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WYBOR | MODYFIKACJA PARAMETROW SKRAWANIA W PROCESACH
OBROBCZYCH Z UZYCIEM SYSTEMU WSPOMAGANIA PODEJMOWANIA
DECYZJI WYKORZYSTUJACEGO ZBIORY ROZMYTE (FDSS)

Streszczenie. W pracy przedstawiono idee implementacji systemu wspomagania
podejmowania decyzji wykorzystujgcego zbiory rozmyte (FDSS), a opartego na
ztozeniowej regule wnioskowania. Biorgc pod uwage fakt, ze procesy obrébcze sg
stochastyczne, nieliniowe i stabo zdefiniowane, zastosowanie takiego systemu do
wyboru i modyfikacji warunkéw skrawania wydaje sie celowe. Uzyskane wyniki
potwierdzajg trafno$¢ wyboru zastosowanych metod do ww. problemdw.

THE CHOICE AND MODIFICATION OF CUTTING PARAMETERS
IN MACHINING PROCESSES USING FUZZY DECISION SUPPORT SYSTEM (FDSS)

Summary. An idea of the implementation of a fuzzy decision support system
(FDSS) based on the compositional rule of inference has been introduced in this
paper. Taking into account the fact that metal cutting processes are stochastic,
nonlinear and ill-defined, the application of FDSS to the choice and modification
of cutting parameters seems to be reasonable. The obtained results are realistic
and show that the employed methods are appropriate for such kinds of decision
problems.

AUSWAHL UND MODIFIKATION DER SCHNEIDPARAMETER BEI DEN
ZERSPANNUNGSVORGANGEN, WOZU DAS DIE ENTSCHLUBFASSUNG UNTER
EINSATZ DER FUZZY-LOGIK-MENGEN (FDSS) UNTERSTUTZENDE SYSTEM
ANGEWANDT WIRD

Zusammenfalung. In der Arbeit hat man die Idee zur Implementierung des die
EntschluBfassung unter Einsatz der Fuzzy-Logik-Mengen (FDSS) unterstiutzenden
und auf der Zusammensetzungsregel fiur SchluRfolgerung basierten Systems
dargestellt. Under Beachtung der Tatsache, dal die Zerspannungsvorgénge
stochastisch, nichtlinear und schwach definiert sind, scheint die Anwendung eines
solchen Systems fir die Auswahl und Modifikation von Schneidbedinungen
zweckmé&Rig zu sein. Die erreichten Ergebnisse zeugen von der richtingen
Auswahl der fur die obengenannten Probleme angewandten Methoden.
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1. INTRODUCTORY REMARKS

The proper choice of cutting parameters is very important in modern manufacturing
because it constitutes the ultimate goal of planning and numerical control processes. A
unified adequate method for such a choice has not yet been developed, although, since
Taylor’s approach, many scientists and researchers have tried to find optimal parameters
of exploitation of cutting tools. The obtained formulas are more or less similar, however,
due to the existence of many uncontrollable factors, the coefficients used in these
formulas deliver significant imprecision in the values of the resulting parameters. This
is mainly caused by:

- various machinability of identical materials,

- differences in tool geometry, tool materials, surface roughness, tool clamping,

- different machine tool wear,

- various rigidity and power of machine tools,

- various rigidity of machined parts,

- others.

Several computer-aided decision support systems for the selection of cutting
parameters based on both theoretical and experimental methodologies have already been
developed (cf. [3]). These systems rarely consider such factors as part configuration,
condition of the machine tools, type of fixturing, etc. Taking into account the fact that the
influence of these factors on tool life is not precisely known, it is difficult to determine
the optimal machining parameters. However, it is possible to express such practical
knowledge in the form of fuzzy linguistic rules which are well fitted for processing in the
fuzzy decision support system described below.

In this paper we will consider a decision problem (the choice and modification of
cutting parameters in machining process) which can be solved using such a fuzzy decision
support system (FDSS), being a specific kind of software [1],

2. BASICS OF FUZZY DECISION SUPPORT SYSTEM AND ITS
CHARACTERISTICS

In this section we will recall a rule-based approach to approximate reasoning process
based on the compositional rule of inference [10] which forms a basis of the fuzzy
decision support system (FDSS) developed by the authors. In this approach we will
consider uncertain (imprecise) knowledge as a set of rules consisting of linguistic
statements that link conditions with conclusions respectively [7]. Such knowledge can be
collected and delivered by a human expert (e.g. decision maker, operator of industrial
complex processes, machine operator, physician etc.). This knowledge, expressed by a
finite number (r=1,2,..,n) of the heuristic fuzzy rules of the type MIMO (multiple input
multiple output), may be written in the form:

rmimo W if xisaP andy isBp and ..and z is dp n

thenu is ifp ,visdp , .. ,w is \dp

where Ap\ B " Cp* denote values of linguistic variables x,y,...,z (conditions) defined
in the following universes of discourse: X, Y ,..., Z and UKkY), V /r),..., Wq() stand for values
of independent linguistic variables u,v,...,.w (conclusions) in universes of discourse U, V,
.. W, respectively. A MIMO system rule base is usually expressed in the form:
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The antecedent of RWMIMO rule forms a fuzzy set Aj(r) x Bj() x...x Cp(r) in the
Cartesian product X x Y x...x Z. The consequent is usually considered as a union of a
finite set of the independent actions. This may be written as:

(©)

_ M
R = y*:mimo :I.U’MS:LHJ rLlj"MISO(W)

where R (nMiso(.) = R(r) stands for r-th rule of type MISO (multiple input single output)
for the output denoted as (.). It can be interpreted as a decomposition of the rule base
R into a set of sub-rule bases {R(U, R",...,R(W} consisting of n rules with multiple
antecedents and a single consequent.

Generally, in the case of a knowledge base of MIMO system, the compositional rule
of inference can be written symbolically as:

(U\ V, .., W") = (A", B1, .., C")oR @

where R represents a global relation aggregating all rules, (A’, B’,... , C’) denote inputs
and (U’ V’,..., W’) stand for outputs.

If we employ a knowledge base of MISO system, the compositional rule of inference
may be written symbolically as:

V =@'.B'..C)°R ®)

The global relation R now aggregating MISO system rules will be expressed as:
R = alsor(Rw) (6)

where a sentence connective "also" denotes any t- or .v-norm (e.g. min, max operators)
or averages. Symbol o stands for the compositional rule of inference operators (e.g. sup-
min, sup-prod etc.).

The compositional rule of inference applied to formula (5) may be written in two
forms i.e.

V. =C"0...0(B"0(A"0R)) (©)

or
Ul =(Cix...xB'xA')oR ®

For example taking into account sup-min (sup-prod) operations as compositional
operators, min (prod) for implication, min (prod) for sentence connective 'and’ and max
(sum) for sentence connective ’also’, we obtain the same inference results from both
formulas, i.e. (7) and (8).

Four different combinations of the operations mentioned above constitute four
different variants of the CRI and constitute the basis of the inference mechanism used
in our FDSS. We will ascribe a specific symbol to each CRI variant in accordance with
the operations used in each of them. The abbreviation of such symbol corresponds to the
notation used in the FDSS menu. For the sake of simplicity we will use the membership
function representation of the CRI variants in the formulas written below:
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U\U) = max sp mirminicTb) B () .A"GY). Y )),BEG), .. CEQ VIO ~
yer

zeZ

denoted symbolically as MAX-SUPMIN-MIN-MIN (abbreviated to MA-SMI-M1)
and

UQ =maxsup [CEOR-BE)-ANLENY-B’ Y=L Q-]
yer
zel

denoted as MAX-SUPPROD-PROD-PROD (abbreviated to MA-SPR-PR)
and

U\ =£  Spinin[iTe(CARD,. &) AR) AW Qi ). CI0). 51 ()] A
" yer

zeZ

denoted as SUM-SUPMIN-MIN-M1N (abbreviated to SU-SM1-MI)
and

uQ) =» €@ BHAMK % BrQu CwiT0)] (€2)
yeY
zeZ

denoted as SUM-SUPPROD-PROD-PROD (abbreviated to SU-SPR-PR) respectively.

The use of the sum (plus) operator for the implicit rule connective "also" needs a
justification. For this purpose we shall additionally consider the rule connective "also" as
an intersection. In this case we have to deal with the following inequality:

iln = (A',B"...CO00R« ¢ f | = fltiff = Un (13)
r-1 r-1 r-1

Next let us take into account the compensatory operator [5],[12] being a convex linear
combination of the type:
(I-P)ix™* y)#'(x*sy) (14)

where *,, *s denote the respective t- and s-norms operators. In order to change the final
conclusion Uc’(u), we use the following formulas:

ifc(u) = (I-PyUriu)+P-U\u) (1S)

and
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u'ciii) = @-pyVIiiO+p-u'w ae)

Let us notice that for parameter value p = 0.5 we get an arithmetic average which
is proportional to the sum (plus) interpreted as the rule connective "also". Of course, for
parameter value p = 0 we obtain a maximal compensation of max operator by ntin
operator.

Based on the considerations presented above, the fuzzy decision support system
(FDSS) called FUZZY-FLOU (v.01) was developed at Ecole Polytechnique de Montreal
(Canada) and in the Technical University of Silesia in Gliwice (Poland).

The system runs on IBM AT 286, 386, 486 and compatible computers with EGA or
VGA graphic card (VGA recommended).

The inference mechanism consists of four variants of the compositional rule of
inference described by formulas (9)(10)(11) and (12). The knowledge base may contain
up to 300 linguistic rules. Every rule may contain up to 5 premises (conditions) and 2
independent conclusions. Each condition or conclusion may use up to 11 values
(attributes) of respective linguistic variables. The identifiers of the variables and the
identifiers of the attributes may consist of a maximum of 24 letters.

The interface of the FUZZY-FLOU system seems to be user friendly and may be
easily adapted to both decision making and control. The program can also process a data
file to help in modelling and tuning a control surface. The system is also able to
transform an originally written knowledge base into a linguistic one for a better
understanding and development of the rule bases.

In the next section we will show an application of the fuzzy decision support system
described above to machining processes.

3. THE CHOICE AND MODIFICATION OF CUTTING PARAMETERS IN
TURNING

Taking into account the fact that most machining processes are stochastic, nonlinear
and ill-defined, they fall into a category of complex processes being attractive to be
treated by means of fuzzy logic methods [2], The decision process of finding the optimal
parameters for cutting operations also belongs to this category.

In order to obtain the optimum performance or efficiency in machining processes
(e.g. according to Machining Data Handbook [8]), the following factors should be taken
into account when choosing the cutting parameters in a turning operation:

- hardness of the workpiece material,

- depth of cut,

- carbon contents,

- usinability,

These factors allow to estimate the standard values for cutting parameters i.e. speeds
and feeds. However, it should be pointed out that the optimum performance or efficiency
of any machining operation includes additional factors which have an influence on the
values of speeds and feeds. Variables, such as part configuration, condition of the
machine, type of fixturing, dimensional tolerance and surface roughness etc. all affect
performance. Because the effects of these variables on tool life are not always precisely
known, it becomes difficult to recommend optimal parameters for the machining
operation [8]. Therefore the final estimation of the cutting parameters should be
considered in two stages. First, the cutting parameters should be chosen using the
decision support system, e.g. according to the recommendation of Machining Data
Handbook. Next, in order to adapt the obtained parameters to a specific machine-tool-
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workpiece system, the chosen parameters should be modified taking into account the
additional factors, for instance:

- the quality of the machine,

- the rigidity of the machine-tool-workpiece system,

- the desired part tolerances,
and others.

3.1. The choice of cutting parameters

Now let us consider the problem of choosing the cutting parameters in turning. The
knowledge base, used in FDSS, was build using the data recommended in Machining Data
Handbook (Turning, Single Point and Box Tools, Uncoated Indexable Inserts and Carbon
and Alloy Steels). However, it should be pointed out that in practice we may use any
available data coming from experience (machine shop) and/or research. For each factor
(premise) and conclusion used for the choice of cutting parameters, the linguistic values
(terms) are defined. Fig. 1shows the screen produced by FDSS, with all linguistic values
for variables (material hardness, depth of cut, carbon contents, usinability) and two
conclusions (speed and feed).

hard
100 147.5 195 242.5 290 337.S 38s 432.5 480
Hardness <8bn> .
firtishlr=a" &H™""™"'r'Qugh'ino™ ... ; m—........ ; pouar'Vough~
%.O% 0.135 0.22 0.305 U.3U
arbon content <*>
tnproved rtornaT

rer  ATMBf hioh

Fig. 1. Graphical screen representation of linguistic values of conditions and
conclusions for the choice of cutting parameters
Rys. 1. Graficzne przedstawienie na ekranie warto$ci lingwistycznych warunkéw oraz
wnioskéw celem wyboru parametréw skrawania



The choice and modification of cutting parameters 31

The constructed rule base for the choice of cutting parameters, consists of 60 rules

instead of 120 (theoretical number of all rules). Fig. 2 presents an example of the input
data.

The form of the trapezoidal membership function used here is defined as quintuple

(ml, m2, am, bm, hm), where:

- ml: the beginning of the membership function maximum,

- m2: the end of the membership function maximum,

- am: the left positive distance between the starting point of the fuzzy set and ml,
- bm: the right positive distance between m2 and the ending point of the fuzzy set,
- hm: the height of the fuzzy set.

The input fuzzy set (ml = 4, m2 = 4, am = 0.5, bm = 0.5 and hm = 1) representing

the depth of cut is shown in Fig. 2.

Menbership function

- \
ylrti U —
§f bn
Input obsaruation - -'}F-X,
Hi: 4
iib:s "

Fig. 2. Representation of the input fuzzy set of the depth of cut
Rys. 2 Przedstawienie rozmytego zbioru wejsciowego dla glebokosci skrawani;

Fig. 3 illustrates a complete evaluation of cutting parameters according to formula (9).

The following input fuzzy sets were used:
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- material hardness (300, 300, 10, 10, 1)
- depth of cut (4, 4, 0.5, 0.5, 1)

- carbon content (0.35, 0.4, 0, 0, 1)

- usinability (80, 80, 5, 10, 1)

Fig. 3. Representation of fuzzy results for cutting parameters
Rys. 3. Przedstawienie wynikéw rozmytych dla parametréow skrawania

The last two graphs in Fig. 3 represent cutting parameters as fuzzy sets. After the
defuzzification procedure (center of gravity) the following crisp values were obtained:
speed = 106.8 [m/min] and feed = 0.51 [mm/rev]

As it was stated above, the obtained parameters should be considered only as good
starting points because they can estimate the cutting parameters for the average operating

conditions.

3.2. The modification of cutting parameters
Now we will modify the obtained parameters using the factors stated above as it is

shown in Fig. 4.
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Fig. 4. Graphical screen representation of linguistic values of premises and conclusions
for the modification of cutting parameters
Rys. 4. Graficzne przedstawienie na ekranie wartosci lingwistycznych obszaru oraz

whnioskéw celem modyfikacji parametrow skrawania

The machine quality and the system rigidity are defined by means of an evaluation
scale from 0 to 100. The machine quality range includes the following linguistic values:
poor, medium and good. The system rigidity is described using such linguistic values as:
flexible, medium and rigid. The part precision is defined using a numerical scale in
millimeters, by quality classes: class 7, class 9 and class 11. Both conclusions include the
same five linguistic values: large decreasing, decreasing, ok, increasing and large
increasing, defined in different ranges.

Taking into account the number of linguistic values in all conditions, the rule base for

the modification of parameters contains 27 rules.
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When formula (9) is applied,

M. Balazinski, M. Bellerose, E. Czogata

Fig. 5 presents a complete case, with the following

input fuzzy sets for the modification of cutting parameters:

- machine quality (68, 71, 10, 10, 1),

- system rigidity (65, 70, 15, 5, 1),

- part precision (0.06, 0.07, 0.01, 0.01, 1).

poor

0 _ 10 20 30 40
Machin« Quality

flexible

0 .20 30 40
System Rigidity

claw™7="" __._.. cl«**» 3

0 0.018 0.032 0.048 0.064
Part Tolerance <n«>

larg« detodac. * ok
0.3 0.44 0.58 0.72 0 86
Speed Factor

"Xarg*.,i3ec,dec 1T™" ok™""
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Feedrate Factor
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nediun
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0.08

good
60 70 80 90 100
rigid
60 70 80 90 100
“class 11
0.088 0.112 0.128 0.144 0.16
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Fig. 5. Representation of the fuzzy results for the modification of cutting parameters

Rys. 5. Przedstawienie wynikéw rozmytych dla modyfikacji parametréw skrawania

The last two graphs in Fig. 5 represent the fuzzy results for speed and feedrate

factors. After defuzzification, the modified outputs are the cutting speed and the feedrate

corrective factors, 1.228 and 1.193 respectively. If we multiply the previously obtained

parameters by the corrective factors, the final results for the speed and feed are 131.1

[m/min] and 0.6 [mm/rev].
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4. CONCLUDING REMARKS

The results obtained in this paper show that the application of the fuzzy set theory

to machining processes seems to be quite appropriate and may lead to valuable results.

These results are mainly obtained using data compression.

[1]

[2]

(31

(4]

[5]

(6]

The following should be taken into consideration as objectives for future research:

- the input data should also be taken from other sources, e.g. machine shop, research
etc.,

- the number of linguistic values obtained by means of a fuzzy partition of input
ranges should be examined deeper,

- the membership functions of the linguistic values mentioned above should be

modelled more carefully.
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Streszczenie

Wybér wihasciwych parametré6w skrawania stanowi bardzo istotny element
wspotczesnych proceséw obrébczych z uwagi na optymalizacje warunkéw eksploatacji
narzedzi skrawajacych. Ze wzgledu na znaczny stopien ztozonos$ci problemu jak dotad nie
zostat on w spos6b zadowalajacy rozwigzany. W niniejszej pracy zaproponowano wybor
parametréw skrawania oraz ich modyfikacje oparte na systemie wspomagania
podejmowania decyzji wykorzystujagcym zbiory rozmyte (FDSS), bazujgcym na ztozeniowej
regule wnioskowania. Baza wiedzy tego systemu moze zawiera¢ do 300 linwistycznych
regut, z ktérych kazda moze sie sktada¢ z 5 przestanek oraz 2 niezaleznych konkluzji.
Reguly takie moga ujmowacé wiedze operatora ijego doSwiadczenie w zakresie doboru i
modyfikacji parametrow skrawania rozwazanego procesu obrébczego (np. toczenia).

Bioragc pod uwage fakt, Ze uzyskanie doktadnych modeli matematycznych wyzej
wymienionych proceséw obrébczych nie jest mozliwe (sa one bowiem z natury
stochastyczne, nieliniowe i stabo zdefiniowane), zastosowanie systemu opartego na teorii
zbioréw rozmytych do wyboru i modyfikacji warunkéw skrawania wydaje sie celowe.

Uzyskane wyniki sa obiecujace i potwierdzaja trafno$¢ wyboru zastosowanych metod.



