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ZASTOSOWANIE STOCHASTYCZNEJ METODY ELEMENTOW
BRZEGOWYCH W MODELOWANIU LOSOWYCH UKLADOW
MECHANICZNYCH

Streszczenie. W pracy przedstawiono podstawowe koncepcje stochastycznej
metody elementéw brzegowych. Niepewno$¢ w uktadach mechanicznych modelo-
wana jest za pomocg poél losowych, ktérych momenty opisujg stochastyczne
warunki brzegowe, losowe wtasnosci materiatu i stochastyczny ksztatt brzegu.

APPLICATION OF STOCHASTIC BOUNDARY ELEMENT METHOD
TO MODELLING OF UNCERTAIN MECHANICAL SYSTEMS

Summary. Fundamental concepts of the stochastic boundary element method
are presented. Uncertainties in mechanical systems are modelled by means of
random fields whose moments specify stochastic boundary conditions, random
material properties and stochastic shape of a boundary.

ANWENDUNG DER STOCHASTISCHEN
RANDELEMENTENMETHODE BEIM MODELLIEREN VON
STOCHASTISCHEN MECHANISCHEN SYSTEMEN

Zusammenfassung. In der Arbeit wurden die Grundkonzeptionen der
stochastischen Randelementenmethode dargestellt. Die Unsicherheit in
mechanischen Systemen wird mittels der stochastischen Felder, die Momente von
welchen stochastische Randbedingungen, stochastische Werkstoffeigenschaften
und stochastische Randform beschreiben, modelliert.
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L INTRODUCTION

The functionality of many modern engineering systems depends to large extent on
their ability to perform adequately ana with a high level of reliability under not absolutely
controllable conditions. In response to these problems, computer methods have been
developed to deal with the statistical nature of loads, material properties and the shape
of a structure. Stochastic boundary element method (SBEM), as an alternative numerical
technique to the stochastic finite element method [cf. e.g. Ghanem and Spanos (1991),
Kleiber and Hien (1992)] belongs to these methods.Many different interpretations are
possible for terminology of the SBEM. This term is used here to refer to Ute'boundary
element method which accounts for uncertainties in: boundary conditions or material
properties of a structure, as well as the shape of a boundary. Such uncertainties are
usually distributed on a boundary (r) or within a domain (fi) of the structure and should
be modelled as spatial r(x,y) or spatially-temporal r(x,t,y) stochastic fields, where x=(xk)
denotes spatial position in fi or r, teT is time, y is an elementary event (ye”). Such

stochastic fields are defined on the probability space (IT, ), where g’is the space of
elementary events, & is a s-algebra of subsets of £ and P is a probability [Sobczyk
(1984)].

Applications of the SBEM appear to have been initiated in the early 1980’s. The earliest
application used the boundary integral equation method to solving stochastic boundary
value problems of elastostatics [Burczynski (1981)]. Next the SBEM was used to stochastic
potential problems [Burczynski (1985a)], stochastic heat conduction problems [Drewniak
(1985)], groundwater flow [Cheng and Lafe (1991)] and dynamical problems [Burczynski
(1985b), (1988a), Burczynski and John (1985a), (1985b), (1991), Spanos and Ghanem
(1991)]. SBEM was also extended to problems with random media [Burczynski (1986a)]
and [Ettouney et al. (1989), (1993), Manolis (1993)] and to problems with uncertain
boundaries [Nakagiri el al. (1983), Nakagiri and Suzuki (1989), Burczynski (1986b),
(1988b), (1992)].

A concise presentation of the SBEM to problems with stochastic boundary conditions,
stochastic material properties, stochastic shape sensitivity and identification problems was
given in the form of chapters by Burczynski (1989), (1993a), (1993b), (1993c).

2. COMPUTATIONAL METHODOLOGY OF SBEM

Using SBEM to solving boundary value problems with random boundary conditions
in the form of prescribed stochastic fields of displacements u(x,y)=u°(x,y), xeTj, and
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tractions p(x,y)=p°, xer2respectively, where r= riUr2and r 1flr2= 0, as a result a vector
stochastic boundary integral equation is obtained:

c(xu(*y) =fulx,y)p(y,y)dr(y) - fp(x,y)u(y.,y)dr(y) (1)
r r

where U(x,y) and P(x,y) are deterministic fundamental solutions for elastostatics.
Practically not stochastic solutions of these equations are sought but their moments (i.e.
expectations, covariances). In order to solve this problem it is possible to distinguish two
general approaches, namely continuous and discrete approaches.

In the continuous approach deterministic boundary integral equations for moments are
formulated. Boundary integral equations for expectations are identical to those for
deterministic systems.

Boundary integral equations for covariances differ from the traditional ones in that they
involve double, instead of single, boundary integrations [cf. Burczynski (1981), (1985a),
Cheng and Lafe (1991), (1993)]. This approach can be useful to problems with the
Dirichlet (essential) or Neumann (natural) type of stochastic boundary conditions.

In the case of mixed stochastic boundary conditions it is convenient to use the discrete
approach in which stochastic boundary integral equations are discretized into a system of
random algebraic equations:

[AT 1X(y)l =[E£] [ TN, &)

where
[A] and [Bl are deterministic matrices dependent on boundary integrals of
fundamental solutions P and U,
(X(y)} is a column matrix of unknown randomnodal values ofboundary
displacements and tractions,
(Y(y)} is a column matrix of random nodal values of boundary displacements and
tractiops prescribed by boundary conditions.
For the boundary element discretization it is necessary to approximate stochastic fields
of boundary displacements and tractions into random vector representations (X(y)} and
(Y(y)}. Two methods of discretization can be proposed.

The midpoint method
The field value of r(x,y), r=u,p, over a boundaryelement reisrepresented by its value
at the midpoint xe of the element rc:

r' (Y).= r (xey) , r'er’ 3)



60 T. Burczynski

The boundary averaging method
The value for a boundary element re is represented by the spatial average of the random
field over the element re:

reqy) = —— fr(x,y)dr(x) , (&)
Ir-];L

where Irel is the area of rc.

Discretization of random fields of displacements u(x,y) and tractions p(x,y) implies that
the column matrices {X(y)> and {Y(y)} consist of variables whose covariance depends
on the boundary element mesh.

Consequently, the stochastic character of the boundary element values may be expected
to depend significantly on the chosen mesh geometry.

Thus, the important problem in using the discrete approach is the selection of the mesh
size. Numerical calculations show [cf. Burczynski (1993a, 1993b, 1993c)] that the midpoint
discretization method tends to over-represent the variability within the boundary element
whereas the spatial averaging method tends to under-represent the same variability. The
two methods coincide when the random field mesh is sufficiently fine in relation to the
correlation length. The system of random algebraic equations (2) is the base for
evaluating of moments:

- mean value:

(nJ - [Ar"tJHm,) , ®

- covariance matrix:
[Kx]1 = [Ar1[*11*17 [Arir. ©
The cross-covariance matrices are evaluated as follows:

[*.1- [AFI0.1 . [ =[5 100rAL-r- )

Having obtained probabilistic characteristics of unknown random values of displacements
and tractions, together with the specified values of tractions and displacements, the
interior values of displacements and stresses can be calculated [cf. Burczynski (1988a),
(1993a), (1993b)].
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3. APPLICATION OF SBEM TO DYNAMIC SYSTEMS

Two different boundary element approaches to dynamic analysis can be distinguished,
namely: the time domain approach and the integral transform (Laplace or Fourier)
domain approach. Both can be used to stochastic dynamic analysis but it seems that the
application of the Fourier integral transform domain approach offers a special
convenience consisting in the possibility of employing spectral densities in description of
spatially-temporal stochastic boundary fields of displacements u(x,t,y) and tractions
p(x.,t,y). This spectral approach was used to boundary element analysis of stochastic
vibration of elastic and visco-elastic systems by Burczynski (1985b, 1988a), Burczynski and
John (1985a, 1985b, 1991). An alternative time domain approach to stochastic vibration
of elastic systems was also proposed by Burczynski and John (1985b).

The stochastic boundary integral equation for dynamic problems in the Fourier transform
domain has the form:

cO) u(x,u,y) = fi/(x,y,0))p(y,0),y)dr(y)-I"p(x,y,cHu(y,a).y)dry) . @
r r

where u (x,0>y) and p (x,u,y) are the Fourier transform of stochastic spatially-temporal
fields of displacements and tractions, respectively:

r(x,u,y) =Jr(x,t,y)exp(-i(Dt)dt , r=u,p 9)

and U (x,y,0) and P (x,y,u) are the Fourier transform of deterministic fundamental
solutions U(x,y,t) and P(x,y,t), respectively.
Discrete version of equation (8) for o=(g>*), 1=1,2,..L, takes the form:

[AC0)] (Y((0.¥)) = [*(<)] 1Y(<o,N] , 10)

where
[A(g>)] and [B(c*>)] are deterministic complex square matrices dependent on boundary
integrals of Fourier transforms of fundamental solutions P and U,
{X(a>,y)} is a column matrix of unknown Fourier transform of random nodal values
of boundary displacements and tractions,
{Y(<a,y)} is a column matrix of Fourier transform of random boundary displacements
and tractions prescribed by boundary conditions.
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General spectral density of solution of equation (10) has the form:

[Sx(olt«,)] = [A(G)1) r 1[fi(<01)]1[Sy(0)1,G)2)][B (0)2)]tf[A(0)2)]-1/
cot =(to*) , k=12, /= 1.2,..L

Cross-spectral densities are expressed as follows:

[$..(«,,«,)] = [ACuD]-ILi («D][Sy(o1,u2)] , d2)

[57CQRi-a).)]1 = [Si(@.nD]1[B (U)W [A (D] , (€9))

for to=(0)kD, k=1,2, 1=1,2,.L. The ].JH denotes conjugation and transposition of the
matrix [].

4. APPLICATION OF SBEM TO RANDOM CONTINUOUS SYSTEMS

Stochastic nature of the material results mainly from the nonhomogeneity and
indeterminacy of the media structure. The complexity and irregularity of the properties
of real media leads to a stochastic description of these media [Sobczyk (1984)].

It is difficult to obtain fundamental solutions for stochastic media because of the
complexity of their mathematical formulations. To solve this, problem perturbation
techniques can be used (cf. Burczynski (1986a), Ettouney ct al. (1989), (1993), Manolis
(1993)]. However, this approach requires the assumption that random fluctuations of
stochastic properties of a medium are small.

It is possible to apply the other approach [cf. Burczynski (1993a)] which does not
require such assumption. This approach consists in using the isotropic deterministic
fundamental solutions corresponding to a reference elastic model C°, whose properties
may be found by averaging the stochastic medium:

C(*)Y) = C» +C(x,y) , xeld , <14)

where C°=E[C(x,y)] is the mean value of the elastic moduli tensor, and C(x,y) is a
random field characterizing the medium fluctuations with mean value E[C(x,y)]=0 and
the correlation moment Kc (x1)X)=[K kjmnprsl(x1,X2)]. In the general case for the three-
dimensional problems C is a 6x6 matrix and the number of different elastic constants in
C(x,y) is 21.
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As a result the following vector integral equation is obtained:

cOAUx,Y) = | U, Y)p(y)dr-JP(x, y)u(y)dr-fR(x,y)o(y,HHdQ(y) (15
r r q

where U, P and R are deterministic fundamental solutions for the medium with material
constants C°, and

<L) = Cy.yde(y) .,  yeQ . @16)

Equation (15) is similar to deterministic problems with only the addition of a new
stochastic domain term which depends on the elastic moduli tensor C(x,Y) = Ckjmn(x,Y)
characterizing the random fluctuations of medium. This term can be integrated over the
domain using internal cells.

The problem is solved iteratively by finding the first solution with a(y,Y)=0 and then
computing their values and resolving the system as many times as required.

5. APPLICATION OF SBEM TO SHAPE DESIGN SENSIVITY ANALYSIS

One knows that boundaries bounding real bodies are very complicated as far as their
geometrical shape is concerned. Usually they are uneven and the irregularities do not
easily lead to a unique deterministic description. Therefore boundaries of such bodies
can be defined stochastically. SBEM is a very useful and natural technique for modelling
such problems. In order to solve these problems it is possible to use an approach based
on the idea of stochastic shape design sensitivity analysis [ef. Burczynski (1986b, 1988b,
1992, 1993a, 1993b, 1993c)]. The application of this approach to examine stresses, strains,
displacements, natural frequencies and in the general case an arbitrary functional with
respect to stochastic shape of the boundary is presented. For the simplicity of further
considerations boundary conditions have been assumed deterministic.

One assumes that stochastic shape of the boundary r* may be defined by prescribing a
stochastic vector field 6g(x,Y)=(<5gk(x,Y)), so that:

x“(y) =*+ 6g9(x,y) , E5g =0, an

where the deterministic variable x is related to the baseline of the boundary r.

The stochastic transformation field g(x,a(y)) modifies the external boundary r, where
a(Y)=(ar(Y)), r=1,2,..R, is a set of random shape parameters, which specifies the actual
stochastic tolerance range of the structure.
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The variation of the transformation field 6g is expressed as

6gk = v/6a,(y) , (18)

where vk=3gk/dar can be considered as a velocity transformation field which is associated

with a shape design parameter ar(y). One assumes that random shape parameters can
be expressed as follows:

a(y) =ao+b6a(y) , £6a(y)=0, 19)

where variation 6a(y)represents fluctuation of random parameters and au=Ea(y) is the
mean value of shape parameters a(y).

If a(y) has the Gaussian distribution then it is completely described by the mean value
aQand the covariance matrix [K]=E[6a6aT],

Due to small random variations of the boundary, resulting stochastic fields of stresses

a(x,y), strains e(x,y), displacements u(x,y) and natural frequency o>(y) can be expressed
as follows:

a(xy) = 00(x) +5a (x,y), E&o(x,y) =0 ,  X6&, (20)
e (x.y) = e0O(x)+6e (xy), EB5c(x,y)=0 ,  xeCl, (21)
u(x,y) = u0(x) +5u(x,y) , EB5u(x,y) =0 , xeQ or xeV, (22
u(y) =u0+6u(y) , E6co(y)=0, (23)

where q0=Eq(x,y), g=cr,e,u and (jO=Eu)(y) are identified with the mean valueof state
fields calculated for the untransformed boundary r with the deterministic base shape
parameters aQ=(aor), r=1,2,..R.

In the general case it is possible to consider an arbitrary functional

J= Fvy(aew)da+ J (p(u,p)dT, (24)
la

where T=(a,e,u) is an arbitrary function of stresses a, strains ¢ and displacements u
within the domain fi =fl(a)i and <p(u,p) is an arbitrary function of displacements u and
tractions p on the boundary r =r(a).

The functional J can express global mechanical characteristics (e.g. potential or
complementary energy) as well as local stresses, strains or displacements [ef. Burczynski
(1992)].
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Due to stochastic shape variation the functional J can be expressed as follows:

/(a#+ 6a(y)) =J(a0)+bi(y) . (€D)

where the first variation of the functional 6J(y) can be expressed analytically utilizing the
adjoint approach.

Independently of the primary system, a concept of an adjoint system with the adjoint
solution ua, ea and oa s introduced.

The adjoint system is an elastic body with identical configuration and physical properties
as the primary system but with other boundary conditions and body forces. On the
boundary r there are prescribed boundary conditions in the form:

on ( ma~£) _ On (26)
dp du

and within the domain si initial strain eal, and stress cral fields and body forces ba are
specified:

= (a,e,u) gml _ d'H (o,e,u) b, = 9T (g,e,u) @7

do de. du
The constitutive law for the adjoint system has the form:
a° = C(ea-eai)-aa, 28)

where Cé=cijkle*l, Cjjkl=A.5ij5kl+/i(5jk6j|+6]jl6jk), A and 1 are the Lame constants.
The first variation of the functional J can be expressed as:

67(y) = fS)rcay)) ., 9>

where

1M y)l = [8al(Y),8tFAY)J... 8AF(Y),-,6aji(Y)]7, (€]

is the matrix of variation of random shape parameters, and

fS) = (31)

is the sensitivity matrix whose elements Sr, r=1,2,..R, are expressed by total material
derivative of the functional J with respect shape parameters, i.e. S =DJ/Dar



66 T. Burczynski

The total material derivatives ofJ has the form [cf. Mroz (1986), Burczynski (1992,1993b,
1993c)]:

Sr = Y - 0-e“+ b-ua+ > +p "ua),,,- 2(4» +p -ua)9tntvtdr

Du (o] rdT - Dpo o " dr.
\/(IM & "=~ " m/(in oa e "

o/1* +p-u‘jv'dL ,

(32)

where integrand [“+p»ual=("+p«ua)+-(0+p«ua)'represents the discontinuity of

(o+p«ua) along the curve L, which separates two parts of the boundary Tj and r2

n=(nk) is the unit normal vector, Stis the mean curvature of the boundary.

It is seen from (32) that sensitivities of J depend only on boundary state variables of the

primary system and the adjoint system. This fact gives significant advantages in numerical

calculations by means of the boundary element method.

Consider now a special kind of shape transformation in the form of translation, rotation

and scale change (expansion or contractions). This case is especially interesting when a

body contains inhomogeneity in the form of internal defects such as a crack, a cavity or

an inclusion. Then the dependence of the functional J on stochastic shape and location

of such internal defects can be examined.

One assumes that the stochastic shape transformation field g(x,a(y)) modifies of a given

initial shape of the internal defect in the form:

- stochastic translation (T), by prescribing 6gk(x,y)=6bk(y), k= 1,2,3 where bk(y) are
random translation parameters,

- stochastic rotation (R), by prescribing 6gk(x,y)=ekpx16 o>p(y), p=1,2,3 where o)p(y) are
random rotation parameters, ekpl denotes the permutation tensor,

- stochastic scale change (expansion or contraction) (S) of the crack by prescribing
6gk(x,y)=xker|(Y), wWhere T](y) is a random scale change parameter.

Now the total material derivatives DJ/Dar, where a(y)=(ar(Y))H(b1,b2,b3,0 j,”,* 3,11) take

the form of the path-independent integrals:

S' mE r = fz[(o,e,u,0°,e°,u°)dr" , (€2))

r=1,2,3,4,5,6,7;, L=T,R,S

where

= (T by +0iju'k+0J«u -a e 6kjny, (€]

for translation (k= 1,2,3),
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Tp™

kpl OWE'V /6ty + 0 </«“**1 + auuk + °ij*k+ ° W k xi>nj , (35s)

for rotation (p=1,2,3), and

zl = - auui- lj - p 1aHUi +XkCHULk- xkavurjb+ *4ove  ay €9)

for expansion or contraction.

In the last case, the form of Zs7 is valid 7=0 and <= (p(u) isa homogeneous function of
order a and B=1 for 3-D and flI=0 for 2-D. r, is an arbitrary closed surface (or contour
for 2-D) enclosing the defect. Primary (u"ejj.cTjj) and adjoint (u”~e”ay 8) solutions along
r, can be obtained using boundary element procedures. Enclosing the defect by a surface
r*, derivatives of J can be determined by calculating the respective path-independent
integrals along any surface . In particular case the surface r, can be identified with the
external boundary surface r.

Internal defects can introduce local gradients of displacements or stresses which reach
great or infinite values as compared to respective values within the structure domain.
Calculations of derivatives of J by means of path-independent integrals along fixed
contours far from such singularities (e.g. cracks) ensure good accuracy of these derivatives
[Burczynski and Polch (1993)].

The variation of natural frequency can be expressed by:

6co(y) = {S*)~{6a(¥)) , (€1))

where elements of sensitivity matrix {S“ > are evaluated by total material derivative of
natural frequencies with respect to shape parameters [cf.Burczynski (1986b, 1988b, 1992,
1993a, 1993b, 1993c)]:

= N = - - -
sr 7u7ar 20>0fi_[o(u) e(u) - Wgpu-u] nkvkdr , (€3))

where p is the mass density and u(x) is the displacement amplitude.

It is interesting to notice that 6u>(y) is expressed by the boundary integral and depends
on the natural frequency <jQ the mode u(x) and the stochastic fluctuation of shape
parameters 6a(y). This is very important in numerical calculations using boundary
elements.
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The mean value o Qcan be evaluated using the dual reciprocity approach for the free
vibration problem. After discretization of the boundary r by means of boundary elements
the following equation is obtained:

[if] {ul= G[Af]i« ), 39

where {u} is thecolumn matrix of nodal values of displacement amplitude, [M] is the
mass matrix.

The covariance of stochastic stresses, strains and displacements for the two fixed points
Xj and x2 is calculated from:

= £ ([9C*i>Y)-90C*1)] [9(*2*Y)-90(*Di bl =
E[& «(*,.Y)6?2(*2>y)] = (S(x,)} [X] {S(x2)}r (40)

The variance of the random natural frequency can be calculated using equation:

Kar(tt) =£[q(y)-uo0]2 = E[6ca(Y)]2 = (S“1[K] |S“)r . (41)

In order to calculate the sensitivity matrices {S} or {S“ > one should determine the
transformation velocity field v, which is associated with the shape parameter ar(y). The
selection of shape design parameters is the key element in the shape sensitivity analysis
and optimal design.

6. NUMERICAL EXAMPLES

Example 1

The chain link (Fig.la) made up of the visco-elastic material is loaded by the
slow-changeable spatially-temporal stationary stochastic field of tractions p(x,t,y) whose
spectral density is given by

sp(xitx2,u) = 26(X, -x2)a*a(P2+a2)/[x(02- (2- a2)2+4ct202]

where o£= 289[N2], a=0.15[s“1], B=7[s’1].
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Fig. 1.

Numerical results of spectral densities of vertical displacements of the point F for the
Maxwell (M) and Kelvin (K) models are presented in Fig.lb.

Example 2

The problem of stochastic shape sensitivity analysis for a vibrating steel arch (Fig.2a) is
considered. The boundary element model consists of 38 linear elements. It is assumed
that the boundary undergoes small random variation measured along the radius with the
covariance K(x,y)=a2exp[(-1 xr x2 |- 1y1-y2 I)/a], where ct2=15»10"6 [m2].

The mean values of the first, second and third natural frequencies are cjol=3034[s‘1],
<4)02=4788[s'1] and ¢03=7743[s""1], respectively.

Fig.2b shows the dependence of standard deviations of natural frequencies as a function
of the radius of correlation a [m].
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b) Frequency Standard Deviations Versus Correlation Length

Fig. 2.
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Streszczenie

W pracy przedstawiono podstawowe koncepcje stochastycznej metody elementéw

brzegowych w rozwigzywaniu zadan brzegowych teorii sprezystosci z losowymi warunkami
brzegowymi. Opisano dwa sposoby dyskretyzacji losowych pél przemieszczer brzegowych
i sit powierzchniowych prowadzace do uktadu losowych réwnan algebraicznych, ktére sa
podstawg do okre$lania momentow.
Omoéwiono zastosowanie stochastycznej metody elementéw brzegowych do zagadnien
dynamicznych oraz do uktadéw o losowych witasno$ciach materiatowych. Przedstawiono
takze zastosowanie metody do zagadnieh analizy wrazliwosci, gdy brzeg uktadu
sprezystego opisany jest z losowg tolerancjg. Podano przykiady numeryczne ilustrujgce
metode.



