Seria: MECHANIKA z. 107

Nr kol. 1154

Mirosław Rodzewicz, Andrzej Olędzki Instytut Techniki Lotniczej i Mechaniki Stosowanej Politechnika Warszawska

MODELOWANIE STARTU HOLOWANEGO LOTNI

<u>Streszczenie</u>. Praca dotyczy modelowania i symulacji komputerowej startów lotni holowanej samochodem. Przedstawiono w niej (zweryfikowane doświadczalnie) modele matematyczne poszczególnych podukładów systemu i zamieszczono wybrane wyniki symulacji.

Резюме. Работа посвящена моделированию и компутерной симуляции стартов дельтаплана, буксированного автомашиной. Представлены математические модели (удостоверенные экспериментально) и результаты некоторых симуляций.

Summary. Paper concerns modelling and computer simulation of a start of a hangglider towed by a car. Presented are mathematical models (verified experimentally) of particular subsystems and selected results of simulation.

1.WSTEP

Badania dotyczą systemu holowniczego z wyciągarką ruchomą. System ten, z racji swej prostoty, jest bardzo popularny zarówno na Zachodzie, jak i w kraju. Urządzeniem holowniczym jest samochód zaopatrzony w dynamometr hydrauliczny, ze wskażnikiem siły umiejscowionym w polu widzenia kierowcy-operatora wyciągarki. Analiza została ograniczona (z konieczności) do zagadnienia płaskiego i obejmuje tematykę modelowania elementów układu holowniczego, modelowania funkcji operatora wyciągarki oraz symulacji komputerowych procesu holowania lotni.

2. MODELE FIZYCZNE ELEMENTÓW SYSTEMU HOLOWNICZEGO

Szkic oraz model fizyczny omawianego systemu holowniczego zamieszczono na rys.1. Układ Pilot-Lotnia został tu przedstawiony jako dwie bryły sztywne, połączone przegubowo w wężle podwieszenia. Ramiona pilota zostały zamodelowane jako układ sprężysto-tłumiący znajdujący się między sterownicą, a korpusem pilota.

Rys.1. Szkic oraz model fizyczny systemu holowniczego z wyciągarką ruchomą Fig.1. Scheme and physical model of a towing system with mobile winch

Schemat odpowiadający przyjętemu modelowi sterowania siłą w holu zamieszczono na rys.2.

Rys.2. Schemat blokowy układu holowniczego lotni z uwzględnieniem funkcji operatora wyciagarki

Fig.2. Block-scheme of hangglider's towing system with the explanation of the role of a winch's operator

Blok układu holowniczego znajdujący się na tym schemacie obejmuje obiekty takie jak: układ Pilot-Lotnia, hol oraz masę samochodu zredukowaną do dolnego punktu zaczepienia holu. Silnik samochodu zamodelowany został jako element o przepustowości Gsw(S), dla którego sygnałem wejściowym jest położenie pedału gazu ppg oraz prędkość jazdy Vs, natomiast sygnałem wyjściowym jest siła napędowa Fw. Podobnie operator został zamodelowany jako element o przepustowości Go(s), dla którego sygnałem wejściowym jest różnica między wartością zadaną i wartością bieżącą siły w jinie Fs, a sygnałem wyjściowym położenie pedału gazu ppg.

3. MODELE MATEMATYCZNE ELEMENTÓW SYSTEMU HOLOWNICZEGO

3.1. Układ Pilot-Lotnia

Model matematyczny układu Pilot-Lotnia został utworzony z wykorzystaniem metody d'Alemberta, w której równania ruchu wyprowadza się traktując układ: w pierwszym kroku jako jedną bryłę, w drugim natomiast, jako układ rozprzęgnięty, z wyeksponowanymi siłami wzajemnego oddziaływania. Wybór tej metody został podyktowany jej spójnością, z innymi metodami, (zwłaszcza grafów wiązań) stosowanych w dalszych częściach pracy. Założono, że środek masy lotni pokrywa się z punktem podwieszenia pilota. Oznaczenia:

Pz, Px - siły aerodynamiczne: nośna oraz oporu lotni,

R - siła oporu aerodynamicznego pilota,

H - siła oddziaływania holu,

Mao - moment aerodynamiczny względem punktu podwieszenia,

- Fil, Fip siły bezwładności (wynikające z przyśpieszenia środka masy lotni, pilota),
- Mil, Mip momenty sił bezwł. (wynikające z przyśpieszenia kątowego lotni,pilota),

mi, mp - masy lotni, pilota,

Ji, Jp - moment bezwładności lotni, pilota - względem środka masy,

g - przyśpieszenie ziemskie,

- θι, θp katy pochylenia wektora prędkości środka masy lotni, pilota,
 - yı kat pochylenia osi podłużnej lotni (związanej z kilem),
 - yp kąt pochylenia osi przechodzącej przez punkt podwieszenia oraz środek masy pilota,
 - β kat pochylenia wektora siły w holu,
 - V prędkość środka masy lotni,
- cz, cx, cm bezwymiarowe współczynniki siły nośnej, oporu, momentu aerodynamicznego. lotni,

 ρ - gestość powietrza,

S, Sp - powierzchnie odniesienia współczynników aerodynamicznych lotni, pilota,

ro(xo,yo) - promień-wektor i współrzędne punktu podwieszenia,

rp(xp,yp) - promień-wektor i współrzędne środka masy pilota,

- 1 odległość między punktem podwieszenia, a środkiem masy pilota.
- 1 długość średnicy cięciwy aerodynamicznej,
- Δ kat spoczynkowego ustawienia lotni względem pilota,
- c,R podatność i rezystancja ramion pilota.

Rys.3. Sily i momenty działające na układ Pilot-Lotnia Fig.3. Forces and torques in the subsystem Pilot-Hangglider

Równania stanu mają następującą postać

$$\vec{\gamma}_{p} = -[(\gamma_{p} - \gamma_{1})/c - \Delta/c + R (\dot{\gamma}_{p} - \dot{\gamma}_{1})] \text{ m/Is+} -k_{p} 1 \text{ m} \cos(\theta_{p} - \gamma_{p}) (\dot{x}_{p}^{2} + \dot{y}_{p}^{2})/I_{s} - m_{p} g 1 \text{ m} \sin\gamma_{p}/I_{s} + +H 1 \text{ m} \cos(\gamma_{p} + \beta)/I_{s} - m_{p} 1 \sin\gamma_{p}[0.5 \rho S (\dot{x}_{o}^{2} + \dot{y}_{o}^{2})^{\circ} ^{\circ}(c_{z} \cos\theta_{1} - c_{x} \sin\theta_{1}) - g \text{ m} - H \sin\beta - k_{p} (\dot{x}_{o}^{2} + \dot{y}_{o}^{2}) \sin\theta_{p}]/I_{s} + +m_{p} 1 \cos\gamma_{p} [0.5 \rho S (x^{2} + y^{2}_{o}) (c_{z} \sin\theta_{1} + c_{x} \cos\theta_{1}) + - H \cos\beta + k_{p} (\dot{x}_{p}^{2} + \dot{y}_{p}^{2}) \cos\theta_{p}]/I_{s};$$
(1)

$$\ddot{\mathbf{x}}_{p} = -0.5\rho S(\dot{\mathbf{x}}_{p}^{2} + \dot{\mathbf{y}}_{p}^{2}) (czsin\theta_{1} + cxcos\theta_{1})/\mathbf{m} + Hcos\beta/\mathbf{m} +$$
(2)
$$-k_{p} (\dot{\mathbf{x}}_{p}^{2} + \dot{\mathbf{y}}_{p}^{2}) cos\theta_{p}/\mathbf{m} + l\mathbf{m} sin\gamma_{p} (\dot{\boldsymbol{y}}_{p})^{2}/\mathbf{m} - l\mathbf{m} cos\gamma_{p} \dot{\boldsymbol{y}}_{p}/\mathbf{m};$$

$$y_{a} = 0.5\rho S(x_{p}^{*}+y_{p}^{*})(c_{z}cos\theta_{1}-c_{x}sin\theta_{1})/m-Hsin\beta/m-g+$$

$$-k_{p}(x_{p}^{2}+y_{p}^{2})sin\theta_{p}/m-lm_{p}cos\gamma_{p}(x_{p}^{*})^{2}/m-lm_{p}sin\gamma_{p}\gamma_{p}$$
(3)

$$\gamma_{1} = 0.5\rho S(x_{p}^{2}+y_{p}^{2}) I_{1} c_{m}/J_{1} + [(\gamma_{p}-\gamma_{1})/c_{-}A/c_{+}R(\gamma_{p}-\gamma_{1})]/J_{1}; \qquad (4)$$

 $gdzie: \mathbf{m} = \mathbf{m}_{1} + \mathbf{m}_{2}; \tag{5}$

 $k_{p} = 0.5\rho S_{p} C_{xp} ; \qquad (6)$

$$I_{s} = J_{p} + m_{1} m_{p}^{2};$$
(7)

Wektorem zmiennych stanu jest tu $\mathbf{x} = [\mathbf{y}_0, \mathbf{x}_0, \mathbf{y}_0, \mathbf{x}_0, \mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_1, \mathbf{y}_2]^T$; (8)

Siły i momenty aerodynamiczne (lub ich bezwymiarowe współczynniki) występujące w równaniach są wielkościami zmiennymi, zależnymi od kąta opływu i prędkości opływu. W modelu matematycznym współczynniki te zostały aproksymowane na podstawie danych eksperymentalnych jako funkcje dwuargumentowe.

Przyjęto tutaj, że prędkość opływu w warunkach bezruchu mas powietrza równa jest prędkości środka masy każdego z obiektów. Kąt opływu lotni, (tj.: kąt natarcia αι) jest kątem wektora prędkości środka masy lotni i osi podłużnej związanej z kilem. Kąt opływu pilota α_P określony został w stosunku do osi przechodzącej przez punkt podwieszenia oraz środek masy pilota.

$$\alpha_1 = \arctan\left\{\sin\left[\gamma_1 - \arctan\left(\frac{y}{x_1}\right)\right] / \cos\left[\gamma_1 - \arctan\left(\frac{y}{x_2}\right)\right]\right\}; \qquad (9)$$

$$\alpha_{p} = \gamma_{p} - \arctan \left[\dot{\gamma}_{p} + l\sin(\gamma_{p}) \dot{\gamma}_{p} \right] / \left[\dot{x}_{p} + l\cos(\gamma_{p}) \dot{\gamma}_{p} \right];$$
(10)

W przypadku zaistnienia podmuchu wyrażenia na prędkość opływu i kąt opływu ulegają modyfikacji wynikającej z zsumowania wektora prędkości podmuchu oraz wektora prędkości środka masy każdego z obiektów).

3.2. Hol

Model matematyczny holu wynika z przyjętego modelu fizycznego (masy i siły aerodynamiczne zdyskretyzowane w k punktach, właściwości reologiczne opisane modelem I rzędu tzw. "standard").

Równania ruchu takiego układu wyprowadzono metodą grafów wiązań

Rys.4. a: Fragment układu holu złożony z n-1 i n-tego odcinka oraz b: odpowiadający temu układowi graf wiązań

Fig. 4. a:Fragment of the Tow's subsystem consisting of its n-1 and n part b:corresponding Bond-graph

Z tego grafu uzyskuje się równania stanu w n-tym odcinku

qon=pon/In-pon+1/In+1;	(11)
GRn=Den/In-Den+1/In+1- GRn/(Rn®CRn) :	(12)

$$\mathbf{p}_{n} = (\mathbf{q}_{on} - 1 - \mathbf{q}_{on}) / C_{on} + (\mathbf{q}_{Rn-1} - \mathbf{q}_{Rn}) / C_{Rn} + \mathbf{F};$$
(13)

Oznaczenia:

co, cR - kapacitancje, m/N; R - rezystancja, N/m/s; In,In-1 - inertancje, kg; Se - źródło wytężeniowe, N; pn - pęd n-tej masy holu, kgm/s;qon, qRn wydłużenia elementów sprężystych, m; ∑ F - sumę siły masowej i aerodynamicznej oddziałujących na n-tą masę holu, N;

Równania (11), (12), (13) dotyczą układu jednowymiarowego. W odniesieniu do układu wielowymiarowego jest to postać symboliczna. Po rozpisaniu względem osi układu współrzędnych przybierają one postać

$$\dot{q}_{on} = (\dot{x}_{n} - \dot{x}_{n+1}) \cos\beta_{n} - (\dot{y}_{n} - \dot{y}_{n+1});$$
 (14)

$$\dot{q}_{Rn} = (\dot{x}_{n} - \dot{x}_{n+1}) \cos\beta_{n} - (\dot{y}_{n} - \dot{y}_{n+1}) - q_{Rn} c_{R} R_{n}; \qquad (15)$$

$$\ddot{x}_{n} = -(q_{on}^{\prime}c_{on} + q_{Rn}^{\prime}c_{Rn}^{\prime})\cos\beta_{n}^{\prime}m_{n} + +(q_{on-1}^{\prime}c_{on-1}^{\prime} + q_{Rn-1}^{\prime}c_{Rn-1}^{\prime})\sin\beta_{n}^{\prime}m_{n}^{\prime} - R_{xn}^{\prime}m_{n}; \qquad (16)$$

$$\vec{y}_{n} = (q_{on}^{\prime}c_{on}^{\prime} + q_{Rn}^{\prime}c_{Rn}^{\prime}) \sin\beta n/m_{n}^{\prime} + -(q_{on-1}^{\prime}c_{on-1}^{\prime} + q_{Rn-1}^{\prime}c_{Rn-1}^{\prime}) \cos\beta_{n}^{\prime}/m_{n}^{\prime} = g - Ryn/m_{n}^{\prime}$$
(17)

gdzie mn = In oznacza n-tą masę ;Rxn, Ryn oznacza składowe zdyskretyzowanej siły aerodynamicznej, przyłożonej do n-tej masy, β_n oznacza kąt n-tego odcinka holu względem osi poziomej.

W równaniu pierwszego odcinka holu w miejsce wyrażeń q/c z indeksem n-1 wchodzi siła oddziaływania wyciągarki. W równaniu ostatniego odcinka w miejsce wyrażeń \vdots wchodzą składowe prędkości punktu zaczepienia x_{n+1} ; y_{n+1} ; holu do układu Pilot-Lotnia.

Wstępne badania symulacyjne przeprowadzone dla modeli holu o długości 1=400 m i różnej ilości mas dyskretnych dowiodły, że do celów służących poznaniu zachowań dynamicznych układu Pilot-Lotnia wystarczy zdyskretyzowanie mas holu w 5 punktach.

Równania (11) - (17) wyprowadzono dla liniowego modelu reologicznego holu. Na podstawie badań doświadczalnych model ten udoskonalono uwzględniając nieliniowość rzeczywistego obiektu. Szczegóły dokonanej modyfikacji pominięto w tej pracy z braku miejsca.

3.3. Jednostka napędowa

Model matematyczny jednostki napędowej samochodu-wyciągarki wyraża schemat z rys.5.

Rys.5. Schemat modelu jednostki napędowej samochodu-wyciągarki Fig.5. Model of the driving unit of the towing car

Schemat ten jest postacią ogólną przedstawionego poniżej modelu matematycznego.

$$Fn=(aK - b)V^{3} + (c K - d)V^{2} + (eK-f)V+g;$$
(18)

$$K(s)/ppg(s)=1/(T_{s} + 1);$$
(19)

3.4. Operator samochodu-wyciagarki

Operator wyciągarki spełnia funkcje regulatora siły w linie holowniczej (patrz rys.3). Na podstawie pomiarów dokonanych w układzie rzeczywistym określono następującą postać przepustowości operatora

$$G_{o}(s) = -\frac{ppg(s)}{F_{o}(s)} = K_{p} \frac{(T_{L} s + 1) e^{-TS}}{(T_{I} s + 1)(T_{k} s + 1)};$$
(20)

4. WYNIKI SYMULACJI

Przedstawione powyżej modele matematyczne elementów systemu holowniczego zostały użyte do symulacji komputerowej procesu holowania lotni. Wykorzystano do tego celu program CSSP [5]. Przykładowe rezultaty tych

- Rys.6. Wybrane rezultaty symulacji holowania lotni (stała siła holow.,spokojne powietrze): tor lotu: (Η), prędkości: (V-pr.całk., w-pr.pion.lotni, Vs-pr.samochodu), kąt natarcia: (α), współczynnik obciążeń: (n)
- Fig.6. Selected results of simulation (const. towing force, quiet air): total speed of hangglider: (V), vertical speed: (w), speed of car: (Vs), path of flight: (H), angle of attack: (α), load factor: (n)

_{ba}dań zostały przedstawione na rysunkach 6 - 9. Rysunki 6 i 7 dotyczą idealnego przypadku holowania lotni w spokojnym powietrzu, stałą siła,

- Rys. 7. Konfiguracja zespołu holowniczego względem ziemi oraz układu Pilot-Lotnia w poszczególnych fazach holowania stałą siłą w spokojnym powietrzu
- Fig.7. Configurations in relation to the Earth of the towing system and the subsystem Pilot-Hangglider during different phases of towing

- Rys. 8a. Przebiegi parametrów lotu podczas podmuchu z dołu w trakcie holowania lotni: 1) kat natarcia, 2) prędkość całkowita lotni, 3),4) pionowa i pozioma składowa prędkośći, 5) współczynnik obciążeń, 6) poł.pedału gazu, 7) prędkość podmuchu ; Rys.8b. Fn) siła napędowa, Fs) siła w holu
- Fig. 8a. Changes of flight's parameters caused by a vertical gust (from the bottom) during towing of the hangglider:1) angle of attack, 2) total speed of hangglider, 3),4) vertical and horizontal speed of hangglider, 5) load factor, 6) position of engine's accelerator, 7) speed of the gust; Fig.8b. Fn) driving force, Fs) towing force

bez aktywności pilota oraz operatora. Rysunki 8 - 9 dotyczą sytuacji, w której podczas holowania lotni wystąpi pojedyńczy podmuch z dołu, o amplitudzie 5 m/s i czasie trwania 2 sek.

- Rys.9. Tor oraz konfiguracja układu PILOT-LOTNIA w poszczególnych fazach podmuchu pionowego w trakcie holowania lotni
- Fig.9. Trajectory and configurations of the subsystem Pilot-Hangglider caused by a vertical gust during towing of a hangglider

5. WNIOSKI

Wyniki badań symulacyjnych porównywane z wynikami uzyskanymi w warunkach rzeczywistych (nie opisanymi w tej pracy z braku miejsca) wykazują dobrą zgodność. Moźna więc uznać, że zaproponowany tutaj model może być skutecznie użyty do dalszych badań związanych np. z ważnym zagadnieniem zwiększenia bezpieczeństwa startów holowanych, czy też użyty w ewentualnym symulatorze takich startów.

LITERATURA

- [1] Cannon R.H.: Dynamika układów fizycznych. WNT, Warszawa 1973.
- [2] James E., Parker I.: Bioastronautics Data Book NASA SP-3006, Washington 1973.

- [3] Zarys dynamiki i automatyki układów. Praca zb. pod red.A.Olędzkiego. WPW, Warszawa 1988.
- [4] Problemy wytężenia i znużenia polimerów. Praca zb. pod red. J.Zawadzkiego. PWN, Warszawa 1978.
 Oprogramowanie:
- [5] Siwicki I.: Program symulacyjny CSSP. Oprogramowanie Komputerów S-ka z 0.0 03-254 W-wa, Turnowska 12/123.
- [6] Rzymkowski C.: Program animacji graficznej LOTNIA. ITLIMS Politechnika W-wska, 1990.
- [7] Rzymkowski C., Rodzewicz M.: Symulator zespołu holowniczego lotni. ITLiMS Politechnika W-wska, 1990.

MODELLING OF A TOWED START OF A HANG-GLIDER

Start of a hang-glider towed by a car become popular recently. Some problems concerning its dynamics and safety can be explained by a proper computer simulation. For this purpose mathematical models were built first of subsystems: Pilot - Hang-glider: (1)-(10); tow (nylon rope): (11)-(17); car's engine: (18), (19); and car's (human) operator: (20). All the models were verified in experimental way. The whole system was put next into the form of a computer program for PC IBM compatible simulation program CSSP [5]. Several simulations were performed then for different conditions like: start in a quiet atmosphere (Fig. 6 and 7) and with the assumed vertical gusts (Fig. 8 and 9). Comparison of those results with the results of a field tests indicates a good agreement between them. Thus the proposed model may be used in a further research concerning, e.g., safety of the towed start and/or in the eventual simulator of such kind of start.