International Conference on
COMPUTER INTEGRATED MANUFACTURING

Internationale Kcnferenz über
 RECHNERINTEGRIERTE FERTIGUNGSSYSTEME

Zakopane, March 24-27 1992

Danuta Rasztablga, Franciszek Marecki
The Institute of Automation
Stlesian Technical University, Gliwice, Poland

MODELLING OF A ROLLING - MILL LINE

Summary The paper present a problem of Flexdble Rolling Line (FRI. with the probabilistic input) control. In the case of FRL dectsion variables for rolling process and roll replacement are distinguished which determine the sequences and product range for certain charge and the choice of unit in which roll replacement is required.

1. Introduction

The festure of the Flextble Rolling Line (FRL) is sequential manufacturing the products of various range of goods on the same line. A proper tools is reeeded for esch sssortment and particular lirse untt. The production of differerit rarige of soods is related to the necessity of tool replacement. It is sasumed that the tools sure multifuractionsi. i.e. they can be used for manufacturing various sesortments. Tree tool replacement causes FRL shut-downs, which decresses its effectiveness. To accomplish such a manufacturing process, replacements of tools and working programmes of the FRL are necessary. The problem of the control is thet sequence and quantity ci produced soods and procedure of tool senewal are determined - for makimization of the line effectiveness.

FRL coritrol alms at maximization of making use of the Hre. The main limitations result from svallability arid usual wear and tear of tools. Additionally, it is assumed that the flow of objects dellvered to the line and their uptake is not determined and the control should the performed at ari actual time.

With the problem probabilistic FRL CFRL with the probabilistic iriput) control the FRL is assumed to be fed with random lats of charge at random moments of time. Varlous assortments are conveyed rrom FRL to the burfer stores haviry Hmited capacity, from which material is taken out at raradom moments and random lots [1,2,31. Buffer stores are placed at the entry and exdt of the FRL. In the burfer store, the charge reserves are restocked by a charge mass
flow at a constanl time. The FRL products are conveyed by portions to the rurther urits. These undis should te operated continuously. Burfer stores for proper products are provided before them to ensure that the units are operated continuously. The product of one type can be located in each burfer store. The abserice of product causes speciried production losses. Concurrent production of different assortments on the FRL necessitates tool replacement and the line dowri-time. In this case, the control of FRL aims at minimization of losses resulting from lack of goods in the burfer stores.

In a situation of random charge supply onto FRL and random uptake of goods from buffer stores the schedule senerstion of manufacturing process is not possible. In priactice, decisions made to establish FRL schedule resolve themsielves to the use or heuristic rules.

The paper present a problem of FRL with probabilistic input control. In the case of FRL decision varisates for rolling process arsd roll replacement sare distinguished which determine the sequences and product range for certain charge and the choice of unit in which roll replacement is required.

2. Basic defintitions and assumptions

We shall assume the following denotations:
m - number of charge types (mmi,...,M),
n - number of product types (n el, ..., ND,
1 - rumber of sssemblles of $\mathrm{FRL}(1=1, \ldots, I)$,
j - meximum number of passes on roll assembly (ju0,1, ..J),
k - decision stage number ($k=1, \ldots, K$. .
In order to introduce a matrix notation we shall assume that
$J=\max _{i \leq i \leq I} J_{i}$
$1 \leq i \leq I$
We sthall assume that the amount of products which can be obtairsed on FRL is the number of passes of the last assembly, 1.e.:
$\mathbf{N}=\mathbf{J}_{\mathbf{i}}$

2.1 Relation between charfe and product

Let us assume that a FRL is siven in which N types of products can be obtained from M types of charge (Fig.1).

A relation exdsts between the charge types and products, and expressed by matrix:

$$
\begin{equation*}
R-\left[r_{m, n}\right] \quad m m 1_{p} \ldots, M ; n=1, \ldots, N \tag{3}
\end{equation*}
$$

The elements of thas matrix are determined as followis:

Fig.1. Flexible Rolifre Line (ERL) - Charge-product relation (m - charge type number. M - number of types of charge. n - product type number. N - number of types of products)
$r_{m, n}=\left\{\begin{array}{l}1, \text { if product of n-th type can be obtained } \\ \text { from charge m-th type } \\ 0, \text { in a contrary case }\end{array}\right.$

The charge is substitutive if the following condition is satisrled:

$$
: \leq N \leq N \quad \sum_{m=1}^{\min } r_{m, n}>1
$$

The charge is not substitutive if the following condition $1=$
met:

$$
\begin{equation*}
\sum_{m=1}^{m m} \tag{5}
\end{equation*}
$$

In preactice, when $M>N$ theri the charge is substitutive. Irs case when $M \leq N$. the charge may not be substitutive.

If condition 15 satisfied:

$$
\begin{equation*}
\sum_{1 \leq m}^{V} \leq \sum_{n=1}^{n=N} r_{m, n}=1 \tag{6}
\end{equation*}
$$

then charge is dedicated.
In care when

$$
\begin{equation*}
1 \leq m \leq n \quad \sum_{n=1}^{n=N} r_{m, n}>1 \tag{7}
\end{equation*}
$$

the charge is not dedicated.
When $M<N$ the charge is not dedicated. In care when $M \geqslant N$ the charge can be dedicated.

Further on. we shall assume that the charge is substitutive and non-dedicated.

2.2 Structure of FRL

Let us assume that FRL is composed of I roll assemblies (urits). Each unt can include J_{i} passes. A trish of passes makes a process line.

The procese line is the FRL axis along which a conveyor is placed. The urits can be sharted iri such a way that appropriate passes are locsted on the FRL axds. The train of these passies forms a technological route of product.

The FRL structure is presented by a matrix:

$$
\begin{equation*}
\left.S \backsim\left[s_{i, j}\right] \quad 1=1, \ldots, I: j=1 \ldots\right] \tag{B}
\end{equation*}
$$

The elemente $s_{i, j}$ are determined as follows:

$$
s_{i, j}=\left\{\begin{align*}
1, & \text { if } 1 \leq j \leq J^{-1,} \text { in } a \operatorname{contr} \cos e \tag{BE}
\end{align*}\right.
$$

We shall sssume that true chariat be passed once travough a chosen prose of selected rolls to obtalis the irth product. A sequerice of the number of these passes rorms the technulundial mout, e (Fi:A).

Techrodoncai routes of products are expressed in, the mutrix form

$$
\begin{equation*}
A=[\lambda \ldots n] \quad 1=1, \ldots 1 ; s, 1 \ldots, n \tag{9}
\end{equation*}
$$

Tire elements of tris matrix are exiressed as folloris:

From the notation (11) it follows that each technological route 1s passing by consecutive FRL rolls from the firts to the lasst one.

Fig.2. FRI - technological routes
< 1 - urit number, 1 - number or unite, 1 - pase number. J_{i} - mumber of passes of 1 -th unit).

Moreover, нe zillow possibility

$$
\begin{array}{cccc}
3 & 3 \tag{90}\\
n & 3=\mu & 3
\end{array} \quad \lambda_{i, n}=\lambda_{i, 2}
$$

2.3 Statical ctarakter-1etic

From the viewpoint of molling process controll, statical characteristic of pass is of essential importarice. This characteristic determines a distance between roll surfaces in a pass depending on the mass of materisil rolled.

As caribe seen from Fiss the moll surfaces in passes see subject to wear - due to rolline processe.

Fif.3. Statical characteristic or pass
(d) - nomirial distarice between suriaces of rolle in a pioss,
\mathcal{E} - admiscitie increase in the distance betweeri iotil surfaces in a penss.
x - actual distince between roll surfaces in a pinss.
w - quantity of change pisseed through a pases in tone or pieces)

The roll surface is wearins more rapidly at a large draft (D/d) ase compared with a small drart ($D / d+\delta$) (Fif.4). In cave of dreit (D / D) the wear on moll eurface does not accur. Herice, it is

Fig.4. Wear and tear or roll surfaces
(D - charge thickness, $G=d+\delta$).
supposed that statical characteristic of pass is of convex type.
linder practical conatitions, such a characteristic can be obtained a a result of identification.

In a seneral case, the statical characteristic of the i-th soll is a runction:

$$
x_{i, j}=f_{i, j, m, n}(w)
$$

(10)

This function can be different for various passes f on different rolls i. Moreover, the course of the function is deperding upon the type of charge (e.s. material hardness) and the sort of produrct (e.6. specified draft).

If the 5 -th pass of the 1 -th roll lies on the technological route of N products that carn be maruifactured from each charose. then the number L of all statical characteristic will be:

$$
L=M \sum_{k=1}^{k=1 J} N_{k}
$$

which determines the extent of identification problem.
In practice, (for simplicity) linear characteristics of passes are assumed:

$$
\begin{equation*}
x_{i, j}=a_{i, j} \omega+e_{i, j} \tag{12}
\end{equation*}
$$

where: $a_{i, j}, e_{i, j}-$ constant coeficicients.
In such a case it is possible to determine the distance between rol surfaces on the basic of change quaritity.

Even if linear chanacteristic is in the form of:
and whas $\begin{array}{ll}x_{i, j}=a_{i, N, n}+e_{i, 1} & \text { (12a) } \\ x_{i, j}=a_{2, \ldots, n}+e_{i,}, & \text { i<k, }\end{array}$
It is impossitule to detine the distance between rold surfices
From the Fig.5, it follows that pollthe in turn w and thets - 4
 reverne crder or aitho we obtain the same result. Horever, yhen
 of woll surfaces x_{s}. Therefore the weaf of a pass depends on the typess of rolled preducts.

Further on, we shall assume that parameters or passes are given as expressed in matrixes:

- Standapt. Almensions or passesa are given by matrix:

$$
D=\left[\begin{array}{lll}
d_{, j} \tag{13}
\end{array}\right] \quad \pm=1, \ldots, I: j=1, \ldots, J
$$

Fic.5. Linear characteristic of passes
(n, ν - product numbers. ω_{n}, ω_{ν} - quantity of products x_{2}, x_{3} - distances between' surfaces of passes).
where: $d_{i . j}$ - nominal distance of roll surfaces of the 5 th - admissible dimentions for masses are expressed by matrix:

$$
\theta=\left[匕_{i, j}\right] \quad \operatorname{le} 1, \ldots, I ; j=1, \ldots, J
$$

where: $s_{i, j}$ - on the worn fth roll.

- tolerance of pass wear is given by matrix: $\Delta=\left[\delta_{i, j}\right] \quad 1=1, \ldots, I ; j=1, \ldots, \mathrm{~J}$ (15)
where: $\delta:, j$ - acceptable increase in the distance of roll
anu $\delta_{i, j}=\left|\varepsilon_{i, j}-d_{i, j}\right|$
(15a)
From $f_{i, j}$ and the stine $x_{i, j}^{k}$ it is possible to determine flow capacity of FRL.

FRL flow capacity is expressed by matrix:

$$
P=\left[p_{i, j}^{k}(m, n)\right] \quad 1=1, \ldots I: y=1, \ldots, J
$$

(ie)
where: $p_{i, j}^{k}$ - allowable wear of $5^{\text {th }}$ th pass in 1 -th assembly.
Moreover $\sum_{i \leq j}^{Y} \leq 1 \leq Y \leq J \quad P_{i, j}^{k}=\epsilon_{i, j}-x_{i, j}^{k}$

$$
\begin{equation*}
1 \leq i \leq 1 \quad 1 \leq Y \leq J \quad 0 \leq p_{i, j}^{k} \leq \delta_{i, j} \tag{16a}
\end{equation*}
$$

and
For non-exdsting passes we assume:

$$
i \leq V \leq i \quad j \quad<\quad j \leq j \quad p_{i, j}^{k}-1
$$

(17)

Flow capacity of products technological route is described by malefic:

$$
\begin{equation*}
P=\left[P_{n}^{k}\right] \quad n=1, \ldots, N \tag{18}
\end{equation*}
$$

where: $p_{n}{ }_{n}$ - flow capacity of lime for the n-th product.
Furetrermare ${ }_{k}$

$$
1 \leq \eta \leq N \quad p_{n}^{k}=0
$$

no product carl be rolled. the moth product cannot be rolled (the grith route ruled out),

$$
\operatorname{man}_{n} \quad \min _{i \leq 1} P_{i, \lambda}^{k}=0
$$

the with product cannot be rolled (the n-th route ruled outs.

$$
\begin{equation*}
1 \leq n \leq N \quad 1 \leq i \leq 1 p_{i, \lambda_{i, n}}^{\min }=0 \tag{19c}
\end{equation*}
$$

FRL is stopped - ror replacement of sissemblles.

3. The State of FRI

The FRL state can be determined by a disiarice between roll surfaces in each pses.
Defirition 1.: "he Etate of FRL is a matrix:

$$
\left[\square\left[x_{i, j}^{k}\right] \quad 1=1, \ldots, I: j=1, \ldots, J \quad\right. \text { (20) }
$$

where: x_{i}, , distance of roll surfaces $1 n_{1}$ the j-th pass of the 1-th assembly.
For non-exdsting passes we shall assume:

If 1 -th assembly is replacement in k-th operation. then we assume that:

$$
\leq y \leq J \quad x_{i, j}^{k}-d_{i, j}
$$

Asaembly can te replaced if the rollowing condition is satisfied:

$$
1 \leq \frac{\exists}{j} \leq J \quad x_{i, j}^{k}-k_{i, j}
$$

(22a)
Therefore coordinhtes of FRL stste meet the condition:
$1 \leq V_{1} \leq I \quad 1 \leq{ }_{j} \leq J d_{i, j} \leq x_{i p j}^{k} \leq E_{i, j}$
(22b)
State of FRL is measiurable. In farticular. it can be determined after k-th rolling operation or roll renewal. Hence, we Etuall sccept e rotation x^{k}. The state x^{0} is an initial condition (as siven) whereas x^{k} provides the end state (unkriown).

Assuming the linear statical chamacterisitic of passe (14), its flow captaity can be defined for the m-th product origiriating from the m-th charige. If state of pass $x_{i, j}^{k}$ is siven crrom identification). then by (20) we have an equivilent quantity of charge:

$$
\begin{equation*}
w=\frac{x_{i, j}^{k}-e_{i, j}}{a_{i, j, m, n}} \tag{23}
\end{equation*}
$$

Proceeding similarly, we shall determine the maximum charge quantity:

$$
\begin{equation*}
w_{\max }=\frac{d_{i, j}}{a_{i, j, m, n}} \tag{24}
\end{equation*}
$$

Hernce, the flow capactty $p_{i, j, m, n}$ we define as

$$
\begin{equation*}
f_{i, j, m, n}=t_{\max }-w=\frac{x_{i, j}^{k}+d_{i, j}-E_{i, j}}{a_{i, j, m, n}} \tag{25}
\end{equation*}
$$

Consequently, the rlow capacity of pacs P_{i}^{k}, j, m, n (as opposed to the state x_{2}^{k}, j is determined for selected product and charge

Cayeatty of lechnological route for n-th product of $m-t, h$ charce can be expresed as:

$$
\begin{equation*}
\mathbf{p}_{m, n}^{\mathbf{k}}=\min _{1 \leq 1 \leq I} \mathbf{p}_{i, j, m, n} \tag{26}
\end{equation*}
$$

For (24) and (25) we assume:

$$
\begin{equation*}
J=\lambda_{i_{\Delta}} \tag{27}
\end{equation*}
$$

If in the state X^{k} the coridtion ie satisiled:

$$
\begin{equation*}
\frac{\exists}{n} \quad\left(r_{m, n}-1\right)+\left(p_{m, n}^{k}: 0\right) \tag{28}
\end{equation*}
$$

then the FRL cammot marafiacture the n-th product.
If in the state X^{k} the condition is met:

$$
\begin{equation*}
1 \leq V_{1} \leq N \quad Y_{m} \quad\left(r_{m, n}=1\right)-\left(P_{m, n}^{k}=0\right) \tag{29}
\end{equation*}
$$

ther the FRL canrsot fishricate arry product.
In case of 〈2b> it is poseible to manufacture products that do not satisiy the condition (28), however in the event of (29) certain FRL wolls must be rephaced.

We shall assume that i-th roll can be renewed which meets the coriditiors:
$1 \leq \exists_{i}^{\exists} \leq, \quad x_{i, j}-d_{i, j}+\varepsilon_{i, j}$
Let us assume that capacities of buffer stores before the umits are writen in vector:

$$
\mathrm{B}=\left[\begin{array}{lll}
b_{i} & r_{i} \tag{31}
\end{array}\right] \quad r_{1}=1, \ldots, N
$$

Throushputs of FRL and untts for particular products are writert in the matrix:
$\mathrm{n}=1, \ldots, \mathrm{~N}: 1=1,2$
where: $v_{n, i}$ - output of $n_{1}-t h_{1}$ unit (fior n_{n}-th product). $v_{n, 2}^{n, 1}-F R L$ output for $n_{1}-t l_{2}$ product.
The output is meant asi the number of tons of material procesised in a tolme unit.

We shall assume that the throughputs satisfy the condition:

$$
\begin{equation*}
1 \leq \forall_{1} \leq N \quad v_{n, 1}<v_{n, 2} \tag{32a}
\end{equation*}
$$

Specific losses due to shut-downe of units are writen in the "ector:

$$
H=\left[\begin{array}{cc}
h_{n} \tag{33}
\end{array}\right] \quad n=1, \ldots, N
$$

where: h_{n} - loss of shut-down for n-th urites in s time urit.
Let us assime that unitarv charee deliveries aree writen in

where: $d_{m}-d e l i v e r y$ of m-th type chare in a time unit. We siall assume trat capacity of buffer store is not limited for the charge before FRL.

\div Contra:

The control is that decision is take sbout production of m-th assortment from m -th charege or replecement of rolle. Defirition 2a: Coritral of k-th rollimg operation is a vector:

$$
U^{k}=\left[\begin{array}{cc}
u_{l}^{k} \tag{35}
\end{array}\right] \quad I=1, \ldots, M+2
$$

We define the elements of this vector as follows:
u^{k} - type of product to be mariufiactured.
u_{2}^{2} - quaritity of product.
u_{m+2}^{k} - quaritity of m-th charee $\langle m=1, \ldots, M$).
Admissible control must rulril the following conditions:

$$
\begin{equation*}
\frac{\exists}{m}\left\langle u_{i}^{k}-n\right\rangle\left\langle\left(p_{m, n}^{k}\right\rangle 0\right\rangle \tag{36}
\end{equation*}
$$

Furthermare
and

$$
u_{2}^{k}-\sum_{m=1}^{m m} u_{m+2}^{k}
$$

$$
u_{m+2}^{k}=p_{m, n}^{k}
$$

With the cloice u^{k}, i.e. consitituents $u_{m i z}^{k}$ there is a problem connected with various statical characteristics. For example. one cisarge H, which satisfies the condition:
$\max p_{m, n}^{k}=p_{\mu, n}^{k}$
can be selected, and then to siccept:
and ror m μ

$$
\begin{equation*}
u_{m+2}^{k}=0 \tag{38s}
\end{equation*}
$$

(38b)
In a seneral case, the problem of charee chaice for n-th product can be more complicated
Definition 2b: Control of k-th roll replacement is a vector:

$$
Y^{k}=\left[y_{i}^{k}\right] \quad \quad 1=1, \ldots, I
$$

and at the same time
$y_{i}^{k}=\left\{\begin{array}{l}1, \text { if } 1-t h \text { roll is to be menewed in k-th opergition } \\ 0, \text { in oppositecerse }\end{array}\right.$
(398)
-peration of roll replecement takes place when the state xk fulfils the condition (38). The roll that is being replaced must satisify the condition (39).

Let us assume that periodst of times of roll replacement are fiven in the vector:

$$
T\left[\begin{array}{c}
T_{i}
\end{array}\right] \quad 1=1 \ldots \ldots
$$

(40)
where: t_{i} - replencement time ror 1 -th roll.
The charese stock arter k-th operetion is a vector:

$$
\begin{equation*}
S^{k}=\left[s_{m}^{k}\right] \quad m, 1, \ldots M \tag{41}
\end{equation*}
$$

where: s_{m}^{k} - rescerve of charge of m-th type.
We shall sseume that durimes rolling proceses the condition must be setisfled:

$$
\begin{equation*}
1 \leq m_{m} \leq u_{m+2}^{k} \leq s_{m}^{k-1} \tag{42}
\end{equation*}
$$

Stock of products sfter k-th operiation le a vectok:

$$
\operatorname{T}^{k}-\left[p_{n}^{k}\right] \quad \text { net.....N }
$$

wheres: p_{n}^{k} stuch of n-th type product.
Opereaton time A" of roulne FRL clurge is expressed by the Tormula:
at the sime time $\theta^{k}-\frac{u_{2}^{k}}{v_{p 1}}$

$$
\mathbf{n}=u^{k}
$$

Let ug demote by t^{k} the moment in which k-th operation is termined $\left\langle t^{\circ}-0\right\rangle$. Thus, for operation of charge rolling we obtalm:

$$
t^{k}=t^{k-i}+\theta^{k}
$$

(46m)
and for operetion of moll meplecement:

The time $i^{k} \quad t^{k}=t^{k-1}+\tau^{k}$ determined by (44), however, the time τ^{k} from: (40b) - If rolls are remewed at the same time the replacement time τ^{k} will be calculated ${ }_{\mathrm{k}}$ as:

$$
\tau^{k}=\max _{i \leq i \leq 1} y_{i} \tau_{i}
$$

(46c)

- with consecutive replacement we get:

$$
\begin{equation*}
\tau^{k} \quad \sum_{i=1}^{i=1} y_{1}{ }_{i} \tag{46d}
\end{equation*}
$$

5. Equations of state

Let us sassume that FRL initial state X^{0}, Z^{x}. V. One should determire the shortest time for execution of oxder.s.

The equations of state take the form:

$$
\begin{equation*}
X^{k}=f\left(X^{k-1}, U^{k}, Y^{k}\right. \tag{47}
\end{equation*}
$$

5.1 Operation of sssembly replscement

If the state $x^{x^{-1}}$ fulfils the condition:
$\left.\underset{1 \leq n \leq N}{\forall} \underset{1 \leq i \leq I}{\min }\left(\Sigma_{i, \lambda_{i, n}}-x_{i, \lambda_{i, n}}^{k-1}-0\right) \sim\left(z_{n, m}^{k-1}-0\right)\right]$
(48)
then the replacement of assemblies takes place in the k-th operation, i.e.:
and

$$
\begin{equation*}
3 \quad y_{1}^{k}-1 \tag{49}
\end{equation*}
$$

$$
x_{i, j}^{k}=\left\{\begin{array}{l}
d_{i, j}, \text { for } y_{i}^{k}=1 \tag{49a}\\
x_{i, j}^{k-1}, \text { in opposite case }
\end{array}\right.
$$

$$
\begin{equation*}
i \leq n \leq M \quad \boldsymbol{z}_{n, m}^{k}=\boldsymbol{z}_{n, m}^{k-1} \tag{49b}
\end{equation*}
$$

Stocks of charof are determined from the formula:

$$
\begin{equation*}
E_{m}^{k}=E_{m}^{k-1}+d_{m}\left(t^{k}-t^{k-1}\right) \quad m=1, \ldots, M \tag{50}
\end{equation*}
$$

The stocks af products are defined according to the formula:

$$
\begin{equation*}
\psi_{n}^{k}=\max \left[0, x_{n}^{k-1}-v_{n, 2}\left(t^{k}-t^{k-1}\right)\right] \tag{51}
\end{equation*}
$$

Therefore, the followirg condition must be gatisifed lest whe stoc: should $L \in z \in I O$:

$$
\begin{equation*}
r^{k}<\frac{\phi_{n}^{k}}{v_{r_{1,2}}} \tag{32}
\end{equation*}
$$

Whth operation of replactra assemblies the cortwol 1 tero vertur
5. 2 oper.stion of chaver rollimat

If the state x^{x-1} satisfles the condition:

and $1 \leq Y \leq I \quad y_{i}^{k}=0$
arid the n-th product is reallzed, then by U^{k} we obtaln:

$$
\begin{align*}
& x_{i, j}^{k}=\left\{\begin{array}{l}
x_{i, j}^{k}+u_{2}^{k}, \text { dla }\left(u_{1}^{k}-n\right) \wedge\left(j=\lambda_{i, n}\right) \\
x_{i, j}^{k-1}, \text { in opposite case }
\end{array}\right. \tag{54a}\\
& z_{i, j}^{k}=\left\{\begin{array}{l}
z_{\nu, j}^{k-i}+u_{2}^{k}, \text { for }\left(\nu=u_{1}^{k}\right. \\
z_{i, j,}^{k}, \text { in opposite case }
\end{array}\right. \tag{54b}
\end{align*}
$$

Fur-thermore

$$
\begin{equation*}
t^{k}=t^{k-1}+\frac{u_{2}^{k}}{v_{n, 2}} \tag{55}
\end{equation*}
$$

The ctarene stocks are determined from the formula:

$$
\begin{equation*}
s_{m}^{k}=s_{m}^{k-1}-u_{m+2}^{k}+d\left(t^{k}-t^{k-1}\right) \tag{36}
\end{equation*}
$$

The product stocks are determined accordines to formula:
$\phi_{n}^{k}=\left\{\begin{array}{l}p_{n}^{k-1}+u_{2}^{k}-v_{n, 2}\left\langle t^{k}-t^{k-1}\right\rangle, d 1 a n=u_{1}^{k} \\ \max \left[0, \phi_{n}^{k-1}-v_{n, 2}\left(t^{k}-t^{k-1}\right\rangle\right], d l a n \neq u^{k}\end{array}\right.$
And so, the following condition must be met lest the n-th burfes store should be overfilled:

$$
\theta^{k} \leq \frac{b_{n}-p_{n}^{k-1}}{v_{n, 2}-\mathbf{v}_{n, 2}}
$$

which results from (57) for $n=u_{i}^{k}$

6. Conclusion

In the paper, the equation of state of rolung process on FRL sre derived. On the bisis of the equation it is possible to analyse FRL control under deterministic or probsibilisitic conditions. At thé same time. deliveries of charge into the FRI and uptaking products by further undta are disturbed.

REFERENGES

[1] Marecki F.. Feasztabiga D.: Mathematical models and alcorithms of continuous-flow rolling process control. Techuical Memo. The Institute of Automation of Silesian Technicsal University. <RP.I 02). Gliwice 1990.
[2] Reszatimbe D. Marecki F.: Schedule Generation for Flexible Rolling Lirse. Proc. 9th Nat. Conf. of Automation, Biadystok 1991.
[3] Pyikkbinert J.: Tool management svstem of an FMS of prismatic workpleces. Proc. 5th Int. Cont. Flexible Manuracturint Systems 1986, s.205-274.
[4] Edited by: Guttropf W.: Assembly Automation. Proc. 7th Int. Conf. AA, Switzerlind, Zurich 1986.

MODELLIEREN EINER WALZETSTRASSEN - ANLAGE
Zusemmenfussunc
In der vorliegenden Bearbeltung wurde das Problem der Steuerung
eirer Elastiscten Walzenstrassen - Anlage (EWA) mit einem probabi listische Eingang dargestell. Fur die EWA werden die Entscheidungsvariablen des Walz - Prozzssen und des Auswechselns der Watzer hervorgehoben, welche fur die Sequenzen und die Grösse des Produktsortimentes fir eimen bestimmten Einsatz, sowie rix de Wahl des Agresates, in welctrem the Wslzen ausgewechselt werden sollen. susschlageeberd sind.

MODELOWANIE LINII WALCOWNICZEJ

Ellueszczenite

W referiacie proedstawhorio problem sterowsris Elastyczin Linia Nalcowricza (ELW) z wejsclem probatblietycznym. Dla ELW wyratnia sic zmienre decyzyjne procesu walcowanda orsz wymisny walcós. akrestajace sekwencje 1 wielkes: ssortgmeritu produktu dla okreslo-

Wphyneło do redakcji w styczniu 1992 r.
Recenzent: Ewald Macha

