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ZASTOSOWANIE SIECI NEURONALNYCH 
DO ODWRACANIA MODELI DRGAŃ

Streszczenie. Celem pracy jest wskazanie przydatności modeli odwrotnych w 
badaniach drgań (np. do identyfikacji rozkładu niewyrównoważenia) i określenie 
sposobu odwracania znanych, istniejących modeli. Zamieszczono prosty przykład 
obliczeniowy, pokazujący, jak można określać rozkład niewyrównoważenia wzdłuż 
wirnika na podstawie amplitud drgań czopów w wybranych dwóch płaszczyznach, 
obserwowanych dla różnych prędkości wirowania.

APPLICATION OF NEURAL NETWORKS 
FOR INVERTING OF VIBRATION MODELS

Summary. The aim of this paper is to point out the usefulness of inverse models 
in rotordynamics (e.g. for identification of unbalance distribution) and to show how to 
invert known, existing models. The overall methodology of the approach is presented, 
along with a simple numerical example which shows how the distribution of 
unbalance may be identified from knowledge of the response in only two planes at 
different rotating speeds.
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1. INTRODUCTION

There exist a great number o f  interesting papers and books (e.g. [3], [13], [5]) which 
discuss how the vibration phenomena are caused by the design and technical state o f 
machinery. It should be underlined that conclusions are quite often contrary to our intuition. It 
means that special tools, such as mathematical modelling have to be used to predict the shape 
and values o f vibration. Today the prediction o f vibration done by means o f the finite or 
boundary element models with distributed masses o f shafts, inertia o f impellers, stiffness, 
internal and external damping as well as dynamic excitation from the fluid, is quite 
representative when compared with results o f experimental measurements. This paper contains 
selected parts o f [2],

Mathematical models in rotordynamics contain non homogeneous systems o f differential 
equations with parameters depending on features o f  rotating machinery. Due to non linearity 
and complex form o f equations the general analytical solutions are unknown. Most often it is 
possible only to solve them in a numerical way and calculate the values o f selected vibration 
estimates for the given set o f  parameters. The models make known cause-effect links existing 
in modelled objects and set relations between the following groups o f variables:

independent variables representing features that are easy to define and to measure (e.g. 
operating conditions, general design features,...),
independent variables representing features that are very difficult (or even impossible) 
to measure (e.g. distribution o f imbalance masses along the rotor, damping o f rotor- 
bearing system ,...),
dependent variables (results o f calculations) representing features that are quite easy to 
measure (e.g. vibration estimates for bearings,...),
dependent variables (results o f calculations) representing features that are no so easy to 
measure (dynamic forces acting on bearings and supporting structure, vibration 
estimates for planes away from the bearing,...).

It seems reasonable to look for another way for modelling, where we can start from the 
data that are easy to measure, to obtain as a result the data that are not so easy to measure. By 
means o f such models it will be possible for example to predict the distribution o f imbalance on 
the rotor based on the results o f measurements. From the physical point o f view a solution o f 
the problem is possible, because the distribution o f unbalance determines the degree to which 
particular bending modes o f vibration are excited (for a flexible shaft). There are two 
possibilities to solve the problem:

prepare new models from scratch,
use the existing models and try to invert them.

We assume that the second possibility is better, because the existing models contain 
knowledge collected over a long time. Moreover they are carefully validated with respect to 
results o f  experimental test on machinery.
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2. GENERAL PROCEDURE

2.1. Formal Description

We consider an existing (and given as an algorithm or program) mathematical model M  by 
means o f which a multidimensional metric space {MI} o f values o f input parameters m ij is 
mapped into a multidimensional metric space {MO} o f values o f output parameters mo j .  

Elements o f the spaces will be written as matrices (so called vectors) M I -  [m ij ] and 

M O  = [tf10/]- Not all parameters are equally important for our task. Let us consider the 

projections {MIA}, {MIB}, {MIC}, {MID} and {MOA), {MOB} o f the spaces, such that 

{M I}  = {MIA} x {MIB} x {MIC} x {MID}
{MO} = {MOA} x {MOB} (1)

where the inputs to the model M
{MIA} contains unknown parameters, which should be estimated by means o f an 

inverted model (e.g. distribution of unbalance),
{MIB} contains known parameters (e.g. operating conditions),
{MIC} contains parameters, that may be considered as constant (e.g. design of 

machinery, stiffness, damping),
{MID} contains parameters difficult to measure, that we have to leave out (e.g. 

misalignment), 
and the outputs from the model M

{MOA} contains known parameters (e.g. radial vibrations o f rotor in normal planes at 
two given positions along the shaft),

{MOB} contains unimportant (presently) and unknown parameters (e.g. radial vibration 
o f rotor in other planes).

Fig. 1. Models: M  - direct, N -  inverted 
Rys. 1. Modele: M -  bezpośredni (odwracany), N -  odwrócony

We formulate the basic task as follows (see Fig. 1): 
Given the mapping M
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{MIA} x {MIB} x {MIC} x {MID} - —  >{MOA} x {A/05} (2)

For a fixed matrix M IC  find the mapping N  such that

N:

{MIB} x {MOA} MIC=const ->{MIA} (3)

We do not assume that the matrix M IC  is known. We assume only that it is constant. The 
remaining subspaces {MID} and {MOB} are not taken into account (in the mapping N).

O f course it should be clear that the mapping N  does not exist in a general case. We are 
not able to expect that leaving some parameters out (subspace {MID}) it will be possible to 
find the mapping N. Ignoring a set o f parameters results in randomness o f  the inverted model. 
The level o f  this randomness is strongly task-dependent. Even if we take into account all 
parameters, it will be (strongly) possible that the mapping M  cannot be inverted. Such a 
situation can occur when for the mapping M  there exist identical matrices M O  for a few 
particular, different matrices MI, i.e. when mapping AT converts different input patterns into the 
same output pattern (see Fig. 2).

M:

Fig. 2. It may be possible that the mapping M  cannot be inverted 
Rys. 2. Możliwe są sytuacje, w których odwzorowanie M  nie będzie odwracalne

What to do? We should simplify the task. In general there are two possibilities: apply a 
classifier and/or fiizzify the data.

2.2. Fuzzy Classifier

The notion o f  fuzzy sets was introduced by [15], Fuzzy set A  in a space U  is the set of 
pairs (u ,w A {u)\

A = { ( u , w a { u ) ) - . u z U }  (4)

where the membership function wA (u) for the element u from the space U  takes its values 

from the range [0,1] o f real numbers. This function estimates a degree in which the given
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element u belongs to the set A. The more closely this value is to 1.0 than more strongly the 
element belongs to the set.

To fuzzify the data in {MIA} we can define transformations for particular parameters 
converting their real values to a small number o f linguistic values - like small, large. The 
similar treatment can be done not for single parameters but for the selected subset o f 
parameters in {MIA}. In the space spanned on these parameters we select some regions called 
classes and define a family o f  such classes as a family o f fuzzy sets, given by their membership 
functions {vt’i , w2>-<wc} ■ For our application it is strongly recommended that the classes are 

defined directly and we are able to interpret what it means that parameters belong to a class. In 
an opposite case when the classes result from clustering o f data such interpretation may be very 
difficult. The values o f  membership functions (without the direct knowledge o f the parameters 
MIA  used when defining the values o f the functions) can be used to partition the space {MIA} 
by means o f  the following rule

if  W i(x)> W j(x) for all j  = 1 , — 1,/ + l,...,c  then xe c la ss j  (5)

To fuzzify the data expected from the discussed model N  we introduce in equation (3) the 
mapping C

{M IA }— (6) 

converting the real parameters to the values of membership functions.

2.3. Neural Networks

The general method to look for the mapping N  is to consider the black box which is 
trainable (see Fig. 3). Neural networks are an appropriate tool to solve such tasks. We can 
generate a lot o f  examples by means o f the model M  and train the network (i.e. model N) on 
the examples. This approach seems to be attractive, since due to existing software the required 
knowledge o f the theory o f neural networks and training strategies is minimal.

The theory o f  neural networks is huge. It is not the aim of this paper to make an overview 
o f major architecture and theoretical concepts (for an overview see e.g. [11], [7], [12], [4], [8],
[6]. [9]). One (basic) kind o f neural network, which seems to be quite appropriate for our 
application is presented below. It is a simple three-layer feed forward network with back 
propagation o f  errors (Fig. 8).

Neural networks consist o f linked processing units called nodes or neurones, where 
interconnections o f nodes may be in general variable. The selected network has a single layer 
o f hidden nodes sandwiched between the input layer and output layer o f nodes, where the 
inputs to nodes in hidden and output layer come exclusively from respectively input and hidden 
layer. The input layer contains virtual nodes only (they do not do any processing). The 
network propagates the input data through the layers to the output layer. Eachy'-th node in the 
hidden or output layer /  transforms outputs X /_n  from nodes in previous (7-1) layer, to its
output Xj j
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n-l
XI J  = / (  Z WIJ J  Xl-U  +wlJ ,n )  (7)

i= 0

where w / j j  are weights, represents a bias and where the activation function /  is any 

differentiable, monothonic function - most often the sigmoid function (called logistic function)

/(*) = — 7 («)
1+e

The useful property o f the sigmoid function (8) is that the derivative o f the function can be 
calculated directly from the value o f  this function

^  “ / W i 1 - / t o )  W

Fig. 3. Model N  as a black box during training 
Rys. 3. Model A'’jako czarna skrzynka w fazie trenowania

The operating characteristic o f the net is mainly defined by the topology o f  the network, by 
the weights w /j j  and does not depend significantly on the shape o f activation function /  

Weights w/y,- are calculated in the training (supervised learning) or learning (unsupervised

learning) phase. During training the known set o f samples in the form o f pairs consisting of 
values o f all inputs and expected values o f all outputs is given. The outputs are next calculated 
by the network (i.e. inputs are feed forward), using current values o f  weights, where initially 
the values o f  weights are set randomly. From the comparison o f calculated and expected values 
an error results for each output.

The global measure o f  errors (e.g. sum o f  their squares) should be minimised. Due to the 
shape o f (7) and (8) it is possible to calculate the degree to which each input to a given node
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contributes in its output error. Finally it is possible to propagate errors back to previous layers 
and using appropriate minimising strategy it is possible to update iterativly the selected weights 
w/ j  j  . The calculation o f errors and updating of weights is repeated until the network reaches

an expected level o f quality. O f course the convergence of the process is not guaranteed. A 
neural network is a highly non-linear system and assuring the stability o f such a system is 
difficult. To obtain the convergence and stability during training and to guarantee jumping over 
local extremes it is necessary to take into account some special heuristic algorithm for updating 
of weights (see e.g. [9] or [10]).

As the result o f training we have the set o f weights. The result should be tested using an 
independent set o f  data, because due to the great number o f weights and non-linearities in 
nodes it is possible to reach a state when the network perfectly maps the training data but 
produces significant errors for other data.

3. NUMERICAL EXAMPLE

The discussed methodology will be illustrated with an example. It will be shown how to 
invert a model by means o f which we predict the vibration o f the shaft as a result o f unbalance 
into a model by means o f which it will be possible to identify the unbalance based on the results 
of vibration measurements at locations near the bearings.

1 2 3 4 5 6 7 8 9

Fig. 4. Investigated object 
Rys. 4. Schemat badanego obiektu

3.1. Investigated Object and Analysis Method

The investigated (artificial) object consisted o f a rotating shaft with five discs (impellers) 
supported by two similar journal bearings. To simplify the example an axial symmetry o f the
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supporting structures is assumed. It is assumed too, that the displacements o f the shaft can be 
measured at two fixed points A  and B  (see Fig. 4). The shaft is considered as consisting of 
eight elements a, b, ..., h. Discrete unbalance may be located at the given radial and angular 
position on the selected discs/, II, ..., V

The model M  introduced in the equation (2) may be comprised o f  mathematical equations, 
algorithms (procedures), computer programs and so on. Vibration o f the discussed rotor 
system was simulated with the program TURBO [14] which calculates the forced vibrations o f 
a multiply supported rotor due to unbalance using a finite element approach. For the tests in 
question journal bearings were modelled using 8 linearized coefficients. This introduced speed 
dependent bearing stiffness K  and damping C  as may be expected in a practical situation.

3.2. Test-Simulation

To check the basic properties o f  the given object, the maximal amplitude o f  the shaft 
displacements measured in the point A (Fig. 4) were calculated for rotating speeds from 1000 
to 9000 rpm and for five unbalance cases:

case U 001: full unbalance on the disc / ,
case U002: full unbalance on the disc I I ,
case U003: full unbalance on the disc I I I ,
case U004: full unbalance on the disc I V ,
case U005: full unbalance on the disc V .

Results o f the calculations are shown in the Fig. 6 . The relative values o f the maximal 
amplitudes calculated for each rotating speed are compared in Fig. 5.

□ U005 
QU004
□ U003
□ U002
□ U001

Fig. 5. Relative maximal displacement at the point A  (Fig. 4) as a function o f  rotating speed 
Rys. 5. Względna amplituda przemieszczeń w punkcie A  (Rys. 4) 

jako funkcja prędkości wirowania
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-U001 — o — U002 ----------------------- U003  U004  U005

Fig. 6 . Maximal displacement at the point A (Fig. 4) as a function o f  rotating speed 
Rys. 6 . Amplituda przemieszczeń w punkcie A (Rys. 4) jako funkcja prędkości wirowania

The similar calculations o f relative values were done for the unbalance on the disc /  (75 p 
m) and on the disc II I  (25 pm) with the following lags o f the angular location o f unbalance on 
the discs:

case U009: a [[ [-a [  = 0° ,
caseUOlO: a jn -c q  = 90° ,
case UO11: o tn j-a i = 180°.

Results are shown in the Fig. 7.

Fig. 7. Relative maximal displacement at the point A (Fig. 4) as a function o f rotating speed 
Rys. 7. Względna amplituda przemieszczeń w punkcie A (Rys. 4) 

jako funkcja prędkości wirowania

From the results o f test-simulation it follows that the shape o f the function 
displacement ( rotating speed  )



84 W. Cholewa, M. F. White

depends on the location o f unbalance along the shaft (see Fig. 5) and on the angular position of 
unbalance (see Fig. 7), i.e. it depends on the unbalance case. O f course if  we generate a set o f 
similar figures for other unbalance cases it should be very difficult (or even impossible) for an 
expert to formulate a set o f  heuristic rules by means o f which it will be possible to identify the 
location o f  a main unbalance.

3.3. Input and Output Parameters

The investigated inverse model N  should predict the unbalance o f the rotor on the selected 
disc. The result is expected as a qualitative value. It was assumed that the output o f  the inverse 
model N  should estimate the membership functions o f fuzzy sets interpreted as follows (for i = 
I, I I , .... V)

" Main part o f unbalance is located on the disc (10)

It means that there will be 5 output parameters (estimates o f values o f membership 
functions) for the model N:

£u'< ¿m; clv; cv ; (ll)

For the simulation o f  vibrations by means o f the model M  (program TURBO simulating 
the vibration o f  investigated object), the unbalance case will be described by the eccentricity o f 
each disc

eccj; eccji; eccn j ; eccIV; eccv ; ( 12)

and their angular positions

a I> a lU «m; «iv; «Vi (13)

in a coordinate system rotating together with the shaft.
It is not expected that the values (12), (13) will be calculated by the inverse model N. To 

prepare the data for training o f the model N  it is necessary to establish a relationship between 
the parameters (12), (13) and the membership functions (11). Expected values o f the 
membership functions ( 1 1 ) will be calculated (during simulations) as relative eccentricity o f the
given disc /' (for /' = I, II V)

ecci
c, = --------------------------  (14)

ecc i +ecc][ +eccnl + ecC[V + eccv

It should be pointed out that we would like to predict only the location o f the unbalance 
along the shaft and not their angular positions although it is evident e.g. from the Fig. 7 that 
measured vibration depends strongly on the angular position. It means that the angular position 
belongs to the parameters pointed out as {MID} in (1).

We will try to design the model N  taking into account the basic kiss-rule for all designing 
processes (keep it simple, stupid). It means we assume that the model will be simple, i.e. the
number o f  layers, the number o f  nodes and the number o f input parameters will be small. We
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will consider the maximal amplitudes o f the shaft displacements measured in points A and B  
(Fig. 4) at the following rotating speeds only:

W |=3000; «2 = 5000; 7/3 =7000; [1/m in] (15)

It is important that we do not select the critical speeds. Such treatment is convenient for 
applications, where it will be possible to obtain the proper quality o f measurements done at 
stabilised rotating speeds (e.g. specified in practical recommendations for run-up procedure).

From the above assumptions it follows that for each case of unbalance there will be 6 

parameters (maximal amplitudes o f displacement) calculated by the model M

°A,b «4,21 «*31 aB, 1; aB£, aB£  [urn] (16)

Because the inverse model N  should identify the unbalance in a qualitative form, it is
convenient to convert the parameters (16) into non-dimensional, relative values

bA,U bA, 2- bA, 3i bD, I! bB,2> bB, 3i O 7)

Values (17) will be used as input parameters for the inverse model N. The simple method 
to obtain such values and to keep the relations between the measurements done at different 
rotating speeds in both measuring points is to use the formula

bj i =  hi-  for i = a,b\ j =  1,2,3 (18)
aA,l+aA,2+aA,3+aB,l+aB,2+aB,3

3.4. Inverse Model

The investigated model N  can be designed independently for each disc. In the example we 
discuss the simplified version o f the model by means o f which it will be possible to estimate the 
unbalance for the first disc only. Similar steps can be done to estimate unbalance on other 
discs. Such steps will be necessary for the prediction o f the unbalance along the shaft and for 
pointing out the disc with maximal unbalance by means o f (5). Intuition suggests that the 
structure o f  the network should be 'adjusted' to the current problem and should take into 
account the specific properties o f the task. In our case it is difficult to find such general features 
of the task.

We consider the model .V for the disc I as the neural network (Fig. 8) with p=6 inputs and 
7=1 output. Basing on general recommendations (e.g. [9]) we decide to use

(19)

hidden nodes. The output node [2,0] o f the network (Fig. 8) will be calculated according to
(7) as a value o f the sigmoid function (8). This function takes its values in the open range from 
0.0 to 1.0 only and the network is not able to learn outputs outside this range. To avoid 
extremely large absolute values o f the argument z  in (8) it is required to keep output values in 
a restricted smaller range. We assume that the training values o f the output should belong to 
the range from 0.15 to 0.85 . Due to this assumption the values c,- (14) and fy (11) ranging
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from 0.0 to 1.0 will be converted into new values d, and d, , by means o f the following 

linear transformations (for i = I, I I , .... V): 

d ,=  0.15 + 0 .7-c,

</, =0 .15  + 0.7-5,
(20)

0 ,0 0,1 0 ,2 0,3 0 ,4 0 ,5 bias

K K K K.2 K k .

Fig. 8. Neural network (model N) 
Rys. 8 . Siec neuronalna (model N)

3.5. Training Phase

To describe the network (Fig. 8) it is necessary to specify

.s = (p  + l )-<7 + (<7 + l) -7- = 25 (21)

weights w ij j  mentioned in (7). It is clear that the number o f training cases should be 

significantly greater than the number o f unknown weights. We decide to use 95 unbalance 
cases denoted as U001, ..., U095. They include the different static as well as dynamic 
unbalances and result in different vibration modes.

Training o f  the network is a long term process. Before we start the training o f the selected 
network it is reasonable to check that the task is solvable. How to check that there are any 
properties o f the training data that make solution impossible? If  we consider Fig. 2 one way is 
to check that different values o f inputs to the model N  produce the different outputs o f the 
model. We take into account the distances between all pairs o f the unbalance cases m, and ttj

(such that i > j )  calculated in the space o f input parameters

(22)distin[uh Uj) =  J(bAii(u/) - b Atl(u/))2 +---+ (bBt3( u , ) - i Bp3(uj))2

and in the space o f output parameters

distout[uh Uj) = | d ^ - d ^ u j )  | (23)
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Due to the definition o f unbalance cases U001, U095 and due to (20) there are possible
only the following values o f distoul

0.15; 0.325; 0.5; 0.675; 0.85; (24)

The minimum, mean and maximum values o f distances distjn (22) corresponding to the 
above distances distout (for the discussed unbalance cases U001, ..., U095) are presented in 

Fig. 9. From the figure it follows that training data are correct and they do not contain the 
cases presented in Fig. 2. It can also be expected that the quality o f results will be better for 
values o f distoul above 0.5 (i.e. for the main unbalance located on the disc I).

— ♦ — minimum — L i— mean — A — maximum

Fig. 9. Distances in the input space corresponding to the distances in output space 
Rys. 9. Odległości w  przestrzeni wejściowej odpowiadające odległościom 

w przestrzeni wyjściowej

The values 04 ,1 , 3  (16) for each unbalance case were calculated by the program 

TURBO [14] on a mainframe computer. Training o f the network (Fig. 8) was carried on a PC 
by the program MAS [1], Program MAS (an expert system shell) can handle frames and 
uncertain decision tables. It contains an interface to couple simulation procedures. The part of 
MAS responsible for training o f neural networks is based mainly on procedures described in
[9], The aim o f calculations carried on in such an inconsistent environment was to show that it 
will be possible to realise the basic idea discussed in the paper, i.e. that it will be possible to 
invert existing, well validated models supplied in the form o f closed computer programs, 
without any modifications o f the programs.

3.6. Quality o f Results

The network (Fig. 8) was trained by epoch . It means that output errors and corrections of 
network weights were calculated for a set o f training cases and not for each training case 
individually. Such training strategy allows a stable solution to be obtained. The set o f training 
data (cases U001........U095) contain unequal numbers o f cases for particular output values d\
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(20). To compensate for this, the cases U001, ..., U041 were exposed 4 times for one 
exposition o f  remaining cases.

expected output

Fig. 10. Output values from the network (Fig. 8)
Results o f training (cases U 001 ,..., U095)

Fig. 10. Wartości wyjściowe sieci neuronalnej (Rys. 8)
Wyniki fazy trenowania sieci (dane U 001,..., U095)

Results o f  training are presented in Fig. 10 and Fig. 11. The mean square error o f the 
output values from the network

There are only the following 5 cases with errors greater than 2 • a

Case expected
output

calculated
output

error

U039 0,3250 0,1131 +0,2119
U044 0,1500 0,3941 -0,2441
U048 0,1500 0,3779 -0,2279
U053 0,1500 0,4546 -0,3046
U056 0,1500 0,3875 -0,2375



Application o f  Neural Networks for Inverting o f Vibration Models 89

and there are no cases with errors greater then 3 -<7 . From the histogram (Fig. 11) it follows 
that the confidence interval for the output from the network can be set as

d i~ 0 .2 < d j <dt + 0 .2  (26)

18
16
14
12
10
8
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Fig. 11. Histogram o f the network errors [dt -  d ,) for the cases U 001, ..., U095 

Rys. 11. Histogram błędów sieci neuronalnej [dt - d , )  dla danych U001, ..., U095
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Fig. 12. Output values from the network (Fig. 8) for the cases U 100 ,..., U130 
Rys. 12. Wartości wyjściowe sieci neuronalnej (Rys. 8) dla danych U100, ..., U130

As mentioned in section 3.5 the quality o f results in Fig. 10 is better when the main 
unbalance is located on disc I  (i.e. at higher output values d\). The greater deviations for the
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small values o f  outputs (i.e. when there is little or no unbalance on disc I) are caused mainly by 
the large number o f different unbalance distributions (cases U042, .... U095) that are 
represented during training as single number c/j =0.15 . Moreover this feature o f training 

cases was slightly amplified by the described training strategy. The discussed deviations should 
not result in serious errors when we look for the disc with maximum unbalance. By means of 
similar networks designed for the other discs (II,..., V) it will be possible to identify the 
qualitative distribution o f unbalance along the shaft.

The network was tested after training with new data not used for training (cases U100, ..., 
U130). Results o f the test are shown in Fig. 12. Even though the test data contained 
significantly different unbalance distribution, where both eccentricity and angular location were 
changed compared with the training data, the quality o f the test results are seen to be similar to 
that o f the training results in Fig. 10.

4. CONCLUSIONS

The results show how a neural network and inverse rotordynamic model can be trained 
and used to identify unbalance distribution in a multidisc shaft, by considering maxima! 
amplitudes o f shaft vibration measured at two locations for three different rotating speeds.

A numerical example demonstrates that the unbalance on a selected disc can be 
qualitatively evaluated even though the total distribution and angular location o f unbalance 
along the shaft is unknown. Calculations should be continued for all discs. To obtain better 
quality o f results one should take into account more input parameters, connected with greater 
number o f considered rotating speeds as well as with the shape o f orbits o f the shaft in bearings 
described by the ratio o f maximum and minimum displacement or by more detailed fuzzy 
clusters o f  orbits.

It was shown that the inversion o f rotordynamics models given in the form o f computer 
programs is possible. This opens the area for extensive investigations that seems to be very 
important for technical diagnostics. It should be possible to design inverse models for 
identification o f serious changes in bearing clearances, stiffness and damping coefficients and 
other non-measurable diagnostic symptoms.
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S tre sz c z e n ie

Modele matematyczne stosowane do opisywania procesów drgań maszyn pozwalają na 
wyznaczanie ocen drgań w funkcji ich przyczyn, takich jak cechy konstrukcyjne obiektu, 
niewyrównoważenie, parametry eksploatacyjne. Optymalizacja działania maszyny wymaga 
poszukiwania zmian przyczyn drgań, które prowadzić będą do ich eliminacji lub ograniczenia. 
Przykładem mogą być procesy wyrównoważania wirników. Bezpośrednie odwracanie znanych 
modeli matematycznych w  celu określania przyczyn drgań jako funkcji skutków napotyka na 
dużo trudności.

Zaproponowano postępowanie polegające na trenowaniu modelu (rys. 3) występującego 
w postaci czarnej skrzynki, na podstawie danych uzyskiwanych w wyniku symulacji 
realizowanej za pomocą znanego, odwracanego modelu. Taką czarną skrzynką może być sieć 
neuronalna. Zwrócono uwagę na istnienie modeli, dla których wyznaczenie modeli 
odwrotnych nie będzie możliwe (rys. 2).

Zastosowanie proponowanej metody pokazano na przykładzie zadania dotyczącego 
wirnika z niewyrównoważeniami (rys. 4). Dane trenujące dla tego przykładu generowano za 
pomocą programu TURBO [14], uwzględniając między innymi zjawiska nieliniowe 
zachodzące w łożyskach. Program ten był odwracanym modelem M  (rys. 1). Pozwolił on na 
wyznaczenie maksymalnych amplitud drgań wirnika względem podpór łożyskowych w dwóch 
płaszczyznach i dla różnych prędkości wirowania wału. Amplitudy te są zależne od rozkładu 
niewyrównoważenia (rys. 6), (rys. 5). Przyjęto model odwrotny N  (rys. 1) w postaci prostej 
sieci neuronalnej (rys. 8), posiadającej trzy warstwy węzłów. Sygnałami wejściowymi tej sieci 
były względne amplitudy drgań (17) określane dla trzech prędkości. Oczekiwanym sygnałem 
wyjściowym była waga (14) określająca stopień niewyrównoważenia wybranej tarczy wirnika. 
Dla każdej tarczy definiowany jest jej indywidualny model w postaci odrębnej sieci 
neuronalnej. Trenowanie sieci przeprowadzono za pomocą programu MAS [1], Wynikiem 
procesu trenowania sieci były wagi (7) opisujące jej węzły. Wynik procesu trenowania (sieć 
neuronalną) testowano za pomocą niezależnego zbioru danych symulacyjnych, otrzymując 
pozytywny wynik (rys. 11), (rys. 12).

Otrzymany model odwrotny pozwala na identyfikację rozkładu niewyrównoważenia 
wzdłuż wirnika na podstawie wyników pomiarów drgań w dwóch płaszczyznach. Znane 
metody wyrównoważania polegają na umieszczaniu, w  wybranych płaszczyznach, mas 
kompensujących istniejące (nieznane) niewyrównoważenie i nie pozwalają na uzyskanie 
podobnego ogólnego rozwiązania.


