Seria: MECHANIKA z. 107

Nr kol. 1154

Józef Kapłanek, Gabriel Wróbel Katedra Mechaniki Technicznej Politechnika Śląska

METODA NUMERYCZNEJ SYMULACJI PROCESU SPRĘŻYSTO-PLASTYCZNEJ DEFORMACJI W WARUNKACH DUŻYCH PRZEMIESZCZEŃ

<u>Streszczenie</u> Praca zawiera podstawy teoretyczne metody symulacji numerycznej procesu odkształcenia sprężysto-plastycznego w warunkach dużych przemieszczeń. Posłużono się przykładem próby gięcia kształtownika V36 wykonanego ze stali 15HG2VCu.

Резюме. Работа содержит теоретические основы метода нумерической симуляции процесса упруго-пластической деформации в условиях больших перемещений. Использован пример пробы сгибания сосонного профиля V36, сделанного из стали 15H62VCu.

Summary. The paper contains theoretical elements of the numerical simulation method of the elasto-plastic deformation process with the great displacements on the basis of the V36 section of steel 15H62VCu example.

1. WSTEP

Zadanie symulacji próby gięcia kształtowników stalowych jest złożonym zadaniem mechaniki ośrodka ciągłego. Z uwagi na sposób przeprowadzania próby (niewielkie predkości zmian obciążenia i odkształcenia) można je traktować jako quasi-statyczne i izotermiczne. Lokalne zmiany własności materiałowych tworzywa w zależności od obciażeń wewnetrznych uniemożliwiają stanu Duže deformacje i bezpośrednie wykorzystanie teorii ośrodka sprężystego. przemieszczenia czynią zadanie analizy nieliniowym geometrycznie. Aktualnie dostepne na rvnkach światowych systemy programów numerycznych do zastosowania rozwiązywania tej klasy zadań są kosztowne i wymaga ja profesjonalnego sprzętu komputerowego. W dalszym ciągu przedstawiona

zostanie droga ominięcia tej trudności przy wykorzystaniu powszech_{nię} dostępnego na naszym rynku komputera typu IBM XT oraz oprogramowania met_{Ody} elementów skończonych dla zakresu liniowo-sprężystego modelu.

2. OPIS METODY SYMULACJI

Podstawowe związki mechaniki ośrodka ciągłego, obok równań równowagi oraz ciągłości, to związki fizyczne, charakteryzujące własności materiałowe i strukturalne układu. Wiążą one uogólnione siły lub naprężenia z przemieszczeniami lub deformacjami modelu. Niech związek pomiędzy wybraną siłą uogólnioną M działającą na układ a wybranym przemieszczeniem uogólnionym ø ma postać

$$\mathbf{M} = \mathbf{C}(\boldsymbol{\phi})\boldsymbol{\phi} \tag{1}$$

Jeżeli układ nie jest liniowo-sprężysty, to współczynnik C zależy od przemieszczenia ϕ - zależą od niego własności tworzywa i postać geometryczna układu. Założymy przy tym, że nie ma innych niezależnych od ϕ wielkości wpływających na wartość współczynnika C. Różniczkując równanie (1) otrzymamy

$$dM = Cd\phi + \phi dC \tag{2}$$

a w formie różnicowej

$$\Delta M = C \Delta \phi + \phi \Delta C \tag{2'}$$

lub

$$H_{2} - H_{1} = C(\phi_{1})(\phi_{2} - \phi_{1}) + \phi_{1}[C(\phi_{2}) - C(\phi_{1})].$$
(3)

Wartość współczynnika $C(\phi_1)$ odpowiada lokalnej sztywności układu rozumianej jako stosunek przyrostów ΔM do $\Delta \phi$ dla ustalonych wartości tych wielkości. Znajomość wartości lokalnych sztywności $C(\phi_1)$ pozwoliłaby zatem korzystając z wzoru (3) na przybliżone określenie zależności $M(\phi)$ na podstawie zadanych wartości początkowych tych wielkości M_1 i ϕ_2 . Przyjmując przykładowo stały krok $\Delta \phi$ odpowiadające sobie wartości M_1 i ϕ_2 można wyznaczyć następująco

$$H_{i+1} = H_i + \Delta \phi \{C_i + \frac{\phi_i}{\delta \phi} (C_{i+1} - C_i)\}, \qquad (4)$$

Wyznaczenie wartości lokalnych sztywności $C(\phi_i)$ jest możliwe za pomocą modelu liniowo-sprężystego jeżeli uwzględnia on aktualny rozkład własności materiałowych tworzywa oraz aktualną postać geometryczną, układu. Aktualny rozkład własności materiałowych tworzywa określa się na podstawie

charakterystyki tworzywa oraz stanu naprężenia wynikającego z obciążenia wyznaczonego w poprzedniej iteracji (w pierwszej iteracji przez warunki początkowe – obciążenie M). Aktualna postać geometryczna układu to postać odkształcona wyznaczona w poprzedniej iteracji (w pierwszej iteracji postać początkowa). W celu wyznaczenia wartości lokalnej sztywności $C(\phi_i)$ model taki należy poddać obciążeniu siłą M o dowolnej wartości wyznaczając wartość przemieszczenia ϕ . Jeżeli dane geometryczne i materiałowe modelu odpowiadają i-temu krokowi analizy to wartość lokalnej sztywności wyności wynoś

Rys.1. Model symetrycznej części warstwy poprzecznej kształtownika Fig.1. Model of the transverse layer symmetrical part of the section

3. NUMERYCZNA SYMULACJA PROCESU GIĘCIA KSZTALTOWNIKA

Numeryczna realizacja procesu symulacji próby gięcia kształtowników stalowych została przeprowadzona przy wykorzystaniu sposobu opisanego w poprzednim punkcie. W tym celu przyjęto model numeryczny kształtownika złożony z bryłowych elementów skończonych, możliwie prosty, z uwagi na potrzebę wielokrotnej analizy modelu, pozwalający jednak na skuteczne prowadzenie obliczeń i analityczne uogólnienie wniosków na modele układów stosowanych w warunkach znormalizowanej próby zginania. Pokazany na rys.1. model reprezentuje symetryczną połowę warstwy poprzecznej kształtownika o grubości 10 mm. Przyjęto wymiary przekroju jak dla szyny V36. Założono wynik analizy w postaci zależności kąta względnego obrotu płaskich przekrojów Wyznaczających badaną warstwę w zależności od wartości momentu zginającego

Rys.2. Wykres uzyskanej w wyniku symulacji zależności $M(\phi)$ Fig.2. The diagram $M(\phi)$ as the result of the simulation process

modelowany kształtownik. Jako podstawę procedury analizy założono płaskość powierzchni ograniczających warstwę. Obciążenie w modelu obliczeniowym przyjęto w postaci momentów skupionych w węzłach obrotowej powierzchni warstwy. Traktując moment obciążenia zewnętrznego jako wprowadzoną poprzednim rozdziale siłę uogólnioną M, zaś kąt obrotu przekroju jako przemieszczenie uogólnione ø równania (1) - (4) zachowują swa ważność W opisie modelu oraz procedury symulacji gięcia kształtownika. Wyznaczenie wartości lokalnych sztywności C(ϕ) dokonano za ponoca modelu linlowo-sprężystego uwzględniającego aktualny rozklad własności materiałowych tworzywa określany na podstawie charakterystyki tworzywa zadanej równaniem

$$\sigma = 1060 c^{0.14}$$

(6)

Algorytm postępowania przedstawiono na rys.3.

Rys.3. Algorytm symulacji procesu sprężysto-plastycznej deformacji Fig.3. Algorithm of simulation of the elasto-plastic deformation process

Wyniki przestawiono w postaci wykresu $M(\phi)$ (rys.2). Na rys. 4 pokazano postać odkształconą warstwy analizowanego kształtownika na wybranych etapach symulacji procesu gięcia z zaznaczeniem stopnia uplastycznienia przekroju – zaciemnienie strefy przekroju odpowiada większemu stopniowi uplastycznienia.

Ze względu na postać modelu przyjętą do analizy - warstwa o małej grubości - wyniki symulacji, np. w formie zależności $M(\phi)$, przedstawionej na wykresie z rys.4, stanowią pośredni materiał weryfikacyjny badań doświadczalnych np. w formie zależności momentu gnącego w warunkach znormalizowanej próby gięcia kształtownika od strzałki ugiecia. Charakterystyka lokalna zginania może charaktervstvki odpowiadającej warunkom posłużyć do wvznaczenia znormalizowanym próby. Przykładowo strzałkę ugięcia kształtownika w próbie równomiernego zginania można otrzymać wprost z wykresu na rys. 2 dokonując wymnożenia skali kąta ϕ przez współczynnik $\frac{1}{8\Delta x}$ Wartość momentu gnacego kształtownika odpowiada powodu jacego utrate stateczności padanego maksymalnej wartości momentu w modelu symulacyjnym.

Rys.4. Postać odkształcona badanej warstwy na kolejnych etapach symulacji Fig.4. The deformated forms of analysed layer on succeeding simulation steps

THE METHOD OF THE NUMERICAL SIMULATION OF THE ELASTO-PLASTIC DEFORMATION PROCESS WITH GREAT DISPLACEMENTS

In the paper system described by the relation between the generalized force M and displacement ϕ in the form (1) was taken under consideration. In the aim of simulation of the elasto-plastic deformation process relation (1) in the differential form (4) was presented. The stiffness $C(\phi_i)$ in the formula (4) can be reckoned by means of linear-elastic model with actual material property distribution and geometrical form of the analysed model The actual state is calculated in succeding steps for the given disslocation increment $\Delta \phi$. For example the bending simulation of the V36 section was carried out with help of the model presented on fig.1. - the symmetrical nart of transverse layer (thickness Δx) of the section. Material characteristic given by the equation (6) was assumed. The results of the simulation in the form of diagram $M(\phi)$ are showed in the fig.2. The fig.4 shows the deformated forms of analysed section layer on succeding simulation steps. The local bending characteristics can be experimentally verified -12 the multiplication of angle ϕ scale by leads to easy dependence 8Av verification of deflection arrow of section (length 1) under the load of the uniform bending type.