_{0}=0 & -c_{2} & -\left(c_{2} x_{2}+c_{1}\right) \\
H_{3}=c_{2} x_{2}^{2}+c_{1} x_{2}+c_{0}=0 & a_{2} & \left(a_{2} x_{2}+a_{1}\right)
\end{array} \\
& \Rightarrow\left|\begin{array}{l}
a_{2} a_{1} \\
c_{2} c_{1}
\end{array}\right| x_{2}+\left|\begin{array}{l}
a_{2} a_{0} \\
c_{2} c_{0}
\end{array}\right|=0 \quad-\left|\begin{array}{l}
a_{2} a_{0} \\
c_{2} c_{0}
\end{array}\right| \\
& \left|\begin{array}{c}
a_{2} a_{0} \\
c_{2} c_{0}
\end{array}\right| x_{2}+\left|\begin{array}{c}
a_{1} a_{0} \\
c_{1} c_{0}
\end{array}\right|=0 \quad \vdots \quad\left|\begin{array}{c}
a_{2} a_{1} \\
c_{2} c_{1}
\end{array}\right| \Rightarrow
\end{aligned}
$$

$$
R=\left|\begin{array}{l}
a_{2} a_{1} \tag{14}\\
c_{2} c_{1}
\end{array}\right|\left|\begin{array}{l}
a_{1} a_{0} \\
c_{1} c_{1}
\end{array}\right|-\left|\begin{array}{l}
a_{2} a_{0} \\
c_{2} c_{0}
\end{array}\right|^{2}=d_{4} x_{6}^{4}+d_{3} x_{6}^{3}+d_{2} x_{6}^{2}+d_{1} x_{6}+d_{0}=0
$$

The coefficients d_{1} in this equation are polynoms of degree 8 in x_{1} and in x_{7}. From the equations (12) and (14) two algebraic equations of degree 3 can be derived. Adding eq. $(14) \cdot\left(-\mathrm{b}_{2}\right)$ to eq. $(12) \cdot\left(\mathrm{d}_{2} \mathrm{x}_{6}^{2}\right)$ and the adding eq. (14). $-\left(b_{2} x_{6}+b_{1}\right)$ to eq. (12) $\cdot\left(d_{4} x_{6}+d_{3}\right) \cdot x_{6}^{2}$ gives two equations of degree 3 in x_{6}. In formulas:

$$
\begin{aligned}
& k=d_{4} x_{6}^{4}+d_{3} x_{6}^{3}+d_{2} x_{6}^{2}+d_{1} x_{6}+a_{0}=0 \\
& H_{2}=b_{2} x_{6}^{2}+b_{1} x_{6}+b_{0} \quad-b_{2} \\
&\left.\Rightarrow\left|\begin{array}{l}
a_{4} d_{3} \\
b_{2} b_{1}
\end{array}\right| x_{2}^{3} x_{6}^{2}+b_{1}\right) \\
&\left(d_{4} x_{6}^{3}+d_{3} x_{6}^{2}\right) \\
& b_{2} b_{2}\left|x_{6}^{2}+\right| \begin{array}{l}
d_{4} d_{1} \\
b_{2} \theta\left|x_{6}+\left|\begin{array}{c}
d_{4} d_{0} \\
b_{2} \theta
\end{array}\right|=0\right.
\end{array}
\end{aligned}
$$

and

$$
\left.\left|\begin{array}{l}
a_{4} d_{2} \\
b_{2} b_{0}
\end{array}\right| x_{6}^{3}+1\left|\begin{array}{l}
a_{4} d_{1} \\
b_{2} \theta
\end{array}\right|+\left|\begin{array}{l}
d_{3} d_{2} \\
b_{1} b_{0}
\end{array}\right|\right) x_{6}^{2}+1\left|\begin{array}{l}
a_{4} d_{0} \\
b_{2} \theta
\end{array}\right|+\left|\begin{array}{l}
a_{3} d_{1} \\
b_{1} \theta
\end{array}\right| 1 x_{6}-d_{0} b_{1}=0
$$

or

$$
\begin{equation*}
e_{3} x_{6}^{3}+e_{2} x_{6}^{2}+e_{1} x_{6}+e_{0}=0 \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{3} x_{6}^{3}+f_{2} x_{6}^{2}+f_{1} x_{6}+f_{0}=0 \tag{16}
\end{equation*}
$$

The coefficients e_{α} and $f_{\alpha} \alpha=0-3$ are polynoms of degree 10 in x_{1} and in x_{7}. These two equations, together with equation (12) multiplied by x_{6} and the equation (12) itself can be written in the form of a homogeneous matrix equation:

e_{3}	a_{2}	e_{1}	e_{0}
f_{3}	f_{2}	f_{i}	f_{0}
b_{2}	b_{1}	b_{0}	0
0	b_{2}	b_{1}	b_{0}

As a trivial solution of this equation has to be excluded, the determinant of the coefficient matrix must vanish:

e_{3}	e_{2}	e_{1}	e_{0}
f_{3}	f_{2}	f_{1}	f_{0}
b_{2}	b_{1}	b_{0}	0
0	b_{2}	b_{1}	b_{0}

The determinant equated to zero gibes an algebraic equation (of degree 24) of which two factors, $\left(1+x_{1}^{2}\right)^{4}$ and $\left(1+x_{7}^{2}\right)^{4}$, can be splitted off. The sought - for input-output equation $f_{I}\left(x_{1}, x_{7}\right)=0$ is therefore an algebraic equation of degree 16 in x_{1} and in x_{7}. In oder to write this equation in matrix form we define the 17×1 matrix X_{1} by:

$x_{i}^{T}=$| x_{i}^{16} | x_{i}^{15} | x_{i}^{74} | x_{i}^{13} | x_{i}^{12} | x_{i}^{11} | x_{i}^{10} | x_{i}^{9} | x_{i}^{8} | x_{i}^{7} | x_{i}^{6} | x_{i}^{5} | x_{i}^{4} | x_{i}^{3} | x_{i}^{2} | x_{i}^{1} | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

and the 17×17 matrix A, which is symmetric, and has a chess-board structure i.e.:

$$
A_{\alpha \beta}=A_{\beta \alpha}= \begin{cases}0 & \text { if } \alpha+\beta \text { is an odd number } \tag{20}\\ 70 & \text { if } \alpha+\beta \text { is an even number }\end{cases}
$$

\qquad

this means that only 81 of the 289 elements of A do not vanish. These elements can be written down in the following condensed form:

$$
A_{\alpha \beta}: \quad \alpha=1(2) 17 \wedge \beta=\alpha(2) \begin{cases}17 & \text { if } \alpha \text { is odd } \tag{21}\\ 16 & \text { if } \alpha \text { is even }\end{cases}
$$

With these two matrices the first input-output equation can be written in the form:

$$
\begin{equation*}
E_{I}\left(x_{i}, x_{i+1}\right)=x_{i}^{T} \underline{X X}_{i+1}=0 \tag{22}
\end{equation*}
$$

The second input-output equation $f_{I I}\left(x_{1}, x_{1+2}\right)=0$

The elimination of the varlables x_{2} and x_{7} from the set of equations (11, 12, 13) leads to a relation between x_{1} and x_{6}, and there with all the other input-output equations $f_{I I}\left(x_{1}, x_{1+2}\right)=0$ are determined. Of course, if we are only interested in numerical results, with the known relation between x_{1} and x_{7} we could determine the variable x_{6} corresponding to any pair of the variablex x_{1} and x_{7}. As the coefficient determinant (equation 18) vanishes we could solve eq.(17) for x_{6} :
$\tan \left(6_{6} / 2\right)=x_{6}\left(x_{1}, x_{7}\left(x_{1}\right)\right)=\operatorname{det}$

e_{3}	e_{2}	$-e_{0}$				
f_{3}	f_{2}	$-f_{0}$				
b_{2}	b_{1}	0	$: \operatorname{det}$	e_{3}	e_{2}	e_{1}
:---:	:---:	:---:				
f_{3}	f_{2}	f_{1}				
b_{2}	b_{1}	b_{0}				

But now to find the irmediate relation between x_{6} and x_{9}, we shall start again with the fundamental "fit-in" equations (11, 12, 13). These equations can be rewritten as algebraic equations of wegree 2 in x_{7} :

$$
\begin{equation*}
H_{9}=A_{2} x_{7}^{2}+A_{1} x_{7}+A_{0}=0 \tag{24}
\end{equation*}
$$

with

$$
\begin{aligned}
& A_{2}=11 x_{1}^{2} x_{2}^{2}+3 x_{1}^{2}+8 x_{1} x_{2}+7 x_{2}^{2}-1 \\
& A_{1}=8\left(-x_{1}^{2} x_{2}+x_{2}^{2} x_{1}+x_{1}+x_{2}\right) \\
& A_{0}=3 x_{1}^{2} x_{2}^{2}+3 x_{1}^{2}+8 x_{1} x_{2}-x_{2}^{2}-1
\end{aligned}
$$

nd

$$
H_{2}=B_{2} x_{7}^{2}+B_{1} x_{7}+B_{0}=0
$$

with

$$
\begin{aligned}
& B_{2}=11 x_{1}^{2} x_{6}^{2}+3 x_{6}^{2}-8 x_{1} x_{6}+3 x_{1}^{2}+3 \\
& B_{9}=8\left(x_{1} x_{6}^{2}+x_{1}^{2} x_{6}+x_{1}+x_{6}\right) \\
& B_{0}=7 x_{1}^{2} x_{6}^{2}-x_{6}^{2}+8 x_{1} x_{6}-x_{1}^{2}-1
\end{aligned}
$$

and finally

$$
\begin{equation*}
H_{3}=c_{2} x_{7}^{2}+c_{1} x_{7}+c_{0}=0 \tag{26}
\end{equation*}
$$

with

$$
c_{2}=c_{22} x_{2}^{2}+c_{21} x_{2}+c_{20}
$$

where

$$
\begin{aligned}
& c_{22}=\left(5 x_{1}^{2}+1\right)\left(x_{6}^{2}+1\right) \\
& c_{21}=8\left[-x_{1} x_{6}^{2}+\left(1-x_{1}^{2}\right) x_{6}+x_{1}\right] \\
& c_{20}=\left(5 x_{1}^{2}+1\right)\left(x_{6}^{2}+1\right)=c_{22} \\
& c_{1}=c_{12} x_{2}^{2}+c_{11} x_{2}+c_{10} \\
& c_{12}=8\left[x_{1} x_{6}^{2}-\left(1+x_{1}^{2}\right) x_{6}+x_{1}\right] \\
& c_{11}=0 \\
& c_{10}=8\left[x_{1} x_{6}^{2}+\left(1+x_{1}^{2}\right) x_{6}+x_{1}\right]
\end{aligned}
$$

$$
\begin{aligned}
& c_{0}=c_{02} x_{2}^{2}+c_{01} x_{2}+c_{00} \\
& c_{02}=\left(x_{1}^{2}-3\right)\left(x_{6}^{2}+1\right) \\
& c_{01}=8\left[-x_{1} x_{6}^{2}-\left(1-x_{1}^{2}\right) x_{6}+x_{1}\right]=c_{21} \\
& c_{00}=\left(x_{1}^{2}-3\right)\left(x_{6}^{2}+1\right)=c_{02}
\end{aligned}
$$

The elimination of the variable x_{7} first from the equations (24) and (25) and then from the equations (25) and (26) gives two algebrajc equations of degree 4 in x_{2}. The elimination process is the same as that leading to equation (14). These two equations read

$$
\begin{align*}
& L=D_{4} x_{2}^{4}+D_{3} x_{2}^{3}+D_{2} x_{2}^{2}+D_{1} x_{2}+D_{0}=0 \tag{27}\\
& M=E_{4} x_{2}^{4}+E_{3} x_{2}^{3}+E_{2} x_{2}^{2}+E_{1} x_{2}+E_{0}=0 \tag{28}
\end{align*}
$$

where in the coefficients D_{i} are polynoms in the variables x_{1} and x_{6} of degree 8 and 4 , respectively, and the coefficients E_{1} are polynoms in x_{1} and x_{6} of degree 8. From them we can derive four algebraic equations of degree 3 in x_{2} :

$$
\mathrm{M} \cdot \mathrm{D}_{4}-\mathrm{L} \cdot \mathrm{E}_{4}=\mathrm{K}_{1} 1 \mathrm{x}_{2}^{2}+\mathrm{K}_{12} \mathrm{x}_{2}^{2}+\mathrm{K}_{13} \mathrm{X}_{2}+\mathrm{K}_{14}=0
$$

M. $\left(D_{4} x_{2}+D_{3}\right)-L \cdot\left(E_{4} x_{2}+E_{3}\right)=K_{21} x_{2}^{3}+K_{22} x_{2}^{2}+K_{23} x_{2}+K_{24}=0$

$$
\text { M. }\left(D_{4} x_{2}^{2}+D_{3} x_{2}+D_{2}\right)-L \cdot\left(E_{4} x_{2}^{2}+E_{3} x_{2}+E_{2}\right)=K_{31} x_{2}^{3}+K_{32} x_{2}^{2}+K_{33} x_{2}+K_{34}=0
$$

M. $\left(D_{4} x_{2}^{3}+D_{3} x_{2}^{2}+D_{2} x_{2}+D_{1}\right)-L \cdot\left(E_{4} x_{2}^{3}+E_{3} x_{2}^{2}+E_{2} x_{2}+E_{1}\right)=K_{41} x_{2}^{3}+K_{42} x_{2}^{2}+K_{43} x_{2}+K_{44}=0$
or written in matrix form:

As no trivial solution of this linear homogeneous matrix equation exists ($1 \neq 01$) the determinant of the matrix,$\underline{K}=\left\|R_{i j}\right\|$ must vanish:
$D\left(x_{1} \cdot x_{6}\right)=\operatorname{det}\left\|x_{i j}\right\|=0=\operatorname{factor}\left(x_{1}, x_{6}\right)\left(1+x_{1}^{2}\right)^{4}\left(1+x_{6}^{2}\right)^{4}=f_{I I}\left(x_{1} x_{6}\right)$

The elements of the matrix \underline{K} are polynoms of degree 14 in x_{1} and in x_{6}. The deteminant of \underline{r} equated to zero therefore will be an algebraic equation of degree 56 in the variables x_{1} and x_{6}. This means that there is in eq. (30) a big factor containing all unwanted roots! By trying to factorize eq. (30) in a straightforward way, even using the newest version of the symbolic computation software REDUCE, we were not successful. The input-output equation $\mathrm{E}_{\text {II }}\left(\mathrm{x}_{1}, x_{6}\right)=0$ finally could only be found by factorizing the determinant D for a number of specified values of x_{6}

$$
D\left(x_{1}, x_{6}=0 ; 1 ; 2 ; 3 ; 1 / 2 ; 1 / 3\right)=0
$$

and for $x_{6}= \pm x_{1}$

$$
D\left(x_{1}, x_{6}=x_{1}\right)=0 ; \quad D\left(x_{1}, x_{6}=-x_{1}\right)=0
$$

This way a sufficient number of linear equations for the determination of the 81 coefficients. $B_{i j}$ entering $f_{I I}\left(x_{1}, x_{6}\right)=0$ could be found and solved. Again, with $f_{I I}\left(x_{1}, x_{6}\right)=0$ every input-output equation of the form $\mathrm{f}_{\mathrm{II}}\left(\mathrm{X}_{1}, \mathrm{x}_{1+2}\right)=0$ is known.

With the 17×1 matrix \underline{x}_{1} of eq. (19) and the 17×17 matrix B (eqs. 32, 33) the input-output equation $f_{I I}\left(x_{1}, x_{1+2}\right)=0$ can be written in the form of a matrix equation:

$$
\begin{equation*}
f_{I I}\left(x_{1}, x_{1+2}\right)=\underline{x}_{1}^{T}-\underline{x}_{i+2}=0 \tag{31}
\end{equation*}
$$

The matrix B in this equation is symmetric and has a chess-board structure, 1.e.:

$$
B_{\alpha \beta}=B_{\beta \alpha}=\left\{\begin{align*}
0 & \text { if } \alpha+\beta \text { is an odd number } \tag{32}\\
70 & \text { if } \alpha+\beta \text { is an even number }
\end{align*}\right.
$$

Of the $1717=289$ elements of B only 81 do not vanish. These elements are given by:

$$
B_{\alpha \beta} \alpha=1(2) 17 \wedge \beta=\alpha(2) \begin{cases}17 & \text { if } \tag{33}\\ 16 & \text { is odd } \\ \text { if } & \text { is even }\end{cases}
$$

The third input-output equation $f_{I I I}\left(x_{i}+x_{1+3}\right)=0$ (unsolved)

To find $\operatorname{f}_{\text {III }}\left(x_{1}, x_{1+3}\right)=0$ we would have to eliminate from the equations (24, 25, 26) the variables x_{1} and x_{7}. The smalest matrix whose determinant equated to zero would give the sought - for equation has a size of 8×8 and the element of this matrix are polynoms of degree 12 i x_{2} and in x_{6}. The elimination of the variable from the pairs of equations $\left(\mathrm{H}_{1}=0, \mathrm{H}_{2}=0\right),\left(\mathrm{H}_{9}=0, \mathrm{H}_{3}=0=\right.$ and $\left\{\mathrm{H}_{2}=0, \mathrm{H}_{3}=0\right)$ gives three equations of degree 8 (the first and the second is identical with eq. 27 and eq. 28 , respectively, rewritten as polynoins in x_{1}):

$$
\begin{equation*}
L=\sum_{0}^{8} L_{\alpha} x_{1}^{\alpha}=0 ; \quad M=\sum_{0}^{8} \alpha_{1}^{\alpha}=0 ; \quad N=\sum_{0}^{8} N_{\alpha} x_{1}^{\alpha}=0 \tag{34}
\end{equation*}
$$

The coefficients I_{α}, M_{α} and N_{α} are polynoms of degree $(4,4),(8,4)$ and $(4,8)$ in the variables $\left(x_{2}, x_{6}\right)$, respectively. The elimination of the first terms from any pair of these equations can be carried out in seven different ways, therefore we can easely find eight equations of degree 7 in x_{1}. necessary to eliminate x_{1} by the euler-Sylvester method. This method leads to:

$$
\begin{equation*}
F_{I I I}\left(x, x_{6}\right)=\operatorname{det}\left\|P_{i j}\right\|_{8 x 8}=0=\text { factor }\left(x_{2}, x_{6}\right) \cdot f_{I I I}\left(x_{2}, x_{6}\right) \tag{35}
\end{equation*}
$$

It was to expect that the evaluation of the determinant of the 8×8 matrix \underline{P} (whose elements are polynoms of degree 12 in x_{2} and in x_{6}) were not feasible. Even for $x_{2}=$ gonstant it was impossible to get a result. So the determination of $f_{I I I}\left(x_{1}, x_{1+3}\right)=0$ with the minimum degree (16) remains an unsolved problem, though of course, equation (35) can be used to detemine numerically the variablex x_{6} corresponding to any chosen input variable x_{2}.

The one-step elimination procedure

Thus far we have only used the three fit - in equations in the elimination procedures. Since J. Duffy and C. Crane have published their paper [2] it is well known that there exist a fourth equation of the same type as the fit - in equations. With the aid of this fourth equation Duffy and Crane were able to find the input-output equation for the general 7 R mechanism. As has been stated in the introduction there are some limits for this general solution. For the parameter structure of our second basic 7R mechanism the fourth Duffy-Crane equation seems not to exist. Equation 14 in [2] turns out to be an empty equation, 1.e., it becomes $0=0$ as the three constants K_{1}, K_{2} and K_{3} all vanish. The general solution of Duffy and Crane therefore must fail.

The search for an other fourth equation which can be substituted for the lacking Duffy-Crane equation has lead to:

$$
\begin{equation*}
F_{4}\left(\sigma_{1} \sigma_{2} \sigma_{6}{ }_{7}\right)=F_{2} \cdot F_{3}-\left(\underline{n}_{3} \circ \underline{n}_{5}\right) F_{1}=0 \Longrightarrow H_{4}\left(x_{1} x_{2} x_{6} x_{7}\right)=0 \tag{36}
\end{equation*}
$$

where for F_{1}, F_{2} and F_{2} is to insert according to the equations 14,5 , $6)$. The equation (36) is linear in the sines and cosines of the angular displacements $\sigma_{1} \delta_{2} \sigma_{6}$ and σ_{7}. This equation together with the three firin equations enable us to eliminate two of the four variables in one step.

The input-output equation f 客 $\left(x_{1}, x_{i}+3\right)=0$

As the algebraic equations $f_{I}\left(x_{i}, x_{i+1}\right)=0$ and $f_{I I}\left(x_{i}, x_{i+2}\right)=0$ have already been found with the mintmum degree in their variables, we now focus our attention on the relation between the variables x_{i} and x_{i+3} only. The simultaneous elimination of the variables x_{1} and x_{7} from the four equations $H=0 \ldots \alpha=1(1) 4$ leads to a 16×16 determinant equated to zero resulting in an algebraic equation of degree 24 (instead of 16) in the vardables x_{2} and x_{6}.

Let us define first a 4×9 matrix \underline{R} with the four row-vectors R_{1}, $\underline{R}_{2}, \underline{R}_{3}$ and \underline{R}_{4} given by:

$\mathrm{R}_{1}=$	$3+11 x_{2}^{2}$ $8 x_{2}$ $-1+7 x_{2}^{2}$ $-8 x_{2}$	$8\left(1+x_{2}^{2}\right)$		$3\left(1+x^{2}\right)$	$8 x_{2}$	$-\left(1+x_{2}^{2}\right)$
$\underline{R}_{2}=$	$3+11 x_{6}^{2}$ $-8 x_{6}$ $3\left(1+x_{6}^{2}\right)$ $8 x_{6}$	$8\left(1+x_{6}^{2}\right)$	82	$-1+7 x_{6}^{2}$	$8{ }^{2}$	$-\left(1+2^{2}\right)$
$\underline{R}_{3}^{\top}=$	$5-8 x_{2} x_{6}+5 x_{2}^{2} x_{6}^{2}+5 x_{2}^{2}+5 x_{8}^{2}$	$\underline{S}_{4}^{\mathrm{T}}=$	$1-10 x_{2} x_{6}+9 x_{2}^{2} x_{6}^{2}-3 x_{12}^{2}-3 x_{6}^{2}$			
	$8 x_{2}\left(1-x_{6}{ }^{2}\right)$		$4 x_{6}+6 x_{2}-12 x_{2}^{2} x_{6}+2 x_{2} x_{6}^{2}$			
	$1+8 x_{2} x_{6}+x_{2}^{2} x_{6}^{2}+x_{2}^{2}+x_{6}^{2}$		$-1+2 x_{2} x_{6}+3 x_{2}^{2} x_{5}^{2}+3 x_{2}^{2}-x_{6}^{2}$			
	$8 x_{6}\left(1-x_{2}^{2}\right)$		$4 x_{2}+6 x_{6}-12 x_{2} x_{6}^{2}+2 x_{2}^{2} x_{6}$			
	$8\left(1+x_{2}^{2} x_{6}^{2}+x_{2}^{2}+x_{6}^{2}\right)$		$16 x_{2} x_{6}$			
	$8\left(1-x_{2}^{2}\right) x_{6}$		$4 x_{2}-2 x_{6}+4 x_{2} x_{6}^{2}+10 x_{2}^{2} x_{6}$			
	$1+8 x_{2} x_{6}+x_{2}^{2} x_{6}^{2}+x_{2}^{2}+x_{6}^{2}$		$-1+2 x_{1} x_{6}+3 x_{2}^{2} x_{6}^{3}-x_{2}^{2}+3 x_{6}^{2}$			
	$8\left(1-x_{6}^{2}\right) x_{2}$		$-2 x_{2}+4 x_{6}+20 x_{2} x_{8}^{2}+4 x_{2}^{2} x_{6}$			
	$-3-8 x_{2} x_{6}-3 x_{2}^{2} x_{8}^{2}-3 x_{2}^{2}-3 x_{6}^{2}$		$1+6 x_{2} x_{6}+x_{2}^{2} x_{6}^{2}+x_{6}^{2}+x_{2}^{2}$			

and then the vector S :
$S^{\top}=$

$x_{7}^{2} x_{1}^{2}$	$x_{7}^{2} x_{1}$	x_{7}^{2}	$x_{7} x_{1}^{2}$	$x_{7} x_{1}$	x_{7}	x_{1}^{2}	x_{1}	1

With these matrices the four equations $(24,25,26$ and 36$)$ can be written in the form of matrix equations:
$H_{1}=0=\underline{R}_{1} \underline{S}, \quad H_{2}=0=\underline{R}_{2} \underline{S}, \quad H_{3}=0=\underline{R}_{3} \underline{S}, \quad H_{4}=\underline{R}_{4} \underline{S}=0 \quad \underline{R} \underline{S}=\underline{0} \Rightarrow(39)$

An equivalent linear homogeneous matrix equation with a quadratic matrix can be de=ived in the following way. Multiplication of the equations $H=0 \ldots=1(1) 4$ by x_{1}, x_{7} and x_{1}, x_{7} gives 12 additional equations:

$$
H_{\alpha}=0_{2} \quad H_{\alpha} x_{1}=0 ; \quad H_{\alpha} x_{7}=0, \quad H_{\alpha x_{1}} x_{7}=0
$$

With the aid of the matrices \underline{M} and \underline{Z} defined by:

(42)
the 16 equations (40) can be written in the form:

$$
\begin{equation*}
\underline{M} \underline{2}=\underline{\theta} \tag{43}
\end{equation*}
$$

and as $\underline{Z} \neq \underline{0}$ the determinant of the 16×16 matrix \underline{M} must vanish

$$
\begin{equation*}
\operatorname{det} \underline{M}=0=f_{\dot{I I I}}^{\dot{x}}\left(x_{6}, x_{2}\right) \Rightarrow f_{I I I}^{\dot{k}}\left(x_{1}, x_{1+3}\right)=0 \tag{44}
\end{equation*}
$$

In the first four rows of the matrix M the variable x_{6} does not enter and in the following four rows the variable x_{2} is absent. The equation $f^{*} \dot{X} \operatorname{III}\left(x_{2}, x_{6}\right)=0$ is an algebraic equation of degree 24 . In principle It would be possible to split off an unwanted factor of degree 8 to get the minimum equation $f_{\text {III }}\left(x_{2}, x_{6}\right)=0$.

Fig. 6

Numerical results

In Fig. 6 numerical results are given for che second basic 7R mechanism. The equations (22), (31) and (44) or (35) do not differentiatel between the types of that mechanism, but every graph consists of two closed loops corresponding to the two types. In the algebraic form all the input-output equations are of degree 16 but there are for a given input angular displacement σ_{1} at most six real corresponding output angular displacements. All graphs are not only symmetric in their variables σ_{1} and σ_{∞} but also skewsymmetric, i.e., the relations $f\left(\sigma_{1}, \sigma_{\alpha}\right) f\left(-\sigma_{\alpha},-\sigma_{1}\right)=f\left(-\sigma_{1},-\sigma_{\alpha}\right)=0$ hold. The skew symmetry is a consequence of the fact that the exchanges $x_{\alpha} \rightarrow-x_{\alpha} \ldots \alpha=1,2,6,7$ do not affect the equations $H_{\alpha}=0 \ldots \alpha=1(1) 4$.

Acknowledgement

I want to express my thanks, first to the staff of the EDV-center at the university of Graz for placing at our disposal the newest version of the symbolis computation software Reduce, and the to DI. P. Dietmeier and Dr H. Steffan for their assistence at the execution of cumbersome numerocal calculations.

REFERENCES

[1] J. DUFFY, S. DERAY: (1979). Displacement analysis of the spatial 7R mechanism - A generalized Lobster's arm. Journal of Mechanical Design, 101, (April) Trans. of the ASME, 224-231.
[2] J. DUFFY, C. CRANE: (1980). A displacement analysis of the general spatial 7R mechanism. Mechanism and Machine Theory, 15, 153-169.
[3] Van der B.L. WAERDEN: (1971). Algebra I, Springer Verlag.
[4] K. WOHLHART: (1983). Die homogene orthogonale und nicht versetzte 2wanglaufkette 7 R und ihr Spiegelbild. Proceedings of the Sixth Conqress on Theory of Mach. and Mech. New Delhi, Vol. I 272-276.
[5] K. WOHLHART: (1985). Displacement analysis of a basic 7R space mechanism. Proceedings of the 4 th. Int. Symposium on Linkages and Computer Aided Desiqn Methods, Bukarest, Vol. II-2, 421-428.

DRUGI PODSTAWOWY MECHANIZM 7R

Streszczenie

Sa 2 rodzaje "podstawowego" przestrzennego mechanizmu 7R. Pierwszy z nich omowiony był w poprzednich 2 artykułach, a dla drugiego przeprowadzona jest analiza przemieszczenia algebraiczrego.

BTOPOU OCEOBEOQ 7R MEXAHYSM
peswye

Сумествувт два вада "основного" пространственного механизма 7R. Первый был обсухдеу с предндудих двух статьлх, а для второго проводится адализ алгебраичесного деремеденид.

Recenzent: Prof. 2w. dr inz. Adam Morecki

Wpłyneło do redakcji $10 . X I .1986 \mathrm{r}$.

