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ZASTOSOWANIE SIECI NEURONALNYCH
DO ODWRACANIA MODELI DRGAN

Streszczenie. Celem pracy jest wskazanie przydatnosci modeli odwrotnych w
badaniach drgan (np. do identyfikacji rozkladu niewyréwnowazenia) i okreslenie
sposobu odwracania znanych, istniejagcych modeli. Zamieszczono prosty przykiad
obliczeniowy, pokazujacy, jak mozna okre$la¢ rozktad niewyréwnowazenia wzdhuz
wirnika na podstawie amplitud drgan czopéw w wybranych dwdch ptaszczyznach,
obserwowanych dla réznych predkosci wirowania.

APPLICATION OF NEURAL NETWORKS
FOR INVERTING OF VIBRATION MODELS

Summary. The aim ofthis paper is to point out the usefulness of inverse models
in rotordynamics (e.g. for identification of unbalance distribution) and to show how to
invert known, existing models. The overall methodology of the approach is presented,
along with a simple numerical example which shows how the distribution of
unbalance may be identified from knowledge of the response in only two planes at
different rotating speeds.

NnPHMEHEHHE HEIIPOHHbIX CETEII
flJIH OTBEPHYTHU MOX™EJIEH KOJIEEAHHH

Pe3K>Me. Ilejib pa6oThi - sto noKa3aiiHe npiiromiocrii 0SopoTHDbix
M otrejieH b HecjieflOBaHHH KojieSaHHH (H.n. HueHTinjiHK aiiHH
pocnojioixeHM  HeycTpoiiHHBOCTH poBHOBeciia) h onpeneneHHs cnocoSa
OTBepHyTHa H3BecTHbix, cymecTByroutux MoicjieH. [loMemeHo npa.Moaii
HCHecjieHHbiH npHMep, KOTopwii noKa3bmaer xax momio onpetejwTh
pacnojioacenue ncycipoHUHBOcru poBHOBCcua B™irniy poTopa Ha ©6a3e
a.MnjiiiTy;i ncpc.MeineiiHa qancjieii b H36paHHDbix /(Byx iuiockoctsx, H3MepeHHDbix
ana pa3Hbix CKopocTefi noBopanuBaiina poTopa.
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1. INTRODUCTION

There exist a great number of interesting papers and books (e.g. [3], [13], [5]) which
discuss how the vibration phenomena are caused by the design and technical state of
machinery. It should be underlined that conclusions are quite often contrary to our intuition. It
means that special tools, such as mathematical modelling have to be used to predict the shape
and values of vibration. Today the prediction of vibration done by means of the finite or
boundary element models with distributed masses of shafts, inertia of impellers, stiffness,
internal and external damping as well as dynamic excitation from the fluid, is quite
representative when compared with results of experimental measurements. This paper contains
selected parts of [2],

Mathematical models in rotordynamics contain non homogeneous systems of differential
equations with parameters depending on features of rotating machinery. Due to non linearity
and complex form of equations the general analytical solutions are unknown. Most often it is
possible only to solve them in a numerical way and calculate the values of selected vibration
estimates for the given set of parameters. The models make known cause-effect links existing
in modelled objects and set relations between the following groups of variables:

independent variables representing features that are easy to define and to measure (e.g.
operating conditions, general design features,...),

independent variables representing features that are very difficult (or even impossible)
to measure (e.g. distribution of imbalance masses along the rotor, damping of rotor-
bearing system,...),

dependent variables (results of calculations) representing features that are quite easy to
measure (e.g. vibration estimates for bearings,...),

dependent variables (results of calculations) representing features that are no so easy to
measure (dynamic forces acting on bearings and supporting structure, vibration
estimates for planes away from the bearing,...).

It seems reasonable to look for another way for modelling, where we can start from the
data that are easy to measure, to obtain as a result the data that are not so easy to measure. By
means of such models it will be possible for example to predict the distribution of imbalance on
the rotor based on the results of measurements. From the physical point of view a solution of
the problem is possible, because the distribution of unbalance determines the degree to which
particular bending modes of vibration are excited (for a flexible shaft). There are two
possibilities to solve the problem:

prepare new models from scratch,
use the existing models and try to invert them.

We assume that the second possibility is better, because the existing models contain
knowledge collected over a long time. Moreover they are carefully validated with respect to
results of experimental test on machinery.
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2. GENERAL PROCEDURE

2.1. Formal Description

We consider an existing (and given as an algorithm or program) mathematical model M by
means of which a multidimensional metric space {MI} of values of input parameters mij is
mapped into a multidimensional metric space {MO} of values of output parameters moj.

Elements of the spaces will be written as matrices (so called vectors) MI - [mij] and
MO = [tf10/]- Not all parameters are equally important for our task. Let us consider the

projections {MIA}, {MIB}, {MIC}, {MID} and {MOA), {MOB} ofthe spaces, such that
{M1} = {MIA} x {MIB} x {MIC} x {MID}
{MO} = {MOA} x{MOB} 1)

where the inputs to the model M
{MIA} contains unknown parameters, which should be estimated by means of an
inverted model (e.g. distribution of unbalance),
{MIB} contains known parameters (e.g. operating conditions),
{MIC} contains parameters, that may be considered as constant (e.g. design of
machinery, stiffness, damping),
{MID} contains parameters difficult to measure, that we have to leave out (e.g.
misalignment),
and the outputs from the model M
{MOA} contains known parameters (e.g. radial vibrations of rotor in normal planes at
two given positions along the shaft),
{MOB} contains unimportant (presently) and unknown parameters (e.g. radial vibration
ofrotor in other planes).

Fig. 1 Models: M - direct, N - inverted
Rys. 1. Modele: M - bezpos$redni (odwracany), N - odwrécony

We formulate the basic task as follows (see Fig. 1):
Given the mapping M
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{MIA} x {MIB} x {MIC} x {MID} - — >{MOA} x {A/05} ()

For a fixed matrix MIC find the mapping N such that
N:
{MIB} x {MOA} MIC=const {MIA} 3)

We do not assume that the matrix MIC is known. We assume only that it is constant. The
remaining subspaces {MID} and {MOB} are not taken into account (in the mapping N).

Of course it should be clear that the mapping N does not exist in a general case. We are
not able to expect that leaving some parameters out (subspace {MID}) it will be possible to
find the mapping N. Ignoring a set of parameters results in randomness of the inverted model.
The level of this randomness is strongly task-dependent. Even if we take into account all
parameters, it will be (strongly) possible that the mapping M cannot be inverted. Such a
situation can occur when for the mapping M there exist identical matrices MO for a few
particular, different matricesMI, i.e. when mapping AT converts different input patterns into the
same output pattern (see Fig. 2).

Fig. 2. It may be possible that the mapping M cannot be inverted
Rys. 2. Mozliwe sa sytuacje, w ktérych odwzorowanie M nie bedzie odwracalne

What to do? We should simplify the task. In general there are two possibilities: apply a
classifier and/or fiizzify the data.

2.2. Fuzzy Classifier

The notion of fuzzy sets was introduced by [15], Fuzzy set A in a space U is the set of
pairs (u,wA{u)\

A={(u,wa {u))-.uz U} @

where the membership function wA(u) for the element u from the space U takes its values

from the range [0,1] of real numbers. This function estimates a degree in which the given
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element u belongs to the set A. The more closely this value is to 1.0 than more strongly the
element belongs to the set.

To fuzzify the data in {MIA} we can define transformations for particular parameters
converting their real values to a small number of linguistic values - like small, large. The
similar treatment can be done not for single parameters but for the selected subset of
parameters in {MIA}. In the space spanned on these parameters we select some regions called
classes and define a family of such classes as a family of fuzzy sets, given by their membership
functions {W’i,w2>-<wc} mFor our application it is strongly recommended that the classes are
defined directly and we are able to interpret what it means that parameters belong to a class. In
an opposite case when the classes result from clustering of data such interpretation may be very
difficult. The values of membership functions (without the direct knowledge of the parameters
MIA used when defining the values of the functions) can be used to partition the space {MIA}
by means ofthe following rule

if Wi(x)>Wij(x) forall j=1 , —/+1,..,c then xeclassj (5)

To fuzzify the data expected from the discussed model N we introduce in equation (3) the
mapping C

{MIA}— (6)

converting the real parameters to the values of membership functions.

2.3. Neural Networks

The general method to look for the mapping N is to consider the black box which is
trainable (see Fig. 3). Neural networks are an appropriate tool to solve such tasks. We can
generate a lot of examples by means of the model M and train the network (i.e. model N) on
the examples. This approach seems to be attractive, since due to existing software the required
knowledge ofthe theory of neural networks and training strategies is minimal.

The theory of neural networks is huge. It is not the aim of this paper to make an overview
of major architecture and theoretical concepts (for an overview see e.g. [11], [7], [12], [4], [8],
[6]- [9]). One (basic) kind of neural network, which seems to be quite appropriate for our
application is presented below. It is a simple three-layer feed forward network with back
propagation of errors (Fig. 8).

Neural networks consist of linked processing units called nodes or neurones, where
interconnections of nodes may be in general variable. The selected network has a single layer
of hidden nodes sandwiched between the input layer and output layer of nodes, where the
inputs to nodes in hidden and output layer come exclusively from respectively input and hidden
layer. The input layer contains virtual nodes only (they do not do any processing). The
network propagates the input data through the layers to the output layer. Eachy'-th node in the
hidden or output layer / transforms outputs X/_n from nodes in previous (7-1) layer, to its
output Xjj
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n-1
X3 =/( Z WJJ XI-U +wlJ,n) ©)
i=0
where w /jj are weights, represents a bias and where the activation function/ is any

differentiable, monothonic function - most often the sigmoid function (called logistic function)

/Y= 7 ®

1+e

The useful property of the sigmoid function (8) is that the derivative of the function can be
calculated directly from the value ofthis function

AwiW il/to) w

Fig. 3. Model N as a black box during training
Rys. 3. Model A’jako czarna skrzynka w fazie trenowania

The operating characteristic of the net is mainly defined by the topology ofthe network, by
the weights w/j j and does not depend significantly on the shape of activation function /

Weights w/y,- are calculated in the training (supervised learning) or learning (unsupervised

learning) phase. During training the known set of samples in the form of pairs consisting of
values of all inputs and expected values of all outputs is given. The outputs are next calculated
by the network (i.e. inputs are feed forward), using current values of weights, where initially
the values ofweights are set randomly. From the comparison of calculated and expected values
an error results for each output.

The global measure of errors (e.g. sum of their squares) should be minimised. Due to the
shape of (7) and (8) it is possible to calculate the degree to which each input to a given node
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contributes in its output error. Finally it is possible to propagate errors back to previous layers
and using appropriate minimising strategy it is possible to update iterativly the selected weights
w/j j . The calculation of errors and updating of weights is repeated until the network reaches
an expected level of quality. Of course the convergence of the process is not guaranteed. A
neural network is a highly non-linear system and assuring the stability of such a system is
difficult. To obtain the convergence and stability during training and to guarantee jumping over
local extremes it is necessary to take into account some special heuristic algorithm for updating
ofweights (see e.g. [9] or [10]).

As the result of training we have the set of weights. The result should be tested using an
independent set of data, because due to the great number of weights and non-linearities in
nodes it is possible to reach a state when the network perfectly maps the training data but
produces significant errors for other data.

3. NUMERICAL EXAMPLE

The discussed methodology will be illustrated with an example. It will be shown how to
invert a model by means of which we predict the vibration of the shaft as a result of unbalance
into a model by means of which it will be possible to identify the unbalance based on the results
of vibration measurements at locations near the bearings.

Fig. 4. Investigated object
Rys. 4. Schemat badanego obiektu

3.1. Investigated Object and Analysis Method

The investigated (artificial) object consisted of a rotating shaft with five discs (impellers)
supported by two similar journal bearings. To simplify the example an axial symmetry of the
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supporting structures is assumed. It is assumed too, that the displacements of the shaft can be
measured at two fixed points A and B (see Fig. 4). The shaft is considered as consisting of
eight elements a, b, ..., h. Discrete unbalance may be located at the given radial and angular
position on the selected discs/, I, ..., V

The model M introduced in the equation (2) may be comprised of mathematical equations,
algorithms (procedures), computer programs and so on. Vibration of the discussed rotor
system was simulated with the program TURBO [14] which calculates the forced vibrations of
a multiply supported rotor due to unbalance using a finite element approach. For the tests in
question journal bearings were modelled using 8 linearized coefficients. This introduced speed
dependent bearing stiffness K and damping C as may be expected in a practical situation.

3.2. Test-Simulation

To check the basic properties of the given object, the maximal amplitude of the shaft
displacements measured in the point A (Fig. 4) were calculated for rotating speeds from 1000
to 9000 rpm and for five unbalance cases:

case U001 full unbalance on the disc/,
case U002:  full unbalance on the discl 1,
case U003:  full unbalance on the disc I11,
case U004:  full unbalance on the disc 1V,
case U005:  full unbalance on the disc V .

Results of the calculations are shown in the Fig. 6. The relative values of the maximal
amplitudes calculated for each rotating speed are compared in Fig. 5.

0 U005
QU004
0 U003
0 woo2
ouooL

Fig. 5. Relative maximal displacement at the point A (Fig. 4) as a function of rotating speed
Rys. 5. Wzgledna amplituda przemieszczeri w punkcie A (Rys. 4)
jako funkcja predkosci wirowania
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01010 K P PR 1, —— U003 U004 U005

Fig. 6. Maximal displacement at the point A (Fig. 4) as a function of rotating speed
Rys. 6. Amplituda przemieszczen w punkcie A (Rys. 4) jako funkcja predkosci wirowania

The similar calculations of relative values were done for the unbalance on the disc/ (75 p

m) and on the disc 11 (25 pm) with the following lags of the angular location of unbalance on
the discs:

case U009: a[[[-a[ =0°,

caseUOIO: ajn-cq =90°,

case UO1l: otnj-ai = 180°.
Results are shown in the Fig. 7.

Fig. 7. Relative maximal displacement at the point A (Fig. 4) as a function of rotating speed
Rys. 7. Wzgledna amplituda przemieszczen w punkcie A (Rys. 4)
jako funkcja predkosci wirowania

From the results of test-simulation it follows that the shape ofthe function
displacement ( rotating speed)
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depends on the location of unbalance along the shaft (see Fig. 5) and on the angular position of
unbalance (see Fig. 7), i.e. it depends on the unbalance case. Of course if we generate a set of
similar figures for other unbalance cases it should be very difficult (or even impossible) for an
expert to formulate a set of heuristic rules by means of which it will be possible to identify the
location ofa main unbalance.

3.3. Input and Output Parameters

The investigated inverse model N should predict the unbalance ofthe rotor on the selected
disc. The result is expected as a qualitative value. It was assumed that the output of the inverse
model N should estimate the membership functions of fuzzy sets interpreted as follows (for i =
I 11,.... V)

"Main part of unbalance is located on the disc (10)

It means that there will be 5 output parameters (estimates of values of membership
functions) for the model N:

£u< ¢m; clv; cv; an

For the simulation of vibrations by means of the model M (program TURBO simulating
the vibration of investigated object), the unbalance case will be described by the eccentricity of
each disc

eccj; eccji; eccnj; ecclV; eccv; (12)
and their angular positions
ab all «m; «iv; «Vi (13)

in a coordinate system rotating together with the shaft.

It is not expected that the values (12), (13) will be calculated by the inverse model N. To
prepare the data for training of the model N it is necessary to establish a relationship between
the parameters (12), (13) and the membership functions (11). Expected values of the
membership functions (11) will be calculated (during simulations) as relative eccentricity of the
given disc /' (for/=1, 1l V)

C, = ----- e meeeeee (14)
ecci +ecc][ +eccnl +ecC[V +eccv

It should be pointed out that we would like to predict only the location of the unbalance
along the shaft and not their angular positions although it is evident e.g. from the Fig. 7 that
measured vibration depends strongly on the angular position. It means that the angular position
belongs to the parameters pointed out as {MID} in (1).

We will try to design the model N taking into account the basic kiss-rule for all designing
processes (keep it simple, stupid). It means we assume thatthe model will besimple, i.e. the
number of layers, the number of nodes and the numberof inputparameters will be small. We
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will consider the maximal amplitudes of the shaft displacements measured in points A and B
(Fig. 4) at the following rotating speeds only:

W|=3000; «2 =5000; 73 =7000; [1/min] (15)

It is important that we do not select the critical speeds. Such treatment is convenient for
applications, where it will be possible to obtain the proper quality of measurements done at
stabilised rotating speeds (e.g. specified in practical recommendations for run-up procedure).

From the above assumptions it follows that for each case of unbalance there will be 6
parameters (maximal amplitudes of displacement) calculated by the model M

°A,b «4,21 «*31 aB,l; aBE£, aBE [um] (16)

Because the inverse model N should identify theunbalance in a qualitative form, it is
convenient to convert the parameters (16) into non-dimensional, relative values

bA,U bA,2- DbA3i bD,I!  bB,2>bB,3i 07)

Values (17) will be used as input parameters for the inverse model N. The simple method
to obtain such values and to keep the relations between the measurements done at different
rotating speeds in both measuring points is to use the formula

bji= hi- for i=a,b\ j= 1,23 (18)
aA,l+aA,2+aA,3+aB,l1+aB,2+aB,3

3.4. Inverse Model

The investigated model N can be designed independently for each disc. In the example we
discuss the simplified version ofthe model by means of which it will be possible to estimate the
unbalance for the first disc only. Similar steps can be done to estimate unbalance on other
discs. Such steps will be necessary for the prediction of the unbalance along the shaft and for
pointing out the disc with maximal unbalance by means of (5). Intuition suggests that the
structure of the network should be 'adjusted’ to the current problem and should take into
account the specific properties of the task. In our case it is difficult to find such general features
of the task.

We consider the model .V for the disc | as the neural network (Fig. 8) with p=6 inputs and
7=1 output. Basing on general recommendations (e.g. [9]) we decide to use

(19)

hidden nodes. The output node [2,0] of the network (Fig. 8) will be calculated according to
(7) asavalue of the sigmoid function (8). This function takes its values in the open range from
0.0 to 1.0 only and the network is not able to learn outputs outside this range. To avoid
extremely large absolute values of the argument z in (8) it is required to keep output values in

a restricted smaller range. We assume that the training values of the output should belong to
the range from 0.15 to 0.85 . Due to this assumption the values ¢- (14) and fy (11) ranging
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from 0.0 to 1.0 will be converted into new values d, and d, , by means of the following
linear transformations (for i =1, 11,.... V):
d,= 0.15+0.7-c,

(20)

<,=0.15+0.7-5,

0,0 0,1 0,2 0,3 0.4 0,5 bias

K K K K2 K k .

Fig. 8. Neural network (model N)
Rys. 8. Siec neuronalna (model N)

3.5. Training Phase

To describe the network (Fig. 8) it is necessary to specify
s=(p+)<r+(&+1)-+=25 (21)
weights wijj mentioned in (7). It is clear that the number of training cases should be

significantly greater than the number of unknown weights. We decide to use 95 unbalance
cases denoted as U001, .., U095. They include the different static as well as dynamic
unbalances and result in different vibration modes.

Training of the network is a long term process. Before we start the training of the selected
network it is reasonable to check that the task is solvable. How to check that there are any
properties of the training data that make solution impossible? Ifwe consider Fig. 2 one way is
to check that different values of inputs to the model N produce the different outputs of the
model. We take into account the distances between all pairs of the unbalance cases m and ttj

(such that i >j) calculated in the space of input parameters
distin[uh Uj) = J(bAii(u/)-b Atl(u/))2 +---+(bBt3(u , ) -iBp3(uj))2 (22)

and in the space of output parameters

distout[uh Uj) =|d ~ -d ~u j) | (23)
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Due to the definition of unbalance cases U001, U095 and due to (20) there are possible
only the following values of distoul

0.15; 0.325; 0.5; 0.675;, 0.85; (24)

The minimum, mean and maximum values of distances distjn (22) corresponding to the
above distances distout (for the discussed unbalance cases U001, ..., U095) are presented in
Fig. 9. From the figure it follows that training data are correct and they do not contain the

cases presented in Fig. 2. It can also be expected that the quality of results will be better for
values of distoul above 0.5 (i.e. for the main unbalance located on the disc I).

— ¢ — minimum — Li— mean — A — maximum

Fig. 9. Distances in the input space corresponding to the distances in output space
Rys. 9. Odlegtosci w przestrzeni wejsciowej odpowiadajace odlegtosciom
w przestrzeni wyjsciowej

The values 04,1 , 3 (16) for each unbalance case were calculated by the program

TURBO [14] on a mainframe computer. Training of the network (Fig. 8) was carried on a PC
by the program MAS [1], Program MAS (an expert system shell) can handle frames and
uncertain decision tables. It contains an interface to couple simulation procedures. The part of
MAS responsible for training of neural networks is based mainly on procedures described in
[9], The aim of calculations carried on in such an inconsistent environment was to show that it
will be possible to realise the basic idea discussed in the paper, i.e. that it will be possible to
invert existing, well validated models supplied in the form of closed computer programs,
without any modifications of the programs.

3.6. Quality of Results

The network (Fig. 8) was trained by epoch . It means that output errors and corrections of
network weights were calculated for a set of training cases and not for each training case

individually. Such training strategy allows a stable solution to be obtained. The set of training
data (cases U0OL1........ U095) contain unequal numbers of cases for particular output values d\
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(20). To compensate for this, the cases U001, .., U041 were exposed 4 times for one
exposition of remaining cases.

expected output

Fig. 10. Output values from the network (Fig. 8)
Results of training (cases U001,..., U095)
Fig. 10. Wartosci wyjsciowe sieci neuronalnej (Rys. 8)
Wyniki fazy trenowania sieci (dane U001,..., U095)

Results of training are presented in Fig. 10 and Fig. 11. The mean square error of the
output values from the network

There are only the following 5 cases with errors greater than 2e«a

Case expected calculated error
output output

uo039 0,3250 0,1131 +0,2119

uo44 0,1500 0,3941 -0,2441

uo48 0,1500 0,3779 -0,2279

U053 0,1500 0,4546 -0,3046

U056 0,1500 0,3875 -0,2375
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and there are no cases with errors greater then 3-<7. From the histogram (Fig. 11) it follows
that the confidence interval for the output from the network can be set as

di~0.2<dj <dt+0.2 (26)

18
16
14
12

=
ONP» OO

u£|y R
06 04 -02 0 02 o4 06

Fig. 11. Histogram ofthe network errors [dt- d,) for the cases U001, ..., U095
Rys. 11. Histogram btedéw sieci neuronalnej [dt-d,) dla danych U001, ..., U095

0,9

0 0,3 0,6 0,9
expected output

Fig. 12. Output values from the network (Fig. 8) for the cases U100,..., U130
Rys. 12. Wartos$ci wyjsciowe sieci neuronalnej (Rys. 8) dla danych U100, ..., U130

As mentioned in section 3.5 the quality of results in Fig. 10 is better when the main
unbalance is located on disc | (i.e. at higher output values d\). The greater deviations for the
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small values of outputs (i.e. when there is little or no unbalance on disc I) are caused mainly by
the large number of different unbalance distributions (cases U042, ... UO095) that are
represented during training as single number c¢/j =0.15 . Moreover this feature of training
cases was slightly amplified by the described training strategy. The discussed deviations should
not result in serious errors when we look for the disc with maximum unbalance. By means of
similar networks designed for the other discs (ll,...,V) it will be possible to identify the
qualitative distribution ofunbalance along the shaft.

The network was tested after training with new data not used for training (cases U100, ...,
U130). Results of the test are shown in Fig. 12. Even though the test data contained
significantly different unbalance distribution, where both eccentricity and angular location were
changed compared with the training data, the quality of the test results are seen to be similar to
that of the training results in Fig. 10.

4. CONCLUSIONS

The results show how a neural network and inverse rotordynamic model can be trained
and used to identify unbalance distribution in a multidisc shaft, by considering maxima!
amplitudes of shaft vibration measured at two locations for three different rotating speeds.

A numerical example demonstrates that the unbalance on a selected disc can be
qualitatively evaluated even though the total distribution and angular location of unbalance
along the shaft is unknown. Calculations should be continued for all discs. To obtain better
quality of results one should take into account more input parameters, connected with greater
number of considered rotating speeds as well as with the shape of orbits of the shaft in bearings
described by the ratio of maximum and minimum displacement or by more detailed fuzzy
clusters of orbits.

It was shown that the inversion of rotordynamics models given in the form of computer
programs is possible. This opens the area for extensive investigations that seems to be very
important for technical diagnostics. It should be possible to design inverse models for
identification of serious changes in bearing clearances, stiffness and damping coefficients and
other non-measurable diagnostic symptoms.

ACKNOWLEDGEMENTS

The investigations reported in this paper were partially supported by the research fellowship
granted by the Norwegian Shipowners Fund at The Norwegian Institute of Technology.
W.Cholewa appreciates the character of hospitality and kindness at The Division of Marine
Engineering in The University of Trondheim.



Application of Neural Networks for Inverting of Vibration Models 91

REFERENCES

[1] W.Cholewa: Szkieletowy System Doradczy MAS. Dokumentacja Uzytkownika.
(wersja prototypowa 0.34). Politechnika Slaska, Gliwice 1993.

[2] W.Cholewa, M.F.White: Inverse Modelling in Rotordynamics for Identification of
Unbalance Distribution. Machine Vibration, vol.?, 1993 (accepted for publication).

[3] F.F.Ehrich: Handbook o fRotordynamics. McGraw-Hill, New York 1992.

[4] J.A.Feldman, M.A.Fanty, N.H.Goddard, K..Lynne: Computing with Structured
Connectionist Networks. Communications of the Association for Computing
Machinery. 31 (2) 1988, pp.205-254.

[5] C.M.Harris, Ch.E.Crede: Shock and Vibration Handbook. McGraw-Hill, New York
1976.

[6] J.Hertz, A.Krogh, R.G.Palmer: Introduction to the theory of neural computation.
Addison-Wesley, Redwood City 1992.

[7] T.Khanna: Foundations o fNeural Networks. Addison-Wesley, Reading 1990.

[8] R.P.Lippman: An Introduction to Computing with Neural Nets. TF.FF ASSP
Magazine, 4, 1987, pp.4-22.

[9] T.Masters: Practical Neural Network Recipes in C++. Academic Press, San Diego
1993.

[10] Neural Computing. User's Manualfor Neural Works. Neural Ware Inc., Pittsburgh
1991.

[11] D.E.Rummelhart, J.L.McClelland: Parallel Distributed Processing. MIT Press,
Cambridge 1986.

[12] B.D. Shiver: Artificial Neural Systems. IEEE Computer, 21 (3), 1988.

[13] J.M.Vance: Rotordynamics o f Turbomachinery. J.Wiley&Sons, New York 1988.

[14] M.F.White: TURBO: Turbo-Rotor Dynamics - Calculation of Forced Response.
UsersManual. Marine Technology Centre, Trondheim 1988.

[15] L.A.Zadeh: Fuzzy Sets. Information and Control. 8, 1965, pp.330-353.

Recenzent: Prof. dr hab. inz. Ryszard Knosala

Wplyneto do Redakcji w grudniu 1993 r.



92 W. Cholewa, M. F. White

Streszczenie

Modele matematyczne stosowane do opisywania proceséw drgan maszyn pozwalajg na
wyznaczanie ocen drganh w funkcji ich przyczyn, takich jak cechy konstrukcyjne obiektu,
niewyréwnowazenie, parametry eksploatacyjne. Optymalizacja dziatania maszyny wymaga
poszukiwania zmian przyczyn drgan, ktére prowadzi¢ beda do ich eliminacji lub ograniczenia.
Przyktadem moga by¢ procesy wyréwnowazania wirnikdw. Bezposrednie odwracanie znanych
modeli matematycznych w celu okres$lania przyczyn drgan jako funkcji skutkdw napotyka na
duzo trudnosci.

Zaproponowano postepowanie polegajace na trenowaniu modelu (rys. 3) wystepujacego
w postaci czarnej skrzynki, na podstawie danych uzyskiwanych w wyniku symulacji
realizowanej za pomocg znanego, odwracanego modelu. Taka czarng skrzynka moze by¢ sie¢
neuronalna. Zwrécono uwage na istnienie modeli, dla ktérych wyznaczenie modeli
odwrotnych nie bedzie mozliwe (rys. 2).

Zastosowanie proponowanej metody pokazano na przykladzie zadania dotyczacego
wirnika z niewyréwnowazeniami (rys. 4). Dane trenujace dla tego przyktadu generowano za
pomocag programu TURBO [14], uwzgledniajagc miedzy innymi zjawiska nieliniowe
zachodzgce w tozyskach. Program ten byt odwracanym modelem M (rys. 1). Pozwolit on na
wyznaczenie maksymalnych amplitud drgan wirnika wzgledem podpdr tozyskowych w dwéch
ptaszczyznach i dla réznych predkosci wirowania watu. Amplitudy te sa zalezne od rozktadu
niewyréwnowazenia (rys. 6), (rys. 5). Przyjeto model odwrotny N (rys. 1) w postaci prostej
sieci neuronalnej (rys. 8), posiadajacej trzy warstwy weztéw. Sygnatami wejSciowymi tej sieci
byly wzgledne amplitudy drgan (17) okreslane dla trzech predkosci. Oczekiwanym sygnatem
wyjéciowym byta waga (14) okre$lajaca stopied niewyréwnowazenia wybranej tarczy wirnika.
Dla kazdej tarczy definiowany jest jej indywidualny model w postaci odrebnej sieci
neuronalnej. Trenowanie sieci przeprowadzono za pomocg programu MAS [1], Wynikiem
procesu trenowania sieci byly wagi (7) opisujace jej wezty. Wynik procesu trenowania (sie¢
neuronalng) testowano za pomocg niezaleznego zbioru danych symulacyjnych, otrzymujac
pozytywny wynik (rys. 11), (rys. 12).

Otrzymany model odwrotny pozwala na identyfikacje rozktadu niewyréwnowazenia
wzdtuz wirnika na podstawie wynikéw pomiaréw drgan w dwoch ptaszczyznach. Znane
metody wyréwnowazania polegajg na umieszczaniu, w wybranych plaszczyznach, mas
kompensujacych istniejace (nieznane) niewyréwnowazenie i nie pozwalaja na uzyskanie
podobnego og6lnego rozwigzania.



