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CONTROL OF A MACHINING PROCESS BY MEANS OF NEURAL CONTROLLERS

Summary. This paper recalls the idea of a neural controller with 
application to the control of an industrial machining process. Structures 
of such controllers are suggested, and the results of simulations comparing 
their performance to that of a conventional fuzzy logic controller are 
shown. The experiments indicate that the performance of the proposed neural 
controllers is satisfactory.

STEROWANIE PROCESEM OBRÓBKI SKRAWANIEM ZA POMOCĄ 
REGULATORÓW NEURONOWYCH

Streszczenie. W pracy omówiono ideę regulatora neuronowego i jego 
zastosowanie do sterowania procesem obróbki skrawaniem. Podano dwie 
struktury regulatorów neuronowych oraz wyniki symulacji wraz z porów­
naniem omawianych regulatorów z konwencjonalnym regulatorem rozmytym. 
Uzyskane wyniki badań pozwalają stwierdzić, że jakość sterowania przy 
zastosowaniu obu regulatorów neuronowych jest zadowalająca.

yilPABJIEHHE IIPOUECCAMH PE3AHH IIPH nOMOUlH 
HEBIIOPEryJIHTOPOB

Pe3»Me. B pa6oTe oroBopeHa yiaea HeBpoHHoro peryjiHTopa h 
ero npwMeHeHMe nna npopeccoB o6pa6oTKH pe3aHHeM. HaHbi UBe 
CTpyKTypu HeBpoHHbix peryjiHTopoB a iaK*e pe3yjitTaTbi HMHTauHH 
binpaBneHHH co cpaBHeHHeM oroBopKBaeKbix peryjiHTopoB c KOBeH- 
UHOHajibHbiM pa3njibiBwaTbiM peryjiHTopoM. nonyweHHbie pe3yjibxaTbi 
MccJienoBaHMH noKa3biBa»T, hto nawecTBO ynpaBJieHMH c npHMeHe- 
HMeM oóeHb m p y K T y p  HeBpoHHbix peryjiHTopoB yaoBJieTBopHTejibHO.

1. INTRODUCTORY REMARKS

Conventional and modern control theories need a precise knowledge of the 
model of the process to be controlled and exact measurements of input and
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output parameters. However, due to the complexity and vagueness of practical 
processes, application of these theories is still limited.

In many real processes, control relies heavily upon human experience. 
Skilled human operators can control such processes quite successfully without 
any quantitative models in mind. The control strategy of the human operator is 
mainly based on linguistic qualitative knowledge concerning the behavior of an 
ill-defined process. Taking into account the fact that most of the machining 
processes- are stochastic, nonlinear and ill-defined, the metal-cutting 
processes fall into such a category of complex processes which are attractive 
to be controlled by means of fuzzy logic [5],

Some approaches to the concept of a neural-network-based controllers emplo­
yed to the control of various ill-defined, complex processes have been 
reported recently. The aim of this paper is to recall this useful concept by 
pointing out its potential application to the control of machining processes, 
such as turning, milling, grinding etc.

2. STRUCTURES OF CONTROLLERS EMPLOYING NEURAL NETS

2.1. The idea of a fuzzy logic controller

The imprecise knowledge delivered by a human operator is usually expressed 
by a collection of fuzzy control rules having the form

Rr: If Error = a |p) and Change in Error = B*r) ^
then Control Action = U (r)k

where r stands for the rule index. A*rJ,B<r! U (r) are linguistic valuesi j k
(fuzzy sets) for the linguistic variables Error, Change in Error and Control
Action defined in universes of discourse X, Y, U, respectively.

Such a collection of rules makes up the so-called rule base. We should
mention here the explicit connective ’and’ between the variables Error and 
Change in Error and the implicit rule connective ’also’ which links all the 
rules in the rule base.

A fuzzy control rule is usually implemented by a fuzzy implication (a
fuzzy relation in X x Y x U):

R = (A<r> and B (r>) U (r) (2)l J *

where (A|r> and B*r>) may be interpreted as a fuzzy set A j r> x B*r> in X x Y.
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Given input information: A’ (error) and B' (change in error), the control 
action U' can be deduced employing the compositional rule of inference, the 
definitions of fuzzy implication and connectives ’and’ and ’also’. Even if we 
choose a particular compositional rule of inference, fuzzy implication and 
both connectives ’and’ and ’also’, the inference process can still be realized 
in different ways. Namely, if we consider input information (error and change 
in error) as vectors, we shall write the compositional rule of inference in 
the form:

U’ = B’ o (A’ • R) (3)

where R is the global relation obtained by connecting of all the rules.
We can also use another notation and apply the following formula:

U’ = (B' x A’ ) o R (4)

Taking into account, for example, the sup-min (sup-prod) as composition 
operators, min (prod) for implication, min (prod) for ‘and’ and max (sum) for 
’also’ connectives, we get the same inference result from both formulas (3) 
and (4) respectively.

Using the membership function representation, we can write

U'(u) = mzxr sup miiirmin(5/(>>), /̂(x)),miii(/l,WW ,Bf)(y),i/‘')(u))| 
xeX,yeY J

(5)

or, for practical use

U\u) = £  sup f(B'(y) -A'(x)) -fifty) • (4% ))] (6)
r xeX,yeY 1

Taking singletons (Kronecker delta) for A’(x), B’(y), when measurements are 
available, formulas (5) and (6) can be simplified:

U'(u) = maxr min f^1w(x0) ^ / )(y0).i/i,)(“))l
(7)

(8 )
W(u) = E

r

As a defuzzification method center of gravity can be used.
It should be noted here that a different selection of operators may produce 

different inference results.
Two possible structures of a neural controller will be described below.
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2.2. Analog (2-h-l) neural controller

In the simplest case, a neural controller may use a two-input and 
one-output network. Analog values of error and change in error are introduced 
into the network, which responds with an analog control value. Due to the 
sigmoidal shape of transfer function, the output value lies within the 
interval (0, 1); the only transformation required for input and output signals 
is rescaling.

Such a controller is shown in Fig. 1.
To ensure convergence of the training procedure we must either limit the 

volume of training data or increase the number of connections in the network. 
Experimental results show that it is sufficient to quantize the intervals of 
input and output parameters into ten sub-intervals (i.e. eleven representative 
values: 0.0, 0.1,..., 1.0). For intermediate values obtained from the process 
during control, we rely on the interpolation performed by the network. Since 
multilayer perceptrons exhibit good interpolative properties, such a 
controller is very efficient in cases when unknown (not learned previously) 
data is presented at the inputs. It can then interpolate between known 
patterns to evaluate correct control value. For instance, if the controller 
had learned input-output triples: (0.1, 0.1, 0.9) and (0.3, 0.3, 0.7), it
should respond to the unknown data set (0.2, 0.2) with a control value of
approximately 0.8.

Such a controller represents an heuristic approach to the control problem 
(learning by experience and approximate reasoning); however, the idea of fuzzy 
sets is not employed in this case.

2.3. Discrete (m-h-n) neural controller (neural fuzzy controller)

Taking into account the input information, two versions of the neural fuzzy 
controller may be considered [3].

Let Card(X), Card(Y) Card(Z), Card(U), Card(V) Card(W) denote
respective cardinal numbers of the aforesaid discretized universes of 
discourse. The number of input neurons for the ’vector’ version of a neural 
network can be determined as [4]

m = Card(X) + Card(Y) + ... + Card(Z) (9)

while the number of output neurons
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n = Card(U) + Card(V) + ... + Card(W) (10)

For the ’matrix’ version of a neural network the number of input neurons 
can be determined as

m = Card(X) * Card(Y) * ... * Card(Z) (11)

and the number of output neurons as

n = Card(U) * Card(V) «... * Card(W) (12)

The idea of such a discretization was presented in (4).
It is easy to show that the approaches to the inference process in a fuzzy 
controller mentioned above lead to the previously described construction of 
two versions of the neural fuzzy controller which may be trained using the 
same input information.

Considering the discretization of universes of discourse for error - X, 
change in error - Y, and control action - U, we can now construct two versions 
of the neural fuzzy controller. The structure of multilayer perceptron seems 
to be sufficient for the discussed task [1,2,4], The structure of the input 
layer is considered to be linear for the ’vector’ version and rectangular for 
the ’matrix’ version (see Fig. 2).

According to formula (9) and taking into account the discretization of 
universes of discourse, the vector version will have ml = Card(X) + Card(Y) 
input neurons. The number of output neurons is given by n = Card(U). Denoting
the number of units in the hidden layers as hi, h2..... we can annotate the
structure of the ’vector’ network as (ml - hi - h2 - . . . - n).

For the ’matrix’ version according to formula (11) and using the same 
discretization as in the vector version, we will have m2 = Card(X) * Card(Y) 
input neurons. Assuming the same number of output neurons i.e. n = Card(U) and 
denoting the number of units in the hidden layers as hi, h2, ... , we can
also annotate the structure of the network matrix version as (m2 - hi - h2 - 
... - n)

For instance, let us consider a ’vector’ neural fuzzy controller using 10 
input neurons for error and change in error, and 10 output neurons for control 
value. Assuming that all the values lie within intervals (0, 1), for the
triple (0.1, 0.4, 0.6) we may write the following input and output vectors:

input: 0100000000 0001000000
output: 0000010000
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Note that discretization enforces rounding input and output data to several 
values, corresponding to input or output neurons. Such a network does not 
exhibit interpolative properties; however, its advantage is that it may accept 
’sampled’ fuzzy information, not only crisp (singleton) data.

2.4 Training and process control

The above presented neural controllers may be trained off-line by means of 
quantitative measurements expressed by triples (Error, Change in Error, 
Control Action) obtained during the observation of the process (sampling its 
parameters). Depending on, the structure of the controller, input-output data 
requires preprocessing (rescaling and/or discretization). It should be
mentioned here that the neural nets may be also initially trained using 
information obtained from the control rules (qualitative knowledge) [4]. As a 
learning scheme, the widely used backpropagation algorithm can be applied.

After the training, the network can be used to control the process. This is 
accomplished by feeding process data (error and change in error) to the input 
layer of the network, which then recalls an appropriate action. Note that the 
analog neural controller operates as an interpolative network, while the 
neural fuzzy controller - as an associative memory.

3. NUMERICAL RESULTS

We will present here some numerical results obtained by simulating the 
control of a machining process.

In order to obtain comparable results we have used a slightly modified 
knowledge base originating from Zhu et al. , described in (1). The fuzzy 
controller used in our experiments employed sup-prod for the compositional
operation, prod for the ’and’ connective between rule premises, sum for the
sentence connective ’also’.

As an example let us mention a turning process in which a constant cutting 
force (static case) should be assumed to assure the proper wear of the cutting 
tool. Changeable depth of cutting is compensated by the change of the feed 
rate. The relation between the cutting depth, feed rate and the cutting force 
in the y-direction can be approximated by the following formula [1]:
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(13)

where d denotes the cutting depth, f stands for the respective feed rate
and C , e , u are constant coefficients, y y y

Under chosen cutting conditions [1], formula (13) takes the form

F y = 876 d 09/0'75 (14>

Assuming a constant force F = 3050.4 [N], the range of cutting depth d 6yo
[3. .5] [mm] corresponds to the feed rate f e [0.75..1.4] [mm/s]. In this case 
the cutting depth was the value controlled while the feed rate being the 
driving value.

In the first stage of our experiment we used a fuzzy controller represented 
by equations (6) and (8) to simulate a human operator. The set point was 
preprogrammed to change within the interval [3..5] (see Fig. 3). The results 
of control, shown in Fig. 3a, were then used to train the neural controllers. 
For modelling the controllers we employed three-layer feedforward networks 
with sigmoidal elements. In the case of an analog neural controller the 
structure used was 2-10-1, while for the neural fuzzy controller we applied a 
20-20-10 structure. A backpropagation algorithm was used for training, with 
the learning rate of 0.6 and momentum of 0.3. Random pattern presentation 
scheme was used for training; 200 training rounds- were performed. The 
connectivity matrices were initially randomized with values from the interval 
[-0.5..0.5]. The ranges of error, change in error and drive were rescaled to 
’fill’ the whole range covered by the input and output neurons; rescaling was 
performed on the basis of operator’s experience. The error and change in error 
values were clamped to the interval (-0.5, 0.5), while drive values lied
within the interval of (0.75, 1.4).

In the second stage the same control program was performed making use of 
the previously trained neural controllers. The results are shown in Figs. 3b 
and 3c.

For the purpose of comparative study a quality index was defined as below:

N (z -SP )2 
QI = V

h  n + i



28 Balazinski M., Czogała E. , Sadowski T.

where z( denotes the controlled value (cutting depth), SP is the set 
point and N is the total number of observation points.

Comparing both stages we can note that both the fuzzy controller and neural 
controllers behave similarly. In the case of the analog neural controller we 
obtained a slightly better quality index (10.974 versus 11.797 of the fuzzy 
logic controller), resulting from its quicker response; in the case of neural 
fuzzy controller the quality index (12.546) was minimally worse, since 
oscillations were observed in steady states. It should be noted that the speed 
of a neural controller is greater than that of a classical fuzzy controller, 
even though the parallel structure of the neural network is simulated.

4. CONCLUDING REMARKS

The results of numerical experiments show that the both neural controllers 
perform equally well as a conventional fuzzy logic controller. They are, 
moreover, much more flexible (adaptive) and faster than the latter. The 
accuracy of control is sufficient, as it results from the performed 
experiments.

As the objective for future research, the input and output discretization 
problem should be considered: the larger the number of input (output) neurons, 
the better the accuracy of the controller; however, the larger the network 
itself, the longer the training time. Also the number of hidden neurons and 
learning parameters should be examined deeper.

It should be also noted that the structure of the neural fuzzy controller 
should allow introduction of data expressed as fuzzy sets (which are ’sampled’ 
at its inputs and outputs), while the "2-h-l" analog neural controller allows 
only crisp values at its inputs and output).
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Streszczenie

W pracy omówiono ideę regulatorów rozmytych (fuzzy logic controllers), w 
których wykorzystuje się wiedzę eksperta (operatora) o złożonym (słabo 
zdefiniowanym) procesie oraz ideę regulatorów neuronowych (neurall 
controllers), zastosowanych do sterowania procesem obróbki skrawaniem 
(toczenie). Artykuł składa się z dwu części. Pierwsza z nich, poza opisem 
koncepcji regulatora rozmytego, zawiera opis dwu struktur regulatorów 
neuronowych, tj. analogowego regulatora neuronowego i tzw. neuronowego 
regulatora rozmytego. Krótko omówiono tryby uczenia i uczenia (sterowania) 
regulatorów neuronowych.W drugiej części artykułu zamieszczono wyniki 
symulacji cyfrowej sterowania procesem toczenia za pomocą wyżej wymienionych 
regulatorów. Dokonano porównania działania wszystkich regulatorów za pomocą 
odpowiedniego wskaźnika jakości. Uzyskane wyniki badań pozwalają stwierdzić, 
że jakość sterowania przy zastosowaniu obu regulatorów neuronowych jest 
zadowalająca. Control value

Change in error
Fig.1. Structure of an analog neural controller 

Rys.l. Struktura analogowego regulatora neuronowego
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Motrlx inpul loyer 
o f  n « u r o l  n e t w o r k

Fig.2 Control loop employing a fuzzy logic controller and two possible 
versions of a neural fuzzy controller

Rys.2 Układ regulacji wykorzystujący regulator rozmyty i dwie proponowane 
struktury neuronowego regulatora rozmytego.
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Fig.3. Results of control using:
a) fuzzy logic controller
b) analog neural controller
c) fuzzy neural controller

Rys.3. Wyniki sterowania z wykorzystaniem
a) regulatora rozmytego
b) analogowego regulatora neuronowego
c) rozmytego regulatora neuronowego


