Seria: MECHANIKA z. 86

Nr kol. 1012

XI OGÓLNOPOLSKA KONFERENCJA TE JRH MASZYN I MECHANIZMÓW

11th POLISH CONFERENCE ON THE THEORY OF MACHINES AND MECHANISMS

27-30. 04. 1987 ZAKOPANE

K. WOHLHART

Institut für Mechanik, Technische Universität Graz, Österreich

THE SECOND BASIC 7R MECHANISM

Abstract. There are two kinds of homogenous, orthogonal, singleof-freedom linkages with seven binary links, connected by seven turning pairs, which rightly can be designated as "basic" spatial 7R mechanisms. The first, characterized by the system parameter structure: $a_1 = 1$, $s_1 = 0$, $\alpha_1 = 90^{\circ}$ i = 1(1) 7, has been investigated in two previous papers [4, 5], and the second basic 7R mechanism, with the parameter structure: $a_1 = 0$, $s_1 = 1$, $\alpha_1 = 90^{\circ}$ i = 1(1) 7, is the subject of the present. For this second 7R mechanism - in some sense dual to the first - an algebraic displacement analysis is carried out, leading to input-output equations of degree 16 in the tan - half - angle of the input - and the output angular displacements. Extraneous roots in the algebraic input-output equations only could not be avoided in the case where the input angular displacements 6_i are related to the output angular displacements 6_{i+3} (or 6_{i+4}). This simply because in this case we were not able to expand the corresponding determinant (and then to split off the unwanted factor) with the devices at our diposition.

Therefore in this case the input-output equation has been given in the form of a 16 x 16 determinant equated to zero, leading to an algebraic equation of degree 24 (instead of 16).

Introduction

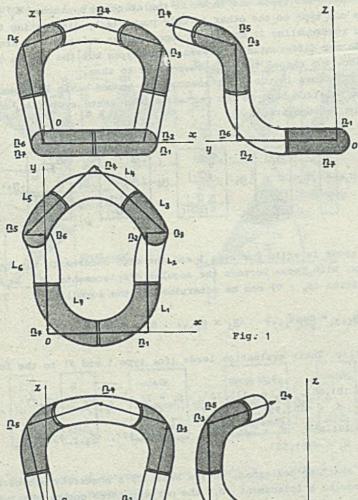
The input-output equation for the general single loop, single-degree-offreedom, spatial 7R mechanism has been given by J. Duffy and C. Crane in 1980 [1]. It relates the input angular displacements δ_1 to the output angular displacement δ_7 and is presented in the form of a 16 x 16 determinant equated to zero, actually yielding an algebraic equation of degree 32 in tan $(\delta_1/2)$ and in tan $(\delta_7/2)$. The present paper should be understood primarily as a contribution to the exploration of the limits of the long sought - for general solution of Duffy and Crane.

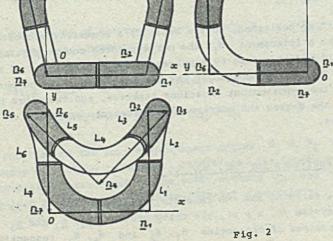
This exploration seems to be necessary because, though the solution is general, problems arise for special system parameters of the 7R mechanism. As the rank of the matrix, corresponding to the 16 x 16 determinant depends on the system parameters, it might happen that for special sets of parameters the determinant vanishes identically, making it impossible to determine the output angular displacements corresponding to a chosen input angular displacement by a numerical roots-finding procedure. Exactly this now occurs if one tries to analyse one of the two "basic" 7R mechanisms which can be characterized by their parameter structures: a, = 1, s, = 0, α_i = 90° and a_i = 0, s_i = 1, α_i = 90°, respectively (a, stands for the normal distance, s_i for the offset and α_i for the twistangle of the revolute axes on the link with the index i-1), on the basis of the general solution. Therefore in these cases an other set of initial equations has to be found, leading to a workable Euler-Sylvester-determinant. For the first basic 7R mechanism in [4] a solution (based on six initial equations instead of four) has been presented in the form of a 12 x 12 determinant equated to zero and leading to an algebraic equation of degree 16, and finally in [5] the algebraic input-output equation with the minimum degree (four) could be established for this mechanism. In 1979 J. Duffy and S. Derby lublished a paper [2] in which they treated the generalized lobster-arm, a 7R mechanism which has consecutive joint axes intersecting (with the exception of the first and the last). The second basic 7R mechanism which we are going to treat here is a special lobster-arm mechanism. The reason for taking up once again the same problem even in a specific form is twofold. First, we intend to find all possible input-output equations whatever angular displacement will be chosen as input - or as output angular displacement, and then we wish to show that a "modified fourth Duffy-equation" can be found and used to determine all possible inputoutput equations by equating corresponding 16 x 16 determinants to zero. The regular "fourth Duffy-equation" (equation 14 in [1]) yields 0 = 0 for the special set of system parameters of the second basic 7R mechanism.

The starting position

The second basic 7R mechanism is a homogeneous, orthogonal space mechanism with consecutive joint axes intersecting. The parameter structure of this mechanism is given by:

$$a_1 = 0$$
, $s_1 = 1$, $\alpha_1 = 90^\circ$ $i = 1(1)7$





We have to distinguish between two types of this mechanism. In Fig. 1 and Fig. 2 these two types are shown in the starting position $6_1 = 0$. To change from one type to the other is only possible by dismounting the mechanism and reassembling it anew. The input-output relations we are going to derive do not differentiate between these types but the graphs of these relations show two closed loops corresponding to them.

The unity vectors in the joint axes of the second basic 7R mechanism in the starting position have in the cartesian coordinate system (0, x y z) the following decompositions:

$$\underline{\Pi}_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \underline{\Pi}_{2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \underline{\Pi}_{3} = \begin{bmatrix} \frac{12}{2} \\ 0 \\ \frac{1212+1}{2} \end{bmatrix}, \underline{\Pi}_{4} = \begin{bmatrix} -\frac{12}{2} \\ -\frac{12}{2} \\ -\frac{2(2-1)}{17^{2}} \\ -\frac{12}{2} \frac{12-1}{17^{2}} \end{bmatrix}, \underline{\Pi}_{5} = \begin{bmatrix} -\frac{12}{2} \\ -\frac{12}{2} \\ -\frac{12}{2} \frac{12-1}{17^{2}} \\ -\frac{12}{2} \frac{12-1}{12^{2}(2+1)} \end{bmatrix}, \underline{\Pi}_{6} = \begin{bmatrix} 0 \\ 0 \\ -\frac{1212+1}{2} \\ 0 \end{bmatrix}$$

The sign above is valid for type 1 and the sign underneath for type 2 of the mechanism. With these vectors the angular displacements θ_i at the starting position ($\theta_i = 0$) can be determined by the formulas:

$$\underline{\mathbf{n}}_{i} \cdot \underline{\mathbf{n}}_{i+2} = \cos \mathbf{G}_{i+1}, \quad (\underline{\mathbf{n}}_{i} \times \underline{\mathbf{n}}_{i+1}) \cdot \mathbf{n}_{i+2} = \sin \mathbf{G}_{i+1}$$
(2)

i = 1(1)7 cyclic. Their evaluation leads (for type 1 and 2) to the following results:

 $d_1 = 0, \quad d_2 = 101,05^\circ, \quad d_3 = -133,72^\circ, \quad d_4 = 72,97^\circ, \quad d_5 = -72,97^\circ, \\ d_6 = 133,72^\circ, \quad d_7 = -101,95^\circ, \\ d_1 = 0, \quad d_2 = 101,95^\circ, \quad d_3 = -46,28^\circ, \quad d_4 = -72,97^\circ, \quad d_5 = 72,97^\circ, \\ d_6 = 46,28^\circ, \quad d_7 = -101,95^\circ.$

With these starting positions, on the basis of a numerical procedure to every input angular displacement G_1 the corresponding output angular displacements could be determined by simultaneously solving a set of nonlinear equations. This way we would get the graphs of all input-output relations but not the input-output equations itselves, and therefore no information about the degree the corresponding algebraic equations in the tan - half - angles.

Three "fit-in" equations for 61, 62, 66, 67

If the link L_7 , carrying the two revolute joints R_7 and R_1 , is fixed in the coordinate system (0, x y z), the unity vectors \underline{n}_2 , \underline{n}_3 and \underline{n}_5 , \underline{n}_6 can be given as functions of the angles 6_1 , 6_2 and 6_5 , 6_7 respectively.

From Fig. 3 and Fig. 4 we immediately read off the representations of the unity vectors $\underline{n}_1 \ \underline{n}_2 \ \underline{n}_3$, $\underline{n}_5 \ \underline{n}_6 \ \underline{n}_7$ in the coordinate system (0, x y z):

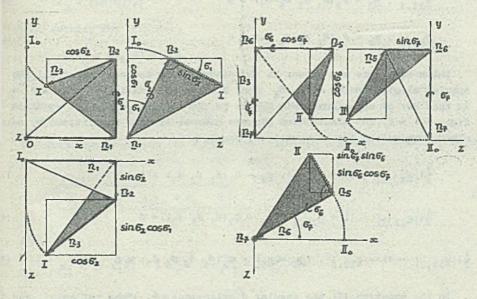


Fig. 3

Fig. 4

	1		0		- 005 62	A Nucl	sines sines	-	-00567	-	0	
<u>n</u> 1#	0	, <u>n</u> 2=	cos5,	• <u>P</u> 3 =	- รากธีรรากอี	.ns=	605 6g	<u>n</u> 6=	0	, <u>n</u> =	-1	
	1		sin 61		sin 52 0055		sin 6 cos 67	2. A.L.	sing		0	

The difference of the position - vectors $x_{II} = -(\underline{n}_5 + \underline{n}_6 + \underline{n}_7)$ and $\underline{x}_I = \underline{n}_1 + \underline{n}_2 + \underline{n}_3$ namely:

$$\underline{x}_{II,I} = \underline{x}_{II} - x_{I} = -[\underline{n}_{1} + \underline{n}_{2}(\vec{e}_{1}) + \underline{n}_{3}(\vec{e}_{1}, \vec{e}_{2}) + \underline{n}_{5}(\vec{e}_{6}, \vec{e}_{7}) + \underline{n}_{6}(\vec{e}_{7}) + \underline{n}_{7}] = \underline{n}_{4}$$
(3)

is a function of the four displacement angles \mathfrak{G}_1 \mathfrak{G}_2 \mathfrak{G}_6 and \mathfrak{G}_7 and has to comply with three geometrical conditions: Its length must be equal to 1 and it must be orthogonal to the unity vectors \underline{n}_3 and \underline{n}_5 . These conditions lead to the following three "fit-in" - equations:

$$\frac{1}{2}(|\underline{x}_{II,I}| - 1) = F_1(\vec{b}_1 \cdot \vec{b}_2 \cdot \vec{b}_6 \cdot \vec{b}_7) = 0$$

$$\underline{x}_{II,I} \cdot \underline{n}_3 = F_2(\vec{b}_1 \cdot \vec{b}_2 \cdot \vec{b}_6 \cdot \vec{b}_7) = 0$$

$$\underline{x}_{II,I} \cdot \underline{n}_5 = F_3(\vec{b}_1 \cdot \vec{b}_2 \cdot \vec{b}_6 \cdot \vec{b}_7) = 0$$
(6)

These equations are linear in the sines and in the cosines of all the angular displacements $\mathfrak{G}_1 \ \mathfrak{G}_2 \ \mathfrak{G}_6$ and \mathfrak{G}_7 . The elimination of \mathfrak{G}_2 and \mathfrak{G}_6 in this set of equations would result in the first input-output equation $f(\mathfrak{G}_1, \mathfrak{G}_7) = 0$. The elimination process however is much facilitated by using other, equivalent set of equations, namely:

$$\frac{1}{2}(|\underline{x}_{II,I}| - 1) + \underline{x}_{II,I} \cdot \underline{n}_3 = G_1(G_1 \ G_2 \ G_7) = 0$$
(7)

$$\frac{1}{2}(|\underline{x}_{II,I}| - 1) + \underline{x}_{II,I} \cdot \underline{n}_5 = G_2(G_1 + G_6 + G_7) = 0$$
(8)

$$\frac{1}{2}(|\underline{x}_{II,I}| - 1) + \underline{x}_{II,I} - (\underline{n}_3 + \underline{n}_5) = G_3(G_1 + G_2 + G_6 + G_7) = 0$$
(9)

In the equation (7) the angular displacement 6_6 does not enter, and in equation (8) on the other hand 6_2 is not present. The equations (7, 8, 9) written in full length read:

$$G_1 := (\frac{3}{2} - \cos \theta_1 - \cos \theta_7 + \sin \theta_1 \sin \theta_7) +$$

+ $\sin \theta_2 (\sin \theta_1 + \cos \theta_1 \sin \theta_7) + \cos \theta_2 (\cos \theta_7 - 1) = 0$,

$$c_2 := (\frac{3}{2} - \cos 6_2 - \cos 6_3 + \sin 6_2 \sin 6_1) +$$

+ $sin6_{6}(sin6_{7} + cos6_{7}sin6_{1}) + cos6_{6}(cos6_{1} - 1) = 0$,

$$G_3 := (\frac{1}{2} - \cos \theta_1 - \cos \theta_2 + \sin \theta_1 \sin \theta_2)$$

+ $\sin \theta_2 (\sin \theta_1 \cos \theta_6 - \cos \theta_1 \cos \theta_7 \sin \theta_6) + \cos \theta_2 \sin \theta_6 \sin \theta_7 = 0.$

The elimination of the angular displacements \mathfrak{G}_2 and \mathfrak{G}_6 from this set of equations gives not only the relation between the angular displacements \mathfrak{G}_1 and \mathfrak{G}_7 but, by cyclic exchangements also the equations relating any two neighbouring angular displacements (\mathfrak{G}_i and \mathfrak{G}_{i+1} ; i = 1(1)7). This is a consequence of the fact that we are analysing a closed, homogeneous kinematical chain. Introducing now new wariables $x_{\alpha'}$ connected with the angular displacements δ_{α} by

$$x_{cc} = \tan(6_{cc}/2)$$

i.e. setting for

$$\sin 6_{c} = 2x_{c}/(1 + x_{c}^{2})$$

and for

$$\cos \theta_{cc} = (1 - x_{cc}^2) / (1 + x_{cc}^2)$$
 oc = 1,2,5,6

converts the equations (7, 8, 9) into algebraic equations. This way we get then the following new set of equations:

$$H_1 = a_2 x_2^2 + a_1 x_2 + a_0 = 0$$
(11)

with

$$a_{2} = 11 x_{1}^{2}x_{7}^{2} + 3 x_{1}^{2} + 8 x_{1}x_{7} + 7 x_{7}^{2} - 1$$

$$a_{1} = 8(-x_{1}^{2}x_{7} + x_{7}^{2}x_{1} + x_{1} + x_{7})$$

$$a_{0} = 3 x_{1}^{2}x_{7}^{2} + 3 x_{1}^{2} + 8 x_{1}x_{7} - x_{7}^{2} - 1$$

and

$$H_2 = b_2 x_6^2 + b_1 x_6 + b_0 = 0$$

wigh

$$b_{2} = 11 x_{1}^{2} x_{7}^{2} + 7 x_{1}^{2} + 8 x_{1} x_{7} + 3 x_{7}^{2} - 1$$

$$b_{1} = 8 (x_{1}^{2} x_{7} - x_{1} x_{7}^{2} + x_{1} + x_{7})$$

$$b_{0} = 3 x_{1}^{2} x_{7}^{2} - x_{1}^{2} + 8 x_{1} x_{7} + 3 x_{7}^{2} - 1$$

and finally

$$H_3 = c_2 x_2^2 + c_1 x_2 + c_0 = 0$$

(10)

(12)

(13)

with

$$c_2 = c_{22}x_6^2 + c_{21}x_6 + c_{20}$$

where

$$c_{22} = 5 x_1^2 x_7^2 + x_1^2 + 8 x_1 x_7 + x_7^2 - 3$$

$$c_{21} = -8 x_7 (1 + x_1^2)$$

$$c_{20} = 5 x_1^2 x_7^2 + x_1^2 + 8 x_1 x_7 + x_7^2 - 3 = c_{22}$$

$$c_1 = c_{12} x_6^2 + c_{11} x_6 + c_{10}$$

$$c_{12} = 8 x_1 (1 + x_7^2)$$

$$c_{11} = 8 (-x_1^2 x_7^2 + x_1^2 + x_7^2 - 1)$$

$$c_{10} = 8 x_1 (1 + x_7^2) = c_{12}$$

$$c_0 = c_{02} x_6^2 + c_{01} x_6 + c_{\infty}$$

$$c_{02} = 5 x_1^2 x_7^2 + x_1^2 + 8 x_1 x_7 + x_7^2 - 3 = c_{22} = c_{20}$$

$$c_{01} = 8 x_7 (1 + x_1^2) = -c_{21}$$

$$c_{00} = 5 x_1^2 x_7^2 + x_1^2 + 8 x_1 x_7 + x_7^2 - 3 = c_{22} = c_{02} = c_{20}$$

The input-output equations

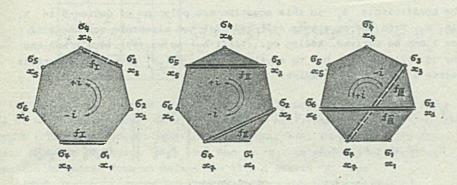
The mechanism we are investigating is a homogeneous one, i.e., identical links are connected by identical joint and thus forming a single loop. For such a mechanism there exist only three essentially different (algebraic) input-output equations, namely:

$$f_{II}(x_{i}, x_{i+1}) = 0$$

$$f_{II}(x_{i}, x_{i+2}) = 0$$

$$f_{III}(x_{i}, x_{i+3}) = 0$$
 i = 1(1)7 cyclic

In addition, these equations are symmetric in their variables; the direction of the cyclic exchangement of the index i does not effect the result (Fig. 5):



Pig. 5

$$f_{I}(x_{i}, x_{i+1}) = 0 = f_{I}(x_{i+1}, x_{i})$$
$$f_{II}(x_{i}, x_{i+1}) = 0 = f_{II}(x_{i+2}, x_{i})$$

$$f_{III}(x_i, x_{i+3}) = 0^- = f_{III}(x_{i+3}, x_i)$$

The first input-output equation $f_T(x_i, x_{i+1}) = 0$

To find the first input-output equation we eliminate (in two steps) from the equations (11, 12, 13) the variables 6_2 and 6_6 with the Euler-Sylvester resultant method [3].

Adding eq. (11).(- c_2) to eq.(13).(a_2) and then adding eq.(11).-($c_2x_2+c_1$) to eq.(13).($a_2x_2 + a_1$) gives two equations, linear in x_2 . The elimination of x_2 from these equations results in an algebraic equation of degree 4 in x_6 . In formulas:

$$H_{1} = a_{2}x_{2}^{2} + a_{1}x_{2} + a_{0} = 0 \qquad -c_{2} \qquad -(c_{2}x_{2} + c_{1})$$

$$H_{3} = c_{2}x_{2}^{2} + c_{1}x_{2} + c_{0} = 0 \qquad a_{2} \qquad (a_{2}x_{2} + a_{1})$$

$$\implies \begin{vmatrix} a_{2}a_{1} \\ c_{2}c_{1} \end{vmatrix} x_{2} + \begin{vmatrix} a_{2}a_{0} \\ c_{2}c_{0} \end{vmatrix} = 0 \qquad -\begin{vmatrix} a_{2}a_{0} \\ c_{2}c_{0} \end{vmatrix}$$

$$\begin{vmatrix} a_{2}a_{0} \\ c_{2}c_{0} \end{vmatrix}$$

$$x_{2} + \begin{vmatrix} a_{1}a_{0} \\ c_{1}c_{0} \end{vmatrix} = 0 \qquad \begin{vmatrix} a_{2}a_{1} \\ c_{2}c_{1} \end{vmatrix} \Rightarrow$$

K. Wohlhart

$$\mathbf{K} = \begin{vmatrix} \mathbf{a}_{2}\mathbf{a}_{1} \\ \mathbf{c}_{2}\mathbf{c}_{1} \end{vmatrix} \begin{vmatrix} \mathbf{a}_{1}\mathbf{a}_{0} \\ \mathbf{c}_{1}\mathbf{c}_{1} \end{vmatrix} - \begin{vmatrix} \mathbf{a}_{2}\mathbf{a}_{0} \\ \mathbf{c}_{2}\mathbf{c}_{0} \end{vmatrix}^{2} = \mathbf{d}_{4}\mathbf{x}_{6}^{4} + \mathbf{d}_{3}\mathbf{x}_{6}^{3} + \mathbf{d}_{2}\mathbf{x}_{6}^{2} + \mathbf{d}_{1}\mathbf{x}_{6} + \mathbf{d}_{0} = 0$$
(14)

The coefficients d_1 in this equation are polynoms of degree 8 in x_1 and in x_7 . From the equations (12) and (14) two algebraic equations of degree 3 can be derived. Adding eq. (14).($-b_2$) to eq.(12).($d_2x_6^2$) and the adding eq.(14).-($b_2x_6 + b_1$) to eq.(12).($d_4x_6 + d_3$). x_6^2 gives two equations of degree 3 in x_6 . In formulas:

$$K = d_{4}x_{6}^{4} + d_{3}x_{6}^{3} + d_{2}x_{6}^{2} + d_{1}x_{6} + d_{0} = 0 \qquad -b_{2}$$

$$H_{2} = b_{2}x_{6}^{2} + b_{1}x_{6} + b_{0} = 0 \qquad f_{4}x_{6}^{2}$$

$$H_{2} = b_{2}x_{6}^{2} + b_{1}x_{6} + b_{0} = 0 \qquad f_{4}x_{6}^{2}$$

$$H_{2} = b_{2}x_{6}^{2} + b_{1}x_{6} + b_{0} = 0 \qquad -b_{2} \qquad -(b_{2}x_{6} + b_{1}) \qquad (d_{4}x_{6}^{3} + d_{3}x_{6}^{2})$$

$$H_{2} = b_{2}x_{6}^{2} + b_{1}x_{6} + b_{0} \qquad -(b_{2}x_{6} + b_{1}) \qquad (d_{4}x_{6}^{3} + d_{3}x_{6}^{2})$$

$$H_{2} = b_{2}x_{6}^{2} + b_{1}x_{6} + b_{0} \qquad -(b_{2}x_{6} + b_{1}) \qquad (d_{4}x_{6}^{3} + d_{3}x_{6}^{2})$$

and

$$\begin{vmatrix} d_{4}d_{2} \\ b_{2}b_{0} \end{vmatrix} x_{6}^{3} + \left(\begin{vmatrix} d_{4}d_{1} \\ b_{2}\Theta \end{vmatrix} + \begin{vmatrix} d_{3}d_{2} \\ b_{1}b_{0} \end{vmatrix} x_{6}^{2} + \left(\begin{vmatrix} d_{4}d_{0} \\ b_{2}\Theta \end{vmatrix} + \begin{vmatrix} d_{3}d_{1} \\ b_{1}\Theta \end{vmatrix} \right) x_{6}^{-d}b_{1} = 0$$

or

$$e_3 x_6^3 + e_2 x_6^2 + e_1 x_6 + e_0 = 0$$
 (15)

and

$$f_3 x_6^3 + f_2 x_6^2 + f_1 x_6 + f_0 = 0.$$
 (16)

The coefficients e_{α} and $f_{\alpha} \propto = 0-3$ are polynoms of degree 10 in x_1 and in x_7 . These two equations, together with equation (12) multiplied by x_6 and the equation (12) itself can be written in the form of a homogeneous matrix equation:

e,	e2	e,	e.	74	0	1
33	f2	£1	E.	24	0	1
32	3,	be	0	×	D	1
0	62	21	30	1	0	

(17)

The second basic 7R mechanism

ß

As a trivial solution of this equation has to be excluded, the determinant of the coefficient matrix must vanish:

det	e3	e2	e ₁	eo	= 0 = $(1+x_1^2)^4$, $(1+x_7^2)^4$, $f_1(x_1, x_7)$
	f3	f ₂	Ŧ ₁	fo	2.4 2.4
	b ₂	^b 1	b _o	0	$= 0 = (1+x_1)^{-1} \cdot (1+x_7)^{-1} \cdot f_1(x_1,x_7)$
	0	b2	^b 1	bo	

The determinant equated to zero gibes an algebraic equation (of degree 24) of which two factors, $(1+x_1^2)^4$ and $(1 + x_7^2)^4$, can be splitted off. The sought - for input-output equation $f_1(x_1, x_7) = 0$ is therefore an algebraic equation of degree 16 in x_1 and in x_7 . In oder to write this equation in matrix form we define the 17 x 1 matrix \underline{X}_1 by:

$$\underline{\mathbf{X}}_{\mathbf{i}}^{\mathrm{T}} = \begin{bmatrix} \mathbf{x}_{\mathbf{i}}^{16} & \mathbf{x}_{\mathbf{i}}^{15} & \mathbf{x}_{\mathbf{i}}^{14} & \mathbf{x}_{\mathbf{i}}^{13} & \mathbf{x}_{\mathbf{i}}^{12} & \mathbf{x}_{\mathbf{i}}^{11} & \mathbf{x}_{\mathbf{i}}^{10} & \mathbf{x}_{\mathbf{i}}^{9} & \mathbf{x}_{\mathbf{i}}^{8} & \mathbf{x}_{\mathbf{i}}^{7} & \mathbf{x}_{\mathbf{i}}^{6} & \mathbf{x}_{\mathbf{i}}^{5} & \mathbf{x}_{\mathbf{i}}^{4} & \mathbf{x}_{\mathbf{i}}^{3} & \mathbf{x}_{\mathbf{i}}^{2} & \mathbf{x}_{\mathbf{i}}^{1} & \mathbf{1} \end{bmatrix}$$
(19)

and the 17 x 17 matrix \underline{A} , which is symmetric, and has a chess-board structure i.e.:

$$-A_{\alpha\beta} = A_{\beta\alpha} = \begin{cases} 0 & \text{if } \alpha + \beta \text{ is an odd number} \\ 10 & \text{if } \alpha + \beta \text{ is an even number} \end{cases}$$
(20)

this means that only 81 of the 289 elements of A do not vanish. These elements can be written down in the following condensed form:

$$A_{\alpha\beta} : \alpha = 1(2) 17 \land \beta = \alpha(2) \begin{cases} 17 & \text{if } \alpha \text{ is odd} \\ 16 & \text{if } \alpha \text{ is even} \end{cases}$$
(21)

With these two matrices the first input-output equation can be written in the form:

$$f_{T}(x_{i}, x_{i+1}) = \frac{X_{i}^{T} \lambda X_{i+1}}{2} = 0$$
(22)

The second input-output equation $f_{II}(x_1, x_{1+2}) = 0$

The elimination of the variables x_2 and x_7 from the set of equations (11, 12, 13) leads to a relation between x_1 and x_6 , and there with all the other input-output equations $f_{II}(x_i, x_{i+2}) = 0$ are determined. Of course, if we are only interested in numerical results, with the known relation between x_1 and x_7 we could determine the variable x_6 corresponding to any pair of the variables x_1 and x_7 . As the coefficient determinant (equation 18) vanishes we could solve eq.(17) for x_6 :

$$\tan(6_{6}/2) = x_{6}(x_{1}, x_{7}(x_{1})) = \det \begin{bmatrix} e_{3} & e_{2} & -e_{0} \\ f_{3} & f_{2} & -f_{0} \\ b_{2} & b_{1} & 0 \end{bmatrix}; \det \begin{bmatrix} e_{3} & e_{2} & e_{1} \\ f_{3} & f_{2} & f_{1} \\ b_{2} & b_{1} & b_{0} \end{bmatrix}$$

But now to find the immediate relation between x_6 and x_1 , we shall start again with the fundamental "fit-in" equations (11, 12, 13). These equations can be rewritten as algebraic equations of Legree 2 in x_7 :

$$H_1 = A_2 x_7^2 + A_1 x_7 + A_0 = 0$$

with

$$A_{2} = 11 x_{1}^{2}x_{2}^{2} + 3 x_{1}^{2} + 8 x_{1}x_{2} + 7 x_{2}^{2} - 1$$

$$A_{1} = 8(-x_{1}^{2}x_{2} + x_{2}^{2}x_{1} + x_{1} + x_{2})$$

$$A_{0} = 3 x_{1}^{2}x_{2}^{2} + 3 x_{1}^{2} + 8 x_{1}x_{2} - x_{2}^{2} - 1$$

(23)

(24)

he second basic 7R mechanism

ind

$$H_2 = B_2 x_7^2 + B_1 x_7 + B_0 = 0$$

with

$$B_{2} = 11 x_{1}^{2} x_{6}^{2} + 3 x_{6}^{2} - 8 x_{1} x_{6} + 3 x_{1}^{2} + 3 x_{1}$$

and finally

$$H_3 = C_2 x_7^2 + C_1 x_7 + C_0 = 0$$

with

$$c_2 = c_{22}x_2^2 + c_{21}x_2 + c_{20}$$

where

$$c_{22} = (5 x_1^2 + 1) (x_6^2 + 1)$$

$$c_{21} = 8 \left[-x_1 x_6^2 + (1 - x_1^2) x_6 + x_1 \right]$$

$$c_{20} = (5 x_1^2 + 1) (x_6^2 + 1) = c_{22}$$

$$c_1 = c_{12} x_2^2 + c_{11} x_2 + c_{10}$$

$$c_{12} = 8 \left[x_1 x_6^2 - (1 + x_1^2) x_6 + x_1 \right]$$

$$c_{11} = 0$$

$$c_{10} = 8 \left[x_1 x_6^2 + (1 + x_1^2) x_6 + x_1 \right]$$

411

(25)

(26)

$$c_{0} = c_{02}x_{2}^{2} + c_{01}x_{2} + c_{00}$$

$$c_{02} = (x_{1}^{2} - 3)(x_{6}^{2} + 1)$$

$$c_{01} = 8 \left[-x_{1}x_{6}^{2} - (1 - x_{1}^{2})x_{6} + x_{1} \right] = c_{21}$$

$$c_{00} = (x_{1}^{2} - 3)(x_{6}^{2} + 1) = c_{02}$$

The elimination of the variable x_7 first from the equations (24) and (25) and then from the equations (25) and (26) gives two algebraic equations of degree 4 in x_2 . The elimination process is the same as that leading to equation (14). These two equations read

$$L = D_4 x_2^4 + D_3 x_2^3 + D_2 x_2^2 + D_1 x_2 + D_0 = 0$$
⁽²⁷⁾

$$M = E_4 x_2^4 + E_3 x_2^3 + E_2 x_2^2 + E_1 x_2 + E_0 = 0$$
(28)

where in the coefficients D_i are polynoms in the variables x_1 and x_6 of degree 8 and 4, respectively, and the coefficients E_i are polynoms in x_1 and x_6 of degree 8. From them we can derive four algebraic equations of degree 3 in x_2 :

$$L = 0 \qquad -E_{4} \qquad -(E_{4}x_{2}+E_{3}) \qquad -(E_{4}x_{2}^{2}+E_{3}x_{2}+E_{2}) \qquad -(E_{4}x_{2}^{3}+E_{3}x_{2}^{2}+E_{2}x_{2}+E_{1})
M = 0 \qquad D_{4} \qquad (D_{4}x_{2}+D_{3}) \qquad -(E_{4}x_{2}^{2}+E_{3}x_{2}+E_{2}) \qquad -(E_{4}x_{2}^{3}+E_{3}x_{2}^{2}+E_{2}x_{2}+E_{1})
M = 0 \qquad D_{4} \qquad (D_{4}x_{2}+D_{3}) \qquad -(D_{4}x_{2}^{2}+D_{3}x_{2}^{2}+D_{2}x_{2}+D_{1})
M = 0 \qquad M = 0$$

The second basic 7R mechanism

or written in matrix form:

G	K11	K12	K ₁₃	K ₁₄	100	x23	- 19-13-	0
1000	K21	к ₂₂	K ₂₃	K24	10.0	x22	18.18	0
CANSON OF	к ₃₁	K ₃₂	к ₃₃	K34		×2	H .	0
	K47			K44	e.	1	8031X	0

As no trivial solution of this linear homogeneous matrix equation exists (1#01) the determinant of the matrix $K = || K_{i+1} ||$ must vanish:

$$D(x_{1}, x_{6}) = \det ||x_{1j}|| = 0 = factor(x_{1}, x_{6})(1 + x_{1}^{2})^{4}(1 + x_{6}^{2})^{4} \cdot f_{II}(x_{1}x_{6})$$
(30)

The elements of the matrix K are polynoms of degree 14 in x, and in x6. The determinant of K equated to zero therefore will be an algebraic equation of degree 56 in the variables x_1 and x_5 . This means that there is in eq. (30) a big factor containing all unwanted roots! By trying to factorize eq.(30) in a straightforward way, even using the newest version of the symbolic computation software REDUCE, we were not successful. The input-output equation $f_{TT}(x_1,x_6) = 0$ finally could only be found by factorizing the determinant D for a number of specified values of x_{6}

 $D(x_1, x_6 = 0; 1; 2; 3; 1/2; 1/3) = 0,$

and for $x_6 = -x_1$

 $D(x_1, x_6 = x_1) = 0; \quad D(x_1, x_6 = -x_1) = 0$

This way a sufficient number of linear equations for the determination of the 81 coefficients B_{ij} entering $f_{II}(x_1, x_6) = 0$ could be found and solved. Again, with $f_{II}(x_1,x_6) = 0$ every input-output equation of the form $f_{TT}(x_1, x_{1+2}) = 0$ is known.

With the 17 x 1 matrix \underline{X}_{i} of eq.(19) and the 17 x 17 matrix <u>B</u> (eqs. 32, 33) the input-output equation $f_{II}(x_i, x_{i+2}) = 0$ can be written in the form of a matrix equation:

$$E_{II}(x_{i}, x_{i+2}) = \underline{X}_{i}^{T} \underline{B} \underline{X}_{i+2} = 0$$
(31)

in this equation is symmetric and has a chess-board struc-The matrix B ture, i.e.:

413

(29).

$$B_{\alpha\beta} = B_{\beta\alpha} = \begin{cases} 0 & \text{if } \alpha + \beta \text{ is an odd number} \\ \neg 0 & \text{if } \alpha + \beta \text{ is an even number} \end{cases}$$
(32)

Of the 17 17 = 289 elements of <u>B</u> only 81 do not vanish. These elements are given by:

$$B_{\alpha\beta} \alpha = 1(2)17 \wedge \beta = \alpha (2) \begin{cases} 17 \text{ if is odd} \\ 16 \text{ if is even} \end{cases}$$
(33)

3969	18648	12804	3320	646		-88	4	, 8	
10	08 140	016 2	368 -13	8712 -	3440	-3	20	64	16
	60294	-36600	-33134	-15600		480	1048	198	1.576
true :	125	480 52	408 -57	840	5136	49	04 1	144	160
		-180479	52044	-53106	-	1572	5985	872	-1
201	-	-128	664 -149	904 4	9264	243	12 4	328	480
			216518	-72824	1	150	9196	-30	-2
			-83	504 3	8512	191	52 3	248	336
		Free a	1998 15	91720	5	2520	-3506	-4240	-53
				10 01	7088	-74	72 -2	896	-336
				Paide	10	0726	-6724	-2206	-23
					L.	-112	88 -4	232	-480
							-1983	-152	-1
						L	-1	496	-160
								70	a dis
								5	-16
								1	

The third input-output equation $f_{TTT}(x_i, x_{i+3}) = 0$ (unsolved)

To find $f_{III}(x_1, x_{1+3}) = 0$ we would have to eliminate from the equations (24, 25, 26) the variables x_1 and x_7 . The smalest matrix whose determinant equated to zero would give the sought - for equation has a size of 8 x 8 and the element of this matrix are polynoms of degree 12 i x_2 and in x_6 . The elimination of the variable from the pairs of equations $(H_1 = 0, H_2 = 0), (H_1 = 0, H_3 = 0 = \text{ and } (H_2 = 0, H_3 = 0)$ gives three equations of degree 8 (the first and the second is identical with eq. 27 and eq. 28, respectively, rewritten as polynoms in x_1):

$$L = \sum_{0}^{8} L_{\alpha} x_{1}^{\alpha} = 0; \quad M = \sum_{0}^{8} M x_{1}^{\alpha} = 0; \quad N = \sum_{0}^{8} N_{\alpha} x_{1}^{\alpha} = 0$$
(34)

The sceond basic 7R mechanism

The coefficients L_{α} , M_{α} and N_{α} are polynoms of degree (4,4), (8,4) and (4,8) in the variables (x_2, x_6) , respectively. The elimination of the first terms from any pair of these equations can be carried out in seven different ways, therefore we can easely find eight equations of degree 7 in x_1 , necessary to eliminate x_1 by the Euler-Sylvester method. This method leads to:

$$F_{III}(x, x_6) = \det \|P_{ij}\|_{8\times 8} = 0 = factor(x_2, x_6) \cdot f_{III}(x_2, x_6)$$
(35)

It was to expect that the evaluation of the determinant of the 8 x 8 matrix <u>P</u> (whose elements are polynoms of degree 12 in x_2 and in x_6) were not feasible. Even for $x_2 = \text{gonstant}$ it was impossible to get a result. So the determination of $f_{III}(x_1, x_{1+3}) = 0$ with the <u>minimum</u> degree (16) remains an unsolved problem, though of course, equation (35) can be used to determine numerically the variablex x_6 corresponding to any chosen input variable x_2 .

The one-step elimination procedure

Thus far we have only used the three fit - in equations in the elimination procedures. Since J. Duffy and C. Crane have published their paper [2] it is well known that there exist a fourth equation of the same type as the fit - in equations. With the aid of this fourth equation Duffy and Crane were able to find the input-output equation for the general 7R mechanism. As has been stated in the introduction there are some limits for this general solution. For the parameter structure of our second basic 7R mechanism the fourth Duffy-Crane equation seems not to exist. Equation 14 in [2] turns out to be an empty equation, i.e., it becomes 0 = 0 as the three constants K_1 , K_2 and K_3 all vanish. The general solution of Duffy and Crane therefore must fail.

The search for an other fourth equation which can be substituted for the lacking Duffy-Crane equation has lead to:

$$F_{4}(G_{1}G_{2}G_{6}G_{7}) = F_{2}F_{3} - (\underline{n}_{3}\circ \underline{n}_{5})F_{1} = 0 \Longrightarrow H_{4}(x_{1}x_{2}x_{6}x_{7}) = 0$$
(36)

where for F_1 , F_2 and F_2 is to insert according to the equations (4, 5, 6). The equation (36) is linear in the sines and cosines of the angular displacements \vec{e}_1 , \vec{e}_2 , \vec{e}_6 and \vec{e}_7 . This equation together with the three firin equations enable us to eliminate two of the four variables in one step.

The input-output equation $f_{III}^{\text{R}}(x_{1}, x_{1+3}) = 0$

As the algebraic equations $f_{I}(x_{i}, x_{i+1}) = 0$ and $f_{II}(x_{i}, x_{i+2}) = 0$ have already been found with the minimum degree in their variables, we now focus our attention on the relation between the variables x_{i} and x_{i+3} only. The simultaneous elimination of the variables x_{1} and x_{7} from the four equations $H = 0...\alpha = 1(1)4$ leads to a 16 x 16 determinant equated to zero resulting in an algebraic equation of degree 24 (instead of 16) in the variables x_{2} and x_{6} .

Let us define first a 4 x 9 matrix <u>R</u> with the four row-vectors <u>R</u>₁, <u>R</u>₂, <u>R</u>₃ and <u>R</u>₄ given by:

<u>R</u> 1 =	$3 + 11 = \frac{2}{2}$	Bx2	$-1+7x_{2}^{2}$	-8 oc_2	8(1+322)	8x2	$3(1+z_2^2)$	8x2	$-(1+x_2^2)$
<u>R</u> 2 =	3+11=2	-8x6	$3(1+x_6^2)$	8 = 26	8(1+====================================	825	-1+7x6	8 =	-(1+====================================

- 1		1 -	
3 =	$5 - 8x_2x_6 + 5x_2^2x_6^2 + 5x_2^2 + 5x_6^2$	<u>R</u> # =	$1 - 10 x_2 x_6 + 9 x_2^2 x_6^2 - 3 x_2^2 - 3 x_6^2$
	8 x 2 (1 - x 2)		$4x_6+6x_2-12x_2^2x_6+2x_2x_6^2$
	$1 + 8x_2x_6 + x_2^2x_6^2 + x_2^2 + x_6^2$		$-1+2x_2x_6+3x_2^2x_6^2+3x_2^2-x_6^2$
1	$\beta = x_6(1-x_2^2)$		$4x_2 + 6x_6 - 12x_2x_6^2 + 2x_2^2x_6$
2	$8(1+x_2^2x_6^2+x_2^2+x_6^2)$		16 x2 x6
	$8(1-x_2^2)x_6$	1. 1. 1. 1. 1. 1	$4x_2 - 2x_6 + 4x_2x_6^2 + 10x_2^2x_6$
	$1 + 8x_2x_c + x_2^2x_c^2 + x_2^2 + x_c^2$	(Altern	$-1 + 2x_2x_6 + 3x_2^2x_6^2 - x_2^2 + 3x_6^2$
	$8(1-x_6^2)x_2$	ALL DOLD	$-2x_2+4x_6+10x_2x_6^2+4x_2^2x_6$
	-3-8 x1 x6-3 x2 x6 - 3 x2 - 3 x2		$1 + G x_2 x_6 + x_2^2 x_6^2 + x_6^2 + x_2^2$

and then the vector S:

$$\underline{S}^{T} = \begin{bmatrix} x_{3}^{2} x_{1}^{2} & x_{3}^{2} x_{1} \\ x_{3}^{2} x_{1}^{2} & x_{3}^{2} \end{bmatrix} \begin{bmatrix} x_{3} x_{1}^{2} & x_{3} x_{1}^{2} \\ x_{3} x_{1}^{2} & x_{3} \end{bmatrix} \begin{bmatrix} x_{1} & x_{1} \\ x_{2} \end{bmatrix} \begin{bmatrix} x_{1} & x_{2} \\ x_{3} \end{bmatrix} \begin{bmatrix} x_{2} & x_{3} \\ x_{3} \end{bmatrix} \begin{bmatrix} x_{3} & x_{3} \\ x_{3} \end{bmatrix} \end{bmatrix} \begin{bmatrix} x_{3} & x_{3} \\ x_{3} \end{bmatrix} \begin{bmatrix} x_{3} & x_{3} \\ x$$

With these matrices the four equations (24, 25, 26 and 36) can be written in the form of matrix equations:

 $H_1 = 0 = R_1 S$, $H_2 = 0 = R_2 S$, $H_3 = 0 = R_3 S$, $H_4 = R_4 S = 0$ $R S = 0 \Longrightarrow (39)$

An equivalent linear homogeneous matrix equation with a quadratic matrix can be derived in the following way. Multiplication of the equations H = 0... = 1(1)4 by x_1, x_7 and $x_1 \cdot x_7$ gives 12 additional equations:

e secor	nd h	basi	c 71	R mec	hani	sm			_					
Hat	= (Di	H _a ,	¢ ₁ =	0;	H _c ,	⁴ 7 =	0,	Hoe	×1×7	= (0		
With t	he	aid	of	the	matr	ice	в <u>М</u>	an	a z	đe	fine	ed by	:	
		1		-										
	-	x4x1		27	xp x,	x x	57.2	x7	a5,24	33	ag z	a acq.	=	2
and	AT .		No. of				No.						•	•••
ME						R ₁₁	RIZ	R13		R.74	R15	R16	SA	R
					Rn	R12	RB	1.11	RH	R15	R16	2.5	R17	R
		R11	R12	R13	130	R14	RIS	R16		RIT	Rig	R19	175	1
4	211	Ru	RB	1.5	RH	R15	RK	1	RIF	Rio	R19	303	1734	25

	R11	R12	R13		R14	R13	R16		RIT	Rig	R19	ATE.	Test.	1	105
R11	Ru	Ru	10.00 M	R ₁₄	R15	RK	100	RIT	R18	R19		派	1		
					R ₂₁	R22	R23		Rz4	R25	R ₂₆		R27	R28	R29
	ery.		100	R21	Rz	R23		R24	R25	R26		R ₂₇	R28	R29	
	R21	R22	R23		R24	R25	R26		R27	RZB	R29				2
RZI	R22	R23	100	R ₂₄	RIS	R.26	생사	R27	R28	R19			6-36% 10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		
					RJI	R32	RJJ		R34	R35	R36		Ry	R38	R39
	and the			R31	R32	R33	32	R34	R3S	R36'		R37	R.38	R39	
No.	R ₃₁	R32	R33		R34	R35	R36		Rat	R38	R39	100			
R ₃₁	R32	R33		Rgt	R.35	R35		R37	R38	R39		1530			
					R41	R42	R43		R44	R45	RHS		R47	Rus	R49
	12.4			Ren	R42	R43		R44	R45	R16		R47	R48	R49	0.54
	R41	R42	R43		Ray	R45	R46	12.0	R47	R.48	Rus	and the		1	54.5
R41	R42	R43	100	Re	RAS	Rec	100	R47	R48	R49					

the 16 equations (40) can be written in the form:

$$\underline{M} \underline{Z} = \Theta,$$

and as $Z \neq 0$ the determinant of the 16 x 16 matrix M must vanish

$$\det \underline{M} = 0 = f_{\underline{III}}^{*}(x_6, x_2) \implies f_{\underline{III}}^{*}(x_1, x_{1+3}) = 0$$
(44)

In the first four rows of the matrix <u>M</u> the variable x_6 does not enter and in the following four rows the variable x_2 is absent. The equation $f_{III}^{*}(x_2,x_6) = 0$ is an algebraic equation of degree 24. In principle it would be possible to split off an unwanted factor of degree 8 to get the minimum equation $f_{III}(x_2,x_6) = 0$.

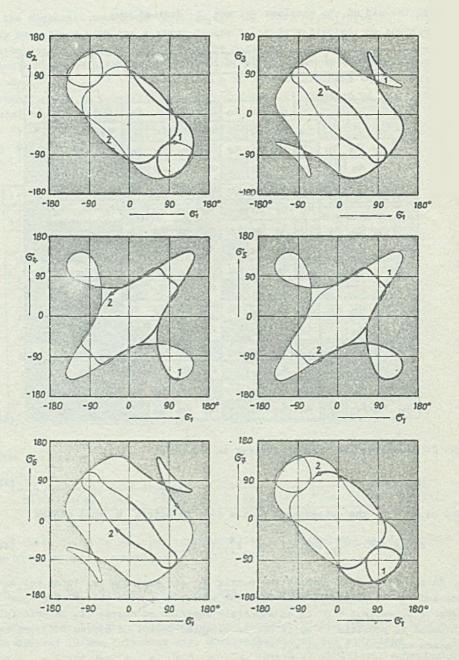
417 (40)

05

R₁₈ R₁₉

(42)

(43)



The second basic 7R mechanism

Numerical results

In Fig. 6 numerical results are given for the second basic 7R mechanism. The equations (22), (31) and (44) or (35) do not differentiate between the types of that mechanism, but every graph consists of two closed loops corresponding to the two types. In the algebraic form all the input-output equations are of degree 16 but there are for a given input angular displacement \mathfrak{G}_1 at most six real corresponding output angular displacements. All graphs are not only symmetric in their variables \mathfrak{G}_1 and \mathfrak{G}_{α} but also skewsymmetric, i.e., the relations $f(\mathfrak{G}_1,\mathfrak{G}_{\alpha})$ $f(-\mathfrak{G}_{\alpha},-\mathfrak{G}_1) = f(-\mathfrak{G}_1,-\mathfrak{G}_{\alpha}) = 0$ hold. The skew symmetry is a consequence of the fact that the exchanges $\mathfrak{x}_{\alpha}^{\ast} - \mathfrak{x}_{\alpha} \dots \mathfrak{C} = 1,2,6,7$ do not affect the equations $\mathfrak{H}_{\alpha} = 0\dots \mathfrak{C} = 1(1)4$.

Acknowledgement

I want to express my thanks, first to the staff of the EDV-center at the university of Graz for placing at our disposal the newest version of the symbolis computation software Reduce, and the to DI. P. Dietmeier and Dr H. Steffan for their assistence at the execution of cumbersome numerocal calculations.

REFERENCES

- J. DUFFY, S. DERBY: (1979). Displacement analysis of the spatial 7R mechanism - A generalized Lobster's arm. Journal of Mechanical Design, 101, (April) Trans. of the ASME, 224-231.
- [2] J. DUFFY, C. CRANE: (1980). A displacement analysis of the general spatial 7R mechanism. Mechanism and Machine Theory, 15, 153-169.
- 3] Van der B.L. WAERDEN: (1971). Algebra I, Springer Verlag.
- [4] K. WOHLHART: (1983). Die homogene orthogonale und nicht versetzte Zwanglaufkette 7R und ihr Spiegelbild. Proceedings of the Sixth Congress on Theory of Mach. and Mech. New Delhi, Vol. I 272-276.
- [5] K. WOHLHART: (1985). Displacement analysis of a basic 7R space mechanism. Proceedings of the 4 th. Int. Symposium on Linkages and Computer Aided Design Methods, Bukarest, Vol. II-2, 421-428.

DRUGI PODSTAWOWY MECHANIZM 7R

Streszczenie

Są 2 rodzaje "podstawowego" przestrzennego mechanizmu 7R. Pierwszy z nich omówiony był w poprzednich 2 artykułach, a dla drugiego przeprowadzona jest analiza przemieszczenia algebraicznego.

ВТОРОЙ ОСНОВНОЙ 7R МЕХАНИЗМ

Резюме

Существуют два вида "основного" пространственного механизма 7R. Первый был обсуждён с предыдущих двух статьях, а для второго проводится анализ алгебранческого перемещения.

Recenzent: Prof. zw. dr inż. Adam Morecki

Wpłyneło do redakcji 10.XI.1986 r.