
zeöYTY hAUKOWE POLITECHNIKI äl^SKIEJ
^¡T^ECHANIKA z. 108

I n t e r n a t i o n a l C o n f e r e n c e o n

COMPUTER INTEGRATED MANUFACTURING
I n t e r n a t i o n a l e K o n f e r e n z ü b e r

RECHNERINTEGRIERTE FERTIGUNGSSYSTEME
Z a k o p a n e , March 24-27 1992

Wojciech CHOLEWA

Chair of Fundamentals of Machine Design
Department of Mechanical Engineering
Silesian Technical University, Gliwice, Poland

a p p l ic a t io n o f f r a m e s in a n e x p e r t s y s t e m s h e l l

Summary. A frame is a flexible representation of statements and rules.
W_SHELL is an expert system shell composed of a frame interpreter and tools
for programmers. The main features of W_SHELL have been presented in this
paper.

1. Introduction

Most expert systems use a knowiedge base. It has been assumed that a knowledge base is
a collection of statements describing relationships between entities of the real world as well
as abstract concepts. Such statements are variously called sentences, clauses, formulas and
most often facts. Of course from the direct use of the notion fact there may result a lot of
misinterpretations, because the particular statements are not independent, real existing facts.
They are only some beiief that something has happened or has been done.

A common way to represent statements is an object-attribute-value triple, used eg. in the
pattern expert system MYCIN [5] dedicated to medical applications. Attributes are general
characteristics of properties possessed by objects. The value specifies the particular nature
of a property in a given situation. Of course, the sets of such triples are flat (they contain no
underlying structure) and the maintenance of great sets is strongly difficult. A dozen of
different idea of structuring the knowledge base has been proposed and implemented. Very

_______ 1992
Nr kol. 1161

- 60 -

important is the idea of frames, tt is an example of object-oriented progi amming, which
makes it possible to generalize, classify and generate abstractions.

2. W_SHELL

W_SHELL [2] runs on the IBM PC family of computers. It is an expert system shell composed
of the production system, frame interpreter, frame editor and debugger. The frame interpreter
of W_SHELL is a processing unit specially designated to handle different types of statement
structures, represented by means of frames. It can also handle so called approximate
statements. USP-like frame description language allows to take into account different kinds
of inheritance of frames.

Menus of W_SHELL contain the following main items:

FRAME EDITOR
Load frames from a text file
Save frames to a text file
Edit a file with frame description
Load from binary file
Save to binary file
View a frame
View an object

UTILITIES
- MEMORY UNITS

Memory description
Unit description

- DICTIONARY
Description of a dictionary unit
Unit description

- COLOURS OF TEXT WINDOWS
- MODIFY COLOURS

Initialize the descriptions of windows
Load the descriptions of windows from a file
Save the descriptions of windows to a file

Load from binary file
Main task (goal)
Memory description
Toggle job log (on/off)
History

- DOS Shell
- Toggle menu off

End (Esc)

- 61 -

3. Frames in W SHELL

The notion of frames was introduced by Minsky [4] (see also [1] and [3]). His basic goal was
concerned with the designing of a data-base containing encyclopedic knowledge, needed
¡n commonsense reasoning. Frames offer high computational efficiency. They are an
Interesting tool for the designing of interfaces with users and with external sources of data
(eg. measuring devices).

— ------- CONTEXT ctx name
----------- FFtAMETfra name

 SLOT s/o name
FACET fac name < value > I < demon >
FACET facjiam e <value> | <demon>

SLOT s/o name
FACET facjiam e < value > | < demon >

FRAME fra name
 SLOT s/o name

FACET fac name <value> | <demon>

Fig.1. Elements of a frame

A frame is a description of a real or an abstract object. It is a special form of data and code
structure. A frame contains slots representing attributes of the object. Slots may be
interpreted as special representations of statements. Slots contain facets connected with
values, default values and/or procedures (called demons) by which the values may be
obtained (see Fig. 1). It is important to point out that each facet can contain values or demons.
Such an inclusion of demons in frames joins procedural and declarative representations.

Examples of special functions included in frame interpreter of W_SHELL:

• frame processing functions
(COPY fac), (DEL fac), (FIX fac v a l), (GET s l o) ,
(SET val f a c) , (VIEW s l o), (VIEW_FIX s l o) , . . .

• task arranging functions
(EXIT errlev), (GOAL val . . .), (IF cond vail v a l 2),

- 62 -

(RUN_G0AL ctx), (WHILE cond val), . . ,
• list processing functions

(HEAD 1st), (SEL 1st pos), (TAIL 1st), . . .
• uncertainty processing functions

(XAGR sa sb), (X_AND sa sb), (X_IHP sa sb),
(XNOT sa sb), (X_OR sa sb), . . .

• user interface functions
(CONFIRM txt) , (DISPLAY vail va12 ...),
(PROMPT typ vail val2), . . .

All the elements of frames are identified by their names. The names ought to be locally
unique. It means, eg., that all slots in a given frame ought to posses individual, different
names. Global uniqueness of names is not required, i.e. we can set the same name for slots
in different frames. Such an assumption results in a polymorphism - the names are shared
and their meaning depends on the given context.

4. Encapsulation

Encapsulation is a property postulated by object-oriented-programming. It states that data
structures and procedures which are to manipulate the data ought to be coupled together
and isolated to some degree from direct access by other procedures. The frames enable us
to control the degree of encapsulation. This is achieved by the use of demons (making no
difference between data and code) and by the following two possibilities for the pointing of
a slot:

• slot may be pointed out by its name,
• slot may be pointed out by its qualified name, i.e. by the pair composed of the name

of the slot and the name of a frame to which this slot belongs.
In the first case we obtain an access to the slot (for which we are looking) in the current
frame. In the second case access is obtained to a particular slot in a given frame. This allows
us to use some slots as global and some slots as local (private) ones. In both cases all the
assumptions about the inheritance are valued.

5 Inheritance

Inheritance is very powerful feature of frame structures. Frames may be arranged in
hierarchical structures (see Fig.2, Fig.3) which make it possible to develop and process the
idea about classes without being disturbed by details of any particular object. Such structures
are given by links called AKO (a kind of) between superframes (parent frames) and
subframes (derived frames), in W_SHELL such links are listed as follows:

FRAME SubFrarae_l
SLOT ako

/* see Fig.2 */

- 6.3 -

value * (Pranie;

FRAME Frame
SLOT ako

value

/* see Fig.3 */

(SuperFrame_l SuperFrame_2 SuperFrasre_3)

SuperFra
AKO

Fra

AKO a
1 „

iAKO a1
SubFrame 1 I SubFrame 2 1— lj ----------- -—B

Rg_2 Simple hierarchies (there exists at most only one superframe for each frame)

Searching for a slot value for a frame is the basic task in frame systems. Special properties
are assigned to the facets: value, Hjieeded, if added and ifjemoved. The slot vaiue is
assigned to the facet value. When we are looking for the value of the slot, the content of the
facet value is returned. If such a facet is missing, the facet if_needed points to the value or
to a demon returning the value. Slots that are not present in a frame are inherited from super
frames. Searching returns alternatively:

• a list containing values of the same slots in all superframes,
• only the first value is found; this value can override values in other superframes.

Inheritance is the most important feature of frames, which makes it possible to eliminate a
redundancy of data and to handle exceptions. It can also be used to generate reasonable
default data or assumptions in the case of incomplete information. Special facets, such as
if added and if needed may be applied for forward and backward chaining, respectively.

j SuperFrame_l | i SuperFrame_2 I SuperFrame_3 |

AKO a1
i

AKO a AKO aI

Frame

Rg.3. Multiple inheritance (each frame can posses a few superframes)

The simple hierarchy appears as a tree structure of frames (see Fig.2). For such structures
a search path is given by the AKO links, starting from the selected node upwards and search
time grows, at worst, linearly with the number of nodes. More advanced multiple inheritance
results in a directed acyclic graph (see Fig.3), for which the strategies for depth first or

- 64 -

breadth first searching ought to be applied, where
• the results depend strongly on the arrangement of superframes,
• search time grows, at worst, exponentially with the number of nodes,
• redundant searches may be expected (for depth-first search).

5.1. An example

In order to illustrate the notion of inheritance let us consider the following listing of frames:

frame Root
SLOT goal

if_needed = (RET_YES (DISPLAY nl "Test VIEW_FIX")
(VIEW_FIX (data z))
(DISPLAY nl "Test VIEW")
(VIEW (data z))
(DISPLAY nl "Main goal is achieved."))

SLOT x
value = 5.55

SLOT y
value = 6.66

FRAME data
SLOT ako

value = (reading_input_data)
FRAME reading_input_data

SLOT x
if_needed = (SET (PROMPT FLOAT "x = ")

(reading_input_data))
if_added = (DISPLAY nl "Frame " (FRA) ": x := ")

SLOT y
ifneeded = (SET (PROMPT FLOAT "y = "))
if added = (DISPLAY nl "Frame " (FRA) y := ")

SLOT z
if_needed = (DISPLAY nl "x = " (VIEW x)

nl "y = " (VIEW y)
nl "(MAX x y) = " (MAX (VIEW x) (VIEW y))
nl " (MIN X y) = " (MIN (VIEW x) (VIEW y)))

as well as the following listing of messages obtained from the frame interpreter:

Test VIEWFIX
Frame reading_input_data: x := 1.11
Frame data: y := 2.22
x - 1 . 1 1
y - 2.22
(MAX X y) - 2 . 2 2
(MIN X y) - 1.11

- 65 -

Test VIEW
s 5*55

y s 6.66
(MAX X y) = 6-66
(MIN X y) = 5.55
Main goal is achieved.

The first step of the main task (DISPLAY nl "Test VIEW_FIX") results in the message Test
VIEW FIX.

For the next step (VIEW_FIX (data z)) it is necessary to obtain the value of the slot z in the
frame data. Such a slot is not included in the frame data. It is inherited from the frame
reading input_data pointed out in the slot ako of the frame data. The slot z does not contain
a direct value. To obtain the value it is necessary to run a demon if needed of this slot. The
demon displays the message x = , and looks for the value of the slot x. Searching starts
from the temporary root in the frame data, which is defined by the function (VIEW FIX...). The
slot x can be found in the frame reading_input_data. Its value is unknown and the demon
if needed is started. The demon asks for the current value by means of the function
(PROMPT FLOAT "x = '). Let us assume that the user responds with the value 1.11. The
demon writes this value in the new facet value. Writing the facet starts the demon if_added,
which sends the message Frame reading_input_data: x := 1.11 . The value of the slot y is
obtained in a similar way. The functions (MAX (VIEWx) (VIEWy)) and (MIN (VIEWx) (VIEWy))
calculate the returned values by means of data obtained from the new facets. It is not
necessary to put any question to the user at this moment.

The third step of the main task (DISPLAY n l"Test VIEW") results in the message Test VIEW.

For the next step (VIEW (data z)) of the main task the values of the slots x and y are found
directly in the frame Root, because the function (VIEW...) does not change the current root
frame, as it was done by the function (VIEW_FIX...).

The last step of. the main task results in the message Main goal is achieved.

6. Remarks

The investigations presented in this paper have been partially supported by the research
project PB-132/9/91 /KBN Poland. An educational version of W_SHELL may be obtained free
of charge, directly from the author. Of course the user’s manual [2] exists at the moment only
in Polish.

- 66 -

7. References

[1] BARTLETT F.C.: Remembering. The University Press, Cambridge 1932.
[2] CHOLEWA W. et at: W SHELL User's Guide and Reference Manual (in Polish). Report

G-547/RMT-4/91, Technical University, Gliwice 1991.
[3] GOFFMAN E.: Frame Analysis. Harper & Row, New York 1974.
[4] MINSKY M.: A Framework for Representing Knowledge, [in:] Computers and Thought,

[ed.:] WINSTON P.H.; McGraw-Hill, New York 1975, p.211-277.
[5] SHORTLIFFE E.H.: Computer-based medical consultation MYCIN. Elsevier, New York

1976.

ANWENDUNG VON RAHMEN IN EINEM EXPERTENSYSTEM

Zusammenfassung

So genannte Rahmen bilden eine ausreichend flexible Repräsentation von Ausssagen.
W_SHELL ist ein Expertensystemshell mit dem Interpreter von Rahmen und mit den
Software-Tools für den Programmierer. Im vorliegenden Aufsatz werden einige Merkmale von
WSHELL dargestellt.

ZASTOSOWANIE RAM W SZKIELETOWYM SYSTEMIE DORADCZYM

Streszczenie

Ramy stanowią elastyczne reprezentacje stwierdzeń. W_SHELLjest szkieletowym systemem
doradczym, składającym się z interpretatora ram i narzędzi dla programisty. W pracy opisano
podstawowe cechy systemu W_SHELL.

Wpłynęło do redakcji w styczniu 1992 r. Recenzent: Ewald Macha

